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Summary
The first development of ships bigger than 300 meter is dated back to the 1960s. Since then, the
development of bigger, more efficient vessels continued, pushing the designs towards their strength
limits. Sometimes, constructions are pushed beyond their limits with the possibility of significant nega­
tive economic and environmental impact or, in the worst case, impact on human life. Back in 2013, the
MOL Comfort, a 316­meter long container vessel, suffered from buckling, followed by a major collapse
in the bottom hull plating of the ship resulting in the ship breaking into two parts. The failure of this new
vessel, built in 2008, makes it explicitly clear why the development of accurate methods and models is
still required to predict if a design can withstand the expected loads during its operations.

In the past two decades, machine learning has been applied in the field of structural design,
but the amount of research regarding the scalability and generalizability of machine learning within
structural design is limited. This report investigates the application, scalability and generalizability of
machine learning to predict the ultimate strength of stiffened panels. In shipbuilding, stiffened panels
are considered one of the main structural elements. The main research question answered in this
research is:

Under what conditions is it possible to predict buckling and plasticity for a meshed stiffened panel
making use of machine learning?

Two parts are presented in this research to provide an answer to the research question. The first
part of this research represents the process of generating a large dataset that is used to train the
machine learning model. The dataset contains a broad set of longitudinal uni­axial compressed, and
lateral pressure loaded stiffened panels with geometries that can realistically be used in shipbuilding.
Optimization is performed on a developed analytical model that incorporates structural non­linearities
and structural design rules provided by classification societies. The obtained geometries are used to
predict the ultimate strength and stress distribution over the stiffened panel at the moment of failure
by the use of numerical analysis. The collected results are used as training and validation data for the
developed machine learning model. The mesh of the numerical models is used as the input for the
machine learning model.

The second part of the research is dedicated to developing a machine learning model that can
predict the ultimate strength and stress distribution over the stiffened panel at the moment of failure. In
this research, two different machine learning models are developed, which are similar for the most part.
Both models use the entire mesh of a stiffened panel as input for the model. The first model outputs the
ultimate strength of the stiffened panel, which is a single numerical value. The second model predicts
the stresses over the entire mesh of the stiffened panel.

Both developed machine learning models are subjected to extensive testing with different data and
data sizes. Overall, it can be concluded that machine learning can be considered an excellent tool to
predict the ultimate strength and the stress distribution over the entire stiffened panel at the moment of
failure. This statement is only valid when sufficient data is available for training to obtain stable learning
of the developed model. When more data is available, the model is more likely to become well trained,
and the obtained results are less dependent on the spread of the input data. The trained model can
achieve accurate predictions as long as the input parameters lay within a 5% margin of the original
data used to train the model and the input data is of similar to the data used for training. Outside this
range, there is no guarantee that the model can predict results accurately. When results are predicted
for input data past the 5% margin, the error of the predicted values rapidly increases. For a similar
machine learning model with a similar dataset for training, the recommendation is to have at least 4000
training examples with a good spread in geometrical parameters to obtain stable learning. When data
becomes more complex, for example, due to the introduction of more geometrical parameters, it is
expected that an increase of the dataset, which will be used to train the machine learning model, is
required. Besides the obtained results, the performed research creates multiple possibilities for further
research.
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1
Introduction

The first development of ships bigger than 300 meter is dated back to the 1960s. Since then, the de­
velopment of bigger, more efficient vessels continued, pushing the designs towards the limits of their
strength. Sometimes, structures are pushed beyond their limits with the possibility of significant nega­
tive economic and environmental impact or, in the worst case, impact on human life. As an example,
back in 2013, the MOL Comfort, a 316­meter long container vessel, suffered from buckling, followed
by a major collapse in the bottom hull of the ship resulting in the ship breaking into two parts. Salvage
operations failed, resulting in a loss of over three thousand containers and an equal number of tons
of marine diesel oil spillage [1]. The vessel was new, built in 2008, making it explicitly clear why the
development of accurate methods and models is still required to predict whether or not a design is able
to withstand the expected loads during its operations.

Most of the newly developed models are based on Finite Element Analysis, from now on called FEA.
Nowadays, many classification societies oblige the use of FEA models for strength prediction in marine
structures and provide engineers with a set of rules and guidelines to perform those analyses [2]. In
the last decade, Machine Learning, from now on called ML, gained significant interest in the field of
applied science. The reason for this is mainly due to the excellent performance of ML on complex
problems [3]. ML also made its introduction in structural design, but the amount of research regarding
the scalability and generalizability of ML within structural design is limited. This report investigates the
application, scalability, and generalizability of ML to predict the ultimate strength of stiffened panels.
Stiffened panels are considered one of the main structural elements of shipbuilding. Before going into
the report’s details, a short motivation for this research will be given in section section 1.1. Afterward, the
main objective of this research will be elaborated, followed by a section providing the report’s general
outline, respectively section 1.2 and section 1.3.

1.1. Motivation
In structural design, the classical methods for design were long based on Allowable Stress Design
(ASD) methods. This method depends on loads and stresses based on the yield strength of the ma­
terial. This method gives no guarantee on the safety factor since the real ultimate strength of the
construction is not known. Nowadays, Limit State Design (LSD) is broadly accepted as the primary
approach for structural safety calculations [4]. Limit states are defined as follows:

“A condition under which a particular structural component or an entire structural system fails to perform
its designated function” [5]

LSD in shipbuilding consists of four limit states, of which one is the Ultimate Limit State (ULS). The
ULS is determined by structural failure, for example, structural collapse [6]. The other limit states are
based on serviceability, fatigue, and accidents, which will not be further discussed in this research. In
ships, stiffened panels are subjected to significant compressive loads during its operating lifetime, pre­
dominantly in­plane compressive loads. Extensive buckling of a stiffened plate can leave the stiffened
plate with little remaining stiffness, which may result in collapse and thus total failure of the structure.
For this reason, buckling is considered one of the failure modes within the ULS design of ships. There­
fore, it is important to be able to predict the ultimate strength of stiffened panels and preferably large
structures with reasonable accuracy. Realistic buckling results are often related to complex non­linear
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calculations, which can be performed by most commercial available FEA software. FEA produces reli­
able results if models are correctly simplified with the right boundary conditions. However, this requires
significant runtime and computing power for large complex models [7].

An alternative for accurate and faster models might be developed using Machine Learning (ML). The
goal of ML can be considered as follows:

“The goal of machine learning is to program computers to use example data or past experience to solve
a given problem” [8]

ML has proven itself as a good alternative for many tasks in a wide variety of applications. Currently,
the application of ML in structural engineering problems is limited. However, more and more research
is being done on the combination of ML and structural engineering [3]. ML is especially interesting as
an addition or partial alternative for models that contain significant non­linearities, which are difficult
to describe with simple equations within analytical models. As mentioned before, numerical models
often form the solution to this problem, but those models are often a trade­off between accuracy and
computational power. Most numerical models are based on a mesh, a subdivision of the structure into
small finite elements. In most cases, more elements in the mesh will give a higher accuracy, but the
use of more elements requires more equations to be solved, thus increasing the computation time and
amount of data per structural model [9]. ML might form the bridge between accuracy and computational
time, which are now conflicting characteristics in structural engineering models. One of the drawbacks
of ML’s application within the field of structural design is the amount of data required to get acceptable
performance. A large number of data is not something widely available for many structural engineering
problems. A structural engineer might have access to a dataset containing several hundreds of data
points, while in many disciplines where ML is widely adopted, significantly larger quantities of data are
available. This research will look into ML as a suitable alternative for FEA to predict multiple failure
modes in stiffened panels. Also, the scalability and generalizability of the ML will be investigated.
The next section, section 1.2, will describe the goal of the research in detail with all the related sub­
questions.

1.2. Research Goal
This research considers the application of machine learning to predict structural failure for multiple
buckling modes in stiffened panels. From the introduction, the following research question arises:

Under what conditions is it possible to predict buckling and plasticity for a meshed stiffened panel
making use of machine learning?

Several sub­questions have been defined to support the answer to the main research question:

1. Which range of geometric parameters covers a comprehensive set used in shipbuilding, and
captures all different types of buckling/local failure? ­ Teaching the algorithm to predict failure of
structures that will never be used will not have added value to the model. Therefore, it is important
to obtain a representative set of data samples.

2. Which type of ML­model is suitable to predict local structural failure? Also, which type of training
algorithm is efficient to train this ML­model? ­ ML is a broad subject, and many different styles of
models exist. Not every model excels in the same tasks. Therefore, appropriate model selection
is essential.

3. How can the ML­model be trained to determine the ultimate strength of the stiffened panel without
the ML­model knowing how it will fail? ­ Different modes of buckling can occur in a stiffened panel
based on the geometry, imperfections, and material properties. It is import to determine if the
model can learn to predict the ultimate strength based on only the input parameters.
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4. When is the ML­model fully converged, and what is the minimal amount of training data needed
for acceptable convergence? ­ When are the result of the model accepted, or when is decided
to train the model for longer to obtain even better results? The amount of available data is often
limited to structural engineers. Therefore, it is essential to know how much data is required to
obtain acceptable results.

5. Is the trained ML­model able to predict results outside its training scope correctly, so­called ‘scal­
ability’ and ‘generalizability’. If so, to what level of extrapolation are results considered useful? ­
Generally, if something is learned, we can still perform tasks that are slightly different, but what
happens if the tasks become too different from the initial tasks that we used to learn? To what
extent are we still able to perform the task with success?.

The questions above will be answered throughout the report. The conclusions and recommendations
will reflect on the both the research question and its sub­questions described.

1.3. Outline of the Report
From the research goal, it becomes clear that this report will consist of several parts. Part I of the report
will start with some fundamental theory on both buckling and machine learning, explained in chapter 2,
supporting the reader in understanding the report better. This chapter is followed by a literature review
in chapter 3.

After a first introduction to the topic, the reader will find Part II which describes all aspects of the data
generation. The first chapter, chapter 4, introduces the reader to the actual stiffened panel model and
its loading conditions. Next, the analytical model used to acquire a representative set of parameters
for the stiffened panel is described in chapter 5. The last chapter of this part contains the description
of the numerical model that is used to obtain the output data for the ML­model, chapter 6.

Part III of the report explains both developed ML­models. The ML­model that is used to predict if
structural failure will occur is described in chapter 7. The next chapter, chapter 8, will describe the
ML­model that is used to predict the localized stress distribution over the stiffened panel at the ultimate
strength. Both chapters will described the scalability and generalizability for the ddeveloped models

In Part IV, the report will be completed with the conclusion and the recommendations for further research
in chapter 9 and chapter 10, respectively.





2
Fundamental Theory

It is expected that some readers will have no prior experience with either buckling or machine learn­
ing. Therefore, this chapter will elaborate on the theoretical fundamentals of both topics. The theory
described in this chapter is considered prior knowledge throughout the report. It is expected that the
reader has some background related to physics.

In section 2.1 a basic introduction to buckling will be given, starting with the very basics work­
ing towards plate buckling, nonlinearities and Finite Element Methods (FEM). The second part of this
chapter, section 2.2, will give an introduction to the basics of machine learning, especially related to
Convolutional Neural Networks (CNNs).

2.1. Buckling
This section will give an introduction to buckling, which forms the basis for a better understanding of
the analysis performed in chapter 5 and chapter 6. The following definition could represent buckling:

Buckling is considered a significant increase in lateral deflection caused by the application of axial
compressive forces on thin structures.

As previously mentioned in section 1.1, after severe buckling, a structure may lose a significant amount
of its stiffness or strength, resulting in structural failure when loading continues. The understanding of
this phenomenon is an essential factor in ensuring structural safety. Twomain types of buckling analysis
are found: linear and nonlinear. Linear models adopt a linear relationship between stress and strain.
Also, linear geometrical behavior is adopted. They are easily applicable and provide a quick result but
at the cost of accuracy. Nonlinear models often deliver good accuracy on the real ultimate strength of
a structure. Nonlinear models have increased complexity and require more computational power than
linear models.

Several factors can have a significant impact on the ultimate strength of columns and panels. These
factors will be discussed throughout the sections. Only the effects that are created during construction
will be discussed. Effects like corrosion and cracking are neglected.

The first introduction to cloumn buckling is given in section 2.1.1. The buckling theory will be
extended to plate buckling theory in section 2.1.2. In the next section, section 2.1.3, the influence
of residual stress on the ultimate strength will be discussed. The initial deflection of a structure can
also negatively influence the ultimate strength of a structure. The initial deflection will be discussed in
section 2.1.4. The next section, section 2.1.5, will describe the use of numerical models. Eigenvalue
buckling analysis and quasi­static buckling analysis will be discussed in section 2.1.6 and section 2.1.7,
respectively. If the reader is familiar with buckling it is recommended these skip these sections and
continue reading in section 2.2.1.

2.1.1. Euler Buckling
This section will start with the fundaments of linear buckling, Euler buckling, also called column buckling.
Euler buckling is the most basic description of column buckling, not taking into account any form of
nonlinearities like initial deflection, plasticity, and eccentricity. Plasticity is deformation that is permanent
even after unloading the structure, elastic deformations are non­permanent deformations. A column
without those nonlinearities is also called an ideal column. Euler buckling only adopts the linear part
of material behavior. The material is considered homogeneous and isotropic, and deformations are

7
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considered small. The stress­strain relation is given by eq. (2.1). Stress (𝜎) is linearly related to the
strain (𝜖) by the Young’s Modulus (𝐸).

𝜖 = 1
𝐸𝜎 (2.1)

In the hull of ships, it is often assumed that the boundary conditions are simply supported. The reason
for this will be further explained in section 4.1. Therefore, a simply supported column will be assumed
in this section, as can be seen in fig. 2.1.

𝑃𝑃
𝑥

𝑦

𝑤

𝐿

Figure 2.1: Representation of a simply supported beam. 𝑤 is the beam’s deflection. P is the applied compressive force.

In column buckling, small deflections and rotations are assumed. In the column, internal and external
bending moments are present. Those moments can be used to write an equilibrium of the bending mo­
ments on the column. The moment equilibrium can be rewritten to the homogeneous second­order lin­
ear differential equation, eq. (2.2). The general solution for the differential equation is given in eq. (2.3).

𝑑2𝑤
𝑑𝑥2 + (

𝑃
𝐸𝐼)𝑤 = 0 (2.2)

𝑤(𝑥) = 𝐶1 sin(√
𝑃
𝐸𝐼𝑥) + 𝐶2 cos(

√ 𝑃
𝐸𝐼𝑥) (2.3)

Simply supported boundary conditions impose no deflection (𝑤 = 0), and no bendingmoment (𝑑2𝑤/𝑑𝑥2 =
0) at the support. The constants in the differential equation can be found with the application of
𝑤(𝑥 = 𝐿) = 0 and 𝑤(𝑥 = 0) = 0. Constant 𝐶2 becomes zero eliminating the second term from
the differential equation’s right hand side, giving a non­trivial solution in the form of eq. (2.4).

√ 𝑃
𝐸𝐼𝐿 = 𝑛𝜋 (2.4)

Physical mechanisms always prefer a state that requires the least energy. When compressing a col­
umn, it will tend to buckle in a half­sinusoidal shape since this requires the least energy, as can be seen
in fig. 2.1. The number of half waves is described by 𝑛. The critical buckling load can then be obtained
by rewriting eq. (2.4) with 𝑛 = 1 to eq. (2.5).

𝑃𝑐𝑟 = 𝑃𝐸 =
𝜋2𝐸𝐼
𝐿2 (2.5)

The radius of gyration (𝜌 = √𝐼/𝐴), can be used to transform the Euler buckling load to a critical stress
equation, eq. (2.5).

𝜎𝑐𝑟 =
𝑃𝑐𝑟
𝐴 = 𝜋2𝐸𝐼

𝐿2
𝜌2
𝐼 = 𝜋2𝐸𝜌2

𝐿2 (2.6)

The Euler buckling load can be rewritten with the column slenderness coefficient (𝜆) to obtain a ratio
between the critical Euler stress and the structure’s yield strength (𝜎𝑦). The column slenderness coef­
ficient is based on the yield strength of the material, the Young’ss modulus, and the radius of gyration
(𝜌), and can be seen in eq. (2.7). When squaring the radius of gyration (𝜌2), it can be substituted in the
Euler buckling stress equation, eq. (2.6), to obtain an equation relating the Euler buckling stress to the
yield strength and the slenderness coefficient of the construction, eq. (2.8).
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𝜆 = 1
𝜋𝜌√

𝜎𝑦
𝐸 (2.7)

𝜎𝑐𝑟 =
𝜋2𝐸𝜌2
𝐿2 = 𝜋2𝐸

𝐿2
𝐿2𝜎𝑦
𝜋2𝜆2𝐸 →

𝜎𝑐𝑟
𝜎𝑦

= 1
𝜆2 (2.8)

Similarly, it is possible to obtain the Euler buckling load for fixed supports, which also considers con­
strained rotations (𝑑𝑤/𝑑𝑥 = 0) as an additional boundary condition. The use of fixed boundary condi­
tions will not be used throughout this report, therefore, this will not be further explained. Euler buckling is
only effective for perfect structural elements. A real structure is never considered perfect, but the Euler
equation forms the foundation for multiple analytical models that take into account effects as plasticity,
initial deformation, and eccentricity. The most well­known models are the Johnson­Ostenfeld equa­
tion and the Perry­Robertson equation. Other models are available like the Rankine models, but they
are not widely adopted. Johnson­Ostenfeld adds plasticity to the equation. Perry­Robertson includes
eccentricity and initial deflection. The importance of plasticity and initial deflection will be described in
section 2.1.3 and section 2.1.4.

2.1.2. Plate Buckling
When looking at plates, the 2­D cases of column buckling turns into a 3­D case. In the 3­D case, the
constitutive relation described in eq. (2.1), need to be extended by incorporating the Poisson effect
(𝜈). The Poisson effect implies that a positive strain will cause a negative strain in both orthogonal
and lateral direction. In case of thin plates under axial compression, we can consider in­plane stress
conditions: 𝜎𝑧𝑧 = 𝜏𝑦𝑧 = 𝜏𝑧𝑥 = 0. This reduces the stress­strain relations for plates to eq. (2.9).

[
𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦
] = 1

𝐸 [
1 −𝜈 0
−𝜈 1 0
0 0 2 (1 + 𝜈)

] [
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
] (2.9)

In this section, it is assumed that plates are simply supported. This way, the buckling shape of plates will
have a sinusoidal shape in the direction of the length (𝑎), called the longitudinal direction, and the width
(𝑏), called the transverse direction, of the plate when subjected to uni­axial compression, see fig. 2.2.
A second component over the y­axis will be added to eq. (2.3), resulting in the eq. (2.10). From this
equation, it can be seen that a sinusoidal shape will occur in both directions. The parameters 𝑚 and 𝑛
are the buckling halve­wave numbers in the plate’s longitudinal and transverse direction, respectively.
Parameter 𝐴𝑚 is the buckling amplitude.

Figure 2.2: Buckling halve waves in both x­ and y­direction. The value of𝑚 represents the number of half waves in the longitudinal
direction (𝑎), 𝑛 represents the number half waves in the transverse direction (𝑏). In this figure, the plate is drawn for𝑚 = 3 and
𝑛 = 1. Image taken from [10].

𝑤 = 𝐴𝑚 sin (𝑚𝜋𝑥𝑎 ) sin (𝑛𝜋𝑦𝑏 ) (2.10)
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When subjected to longitudinal uni­axial compression, the stress strain relations will change. The
equations from eq. (2.9), will change to the set in eq. (2.11).

{
𝜖𝑥𝑥 =

1
𝐸𝜎𝑥𝑥

𝜖𝑦𝑦 = −
𝜈
𝐸𝜎𝑥𝑥

(2.11)

By applying the same principles as described for Euler buckling, the elastic buckling stress of a plate
can be determined. Again, by setting the plate’s internal and external bending moments equal to each
other, one can solve for critical stress by substituting the displacement equation, eq. (2.10), in the
equilibrium equation. This will result in equation eq. (2.12).

𝜎𝑥𝐸 =
𝜋2𝑎2𝐷 (𝑚

2

𝑎2 +
𝑛2
𝑏2 )

2

𝑡𝑚2 → 𝜎𝑥𝐸 = 𝑘
𝜋2𝐷
𝑏2𝑡 ; 𝑘 = (

𝑚𝑏
𝑎 + 𝑎

𝑚𝑏)
2

(2.12)

Parameter 𝐷 is the flexural rigidity of the plate, which depends on the Young’s modulus, Poisson ratio
and the thickness of the plate (𝑡). The flexural rigidity is described by eq. (2.13).

𝐷 = 𝐸𝑡3
12(1 − 𝜈2) (2.13)

The lowest value for the elastic buckling load for uni­axial compressed plates will be obtained by se­
lecting 𝑛 = 1, which is one buckling half­wave in the transverse direction of the plate. With 𝑛 = 1,
eq. (2.12) can be rewritten to eq. (2.14).

𝜎𝑥𝐸,1 =
𝜋2𝐷
𝑎2𝑡 (𝑚 +

1
𝑚 (𝑎𝑏)

2
)
2

(2.14)

For uni­axial compressed plates, the value of 𝑚 can be determined by the aspect ratio of the plate, as
described in eq. (2.15).

𝑎
𝑏 ≤ √𝑚 (𝑚 + 1) (2.15)

This section provides information based on the theory given in lecture slides fromMIT [11] and the books
of Timoshenko and Gere [12] and Hughes and Paik [7]. The previously discussed section, section 2.1.1
and section 2.1.2, form the introduction to the reader who has no prior experience with buckling. The
equations and derivations described are limited but should form a feeling for what is happening when
columns and plates buckle. If the reader is more interested in buckling analysis and its derivations, the
reader can consult one of the many available books about this topic.

2.1.3. Residual Stress
The importance of incorporating plasticity within ultimate strength models is related to the residual
stress in structures. Residual stress (𝜎𝑟𝑠) is internal stress in the structure that is always present, even
in the unloaded state. For stiffened plates, there are two main reasons for residual stress within the
structure. Both reasons are related to thermal gradients during the production stage.

The first reason is the hot­rolling of plates/stiffeners during fabrication. During the process of
cooling, the temperature gradients are not the same throughout the material. Hot­rolled T­stiffeners
tend to cool faster at the edges of the flanges, creating residual stresses [13]. The geometry of a
T­stiffener is shown in fig. 4.2. The plate’s edges tend to cool more rapidly than the center of the
plate, resulting in compressive residual stress on the edges and tension in the middle of the plate.
Compressive residual stresses due to hot­rolling can be close to one­third of the yield strength of the
parent material [14].

The second cause for residual stress is welding. During welding, the material is heated until
it becomes fully plastic. Due to the uneven cooling after welding, tensile residual stress will occur
at the weld seam and compressive residual stresses in the middle of the plate, as shown in fig. 2.3.
The magnitude of the tensile stress can be close to the yield strength of the parent material. The
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physical mechanism that happens in the material during cooling will not add to the understanding of
the importance of plasticity and will therefore not be discussed in this report.

Figure 2.3: Residual stress developed in a plate due to uneven cooling after welding around all the edges. Around the weld­seam,
tensile residual stress will develop close to the yield strength, 𝜎𝑦 of the parent material. Image taken from [10].

As mentioned before, buckling is caused by compressive forces on thin structures. From now on,
compressive forces are considered positive, and tensile forces are considered negative values. If we
subject a welded plate to uni­axial compression in the longitudinal direction, the force applied will add
up to the compressive force in the center of the plate, 𝜎𝑦 = 𝜎 + 𝜎𝑟𝑠, causing plasticity in the material
before the Euler critical buckling load, 𝜎 < 𝜎𝑦, has been reached. This behavior shows the importance
of incorporating plasticity into the ultimate strength calculations. Theoretically, welding residual stress
can also add to the strength of the material. Welding residual stress can prevent plasticity near the
weld seam of the material due to the tensile residual stress when loaded by compressive force in the
longitudinal direction, 𝜎𝑦 = 𝜎 − 𝜎𝑟𝑠.

Plasticity is incorporated into eq. (2.8) by adopting elastic­perfectly plastic material properties [14]. Past
the linear elastic stress­strain relation, 0­A in fig. 2.4, the material starts to behave nonlinearly. Beyond
the yield strength, there is a moment of purely plastic strain, also called yield plateau, as seen in
segment A­B. Eventually, strain­hardening will occur until the ultimate strength (𝜎𝑢) has been reached
at point C. Strain­hardening is the phenomenon where during plastic deformation, material dislocations
start to move, and new dislocations are created within the crystal structure of thematerial, increasing the
stress required for a specific elongation. Strain hardening is difficult to model. Therefore, in analytical
models and even numerical models, a bi­linear isotropic material is assumed. The nonlinear part B­C
will be approximated with a tangent modulus 𝐸𝑡, which is also displayed in fig. 2.4. It is often assumed
that the tangent modulus is zero, which would mean that the material is considered elastic­perfectly
plastic. Yield flow starts beyond the yield strength without the further increase due to elongation.

The Johnson­Ostenfeld equation takes plasticity into account with a plasticity correction, which is often
assumed to start when the elastic buckling stress in eq. (2.5) or eq. (2.12) is past half of the yield
strength. This is shown in eq. (2.16) [14].

𝜎𝑥𝑢 = {
𝜎𝑥𝐸 for 𝜎𝑥𝐸 ≤ 0.5𝜎𝑦
𝜎𝑦 (1 −

𝜎𝑦
4𝜎𝑥𝐸

) for 𝜎𝑥𝐸 > 0.5𝜎𝑦
(2.16)

The effect of residual stress can also be added to equation eq. (2.14) by adding a residual stress
correction (𝜎𝑟𝑒𝑥) which is calculated by eq. (2.18a). This will results in eq. (2.17). This correction factor
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0 ϵ𝑦 ϵ𝑠ℎ

𝜎𝑦

𝜎𝑢

tan−1 𝐸

tan−1 𝐸𝑡
𝐸𝑡 = 0𝐴 𝐵

𝐶

ϵ𝑢

Figure 2.4: Stress­strain diagram. 0­A: showing the linear behaviour until the yield strength. A­B: Showing plastic material flow,
also called yield plateau. B­C: nonlinear strain­hardening.

is determined by both the compressive and tensile residual stress over the plating. These equations
display the effect of residual stress in the longitudinal directions. Stiffened panels are welded on every
side of the plating. Therefore, it is also important to introduce welding residual stress in the transverse
direction. The correction factor in y­direction is given by eq. (2.18b).

𝜎𝑥𝐸,1 =
𝜋2𝐷
𝑎2𝑡 (𝑚 +

1
𝑚 (𝑎𝑏)

2
)
2
− 𝜎𝑟𝑒𝑥 (2.17)

𝜎𝑟𝑒𝑥 = 𝜎𝑟𝑐𝑥 +
2
𝑏(𝜎𝑟𝑡𝑥 − 𝜎𝑟𝑐𝑥) (𝑏𝑡 −

𝑏
2𝜋 sin

2𝜋𝑏𝑡
𝑏 ) (2.18a)

𝜎𝑟𝑒𝑦 = 𝜎𝑟𝑐𝑦 +
2
𝑏(𝜎𝑟𝑡𝑦 − 𝜎𝑟𝑐𝑦) (𝑎𝑡 −

𝑎
2𝜋 sin

2𝜋𝑎𝑡
𝑎 ) (2.18b)

In these equations 𝜎𝑟𝑐𝑥 and 𝜎𝑟𝑡𝑥 are the compressive residual stress and the tensile residual stress in
x­direction, respectively, as given in fig. 2.3. The parameters 𝜎𝑟𝑐𝑦 and 𝜎𝑟𝑡𝑦 are then the compressive
residual stress and the tensile residual stress in the y­direction. As mentioned before, the tensile
residual stress is close to the yield strength of the parent material for most steels (𝜎𝑟𝑡𝑥 ≊ 𝜎𝑦). The
compressive residual stress is often taken as eq. (2.19a) in the x­direction and eq. (2.19b) in the y­
direction. These equations define the residual stress as a fraction of the yield strength of the parent
material. The levels determine the amount of residual stress present in the structure. Sometimes
excessive residual stress can be present in a structure as is noted in the experimental study of Smith
et al. [15]. Therefore, multiple levels of residual stress are defined.

𝜎𝑟𝑐𝑥 = {
−0.05𝜎𝑦 for a slight level
−0.15𝜎𝑦 for an average level
−0.3𝜎𝑦 for a severe level

(2.19a)

𝜎𝑟𝑐𝑦 = 𝑘
𝑏
𝑎𝜎𝑟𝑐𝑥 (2.19b)
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Where 𝑘 is a correction factor based on the yield strength of the parent material. The values of 𝑘 are
presented in table 2.1. For other material yield stress factors, the factor can be determined by making
use of interpolation. Parameters 𝑏𝑡 and 𝑎𝑡 are the width of the residual tensile stress zones, which are
approximated by eq. (2.20a) and eq. (2.20b). This approximation is based on force balance.

Table 2.1: k­material factor according to the international association of classification societies (IACS). By interpolating it is
possible to obtain the k­material factor for other material yield strengths.

𝜎𝑦 (MPa) 𝑘­factor (­)
235 1.00
315 0.78
355 0.72
390 0.66
460 0.62

(𝑏 − 2𝑏𝑡)𝜎𝑟𝑐𝑥 = −2𝑏𝑡𝜎𝑟𝑡𝑥 → 𝑏𝑡 =
𝑏
2

𝜎𝑟𝑐𝑥
𝜎𝑟𝑐𝑥 − 𝜎𝑟𝑡𝑥

(2.20a)

(𝑎 − 2𝑎𝑡)𝜎𝑟𝑐𝑦 = −2𝑎𝑡𝜎𝑟𝑡𝑦 → 𝑎𝑡 =
𝑎
2

𝜎𝑟𝑐𝑦
𝜎𝑟𝑐𝑦 − 𝜎𝑟𝑡𝑦

(2.20b)

The description is given for residual stress, and its effect on the elastic buckling strength in eq. (2.17)
is valid for compressive forces in the longitudinal direction. The elastic buckling strength can be ob­
tained for compressive force over the transverse direction in a similar manner, which will not be further
discussed.

This subsection makes clear the importance of incorporating the residual stress in the ultimate strength
analysis and how it negatively can influence the ultimate strength. It also is explained how residual
stress can be estimated in plates welded on the edges.

2.1.4. Initial Deflection
Another important aspect related to the ultimate strength of structures is the initial deflection of the
structure. In reality, a structure is never perfectly flat or straight because deformations in the structure
might occur during the handling or processing of the materials in the building process. One of the
most critical factors causing initial deformations is the welding of the materials. Due to the heating and
cooling, the material deforms. In this process, the material does not fully return to its original state
creating initial deflection in the material. During the compressive force application, this initial deflection
will add up to the deformation caused by compressive force in eq. (2.2), 𝑤 → 𝑤 +𝑤0. This increase in
deformation will cause the material to buckle faster, thus lowering the ultimate strength of the structure.

The shape of the initial deflection is, in reality, complex and challenging to describe. It is often assumed
that the initial deflection will be similar to the first element in a Fourier series over both axis, as described
in eq. (2.21) [12]. The parameter 𝑤0 is the initial deflection, 𝐴0𝑚𝑛 the amplitude.

𝑤0 =
𝑀

∑
𝑚=1

𝑁

∑
𝑛=1

𝐴0𝑚𝑛 sin (
𝑚𝜋𝑥
𝑎 ) sin (𝑛𝜋𝑦𝑏 ) (2.21)

2.1.5. Numerical Analysis
For simple structures like plates and beams, analytical equations can form a quick and easy usable first
estimate. For more accurate estimates, geometry and material nonlinearities are essential to take into
account. The application of nonlinearities is often difficult with the use of analytical models for more
complex structures. Therefore, numerical methods like Finite Element Methods (FEM) are often used
to obtain accurate buckling and ultimate strength assessments. There are other methods available,
like Element Free Galerkin methods (EFG). These are less often used in buckling analysis than FEM
and will not be further considered in this research.



14 2. Fundamental Theory

In FEM, a structure is represented by making a geometry. This geometry will then be divided into
small finite elements, together called a mesh. This process is called discretization of the continuum.
Elements can either be 1­D elements (lines), 2­D elements (shells), or 3­D elements (solids). Every
element has a certain amount of points, called nodes, distributed over the edges or the surface of the
element. For those nodes, the Degrees of Freedom (DoFs) are described. In this way, it is possible to
create a set of equations related to the finite elements. For the entire structure, FEM uses the global
equation set shown in eq. (2.22). For every i𝑡ℎ element, this equation is written as eq. (2.23).

{𝐹} = [𝐾]{𝑢} → {𝐹𝑎} − {𝐹𝑟} = [𝐾]{𝑢} (2.22)

{𝑓𝑖} = [𝑘𝑖]{𝑢𝑖} → {𝑓𝑎𝑖 } − {𝑓𝑟𝑖 } = [𝑘𝑖]{𝑢𝑖} (2.23)

In those equations, {𝐹} and {𝑓𝑖} are the load vectors on the structure. The load vector is separated in
an applied force vector {𝐹𝑎} and the internal restoring force vector {𝐹𝑟}. Matrices [𝐾] and [𝑘𝑖] are the
tangent stiffness matrices, describing the resistance to strain. This matrix depends on the parameters
of the model, such as geometry and material properties. {𝑢} and {𝑢𝑖} are the displacement vectors.
These equations are a basic representation of the equations solved for time­independent analysis.
In FEA, the displacements are determined, which can be turned into strains and stresses. When a
model is divided into more elements, a more accurate prediction is usually obtained. The use of more
elements also increases the number of required computations and significantly increases the model
size and the computational power required.

There are multiple methods for determining the ultimate strength with a buckling analysis. The simplest
method is linear eigenvalue buckling, in which the bifurcation stress is determined. This method will
be discussed in section 2.1.6. When incorporating nonlinear effects, a quasi­static analysis will often
be used. With nonlinear analysis, a better approximation of the real ultimate strength can be obtained
compare to eigenvalue buckling analysis. Quasi­static analysis well be discussed in section 2.1.7.

2.1.6. Eigenvalue Buckling Analysis
In eigenvalue buckling, the problem is solved under ideal and elastic circumstances. In eigenvalue
buckling, it is also assumed that deflections are small so that small deflection theory can be used.
In eigenvalue buckling, the goal is to find the bifurcation buckling point: the point that indicates the
moment of instantaneous buckling. The bifurcation point is the linear elastic buckling point, which
is also called Euler buckling. The name eigenvalue buckling comes from the fact that in eigenvalue
buckling, the point is searched for which stiffness matrix [𝐾] becomes singular. This search is similar to
searching for non­trivial solutions in an eigenvalue problem. The problem that is solved can be written
as eq. (2.24).

([𝐾] + 𝜆𝑖[𝐾𝜎]) {𝜓𝑖} = 0 (2.24)

Matrix [𝐾] is the previously describe stiffness matrix, which depends on the geometry and the material
properties. [𝐾𝜎] is called the stress stiffness matrix. This matrix is updated during every load step
while solving and contains values related to the increase or decrease of stiffness due to the current
stress state. The parameter 𝜆𝑖 is an eigenvalue of the i𝑡ℎ buckling mode and the force­scaling factor,
which will be explained later. The vector {𝜓𝑖} is the buckling mode eigenvector and is a normalized
displacement vector. This vector represents the displacement of the i𝑡ℎ bucklingmode corresponding to
i𝑡ℎ eigenvalue. Solving the eigenvalue problem will give the eigenvalue and the corresponding buckling
modes of the structure. Within FEM, there are multiple methods available to extract those eigenvalues.
Those methods will not be further discussed and can be found explained in detail in most manuals of
commercial FEM software [16]. In numerical eigenvalue buckling, the eigenvectors do no represent real
displacements. The displacement vector is normalized, meaning that all rotations and deflections are
scaled between 0 and 1. The buckling mode related to the lowest eigenvalue represents the dominant
buckling shape. The bifurcation point can be obtained by scaling the initially applied loads on the
model with the lowest eigenvalue. If the lowest eigenvalue is equal to 1, the bifurcation load on the
construction is found.
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The eigenvalue buckling analysis is often not performed to obtain the bifurcation point of the structure,
but to obtain the first elastic buckling mode shape. The first elastic buckling mode is the eigenvector
{𝜓𝑖}, which corresponds with the lowest obtained eigenvalue 𝜆𝑖. This mode shape is often used as
an initial deflection for a quasi­static analysis. As mentioned earlier, the eigenvector with the buckling
mode is normalized, making it easy to scale to the desired initial deflection amplitude. Often, the
buckling mode shape is scaled to the maximum amplitude described in the study of Smith et al. [15],
or to maximum values obtained from experimental research.

2.1.7. Quasi­Static Buckling Analysis
In quasi­static buckling analysis, forces and displacements are incremented in small steps. When
those sub­steps are small enough, the inertial effects of the structure become negligible. This way, the
iterative process becomes a quasi­static analysis instead of a dynamic analysis. Often, quasi­static
analysis is used, including nonlinear behavior, making use of large deflection theory. Compared to
eigenvalue buckling, a non­ideal structure is assumed with initial deflections, often obtained from the
first mode of the eigenvalue buckling.

{𝐹𝑎} − {𝐹𝑟𝑖 } = [𝐾𝑖]{Δ𝑢𝑖} (2.25)

In a quasi­static analysis, the loads or displacements are incremented in small steps. At every load
step, the nonlinear force balance between external and internal forces described in eq. (2.25) must be
solved. In this equation, the displacement vector is written as {Δ𝑢𝑖}, which represents the displacement
at increment 𝑖. An iterative process is required to solve this equation. Most analysis types make use of
the Newton­Raphson method [16]. This method iteratively solves the imbalance between the externally
applied forces and the internal forces. In this method, the left­hand side of eq. (2.25) will be determined
to obtain a force imbalance on the right­hand side of the equation. This process is done by iteratively
updating {Δ𝑢𝑖} and [𝐾𝑖] to obtain a force imbalance that is considered converged. To determine if a
solution is converged, it is often assumed that the difference between the externally applied and internal
forces is below a certain error margin. As soon as the force imbalance is considered converged, the
next displacement increment of the quasi­static analysis will be applied, and the iterative process to
solve the force imbalance will be repeated. This iterative method is effective if the function to solve is
monotonic. When reaching the ultimate strength of a structure, this method might become unstable
and contains inaccurate results due to the large increase in deformations and rotations when assuming
elastic­perfectly plastic material. Therefore, in a quasi­static buckling analysis, the arc­length method
is often used.

𝜆{𝐹𝑎} − {𝐹𝑟𝑖 } = [𝐾𝑖]{Δ𝑢𝑖} (2.26)

Δ𝐿 = √{Δ𝑢𝑖}𝑇{Δ𝑢𝑖} (2.27)

The arc­length method is based on eq. (2.26) [16]. The arc­length equation is similar to the Newton­
Raphson equation eq. (2.25). The load factor (𝜆) changes every iteration over the arc defined with
radius Δ𝐿. This way, the applied load vector {𝐹𝑎} becomes variable. In the arc­length method, an arc
is used with the radius Δ𝐿, derived from the displacement vector {Δ𝑢𝑖} by eq. (2.27). The arc­length
method combined with the iterative solving of the Newton­Raphson method makes it possible to obtain
converged results of solutions which are non­monotonic or even not continuous, which can be the case
in quasi­static buckling analysis. Therefore, in this research, the arc­length method will be adopted for
the quasi­static analysis.
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2.2. Machine Learning
As mentioned in section 1.1, one can describe machine learning with the following definition:

”The goal of machine learning is to program computers to use example data or past experience to solve
a given problem” [8]

Within machine learning, three types of main problems are defined: Unsupervised learning, supervised
learning, and reinforcement learning. When for a problem only the input data is known, it is still possible
to use algorithms to learn relations between the individual data points. This type of task is called
unsupervised learning. If the ouput of the data is known, the algorithm can learn to predict the outcome.
This problem can be either a classification task or a regression task and is called supervised learning.
In both cases, the algorithm learns to find the relation between the in­ and output data. For the last type
of problem, there are situations where models are taught to respond to interactions with other inputs.
These interactive problems are called reinforcement learning. This thesis’s subject is about predicting
the failure of stiffened panels, for which an ultimate strength is required. The ultimate strength is a
numerical value, so therefore it can be considered a regression problem. Since it is a numerical value,
it is known what the output corresponding to the input should be. Therefore, this problem is considered
supervised learning, and no further attention will be paid to unsupervised and reinforcement learning
throughout this report.

nonlinear regression can be performed by Neural Networks (NNs). There are many different NN
architectures developed over the last decades. First, an introduction will be given to the basic NNs and
Deep Neural Networks (DNNs) in section 2.2.1. This section describes the main idea and principles
behind NNs. Neural networks are the most used architecture within structural engineering in the last
decade [3]. Next, an introduction will be given to Convolutional Neural Networks (CNNs) and why this
architecture is different from DNNs, see section 2.2.2.

2.2.1. Deep Neural Networks
This section will describe the basics of NNs and DNNs, providing the inexperienced reader with an idea
of what NNs are and how they can learn relations between the input and output of data. A schematic
overview of a neural network is displayed in fig. 2.5. Three columns, called layers, of neurons can be
observed. There are three main parts in the NN: the input layer, the output layer, and the hidden layer.
The input layer has the same number of neurons as the number of input parameters of the model. A
Neuron is a point in the network where different signals come together, drawn as circles in the figure.
The output layer has the same size as the number of desired outputs by the designer of the network. In
the middle section of the model, there are hidden layers with an arbitrary number of neurons. If there
are three or more hidden layers in the network, it is classified as a DNN.

When every neuron of layer 𝑖 is connected with every neuron in layer 𝑖 +1, the network is called
fully connected or dense. The information transferred from a neuron in one layer to a neuron in the
next layer is multiplied by a weight 𝑤𝑖𝑗. A bias term (𝑏𝑗) will be added to the input (𝑥𝑖) multiplied by the
weight (𝑤𝑖𝑗). The weight represents the slope of a linear function, and the bias term the intercept. All
the information that arrives from layer 𝑖 to layer 𝑖 + 1 is summarized in the individual neurons in layer
𝑖 + 1. All operations until this moment are a linear process. Nonlinearities need to be introduced to the
neural network to make sure that the network can learn more complex relations between the in­ and
output of the network. The summarized result in a neuron is put through an activation function 𝑓, which
is often nonlinear. This way, the output of layer 𝑖 + 1 becomes nonlinear. This process is repeated in
every single neuron throughout the network. This process is mathematically represented in eq. (2.28)
for a single neuron. If this equation is extended to two layers, it becomes clear how complex nonlinear
functions can be created within the neural network. This process is represented in eq. (2.29).

𝑎𝑗 = 𝑓(
𝑁

∑
𝑖=1
𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗) (2.28)

𝑏𝑘 = 𝑔(
𝑀

∑
𝑗=1
𝑤𝑗𝑘𝑎𝑗 + 𝑏𝑘) → 𝑔(

𝑀

∑
𝑗=1
𝑤𝑗𝑘𝑓 (

𝑁

∑
𝑖=1
𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗) + 𝑏𝑘) (2.29)
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Figure 2.5: Schematic overview of a single hidden layer neural network. Neurons are represented by circles, and the lines in
between the neurons represent the connection between the individual neurons. The first layer is the input layer. The middle
layers of the network are called the hidden layers. The hidden layer can consist of multiple layers. The last layer is the output
layer. Image taken from [17].

Equation (2.29) shows that for two consecutive layers, the nonlinear output of the first layer is again
multiplied by a new weight in the second layer. Again a bias term is added. A second nonlinear function,
𝑔, will be applied over the already nonlinear output of the first layer. It becomes clear that by adding
more hidden layers to the network, the network can predict more complex results.

It is also required to understand how these equations can predict the outcome of the input. If the ML
model must correctly predict the outcome of the input, it must find the weights (𝑤𝑖𝑗) and biases (𝑏𝑗) such
that the input data is transformed to the correct output data. This process is done by first initializing
the weights and then insert the inputs into the model to see its accuracy in predicting the outcome.
The error on the predictions, also called loss, will be calculated based on an error function and will
then be sent back through the network, called back­propagating. This principle is why the models are
often referred to as back­propagating neural networks in the literature. By back propagating the error
it is possible to determine the gradients of the loss in every neuron. This gradient will then be used to
change the weights and biases. Then, the data can be sent through the network to see if the obtained
loss decreases. This process is repeated until the moment the model stops learning or if the desired
performance is obtained. When all data is sent through the network once, it is called an epoch. Often,
the amount of data is so large that it is not possible or efficient to put all the data through the network
before updating the weights. In this case, the data is split into smaller groups, called batches or mini­
batches. After putting a batch through the network, the weights and biases will be updated. How the
created loss updates the weights and biases is determined by the optimizer that is used.

This short section should provide the reader with some basic understanding of how a NN works.
The next section will introduce the CNN, which is the primary type of NN used within this research.

2.2.2. Convolutional Neural Networks
In the previous section, the basics of NNs are explained. In this research, a Convolutional Neural
Network (CNN) is used. The principles of NNs still apply to CNNs, although the process is slightly dif­
ferent and more efficient for large­sized input data. For example, a mesh of a plate with 10 nodes in the
plate’s length and width would already have 100 points with information. If we assume that these points
contain information about their coordinates, the mesh contains an x­, y­, and z­value at every node.
This information indicates that there are already 300 points of data available. If this would be a basic
NN with a hidden layer of five neurons, all those 300 points will be connected with the five neurons.
This data will result in already 1,500 weights that have to be updated in only the first layer. For large
sized data, the basic NN becomes inefficient. Another important fact is that on the plate, normally, the
nodes next to each other will interact with each other. If the nodes are used as individual inputs for the
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NN, the information about the interaction is lost. This loss of information is a drawback of using NNs.
The interaction between individual data points is called the spatial information of data. CNN’s keep this
spatial information within the model, which is important for the current research [18].

This section will not provide the reader with a complete overview of all the different layers and
options available within CNNs. The information that is provided is the principles that are applied within
this research. Basic understanding of those principles is required to correctly understand the assump­
tions that will be made in chapter 7 and chapter 8. First, the main building block of CNNs will be dis­
cussed: the convolutional layer. Next, pooling layers will be explained, followed by a brief explanation
of activation functions. Also, some attention will be given to optimizers and loss functions.

Convolutional Layers are the main building block in CNNs. The principle of multiplying the input with
a weight still applies. Instead of applying a single weight to a single input parameter, in convolutional
layers, the data is considered 2­D or 3­D. The example of a 10 × 10 mesh with Cartesian coordinates
(x­, y­, z­values) as data becomes a dataset with a size of 10 × 10 × 3. When more data belongs to a
single point on the mesh, the individual data layers belonging to a data point are called channels. With
this definition, the 10 × 10 data has 3 channels. In convolutional layers, a matrix of weights is used.
This matrix has a size of 𝐹 × 𝐹 × 𝐶 and is called a filter. The 2­D layer of a single channel in the filter
is called a kernel. A filter is schematized in fig. 2.6. Parameter 𝐹 and 𝐶 are the width/height of the filter
and the number of channels in the input data, respectively. All the elements in the kernel are individual
weights. The kernel slides over the original data with a certain step size, called the stride. At every
move of the filter, the dot product is calculated between the input data at the filter’s location and the
weights in the filter itself. The output of this dot product delivers a new matrix, which will be summed
together to a single value. A bias value will be added to the summed signal. This process is represented
by eq. (2.30) and is mathematically seen as a cross­correlation instead of a convolution; however, it is
often referred to as a convolution. During the filter’s sliding over the input data, the weights in the filter
stay the same. After the filter is applied to the entire input, a 2­D matrix is obtained. In convolutional
layers, often multiple different filters are used to obtain more information from the data. The result of
all those filters together produce a new 3­D matrix. In convolutional layers, the obtained matrices are
stacked.

𝐼𝑐(𝑥, 𝑦) = (
𝑛

∑
𝑖=0

𝑚

∑
𝑗=0
𝐾(𝑖, 𝑗)𝐼𝑐(𝑥 + 𝑖, 𝑦 + 𝑗)) + 𝑏𝑖𝑗 (2.30)

Figure 2.6: Schematic representation of a convolutional filter. The filter is 𝐹×𝐹×𝐶 where 𝐹 represents the filter width and height,
and 𝐶 is equal to the number of channels in the input data. All coloured cubes represent individual weights. Image taken from
[19].

If, for example, a 3×3 kernel is used, the size of the output data changes after every convolution. This
change in size will happen for all kernels that are larger than 1 × 1. The size change is represented in
fig. 2.7, and depends on the size of the kernel and the strides applied in the convolutional layer. The
figure shows that information becomes compressed. The pink 2 × 2 output contains information about
the entire initial input data. Every data point in the output has a receptive field. The receptive field is
the size of the data the output values represent. The size of the receptive field can be determined by
eq. (2.31). Where 𝐾𝑗 denotes the kernel size and 𝑆𝑖 denotes the strides. This equation clarifies how
both the strides and the size of the filter influence the change of the size of the output data. In the
example of fig. 2.7, the individual data points after convolution contains the information of a 5 × 5 area
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in the original data. In this research, only 3 × 3 kernels will be used with a stride of 1.
The figure also clarifies that information at the edge of the input data is taken less into account.

For example, the corner is only taken into account once, while a data point in the middle of the data
is used nine times. This principle will cause a loss of information at the edges of the data. Therefore,
data is often surrounded by a layer of zeros, called zero­padding. The process itself is called padding.
This way, there is no loss of data at the edges of the data. The amount of required zero padding is
determined by eq. (2.32). Parameter 𝐼 is the size of the input, 𝑆 the stride, and 𝐹 the filter size.

Figure 2.7: Schematic representation of two consecutive convolutional layers. The used filter is 3×3 and the strides are 1. This
will cause a decrease in output size. Image taken from [19].

𝑅𝑘 = 1 +
𝑘

∑
𝑗=1
(𝐾𝑗 − 1)

𝑗−1

∏
𝑖=0

𝑆𝑖 (2.31)

𝑃0 =
( 𝐼𝑆 − 1) 𝑆 + 𝐹 − 𝐼

2 (2.32)

Pooling layers are commonly used layers in CNNs. One of the pooling layer goals is to lower the
number of learnable parameters in the CNN to decrease the required computational power. The most
important reason to use pooling layers is that they also add to the generalizability of the network by
making it less prone to errors created by translational invariance [20]. Translational invariance is when
the data is similar but shifts from its position. There are generally two types of pooling layers used,
an average pooling layer or a max pooling layer. Max pooling often outperforms average pooling by
highlighting the most distinct data points in the dataset. One of the downsides is the partial loss of
spatial information [21]. Max pooling has a filter size, which will be used as an overlay of the input data
𝐼. The max pooling layer will select the maximum value of the input values within the filter size. This
process is displayed in fig. 2.8.

Figure 2.8: Schematic representation of a max pooling layer. The filter is 2 × 2 and removes 75% of the initial data by only
selecting the maximum value of the input data 𝐼 within the filter. Image taken from [20].

Activation functions are functions that are applied after a convolution has been performed. This
way, nonlinearities can be introduced to the network, or outputs can be suppressed depending on the
activation function used. In most models, nonlinear functions are used to introduce nonlinear predict­
ing capabilities to the network. In most recently developed regression models, Rectified Linear Units
(ReLU) are often used. The ReLU activation function shows that they are capable of accelerating the
convergence of the model. They also help solve the problem of exploding and vanishing gradients, a
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phenomenon that will prevent the model from effectively learning [22, 23]. The vanishing gradient is a
problem that can occur when using multiple hidden layers in the network and using, for example, 𝑡𝑎𝑛ℎ
or 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation functions which force the output between 0 and 1 or ­1 and 1. The activation
functions are displayed in fig. 2.9.

Figure 2.9: 𝑡𝑎𝑛ℎ, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 and 𝑅𝑒𝐿𝑈 activation function. In this research, the ReLU activation will be used. Image taken from
[24].

Optimizers are the algorithms that are used to process the error obtained by the loss function. The
optimizer processes the obtained error to change the weights in the network by calculating the gradient
of the error for every individual weight contribution. How the weights are changed is dependent on the
optimizer that is used. Commonly used optimizers are Adam, Adamax, Adagrad, SGD, Adadelta, and
RMSProp. The different optimizers will not be discussed in this report since it would not add to the
basic understanding of the principles of CNNs. In this research, the Adamax optimizer will be used for
both developed models, which will be further elaborated in section 7.3.

Loss functions are used to determine the performance of the network in the input data. In regression
problems, two types of loss functions are often used. These are: the Mean Squared Error (MSE), see
eq. (2.33), and the Mean Absolute Error (MAE), see eq. (2.34). The major difference between the two
loss functions is that the error gets squared in the MSE. The squaring of the error means that bad
predictions will get even a higher loss, and their influence on the learning process will increase. This
loss is then used by the optimizer to change the weights. When using the MSE, bad predictions cause
more rigorous changes to the weights of the model.

𝑀𝑆𝐸 =
∑𝑛𝑖=1 (𝑦𝑖 − �̂�𝑖)

2

𝑛 (2.33)

𝑀𝐴𝐸 =
∑𝑛𝑖=1 |𝑦𝑖 − �̂�𝑖|

𝑛 (2.34)

This section should provide the reader with necessary information about NNs and CNNs, which should
help the reader understand the choices that have been made in chapter 7 and chapter 8. This chapter
does not provide all details of the processes but is here to develop a feel of the process.
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Literature Review

After introducing the motivation and research goal of this report, this chapter will present a literature
review on buckling analysis. This review will begin with a short section, section 3.1, on the different
methods described within analytical buckling analysis. The next section will explain some state­of­
the­art in numerical buckling analysis, see section 3.2. Application of machine learning in structural
analysis, and especially buckling analysis, will be discussed in section 3.3. The results of this literature
review will be discussed in section 3.4. Experimental research is not taken into account for this literature
review since the goal of this research is to develop a model that can correctly predict the ultimate
strength.

3.1. Analytical Buckling Analysis
The importance of buckling analysis already became clear in chapter 1. The transition from Allowable
Stress Design (ASD) to Limit State Design (LSD) made the development of accurate and easy applica­
ble models even more important. LSD has proven itself as a better approach for structural design. By
taking multiple modes of failure in consideration, safe, and also economical designs can be developed
according to Hughes and Paik [7]. The first buckling models are developed long ago for simple cases
like perfect beams assuming elastic material behavior and small deflections. Since then, models be­
came more accurate and realistic by the addition of plasticity, initial deformations, residual stresses,
and large deflection theory. The addition of more complex behaviors also increases the model com­
plexity. Also, the use of different materials like aluminum, high strength steels, composites or even a
combination of them cause the necessity for new model development.

A significant amount of analytical models have been developed over the last couple of decades.
Most models are developed based on standard ultimate strength models that are widely adopted.
These are the models that are described in many structural engineering books. Most of those models
consider five different modes of buckling failure, like those described in Paik [14] and Bakker et al.
[25]. These buckling modes can be seen in fig. 3.1. Those models are extended to be also accurate
for structures loaded with a combination of multiple loads like in Paik and Kim [26],Paik et al. [27].
Most of the newly developed models are empirical models related to a specific material or load­case
or a combination of both. For example, Paik [28] developed an empirical set of equations to predict
the ultimate strength of aluminum stiffened panel loaded under axial compression. This research was
extended to also contain accurate results for aluminum stiffened panels subjected to a combination of
axial compression and lateral pressure by Khedmati et al. [29]. Previously developed empirical closed­
form formula coefficients are refit to obtain new ultimate strength calculation for stiffened steel plates
with crack damage subjected to axial compression by Zareei and Iranmanesh [30].

Factors That Influence The Ultimate Strength
The type of stiffeners used, corrosion, initial deflection, and residual stress are considered important
factors in predicting the ultimate strength of stiffened panels used in the marine environment. Much
research is devoted to the type of stiffener use as stiffening of plates. Danielson and Wilmer [32] de­
rived analytical expressions to predict the ultimate strength of bulb profiles and obtained results that
are similar to the results found by applying Finite Element Analysis (FEA) on the same structures. Also,
the effect of corrosion on the ultimate strength of stiffened and un­stiffened panels is researched. Mo­
hammad et al. [33] investigated the effect of corrosion on both stiffened and un­stiffened panels under
longitudinal uni­axial compression by making use of extensive FEA in Ansys. They assessed the effect
of corrosion for a different number of exposure years. Kim et al. [34] derived a fourth­order polynomial
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Figure 3.1: Widely accepted failure modes of stiffened plates. (a) Overall buckling of the plate and stiffeners. (b) Buckling of the
plating between stiffeners wihtout collapse of the stiffeners. (c) Beam­column type buckling of the stiffener with attached plating.
(d) Buckling in the stiffener web. (e) Tripping of the stiffener. Image taken from [31].

based on ALPS/ULSAP obtained results to predict the ultimate strength behavior of stiffened panels
that are generally used in the construction of double­hulled oil tankers. ALPS/ULSAP is a module for
the Ultimate Limit State (ULS) evaluation of steel and aluminum stiffened panels. Stiffened panels are,
in reality, never considered perfect. Welding and fabrication cause the structure to develop an initial
deflection, which can lower the structure’s ultimate strength. In most research papers, initial deflection
is assumed to be a Fourier series buckling shape. In contrast, real initial deflections are often more
complex and hard to describe, as described by Yao and Fujikubo [35]. The post­buckling response
of stiffened panels under axial compression has been investigated by applying uncertain initial plate
deflection by Qiu et al. [36]. Another important factor related to the ultimate strength of structures is
the residual stress introduced by, for example, hot­rolling and welding of steels. Chen and Soares [37]
developed a simple model to predict the residual stress distribution in stiffened plates subjected to axial
compressive loads. The research explicitly looks at residual stress caused by fillet welding during pro­
duction. They based the model on results obtained with FEA. They found important relations between
the residual stress and initial imperfection. Severe initial deflections with residual stress caused even
a drop of 18% of the ultimate strength compared to the case where no initial deflection was presented.
Residual stress on average decreased the ultimate strength with around 5­7%.

Large Deflection Theory
Often small deflections are assumed, implying small strains and small rotations, significantly reduc­
ing the complexity of models. In shipbuilding, stiffened panels are subjected to loads that can cause
deformations such that the strains are often not considered within the small deflection theory­range.
Therefore some analytical models incorporate large deflection theory, increasing the model complexity
often to a semi­analytical model. Some of those models that are developed are designed for a broad
spectrum of different loading conditions. A semi­analytical model to predict buckling and post­buckling
behavior has also been developed by Byklum and Amdahl [38] to handle multiple combinations of loads.
In this research, a set of equations is designed to analyze the large deflection buckling behavior for any
combination of bi­axial compression, shear, and lateral pressure. The model they developed shows
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good correspondence with results obtained through FEA. Post­buckling models are also used to derive
a set of analytical equations to model large­deflection behavior for stiffened plates under transversal
axial compression by Bakker et al. [25]. Due to the decoupling of flexural en membrane response, they
developed a simple and more readily applicable set of equations.

Boundary Conditions
In shipbuilding, stiffened panels are continuous structures. A model of a stiffened panel is in reality sur­
round by other equal stiffened panels or similar structural elements. This continuous structure implies
partially constrained rotation boundary conditions at the location of longitudinal and transversal stiffen­
ers. Partially constrained boundary conditions are often difficult to model in FEM. For analytical models,
boundary conditions are often assumed simply supported according to Okumoto et al. [39]. Boundary
conditions in structural analysis can have a significant influence on the results obtained. Therefore,
a significant amount of research is applied to the boundary conditions of stiffened panels. Paik et al.
[40] obtained an analytical model for the prediction of large deflection behavior of stiffened steel pan­
els with partially rotational restrained boundary conditions. The model is obtained by modification of
simply­supported plate equations.

This section clarifies that although the first models for predicting the ultimate strength of stiffened panels
are dated before 2000, a significant amount of research is still being done on modifications of already
existing equations or the development of new sets of equations. Most state­of­the­art research is
related to a specific load­case, material, or a combination of both. Substantial research is also done
related to residual stress, initial deflection, and accurate boundary conditions for stiffened plates. Topics
as corrosion and crack damage are also researched within the field of ultimate strength prediction. So,
most current research is related to obtain easy and quickly accessible equations for specific cases. This
section makes evident that there is still the ongoing desire to develop models that are quick and easily
applicable to predicting the ultimate strength of thin structures and produce an accurate prediction of
the ultimate strength.

3.2. Numerical Buckling Analysis
In buckling analysis, numerical models like Finite Element Methods (FEM) are widely seen as an essen­
tial design tool. Finite Element Analysis (FEA) yields accurate results under the right assumptions and
with correct boundary conditions. However, for large complex models, it requires a significant amount
of computational power, according to Byklum and Amdahl [38]. Experimental research on the buckling
of stiffened panels is expensive and time­consuming. Therefore, FEA is often used to validate results
or as a data generation tool to perform new research. In many of the previously discussed studies, FEA
is used: Paik [28], Khedmati et al. [29], Zareei and Iranmanesh [30], Mohammad et al. [33], Chen and
Soares [37], Paik et al. [40]. Finite Element (FE) software is widely available in different commercial
packages and is often used to perform research which is challenging to execute with experiments.

Boundary Conditions
As mentioned in section 3.1, the boundary conditions for stiffened panels in shipbuilding are often as­
sumed simply supported while, in reality, it behaves partially rotational constrained. Accurate boundary
condition selection in FEA has shown its importance in many research papers. A substantial amount
of research has been performed on the influence of used boundary conditions. When FEA is used to
perform analysis on stiffened plates, different structural layouts are used in recent research. Some­
times 1­bay or 1/2+1+1/2­bay plate stiffener combinations are used, or most often they are 1­bay|1­
span, 1/2+1+1/2­bay|1­span or 1/2+1+1/2­bay|1/2+1+1/2­span models as described in the research of
Hughes and Paik [7]. FE models larger than 1­bay|1­span make it possible to model the large longi­
tudinal and transversal stiffeners. Often they are not geometrically created but are mimicked making
use of boundary conditions. The adoption of those more advanced models and boundary conditions is
recently widely researched. Xu et al. [41] investigated the effect of the used boundary conditions for two
different layouts. Both periodic and symmetry boundary conditions were investigated. They concluded
that the best choice of boundary condition is plate aspect­ratio dependent for uni­axial loaded stiffened
panels. The aspect ratio determines if an odd or even number of halve waves will develop in the panel.
Similar research has been performed on stiffened panels subjected to several combined loads by Xu
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et al. [42]. In recent research, this study is extended to different types of stiffeners commonly used in
shipbuilding by Pan et al. [43].

Figure 3.2: Continues stiffened panel. The purple line defines a 1­bay|1­span model. The blue line defines a 1/2+1+1/2­bay|1­
span model. The red line defines a 1/2+1+1/2­bay|1/2+1+1/2­span model. Image taken from [26].

Factors That Influence The Ultimate Strength
Besides the fact that the application of FEA is often more efficient than experimental research, some
processes are difficult to test in real experiments. For example, the effect of structural cracks on the
ultimate strength is difficult to test with real experiments. The effect of longitudinal through­thickness
cracks on the ultimate strength of steel flat and stiffened panels has been investigated by Du et al.
[44]. The effect of welding residual stress is also possible to model with FEM. Khedmati et al. [45] used
FEA to investigate the effect of different residual stress patterns on the ultimate strength of aluminum
stiffened panels, a research that is difficult to do experimentally. They also tested the effect of different
stiffener arrangements. The stiffened panels in this research are subjected to a combination of axial
compression and lateral pressure. In new­built ships, the use of high­strength steel becomes more
prevalent. High strength steels often behave differently then mild steels. The ultimate strength of mild
and high­strength steel stiffened panels is tested by the use of FEA in research by Li et al. [46]. They in­
corporated both initial deflection and residual stress within the models. Multiple stiffener arrangements
have been tested, namely flat bar, T­stiffeners and bulb stiffeners are tested within the research.

Most of the previously mentioned research was applied to flat stiffened panels. In shipbuilding,
also curved stiffened panels are used around the bow, stern, and bilge. However, less research is
available on curved stiffened panels. The effect of curvature in one direction has been researched. It
is found that parabolic curvature can significantly increase the ultimate buckling strength of stiffened
panels according to the research of Khedmati and Edalat [47]. Similar results were obtained in a recent
extensive investigation of the buckling strength and collapse behavior of curved stiffened panels loaded
under axial compression executed by Park et al. [48].

New Developed Numerical Models
Besides the use of widely available FE software, some researchers try to develop better FE models.
Instead of using the classical approach to obtain all the stiffness matrices in FEA, Carrera Unified For­
mulations, CUF, are developed. Recently, CUF is used to predict the large deflection behavior of square
plates loaded with transverse uni­axial compression. The research of Wu et al. [49] found an increase
in accuracy and speed compared to conventional FE calculations. Besides the use of quasi­static FE
analysis for the ultimate strength analysis, Element Free Galerkin methods (EFG) can also be used for
buckling analysis of thin structures. Research by Huang et al. [50] found that overall EFG accuracy is
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similar to that of quasi­static FE analysis. Besides that, they also mentioned that EFG required more
computation power on average. An improved version of EFG has been developed by Sadamoto et al.
[51]. The improved version is tested on perforated and stiffened panels. The described method is
more efficient for performing buckling analysis on stiffened panels. Constrained Finite Element Method
(cFEM) is a new development of FEA by Jin et al. [52] where it is possible to decompose the buckling
deformation into three groups. The three groups are global displacements, distortional deformations,
and local deformations, allowing for individual analysis of the different deflection mode components.
The research was applied to thin­walled structures. Thriving results are recently achieved with the use
of cFEM on stiffened panels by [53].

A different numerical method for assessing the ultimate strength of stiffened panels is PULS,
Panel Ultimate Limit State. PULS is based on orthotropic plate theory and suitable for different loads
and types of stiffeners. Steen et al. [54] proves that PULS outperforms most empirical sets of equations
and the results obtained with PULS are close to that of conventional FE software.
An alternative for FEA is Finite Strip Methods (FSM). Instead of element subdivision of the structure,
the structure is divided into small strips, reducing the complexity of the model, but also making it less
versatile in application than FEA, according to Khan [55]. Although it is less versatile, new models
based on FSM are still being developed. A semi­analytical FSM is developed to perform buckling anal­
ysis by Hancock and Pham [56]. The results of the newly developed version of FSM are compared with
results obtained from FEM and spline­FSM. The developed model showed good accuracy compared
with FEA and spline­FSM. The model shows to be more efficient than both FEA and splines­FSM.

This section clarifies that FEA is widely adopted as a method for performing buckling analysis for a wide
variety of conditions. FEA is often used as a validation tool for analytical models. This section also
shows that FEA can be a good alternative for experimental research in situations that are challenging
to recreate in experiments. Examples of those researches are related to crack damage and different
residual stress contributions. Despite many applications, researchers still try to develop more accurate,
faster, and easier applicable models.

3.3. Machine Learning Applied in Structural Anaylsis
Machine learning (ML) is currently applied in a wide variety of tasks in many different disciplines. ML is
starting to find its way in structural engineering. According to Salehi and Burgueño [3], An increase in
studies is observed where ML is used in structural engineering. A large part of the research is related to
Neural Networks. The first application of machine learning to predict the buckling strength of stiffened
panels already dates back to the late 1990s, which is the research performed by Wei and Zhang [57].
The research obtained considerably good accuracy in predicting compressive strength by making use
of a counter­propagating neural network. The data used in this research was obtained from previous
experiments.

Buckling and Ultimate Strength Prediction of Columns and Beams
ML is applied to a wide variety of topics within structural engineering. ML is often utilized in research
related to processes that are difficult to correctly model and predict. This application is the case with
non­linear materials, such as concrete, which is an in­homogenous material. Babanajad et al. [58]
used Gene Expression Programming (GEP) to predict the ultimate tri­axial strength of concrete. A
large dataset is obtained based on literature. With the application of GEP, accurate ultimate strength
predictions are obtained, which are often more accurate the predictions made with widely available
models. As mentioned in the introduction of this section, NNs are often applied within structural engi­
neering. Some research reflects on the performance of neural networks compared to other methods,
like fuzzy logic and regression. The different models were tested on reinforced concrete columns by
Tekeli et al. [59]. A similar performance was obtained between the different models.

NNs are widely applied for predicting deflection and or ultimate buckling strength of beams and
columns. The amount of experiments in structural engineering is often limited. In a significant number
of studies, data required for machine learning is generated using FEM. This principle is applied to the
distortional buckling of steel I­beams by Tohidi and Sharifi [60]. A NN was developed to predict the
buckling strength of bridge girders with restrained distortional buckling. The dataset consists of a small
amount of FE models. The NN was used to develop a simple equation that can be efficiently used to
predict the steel I­beams’ buckling ultimate strength. Similar research was recently applied to the more
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complex cellular steel I­beams. A small amount of data was used for training and testing by Sharifi
et al. [61]. An earlier study performed by Abambres et al. [62] also investigates the ultimate buckling
strength of Cellular I­profiles with the use of a NNs. They used 3645 models for training and testing.
The NN makes an average error of 0.4%. Due to the easy use of trained NNs, they can also be suc­
cessfully used to perform a parametric study for column buckling, according to the study of Sheidaii
and Bahraminejad [63].

Plates and Stiffened Panels
Besides the use of machine learning for column buckling, various studies have also been done related
to plates, thin shells, and stiffened panels. The application of NNs on the ultimate strength prediction
of steel stiffened plates has been tested on a small set of data by Pu and Mesbahi [64]. In total, 119 ex­
amples were used for training, and 24 examples are used for testing the models. With a small amount
of training data, better performance was already obtained compared to empirical formulations. The
application of NNs is also tested for plates made of non­linear materials. Aluminum and stainless steel
alloys often have a complex stress­strain curve, which is non­linear. The ultimate strength of plates
made of aluminum and stainless steel subjected to axial compression has been predicted by using an
NN and a Gene­Expression Programming algorithm (GEP) in the research of Cevik and Guzelbey [65].
The GEP made an average error, which was three times larger than the NN’s average error. Besides
metals, NNs are also applied to composites. The amount of training data used in the research of Sub­
ramani and Sharmila [66] was also limited. Results were in agreement with results obtained from FEA.
FEA was also used to generate a dataset of steel plates with circular holes in the research done by
Sonmez and Komur [67]. A total of 400 FE models have been used to train a NN to obtain an explicit
formula to predict the ultimate strength of steel plates with circular cut­outs. An error of less than 2%
was obtained in this research. Response Surface Method, RSM, is sometimes used in structural engi­
neering to obtain an approximation of the relation between design parameters and structural response.
Conventional RSM can be a timing consuming process. An NN­RSM combination is developed to ob­
tain a more accurate and faster ultimate strength assessment for plates by Pu et al. [68]. The ultimate
strength of steel­arches has also been tested on a small set of data by Hasanzadehshooiili et al. [69].

The application of machine learning to the ultimate strength of stiffened panels is limited. A combination
of NN­RSM has also been developed for stiffened panels by Mesbahi and Pu [70]. The NN was devel­
oped to obtain an empirical formulation for ultimate strength prediction. This research mentioned that
NN­RSM showed consistent performance on extrapolation. The ultimate strength of flat­bar aluminum
stiffened panels has also been predicted using ML in research done by Zareei et al. [71]. Effects caused
by welding were incorporated into this model. The research showed more accurate results compared
to standard empirical formulations. A NN trained on a small set of FE models has also been used to
predict the ultimate strength of laminated composite stiffened panels loaded with in­plane shear. The
model showed high accuracy and efficiency, according to Mallela and Upadhyay [72]. Kumar et al. [73]
developed a model to determine the ultimate strength of hat stiffened composite panels subjected to
axial­compressive loading. The obtained error of most models is below 2%

Most of the discussed research on the ultimate strength of plates and stiffened panels only
tested the performance of the machine learning models inside the range of training. A limited amount
of research mentioned that they looked into the generalizability and scalability of the model.

Shell Structures
Buckling is a phenomenon that is interesting not only for plates and stiffened panels. Buckling assess­
ment is essential for all structures that are considered thin that will meet compressive forces during
usage. Recently, a NN is used to predict the ultimate buckling load of cylindrical shells. For this re­
search, 390 models were obtained from different experimental studies. An average error of less than
10% was obtained on the experimental test data for the model within its training range. Tahir and Man­
dal [74] concluded that models outside the training scope should be handled with care, and more data
would be required to obtain decent results.

Stress Prediction
Most of the described studies make use of simple NNs. The inputs of the models developed are often
geometrical parameters or material parameters. In some models, they use ratios between different
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parameters. The output of most models is often either a deflection, stress, or force. Most MLmodels are
built with a single or a few hidden layers and use sigmoid or tanh non­linear activation functions, which
show less application in the last few years. Also, the use of newer NN architectures like Convolutional
Neural Networks (CNN) is limited. The use of newer optimization algorithms like Adam is also limited.
Some research does make use of newer machine learning strategies. Especially within the sector of
biomedical engineering, researchers start to use newer ML algorithms and architectures. FEA is also
widely adopted in the biomedical world, especially for urgent patient­related models, quick and accurate
FE models are needed. Within the biomedical application of FEA, buckling does not play a role, but
stress prediction over a structure does play an important role. Stress prediction is closely related to
ultimate strength prediction, and thus it will be incorporated within this research.

Computational Fluid Dynamics (CFD) can be used to predict stresses caused by fluid flow, for exam­
ple, the blood flow through the aorta. CFD calculations rely on a similar process to that of FEA but
are used for fluid flow problems. In recent research performed by Liang et al. [75], 729 patient aorta
FE meshes have been used to predict the stress distribution over the entire aorta. Instead of using a
few input parameters like in all previously discussed research, they use the mesh of the geometry as
input. First, the geometry is mapped to a 2­D surface. By using Principle Component Analysis (PCA),
this flattened geometry is compressed to an array containing a few digits. This array represents the
geometry. This process is also called shape encoding. The array compressed from the input geometry
forms the input for a fully connected Deep Neural Network (DNN), that maps the compressed geom­
etry array to a compressed stress array. This compressed stress array is the compressed form of the
stress distribution over the geometry. This compressed array is then decoded to the initial geometry
with the stresses determined on every node of the geometry, called stress decomposition. A low error
of 0.492% was obtained compared to FEA data. The research mentions that although a small error
is obtained, a clinical application needs a more substantial amount of training data to give accurate,
reliable results.

Similar research has been done to predict hemodynamics; the velocity and pressure fields of
the blood flow. The same input data has been used in the later research. In the research by Liang et al.
[76], three different models were developed to predict the pressure field, velocity magnitude, and the
velocity vector field. The models are slightly different from those described in the previous paper, but
the encoding­decoding architecture principles are used again. The velocity field and the pressure field
were predicted with an average error of less than 2% compared to FEA results. For clinical acceptance,
a rejection option is required when input differs too much from the initially trained dataset.

Figure 3.3: Overview of the StressNet architecture showing in blue the convolutional layers, and in pink the squeeze and exci­
tation modules. Image taken from [77].

A more structural related research tried to predict stress distributions in cantilevered structures.
This research by Nie et al. [77] also used the encoder­decoder structure for the two models that they
developed, called SCSNet and StressNet. For the encoder, convolutional layers have been used, keep­
ing spatial information within the model. Convolutional layers are also used for the decoder. SCSNet
makes use of fully connected layers between the encoder and the decoder. Stressnet replaces the fully
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connected layers with squeeze and excitation modules in combination with ResNet identity modules, as
can be seen in fig. 3.3. The used data­set contains 120.960 small FE models. StressNet outperformed
SCSNet significantly. SCSNet made an average error five times larger than StressNet. The error they
obtained with predicting the maximum stress is even lower than the average stress prediction error.
This research also tested the effect of a smaller amount of training files, by training the model also for
20.000 models. Both trained models showed similar trends, and further lowering the number of training
examples is not tested. Another research also used a mesh as input for their developed NN.

Structural Mesh as Input for Neural Networks
Inverse problem solving is when the output of the scenario is known, but we want to learn what the initial
condition is. Inverse problem solving is something that is often related to damage en failure analysis.
To learn what caused the failure, we want to know the initial conditions that caused the failure. The
research by Chen et al. [78] used impact loaded structures as input for the model to predict the loading
at the moment of impact and the speed of impact and the impact duration. This research makes clear
that NNs can learn to predict critical structural parameters. In this research, they used PCA to map
the geometry, consisting of 6400 nodes, to a smaller array, forming the input in the fully connected NN.
The research of Ren et al. [79] also tried to predict the location, load, and duration of impact loads on
beams. They directly fed the mesh with plastic deformations as input to the DNN. ML is not only used
as a post damage tool. It can also be used to predict damage in structures, which is difficult when, in
reality, damage can be internal. In the research performed by Liu and Zhang [80], they developed a
Convolutional Neural Network (CNN) to predict brace buckling damage in frames. CNNs require an
image­like input. In the study by Liu and Zhang [80], seismic­loading graphs are mapped into a Fourier
spectrum image and used as input for the CNN. The CNN is developed to classify if an element will be
damaged or not, and executes this task with high accuracy. A CNN is also developed in the research
of Liu and Zhang [81] to classify damage to steel structures. A VGG­16 architecture is adopted for
the developed network, and it is tested on two different FE structures. The first model is trained on
3200 and 8600 data points. It was observed that more training data would improve the accuracy of
the model. They recommend using a dataset of several thousand images to obtain correct predictions.
The second model is only trained with the full dataset. In both models, an average error of less than
5% was obtained.

As can be seen from the literature described above, machine learning has found its way in structural
engineering. Although, notably, one of the issues within this field of research is the amount of available
data. Most research is based on a small dataset of models. Only the most recent studies made use
of datasets over a thousand data points. Also, the application of the more modern machine learning
methods and architectures is limited. Most studies that are related to the ultimate strength prediction
of stiffened plates tend to use simple NNs. Only a few studies mention the ML models’ performance
outside the scope of training, so­called scalability, and generalizability. To the author’s knowledge, non
of them provided the reader with actual detailed information over the performance outside the range
of training. Most of the discussed studies trained the model with all the data they had available. Just
one of the discussed studies tried to train the ML model with fewer data to see how the amount of data
influenced the performance.

3.4. Conclusion
This chapter provided the reader with an overview of buckling analysis and research related to the topic
of this report. Both section 3.1 and section 3.2 make it clear that the development of more accurate
and efficient applicable models is desired. A significant proportion of the research is done to analytical
buckling models related to specific geometry, load, or material cases. Not many researchers develop
methods suitable for a wide variety of load and material cases. The application of FEM is proven
versatile for performing buckling and ultimate strength analysis in section 3.2. FEA is often adopted as
a validation tool for analytical models. FEA can successfully be used to predict the ultimate strength of
cracked or corroded structures accurately. Despite the broad application of FEA, some researchers try
to develop better and less computational expensive tools. Those models are often based on already
available methods like FEM, FSM, and EFG.
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From section 3.3, it becomes clear that buckling analysis by making use of ML is not new. Most re­
searchers obtain good accuracy by using ML with only a small amount of training data. This accuracy
is obtained on results closely related to the data the ML was trained on. Until recently, most used ML
models are simple NNs. The use of newer and more advanced models is still limited. Some of the dis­
cussed studies state that inaccurate predictions are obtained outside the range of training. However,
limited information is provided about this performance. Only one paper mentioned the influence of the
number of training samples on the performance of the model. They tested with two different sizes of
training data and found an increase in accuracy with more training data available.

From this literature review, it becomes clear that machine learning can be a useful alternative for predict­
ing the ultimate strength and stress distribution compared to FEA. Still, FEA often remains necessary to
obtain enough data to train the ML model. To the author’s knowledge, too little information is available
on the required amount of data to train accurate ML models for structural engineering problems. The
lack of information means that no clear conclusion can be drawn relating the amount of training data to
ML’s performance within structural engineering. It is essential to know this because, for most structural
engineering problems, that amount of available data is limited. The absence of required information is
considered a gap in the literature. Also, too little information is available on the scalability and gener­
alizability of those designed models. No conclusion can be drawn on how well­trained ML models can
predict accurate results outside the scope of training. The inadequacy of this information is considered
a second gap in the literature. The research goal and the related sub­goals will try to fill this gap in the
literature.
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4
Stiffened Panel Model

After introducing the fundamentals of buckling and machine learning in chapter 2 and the literature
review in chapter 3, this chapter will give a short basic description of stiffened panels and their loading
conditions. It will be explained what a stiffened panel is considered within this research. If the reader
is familiar with what a stiffened panel is and the basic loading conditions of the ship structure, it is
not required to read this chapter. The explanation will start with a short description of the ship’s hull
structure and the stiffening related to this structure. Also, the material used in this research will be
elaborated. This will be explained in section 4.1. The next section will address the loads a ship hull will
be subjected to during its operations and the effect of those loads on the ship’s structure. This can be
read in section 4.2.

4.1. Geometry and Materials
The primary structural element in ships are large stiffeners and plates. The primary stiffening in ships
consists of large longitudinal stiffeners called girders and large transverse stiffeners called frames.
These are highlighted in the schematic, fig. 4.1, by orange and green lines, respectively. The primary
stiffening in ships forms the ‘skeleton’ of the ship. The primary stiffeners are welded to the ‘skin’ of the
ship, which is the outer hull.

𝐴𝐵

Figure 4.1: Schematic of a ship’s hull construction without secondary stiffening drawn. (A) Longitudinal stiffening, also called
girders, are marked with orange. (B) The transverse stiffening, also called frames, are marked with green. Image taken from [6].

The spacing of the girders and frames can be several meters. The stiffness of the plates is generally
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not sufficient to carry the loads, and therefore secondary stiffening is introduced, which is not drawn in
the schematic. Secondary stiffening is often consists of only small longitudinal stiffeners evenly spaced
between the girders. If the span between frames becomes large, stiffened panels will sometimes be
made cross­stiffened by placing small transverse stiffeners between the frames. In this research, a
stiffened panel is defined as a plate in which boundaries are the large girders and frames, with only
longitudinal secondary stiffening. Represented by the purple 1­bay|1­span model in fig. 3.2.

The primary stiffeners at the edges of the stiffened panel, are significantly larger compared to
the secondary stiffeners. They are designed to have a large resistance to bending and deforming, but
they will bend during heavy loadcases. It is difficult to capture this behavior with simple boundary con­
ditions when the structure is continuous. The boundaries can best be defined by a simply supported
boundary condition with some resistance to rotations. These boundary conditions are difficult to model,
and the resistance behavior is complex. Therefore it is often assumed that the boundary conditions
can be modeled as simply supported, allowing rotations and in­plane movement of the plate edges.
Besides, it is assumed that the edges remain straight.

In shipbuilding, a wide variety of secondary stiffening is used. The most common stiffeners used
are T­stiffeners (tee stiffeners), bulb profiles, angle profiles, and flat bar stiffeners. A graphical repre­
sentation is given in fig. 4.2. T­ and angle stiffeners can either be welded or hot­rolled sections. Bulb
profiles are often rolled. Flat bars are sensitive to tripping, a form of stiffener failure, and are therefore
less used nowadays. T­ or bulb stiffeners are frequently used; the best choice is case dependent. In
this research, it will be assumed that the stiffening of the plate is made up of T­stiffeners. The main
reason for this is their high flexural rigidity, their resistance to bending, and the ease of modeling and
not introducing eccentricity effects from the geometry, which would be present when bulb profiles are
used.

Figure 4.2: A graphical representation of the most commonly used stiffeners in shipbuilding. In this research T­stiffeners are
used. Image taken from [82].

The primary building material for ships has long been standard structural steel. There is a wide variety
of steels available with different advanced properties. In shipbuilding, the use of high strength steels
becomes more prevalent. Aluminum is also often used in shipbuilding, but the primary usage is in the
housing of ships. The application of aluminum in hulls is limited and often related to small vessels.
Therefore steel will be used for the stiffened panels throughout the research. The streel primary used
in ships is still mild structural steel, S235. The material properties are given in table 4.1 and will be
used throughout the research.

Table 4.1: Mild structural steel S235 material properties.

Property Value Units

Young’s Modulus 206 𝐺𝑃𝑎
Poisson’s Ratio 0.3 −
Yield strength 235 𝑀𝑃𝑎
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4.2. Loading Conditions
In the design of ships, two types of load are often considered: operational loads and accidental loads.
Operational loads consist of still­water loads and environmental loads. Still­water loads consist of the
ship’s loading but also the buoyancy forces. Environmental loads are the loads caused by the environ­
ment, like waves, wind, and currents. Accidental loads are the loads that are caused by, for example,
collision. In this research, the still water bending moment, motion in waves, and the hydrostatic pres­
sure will be incorporated. The still water bending moment and the wave loads are related to axial
compression of the structure, which will be elaborated in section 4.2.1. Water will also cause lateral
pressure to the structure, also called hydrostatic pressure, which will be discussed in section 4.2.2.

4.2.1. Axial Compression
Axial compression is compression in the longitudinal or transverse direction. For ships, longitudinal
axial compression is the most critical load related to buckling. Transverse compressive forces will
develop due to bending and rotation but are considerably smaller than the longitudinal compressive
forces. Therefore, only the longitudinal compressive force will be taken into account for this research.
Longitudinal compression is developed by the behavior of the construction in waves and the still wa­
ter bending moment. Both loads will cause bending of the ship, also called hogging and sagging. In
fig. 4.3, the effect of hogging and sagging is schematically displayed.

During hogging, there is excessive buoyancy in the middle of the ship, causing it to bend down­
wards, compressing the bottom of the ship and extending the deck. During sagging, there is more
buoyancy at the bow and the stern of the ship bending the bow and stern upwards. This way, tension
will be generated in the bottom structure, and compressive force will develop in the deck. Hogging
and sagging is something that mainly develops with long wavelengths and large waves, and they can
generate significant compressive forces in the construction. In reality, the compressive force might not
be perfectly evenly distributed over the side of a stiffened plate. However, it is assumed that the lon­
gitudinal compressive force of the side of the plate is evenly distributed for simplicity. In this research,
it is assumed that the uniaxial compressive force in the longitudinal direction of the stiffened panel is
uniformly distributed over the stiffened panel’s entire face.

𝐴 𝐵

Figure 4.3: Compressive force is generated in the ship due to hogging and sagging motion in waves. (a) Shows the hogging
motion of the ship. Compression is present in the bottom of the ship. (b) Shows the sagging motion of the ship. Compression is
present in the deck of the ship. Image taken from [83].

4.2.2. Hydrostatic Pressure
Hydrostatic pressure is the pressure on the structure developed by the weight of the water, which can
simply be calculated from eq. (4.1). Parameter 𝜌𝑤 is the density of the water, often taken as 1025 kg/m3

for seawater. Parameter ℎ is the water depth in meters, 𝑔 the gravity constant, which is equal to 9.81
m/s2. The hydrostatic pressure of a ship is in still water constant but might vary due to waves.

𝑝 = 𝜌𝑤𝑔ℎ (4.1)
Within this research, it is assumed that the stiffened panels are located at the bottom of a ship similar to
theMaersk E Class, which is in a hogging state, with a draft of 16 meters. A factor of 1.1 is added to the
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draft to add some influence of waves. A wave height of 1.6 meter falls within the moderate sea state.
This draft is chosen so the hydrostatic pressure would have significant interaction with the compressive
forces.

Other forces occur during the bending and rotation of the ship as well. These forces, such as shear
force, will be neglected in this research. The stiffened plates in this research are loaded with both
longitudinal uni­axial compressive force and lateral pressure. In cases where the order of loading can
play a role, like in non­linear buckling analysis in FEA, it is assumed that only lateral pressure is present
in the first load step. After loading with lateral pressure, it will be loaded with compressive forces.



5
Analytical Large Deflection Model

This research aims to predict the utlimate strength and the stress distribution at the moment of failure
over a stiffened panel by using machine learning (ML). ML needs a significant amount of data for it to
effectively learn information between the provided data. Thus, it is necessary to develop an extensive
dataset that will be used to train the ML model. This research uses stiffened panels in the hull of ships
as input data for the ML model. Therefore, it is essential to have data that correctly represents the
structures that will generally be seen in shipbuilding. It is not easy to determine a comprehensive set of
geometrical parameters that correctly represents stiffened panels used in shipbuilding by only making
use of literature. For this reason, it is chosen to use an analytical buckling model described by Hughes
and Paik [7] that incorporates the effects of initial deflection, large deflections, and welding residual
stress. This model is also suitable for the desired combination of uniaxial compression and lateral
pressure.

The first section in this chapter, section 5.1, will discuss the basic principles of the analytical
model. After that, a short discussion will be given on the used geometry and the parameters involved in
section 5.2. The third section, section 5.3, is dedicated to the main failure modes, which are considered
in the buckling of stiffened panels. In section 5.4, the assumed initial deflection will be discussed,
and the principles of incorporating residual stress within the model will be explained. In section 5.5,
the analytical model that was developed will be verified with results obtained from the literature. In
section 5.6, it will be explained how this analytical model is used to perform an optimization to obtain a
representative set in geometrical parameters of stiffened plates.

5.1. Model Description
The analytical model incorporates initial deflection of the plates and stiffeners, large deflection theory,
and residual stress in the plating due to welding. By incorporating those non­linearities, this model
will give a good estimate of the buckling ultimate strength. The parameter optimization will be used to
generate a comprehensive set of geometrical parameters of stiffened panels.

The model described by Hughes and Paik [7] is based on large deflection theory developed
by Von Kármán [84]. This plate theory assumes the following equilibrium equation when incorporating
initial deflection 𝑤0, eq. (5.1). The corresponding compatibility equation is given by eq. (5.2).
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In this research, it is assumed that the plates are made of perfectly isotropic mild structural steel S235.
Isotropic material implies that the directional flexural rigidities 𝐷𝑥, 𝐻, and 𝐷𝑦 are the same, and they

37
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can be calculated by making use of eq. (5.3). The Poisson ratios in both directions are also equal,
𝜈𝑥 = 𝜈𝑦 → 𝜈. The elastic shear modulus for isotropic material is given in eq. (5.4). Parameter 𝜙 in
these equations represents the Airy stress function on the plate. A stress function relates to individual
stresses in a more usable form that satisfies the equilibrium equations. The stress function is obtained
by substituting the initial deflection in the compatibility equation eq. (5.2).

𝐷𝑥 = 𝐻 = 𝐷𝑦 → 𝐷 =
𝐸𝑡3

12(1 − 𝜈2) (5.3)

𝐺𝑥𝑦 → 𝐺 =
𝐸

2(1 + 𝜈) (5.4)

This simplification reduces the equilibrium equation described in eq. (5.1) to eq. (5.5). The compatibility
equation in eq. (5.2) reduces to eq. (5.6). The operator ∇4 is the biharmonic operator, which is the
squared Laplacian ∇2. This set of equations forms the basis of the entire model. The rest of the
equations of themodel are not further explained in detail, but a short description is given when equations
are considered important to discuss.
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The initial deflection, eq. (2.21), and plate deflection function, eq. (2.10), are substituted within the
compatibility equation, which makes it then possible to obtain the stress function 𝜙. This stress function
is then used to derive an equation that makes it possible to find the deflection amplitude (𝐴𝑚𝑛) in
eq. (2.10). Depending on the buckling mode, the derived amplitude and applied force are used to
obtain the membrane stresses within the structure. Those membrane stresses are used to determine
if the von Mises yield criterion is met at multiple locations in the stiffened panel. The lowest applied
force that causes failure according to one of the failure criteria is considered the ultimate strength of
the stiffened panel. Both the buckling modes and the failure criteria will be discussed in section 5.3.

5.2. Geometry, Boundary Conditions and Loading
This section will contain an explanation of the stiffened panel as it is used for the analytical model. The
geometry that is adopted for the analytical model is the same as described in section 4.1. The same
simply supported boundary conditions will be adopted. It is also assumed that the edges of the stiffened
panel stay straight due to its continuous structure. The straight boundary condition is represented in
fig. 5.1. The arrows represent the constraints over the edge. The orange arrows represent a rotational
constrained over the axis of drawing. The blue arrows represent a restrained displacement over the
axis of drawing.

𝑥

𝑦

𝑧

Figure 5.1: Simply supported plate edge with the edge kept straight. Orange arrows represent rotational constraints over that
axis of drawing. Blue arrows represent displacement constraints in the direction of drawing.

The stiffened panel is also represented with a top­view in fig. 5.2. The stress (𝜎𝑥𝑎𝑣) is the averaged
uniform distribution of the uni­axial compressive force. Parameter 𝑝 is the hydrostatic pressure as



5.3. Failure Modes 39

described in section 4.2.2. The parameter 𝑎 is the length of the panel, 𝐵 the full width of the stiffened
panel, and 𝑏 the distance between the individual stiffeners. This research does not take into account
that stiffeners could be unevenly spaced over the stiffened panel. Therefore, the spacing of the between
the stiffeners is given by eq. (5.7).

𝑏 = 𝐵
𝑛𝑠 + 1

(5.7)
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𝑥

𝑦

𝑝

𝑝

Figure 5.2: Geometry of the simply supported stiffened panel subjected with uni­axial compressive 𝜎𝑥𝑎𝑣 force and lateral pressure
𝑝.

As mentioned in section 4.1, T­stiffeners will be used in this research. The geometry is given in fig. 5.3.
Parameters 𝑏𝑓 and 𝑡𝑓 are the width and thickness of the flange, respectively. The parameters 𝑡𝑤 and
ℎ𝑤 represent the thickness and height of the web. The thickness of the plating is denoted by 𝑡𝑝.

𝑡𝑤

ℎ𝑤

𝑏𝑓

𝑡𝑓

𝑡𝑝

𝑏

Figure 5.3: Cross­sectional view of the bottom plating and the T­stiffener. The width of the plate is given by 𝑏 and the corre­
sponding thickness 𝑡𝑝. The stiffener has a webheight ℎ𝑤 and a thickness 𝑡𝑤. The flange has a breadth 𝑏𝑓 and a thickness
𝑡𝑓.

5.3. Failure Modes
This section describes the failure modes which are often considered within buckling of stiffened panels.
Also, the von Mises failure criteria that are assumed for every individual failure mode will be discussed.
For the buckling of stiffened plates, five modes of collapse are often assumed. Those buckling modes
are displayed in fig. 5.4. In stiffened panels, it is assumed that stresses can redistribute throughout the
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plate if the boundaries are kept straight. Stiffened panels in literature are often assumed to collapse as
soon as the boundaries fail [7]. Therefore, three failure locations are possible where initial yielding can
start in the structure. Those locations are displayed in fig. 5.5. Figure 5.5a Represents a failure at the
corners of the plate that is related to eq. (5.8a) as failure criteria. Figure 5.5b Represents a failure at
the longitudinal edges of the plating. This failure criterion is described with eq. (5.8b). The last possible
failure is located at the transverse edge of the plate and is linked to failure criterion eq. (5.8c), which
can be seen in fig. 5.5c. The parameters described in those equations are the maximum and minimum
membrane stresses in the stiffened panel due to applied force and bending of the structure. If residual
stress is incorporated within the model, this will influence the membrane stresses.

Figure 5.4: Five different failure modes of stiffened panels. (a) Overall buckling of the plate and stiffeners. (b) Buckling of the
plating between stiffeners without collapse of the stiffeners. (c) Beam­column type buckling of the stiffener with attached plating.
(d) Buckling in the stiffener web. (e) Tripping of the stiffener. Image taken from [31].

𝜎2𝑥,𝑚𝑎𝑥 − 𝜎𝑥,𝑚𝑎𝑥𝜎𝑦,𝑚𝑎𝑥 + 𝜎2𝑦,𝑚𝑎𝑥 = 𝜎2𝑦 (5.8a)
𝜎2𝑥,𝑚𝑎𝑥 − 𝜎𝑥,𝑚𝑎𝑥𝜎𝑦,𝑚𝑖𝑛 + 𝜎2𝑦,𝑚𝑖𝑛 = 𝜎2𝑦 (5.8b)
𝜎2𝑥,𝑚𝑖𝑛 − 𝜎𝑥,𝑚𝑖𝑛𝜎𝑦,𝑚𝑎𝑥 + 𝜎2𝑦,𝑚𝑎𝑥 = 𝜎2𝑦 (5.8c)

The individual modes of failure, displayed in fig. 5.4, will now be discussed.

Mode 1 is the failure of the entire stiffened panel, sometimes referred to as Euler­type buckling of
stiffened panels. Both the plate and stiffeners buckle together. This failure mode is often caused by
stiffeners with low stiffness compared to the plate’s stiffness. For this buckling mode, the plate is often
simplified by mapping the stiffeners onto the plating such that the stiffened panel can be seen as an
orthotropic plate by making use of eq. (5.2). This mode of failure is not specifically linked to one of
the failure criteria described in eq. (5.8a), eq. (5.8b) and eq. (5.8c). Therefore, the von Mises failure
criteria in all three locations will be tested if they trigger structural collapse. The first criteria that will be
satisfied will determine the ultimate strength.
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(𝑎) (𝑏) (𝑐)

Figure 5.5: Three possible failure locations possible due to membrane stresses. (a) Yielding at the corners of the plate. (b)
Yielding at the longitudinal edge of the plating in between stiffeners. (c) Yielding of the transverse edge of the plating in between
stiffeners. Image taken from [7].

Mode 2 is defined by the failure of the plate corners between the stiffeners, also called plate­induced
failure. The stiffeners show little to no deflection in this buckling mode. For this failure mode, it is
assumed that yielding will start at the corners of the plates between the stiffeners. Therefore only
eq. (5.8a) will be tested for this buckling mode.

Mode 3 is caused by failure in the middle of the plate edges between the stiffeners. For mode 3, none
of the failure criteria that have previously been described are used. This failure mode is considered
a beam­column type buckling. For this mode of failure, the modified Perry­Robertson formulation can
be used since it is assumed that the stiffened panel is subjected to both longitudinal axial compression
and lateral pressure [7]. The modified Perry­Robertson equation calculates two minimum values. The
first one is related to plate induced failure, and the second one is related to stiffener induced failure.
The Perry­Robertson equation is initially not designed to work for stiffened continuous panels. For this
reason, it may give low ultimate strength predictions for stiffener­induced failure compared to results
obtained with, for example, FEA. For continuous stiffened plates in shipbuilding, stiffener­induced fail­
ure is often neglected [7]. In this research, stiffener­induced failure is calculated, but it will only have
the purpose of showing the stiffener induced failure behavior. It is not incorporated in the generation
of the geometrical parameter set, which is the goal of this analytical model.

Mode 4 is dominated by the failure of the stiffener’s web, also categorized as stiffener induced failure.
As soon as plasticity occurs in both the web of the stiffener and the connected bottom plating, the
stiffened panel will lose rigidity, which will cause collapse. For this buckling mode, the ultimate strength
is determined by an averaging of the plating’s ultimate strength as well as the ultimate strength of the
stiffeners. The ultimate strength of both the plating and the stiffener will be determined for this buckling
mode. The plating’s ultimate strength in between the stiffeners is determined with the same principles
as mode 2, except eq. (5.8b) will be incorporated as well. Equation (5.8c) will not be incorporated
since under longitudinal compression combined with lateral pressure the longitudinal edge will develop
plasticity before the transverse edge will [27, 85]. The ultimate strength of the stiffeners is determined
by making use of the Johnson­Ostenfeld equation eq. (2.16).

Mode 5 is caused by tripping of the stiffener, also called flexural­torsional buckling. Tripping causes
a rotation of the stiffener around its weld seam. A weighted average of the ultimate strength of the
stiffener and ultimate strength of the plating is used to determine the ultimate strength related to mode
5. The same principle is applied as for mode 4. The ultimate strength of the plating between the
stiffeners is determined by the same equations used for mode 4. The ultimate strength of the stiffener
is determined by applying the Johnson­Ostenfeld equation, eq. (2.16). The flexural torsional buckling
strength determines the elastic buckling strength. The flexural torsional buckling strength is different
from the elastic buckling strength that is used for calculating the ultimate strength in mode 4.
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5.4. Initial Deflection and Residual stress
This section describes the initial deflection and residual stress of the stiffened panels used within this
analytical model in section 5.4.1. The initial deflection is described for every individual buckling mode.
The next section, section 5.4.2, will discuss how the residual stress is implemented for every individual
buckling mode.

5.4.1. Initial Deflection
As described in section 2.1.4, it is often assumed that the initial deflection is described by a Fourier
series in both directions of the panel. For stiffened plate buckling, three types of initial deflection within
this analytical model are present. The first initial deflection is the initial deflection of the plating be­
tween the stiffeners (𝑤𝑜𝑝𝑙). The second deflection is the initial deflection of a stiffener due to the entire
panel’s deflection, also called column­type initial deflection (𝑤𝑜𝑐). The third initial deflection is the initial
sideways deflection of the stiffener (𝑤𝑜𝑠). Which initial deflection is taken into account depends on the
mode of failure. The initial deflection per mode shape is discussed in section 5.3. Initial deflection
tends to lower the ultimate strength of the structure, therefore in all calculations, the maximum initial
deflection is assumed, taking the worst­case scenario possible, setting the initial deflection equal to
the amplitude of the initial deflection function. Therefore, the amplitude of the initial deflection (𝐴0𝑚𝑛),
described in eq. (2.21), is often assumed either 𝑤𝑜𝑝𝑙 or 𝑤𝑜𝑐 depending on the governing mode of fail­
ure. The column­type initial deflection is assumed to depend on the length of the stiffened panel, as
described in eq. (5.9). The initial sideways deflection of the stiffener is assumed to be equal to the
column­type initial deflection. The initial deflection of the plating in between the stiffeners is assumed
to be dependent on the plate slenderness (𝛽) and the plate thickness, as described in eq. (5.10). Clas­
sification societies assume the plate initial deflection to be a function 𝐶1𝑏, which for an average level of
initial imperfection is assumed to be equal to 0.005𝑏 [86]. The function used by classification societies
tends to give inaccurate initial deflections for thin and thick plates [14]. In contrast, eq. (5.10) should
give a good prediction for a much wider variety of thicknesses of plates [7]. In this research, it is not yet
known what the thickness range will be. Therefore, eq. (5.10) is used for the initial deflection prediction
in this model. This set of equations is based on extensive experimental research, as described in the
research of Smith et al. [15].

𝑤𝑜𝑐 = 𝑤𝑜𝑠 = 0.0015𝑎 (5.9)

𝑤𝑜𝑝𝑙 = {
0.025𝛽2𝑡 For slight initial deflection
0.1𝛽2𝑡 For average initial deflection
0.3𝛽2𝑡 For severe initial deflection

(5.10)

Within this research, the average initial deflection is assumed for both the plating in between the stiff­
eners as for the column­type buckling. This assumption is valid unless other initial deflections are
mentioned.

The initial deflection is incorporated within the functions as a single parameter. There is no difference
between 𝑤𝑜𝑐 and 𝑤𝑜𝑝𝑙 within the set of equations. Therefore, it is important to take the correct initial
deflection related to every mode of failure. As mentioned in section 5.3, some buckling modes are re­
lated to stiffener buckling, and some modes are related to the plating in between stiffeners. Depending
on which failure mechanism is dominating the mode of failure, the initial deflection is incorporated that
influences this failure mode in the most negative way possible.

Mode 1 is buckling of the entire stiffened panel. This buckling mode spans the entire width of the panel.
Therefore, the worst possible deflection occurs when the top of the column­type initial deflection aligns
with the top of the initial deflection of the plating in between stiffeners. Therefore the initial deflection
for mode 1 (𝑤𝑜,1) is given by eq. (5.11).

𝑤𝑜,1 = 0.1𝛽2𝑡𝑝 + 0.0015𝑏 (5.11)

Mode 2 is caused by buckling of the plating in between stiffeners. Therefore, only the initial deflection
for the plating between the stiffeners is used eq. (5.12).
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𝑤𝑜,2 = 𝑤𝑜,4𝑝 = 𝑤𝑜,5𝑝 = 0.1𝛽2𝑡𝑝 (5.12)
Mode 3 is considered beam­column type buckling. Therefore, the column­type initial deflection is as­
sumed for this buckling mode. The assumed initial deflection (𝑤𝑜,3) for both plate and stiffener induced
failure is the same and given by eq. (5.13).

𝑤𝑜,3 = 0.0015𝑎 (5.13)
Mode 4 is dominated by the failure of the stiffener web. The ultimate strength of the plating between
the stiffeners and of the stiffener itself is determined. The initial deflection of the plating between the
stiffeners is the same as for mode 2. The Johnson­Ostenfeld equations and the required elastic buckling
strength do not incorporate any initial deflection in the equations.

Mode 5 uses the same principles that are used within mode 4. For the plating between stiffeners, again,
the same initial deflection has been used as in mode 2 and 4. Since the principles of calculating the
elastic buckling strength of the stiffener are different than in mode 4, no initial deflections are assumed
for the stiffener.

5.4.2. Residual Stress
As mentioned in section 2.1.3, residual stress can have a significant impact on the ultimate strength of
a stiffened panel. Therefore, it is chosen to incorporate the residual stress within the model to obtain
a geometrical parameter set that contains realistic models. Residual stress is incorporated differently
depending on the mode of failure. This section will describe how the residual stress is implemented
and what the effect is of the residual stress for those buckling modes.

Mode 1 is buckling of the entire stiffened panel. It is often assumed that residual stress has a negligible
impact on the ultimate strength of mode 1 buckling due to the present significant compressive and
tensile residual stresses over the entire plate. These stresses are caused by the welding of the stiffeners
to the main plating. A significant part of the residual stress will cancel each other out [7].

Mode 2 is the collapse of the plating between the stiffeners. If only the plating between the stiffeners
is considered, residual stress will play a role in the stiffened panel’s ultimate strength. Residual stress
is incorporated the von Mises failure criteria described by eq. (5.8a). As can be seen in fig. 2.3, the
tensile residual force in x­direction (𝜎𝑟𝑡𝑥) influences the maximum compressive force in x­direction
(𝜎𝑥,𝑚𝑎𝑥) located at the corner of the plate. The same principle applies to the maximum force in the
y­direction (𝜎𝑦,𝑚𝑎𝑥). The tensile force counteracts the compressive force, causing the corners of the
plate to fail at a higher load compared to when residual stress is not incorporated.

Mode 3 is the beam­column type failure. Mode 3 is determined by making use of the modified Perry­
Robertson equation. This equation does not directly allow the addition of residual stress. A knockdown­
factor is applied to the result of the Perry­Robertson ultimate strength prediction. The knockdown­factor
is based on the ratio between the equivalent compressive residual stress and the yield stress. When
average compressive residual stress is assumed within mild structural steel, the knockdown­factor
becomes 1, so it is assumed that residual stress will not influence the result of mode 3 within this
research.

Mode 4 is stiffener­induced failure. Mode 4 is based on the ultimate strength of the plating between
stiffeners and the stiffener. For the plating between the stiffeners, the same principles as for mode 2
are used regarding the residual stress. Besides adding residual stress to failure criteria eq. (5.8a), the
compressive residual stress in the x­direction also influences 𝜎𝑦,𝑚𝑖𝑛 in eq. (5.8b). The residual stress
also affects 𝜎𝑦,𝑚𝑖𝑛. As described in section 5.3, failure criteria eq. (5.8c) is not adopted when the panel
is loaded with longitudinal compression and lateral pressure. If incorporated, it would develop wrong
results in the model since it is assumed that the tensile residual stress is equal to the yield strength of
thematerial. When the residual stress is equal to the yield strength of thematerial, the criteria described
in eq. (5.8c) will be met instantaneously since there is no loading present in the transversal direction.
The residual stress will not only affect the plating between the stiffeners. The ultimate strength of the
stiffener itself will be reduced by the compressive residual stress to incorporate welding residual stress
effects in the stiffener.
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Mode 5 is also considered stiffener­induced failure. Mode 5 uses the same principles as for mode 4.
The ultimate strength of the stiffener is differently determined than in mode 4 and has two possibilities to
be corrected for the ultimate strength. The ultimate strength of the stiffener can be corrected by either
the compressive residual stress or by the Danielson compressive correction given in eq. (5.14) [14].
This correction depends on the plate stiffener combination moment of inertia 𝐼, the spacing between
stiffeners, and the bottom plate thickness. The correction represents an effective residual stress factor.
The difference between both corrections is only visible at stiffeners, where the height/thickness­ration
of the stiffener becomes large. Therefore the simple correction of the compressive residual stress has
been used within this model.

𝜎∗𝑟𝑠𝑥 = 𝜎𝑟𝑐𝑥 (1 +
2𝜋2𝐼
𝑏3𝑡𝑝

) (5.14)

5.5. Analytical Model Verification
The model described in Hughes and Paik [7] is widely proven to give an accurate prediction of the
ultimate strength. Therefore, it is only necessary to verify that the model is correctly rebuilt and the
results that are obtained with the model are in correspondence with the results obtained in literature.

The analytical model is verified by comparing the obtained results with several graphs available
from the literature. The graphs from the literature are digitized and compared with graphs obtained
by the built model. Figure 5.6a shows the results of all five individual buckling modes. The lines rep­
resent the ultimate strength per buckling mode depending on the ℎ𝑤/𝑡𝑤­ratio. The x­axis shows the
ratio between the height of the web and the thickness of the web. The height of the web is varied and
the thickness is kept the same through all iterations. The y­axis shows the ratio between the ultimate
strength and the yield strength of the stiffened plate. Stiffener induced failure is plotted to compare the
results, but it is not taken into account in the final optimization process. Besides the colored lines, the
results from the literature are plotted as dotted lines. As can be seen in fig. 5.6a, the graphs show a
good similarity between the model and the literature.
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(b) The Failure curve compared with ALPS/ULSAP results in the
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Figure 5.6: Comparison of the model with data available from literature. Plots are for a T stiffened panel: 𝑎=2640 mm, 𝐵=3600
mm, 𝑡𝑝=21 mm, 𝑛𝑠=3, 𝑡𝑤=12 mm, 𝑡𝑓=15 mm, 𝑏𝑓=100 mm,𝑤𝑜𝑝𝑙=0.05𝛽2𝑡,𝑤𝑜𝑠=𝑤𝑜𝑐=0.002𝑏. Both lateral pressure and residual
stress are not incorporated.

Figure 5.6b uses the same axis. From the five different modes in fig. 5.6a, the dominating mode is
selected for every ℎ𝑤/𝑡𝑤­ratio. The dominating buckling mode is the mode that fails the first; this is the
buckling mode with the lowest ultimate strength. This line is shown in blue. The failure line is compared
to literature results that are obtained with ALPS/ULSAP [85]. The results from the model show good
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accuracy with the results obtained by ALPS/ULSAP. The results by ALPS/ULSAP is a verified program
to perform ultimate strength and limit state analysis of plates and stiffened plates. In this figure, a
difference between the results for lower ℎ𝑤/𝑡𝑤­ratios are observed. This difference is caused by a
transition between failure mode 1 and failure mode 3 used in ALPS/ULSAP, ignoring the plate induced
failure for low ℎ𝑤/𝑡𝑤­ratios. This transition is not incorporated into this analytical model.

Few data is available in the present literature about the analytical model that takes residual stress and
lateral pressure into account. The model is compared to two ALPS/ULSAP graphs. Both figures in
fig. 5.7 use the same geometry as in fig. 5.6. This time the panel is also subjected to lateral pres­
sure, and residual stress is taken into account. Figure 5.7a shows the failure line of a stiffened panel
subjected to both longitudinal compression and lateral pressure. A 20­meter water column is used
as hydrostatic pressure. The 20­meter water column is also used to obtain the ALPS/ULSAP curves.
Residual stress is still neglected in this figure. Again, the model shows great accuracy with the results
obtained in ALPS/ULSAP. The only difference is again the transition from failure mode 1 to failure mode
3 in ALPS/ULSAP.

Figure 5.7b shows the failure line for stiffened panels subjected to both compressive residual
stress and lateral pressure that is equivalent to a 20­meter water column. Also, compressive residual
stress is incorporated within this model. Some deviation can be seen for structures with a ℎ𝑤/𝑡𝑤­ratio
lower than 15. This deviation is caused by the knockdown­factor, as discussed in section 5.4.2, has
little influence on mode 3 in the present analytical model. Therefore there is little to no correction for
the residual stress in mode 3. For ℎ𝑤/𝑡𝑤­ratios higher than 15, it can be seen that the current model
slightly underestimates the performance of the stiffened panels. The peak in the ultimate strength line
is close to the peak in the line obtained with ALPS/ULSAP.
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(a) Failure curve compared with ALPS/ULSAP results in literature.
20 meter hydrostatic pressure as lateral pressure added. Residual
stress is not incorporated.
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(b) Failure curve compared with ALPS/ULSAP results in litera­
ture. 20 meter hydrostatic pressure as lateral pressure added.
𝜎𝑟𝑐𝑥=0.15𝜎𝑦

Figure 5.7: Comparison of the model with data available from literature. Plots are for a T stiffened panel: 𝑎=2640 mm, 𝐵=3600
mm, 𝑡𝑝=21 mm, 𝑛𝑠=3, 𝑡𝑤=12 mm, 𝑡𝑓=15 mm, 𝑏𝑓=100 mm, 𝑤𝑜𝑝𝑙=0.05𝛽2𝑡, 𝑤𝑜𝑠=𝑤𝑜𝑐=0.002𝑏. 20m hydrostatic as lateral pres­
sure is added. Residual stress is taken as 𝜎𝑟𝑐𝑥=0.15𝜎𝑦

Overall it can be said that the model works as it should. It shows near­perfect results if the individual
buckling modes are compared with the results obtained in fig. 5.6a. A similar graph with all the indi­
vidual failure modes is unavailable for stiffened panels subjected to both longitudinal compression and
lateral pressure. Therefore, the results are compared with ALPS/ULSAP results from the literature.
The application of lateral pressure also shows near­perfect results with the literature. When applying
residual stress, small differences are observed in the results, but this can be explained by how residual
stress is implemented within the model. Overall, a good similarity is observed between results obtained
from the analytical model and the results found in the literature.
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5.6. Optimization
The previously described analytical model can give an accurate prediction of the ultimate strength of
a stiffened panel loaded with longitudinal compression and lateral pressure with residual stress and
initial deflection taken into account. Optimization is used to obtain a realistic set of geometrical pa­
rameters. Besides that fact that a structure is designed to withstand a specific loading, often the most
economically favorable solution will be chosen of all structures that can withstand the required load.
The most economical solution will depend on a combination of material costs and production costs.
Production costs are difficult to incorporate and are therefore neglected. Since the production costs
are neglected, the stiffened panels will be optimized based on the material costs. The pseudocode in
algorithm 1 gives the outline of the model. This algorithm determines if the desired ultimate strength
(𝜎𝑟𝑒𝑞) has been met for a stiffened panel. Then, the panel’s geometry is subjected to some constraints
based on rules developed by classification societies to prevent the selection of unrealistic models.

The geometrical range for the optimizer are predefined. The lower and upper bounds are dis­
cussed in section 5.6.1. The constraints defined by classification societies and the constraints of the
geometry are given in section 5.6.2. The optimization algorithm used and the final obtained parameter
set will be discussed in section 5.6.3.

Algorithm 1 Ultimate strength and weight optimization. First, the ultimate strength for a specific stiff­
ened panel is determined. The predicted ultimate strength is then compared with the requested ultimate
strength (𝜎𝑟𝑒𝑞). The structural model is then compared with the limitations by classification societies
and geometry. If a solution it passes, it is stored as a suitable model.
1: function ULS­Weight­Predict(𝑛𝑠 , 𝑡𝑝, ℎ𝑤 , 𝑡𝑤 , 𝑏𝑓 , 𝑡𝑓 , 𝜎𝑟𝑒𝑞 , 𝐸, 𝜎𝑦 , 𝜈, 𝑃)
2: Initialize:

Geometry
𝑘 ← interpolate 𝜎𝑦
𝑏 ← 𝐵/(𝑛𝑠 + 1) Determine stiffener spacing
𝑤𝑜𝑝𝑙 ← 0.1𝛽2𝑡𝑝 Determine plate initial deflection
𝑤𝑜𝑠 , 𝑤𝑜𝑐 ← 0.0015𝑏 Determine column­type and stiffener initial deflection

3: function Mode­1(𝑡𝑝, 𝑏, 𝑎, ℎ𝑤 , 𝑡𝑤 , 𝑏𝑓 , 𝑡𝑓 , 𝑛𝑠 , 𝑤𝑜𝑝𝑙 , 𝑤𝑜𝑐 , 𝐸, 𝜈, 𝜎𝑦 , 𝑃)
4: 𝑚 ← 1; 𝑖𝑛𝑡(1…𝑚)
5: 𝐴𝑚𝑛 ← solve
6: 𝜎𝑥,𝑢 ← 𝐴𝑚; 𝑐𝑟𝑖𝑡𝑉𝑀 = 1, 2, 3
7: function Mode­2(𝑡𝑝, 𝑏, 𝑎, 𝑤𝑜𝑝𝑙 , 𝐸, 𝜈, 𝜎𝑦 , 𝑘, 𝑃)
8: 𝑚 ← 𝑎/𝑏 > √𝑚(𝑚 + 1); 𝑖𝑛𝑡(1…𝑚)
9: 𝐴𝑚𝑛 ← solve
10: 𝜎𝑥,𝑢 ← 𝐴𝑚; 𝑐𝑟𝑖𝑡𝑉𝑀 = 1
11: function Mode­3(𝑡𝑝, 𝑏, 𝑎, ℎ𝑤 , 𝑡𝑤 , 𝑏𝑓 , 𝑡𝑓 , 𝑤𝑜𝑐 , 𝐸, 𝜈, 𝜎𝑦 , 𝑃)
12: 𝜎𝑥,𝑢 ← Perry­Robertson equation
13: function Mode­4(𝑡𝑝, 𝑏, 𝑎, ℎ𝑤 , 𝑡𝑤 , 𝑏𝑓 , 𝑡𝑓 , 𝑤𝑜𝑝𝑙 , 𝐸, 𝜈, 𝜎𝑦 , 𝑘)
14: 𝜎𝑢,𝑤𝑒𝑏 ← Johnson­Ostenfeld, 𝜎𝑤𝐸
15: 𝜎𝑢,𝑝𝑙𝑎𝑡𝑒 ← 𝐴𝑚; 𝑐𝑟𝑖𝑡𝑉𝑀 = 1, 2
16: 𝜎𝑥,𝑢 ← 𝜎𝑢,𝑤𝑒𝑏 , 𝜎𝑢,𝑝𝑙𝑎𝑡𝑒
17: function Mode­5(𝑡𝑝, 𝑏, 𝑎, ℎ𝑤 , 𝑡𝑤 , 𝑏𝑓 , 𝑡𝑓 , 𝑤𝑜𝑝𝑙 , 𝐸, 𝜈, 𝜎𝑦 , 𝑘)
18: 𝜎𝑢,𝑤𝑒𝑏 ← Johnson­Ostenfeld, 𝜎𝑡𝐸
19: 𝜎𝑢,𝑝𝑙𝑎𝑡𝑒 ← 𝐴𝑚; 𝑐𝑟𝑖𝑡𝑉𝑀 = 1, 2
20: 𝜎𝑥,𝑢 ← 𝜎𝑢,𝑤𝑒𝑏 , 𝜎𝑢,𝑝𝑙𝑎𝑡𝑒
21: 𝜎𝑙𝑜𝑤 ← 𝑚𝑖𝑛(𝜎𝑥,𝑢)
22: if 𝜎𝑢 < 𝜎𝑟𝑒𝑞 then
23: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑
24: else
25: if 𝑔𝑒𝑜 ≠ 𝐵.𝐶. then
26: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑
27: else
28: 𝑠𝑎𝑣𝑒𝑚𝑜𝑑𝑒𝑙
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5.6.1. Optimization Parameter Range
The optimizer solves between a predefined range for all the individual geometrical parameters. The
limitations used are based on stiffened panels used within different studies on stiffened panels used in
shipbuilding. Cases outside this range might occur in reality, but this is done to obtain an initial realistic
range of geometrical parameters. The ranges are discussed below:

• Parameters 𝑎 and 𝑏, the length and width of the plating betweens stiffeners respectively, are
chosen as fixed values. Length 𝑎 Is chosen to be 2500 mm, 𝑏 is picked to be 4000 mm. These
lengths are based on the research of Paik and Seo [87], where 𝑎 is 4300 mm, and 𝑏 is 16000
mm. Both parameters are scaled­down to reduce the size of the FEM models that will later be
developed. This is done to reduce the computation time per individual model, allowing for more
data to be generated within the same amount of time.

• The number of stiffeners (𝑛𝑠) is based on the research of Paik and Seo [87] as well. The width
of the plate is scaled down with a factor four. The down­scaled model would have around 5
stiffeners if compared with the models in the research of Paik and Seo [87]. This number of
stiffeners might not be an optimal design, and therefore the optimization is given a significant
amount of possibilities by ranging the number of stiffeners from 1 to 10.

• The height of the web (ℎ𝑤) ranges from 50 mm to 500 mm. This range gives the possibility to find
small and large stiffeners. Within the literature, often smaller stiffeners are used for cross­stiffened
panels. Cross­stiffened panels are panels that have stiffeners in both longitudinal and transverse
directions. With only stiffening in the longitudinal direction, sometimes stiffeners beyond 450 mm
are used [87].

• The thickness of the web (𝑡𝑤), plate (𝑡𝑝), and flange (𝑡𝑓) are limited by the thinnest plate that
is found in the literature, which rounded to 4 mm [85]. Smaller thicknesses are also difficult to
produce and are unrealistic in use. The thickest plating found is 25.4 mm thick, a margin is
adopted to extend the maximum thickness to 30 mm. [88]

• The flange width (𝑏𝑓) is limited by the minimum plate thickness. It is assumed that the minimum
must be a 1:4 ratio between thickness and width. Therefore a lower limit of 20 mm is adopted for
𝑏𝑓. The upper limit is based on the maximum that is possible without creating an overlap of the
flanges, which is a case where the largest flange and the most number of stiffeners are used. 𝑏
is 400 mm when the plate has ten stiffeners. Therefore 400 mm will be the upper limit of 𝑏𝑓.

5.6.2. Limitations and Classification Society
During testing of the optimizer, the optimizer showed to be excellent in exploiting the model, finding
some highly unlikely results. Therefore, several constraints are added that are provided by classification
societies to improve the stability of the model. The rules defined by classification societies differ slightly
between different societies and between vessel types. Since the hydrostatic pressure is taken from the
Maersk E class, it is decided that the rules will be adopted for container vessels published by DNV
GL.[86] DNV GL is one of the main classification societies related to the maritime industries.

For T­stiffeners, there are some rules defined relating the ℎ𝑤/𝑡𝑤 and 𝑏𝑓/𝑡𝑓 to a maximum value
and the material factor 𝑘 which is described in table 2.1. Those rules are described in eq. (5.15),
eq. (5.16), and eq. (5.17).

ℎ𝑤
𝑡𝑤

≤ 60√𝑘 (5.15)

𝑏𝑓
𝑡𝑓
≤ 19.5√𝑘 (5.16)

𝑏𝑓𝑡𝑓 <
ℎ𝑤𝑡𝑤
6 (5.17)

Also, a few geometrical constraints are defined in this research that are not based on rules given by
any classification society. The first constraint is related to the width of the flange. It is assumed that the
flange might span half the width of the spacing between stiffeners. This spacing is assumed because
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otherwise, it would counter the effect of spatial stiffening, and a closed­form structure could be used.
Also, it is assumed that the flange’s width must be at least four times the thickness of the flange.
Otherwise, the flange will be more of a block welded on top of a stiffener instead of welding a plate on
top of the stiffener. The boundaries are displayed in eq. (5.18).

4𝑡𝑓 < 𝑏𝑓 < 0.5𝑏 (5.18)

5.6.3. Genetic Algorithm and Parameter Set
The optimizer’s goal is to find structures that are the can withstand a specific predefined load and are
also economical to build. This optimization is done to obtain a representative geometrical parameter
set to train the MLmodel. Six parameters are variable in the optimization process, making it challenging
to optimize without using standard available optimizers. The optimizations space turned out to have a
significant number of local maxima andminima, making it hard for most solvers to find consistent results.
Therefore, a Genetic Algorithm (GA) optimizer has been used within Matlab, which is an evolutionary
type algorithm. One advantage of the GA is that it can solve for integers only. The minimal step size of
the geometry is set to be 0.1 (mm). The number of stiffeners is equal to the integers 1 to 10. The GA
generates a population of randomly picked points on the optimizations space. Then, every randomly
selected point gets rated on their performance. The best points will continue to the next generation.
Other points will be mutated, and some new points will be a crossing between two other points of
the previous generation. This process is repeated until the stopping criteria of the GA are met. For
example, if the generations are not getting better or if a runtime limit is reached, the model will stop
searching. The stochastic behavior of the optimization in the GA makes that the GA performs well
on overcoming local minima most other solvers failed to do, which are gradient­based methods. The
downside is that the use of the GA comes at the cost of significant computational time. Therefore, a
trade­off has been made between the population size and the required computational time. A larger
population size will increase the change of finding the global optimum, while with a small population
size the change might be that all points will be close to a local minimum.
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Figure 5.8: Performance of the genetic algorithm. In (a) a boxplot is given on the spread of the 10 different iterations. (b) is the
mean result plotted against the mean required time to find a single optimum.

The GA is tested with a single stiffened panel with a fixed required strength. One of the parameters
defining how the GA works is the population size. The population size describes how many starting
points will randomly be distributed on the data optimization space to find an optimum. The GA has
been run ten times with a population sizes of 20, 50, 100, 150, and 200. Figure 5.8a shows a box
plot of the ten different iterations. It can be seen that with a larger population size, the model has is
more likely of finding a local minimum. This behavior can be observed as the large spread of the box
and whiskers. It can be seen that with a population size of 100, the spread becomes small, and the
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algorithm is likely to find a minimum close to the global minimum. From fig. 5.8b, it is observed that an
increase in population size significantly increases the computation time for every single solution. For
this research, a population size of 100 is chosen since the spread is small, and the required computation
time per model is acceptable.

The GA is then used on algorithm 1. Algorithm 1 requires as input an ultimate strength that must
be met by the chosen structure. The lower bound of the required ultimate strength is chosen to be
30% of the yield strength of the stiffened panel material. The upper bound is chosen to be 85% of
the yield strength. This upper bound is used since it is close to the maximum performance obtained
according to testing with the GA. Beyond 85% of the yield strength, the GA is not able to find a solution
to the problem that meets all the constraints. This ultimate strength range is subdivided into 200 equally
spaced steps. This subdivision means that every loop over the different required forces will result in
200 models. Five loops will be made in total, resulting in a set of 1000 different optimized models.
Some iterations the GA failed to find a solution that was according to the boundary conditions or the
required ultimate strength. These results were filtered, creating a final set of 960 models. The models
where then sorted based on the number of stiffeners 𝑛𝑠. The amount of models found per amount of
stiffeners is displayed in table 5.1.

Table 5.1: Number of models found per number of stiffeners 𝑛𝑠 by the genetic algorithm. The models can withstand a predefined
loading (𝜎𝑟𝑒𝑞) and are optimized to have the smallest weight possible.

Number of Stiffeners Number of Models

𝑛𝑠 = 3 13
𝑛𝑠 = 4 225
𝑛𝑠 = 5 297
𝑛𝑠 = 6 155
𝑛𝑠 = 7 41
𝑛𝑠 = 8 16
𝑛𝑠 = 9 64
𝑛𝑠 = 10 129

Most of the GA optimized models have either four, five, or six stiffeners. Also, a large group can
be observed with 10 stiffeners. The models with 10 stiffeners are all located near the lower bounds
of the geometrical parameters. This can be clearly seen in fig. 5.9, fig. 5.10 and fig. 5.11 by the dots
which are coloured dark blue. Most of the points are located near the black dotted lines. If the minimum
plate thickness is increased from 4 mm to 5 mm, most of the models with 10 stiffeners would be invalid.
From all three figures, it can be seen that the parameters show good relations with each other.

Figure 5.9b shows the ℎ𝑤/𝑡𝑤 plot with the 95% confidence ellipse. The confidence ellipse is
drawn to show the spread in both directions of the mean geometry for a certain amount of stiffeners.
The confidence ellipse makes clear how well the models are grouped. It can be seen that the points
belonging to stiffened panels with 4, 5, or 6 stiffeners show a small spread following a linear relationship.
The ellipse of 7 and 8 stiffeners are not drawn because they are too large. The ellipses are too large
since geometries belonging to those panels are scattered around in the big and small clusters. It
can be seen that a significant amount of the models is capped by the extra constraints described in
section 5.6.2. A a substantial number of stiffeners is capped by the line, which prevents too large
ℎ𝑤/𝑡𝑤­ratios. Stiffeners with higher ratios are structures that become prone to tripping.

The figure containing the relation between breadth and thickness of the flange, fig. 5.10, shows
that the results are scattered between the boundaries described in section 5.6.2. Figure 5.10a shows
that there is a certain diagonal line for the models related to a number of stiffeners that form a ‘lower
bound’. The rest is spread from this line over the rest of the cone drawn from the boundary conditions.
The diagonal line shifts further up the cone for models with fewer stiffeners. This bound is observed
for models with 4, 5, 6, or 7 stiffeners. Those lower bounds are likely caused by a combination of
boundaries applied to other parameters of the model. This same behavior can be observed from the
confidence ellipses in fig. 5.10b. The width of both ellipses are similar, but they tend to shift further up
the cone for models with fewer stiffeners. The models with 8, 9, or 10 models are all located at the tip
of the cone.

Figure 5.11 shows the thickness of the bottom plate related to the height of the web. In the figure,
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(a) ℎ𝑤/𝑡𝑤 scatter of the 960 models optimized by the GA. The
black line represent the boundary conditions that are described in
section 5.6.2

(b) Same plot as (a), but also with the 95% confidence ellipses
plotted. The confidence ellipses of 𝑛𝑠 = 7 and 𝑛𝑠 = 8 are not
plotted since the points are scattered over both clusters.

Figure 5.9: A ℎ𝑤/𝑡𝑤 scatter of the 960 models optimized by the genetic algorithm. (a) shows the individual points and the
boundary conditions. (b) shows the same scatter but with the 95% confidence ellipses drawn to display the grouping of the
points.

it can be seen that the results show a similar result as in fig. 5.9a. Again, it can be seen that the minimal
plate thickness also caps the models with 10 stiffeners. The diagonal lines in fig. 5.10a can now be
observed as horizontal lines, which form a lower bound of the models with 3, 4, 5, and 6 stiffeners. The
confidence ellipses of those models are small showing little scatter of the geometrical parameters.

As can be seen in the previously discussed figures, linear trends can be observed. Therefore, a correla­
tion study is applied based on linear regression and the calculation of the Pearson correlation coefficient
(𝜌𝑝) [89]. The coefficient is a value between ­1 and 1, which is calculated by dividing the covariance
over the standard deviations. The values ­1 and 1 represent a strong linear correlation, negative and
positive, respectively. When the correlation factor becomes closer to zero, there is little to no correlation
between the parameters.
A correlation plot and matrix are made between every individual parameter. This correlation plot is
made on the large group of data points, mainly the models with 6, 5, 4, and 3 stiffeners. The small
group near the boundaries of the model is neglected since it is located at the limitations of the model.
Therefore, they are considered less likely to occur. Determining the correlation factor with both groups
will lead to high correlation factors since the relative standard deviation will decrease, but the linear
regression will not be accurate. Outliers are filtered for the same reason. The correlation matrix, with
all the individual Pearson correlation coefficients, is given in table 5.2.

Table 5.2: Pearson correlation coefficient matrix for all the different variables within the model. A coefficient of ­1 and 1 represents
a strong correlation. A correlation near 0 implies that there is no correlation.

𝑡𝑝 ℎ𝑤 𝑡𝑤 𝑏𝑓 𝑡𝑓 𝑛𝑠
𝑡𝑝 1.0000 0.8647 0.8695 0.8693 0.6811 ­0.3697
ℎ𝑤 0.8647 1.0000 0.8355 0.6116 0.8121 ­0.1146
𝑡𝑤 0.8695 0.8355 1.0000 0.6539 0.9259 ­0.4260
𝑏𝑓 0.8693 0.6116 0.6539 1.0000 0.3603 ­0.3674
𝑡𝑓 0.6811 0.8121 0.9259 0.3603 1.0000 ­0.3144
𝑛𝑠 ­0.3697 ­0.1146 ­0.4260 ­0.3603 ­0.3144 1.0000

There is no real criterion available when a correlation factor is considered highly correlated. Therefore,
the correlation plots are made, drawing the linear regression fitted through the data points. In Appendix
A, the correlation plot is given. Low correlation factors are obtained for every parameter related to the
number of stiffeners. It is expected that there is a correlation between the number of stiffeners and the
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(a) 𝑏𝑓/𝑡𝑓 scatter of the 960 models optimized by the GA. The black
line represent the boundary conditions that are described in sec­
tion 5.6.2

(b) Same plot as (a), but also with the 95% confidence ellipses
plotted. The confidence ellipses of 𝑛𝑠 = 7 and 𝑛𝑠 = 8 are not
plotted since the points are scattered over both clusters.

Figure 5.10: 𝑏𝑓/𝑡𝑓 scatter of the 960 models optimized by the genetic algorithm. (a) shows the individual points and the boundary
conditions. (b) shows the same scatter but with the 95% confidence ellipses drawn to display the grouping of the points.

other geometrical parameters. This correlation is expected since the number of stiffeners determines
the spacing between stiffeners, which plays an essential role in the ultimate strength calculations. Low
correlation numbers are obtained because the number of stiffeners is only ranged from 1 to 10, gener­
ating the lines in the correlation plot. The parameters with a correlation greater than 0.8 show a good
correlation and fit with the linear regression. The parameters that have a coefficient between 0.6 and
0.8 show also some linear trend but are wider spread around the linear regression. Overall it can be
concluded that most parameters show a good relationship with each other. Since all parameters show
good correlation, it is difficult to obtain an equation that should give ‘optimal’ stiffened panel geometries.
Therefore this is not done within this research.

The use of variable­sized input data for ML algorithms is currently possible. However, the use will
complicate the ML model significantly. Therefore the choice has been made to use a fixed­sized input
for the machine learning models that will be discussed later in this report. The models will have a fixed
input size if the number of finite elements in the model is the same. Therefore, the model with the
number of stiffeners that occurs the most in the results will be used. This selection will mean that the
models with five stiffeners will form the dataset, which will later be used as input for the ML algorithm.
The selection only contains 297 models that are generated by the genetic algorithm. A random noise
will be added to those 297 models to extend the size of the dataset. A random noise of maximum 10%
is added to the existing models. By adding noise the data is extended to 9207 different models.

By adding noise, some of the models are outside the diagonal constraint line. If the models are past
the constraint line, they do not comply with regulations described by the classification society. There
are two reasons why those models are kept within the research. The first reason is that, as mentioned
in section 5.6.2, those rules are vessel­type dependent, and they differ slightly between classification
societies. The data points might not fall within the regulations initially applied, but they may be accepted
for different vessel types. The second reason is that it will probably improve the accuracy of the data
points that do comply with the rules of classification societies. This improvement is because ML algo­
rithms generally show accurate predictions on data within the range of training. If the models outside
the boundary condition were not used, a significant amount of the models would lay on the boundary of
what the ML algorithm learned. Therefore, the models beyond this drawn boundary condition are still
taken into account.

The distributions of every individual geometrical parameter can be found in appendix A. It can
be seen that a widespread of every parameter is incorporated, giving an excellent variety of stiffened
panel geometries.
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(a) ℎ𝑤/𝑡𝑝 scatter of the 960 models generated by the GA. The
black dashed line represent the boundary conditions that are de­
scribed in section 5.6.2

(b) Same plot as (a), but also with the 95% confidence ellipses
plotted. The confidence ellipses of 𝑛𝑠 = 7 and 𝑛𝑠 = 8 are not
plotted since the points are scattered over both clusters.

Figure 5.11: ℎ𝑤/𝑡𝑝 scatter of the 960 models generated by the genetic algorithm. (a) shows the individual points and the
boundary conditions. (b) shows the same scatter but with the 95% confidence ellipses drawn to display the grouping of the
points.
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Figure 5.12: ℎ𝑤/𝑡𝑤 plot of the original data set optimized by the genetic algorithm in yellow. The set is extended to 9207
models by adding random noise to the parameters with a maximum of 10%. Some models are below the constraints, but may
be accepted for different types of vessels. Also will the models improve the predictive capabilities of the ML for models that lay
on the dotted line. Therefore those models are still accepted within the data set.



6
Numerical Large Deflection Model

This chapter expands upon the data generation, which will be used to train the machine learning (ML)
algorithm. In chapter 5, an analytical model is developed to obtain a representative geometrical param­
eter set. This chapter will describe how this geometrical parameter set is converted to the actual input
and output data for the machine learning algorithm. A numerical method will be used to create accurate
ultimate strength predictions and obtain stress distributions over the stiffened panel at the moment of
failure. The numerical method will be Finite Element Method (FEM), currently one of the most com­
monly used tools in structural analysis. Finite Element Methods are briefly introduced in section 2.1.6
and section 2.1.7. It is assumed that these sections are prior knowledge to this chapter.

This chapter will start with an introduction of the structural model in section 6.1. Next, the use
of eigenvalue buckling and why this is performed in this research will be discussed. This elaboration
can be found in section 6.2. After explaining the eigenvalue buckling, the quasi­static analysis used
within this research will be explained in section 6.3. Since all the analyses are executed many times,
this process will be automated. How this process is automated is described in section 6.4. In the last
section, the Finite Element Analysis (FEA) results will be verified and validated in section 6.5.

6.1. Finite Element Model
This section will describe the structural model. The geometry will be discussed in section 6.1.1. The
material properties of the model and the mesh elements used are discussed in section 6.1.2. Finally,
a mesh convergence study is performed to obtain quick solvable models with an acceptable loss of
accuracy. The results of the mesh convergence study are given in section 6.1.3.

6.1.1. Geometry
The geometry used in this analysis will be the same as described in section 5.2. In section 3.2, it became
clear that all kinds of different setups are available to model the boundary conditions as realistically as
possible. Section 4.1 made clear that it is not straightforward to model the boundary conditions of
continuous stiffened panels. In reality, the boundaries behave if they are partially rotation restrained,
which is complex to model. Therefore, the current analysis practice is to extend the stiffened panel
in both longitudinal and transverse directions by adding half bays and spans so the partial rotation
restrained behavior of the large longitudinal and transverse stiffeners can be incorporated. By adding
the half bays and spans, the model size becomes more than four times larger, significantly increasing
computational time. Therefore only 1­bay and 1­span will be used in this FEA analysis.

6.1.2. Material and Element Properties
The material that will be used in the model is mild structural steel S235. The material properties are
given in table 4.1. For the quasi­static analysis, non­linear material properties also have to be added
to the model. These non­linearities will require the tangent modulus (𝐸𝑡) to be added. The tangent
modulus is difficult to determine correctly. In ultimate strength analysis, elastic­perfectly plastic material
properties are often assumed. Elastic­perfectly plastic implies that the material is free to flow without
the effect of hardening. It turned out that using an elastic­perfectly plastic material with 𝐸𝑡 set to zero,
performs less stable than a material with a low conservative tangent modulus of 0.1% of the Young’s
modulus. The average difference obtained in the ultimate strength of elastic­perfectly plastic material
with a tangent modulus of 0.1% of the Young’s modulus compared to elastic­perfectly plastic material
with a tangent modulus of 0 is around 0.05%. This approach is also used in other studies, like the
research of Li et al. [90].

53
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For the modeling of thin­walled structures, shell elements are often used instead of solid ele­
ments. Shell elements follow the theory of thin plates, while solid elements also incorporate the lateral
direction the same as the longitudinal and transverse direction. Due to the requirement for fewer el­
ements, shells are computationally more efficient than solid elements. Modeling thin structures with
solid elements might also cause difficulties in the computations performed. For this research, Ansys is
used as FEM.

Figure 6.1: A graphical representation of the first­order shell181 element used in
Ansys. Four nodes can be observed at the corners of the element. Image taken
from [16]

The element shell181, a first­order shell element capable of large displacements, strains, and rotations
was used. The shell181 element is graphically represented in fig. 6.1. An alternative is the second­
order element shell282. Both first­ and second­order elements are tested on several stiffened panel
models, and no significant difference in results is obtained. Therefore shell181 elements are chosen.
Five through­thickness integration points were used due to better accuracy during large deformations
[16]. The standard number of through­thickness integration points is three.

6.1.3. Mesh Convergence
The mesh density of the model is an essential factor for the accuracy of the prediction. A higher mesh
density will often yield a more accurate prediction of the stresses and deformations in most cases.
More elements in the model also increase the size of the stiffness­matrix calculated in FEA, being the
reason for an increase in computation time and expense. The numerical models used in this research
are used as input for the machine learning model. Because a substantial amount of data is required to
obtain a well trained ML model, it is desired to have a mesh that has low computational time but also
yields accurate results. Therefore, a mesh convergence study is performed.

For the T­stiffened panel in this research, four different edges can have different mesh sizes.
The mesh division in the longitudinal direction (𝑎), in the transverse direction (𝑏), over the height of the
web (ℎ𝑤), and over the width of the flange (𝑏𝑓). Square elements are used to mesh the model. The
mesh convergence is applied to a stiffened panel selected from the dataset developed in chapter 5.
The material parameters are the same throughout the mesh convergence study and are displayed with
the geometrical parameters in table 6.1.

The chose mesh has: 20 elements over the stiffened panel length (𝑎), 10 elements over width (𝑏), 8
elements for both the height of the web (ℎ𝑤) and the width of the flange (𝑏𝑓). These are determined by
performing the mesh convergence study. This study is done by varying the individual mesh densities
of just one of the parameters, or by varying multiple parameters with a similar ratio. While changing
the mesh density on one or two sides, the mesh density on the other sides is kept the same. The
y­axis in all the graphs will have the same values. The y­axis is kept the same to make the difference
between the individual graphs more clear. It is noted that a smaller number of elements in the model
overestimates the ultimate strength prediction. Therefore, a lower 𝜎𝑢\𝜎𝑦 ratio in the upcoming graphs
implies better performance.
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Table 6.1: Geometrical and material properties of the stiffened panel used in the mesh convergence study. The material used is
mild structural steel S235.

Parameter Value Units

𝜎𝑦 235 MPa
𝐸 206 GPa
𝐸𝑡 206 MPa
𝑎 2.5 m
𝑏 0.667 m
ℎ𝑤 0.338 m
𝑡𝑤 0.0057 m
𝑏𝑓 0.149 m
𝑡𝑓 0.0133 m
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(a) Number of elements over the longitudinal edge of the plating
in between stiffeners plotted against the ratio between ultimate
strength and the yield strength of the parent material.
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(b) Number of elements of the transverse edge of the plating in be­
tween stiffeners plotted against the ratio between ultimate strength
and the yield strength of the parent material.

Figure 6.2: Mesh convergence plot of the plating in between the stiffeners. (a) shows the mesh convergence of the number of
elements on the longitudinal edge of the plating. (b) shows the mesh convergence of the number of elements on the transverse
edge of the plating.

First, a mesh convergence has been performed on both the longitudinal and transversal edge of the
plating between stiffeners. The results are displayed in fig. 6.2. Figure 6.2a shows the influence of the
mesh density on the longitudinal edge of the plating between stiffeners. The mesh density is tested with
10 to 24 elements over that edge. The mesh density is increased in steps of two elements. It can be
concluded that the mesh density on the longitudinal edge does not significantly influence the obtained
ultimate strength. It can be seen that more elements slightly increases the prediction. Figure 6.2b
shows the effect of the number of elements on the transversal edge. Mesh densities with 5 to 12
elements are tested with steps of one element. It is observed that increasing the number of elements
significantly improves the predicted ultimate strength. The curve slightly flattens when more than 10
elements are used.

Next, the influence of the mesh density in the stiffener is tested in fig. 6.3. First, the number of
elements is changed in the direction of the height of the web. The results are displayed in fig. 6.3a.
The range of elements used is 2 to 16 elements in steps of two elements added per step. Also, an
improving curve can be seen in this graph. The curve tends to flatten with more than 8 elements; only
a small increase in performance is observed with more elements. From fig. 6.3b, it can be seen that
there is little improvement made by adding more elements over the width of the flange. The number of
elements over the width of the flange is varied from 2 to 12 elements in steps of adding two elements.

With the change of individual mesh densities, elements vary between long rectangles and
squares. For this reason, it might be that the previously­discussed graphs do not represent the ef­
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(a) Number of elements over the height of the web plotted against
the ratio between ultimate strength and the yield strength of the
parent material.
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(b) Number of elements over the breadth of the flange plotted
against the ratio between ultimate strength and the yield strength
of the parent material.

Figure 6.3: Mesh convergence plot of the stiffener. (a) shows the mesh convergence of the number of elements on the height
of the web. (b) shows the mesh convergence of the number of elements on the width of the flange.

fect of mesh density completely. Therefore, a mesh density study is also performed by varying the
mesh density on both the longitudinal and transverse edge of the plating between stiffeners simultane­
ously. The number of elements on the x­axis represents the number of models on the longitudinal edge
only. The number of elements on the transverse edge is the number of elements on the longitudinal
edge halved. The results are displayed in fig. 6.4a. A significant decreasing curve can be observed. It
is essential to mention that by increasing the mesh density on two edges, the number of elements in
the model increases exponentially, increasing the required computation time quadratically. The mesh
density in the flange and web is also varied at the same time. The results are displayed in fig. 6.4b. An
improving curve can be observed, which flattens out around 8 elements for both the height of the web
and the flange’s width.

Figure 6.2b shows flattening of the curve beyond 10 elements. Figure 6.2a shows little improvement
by adding more elements in the longitudinal direction. However, fig. 6.4a shows a decreasing curve
with even more elements beyond 10 elements in the transverse direction. Therefore, it can be con­
cluded that the elements’ rectangular shape also influences the performance of the model. Therefore,
20 elements in the longitudinal direction and 10 elements in the transverse direction are used within
the final models. Adding more elements still increases the accuracy of the final result but also expo­
nentially increases the computation time. Beyond the chosen setup, the computational time increases
significantly compared to the accuracy increase achieved. With 20 and 10 elements in the length and
width of the plating between stiffeners, an error of 4.3% is obtained. This error is based on results that
are obtained using a model with a high mesh density. The obtained error is considered acceptable for
the current research. The curve of fig. 6.4b flattens out beyond 8 or more elements. Although fig. 6.3b
shows no improvement by adding more elements, it is chosen to have the same amount of elements
in both the flange and the web. This choice is made because the tested model has the most deflection
in the bottom plating and the web of the stiffener. The deflection in the flange is limited. The effect of
mesh density on the flange is expected to play an important role similar to that is observed in all other
mesh density parameters when a model will develop large deflections in the flange. For this reason,
the final mesh density has been picked.

6.2. Eigenvalue Buckling
This section will give a short overview of the eigenvalue buckling analysis that has been performed.
Section 2.1.6 already made clear why eigenvalue buckling is used; to obtain the initial deflection for
the quasi­static analysis. This section will discuss the used boundary conditions and how they are
implemented within Ansys in section 6.2.1. The loading conditions will be described in section 6.2.2.
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(a) Number of elements over the longitudinal edge of the plating
plotted against the ratio between ultimate strength and the yield
strength of the parent material. The number of elements on the
transverse edge is half the number of elements on the longitudinal
side.
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(b) Number of elements over the height of the web and width of
the flange plotted against the ratio between ultimate strength and
the yield strength of the parent material.

Figure 6.4: Mesh convergence plot of the stiffener and the plating in between stiffeners. (a) shows the mesh convergence of
the number of element on both the longitudinal and the transverse edge. There are always twice the number of elements on the
longitudinal edge. (b) shows the mesh convergence of the number of elements on the height of the web and the width of the
flange. The number of elements on both edges is the same.

At last, a description is given about how the results from eigenvalue buckling are used to obtain the
initial deflection for the quasi­static analysis in section 6.2.3.

6.2.1. Boundary Conditions
The boundary conditions used for the FEM are the same as described in section 5.2. However, sec­
tion 5.2 only mentions the boundary conditions at the edges of the bottom plate. Also, boundary con­
ditions must be applied on the stiffeners’ sides, as can be seen in fig. 6.5. The face of the stiffened
panel at 𝑥 = 0 is prevented from moving in x (longitudinal) direction (𝑢𝑥 = 0). The face is constrained
because only one face of the stiffened panel is loaded, as described in section 6.2.2. Also, the entire
face is restrained from rotating around the x­axis (𝜃𝑥 = 0). This boundary condition is applied since
the stiffener is, in reality, welded to a large transverse frame preventing rotation around the x­axis. The
edge of the bottom plating on this face of the stiffened panel is prevented from moving in z­direction
due to the simply supported plate edges (𝑢𝑧 = 0). The boundary conditions for this face of the model
also make sure the edges remain straight during deformation.

The face of the stiffened panel at 𝑥 = 𝑎 has different boundary conditions since this is the face
that will be loaded with compressive force. The face is prevented from rotating around the x­axis
(𝜃𝑥 = 0). The edge of the bottom plating is prevented from moving in the z­direction (𝑢𝑧 = 0). The
movement of the face is coupled in the x­direction for all nodes on the face. The coupling makes sure
the edges remain straight during loading. The edges remain straight because all nodes move with the
same displacement in the x­direction (𝑢𝑥 = 𝑐𝑜𝑢𝑝𝑙𝑒𝑑). Coupled nodes follow the displacement of the
node with the lowest node number.

The edges at 𝑦 = 0 and 𝑦 = 𝐵 have the same boundary conditions. The sides are allowed to
move in­plane but have to remain straight. Preventing rotation around the y­axis and the z­axis keeps
the edges straight (𝜃𝑦 = 𝜃𝑧 = 0). Also, the displacement in the z­direction is constrained. The dis­
placement in the z­direction is constrained to impose simply supported boundary conditions (𝑢𝑧 = 0).

Since none of the stiffened panel edges are constrained to move in the y­direction, rigid body
motion can occur. Rigid body motion is when the entire stiffened panel starts to move through space
since it is not adequately constrained. The origin of the model is constrained to move in the y­direction
to prevent rigid body motion (𝑢𝑦 = 0). The boundary conditions are displayed in fig. 6.5. Only the node
coupling of the nodal displacement in the x­direction is not displayed on the face of side A­B; this would
make the other boundaries difficult to show. The boundary conditions are also summarized in table 6.2.
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Figure 6.5: Boundary conditions of the eigenvalue stiffened panel in Ansys. Orange arrows indicate a rotational restrained in the
direction of pointing. Blue arrows indicate a displacement constrained in the direction of pointing.

Table 6.2: Boundary conditions for the stiffened panel used for eigenvalue buckling analysis

Segment Constrained

Line C’­D’, E’­F’ 𝑢𝑥 = 𝜃𝑥 = 0
Line C­D, E­F 𝜃𝑥 = 0
Line O­B’ 𝑢𝑥 = 𝑢𝑧 = 𝜃𝑦 = 𝜃𝑧 = 0
Line B’­B, O­A 𝑢𝑧 = 𝜃𝑦 = 𝜃𝑧 = 0
Face A­B 𝑢𝑥 = 𝑐𝑜𝑢𝑝𝑙𝑒𝑑, 𝑢𝑧 = 0
Node O 𝑢𝑦 = 0

6.2.2. Loading Conditions
This research looks into stiffened panels subjected to both longitudinal uni­axial compression and lateral
pressure, as mentioned in section 4.2. In FEA, one side of the stiffened panel is often prevented from
moving in the direction of loading, the other side of the panel is loaded. These boundary conditions
prevent rigid body motion. For eigenvalue buckling, it does not matter what the actual magnitude of
the applied load is, since the results consist of normalized eigenvectors. The magnitude becomes
essential when there are loads applied that do interact with each other. The longitudinal compression
and lateral pressure both influence the ultimate strength of the stiffened panel. Therefore, it is essential
to apply the correct ratio between the magnitude of the compressive force and the lateral pressure.
The compressive force is the dominant buckling force and is set equal to the material’s yield strength.
Because the model is made of shell elements, it is impossible to model the compressive force as a
pressure on the edges of the stiffened panel. The compressive force is added as a line force over the
loaded edges of the panel. Since it is a line load, the pressure load must be projected onto the edges
of the shell by multiplying it with the thickness of the structure. The web may have a different thickness
than the bottom plating. Therefore, the pressure is projected on the edge by multiplying it with the
weighted average thickness of the material. The lateral pressure is equal to a 16­meter water column.
The magnitudes described are used in the eigenvalue analysis of this research. The ratio between the
compressive force and lateral pressure could be determined more accurately, but this would require an
iterative procedure. The compressive load can iteratively be changed to obtain an eigenvalue of close
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to one. When the eigenvalue is one, it means that the applied loads will exactly cause the structure to
buckle. Since the lateral pressure is constant, this will result in the perfect ratio between compressive
and lateral loads. There is no easy solution to obtain a more accurate ratio between the loads than
solving it with an iterative process. Therefore, it is assumed that the initial deflection predicted with the
current load ratio will be accurate enough to perform the quasi­static analysis.

6.2.3. Initial Deflection
The main goal of the eigenvalue buckling analysis is to obtain the initial deflection of the stiffened panel.
The same initial deflection equations will be used as the one described in section 5.4.1. Average initial
deflection is assumed. The results obtained from eigenvalue buckling are normalized eigenvectors
containing a maximum value of one. This maximum value is either displacement or rotation. The
obtained results need to be scaled to the correct initial deflection amplitude before it can be used as
the stiffened panel’s initial deflection. In the analytical model, three types of initial deflection were
assumed. The fact that three types of initial deflection are assumed makes the process of scaling
difficult. Thus, it is assumed that the plating between stiffeners will contain deflections or rotation equal
to one in the eigenvalue. After performing the eigenvalue buckling, the most significant deflection of
the bottom plate nodes will be obtained. This deflection is scaled to have the maximum amplitude
of the average initial deflection in eq. (5.10). The factor required for scaling will be applied to all the
deflections obtained with the eigenvalue buckling analysis. The scaled deflection will form the initial
deflection for the quasi­static buckling analysis.

6.3. Quasi­Static Analysis
This section will describe the model used to obtain the prediction of the ultimate strength and the
corresponding stress distribution over the plate at the moment of failure. Quasi­static buckling analysis
is shortly discussed in section 2.1.7. A quasi­static analysis is an analysis where the displacements
and forces are incremented with small steps. These load steps cause the inertial terms to become
negligibly small and thus simplifies the analysis performed. The application of boundary conditions
and loading is slightly different than during eigenvalue buckling due to the non­linear behavior and
pushing the structure beyond failure. Therefore, those two topics are discussed in section 6.3.1 and
section 6.3.2, respectively. In the final section, section 6.3.3, how the ultimate strength is obtained from
the analysis will be discussed.

6.3.1. Boundary Conditions
The boundary conditions of the stiffened panel are, for the most part, the same as discussed in sec­
tion 6.2.1. In eigenvalue buckling, which is a linear analysis, it is sufficient to allow in­plane movements
over the edges O­A and B­B’, indicated in fig. 6.5, and forcing those edges to remain straight with
rotational constraints. During non­linear analysis, which the quasi­static analysis is, this can lead to
unstable results. Sometimes, individual nodes at the boundaries tend to move unexpectedly. Thus,
the in­plane movement is coupled with the nodes on the opposite side of the stiffened panel. With the
node coupling, every node will have the same deflection in edge normal direction as the node on the
opposite edge. This coupling still allows the stiffened panel to deform in­plane but forces it to deflect
with the same magnitude and prevents unexpected results from individual nodes. In this coupling the
opposite nodes follow the same deflection and the nodes do not follow the node with the lowest node
number. This response is also in line with the fact that both sides of the stiffened panel are generally
connected to another stiffened panel. The origin is constrained as in the eigenvalue buckling analysis
to obtain stability. Due to the coupled in­plane deflection, it is not needed to restrain the rotation around
the z­axis for edge O­A and B’­B. The boundary conditions are summarized in table 6.3.

6.3.2. Loading Conditions
The loading conditions are different from the eigenvalue buckling analysis. In eigenvalue buckling anal­
ysis, a constant force is applied. For quasi­static analysis, applying a force is not suitable. Instead of
applying a force on the structure, enforced displacement will be used to obtain the maximum applicable
force. This way, it is possible to push the structure beyond the ultimate strength into the post­buckling
regime.

The stiffened panels in this research are loaded with both longitudinal uni­axial compression and
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Table 6.3: Boundary conditions for the stiffened panel used for quasi­static buckling analysis.

Segment Constrained

Line C’­D’, E’­F’ 𝑢𝑥 = 𝜃𝑥 = 0
Line C­D, E­F 𝜃𝑥 = 0
Line O­B’ 𝑢𝑥 = 𝑢𝑧 = 𝜃𝑦 = 𝜃𝑧 = 0
Line B’­B, O­A 𝑢𝑦 = 𝑐𝑜𝑢𝑝𝑙𝑒𝑑, 𝑢𝑧 = 𝜃𝑦 = 0
Face A­B 𝑢𝑥 = 𝑐𝑜𝑢𝑝𝑙𝑒𝑑, 𝑢𝑧 = 0
Node O 𝑢𝑦 = 0

lateral pressure. The lateral pressure is always present in this research, and it is assumed that the
panel is loaded under compression due to the hogging of the ship. For this reason, the load is ap­
plied in two stages for the quasi­static analysis. The lateral pressure is instantaneously initiated at the
first time step. The enforced displacement will then be slowly incremented after the lateral pressure
is applied. This order of loading prohibits the model from failing at a lateral pressure lower than the
hydrostatic pressure.

6.3.3. Ultimate Strength
The force­displacement curve is required to obtain the ultimate strength of the structure. The reaction
force at the nodes of the enforced displaced face is used to obtain the force­displacement curve. Di­
viding the total reaction force on that face by the surface area of the entire face, the applied stress on
the face of the stiffened panel can be obtained. The peak of the force­displacement curve represents
the ultimate strength of the stiffened panel.

Near the ultimate strength, the buckling analysis might become unstable when using Newton­
Raphson solvers, which are often standard in FEA. This instability is due to the rapid increase in
deflections and rotations by yielding of the structure when assuming elastic­perfectly plastic material
properties. To correctly obtain the ultimate strength of the stiffened panels, the arc­length method, as
described in section 2.1.7, is used.

6.4. Automation
The dataset obtained in chapter 5 consists of 9207 models. Therefore, automation of the entire buck­
ling analysis is required. Ansys saves the results of an analysis at every single load step. The process
is capped by storage and write/writing processes on the hard drive. Therefore, the data generation is
run in batches of 24 models at the same time.

First, the required parameters of the FEA model will be loaded by the automation algorithm.
These consist of the geometry parameters, the material parameters, and the mesh properties. After
defining the geometry, the mesh will be created. These geometry files are automatically generated in
Python based on the input parameters of the structural model. Next, files are created that contain the
analysis information and the boundary conditions for the eigenvalue buckling. The eigenvalue buckling
analysis is then executed to obtain the eigenvalues and the corresponding buckling mode­shapes. The
mode­shape with the lowest eigenvalue is then extracted and stored. The mode­shape is loaded, and
all the nodes corresponding with the bottom plating are selected. The node with the highest deflec­
tion is selected, and a scaling factor 𝜁𝜆,𝑚𝑖𝑛 is determined such that the scaled deflections comply with
eq. (5.10).

It is now possible to update the geometry with the scaled initial deflection. The updated ge­
ometry forms the input for the quasi­static analysis. A file containing the updated geometry, boundary
conditions, arc­length parameters, applied lateral pressure, and load/time steps are generated. The
quasi­static analysis is performed, and the stress distributions, deformations, applied force, and dis­
placement at every load step are stored. The maximum force and the stress distribution at the time of
maximum force is then found and stored. All other unnecessary data will be removed. The initial mesh,
ultimate strength, and stress distribution at the moment of failure are then all known. This process is
schematized in algorithm 2.

In this process, the FEA may fail to produce the requested results. One of the major issues
is when Ansys fails to converge when solving a model. This will cause Ansys to terminate and save
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Algorithm 2 Overview of the automation of the finite element analysis. First the geometries are gener­
ated from the geometrical parameters. Then the eigenvalue code is generated and executed obtaining
the initial deflection. The initial deflection is scaled and stored for the quasi­static analysis. The quasi­
static analysis is performed and the required data is stored.
1: for 𝑖 = 1 ∶ 𝑛𝑚𝑜𝑑𝑒𝑙𝑠 do
2: Initialize:

Geometry: 𝑎, 𝑏, 𝑡𝑝, ℎ𝑤 , 𝑡𝑤 , 𝑏𝑓 , 𝑡𝑓 , 𝑛𝑠
Material properties: 𝐸, 𝐸𝑡 , 𝜈
Mesh properties: 𝑎𝑚𝑠ℎ , 𝑏𝑚𝑠ℎ , ℎ𝑤,𝑚𝑠ℎ , 𝑏𝑓,𝑚𝑠ℎ

3: 𝐺𝑒𝑜.𝑎𝑛𝑠, 𝐺𝑒𝑜_𝑞𝑠.𝑎𝑛𝑠 ←Write APDL geometry and mesh files
4: 𝐸𝑖𝑔.𝑎𝑛𝑠 ←Write APDL eigenvalue analysis file
5:
6: 𝑅𝑢𝑛 → Perform eigenvalue analysis ← Store deflections and eigenvalues
7: 𝜆𝑚𝑖𝑛 ← Retrieve lowest eigenvalue
8: 𝑢𝜆,𝑚𝑖𝑛(𝑥, 𝑦, 𝑧), 𝜃𝜆,𝑚𝑖𝑛(𝑥, 𝑦, 𝑧) ← Retrieve corresponding deformations and rotations
9: 𝜁𝜆,𝑚𝑖𝑛 ← Obtain initial deflection scaling factor
10:
11: 𝑄𝑠.𝑎𝑛𝑠 ←Write APDL quasi­static with correct scaling of initial deflection
12: 𝑅𝑢𝑛 → Perform quasi­static analysis ← Store data
13: 𝐹𝑢 , 𝑡𝑢 ← Obtain ultimate strength from reaction force and the corresponding load step
14: 𝑆𝑎𝑣𝑒, 𝑑𝑒𝑙 → Store the required data, delete all other data

the results before the structure’s ultimate strength is reached. Therefore, the force­displacement data
is checked to see if the last value generated is the highest value of the load­displacement data. If
this is the case, the model did not run beyond the ultimate strength, resulting in a high probability that
the results are incorrect. This model is rejected and run again with different load increments to see if
convergence can be obtained. If this is not the case, the model is entirely rejected and not incorporated
in the final dataset.

There is also the risk that the numerical analysis cannot solve a time step but also does not
meat the criteria of non­convergence. To prevent the analysis from running excessively long, Python
monitors the total running time and terminates the process if it takes to long to execute. These models
are re­initiated with a different load increment to see if convergence can be obtained.

6.5. Verification and Validation
It is important to validate the results obtained from FEA with results from both experiments and FEM
results of other studies. It is also important to look at the estimates given by themany available empirical
and analytical sets of equations. The validation of this study is based on an experimental set of stiffened
plates subjected to either only axial compression or a combination of axial compression and lateral
pressure in the research performed by Smith et al. [15]. These are the models 1a to 7 in table 6.4.
Three FEM models from the research of Li et al. [91] are also used, displayed by the Y models in
table 6.4. The developed FEA models are run with the geometry and material properties described in
table 6.5. The results are displayed in table 6.4. This table also displays the results that are available
from the literature. Also, the analytical models of Zhang and Khan [92], Faulkner [93] are used to
obtain an estimate for the ultimate strength. The empirical formula from Paik [14] is also used as a
comparison. For the models 1a to 7, also ULSAP results are available in the research of Paik et al.
[85].

The Faulkner equation, Zhang’s equation, and Paik’s empirical equation are given by eq. (6.1)
[93], eq. (6.2) [92], and eq. (6.3) [14], respectively. In table 6.4, the last column is the average of the
three equations mentioned. This average value is also used because, for some of those equations, the
predicted values are significantly different. It is also important to note that all three equations are for
longitudinal uni­axial compression only. Since the lateral pressure in the models is low, the equations
are still used as an indicator.
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= 1
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The plate slenderness coefficient 𝛽 and the stiffeners slenderness coefficient are given by respectively
eq. (6.4) and eq. (6.5)

𝛽 = 𝑏
𝑡 √
𝜎𝑦
𝐸 (6.4)

𝜆 = 𝑎
𝜋𝜌√

𝜎𝑦
𝐸 (6.5)

For the stiffener slenderness coefficient, the radius of gyration 𝜌 is needed, which requires the cross­
sectional area of the stiffener and plating, given by eq. (6.7). Also, the cross­sectional moment of
inertia of the stiffener with plating is required, which can be determined by making use of eq. (6.8) and
eq. (6.9).

𝜌 = √ 𝐼𝐴 (6.6)

𝐴 = 𝑏𝑡𝑝 + ℎ𝑤𝑡𝑤 + 𝑏𝑓𝑡𝑓 (6.7)

𝑧0 =
0.5𝑏𝑡2𝑝 + ℎ𝑤𝑡𝑤 (𝑡𝑝 + 0.5ℎ𝑤) + 𝑏𝑓𝑡𝑓 (𝑡𝑝 + ℎ𝑤 + 0.5𝑡𝑓)

𝑏𝑡𝑝 + ℎ𝑤𝑡𝑤 + 𝑏𝑓𝑡𝑓
(6.8)
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Table 6.4: Ultimate strength ratios for validation of the FEM model. Results are compared with the analytical formulas from
Faulkner [93] and Zhang and Khan [92], the empirical formulation of Paik [14], ULSAP and experimental results from Paik et al.
[85], Smith et al. [15], and Li et al. [91]

Structure (𝜎𝑥𝑢𝜎𝑦 )𝐹𝐸𝑀
(𝜎𝑥𝑢𝜎𝑦 )𝑙𝑖𝑡

(𝜎𝑥𝑢𝜎𝑦 )𝐹
(𝜎𝑥𝑢𝜎𝑦 )𝑍

(𝜎𝑥𝑢𝜎𝑦 )𝑃
(𝜎𝑥𝑢𝜎𝑦 )𝑈

(𝜎𝑥𝑢𝜎𝑦 )𝐹𝑃𝑍
1a 0.66 0.76 0.61 0.76 0.67 0.76 0.68
1b 0.70 0.73 0.60 0.75 0.67 0.62 0.67
2a 0.93 0.91 0.91 0.90 0.86 0.79 0.89
2b 0.92 0.83 0.89 0.89 0.85 0.79 0.88
3a 0.86 0.69 0.84 0.87 0.83 0.69 0.85
3b 0.88 0.61 0.84 0.87 0.83 0.58 0.85
4a 0.95 0.82 0.92 0.91 0.87 0.80 0.90
4b 0.94 0.83 0.92 0.91 0.87 0.81 0.90
5 0.61 0.72 0.52 0.72 0.60 0.52 0.61
6 0.63 0.49 0.50 0.71 0.58 0.37 0.60
7 0.59 0.65 0.48 0.70 0.56 0.52 0.58
Y3 0.62 0.64 0.57 0.74 0.64 ­ 0.65
Y4 0.72 0.73 0.58 0.75 0.65 ­ 0.66
Y8 0.67 0.67 0.67 0.79 0.72 ­ 0.73

If the results obtained with the developed FEM model are compared to the experimental results, it can
be observed that the FEM model, in most cases, overestimates the ultimate strength of the structure.
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The reason for this might be that no residual stress was incorporated within the FEM models, but
the research by Smith et al. [15] mentions significant compressive residual stresses that negatively
influence the ultimate strength. So it is expected that the FEA will overestimate the ultimate strength
of the stiffened panel. Similar results can be found when comparing the obtained results with the
ULSAP results. The results obtained in the research of Li et al. [91] shows excellent agreement with
the results obtained within this research. When the results are compared with the estimates from both
the analytical and empirical models, a good agreement between the results of this research and the
predicted estimates can be observed. The obtained results show on average the best agreement with
the empirical equation given in eq. (6.3).

For some of the models, a significant difference between the predicted values by the different
analytical and empirical models is observed. Thus, the results from the analytical and empirical models
are averaged and compared with the obtained FEA results. Nearly all obtained results are within 5%
of the average estimate ultimate strength.

Table 6.5: Geometries of the stiffened panels used for validation of the FEM model. Geometries are taken from Smith et al. [15]
and Li et al. [91]

Structure 𝑎 (m) 𝑏 (m) 𝑡𝑝 (m) ℎ𝑤 (m) 𝑡𝑤 (m) 𝑏𝑓 (m) 𝑡𝑓 (m) 𝑛𝑠 (­) 𝜎𝑦 (Mpa) 𝑃 (Pa)

1a 1.219 0.610 0.008 0.154 0.007 0.079 0.014 6 2.52 0
1b 1.219 0.610 0.008 0.152 0.007 0.076 0.014 6 2.56 103421.4
2a 1.524 0.305 0.008 0.116 0.005 0.046 0.010 11 2.70 48263.32
2b 1.524 0.305 0.007 0.114 0.005 0.045 0.010 11 2.73 0
3a 1.524 0.305 0.006 0.078 0.005 0.026 0.006 11 2.48 20684.28
3b 1.524 0.305 0.006 0.077 0.005 0.028 0.006 11 2.48 0
4a 1.219 0.254 0.006 0.077 0.005 0.028 0.006 3 2.50 0
4b 1.219 0.254 0.006 0.077 0.005 0.026 0.006 3 2.51 55158.08
5 1.524 0.610 0.006 0.116 0.005 0.046 0.010 6 2.44 0
6 1.219 0.610 0.006 0.076 0.005 0.027 0.006 6 2.55 0
7 1.524 0.610 0.006 0.115 0.005 0.045 0.010 6 2.85 0
Y3 0.800 0.300 0.004 0.025 0.006 0.025 0.013 8 3.15 0
Y4 0.900 0.360 0.005 0.040 0.010 0.025 0.014 8 3.15 0
Y8 0.780 0.320 0.005 0.025 0.006 0.025 0.014 8 2.73 0

It can be concluded that the model shows good agreement with the analytical and empirical es­
timates. Also, an excellent agreement is obtained compared with other FEA results from the literature.
An overestimation is observed on the real experimental data. Because compressive residual stress
was not incorporated in the developed FEM model, this is expected. Therefore, it is accepted that the
developed FEM model gives results as expected.
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7
Prediction of Structural Failure

The optimization process described in chapter 5 and the numerical analysis performed in chapter 6 are
all part of the generation, which is required to train the machine learning model (ML). From executing
the numerical analysis, the following information is obtained: The meshed geometry of the stiffened
panel, the ultimate strength of stiffened panels by incorporating initial deflections and non­linearmaterial
properties, and the stress distribution over the entire stiffened panel at the moment of failure.

The obtained data is used to train a Convolutional Neural Network (CNN). In section 7.1, it is
explained what the goal of the developed ML model is. In the next section, section 7.2, it is described
how the developed model is built and how the individual components are chosen. Section 7.3 will
describe what assumptions are made regarding the learning process of the ML model. In this section
the used optimizer and loss functions will be discussed. The next section, section 7.4, will explain the
obtained results of the developed ML model. It is also important to obtain information on how well the
model performs on data that is not within the scope of training, the so­called scalability. The scalability
will be explained in section 7.5. After the discussion on the scalability of the model, the developed
ML model’s performance is tested with different amounts of available trainings data, see section 7.6.
The ML model is also tested on curved stiffened panels to check whether the model is capable of
generalization in section 7.7. At the end of the chapter, the conclusions of the developed ML­model
and the obtained results are given in section 7.8.

7.1. Model Definition
Before developing a ML model, it is essential to determine what data will be used for the ML model to
train and what the model’s output data looks like. The shape of the input and output data will influence
what type of ML is suitable and what kind of model architecture should be used.

As the title of the report says, the goal of this research is to predict the ultimate strength and
stress distribution at the moment of failure of meshed stiffened panels. In section 2.2, it became clear
that the ultimate strength is a numerical value, so the problem is considered a regression problem. A
wide variety of regression models is available. Accurately predicting the ultimate strength is a highly
non­linear process that depends on many different parameters for which FEA is often used. Therefore,
the choice has been made to make use of a Neural Network (NN), which can be used as a versatile
regression method to perform non­linear regression analysis. By changing the architecture of a NN,
a whole different regression performance can be obtained, giving the developer many different possi­
bilities to solve complex regression problems. As explained in chapter 6, the input for the numerical
analysis is the geometry of the stiffened panel. This introduces multiple possibilities for the input of the
ML model.

It is also possible to use a Deep Neural Network (DNN) as described in section 2.2, which has the
geometrical and material parameters as individual input parameters for the ML model. It is expected
that this is a suitable option, but it has a significant downsides regarding further research and general­
izability. The dataset developed in Part II of this research contains only flat T­stiffened panels with the
same material used for both the plating and the stiffeners because they are one of the primary building
blocks of many ships as well as offshore structures. The panel is only stiffened longitudinally with a
fixed spacing, while a stiffened panel can also be cross­stiffened or have different spacing between
the individual stiffeners. If it is desired to extend the data with curved stiffened panels that do not have
evenly distributed stiffeners, it becomes difficult to put this information in single parameters. Because
this type of ML model will not be easily extendable for further research, it will not be used within this
research.
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Another option would be to use the entire mesh of the stiffened panel as input for a DNN and not
only the individual geometrical parameters. A plain plate meshed with 10 nodes will already have 30
values related to the individual nodes’ locations: 10 points related to x­coordinates, 10 points related
to the y­coordinates, and 10 points related to the z­coordinates. When adding more parameters to the
model, this would significantly increase the size of the input. A solution to large input data is to use
Principal Component Analysis (PCA) as used in the research by Liang et al. [75]. The PCA maps the
input data to a small vector; a compact representation of the initial data. This compression could be a
viable option, although there is a drawback to this solution; the loss of spatial information. In a mesh,
the nodes adjacent to each other will interact and influence the results of both nodes. This interaction
between nodes in the mesh will be lost when making use of standard DNNs. Since this interaction is
an essential factor for structures, it is chosen not to use this model.

Using the geometrical data of all the individual nodes in the mesh is a good way of incorporating spatial
information, which is not possible when using individual geometrical and material parameters as input.
CNNs canmaintain spatial information between the individual data points, as described in section 2.2.2,
which makes it an excellent alternative to the application of DNNs. Keeping this spatial information is
possible because CNNs uses kernels that ‘slide’ over the data, keeping information on the surrounding
data points. A single point in the output can contain information about a significant amount of surround­
ing points in the original set, which is called the receptive field, as described in section 2.2.2. Kernels
are also explained in that section. Since CNNs can capture spatial information and is efficient in han­
dling large­sized input, it is chosen to use CNNs within this research. The input that will be used is the
mesh of the stiffened panel.

CNNs are developed to operate on images. An image consists of pixels with color. Let us as­
sume a figure of 10 × 20 pixels. RGB values define colors in a picture. The RGB colors contain three
values representing the amount of red, green, and blue in an image. This data means the input data of
an image is 10 × 20 × 3 large. The mesh of a structure can be seen as the same sort of data, a mesh
of 10× 20 nodes. The RGB values can be compared to the x­, y­ and z­coordinate of the mesh, giving
a 10 × 20 × 3 large data set. CNNs can also function for more than three layers of information. These
3­D layers are called channels. Since CNNs can handle more than three layers, it is also possible to
add a channel with the material properties or the thickness of the structure at that node. In this way,
it is possible to incorporate a significant amount of information in a ‘figure’­like data set, which would
be difficult to do with a standard NN where all data is split in individual points of information. Also, the
CNN includes the spatial information which results in choosing this type of model within this research.

In this research, only flat T­stiffened panels are used as data for theML to train. Thematerial is assumed
isotropic over the entire model. For this reason, the following parameters are incorporated in the input
data:

1. The x­coordinate of the node.

2. The y­coordinate of the node.

3. The z­coordinate of the node.

4. The thickness of the material at the location of the node.

These parameters will result in a dataset of the size 𝑛 ×𝑚×4, where 𝑛 and 𝑚 are the dataset’s length
and width. This dataset can be extended to incorporate material properties by adding more channels
to this dataset.

The desired output of the model should be the ultimate strength of the stiffened panel. The
output could be the total reaction force obtained in section 6.3, but this total reaction force could also
be converted to the ultimate applied stress. This conversion is done by dividing the total reaction force
by the cross­sectional area where the total reaction force is obtained. In this research, both types of
output have been tested.

7.2. Model Architecture
Now that the shape of the actual input and output is known, the model architecture can be discussed.
The shape of the architecture will be similar to the ones often used in literature. The input data will
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be fed to a series of convolutional and pooling layers that will transform the data into a compressed
dataset. This compressed dataset contains values that are a representation of the original dataset.
Compression is performed to reduce the number of parameters in the network [94]. This process is
often called data­encoding and is described in section 7.2.1. After the encoding process, this reduced
data will put through a flattening layer. The flattening layer reshapes the multidimensional data from
the convolutional layers to a single array. This flattened array then forms the input to a series of fully
connected layers, which will finally produce the ultimate strength of the input data. This process is
described in section 7.2.2. A schematic overview of the model architecture is given in fig. 7.1.

𝑖𝑛𝑝𝑢𝑡

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝐹𝑙𝑎𝑡𝑡𝑒𝑛 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑂𝑢𝑡𝑝𝑢𝑡

Figure 7.1: Basic overview of the ML model that is used for predicting the ultimate strength of a stiffened panel. In blue the
encoder is represented. In orange the flattening module which transforms the data to the input for the fully connected layers
represented by the yellow block.

7.2.1. Geometry Encoder
The input data for the ML model has a significant size. As mentioned in section 6.1.3, the stiffened
panel has 10 elements over the width of the plating between stiffeners. Over the length of the panel, 20
elements are present. In the height of the web, 8 elements are used. The same amount of elements
is present over the width of the flange. Nowadays, convolutional layers are developed, which could be
applied to 3­D spaced data [95]. This 3­D spaced data means that the actual data will be 4­D when
multiple channels are used. If the example in section 7.1 would be extended from a plate to a block
of 10 × 20 × 10 nodes and the coordinates of the individual nodes are added as data, that the data
would become 10 × 20 × 10 × 3, which is 4­D data. The stiffened panel is a 3­D structure, so made
up of 3­D spaced data. The stiffened panel can be considered a sparse structure. A sparse structure
means that if a stiffened panel would be placed in a box, the largest part of the space will be filled by
air, so it would not contain much data. Due to the sparse nature of the stiffened panels, it is chosen not
to use 3­D convolutional layers. Using 3­D convolutional layers will be viable when the structure would
contain more material or if the structure has a complex shape.

The stiffened panels in this research are entirely built with rectangular plates. Therefore themesh
obtained by FEA is transformed into a 2­D data set. This transformation is done by transposing all the
stiffener webs to the right side of the bottom plating, rotating them horizontally. When all the webs are
transposed to the xy­plane of the bottom plating, the similar process will be repeated for the stiffeners’
flanges. It is not required to rotate the flanges because they are already oriented in the xy­plane. By
this procedure, the 3­D stiffened panel is transformed into a 2­D data plate. The dataset contains
stiffened panels with five stiffeners. With the previously mentioned mesh densities, it can be seen that
the bottom plating contains 60×20 elements. All the webs together will contain 40×20 elements, and
the flanges together will also contain 40 × 20 elements. If these are transformed together, a 140 × 20
dataset is obtained from the stiffened panel. Instead of using the elements as data, the nodes will be
used. The set will contain the nodes’ coordinates and the corresponding thickness, as described in
section 7.1. This means that the input data’s size is 141×21×4 nodes, which is 11,844 individual data
points. The data (141 × 21 × 4) is difficult to divide by two, which is useful when using convolutional
layers. Therefore, the dataset is extended by adding zeros to all the sides of that data to transform
it into a 144 × 24 × 4 data set. Zero­padding the data is also essential to prevent loss of information
on the edges of the data. The amount of zero­padding is described by eq. (2.32). The convolutional
layers use 3×3 kernels with a stride of 1. After a convolution, the data is padded to the input size of the
convolutional layer. For the convolutional layers, it can be seen that with a 3× 3 kernel and stride of 1,
padding of 1 is needed. The original is padded with either 1 or 2 zeros on the edges to turn it into the
required shape (144 × 24 × 4), so no information will be lost at the edge of the panel and the number
are dividable by two.
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The best practice is to normalize or scale the input of NNs. The weights and biases in the model
are standardly initialized with random values between ­1 and 1. They perform best for inputs that are
close to this range. Without normalizing or scaling the input, it takes longer to adapt the weights to the
correct weight [96]. Normalizing, as described in eq. (7.1), is often used when input data uses consists
of different units. In this dataset, everything is in meters, therefore, it is chosen to scale the input by
the largest value in the dataset, which is represented by 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑥/𝑥𝑚𝑎𝑥.

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
(7.1)

The dataset is put through a series of convolutional and pooling layers to keep the spatial information
and reduce the number of parameters. The series of layers is shown in fig. 7.2. In blue are the convo­
lutional layers represented, and in purple are the pooling layers represented. If the reader is not known
with convolutional layers and pooling layers, it is recommended to read section 2.2.2.

32𝑓, 3𝑥3 𝑘 64𝑓, 3𝑥3 𝑘 128𝑓, 3𝑥3 𝑘

Figure 7.2: Basic overview of the encoder of the ML model that is used for predicting the ultimate strength of stiffened panels.
The blue elements represent the convolutional layers. The pooling layers are displayed as purple elements. The first series of
convolutional layers uses 32 filters. The second series uses 64 filters and the last series uses 128 filters. All convolutions use
3 × 3 kernels.

As can be seen from fig. 7.2, two or three consecutive convolutional layers are used before a single
pooling layer. After each convolutional layer, the output is put through a Rectified Linear Unit (ReLU)
activation function to introduce non­linearity. ReLU activation functions are used to prevent the van­
ishing gradient problem from occurring [22]. The vanishing gradient problem is where the gradient of
the nodes in the first layers of the model becomes so small that the model is prevented from learning
quickly or failing to learn at all. After the network is fully developed, other activation functions are tested,
and it became clear that with other activation functions the model is prone to slow learning.

The network is built in three groups of convolutional layers, the first and second group contain
two convolutional layers. The third group contains three layers. Between every group, that data size is
reduced by 75% by using a max­pooling layer with a 2 × 2 kernel.

This architecture is based on the well known VGG­16 architecture [97]. During testing of the
ML model developed in this research, larger kernel sizes (7 × 7) and (9 × 9) showed better learning
performance and lower errors compared to smaller kernel sizes (3×3). There are two main benefits of
using multiple layers with smaller kernel sizes over single convolutional layers with large kernel sizes.
The first reason is the introduction of more non­linearities. After every single convolutional layer, a non­
linear transfer function is applied to introduce non­linearities. These non­linearities make it possible for
the network to learn highly non­linear problems more efficiently. The second reason is related to the
number of model parameters in the model. As mentioned in the paper of Simonyan and Zisserman
[97], three consecutive convolutional layers with a 3 × 3 kernel and 𝐶 filters will have 3(32𝐶2) = 27𝐶2
weights. A single convolutional layer with a 7 × 7 filter and 𝐶 filters uses 72𝐶2 = 49𝐶2 parameters. It
can be concluded that multiple consecutive convolutional layers reduce the number of model parame­
ters. three consecutive convolutional layers with 3 × 3 kernels will have the same receptive field as a
single convolutional layer with a 7 × 7 kernel according to eq. (2.31), this means that the same result
is obtained with fewer calculations when using multiple consecutive 3 × 3 kernels.
After each convolutional layer, and before the signal is put through the non­linear activation function,
the convolutional layer’s output is fed through a so­called batch normalization layer. During learning,
the weights in the model get changed many times, which may cause shifting of the prediction of the
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distribution the inputs of a layer will have. The batch normalization prevents weights from making
drastic changes by normalizing the output of the previous layer limiting this change in distributions.
This is done by subtracting the mean of the previous batch and then dividing by the variance. Batch
normalization is proven as an effective way to speed up the learning process and can help to prevent
overfitting behavior [98]. Overfitting is when the networks start to learn how to exactly fit the data
where it is trained on, causing bad predicting performance on other data that is not within the set of
training. The developed CNN is developed bymaking use of Keras with Tensorflow backend. The batch
normalization layer allows for setting a momentum parameter; a parameter that influences how much
the previous batch is used to apply the batch normalization. Most models use almost all the effects
of the previous batch. Which means the momentum is close to one. In this research, the momentum
is set to 0.7 because a batch of models is randomly selected, and there is the possibility that a large
part of the models fails in the same buckling mode. This will cause substantial updates in the model.
Limiting the amount of momentum reduces the effect of these kinds of batches, producing a smoother
loss curve during learning.

7.2.2. Ultimate Strength Prediction
After the data is passed through the three convolutional blocks described in fig. 7.2, the output of the
last max­pooling layer is fed through a flattening layer. A flattening layer is nothing more than a reshape
operation. The output is reshaped to an array. The output of the last max pooling layer is 3×18×128.
Flattening this layer will result in an array with 6912 points.

After flattening, the data is put through a series of fully connected layers. Fully connected layers,
or dense layers, are the type of layers used in fig. 2.5. These layers do have a predefined number of
neurons. In between the fully connected layers, all neurons are connected to the next layer’s neurons.
These connections are the reason why they are called fully connected or dense. In this research, three
fully connected layers are used with every 64 nodes. The output of every layer is sent through a ReLU
activation function. The activation function of the last layer is a linear unit. The reason for this is that
a ReLu only allows positive values, while the model must also be able to predict negative values. The
output of the linear unit is summed together in a single neuron of which the output is the predicted
ultimate strength of the stiffened panel.

A schematic overview of the model is presented in section 7.2.2. This overview includes the
encoder, the flattening layer, and the fully connected layers. The activation functions and the batch
normalization layers are not presented in the figure.

32𝑓, 3𝑥3 𝑘 64𝑓, 3𝑥3 𝑘 128𝑓, 3𝑥3 𝑘 𝐹 𝐹𝐶, 64

Figure 7.3: Overview of the entire ultimate strength prediction mode. The encoder consists of three convolutional blocks made
of multiple convolutional layers with batch normalization and a max pooling layer. The output of the encoder is flattened (𝐹) and
send through three fully connected (𝐹𝐶) layers with 64 neurons to predict the ultimate strength

7.3. Optimization and Evaluation
The previous sections described the architecture of the network. The network requires an optimizer
and a loss function. These will be explained within this section. As mentioned in section 2.2.2, multiple
optimizers are available. The research of Choi et al. [99] shows that it is not straightforward to pick an
optimizer. The optimizer’s performance is highly dependent on the tuning of the individual parameters
that can be changed in the optimizer. Their research showed a good overall performance of the Adap­
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tive Moment Estimation (Adam). In this research, the performance of different optimizers is tested, and
the Adamax optimizer, which is based on the Adam optimizer, shows the best performance. Adamax is
like Adam, an optimizer that has an adaptive learning rate. With an adaptive learning rate, the optimizer
itself regulates the learning rate. An initial learning rate is set to 0.0001. Both Adam and Adamax have
two parameters (𝛽1, 𝛽2), which determine how heavily the gradients in the previous batch are used to
change the weights after the current batch. Both beta parameters are set high, which means that the
previous gradients do not significantly influence the weight update. The high beta parameters are used
because of the same principle described in section 7.2.1. With the dataset of stiffened panels, it is
possible that a batch can be selected with a set of similar structural models, resulting in excessively
large gradients during the batch. Therefore 𝛽1 is set to 0.99 and 𝛽2 is set to 0.999.

The optimizer needs a defined loss function. For regression analysis, often the Mean Squared Error
(MSE) will be used as the loss function. This loss function is used because outliers create a more
distinctive error compared to using the Mean Absolute Error (MAE). This way, wrong predictions get
corrected more drastically. The MSE is calculated by eq. (7.2).

𝑀𝑆𝐸 =
∑𝑛𝑖=1 (𝑦𝑖 − �̂�𝑖)

2

𝑛 (7.2)

The entire dataset generated in chapter 5 consists of 9207 models. Some of the models failed to
converge end resulted in a final set of 9194 models. A total of 80% (7355 models) of this dataset will
be used for training the model. The other 20% will be used to validate the performance of the model
during learning and for tuning the hyper­parameters of the ML model. This set contains 1839 models.
This split is made such that the distribution in both sets remains close to the original set’s distribution.
The distributions of the individual parameters within the set can be seen in fig. A.3 in the appendix.
Besides the training and validation data, a test set is created of random models within the distribution
of the original data set. The test set contains 1782 models that the network has never seen during its
training phase. The test set is only used to test the final performance of the model after it is fully trained.
The distribution of the individual geometrical parameters is displayed in fig. A.4

When training the model, batches are used. The use of mbatches means that the full dataset
is randomly sampled in smaller predefined batch sizes. After the batch is put through the network, the
weights in the model will get changed. This way, multiple updates will be performed before passing
through the entire dataset once. Every pass through the model by the entire dataset is called an epoch.
With a large dataset, it slows down the learning process if the weights only get updated after putting
all the available data through the network. With large input data in convolutional networks, significant
computational power is required to load and process all the data at once. In this research, batches of
256 models are used. The network is trained for 20000 epochs. After training, the model weights are
used from the epoch with the lowest error on the validation set.

7.4. Results
The previous sections of this chapter gave an overview of the network architecture, and the principles
used to train the model. The model shows bad performance when predicting the ultimate strength or
the ratio between the ultimate strength and the yield strength of the parent material (𝜎𝑢/𝜎𝑦). The model
shows excellent performance when it is trained in predicting the total reaction force on the structure.
This total reaction force can easily be transformed into the ultimate strength by dividing it with the cross­
sectional area on which the total reaction force acts. Therefore it is decided that it is possible to use
the total reaction force as the output of the model.

Initially, the model is trained for 5000 epochs. After 5000 epochs, it was observed that the model
still showed improvements. Therefore, it is decided to train the model for 10000 epochs. After this mo­
ment, still, an improvement was observed. It is chosen to increase the number of epochs to 20000.
Figure 7.4a shows the MSE of the model at every epoch. This figure shows a rapid decrease in error
after a few epochs. A log­plot of the same results is displayed in fig. 7.4b to make the model’s perfor­
mance clearer. The x­axis, which contains the epochs, is still linearly scaled. It can be observed that
the loss still shows a steady decreasing trend. The obtained results are already considered accurate
enough, and it is decided that the model will not be trained longer. The improvement of increasing the
number of epochs is not considered sufficient enough compared to the required computational time.
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Table 7.1: Error created by the ultimate strength predicting ML model. The Mean Squared Error (MSE), Mean Absolute Error
(MSE), and Mean Average Percentage Error (MAPE) are given. The train data consists of 7355 models which are used to
train the model. The validation data consists of 1839 models and is used to tune the model hyper­parameters and validate the
performance during learning. The test set contains 1782 models and is used to test the performance after training. Similar
performance between all dataset can be observed.

Error MSE (N2) MAE (N) MAPE (­)

Validation data 0.938⋅109 13011 0.125%
Test data 1.005⋅109 14079 0.139%
Train data 0.655⋅109 12345 0.124%
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(a) MSE plot of the model developed to predict the ultimate strength of
stiffened panels. Red shows the error on the training set. Blue shows
the error on the validation set.
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(b) MSE log plot of the model developed to predict the ultimate
strength of stiffened panels. Red shows the error on the training set.
Blue shows the error on the validation set.

Figure 7.4: The MSE of the model developed to predict the ultimate strength of stiffened panels. A clear decreasing trend can
be observed. It can also be observed that there are a significant amount of spikes available in the model. The spikes are cause
to the random batch selection. The training set consists of 7355 models. The validation set is contains 1839 models.

From fig. 7.4, it can be observed that the data oscillates heavily. It is difficult to observe the exact
behavior if 20000 iterations are plotted in a small figure. Therefore fig. 7.5 shows a part of the loss plot
in fig. 7.4a. This figure shows the results for epoch 10000 to 10100. From the figure, it can be seen
that most of the epochs, the obtained loss oscillates, as expected, around the loss on the training data.
Some of the epochs show a significantly larger error. During the testing of the network, it is observed
that the number of models in the batch size influences the number of weight updates that cause an
excessively high loss compared to the training loss. An increase of models in a single batch shows
a decrease in the number of spikes. Similar behavior was observed by changing the amount that the
optimizers use the gradients from the last step in updating the weights. Based on these observations,
it is assumed that those spikes would be caused by the selection of ’bad‘ batches. The batches are
randomly drawn from the whole training set every single epoch. The random selection of batches
makes it possible for a batch only to contain similar models, which might create a relatively high error.
The spikes in the loss are reduced as much as possible without influencing the network’s learning
performance. The obtained figures show that even with the spikes in the loss function, the networks
show a steady decrease in loss over the number of epochs.

The network is trained and during training the performance of the network is tested by the validation set.
The validation set is also used to optimize the model. After training the model, the performance of the
model is tested on a set the network has never seen. This set is called the test set. If the network shows
excellent performance on the training and validation data, it is still possible to obtain bad performance
on the test data, which is called overfitting. Overfitting is when the network learns to fit the training and
validation data to accurately, showing bad performance on other data. The individual losses on the
training, validation, and test data are displayed in table 7.1. Next to the MSE, the Mean Absolute Error



74 7. Prediction of Structural Failure

1 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.01

Epoch 104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
S

E

1011

Validation
Training

Figure 7.5: Zoomed in plot of the loss function of the ultimate strength prediction model for epoch 10000 to 10100. It can be
observed that most results from the validation set are close to the curve of the trainings loss although some models have a
significant larger error compared to the error on the training set.

(MEA) and the Mean Absolute Percentage Error (MAPE) are displayed. These are displayed since the
output is a numerical value, and the MSE has no physical meaning since it has 𝑁2 as unit. It can be
concluded that similar results are obtained on all three datasets.

7.5. Scalability
As became clear from the literature review in chapter 3, good performance of predicting the ultimate
strength with the use of ML is not completely new. In the literature, no clear information is available on
the performance of the ML model on data that does not fall within the scope of data used for training
the model. For that reason, a scalability study is performed with the trained model.

In the scalability study, every individual parameter of the stiffened panel that can change between
the models is tested. These parameters are: The plate thickness (𝑡𝑝), the height of the web (ℎ𝑤), the
thickness of the web (𝑡𝑤), the width of the flange (𝑏𝑓) and the thickness of the flange (𝑡𝑓). As can
became clear from section 5.6.3, some of the models are already at the limits by what classification
societies allow or on the limitations of the production. Therefore, the choice has been made to only
scale the individual parameters positively, so increasing their size. From the original training set, 288
models are randomly selected, such that they are spread over the entire distribution of the training
set. The distributions of the 288 models of the scalability test set are displayed in fig. A.5. The model
contains five variable geometrical parameters, which are increased in steps of 5%. The individual
variables are increased to a maximum of 25%. This will result in a dataset of 7200 models. From this
dataset, the individual losses are obtained for every single parameter and per step of 5% increase.
These losses are displayed in fig. 7.6. The performance of the ML model is not tested on data in which
all variables are scaled. This is not done because then it is not possible to see te effect of individual
variables and it is already expected that by changing the individual variables the average error will
increase significantly.

Figure 7.6 shows that the model can still accurately predict the outcome of the models, which are
increased by 5% and 10%. The loss on the models increased with 5% is lower than the loss obtained
on the test and validation set, displayed by the dashed lines in the graph. The reason for this is that the
average loss on the 288 selected models is lower than the loss on the full test, training, and validation
set which contain significantly more models. The loss on the full validation and test data is plotted since
it is more representative than the scalability errors. If a more extensive dataset would have been picked
for the scalability test, it is expected that the loss of the 5% and 10% increase is higher than the mean
loss of the test and validation set. Beyond the 10% increase of the parameters, a definite increase in
a mean loss of all individual parameters is observed. Increasing the flange parameters causes less
increase in loss compared to the other parameters. Therefore, the flange will probably have a less
significant impact on the ultimate strength of stiffened panels compared to the impact of the other three
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Figure 7.6: MSE plot of the model developed to predict the ultimate strength of the stiffened panels. The errorbars represent the
SE. It can clearly be observed that 𝑡𝑝, 𝑡𝑤 and ℎ𝑤 are the most sensitive to an increase in parameters.

parameters. The plot also shows error bars which show the Standard Error which can be determined
by dividing the standard deviations by the square root of the number of data examples.

Table 7.2 shows the exact losses of the individual parameters with the percentage of parameter
increase. Figure B.4c shows a box plot of all the individual increments and individual parameters. The
box plot make the distribution of the predicted results more clear. The figure also shows that with
increasing the individual parameters the number of predictions that are considered outliers increases.
For a 10% increase in the variables, more models are considered outliers and the median of the error
shows a small increase. Therefore, it is concluded that predictions 10% outside the range of training
do not provide reliable results.

Table 7.2: Error created by the ultimate strength predicting ML model. The results are the errors obtained by the scalability
testing. The individual parameters are increased in steps of 5%. It can be observed that some parameters are less susceptible
for an increase, although every parameters shows an increase in error.

Percentage 𝑡𝑝 MSE (N2) ℎ𝑤 MSE (N2) 𝑡𝑤 MSE (N2) 𝑏𝑓 MSE (N2) 𝑡𝑓 MSE (N2)

5% 0.589⋅109 0.571⋅109 0.480⋅109 0.618⋅109 0.644⋅109
10% 0.522⋅109 1.724⋅109 1.666⋅109 6.959⋅109 0.851⋅109
15% 1.587⋅109 7.679⋅109 3.563⋅109 1.024⋅109 1.544⋅109
20% 3.428⋅1010 2.070⋅1010 2.543⋅1010 1.694⋅109 4.662⋅109
25% 1.610⋅1011 6.868⋅1010 1.580⋅1011 8.548⋅109 1.334⋅1010

7.6. Available Training Data
The literature review in chapter 3 also made clear that the size of the training data in structural engi­
neering is often limited. Therefore, the effect of the number of training examples is tested. The same
network has been trained with less training data. The minimal amount of training data tested is 10%
of the original amount of training data. The training set is obtained by randomly sampling the original
training set. This procedure can cause inaccurate results due to the random sampling of the full data
set. For every size of the training set, the model is trained eight times. This means that model is trained
72 times. The obtained results are displayed in fig. 7.7.

Figure 7.7a shows the loss on the full validation set. It can be observed less training data
influences the obtained loss negatively. Also, it can be observed that the spread in the obtained error
becomes larger for smaller amounts of training data. The same behavior can be seen in fig. 7.7b,
which is the loss plot on the full test data. From both figures, it can be concluded that the obtained
loss increases with less trainings data. However, if the obtained losses are compared to the results of
the scalability test in table 7.2, the obtained losses do not increase as significantly. With even a small
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Table 7.3: The median of the error created by the ultimate strength predicting ML model. The results are the errors obtained by
decreasing the size of the dataset used for training. A fixed percentage of models is selected from the original dataset. It can be
observed that less training data increases the predicted error on all datasets. The curve flatten near the 50% use of data.

Percentage Validation MSE (N2) Test MSE (N2) Training MSE (N2)

10% 1.077⋅1010 1.033⋅1010 1.039⋅1010
20% 7.607⋅109 7.624⋅109 7.637⋅109
30% 6.110⋅109 6.345⋅109 6.112⋅109
40% 4.783⋅109 5.333⋅109 5.119⋅109
50% 4.515⋅109 5.164⋅109 4.881⋅109
60% 4.039⋅109 4.674⋅109 4.575⋅109
70% 4.26⋅109 4.950⋅109 4.629⋅109
80% 3.268⋅109 3.826⋅109 3.561⋅109
90% 3.156⋅109 3.827⋅109 3.380⋅109

amount of training data, a good accuracy is obtained on models within the range of training data. This
does not imply that similar scalability behavior would be observed when the model is trained with less
training data. Although the loss is not that high for small sets of training data, it is important to note
that the spread is larger, which means that the network’s performance becomes more dependent on
the selected data. This means that for smaller datasets, the quality of the training data becomes more
important compared to the larger datasets.

The exact values of the median of obtained losses are displayed in table 7.3. This table also
gives the losses obtained on the full training set (7355 models).
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(a) MSE plot of the model developed to predict the ultimate strength
of stiffened panels. The MSE is obtained on the full validation set. An
increase can be observed with less training examples. The network
is trained 72 times.
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(b) MSE plot of the model developed to predict the ultimate strength of
stiffened panels. The MSE is obtained on the full test set. An increase
can be observed with less training examples. The network is trained
72 times.

Figure 7.7: MSE plot of the model developed to predict the ultimate strength of stiffened panels. The network is trained a total
of 72 times. The figures show the minimum and maximum obtained errors. Also the median and the 25% and the 75% quartile
are displayed

The table and the graphs make clear that above 50% the obtained loss starts to flatten. The spread
becomes less with the addition of more models. It can be concluded that for this dataset, around 4000
training examples would make it possible to obtain a well trained ML model. A dataset of 4000 models
is more than most researches mentioned in chapter 3 used.

7.7. Generalizability
In the previous sections, the developed ML model’s performance is tested on the scalability and its per­
formance when varying the available amount of training data. The developed ML model’s performance
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is also tested on data that show some similarity with the original data but are geometrically different,
which is called testing the generalizability. In the previous tests, only flat stiffened panels are used,
but in shipbuilding curved plates are also widely used. Stiffened panels used in ships can be curved
in multiple directions. In this research, only transverse curved stiffened panels are tested with a fixed
radius of curvature over the entire stiffened panel. Transverse curved plates occur, for example, in the
bilge of the ship.

To test the ML model’s generalizability, the same set of models is used as the set used for the
scalability. This set contains 288 models that lay within the training parameter range of the ML model.
The entire set is curved by increasing the mid­panel height in steps of 0.2 meter until a height of 1 meter
is reached. This implies that in total five steps are used, creating a dataset containing 1440 models.
Since a fixed radius of curvature is used, the curve can be considered an arc of a circle. This means
that the radius of curvature (𝑅) can be determined from the height (𝐻) mid­plate and the width of the
stiffened panel (𝐵) by eq. (7.3). The stiffened panels are curved such that the stiffeners point towards
the center of the curvature, as can be seen in fig. 7.8. It is important to note that the stiffened panel
does not have the same width as all the flat stiffened panels. The stiffened panel van be seen as an arc
of a circle. The arc­length is different depending on the height of 𝐻. The chord length is kept at 4 meter,
just like all the flat stiffened panels. The reason for this is that in this way the curvature will only be
new for the ML. When the plating length is kept at 4 meters, the y­value range is changed, introducing
more new information for the ML model, probably influencing the performance of the predictions. It is
expected that with changing the curvature the obtained error will already show a significant increase.

𝑅 = 𝐻
2 +

𝐵2
8𝐻 (7.3)

Figure 7.8: Mesh of a transverse curved stiffened panel with a mid panel height of 0.6 meter. A fixed radius of curvature is
present over the stiffened panel. The width over the y­axis is kept at 4 meter, which is similar to the flat stiffened panels.

The trained ML model learned no information on the curvature of stiffened panels since this information
is not present in the used training data. The only information the MLmodel learned about the z­direction
(height) of the stiffened panel is related to the stiffeners. Therefore, it is already expected that the
ML model will generate a significant error in the predicted ultimate strength. The check whether this
hypothesis is correct, the performance is determined for every individual curvature, and the results are
displayed in table 7.4.

Table 7.4: Mean error create by the ultimate strength predicting ML model. The generalizability data consists of 1440 models
transverse curved stiffened panels. The results are obtained by increasing the height of mid­plate in steps of 0.2 meter. It is
observed that the error is large and keeps increasing by increasing the amount of curvature.

𝐻 (M) MSE (N2) MAE (N) MAPE (­)

0.2 4.651⋅1013 6.330⋅106 77.656%
0.4 2.444⋅1014 1.522⋅107 184.076%
0.6 5.462⋅1014 2.310⋅107 255.597%
0.8 9.612⋅1014 3.079⋅107 316.711%
1.0 1.605⋅1015 3.986⋅107 388.678%

From the obtained losses, it can be concluded that the hypothesis on the generalizability is correct.
even with a small curvature, a significant error is obtained. This error is large enough to conclude that
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the results from curved stiffened panels are not suitable for usage. Besides looking at the mean losses,
the individual predictions are also inspected and displayed in fig. 7.9. Figure 7.9a shows a box plot of
MSE on the curved stiffened panels. The mean error on the test and validation set is also displayed, but
these are substantially lower than those obtained on the generalizability models. The box plot shows a
definite increase in the obtained error when increasing the stiffened panel’s curvature. Also, the spread
increases, as can be observed by the increase of the box size and the whiskers. Figure 7.9b shows the
predicted values against the real values obtained with FEA. The individual predictions should lay on
the red line if they are correctly predicted. This figure clarifies that the ML overestimates the ultimate
strength of the stiffened panel significantly since the predictions are located right of the red line. It is
interesting to see that results shift to the right quite linearly without too much distortion in the distribution
of the results. The reason for this behavior is not apparent.
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(a) MSE box plot of the model developed to predict the ultimate
strength of stiffened panels. The results are obtained on the curved
stiffened panels. A clear increase in error can be observed when in­
creasing the amount of curvature of the panel.
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(b) Plot of the predicted results compared to the real solution. A clear
overestimation of the ML can be seen by increasing the curvature of
the stiffened panel since the results are all on the right side of the red
line.

Figure 7.9: Graphical representation on the generalizability by the ultimate strength predicting ML model. Figure (a) shows a
box plot of the individual prediction per value of 𝐻. Figure (b) shows the prediction of the individual models compared to the real
value.

Overall it can be concluded that the developed ML model does not perform well on generalizability. The
obtained error for slightly curved plates is already significant and unusable. This was already expected
since the training data did not contain any information about the stiffened panel’s curvature.

7.8. Conclusion
The developed model shows that it can learn to predict the ultimate strength of stiffened panels. The
loss on the predicted ultimate strength values is well below 1%, which is considered an excellent pre­
diction.

When testing data that is not within the range of training, it could be observed that the loss rapidly
increases. If the results are within a 5% margin of the dataset used for training, decent predictions are
still obtained. Beyond this percentage, the error becomes significantly large, and the prediction is likely
to become inaccurate.

The model is also repeatedly trained with different amounts of training data to see how much
data is at least required to obtain good predictions. With a set of 4000 models in the training set,
good results are obtained from learning. Also, learning is considered stable with this amount of data
available. Stable learning is considered when the model converges to the same result independent of
the dataset selected from the full­sized dataset used for training. Below the 4000 models, this spread
increases significantly, and the ML­model performance is going to depend highly on the spread of the
input data. Also, the average obtained loss rapidly increases below the use of 4000 models in the train­
ing set. Beyond the 4000 model mark, a substantial amount of new data is required to reduce the error
significantly. This 4000 model mark is suitable when the dataset contains five geometric variables. If
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the dataset has more than five variable parameters, it would probably be required to have more data
in the training set.

At last, the ML model’s performance is tested on a variety of curved stiffened panels to see how
well the developed model’s generalizability is. Even with a small curvature, the ML model cannot ac­
curately predict the ultimate strength of the stiffened panel. However, this is expected as no curvature
information is present in the training set. An increase in curvature keeps increasing the obtained error.
Therefore, it can be concluded that the generalizability of the developed model is inadequate.





8
Prediction of Localized Stress

Distribution
In the previous chapter, chapter 7, a convolutional neural network (CNN) has been developed to predict
the ultimate strength of stiffened panels loaded under longitudinal uni­axial compression and lateral
pressure. In this chapter, a new model is developed, which is partially the same as the model used in
the previous chapter. This model will be developed to predict the stress distribution over the stiffened
panel. The same model is trained twice, one time it is used to predict the individual stress components,
the other time it is used to predict the von Mises stress distribution.

The Machine Learning (ML) model developed to predict the stress distribution is described in
section 8.1. The encoder will not be discussed since this is described in chapter 7. In the next section,
section 8.2, the used optimizer, and the loss functions will be discussed. Section 8.3 will provide the
results obtained from the trainedmodel. The developedmodel will also be tested on howwell it performs
on results outside the training range, called scalability. This is described in section 8.4. The ML model
is also tested on generalizability by performing tests with curved stiffened panel in section 8.5. The last
section will provide the conclusions in section 8.6.

8.1. Model Architecture
The developed ML model is partially the same as the model used in chapter 7. The input of the model
is the mesh of the stiffened panels. This input is again pulled through the encoder described in sec­
tion 7.2.1 to compress the input data to a smaller array that is a representation of the original input.
In the previously developed model, this compressed input is sent to fully connected layers. In this
developed model, that data is not put through the fully connected layers. Instead, it is fed to ResNet
bottleneck modules with identity mapping developed by He et al. [100]. The idea of using ResNet mod­
ules is based on the research of Nie et al. [77]. The description of the ResNet bottleneck modules is
given in section 8.1.1. After the ResNet modules, the data is sent through a similar structure as the
encoder but then inverted. The compressed representation will be transformed back to a mesh with
the stresses at each node. This is called decoding, described in section 8.1.2.

8.1.1. ResNet Bottleneck
In this research, ResNet bottleneck modules are used. The use of ResNet modules is based on re­
search by Nie et al. [77]. They also used a CNN to predict the stress distribution over small 2­D mesh.
With the use of ResNet modules combined with Squeeze and Excitation (SE) modules [101], they ob­
tained good results. Therefore, it is decided to use a similar network architecture. When using the
same modules as in the research of Nie et al. [77], the loss function showed significant noise, and the
modules caused unstable learning. After testing several architectures and different modules, it was
concluded that the SE modules would not be used within this research. Besides the ResNet modules,
it is also tried to directly connect the encoder to the decoder, described in section 8.1.2. The model
showed fast learning, but the model quickly stopped improving. A series of fully connected layers have
been tested between the encoder and the decoder module. After the fully connected layers, the output
is reshaped so the decoder could use it. This architecture is also capable of learning, but was out­
performed by the ResNet modules. After testing many different architectures, the best results were
obtained with ResNet bottleneck modules.

The bottleneck modules consist of three consecutive convolutional layers, as is shown in fig. 8.1.
The first convolutional layer is a convolutional layer with a 1 × 1 kernel and a fourth of the filters of the

81
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layer before the ResNet module. The second layer uses a 3 × 3 kernel and the same number of filters
as the first layer. The last layer is again a 1 × 1 convolution, but to restore the original input size of
the ResNet module, it uses the same number of filters as the input of the module. The output of the
encoder contains 128 filters. So the bottleneck module will have 32 filters in the first and second layers
and again 128 filters in the last convolutional layer. After every convolutional layer, batch normalization
is used, followed by a ReLU activation function, as described in section 7.2.1. After the last convolu­
tional layer, no activation function is used. The output of this layer is added to the ResNet module’s
input, also called identity mapping. After the summation of both signals, a final ReLU activation func­
tion is applied. In the paper of He et al. [100], the researchers mention that the primary goal of the
bottleneck modules is to reduce network dimensionality. Bottleneck modules roughly contain the same
amount of trainable parameters as a module with two consecutive convolutional layers with the same
amount of filters and 3 × 3 kernels. In this research, both modules have been tested. The bottleneck
version with three convolutional layers showed better results compared to its two layer counterpart.
The bottleneck module showed the best performance of all the different tried modules in this research.
Therefore bottleneck modules will be used in the developed model. In total, five consecutive bottleneck
modules are used in between the encoder and the decoder.

Figure 8.1: ResNet bottleneck module. The input of the bottleneck contains 4𝑓 filters. The first layer reduces dimensionality with
a convolutional layer with a 1×1 kernel and 𝑓 filters. Then a convolutional layer with a 3×3 kernel is applied with 𝑓 filters. The last
convolutional layer restores the original dimensions by using a 1 × 1 kernels with 4𝑓 filters. The output of the last convolutional
layer is added to the input of the ResNet modules, also called identity mapping. Image taken from [102].

8.1.2. Stress Distribution Decoder
After applying the ResNet bottleneck modules, the data still has the same size as after the encoder.
This data will then be used to feed into a decoder, which is the encoder’s inverse process. In the pre­
viously developed model in chapter 7, the model had to output a single value, the ultimate strength
of the stiffened panel. The newly developed model needs to predict an output with the same size as
the input. Therefore, the decoder has to output the same sized mesh with one or six channels of data
depending on the fact if only the von Mises stress is predicted or if the individual stress components are
predicted. Hence the compressed data has to be transformed back to its original size. In the encoder,
a combination of convolutional layers and pooling layers is used to compress the data. In the decoder,
transposed convolutional layers will be used in combination with the upsampling layers.

Transposed convolutional layers apply the same principles as the convolutional layers used in
the encoder. In the convolutional layers, the kernel is used to map a part of the original data with the
kernel’s size to a single point of data. In the transposed convolution, this single point of data is mapped
back to a larger set of data by multiplying the weights in the kernel with the individual point of data. By
applying this principle, the compressed dataset can be decompressed.

In the encoder, max­pooling layers are used to downsample the data with 75%, as described in
section 2.2.1. In the decoder, upsampling layers are used to upscale the size of the data by a factor
of four or more depending on the size of the layer. This is a simple, efficient linear process. With
a 2 × 2 layer, every single point is turned into 4 points in a 2 × 2 shape with the same value as the
original point. An alternative to this could be the use of transposed convolutional layers with a stride
of 2. By using transposed convolutional layers, the network has more weights to learn to perform this
operation, which allows predicting of the outcome better. The use of transposed convolutional layers is
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tested and did not show any improvement in the obtained losses compared to the upsampling layers’
linear process. The use of convolutional transposed layers is computationally more extensive and is
therefore not used.

The architecture of the decoder is the same as the architecture from the encoder. The con­
volutional layers are transformed into transposed convolutional layers with the same amount of filters.
The max pooling layers are now upsampling layers. In the decoder, no batch normalization is used.
The batch normalization prevents te model from learning. The reason for this is probably that the net­
work needs to predict values in the range of 1e+6, while the batch normalization normalizes the signal
between ­1 and 1.

8.2. Optimization and Evaluation
This network uses the same principles as in section 7.3. In the end, Adamax showed the best perfor­
mance of all the tested optimizers. In this network, batches are used with a size of 256 models. The
loss function used by the optimizer is again the Mean Squared Error (MSE). The network is trained for
5000 epochs. After 5000 epochs, the training loss still shows a notable decreasing trend, but there
is little improvement in the validation set’s loss. Therefore, it is decided not to extend the number of
epochs. The training of this model significantly takes longer than the training of the ultimate strength
predicting model. In this network, there are 25% more trainable weights than in the network described
in the previous chapter. Also, the size of the data is much larger. The size is two times larger when
predicting the von Mises stresses and seven times larger when predicting the individual stress com­
ponents. After training for all the epochs, the best performing epoch on the validation set is used to
determine the weights in the trained model.

8.3. Results
The previous sections of this chapter and the explanation of the encoder in section 7.2.1 gave an
overview of the network architecture, and the principles used to train the model. The network is trained
for two different types of outputs. First, the model is used to predict the von Mises stress described by
eq. (8.1). The model is trained for 5000 epochs. The obtained losses are displayed in table 8.1. The
corresponding loss over all the epochs is displayed in fig. 8.2

𝜎VM = √
1
2 [(𝜎𝑥 − 𝜎𝑦)

2 + (𝜎𝑦 − 𝜎𝑧)
2 + (𝜎𝑧 − 𝜎𝑥)

2] + 3 (𝜏2𝑥𝑦 + 𝜏2𝑦𝑧 + 𝜏2𝑧𝑥) (8.1)

In fig. 8.2, it can be seen that the error on the training set shows a notable stable decreasing trend. It
is observed that the loss on the validation set also shows a steady decrease, but the loss stays signif­
icantly larger than the loss on the training set. This behavior also becomes clear from the displayed
results in table 8.1. These obtained losses are not as expected. If the loss of the training and validation
set starts to deviate, the model is overfitting the data. Overfitting often causes the error on the validation
data to increase after more epochs. In this graph, the loss of the validation set still decreases. There­
fore it is assumed that overfitting is not the cause for this deviation in the loss graph. The predictions
are all converted to VTK­files so they can be graphically inspected. It quickly became clear that the
ML model sometimes predicted the result reasonably accurate, but flipped along the longitudinal edge
as displayed in fig. 8.4. The buckling of flat plates is an unstable analysis. The plate might buckle up
or down, but the response is the same. After inspecting the predicted results more in detail, it became
clear that the ML model partially learned when the plate should buckle up or down according to what
the results are from the numerical analysis. In most of the models, the ML model was able to predict
the correct direction of buckling. This observation is interesting since this mechanism is described by
unstable behavior and there is no apparent reason why a plate should buckle up or down.

After this conclusion, the individual loss values of all the structural models are inspected. Also,
the loss of the individual points in structural models with a significant high error are thoroughly investi­
gated. It became clear what the reason is for the difference in the average loss obtained between the
training data and the data from the test and validation loss, as could be observed from table 8.1. It
is observed that most of the models have a loss of less than 1e+13, which does not follow the values
given in the table. The average loss is affected by some of the models which are predicted to buckle
in the wrong direction. It is concluded that the percentage of wrong predicted models is significantly
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(a) MSE plot of the model developed to predict the von Mises stress
distribution at the moment of failure. Red shows the error on the train­
ing set. Blue shows the error on the validation set.
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(b) MSE log plot of the model developed to predict the von Mises
stress distribution at the moment of failure. Red shows the error on
the training set. Blue shows the error on the validation set.

Figure 8.2: The MSE of the model developed to predict the von Mises stress distribution. A clear decreasing trend can be
observed in the loss function, while the validation set does not improve significantly. It is also be observed that there are a
significant amount of spikes available in the model. The training set consists of 7355 models. The validation set contains 1839
models.

larger in the test and validation data compared to the training data. In the training set, only 0.14% of
the results had a loss higher than 1e+15, while in the test and validation set, those percentages were
respectively 1.29% and 1.80%. This makes clear why there is a difference between the loss obtained
by the training data and the loss obtained by the test and validation set.

It was also observed that some of the models had a high loss while the actual overall prediction
looks accurate. The problem that occurs in those models is that a few nodes in a single structural model
were mispredicted. Sometimes positive stress was predicted, while strong negative stress should be
predicted, creating a large difference between the two values. This prediction resulted in excessively
large loss predictions, while the actual model was predicting quite accurately for the majority of the
structural model. It was also interesting to observe that often the ML model failed to predict only a
single node while the surrounding nodes were predicted accurately. There is no clear reason for these
results.

Table 8.1: Error created by the von Mises stress predicting ML model. The trained data consists of 7355 models which are used
to train the model. The validation data consists of 1839 models and is used to tune the model hyper­parameters and validate
the performance during learning. The test set contains 1782 models and is used to test the performance after training. It can be
observed that the MSE obtained on the training set is twice as low as the error obtained on the test and validation data set.

Error MSE (Pa2) MAE (Pa) MAPE (­)

Validation data 5.496⋅1013 2.981⋅106 1.699%
Test data 4.462⋅1013 2.823⋅106 1.584%
Train data 2.018⋅1013 2.414⋅106 1.326%

Figure 8.2b also shows spikes in the predicted losses. Similar spikes were observed in the results
obtained in chapter 7. Figure 8.3a shows the zoomed­in loss data for epoch 2500 till 2600. Again,
most of the points follow the same curve as the points in the training data. This time, the validation
loss is higher than the training loss. It is also tested if the number of spikes is influenced by both the
batch size and the amount last batch’s gradient is taken into account by the optimizer. Similar results
are obtained as for the model developed in chapter 7. Therefore, it can be concluded that these spikes
are due to the random selection of the batches.
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(a) Zoomed in plot of the loss function of the von Mises stress predic­
tion model from epoch 10000 to 10100. It can be observed that most
results from the validation set are close to the curve of the trainings
loss although some models have a significant larger error compared
to the error on the training set.
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(b) Zoomed in plot of the loss function of the individual stress predic­
tion model from epoch 10000 to 10100. It can be observed that most
results from the validation set are close to the curve of the trainings
loss although some models have a significant larger error compared
to the error on the training set.

Figure 8.3: Predicted and real von Mises stress distribution over the stiffened panel. This model has an excessively large error
according to the loss function. It can clearly be observed that the prediction is actually similar, but mirror along the longitudinal
edge.
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(a) Predicted von Mises stress distribution over the stiffened panel. This model has an excessively large error according to the loss
function.
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(b) Real von Mises stress distribution over the stiffened panel determined by the use of Finite Element Analysis (FEA) in Ansys.

Figure 8.4: Predicted and real von Mises stress distribution over the stiffened panel. This model has an excessively large error
according to the loss function. It can clearly be observed that the prediction is actually similar, but mirrored along the longitudinal
edge. The images shows the flat representation of the 3­D stiffened panel. The left section of the plate represents the plating in
between stiffeners. The middle section of the image contains the webs of the stiffeners. The right side of the image contains the
flanges of the stiffened panel.

The sameMLmodel has been trained to predict the individual stress components of the stiffened panel.
The used output is 6­D data containing all the individual stress components: the stress in x­direction
(𝜎𝑥), the stress in y­direction (𝜎𝑦), the stress in z­direction (𝜎𝑧), the shear in xy­direction (𝜏𝑥𝑦), the
shear in yz­direction (𝜏𝑦𝑧), and the shear in zx­direction (𝜏𝑧𝑥). The idea behind training the network
on 6­D data is that it would be interesting if the ML­model would be capable of learning the interaction
between the individual stress components to more accurately predict the stresses. The loss curves are
displayed in fig. 8.5. Similar behavior is observed as in the results from fig. 8.2a. A zoomed in plot is
displayed in fig. 8.3b for epoch 10000 to 10100. More spikes are observed in the loss curve compared
to the results in fig. 8.3a, but the main trend can still be observed. When predicting the individual stress
components, some models are again predicted to buckle in the wrong direction. To verify the reason
for the difference between the loss on the training data and the loss on the test data, it is investigated
how many of the models were predicted inversely related to the size of the whole data set. 2.7% of
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the test set has a loss higher than 1e+15. A similar 2.77% was obtained for the validation set. The
number of models that had a loss higher than 1e+15 in the training set was only 0.34%. It can again
be concluded that this is the reason for the large difference between the training and the two other data
sets.
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(a) MSE plot of the model developed to predict the individual stress
distributions at the moment of failure. Red shows the error on the
training set. Blue shows the error on the validation set.
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(b) MSE log plot of the model developed to predict the individual stress
distributions at the moment of failure. Red shows the error on the
training set. Blue shows the error on the validation set.

Figure 8.5: The MSE of the model developed to predict the individual stress distributions. A clear decreasing trend can be
observed for the training and test data. The loss on the trainings data is significantly lower than the loss on the validation data.
It can also be observed that there are a significant amount of spikes available in the model. The training set consists of 7355
models. The validation set contains 1839 models.

The model is also used to predict the individual stress components, but the main reason for this is
to see if the model was able to learn the interaction between the individual stress components. This
test was done to see if the von Mises stress could be obtained more accurately from the individual
stress components than directly predicting the von Mises stresses. The error on the von Mises stress
prediction based on the individual stress components is given in table 8.2. It can be observed that the
predicted von Mises distributions are quite accurate, although the obtained loss is higher than the loss
obtained by directly predicting the von Mises stress distribution. Therefore, with this amount of training
data, it is better to predict the stress distribution directly.

Table 8.2: Error created by the stress distribution predicting ML model. The individual stress components are used to determine
the von Mises stress distribution. The trained data consists of 7355 models which are used to train the model. The validation
data consists of 1839 models and is used to tune the model and validate the performance during learning. The test set contains
1782 models and is used to test the performance after training. It can be observed that the MSE obtained on the training set is
twice as low as the error obtained on the test and validation data set.

Error MSE (Pa2) MAE (Pa) MAPE (­)

Validation data 9.229⋅1013 4.948⋅106 2.649%
Test data 8.035⋅1013 4.771⋅106 2.525%
Train data 4.673⋅1013 4.292⋅106 2.246%

It cannot be directly concluded that the model does not learn the interaction between the individual
stress components since the calculation of the von Mises stress will cause an addition of individual
losses. Therefore, the losses of the individual stress components are given in table 8.3. It can be
observed that the losses of the individual stress components are larger than the losses of the calculated
von Mises stress distribution in table 8.2. The reason is the excessive error in some of the model
nodes. In some structural models, some individual nodes are predicted with a significant difference
from the actual value. These losses increase some of the structural models’ losses because the error
gets squared in the MSE calculation. By determining the von Mises stress from those wrongly predicted
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individual nodes, the average loss gets less. This is why the losses of the individual stress components
are higher than those obtained on the calculated von Mises stress distribution.

Table 8.3: Error created by the stress distribution predicting ML model. The MSE of all individual stress components are given.
The trained data consists of 7355 models which are used to train the model. The validation data consists of 1839 models and is
used to tune the model and validate the performance during learning. The test set contains 1782 models and is used to test the
performance after training.

Error (Pa2) 𝜎𝑥 MSE 𝜎𝑦 MSE 𝜎𝑧 MSE 𝜏𝑥𝑦 MSE 𝜏𝑦𝑧 MSE 𝜏𝑧𝑥 MSE
Validation data 4.239⋅1014 3.438⋅1014 2.445⋅1014 1.743⋅1014 1.124⋅1012 3.411⋅1013
Test data 3.496⋅1014 2.748⋅1014 2.277⋅1014 1.470⋅1014 1.114⋅1012 3.308⋅1013
Train data 7.828⋅1013 4.876⋅1013 3.818⋅1013 3.219⋅1013 1.092⋅1012 1.203⋅1013

From table 8.3, it can also be observed that the error on the stresses 𝜏𝑦𝑧 and 𝜏𝑧𝑥 is lower than the other
individual stress components. This lower error is not directly related to the accuracy of the prediction.
Those stresses have already a lower magnitude compared to the other stress components. The stress
is lower because a large part of the stiffened panels is located in the xy­plane. Also, these parts are
thin.

8.4. Scalability
For the developed model, the scalability study is also performed similarly to the one described in sec­
tion 7.5. For this test, the same dataset will be used, and the same scaling steps of 5% are present. This
scalability study is performed for the direct prediction of the von Mises stresses, the individual stress
components, and the von Mises stress determined by the predicted individual stress components.
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(a) Directly predicted von Mises stress MSE plot of the model devel­
oped to predict the individual stress distributions at the moment of
failure. The errorbars represent the SE. It can be observed that there
is an increase in error by increasing 𝑡𝑝 and ℎ𝑤. The influence of 𝑡𝑤,
𝑏𝑓 and 𝑡𝑓 is limited. The SE of the mean becomes larger by increasing
the individual parameters except for 𝑡𝑤.
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(b) Individual stress component von Mises stress MSE plot of the
model developed to predict the individual stress distributions at the
moment of failure. The errorbars represent the SE. It can be observed
that there is an increase in error by increasing 𝑡𝑝 and ℎ𝑤. The influ­
ence of 𝑡𝑤, 𝑏𝑓 and 𝑡𝑓 is limited. The SE of the mean becomes larger
by increasing the individual parameters except for 𝑡𝑤.

Figure 8.6: The MSE of both predicted von Mises stress distributions. In total 288 models used. This set is used to increase
individual parameters in steps of 5%. The total set of models contains 7200 models.

Figure 8.6 shows both theMSE of both predicted vonMises stress distribution. For the directly predicted
stress, it can be observed that an increase in the individual parameter does increase the loss for some
of the parameters. The loss obtained by increasing the plate thickness (𝑡𝑝) or the height of the web (ℎ𝑤)
causes a rapid increase in the error. It is interesting to see that the other parameters, the thickness
of the web (𝑡𝑤), the thickness of the flange (𝑡𝑓), and the width of the flange (𝑏𝑓) cause practically
no increase in the loss. If these results are compared to the scalability results of the model used to
predict the ultimate strength, fig. 7.6, a difference can be observed. In the model used to predict the
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ultimate strength, the increase of parameters caused a higher loss for every individual parameter. The
loss increase of the flange parameters, the width, and thickness, was limited compared to the loss
of the height of the web, web thickness, and plate thickness. Also, the losses increased significantly
faster than the losses predicted with the newly developed von Mises predicting model. No apparent
reason can be found explaining the difference between the results. It was expected that an increase
in the individual parameters would have a similar response in both models. This increase is expected
since the relation between the individual geometrical parameters would be the same, but both models
obtained a different relation between the individual geometrical parameters. It is concluded that the
current model is less prone to an increase in loss for models outside the range of training.

The scalability analysis is also performed on the model that is used to predict the individual stress com­
ponents. The individual stress components are used to determine the von Mises stress distribution.
The results of this study on the von Mises stress distribution are displayed in fig. 8.6b. Similar results
are obtained as for the model that is used to predict the von Mises stress directly. A slight difference
can be observed for the flange parameters, the width, and thickness, as they slowly increase beyond
an increase of 15% of the individual parameters. Still, the increase of the models with a raised web
height a plate thickness is more significant then the increase in loss obtained by the other geometrical
parameters.

The scalability plots are also obtained for the individual stress components. The six figures
are given in the following figures: fig. B.1a, fig. B.1b, fig. B.2a, fig. B.2b, fig. B.3a, and fig. B.3b. The
obtained results show similar behavior as the results in fig. 8.6b. For this reason, they can be found
in appendix B. One difference could be observed in predicting the individuals stress components. The
increase of the thickness of the web (𝑡𝑤) seems to lower the loss in the mean error plots. After individu­
ally inspecting the results, it became clear that by changing the web’s thickness, the network less often
predicts the direction of buckling incorrectly. It is also observed from those individual results, that some
models show an increase in the loss by increasing the thickness of the web, while some do decrease
in loss. Therefore the model shows an average decrease in the mean loss by increasing the thickness
of the web.

Appendix B also shows box plots of the individual stress components and the vonMises stresses.
The box plots show the performance of the individual models better, and they also show the median
instead of the mean. The median helps to understand the distribution of the predicted results. The box
plots show a significant spread in the results with a median substantially lower than the mean value.
The medians show that the mean value is driven by the results with a considerable MSE value. All
plots in Appendix B show the corresponding mean MSE error on the test and validation set.

From the loss curves during the model’s training and the results obtained from scalability, it is concluded
that the model is not stable with its predictions and shows some unexpected behavior. Thus, it is
decided not to perform a study on how the number of training examples influences the performance of
the model. Due to the model’s unexpected behavior, no accurate conclusion can be drawn regarding
the number of training examples.

8.5. Generalizability
The developed stress predicting ML model is also tested on its generalizability on different input data.
To test the generalizability performance of the ML model, the same data is used as for the ultimate
strenght predicting ML model. In total, 1440 curved plates are tested with five different curvatures, as
described in section 7.7. Both stress distribution predicting models are tested on their generalizability.
Just like in section 7.7, it is expected that the ML models will not be able to accurately predict the
stress distribution over the stiffened panel at the moment of failure. It is even expected that some parts
of the bottom plating will be seen as nodes on the stiffeners since these are the nodes that contain
information in the z­direction in the training data. It is also expected that some stiffener nodes will
have results similar to that of the bottom plating since they are now located at zero height due to the
downward curvature of the stiffened panel.

The results for the individual stress component predictions are given in table 8.4. The same
results are graphically represented in fig. 8.8a. From these results, it can be observed that the error
is larger than the error obtained on the test and training set, but the difference is less distinct than the
error obtained by the ultimate strength predicting ML model. Also worth noting is that the mean error
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does not increase by increasing the curvature of the stiffened panel. When looking at the individual
model performance, a clear difference can be observed between the generalizability models and, for
example, the test models. When predicting the stress distribution on models in the test set, some
nodes in the models are near perfectly determined, and some are less accurate. The prediction on the
generalizability model shows bad prediction on every single node. Therefore, it is decided to inspect
the individual models graphically.

Table 8.4: Error created by the stress distribution predicting ML model. The MSE of all individual stress components are given.
The generalizability dataset consists of 1440 models with five different heights (H) in steps of 0.2 meter.

Error (Pa2) 𝜎𝑥 MSE 𝜎𝑦 MSE 𝜎𝑧 MSE 𝜏𝑥𝑦 MSE 𝜏𝑦𝑧 MSE 𝜏𝑧𝑥 MSE
0.2 m 5.741⋅1015 5.256⋅1015 1.836⋅1015 1.909⋅1015 6.931⋅1013 2.277⋅1014
0.4 m 5.184⋅1015 4.231⋅1015 1.054⋅1015 1.275⋅1015 2.379⋅1014 1.805⋅1014
0.6 m 8.183⋅1015 3.896⋅1015 8.808⋅1014 9.164⋅1014 4.430⋅1014 1.874⋅1014
0.8 m 1.677⋅1016 4.513⋅1015 1.091⋅1015 8.570⋅1014 6.692⋅1014 2.293⋅1014
1.0 m 5.184⋅1015 4.231⋅1015 1.054⋅1015 1.275⋅1015 2.379⋅1014 1.805⋅1014

When graphically inspecting the individual models, it is again observed that some of the models are
predicted to buckle in the wrong direction, which results in a high loss. Models that buckle in the correct
direction according to the ML still have a high error. An example is shown in fig. 8.7. This is the result
of a model with a mid­plate height of 0.2 meter, which is the smallest curvature tested in this research.
Figure 8.7a shows the von Mises stress determined by the predicted individual stress components.
Figure 8.7c shows the real von Mises stress distribution. The left side of the image represents the
bottom plating, and the shape of the predicted result is fairly accurate, although the magnitudes of
the stresses are not correct. The right side of the image contains the stresses over the webs and the
flanges. It can be observed from the graphical representation that the ML model does not know how
to handle the nodes since the predicted outcome has no physical meaning. Also, it is observed that in
the predicted stress distribution, stresses occur far beyond the yield strength (𝜎𝑦) of the material. This
maximum predicted stress becomes larger with a more strongly curved stiffened panel. This increase
is similar to the generalizability results obtained by the ultimate strength predicting ML model.

Table 8.5: Error created by the stress distribution predicting ML models. The von Mises stress distribution is both determined
by direct prediction and prediction by making use of the individual stress components. The error is large, but there is no clear
increase observed by increasing the curvature of the stiffened panel

H (m) VM 1D MSE VM 6D MSE

0.2 m 2.136⋅1015 2.047⋅1015
0.4 m 4.414⋅1015 2.491⋅1015
0.6 m 4.109⋅1015 5.037⋅1015
0.8 m 2.358⋅1015 1.182⋅1016
1.0 m 4.414⋅1015 2.491⋅1015

The von Mises results of the generalizability data are displayed in table 8.5. Similar to the results in
table 8.4, no clear increase can be observed by increasing the curvature of the stiffened panel. Com­
pared to the results in table 8.1 and table 8.2 the obtained error is significantly larger. The results are
also graphically represented in the line plot fig. 8.8b. Figure 8.7b shows a directly predicted stress dis­
tribution of the von Mises stress distribution. It is interesting to observe that the results are significantly
different from the distribution of fig. 8.7a. The directly predicted von Mises stress show no excessive
large predicted stresses beyond the material yield strength.

Appendix C contains box plots of the individual stress components and both of the von Mises
stress distributions per curvature step. These are given since they provide more information on the
spread and distribution of the results compared to fig. 8.8. Most of the figures show similar behaviour
compared to the results in table 8.4 and table 8.5. Although, the stress in the x­direction (𝜎𝑥) and the
shear in yz­plane (𝜏𝑦𝑧) show an increase in the median of the error and spread of the results when
increasing the curvature of the stiffened panels. Due to the magnitude of 𝜎𝑥 in the von Mises stress
determined by the individual stress components shows similar behavior.
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(a) Predicted von Mises stress distribution over the stiffened panel determined by the individual stress components. The prediction
of the stress distribution over the stiffeners is incorrect. The maximum occurring values are significantly higher than the material
yield strength.
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(b) Directly predicted von Mises stress distribution over the stiffened panel. The prediction of the stress distribution over the stiffeners
is incorrect. The maximum occurring values are significantly higher than the material yield strength.
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(c) Real von Mises stress distribution over the stiffened panel.

Figure 8.7: Predicted and real von Mises stress distribution over the stiffened panel. The stiffened panel has a height of 0.2
meters mid plane. This is the lowest curvature that is tested. The images shows the flat representation of the 3­D stiffened
panel. The left section of the plate represents the plating in between stiffeners. The middle section of the image contains the
webs of the stiffeners. The right side of the image contains the flanges of the stiffened panel.
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(a) Generalizability MSE graph of the individual stress components.
No clear increase can be observed for the individual stress compo­
nents with an increase in curvature of the stiffened panel.
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(b) Generalizability MSE graph of the vonMises stress. Both the direct
predicted von Mises stress (VM1𝐷), and the von Mises stress deter­
mined from the individuals stress components (VM6𝐷) is plotted.

Figure 8.8: Generalizability MSE plot of the model developed to predict the stress distribution at moment of failure. In both graph,
no clear trend can be observed when the curvature gets increased.

Overall, it can be concluded that the generalizability performance of the stress distribution predicting
ML model shows insufficient performance. Obtained losses are significantly large, and the predicted
stress distributions are unrealistic and inaccurate. The von Mises stress determined from the individual
stress components shows even stresses significantly larger than the material yield strength. Therefore
it can be concluded that the performance on generalizability is poor, and obtained results cannot be
used for accurate stress distribution estimates.
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8.6. Conclusion
Overall it can be concluded that a large amount of the stress distributions is correctly predicted, and
even if the result is flipped, the estimate is reasonably accurate and follows the right stress distribu­
tion. Although, by inspecting the loss graphs and the scalability and generalizability performance of
the trained models, it is concluded that the ML­model predicts some unexpected results and, in some
cases, shows difficulties in predicting the direction of buckling.

From the scalability study, it is observed that only increasing the height of the web (ℎ𝑤) or the
thickness of the plate (𝑡𝑤) causes a significant increase in the loss. The other parameters show little
to no increase. By inspecting the performance of the individual stiffened panels, it can be concluded
that some models do increase in loss, while other models do decrease in loss. Therefore no clear
conclusion can be given on how well the model performs on models outside the range of training.

The performance on the generalizability data shows that the developed ML model cannot cor­
rectly predict the stress distributions over the stiffened panels. The obtained errors are of such a large
magnitude that they cannot be considered useful for further usage. Also, after graphically inspecting
individual results, it is observed that the results contain no significant physical information. This con­
clusion is not unexpected since there is no curvature information present in the data used for training
the ML model. The results make clear that the amount of curvature does not directly influence the
magnitude of the obtained error.

From the conclusions, it is suggested to develop a new custom loss function that automatically
detects if a result is flipped or not, and selects the correct result. There is no physical meaning as
to why the plate should buckle in one of the directions. The buckling of straight plates is an unstable
process, therefore, the plate can buckle in either direction. If this does not improve the process of
learning, it is recommended to pay attention to the individual nodes that are inaccurately predicted that
cause a significant increase in the entire model’s loss. With a suitable loss function, it is expected that
the model will behave like the loss curve obtained on the training set, which shows a steady decrease
in the loss function. When an adequate loss function is developed, it is recommended to perform a
new scalability and generalizability test to see if the obtained results match the current findings. Also,
if good loss curves are obtained during training, it is advised to test the required number of training
examples needed for good accurate predictions.
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9
Conclusions

In this research, Machine Learning (ML) is used to predict the ultimate buckling strength and the stress
distribution at the moment of failure of meshed stiffened panels. The main research question of this
research is:

Under what conditions is it possible to predict buckling and plasticity for a meshed stiffened panel
making use of machine learning?

To answer the main research question, an optimization is performed with an analytical model to obtain a
representative set of geometrical parameters for stiffened panels in a ship structure. Numerical analysis
is performed on the acquired set of parameters to develop a large dataset of stiffened panel models.
With the numerical analysis, the ultimate strength of the stiffened panels and the stress distributions
over the entire stiffened panel at the moment of failure are determined. This collected dataset is used
to train two different machine learning models. One model is developed to predict the ultimate strength,
while the other developedmodel is used to predict the stress distributions. The trainedmachine learning
models are then used to determine under what conditions it is possible to predict buckling and plasticity
for meshed ship structures. The previously described steps are used to answer the sub­questions which
support the main research goal. The conclusions of the individual sub­questions will be discussed. At
the end of this chapter a conclusion will be formed.

1. Which range of geometric parameters covers a comprehensive set in shipbuilding, and captures
all different types of buckling/local failure? ­ An analytical model is applied based on the theory of
Hughes and Paik [7] to answer this sub­question. This model incorporates five different buckling
modes, residual stress, initial deflections, and classification rules to obtain a realistic set of pa­
rameters. The representative geometrical dataset turns out to be highly dependent on the type of
vessel and the length and width of the stiffened panel. This study also clarifies that the parameter
set depends on the direction of loading and the expected maximum loading of the stiffened panel.
Also, it became clear that a significant amount of the parameter combinations obtained is close
to the limits allowed by classification societies. In this research, a small correlation study is per­
formed on the collected dataset. This study showed a strong correlation between the individual
geometrical parameters of the stiffened panels.

To conclude on this sub­question: A representative parameter range is case dependent
and does rely on a substantial amount of factors. There is no distinct set that is a good represen­
tation of all types of vessels and types of loading.

2. Which type of ML­model is suitable to predict local structural failure? Also, which type of training
algorithm is efficient to train this ML­model? ­ The selection of the type of ML model can often be
made based on the kind of data that will be used within the research. There is no golden standard
on which type of model to use. In this research, the ultimate strength and stress distribution over
the stiffened panel at the moment of failure are predicted. The ultimate strength and stresses
are numerical values. The prediction of numeric values is considered a regression problem.
Neural networks are often used for regression tasks. In this research, it is concluded that if the
entire mesh of a stiffened panel is transformed into one dataset it contains a significant amount
of geometrical information. Also, there is the possibility to incorporate other parameters, like
material properties within the same data structure, which is relevant for future research. If the
mesh is used as data, the size of the input data becomes significantly large. For this reason, the
choice has been made to use a convolutional neural network. Besides that convolutional neural
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networks are efficient for large­sized inputs, they have the significant advantage of maintaining
spatial information throughout the process of learning. Individual nodes in a mesh interact with
each other and influence their deformations and stresses. Due to the conservation of spatial
information, the developed network can learn the interaction between data points.

In this research, several optimizers have been tested to train the machine learning model.
With the right selection of optimizer parameters, most optimizers were able to make the network
learn from the presented data. In the end, the adaptive optimizer Adamax showed the best
performance and is used for this research.

3. How can the ML­model be trained to determine the ultimate strength of the stiffened panel without
the ML­model knowing how it will fail? ­ There is no clear answer to this sub­question. Machine
learning models consist of layers with trainable parameters, called weights, which are continu­
ously changed during learning to predict the correct output. It is difficult to understand what every
parameter inside the developed machine learning model physically represents. With a combi­
nation of consecutive linear and non­linear functions, the model performs an accurate complex
regression to estimate the ultimate strength of a stiffened panel. The mesh’s data is first com­
pressed to a smaller array of data, which contains information about the original input. This com­
pressed input is then used to predict the ultimate strength of the stiffened panel. The network
does not determine the residual stresses, initial deflections, or the expected mode of buckling.
Instead, the network learns to directly output the ultimate strength without the intermediate steps
required when performing standard numerical or analytical analysis.

4. When is the ML­model fully converged, and what is the minimal amount of training data needed
for acceptable convergence? ­ The machine learning model is considered fully converged when
the weights and other parameters in the model are such that the lowest possible error is obtained
on the validation set. The developed model was able to achieve good accuracy already after
2000 epochs. An epoch is a single pass of the entire set of data through the network. After 2000
epochs, the loss curve starts to flatten, and only little improvement is obtained with performing
more epochs. The model is in total trained for 20000 epochs to show the development of the loss
after more epochs. After 20000 epochs, a decreasing trend in the loss function is still observed.
After 20000 epochs, an error of 0.139% is obtained on the test set. If the increase in accuracy is
compared to the increase in required training time, it is considered not efficient to train the model
for longer. This consideration especially becomes true if the error of the network is compared to
the error created by the coarse meshing of the stiffened panel in the numerical data generation.
The average obtained error from the mesh convergence study showed an average error of 4.2%.
It is concluded that machine learning shows excellent capabilities in accurately predicting the
ultimate strength. The most improvement in accuracy can be obtained from generating more
accurate input data for the machine learning.

By training the model with the fully developed dataset, the performance of the model is
also tested with less training data. The network is repetitively trained with a minimum of 10% of
the original data size and a maximum of 90% of the original data size. The set is increased in
steps of 10%. It is observed that at 50% of the full dataset, this is 3678 models, already shows
accurate predictions made by the trained network. Until this amount of training data, a great
increase in performance can be observed by increasing the amount of data. By expanding the
dataset beyond the 50%, more accurate results will be obtained, but this requires significantly
more models to reduce the error of the prediction by the same amount as before the 50% data
size. From the results, it can also be concluded that with small amounts of training data, the range
and spread of the data becomes more important. The network is trained 72 times in total, 8 times
for every dataset size, while the datasets were randomly sampled. With small amounts of training
data, a wide spread in the model’s performance could be observed. This spread becomes less
with a larger dataset. It is recommended to have at least 4000 widely spread stiffened panels
model in the training data to obtain accurate predictions. Better performance can be obtained by
increasing the amount of available data.

5. Is the trained ML­model able to predict results outside its training scope, so­called ‘scalability’
and ‘generalizability’. If so, to what level of extrapolation are results considered useful? ­ A
selection has been made from the dataset used for training to test the scalability of the model.
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With this selection, a new set of small datasets has been developed by increasing the individual
geometrical parameters of the stiffened panel by 5%. The maximum scaled models have a single
geometrical parameter that is increased by 25% of the original value. With the selected set, still
accurate results were obtained when the individual parameters were scaled by 5%. By further
increasing the geometrical parameters, the error also starts to grow. At a 15% increase of the
plate thickness, the mean squared error already increased by a factor 3. The same increase in
the height of the web already increases the error by a factor 13. A factor of 7 for the increase
in error is obtained for magnifying the thickness of the web. The flange parameters showed less
importance and only doubled the error. At 25% increase of the geometrical parameters, some
parameters showed an error increase by a factor 250. The flange parameters, the thickness and
width, showed only a factor 10 and 20 increase of the loss at 25%. It can be concluded that the
flange parameters are not as important in predicting the ultimate strength as the thickness of the
plate and the web parameters. It also can be concluded that a 5% range outside the original
dataset still results in acceptable predictions. When the geometrical parameters are further away
than this 5% of training, the accuracy of the prediction rapidly decreases.

The data used for testing the generalizability is the same initial set as used for the scalability
test. This set is used to make curved plates. The stiffened panels are curved in the transverse
direction only with the stiffeners point towards the center of curvature. Five different curvatures
are tested defined by the mid­plate height. The mid­plate height is increased in steps of 0.2
meter until a height of 1 meter is reached for a 4 meter wide stiffened panel. The results show
that for both developed ML­models the predictions are considered insufficiently accurate to be
acceptable for further usage. The predicted stress distributions also show unexpected results
with strange distribution patterns. The obtained performance was expected since the data used
for training the ML­model contains no information about curvature. The performance of the model
on generalizability is not sufficient, but the predictions are as expected.

Overall, it can be said that machine learning can be considered an excellent tool to predict the ultimate
strength of stiffened panels. This statement is only valid when there is sufficient data available to obtain
stable learning of the algorithm. When more data is available, the model is more likely to become
well trained. The trained model can achieve accurate predictions as long as the input parameters lay
within a 5% margin of the original data that is used to train the model. Outside this range, there is
no guarantee that the model can predict results correctly. For a similar machine learning model with
a similar dataset for training, it is recommended to have at least 4000 training examples with a good
spread in geometrical parameters to obtain stable learning. When data becomesmore complex, due to,
for example, the introduction of more geometrical parameters, it is probably necessary to increase the
size of the dataset that will be used for training the machine learning model. Also, it is recommended to
only use themachine learning model for tasks similar to what it is initially trained on. The generalizability
of the model is poor, and the results are not useful for further usage.
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Recommendations

Based on the research and the conclusions obtained, a set of recommendations for further research
will be given and discussed:

1. The scalability study of the developed machine learning model shows that results predicted for
structural models outside the training scope quickly become inaccurate. Therefore, it is recom­
mended to increase the amount of training data and perform the scalability tests again to see if
more training data would improve the predictive capabilities of the developed model.

2. In the current research, data is used from which both the input and output are known. When
applying the trained model on new data with an unknown output, a mesh of the model would still
be required. The recommendation is to extend the model with a part that can generate the mesh
from a couple of geometrical parameters to overcome the need to create a mesh with numerical
software. For simple structures, this could be done by writing a code that directly creates the
mesh. When using a wider variety of models, or even multiple different structural geometries, the
advice is to develop a neural network that can create the mesh. This predicted mesh is then the
input for the current developed network.

3. Residual stress is used in the developed analytical model to obtain a realistic dataset. Incorpo­
rating residual stress in the numerical analysis is complicated and is therefore not performed in
this research. For further research, it is recommended to take the residual stress into account for
the numerical created data to obtain more realistic results.

4. The developed model in this research showed the ability to predict the stress distributions over
the stiffened panel. Expected is that the model is also able to predict the deformations of the
stiffened panels. In this research, the initial deflection is determined by scaling the deformations
of the eigenvalue buckling analysis. In reality, the shape of the initial deflection will be more
complicated. If there is sufficient experimental data available for the initial deflection of stiffened
panels, the recommendation is to test if machine learning can accurately predict the realistic
initial deflection of stiffened panels based on their geometry. The same principle applies to learn
realistic residual stress distributions in the stiffened panel. If this turns out to be possible, more
accurate, numerical results can be obtained by applying the realistically predicted initial deflection
and residuals stress. Currently, simplified models are used to incorporate these effects within
numerical analysis.

5. In this research, the input size of the machine learning model is fixed. Nowadays, it is possible to
develop a machine learning model that can handle different sizes of input data. The suggestion is
to adjust the model so it could handle different sized inputs to the network. If the machine learning
model can handle different sizes of inputs, it will create the opportunity to test structural models
with various shapes and with varying densities of the mesh. Allowing variable input sizes would
make the developed model more readily usable for ultimate strength and stress predictions.

6. The developed dataset only uses simply supported stiffened panels, loaded with longitudinal uni­
axial compression and lateral pressure. In reality, the boundary conditions of continuous stiffened
panels behave partially rotational restrained, which is challenging to model accurately. Next to
this, the loading conditions are more complicated in real situations than used in this research.
Stiffened panels in ships are loaded by a combination of bi­axial compression, lateral pressure,
shear force, and bending moments. It is recommended to add new layers of data to the input
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data that contains information about the boundary conditions and their locations. The suggestion
is also to add layers of information about the loading of the stiffened panel to the input data. The
addition of different boundary conditions and loading conditions would require the development
of new data, but would significantly increase the trained machine learning model’s versatility.

7. Excellent accuracy is obtained on the prediction of the ultimate strength of stiffened panels. The
error caused by the machine learning model is significantly lower than the error obtained by
coarsely meshing the stiffened panels for the data generation. If the machine learning model
is used to predict the ultimate strength accurately, the suggestion is to train the network on data
with a finer mesh to reduce the error created during numerical analysis.

8. Instead of using the machine learning model to predict the ultimate strength, it could also be
turned into a classifier model that could predict the expected mode of buckling if this is a desired
feature. A classifier model could also be incorporated as a parallel neural network that uses the
same compressed geometrical information to predict the buckling mode during failure. This way,
the model would predict the buckling mode as well as the ultimate strength. The predicted buck­
ling mode would provide structural engineers with information on how to strengthen the stiffened
panel.

Based on the recommendations, it can be concluded that the developedmodel showsmany new oppor­
tunities for the application of machine learning in predicting the ultimate strength and stress distributions
of stiffened panels.
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A
Geometrical Parameter Set

This appendix contains more detailed information on the geometrical parameter set obtained by the
analytical model and the different datasets developed as input for the Machine Learning (ML) model.

Figure A.1 contains the correlation plots which is described in section 5.6.3 and is displayed on
the next page. The stiffened panel geometry in this research contains six variable values. In this study,
the Pearson Correlation Coefficient (PCC) is used to see if a linear trend can be observed between
parameters. Value of ­1 and +1 show a strong negative and positive linear correlation, respectively,
while values close to 0 implies no or a weak correlation. The entire obtained dataset consists of two
groups of which one is a small group located at the limits obtained from classifications societies. This
group was not taken into account for making the correlation plot to obtain accurate standard deviations
for the PCC. For the same reason, outliers are filtered. It can be observed that most of the parameters
show some (>0.6) to a strong (>0.85)correlation. The parameters that show less correlation are still
decently grouped. The correlations of the number of stiffeners (𝑛𝑠) are not representative since this
can only be an integer.

The histograms displayed in fig. A.2 show the geometrical parameter distributions of the entire data
set of 9207 models, which is obtained after applying noise to the genetic algorithm generated data.
Only the variable geometrical parameters are shown. The figures make clear that the spread in the
individual parameters is significant. The figures make clear that most models prefer a thin plate thick­
ness (𝑡𝑝). For the used length and width of the stiffened panel, it is clear that there is a preference for
large stiffeners, as seen from the distribution of the web height (ℎ𝑤). Then web thickness (𝑡𝑤) utilizes
only the lower part of the parameters, while the thickness of the flange (𝑡𝑓) spans the entire possible
parameter range. The width of the flange (𝑏𝑓) is also widely spread.

This dataset is then used to obtain the training and validation dataset. These sets are sampled
such that they maintain the same distributions as the original set. In total, 7355 models are used for
training data, and the other 1893 models are used as validation data. Their distributions are displayed
over the distributions of the total set in fig. A.3.

A test set is obtained by again adding noise to the genetic algorithm obtained data. In total, 1782
new models are created, and it is verified that none of the models is equal to the training or validation
data. The distributions of the test data are plotted in fig. A.4. Their distribution is similar to the original
data set.

From the test set, 288 models are selected that will be used for the scalability and the general­
izability test. The distribution is displayed in fig. A.5. The bin size is different to show the distributions
better because the number of models is small. The set is small because the set is used repetitively
for scalability and generalizability tests. With the repetitive use of the 288 models, a scalability set is
developed of 7200 models. The same principle is used for the generalizability and a set of 1440 models
is obtained.
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112 A. Geometrical Parameter Set

Figure A.1: Pearson correlation plot of all variable used in the optimization of the Genetic Algorithm (GA). A coefficient of ­1 and
1 represents a strong correlation. Values close to 0 represent some to no correlation between the parameters.
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(a) Distribution of the bottom plate thickness which is used as dataset
for the machine learning.

(b) Distribution of the height of the web which is used as dataset for
the machine learning.

(c) Distribution of the thickness of the web which is used as dataset
for the machine learning.

(d) Distribution of the width of the flange which is used as dataset for
the machine learning.

(e) Distribution of the thickness of the flange which is used as dataset
for the machine learning.

Figure A.2: Distributions of the geometrical parameters of the dataset of 9207 models. This dataset forms the input data set for
the machine learning model. A wide spread of every single geometrical parameter can be observed.
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(a) Distribution of the bottom plate thickness which is used as dataset
for the machine learning. Besides the original dataset, also the train
and validation set is plotted.

(b) Distribution of the height of the web which is used as dataset for
the machine learning. Besides the original dataset, also the train and
validation set is plotted.

(c) Distribution of the thickness of the web which is used as dataset
for the machine learning. Besides the original dataset, also the train
and validation set is plotted.

(d) Distribution of the width of the flange which is used as dataset for
the machine learning. Besides the original dataset, also the train and
validation set is plotted.

(e) Distribution of the thickness of the flange which is used as dataset
for the machine learning. Besides the original dataset, also the train
and validation set is plotted.

Figure A.3: Distributions of the geometrical parameters of the dataset of 9207 models. The training set contains 80% of the
models which are 7355 models. The validation set contains 20% of the models which are 1893 models. The training and
validation dataset forms the input data set for the machine learning model to train and validate the the training process. A wide
spread of every single geometrical parameter can be observed.
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(a) Distribution of the bottom plate thickness which is used as dataset
for the machine learning. Besides the original dataset, also the test
set is plotted.

(b) Distribution of the height of the web which is used as dataset for
the machine learning. Besides the original dataset, also the test set
is plotted.

(c) Distribution of the thickness of the web which is used as dataset
for the machine learning. Besides the original dataset, also the test
set is plotted.

(d) Distribution of the width of the flange which is used as dataset for
the machine learning. Besides the original dataset, also the test set
is plotted.

(e) Distribution of the thickness of the flange which is used as dataset
for the machine learning. Besides the original dataset, also the test
set is plotted.

Figure A.4: Distributions of the geometrical parameters of the dataset of 9207 models. The test set is a new generated set of
models which contains 1782 models. This dataset forms the test input data set for the machine learning model. A wide spread
of every single geometrical parameter can be observed.
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(a) Distribution of the bottom plate thickness which is used as dataset
for the machine learning. Besides the original dataset, also the
dataset for the scalability and generalizability is plotted.

(b) Distribution of the height of the web which is used as dataset for
the machine learning. Besides the original dataset, also the dataset
for the scalability and generalizability is plotted.

(c) Distribution of the thickness of the web which is used as dataset for
the machine learning. Besides the original dataset, also the dataset
for the scalability and generalizability is plotted.

(d) Distribution of the width of the flange which is used as dataset for
the machine learning. Besides the original dataset, also the dataset
for the scalability and generalizability is plotted.

(e) Distribution of the thickness of the flange which is used as dataset
for the machine learning. Besides the original dataset, also the
dataset for the scalability and generalizability is plotted.

Figure A.5: Distributions of the geometrical parameters of the dataset of 9207 models. This set is the small dataset drawn
from the original dataset which will repetitively be used for testing the scalability and the generalizability. This set contains 288
individual models but will be extended to 7200 models for scalability and 1440 models for generalizability. The bin size of the
288 models is larger to show the distribution for this small dataset.



B
Scalability Stress Distribution

A set of 288 structural models is selected from the training set. From those 288 models, every single
parameter is increased in steps of 5% to see how well the developed ML model can predict results
outside the training range. There are five variables in the geometry that are increased with a maximum
of 25%. This will result in a scalability test set of 7200 models.

The error on all the individual models is obtained to test the performance of the developed ML
models. A curve of the mean MSE error is obtained. Error bars are added to this mean error curve that
represents the Standard Error (SE), which can be determined by making use of eq. (B.1). The SE is
determined by dividing the standard deviation (𝜎𝑠𝑡𝑑) by the square root of the number of data points.
The reason for plotting the SE instead of the standard deviation is, that every 288 models will result in
equal number means which will be used to obtain an average mean of all 288 models. The error bars
then represent the variability of the plotted mean. Also, it became clear that the spread of the individual
results is significant, causing a large standard deviation that is not well presentable. Therefore, box
plots of the individual datasets are made to show the distribution and spread of the predicted results.
Box plots are also based on the median value instead of the mean, which provides some information
on the distribution.

This appendix shows the scalability results for the individual predicted stress components, the
corresponding von Mises stress, the directly predicted von Mises stress distribution, and results of the
ultimate strength prediction. All figures also show the corresponding test van validation error.

𝑆𝐸 = 𝜎𝑠𝑡𝑑
√𝑛𝑑

(B.1)

Figure B.1 shows the results for the stress distribution in x­ and y­direction (𝜎𝑥 and 𝜎𝑦). The line
plots fig. B.1a and fig. B.1b show an significant increase in the mean error when increasing the plate
thickness (𝑡𝑝) and the height of the web (ℎ𝑤). The error increases slightly when increasing the width
of the flange (𝑏𝑓). The thickness of the web (𝑡𝑤) and flange (𝑡𝑓) do not significantly influence the error.
The mean error seems even to decrease when increasing the thickness of the web. Figure B.1c and
fig. B.1d show the corresponding box plots. Every box shows the results for 288 models that belong
to a specific increase of a single parameter. From the box plots, similar conclusions can be drawn
compared to the line plots. The box plot also makes the spread of the results clear. Since the median
is used instead of the mean, an increase can be observed when increasing 𝑏𝑓. The figures also show a
substantial number of outliers. These are not specifically outliers in these results, but they are beyond
the 1.5 interquartile range of the box plot whiskers and are therefore drawn as outliers. The large
number of outliers makes clear that there is a large spread in the obtained results.

Similar results are shown for the different individual stress components. Figure B.2 shows the
results for the stress in z­direction (𝜎𝑧) and the shear in the xy­plane (𝜏𝑥𝑦). Figure B.2a and B.2b
show the line plots with similar results. Figure B.2c and fig. B.2d show the corresponding box plots.
The obtained results show similar results compared to the stresses in x­ and y­direction. Figure B.3
shows the results for the shear in yz­ and zx­plane (𝜏𝑦𝑧 and 𝜏𝑧𝑥). Figure B.3a and fig. B.3b show the
line plots. Figure B.3c and fig. B.3d show the corresponding box plots. Similar results are obtained
compared to all other graphs. The increase in error for 𝜏𝑦𝑧 shows a similar increase in behavior, but the
magnitude of the increase is significantly smaller. Figure B.4 shows the results for the directly predicted
von Mises stress, the von Mises determined from the individual stress components and the ultimate
strength results. Figure 8.6a and fig. 8.6b show the line plots of Figure B.4a and fig. B.4b, respectively.
The graphs show similar results to the individual stress components. Figure B.4c show the ultimate
strength box plots belonging to fig. 7.6.
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(a) Stress in x­direction (𝜎𝑥) MSE plot of the model developed to pre­
dict the individual stress distributions at the moment of failure. The
errorbars represent the SE. It can be observed that there is a strong
increase in error by increasing 𝑡𝑝 and ℎ𝑤. A minor increase is ob­
server for the increase of 𝑏𝑓. The influence of 𝑡𝑤 and 𝑡𝑓 is limited.
The SE of the mean becomes larger by increasing the individual pa­
rameters except for 𝑡𝑤.
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(b) Stress in y­direction (𝜎𝑦) MSE plot of the model developed to pre­
dict the individual stress distributions at the moment of failure. The
errorbars represent the SE. It can be observed that there is a strong
increase in error by increasing 𝑡𝑝 and ℎ𝑤. A minor increase is ob­
server for the increase of 𝑏𝑓. The influence of 𝑡𝑤 and 𝑡𝑓 is limited.
The SE of the mean becomes larger by increasing the individual pa­
rameters except for 𝑡𝑤.

(c) MSE box plot corresponding to fig. B.1a. The boxes make clear that the spread and median becomes larger by increasing the parameters.
Different to the mean, the median of 𝑡𝑤 shows an increase by increasing the parameters. It again becomes clear that error on 𝑡𝑝 and ℎ𝑤 are the
most influenced by the increase of parameters. The large number of outliers shows that the data contains predictions with significantly larger
errors.

(d) MSE Box plot corresponding to fig. B.1b. The boxes make clear that the spread and median becomes larger for 𝑡𝑝, ℎ𝑤, and 𝑡𝑤. The increase
in spread and median of 𝑏𝑓 and 𝑡𝑓 remains limited. Different to the mean, the median of 𝑡𝑤 shows an increase by increasing the parameters.
Also, different to fig. B.1b, the median of 𝑡𝑝 is never higher than the median of ℎ𝑤.

Figure B.1: Scalability results of 𝜎𝑥 and 𝜎𝑦 determined by the model developed to predict the individual stress distribution at the
moment of failure. (a) shows a line plot of the mean error on 𝜎𝑥 by increasing the individual parameters. (b) shows a line plot
of the mean error on 𝜎𝑦 by increasing the individual parameters. Both line plots also display the Standard Error (SE). (c) shows
box plots of the mean error on 𝜎𝑥. (d) shows box plots of the mean error on 𝜎𝑦. Every box corresponds to a dataset of 288
models with a total of 7200 models.
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(a) Stress in z­direction (𝜎𝑧) MSE plot of the model developed to pre­
dict the individual stress distributions at the moment of failure. The
errorbars represent the SE. It can be observed that there is a strong
increase in error by increasing 𝑡𝑝 and ℎ𝑤. A minor increase is ob­
server for the increase of 𝑏𝑓. The influence of 𝑡𝑤 and 𝑡𝑓 is limited.
The SE of the mean becomes larger by increasing the individual pa­
rameters except for 𝑡𝑤.
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(b) Shear in the xy­plane (𝜏𝑥𝑦) MSE plot of the model developed to
predict the individual stress distributions at the moment of failure. The
errorbars represent the SE. It can be observed that there is a strong in­
crease in error by increasing 𝑡𝑝 and ℎ𝑤. A minor increase is observer
for the increase of 𝑏𝑓. The influence of 𝑡𝑤 and 𝑡𝑓 is limited. The SE
of the mean becomes larger by increasing the individual parameters
except for 𝑡𝑤.

(c) MSE Box plot corresponding to fig. B.2a. The boxes make clear that the spread and median becomes larger by increasing the parameters.
Different to the mean, the median of 𝑡𝑤 shows an increase by increasing the parameters. The box moves to a larger error by increasing 𝑡𝑤
with little increase in spread. It again becomes clear that error on 𝑡𝑝 and ℎ𝑤 are the most influenced by the increase of parameters. The large
number of outliers show that the data contains predictions with significantly larger errors.

(d) MSE Box plot corresponding to fig. B.2b. The boxes make clear that the spread and median becomes larger by increasing the parameters.
Different to the mean, the median of 𝑡𝑤 shows an increase by increasing the parameters. It again becomes clear that error on 𝑡𝑝 and ℎ𝑤 are
the most influenced by the increase of parameters. The large number of outliers show that the data contains predictions with significantly larger
errors.

Figure B.2: Scalability results of 𝜎𝑧 and 𝜏𝑥𝑦 determined by the model developed to predict the individual stress distribution at
the moment of failure. (a) shows a line plot of the mean error on 𝜎𝑧 by increasing the individual parameters. (b) shows a line
plot of the mean error on 𝜏𝑥𝑦 by increasing the individual parameters. Both line plots also display the Standard Error (SE). (c)
shows box plots of the mean error on 𝜎𝑧. (d) shows box plots of the mean error on 𝜏𝑥𝑦. Every box corresponds to a dataset of
288 models with a total of 7200 models.
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(a) Shear in the yz­plane (𝜏𝑦𝑧) MSE plot of the model developed to
predict the individual stress distributions at the moment of failure. The
errorbars represent the SE. It can be observed that there is an in­
crease in error by increasing 𝑡𝑝 and ℎ𝑤. The influence of 𝑡𝑤, 𝑏𝑓 and
𝑡𝑓 is limited. The SE of the mean becomes larger by increasing the
individual parameters except for 𝑡𝑤. The increase of error is less sig­
nificant compared to other stress factors.

4 6 8 10 12 14 16 18 20 22 24 26

Parameter Increase Percentage

0

0.5

1

1.5

2

2.5

M
S

E

1014

Scalability t
p

Scalability h
w

Scalability t
w

Scalability b
f

Scalability t
f

Validation
Test

(b) Shear in the zx­plane (𝜏𝑧𝑥) MSE plot of the model developed to
predict the individual stress distributions at the moment of failure. The
errorbars represent the SE. It can be observed that there is a strong
increase in error by increasing ℎ𝑤. A minor increase is observer for
the increase of 𝑡𝑝 and 𝑏𝑓. The influence of 𝑡𝑤 and 𝑡𝑓 is limited. The SE
of the mean becomes larger by increasing the individual parameters
except for 𝑡𝑤.

(c) MSE Box plot corresponding to fig. B.3a. The boxes make clear that the spread and median becomes larger by increasing 𝑡𝑝 and ℎ𝑤. All
other parameters show little influence on the obtained error, the spread and the median. It again becomes clear that error on 𝑡𝑝 and ℎ𝑤 are
the most influenced by the increase of parameters. The large number of outliers show that the data contains predictions with significantly larger
errors, although the outliers are less extreme compared to other stress components

(d) MSE Box plot corresponding to fig. B.3b. The boxes make clear that the spread and median becomes larger by increasing the parameters.
Different to the mean, the median of 𝑡𝑤 shows an increase by increasing the parameters. It again becomes clear that error on 𝑡𝑝 and ℎ𝑤 are
the most influenced by the increase of parameters. The large number of outliers show that the data contains predictions with significantly larger
errors.

Figure B.3: Scalability results of 𝜏𝑦𝑧 and 𝜏𝑧𝑦 determined by the model developed to predict the individual stress distribution at
the moment of failure. (a) shows a line plot of the mean error on 𝜏𝑦𝑧 by increasing the individual parameters. (b) shows a line
plot of the mean error on 𝜏𝑧𝑥 by increasing the individual parameters. Both line plots also display the Standard Error (SE). (c)
shows box plots of the mean error on 𝜏𝑦𝑧. (d) shows box plots of the mean error on 𝜏𝑧𝑥. Every box corresponds to a dataset of
288 models with a total of 7200 models.
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(a) MSE Box plot corresponding to fig. 8.6a. The boxes make clear that the spread and median becomes larger by increasing 𝑡𝑝 and ℎ𝑤. All
other parameters show little influence on the obtained error, the spread and the median. It again becomes clear that error on 𝑡𝑝 and ℎ𝑤 are
the most influenced by the increase of parameters. The large number of outliers show that the data contains predictions with significantly larger
errors, although the outliers are less extreme compared to other stress components

(b) MSE Box plot corresponding to fig. 8.6b. The boxes make clear that the spread and median becomes larger by increasing the parameters.
The behaviour is similar to the results obtained from the individual stress components. This is due to the fact that these stresses will be used to
determine the von Mises stress.

(c) MSE Box plot corresponding to fig. 7.6. The boxes make clear that the spread and median becomes larger by increasing the parameters. An
increasing trend can be observed when increasing the individual parameters. Also, more outliers are present with an increase in parameters.
A significant increase in MSE is observed at a 25% increase.

Figure B.4: Scalability results of both von Mises stresses, the directly predicted von Mises stress and the von Mises determined
by the individual stress distribution at the moment of failure. Also, the scalability results of the ultimate strengh predicting model
are displayed. (a) shows box plots of the individual mean errors on the directly predicted von Mises stress. (b) shows box plots
of the individual mean errors on the von Mises determined from the individual stress components. (c) shows the box plots of the
ultimate strength predictions. Every box corresponds to a dataset of 288 models with a total of 7200 models.





C
Generalizability Stress Distribution

The dataset used to examine the generalizability consists of 1440 curved stiffened panel models based
on 288 base models that are also used for the scalability data set. In total, five different curvatures have
been tested. Instead of defining a fixed radius of curvature, a fixed height in the middle of the stiffened
panel is used. This height is increased in steps of 0.2 meter until a height of 1.0 meter is reached in
the middle of the panel. For the generalizability, the stiffened panels are only curved in one direction,
which is the transverse direction. This direction of curvature is a commonly used shape in the bilge of
ships. The stiffened panels are curved such that the stiffeners point towards the center of curvature as
is described in section 7.7.

This appendix displays box plots for the individual stress components, the von Mises stress
determined from these individual stress components, and the directly predicted von Mises stress. All
plots also show the Mean Squared Error (MSE) obtained on the corresponding validation and test set.

Figure C.1a shows theMSE for the stress in x­direction (𝜎𝑥). The graph shows a clear increase in
themedian and the spread of the error when the curvature of the stiffened panels increases. Figure C.1b
and fig. C.1c show the MSE of the stress in y­ and z­direction respectively (𝜎𝑦 and 𝜎𝑧). Both graphs
show that an increase in curvature will not result in an increase in the obtained loss. It is interesting to
observe that the largest spread in the predictions is observed for the stiffened panels with the smallest
curvature that has been tested. Similar behaviour can be observed for the shear stress in the xy­plane
(𝜏𝑥𝑦) . This behaviour is different compared to the results in x­direction. Figure C.1e shows the loss
obtained on the shear stress in the yz­plane (𝜏𝑦𝑧). The shear stress in the yz­plane shows similar
behaviour to the stress in x­direction since an increase in curvature will also result in an increase of the
median and the spread of the predictions. The shear stress in zx­plane (𝜏𝑧𝑥) is displayed in fig. C.1f.
In this plot it can again be seen that the curvature will not significantly influence the loss and the spread
obtained.

The loss of the predicted von Mises stress distributions are given in fig. C.2. Figure C.2a shows
the results for the directly predicted von Mises stresses. No clear conclusion could be drawn on these
results because no clear behavior could be observed. Figure C.2b shows the results of the von Mises
stress distribution generated from the individual stress components. It can be observed that the loss
increases when the curvature of the stiffened panel increases. This behaviour is probably determined
by the stress in the x­direction, which follows the same trend. Also, the stress in x­direction generates
the largest losses, so it will impact the calculated von Mises stress significantly.

This appendix only shows the box plots of the obtained results. The individual mean values are
displayed in fig. 8.8a and fig. 8.8b for respectively the individual stress components and the von Mises
stress distribution.
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(a) Box plot of the MSE per curvature of the stress in x­direction (𝜎𝑥).
It can be observed that an increase in curvature also increases the
error and the spread of the errors.
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(b) Box plot of the MSE per curvature of the stress in y­direction (𝜎𝑦).
It can be observed that the error is not dependent on the amount of
curvature.
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(c) Box plot of the MSE per curvature of the stress in z­direction (𝜎𝑧).
It can be observed that the error is not significantly dependent on the
curvature. The largest spread is observed for the smallest curvature.
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(d) Box plot of the MSE per curvature of the shear in xy­plane (𝜏𝑥𝑦).
It can be observed that the error is not significantly dependent on the
curvature. The largest spread is observed for the smallest curvature.
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(e) Box plot of the MSE per curvature of the shear in yz­plane (𝜏𝑦𝑧). It
can be observed that an increase in curvature also increases the error
and the spread of the errors.
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(f) Box plot of the MSE per curvature of the shear in zx­plane (𝜏𝑧𝑥).
It can be observed that the error is not dependent on the amount of
curvature.

Figure C.1: Generalizability box plots of the individual stress components predicted by the ML model. The plots represent the
Mean Squared Error (MSE) related to the curvature of the stiffened panel. A plot is given for every individual stress component.
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(a) Box plot of the MSE per curvature of the directly predicted Von
Mises stress. The amount of curvature does not seem to have a clear
effect influence on the obtained MSE.
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(b) Box plot of the MSE per curvature of the von Mises stress obtained
from the individual stress components. An increase in curvature also
increases the MSE and the spread of the results.

Figure C.2: Generalizability box plots of the von Mises stresses predicted by the ML model. The plots represent the Mean
Squared Error (MSE) related to the curvature of the stiffened panel. A plot is given for the directly predicted von Mises stress
and for the von Mises stress determined by the individual stress components.
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