MSc thesis in Geomatics

simplification of Massive TINS
with the Streaming Geometries
Paradigm

Maarten de Jong
2021

MSc thesis in Geomatics

Simplication of Massive TINs with the
Streaming Geometries Paradigm

Maarten de Jong

June 2021

A thesis submitted to the Delft University of Technology in partial
tulfillment of the requirements for the degree of Master of Science in
Geomatics

Maarten de Jong: Simplication of Massive TINs with the Streaming Geometries Paradigm (2021)
@@® This work is licensed under a Creative Commons Attribution 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

1,!U Delft 3D geoinformation group

3Dgeoinfg et University of Technology

Supervisors: Dr. Hugo Ledoux
Dr.ir. Ravi Peters
Co-reader: ir. Baldzs Dukai

http://creativecommons.org/licenses/by/4.0/

Abstract

The volume and density of geospatial data is constantly increasing as newer acquisition techniques are
developed to create higher-resolution datasets and more countries are creating country-wide datasets
such as point clouds. However, methods to deal with this increase in the amount of data are lagging
behind and the developments in computer hardware are no longer moving fast enough to compensate.
Especially the ability to load and process datasets into the main memory of a computer is becoming
more difficult. Therefore, to work with these massive datasets more modern techniques need to be
used. In this thesis on one such method for dealing with these massive datasets is explored; streaming
simplification of geometries.

Streaming of geometries relies on processing small portions of a geometric dataset at a time, only keep-
ing as much information in memory as is necessary, instead of the whole dataset. This method ensures
that memory bottlenecks are prevented and ever-increasingly large datasets can be processed. Process-
ing done on a LIDAR dataset can range from creating rasterized surface or terrain models, to creating
a triangulation. Triangulations are an imporant starting point for other analysis techniques such as wa-
tershed calculations, line of sight, or noise propagation. However, large datasets of high density lead to
large triangulations which are still too complex for these techniques to work with.

To create more manageable triangulations it is necessary to simplify them, which means finding a subset
of the vertices that best approximates the original surface. This can be done randomly, or feature-aware
by taking into account the shape of the dataset that is being simplified and ensuring data is kept where it
is relevant. The AHN3 dataset is so large that simplification cannot be done using traditional techniques.
Therefore, to achieve simplification of the AHN3 dataset, this thesis focuses on the modification of an
existing methodology for creating streaming triangulations by incorporating a simplification step.

The methodology implemented in this thesis consists of determining where a simplification algorithm
can be introduced within the existing streaming pipeline, as well as determining which existing simplifi-
cation techniques are applicable. After defining possible locations for a simplification module within the
streaming pipeline, various methods are created and tested on different sizes of dataset. These methods
are: random simplification, decimation, refinement, and a novel medial axis transform based approach.
For the refinement method a number of different implementations are investigated.

After the initial results are analyzed, the decimation and medial axis transform algorithms are rejected
due to extremely long processing times or a lack of accurate results, respectively. The refinement im-
plementations are able to produce accurate simplified triangulations in a reasonable amount of time,
where the best performing method hardly introduces a slowdown in processing at all. Using the fastest
algorithm (FCFS) 4 billion points are processed in less than 11 hours, against 13 hours without simplifi-
cation. Compared to other methods the accuracy of the methodology is similar for all of the approaches.
However, the number of points that can be processed per second is less when compared to existing re-
search. The best performing algorithm is a novel method defined as First-Come-First-Serve (FCFS), as
it has the best ratio between vertex error and computation time.

The results of this research show that creation and simplification of a massive Delaunay TIN is possible
and produces acceptable results, achieving RMSE’s below 0.2m consistently. Despite simplification, the
size of the resulting datasets is still often too large to fit within the main memory of a computer and
will still require streaming processing to perform further calculations on larger areas. This suggests that
with the current ever-growing datasets it is relevant to explore how all different types of calculations
can be performed in a streaming pipeline, possibly allowing these to be chained one after another.

All methods created for this thesis are found here: https://github.com/mdjongl/simpliPy

https://github.com/mdjong1/simpliPy

Preface and Acknowledgements

This thesis marks the end of my time at the Delft University of Technology, and with that opens up
a whole new world outside of the place I have had the pleasure to call home for the past eight years.
In these years, I have worked on numerous projects and assignments, both in my studies, as well as
in extracurricular activities, or while working part-time. However, none of these projects has been as
challenging to complete as writing a thesis. Therefore I would like to take this page to thank the people
that have supported me in this period. Especially in these strange times of the Covid-19 pandemic this
was extremely valuable.

First of all, I would like to thank Dr.ir. Hugo Ledoux for meeting with me on a weekly basis. From
the beginning of this thesis nine months ago, right up until the delivery, this has been of great value
to me. I can’t imagine how many times I said things that made no sense when he heard it, but after
some prodding and back and forth we managed to both understand what I was actually trying to say.
Without his guidance the quality of this thesis would not have been what it is now, and for that I am
grateful.

Furthermore, I want to thank my second supervisor, Dr.ir. Ravi Peters, for taking the time to answer
all of my questions about how MAT simplification works and providing valuable input at key points
during this thesis. The number of relevant and critical thoughts that come from presenting my ideas
and intermediate results to Ravi will continue to drive me in the future to be just as analytical. In this
process ir. Baldzs Dukai was also invaluable, not only in providing more critical thoughts and feedback
on this thesis, but also by having the only comparable research that allowed for a direct comparison to
my own results.

In the course of the past years I have always been supported by Laura, my friends, and family. This
is something that I appreciate now more than ever before; having people around you that help you
unwind when you need it most. Without the countless hours that Laura has put into reading my thesis
and providing feedback on my figures, I truly believe this thesis would have been less aesthetically
pleasing and pleasurable to read. All that remains now is to wish you, as reader, as much enjoyment in
reading this thesis as I have had in creating it.

vii

Contents

List of Figures xi
List of Tables XV
List of Algorithms xvii
Acronyms xix
1 Introduction 1
1.1 Delaunay Principle 3

1.2 Research Questions i i i e 5
121 Scope 5

1.3 Outlineof thisResearch 6

2 Related Work 7
2.1 Previous Work in Constructing Massive Delaunay Triangulations 7
22 SpatialCoherence 10
2.3 Streaming Principle L 11
23.1 Streaming of Geometries L L 11

2311 Sprinkling L 12

232 Finalizer 13

233 Triangulator 15

234 Applications of the Streaming Geometries Principle 16

2.4 Simplification Algorithms L L 16
241 DecimationPrinciple L 17

242 Refinement Principle L 19

243 Medial Axis Transform 20

3 Methodology 23
3.1 Integrating Simplification in a Streaming Pipeline, 23
3.1.1 Architecture of Simplification within the Streaming Geometries Pipeline 23

3.1.2 Possible Placement of Simplification in the Streaming Pipeline 24

3.2 Use of Simplification Methods in the Streaming Geometries Pipeline 24
3.21 Randomized Thinning 25

322 Drop-Heuristic 25

323 Refinement e 28

3.23.1 Greedy Refinement, 29

3.2.3.2 First-Come-First-Serve Refinement 30

3.2.4 Combining First-Come-First-Serve Refinement with Drop-Heuristic Decimation . 33

3.25 Medial Axis Transform Simplification 34

3.3 Evaluation Criteria: Parameters that Determine the Optimal Simplification Method 35
331 ACCUraCy 35

332 ComputationTime 36

333 Throughput 36

334 MemoryUsage 37

3.4 Dealing with Artefacts on Quadtree Borders, 37

ix

Contents

4 Implementation and Results
41 EvaluationTools e e e e
4.1.1 Timemeasurement it it e e e e e e e e e e e e
412 Accuracy e
413 Memory Analysis
414 Streaming Geometries Visualizer
4.2 Engineering Decisions o
421 Parallelization e e
43 Real-World Datasets e
43.1 Frequenttests (Small-Scale)
432 Less-Frequent tests (Large-scale)
433 One-Timetests (Full-scale).,
44 Results e e e e e
441 Small-Scale e
442 Large-Scale e
443 Full-Scale e e
444 Comparison of Results to other Methods
45 Artefacts e
45.1 Quadtree Border Artefacts
452 Facade Artefacts
5 Conclusions and Discussion
51 Researchquestions
52 Applicability
5.3 DiscuSsion e e e e e e e
54 Future work e e e e e
A Reproducibility self-assessment
A.1 Marksforeachofthecriteria e
A2 Self-reflection e e e e
Bibliography

39
39
39
40
42
42
43
44
44
45
46
46
47
47
53
58
59
62
63
63

67
67
69
69
71

73
73
73

75

List of Figures

1.1
1.2
1.3
14
1.5
1.6

21
22

23
24
25
2.6
27
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15

2.16

2.17
2.18

3.1
3.2

3.3
34

3D Noise Simulation from a Triangulated Irregular Network. 1
How a3D TINmodelsasurface. 2
Effect of directed simplification methods ona small-scale.. 3
Example of a valid Delaunay triangulation. 4
Example of an invalid Delaunay triangulation. 4
Example of a constrained Delaunay triangulation. 4
Comparison of resulting TIN and contour lines between unsimplified and simplified. . . 7
Comparison of execution time and memory footprint between ParaStream, Triangle, and

Streaming TIN. e 9
Steiner points being added along sub-tile borders to enforce common triangulation points. 10
Spatial coherence as inherent property of real-world datasets. 10
Spatial Coherence in the AHN3 dataset. 11
Configureation of the streaming geometries pipeline. 12
Visualization of vertex geometries being streamed into a Delaunay Triangulation. 12
Why sprinkling is necessary to avoid slivers when creating TINs with streaming. 13
Quadtree cell structure foran AHN3 tile. 14
Example of the output stream from the finalizer. 15
How decimation can provide simplified results within a user specified error threshold. . 17
How z-error is determined for drop-heuristic decimation in a triangulation. 17

An example of how edge contraction shifts and merges vertices along the connecting edge. 18

Streaming simplification of a TIN which shows how features are maintained. 18
How z-error is determined for refinement methods and which vertex is subsequently

inserted into the triangulation. Lo L L L L o 19
How a minimum angle requirement affects the degree of simplification in a constrained

Delaunay triangulation. L L L 20
How MASB creates the interior surface of adataset. 20
Results of MAT point cloud simplification for various maximum error thresholds (¢). . . . 21
Possible placement positions for a simplification module within the sst pipeline. 24
Randomized thinning of the input dataset as simplification method implemented at po-

sition Bin the sst pipeline. L L 25
Drop-Heuristic implemented at position C in the sst pipeline. 25
Output example from the Triangulator. 26

xi

LIST OF FIGURES

xii

3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
44

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

4.21
4.22

423

Example of how stars are loaded into decimation.
Drop heuristic may lead to removal of relevant vertices due to cluster removal.
All types of refinement are implemented at position B in the sst pipeline, as shown.
Sample input for all refinement algorithms as received from the finalizer.
Comparison of two First-Come-First-Serve refinement techniques.
FCFS + Decimation simplification implemented at position B in the sst pipeline.
Comparison of FCFS refinement against FCFS with decimation.
MAT simplification implemented at position B in the sst pipeline.
Variation in output point cloud density when simplifying using MAT simplification. . . .
How linear interpolation of a vertexina TINworks.

Level of visual artefacts using simplification within a quadtreecell

Example of the output from the time module in Linux showing real, user, and sys(tem) time.
Vertex error measured vertically and how a TIN subsequently approximates the real surface.
Heatmap of vertex errors created in QGIS

Example showing what plotting the histogram looks like. Vertical lines added to show
relevant values: threshold, median,and RMSE.

Example showing the memory usage plot of a simplification module may look like.

The capability of sstvis to render streaming geometries in real-time.
Possible placement positions for a simplification module within the sst pipeline.
Vertex data being stored into a cell in parallelization.
Overview of all the datasetsused..
Delft-Tiny: Error histograms showing the distribution of error for each method.
Delft-Tiny: Error heatmaps for each method.
Delft-Small: Error histograms showing the distribution of error for each method.
Single Tile: Error histograms showing the distribution of error for each method.
Single Tile: Error heatmaps for each method. Zoom in for more detail.
Two Tiles: Error histograms showing the distribution of error for each method.
Four Tiles: Error histograms showing the distribution of error for each method.
Six Tiles: Error histograms showing the distribution of error for each method.
Eight Tiles: Error histograms showing the distribution of error for each method.
Dataset used for the comparison with Dukai [2020].

Comparison of results from this thesis vs. Dukai [2020]: Error histograms showing the
distribution of error for eachmethod.

Level of visual artefacts using simplification within a quadtreecell

No indication of quadtree border artefacts in a small section within the Eight Tiles dataset
using Greedyl.

The two types of artefacts that occur between building roofs and the ground surface of
the TIN.. e

27
28
29
32
33
33
34
35
36
38

39
40
41

41
42
43

52

56

61

LIST OF FIGURES

4.24 Comparison of the Reactor Institute dome-shaped roof between Greedyl simplification

and the 3D BAGdataset. 65
5.1 Possible placement positions for a simplification module within the sst pipeline. 68
A.1 Reproducibility criteriatobeassessed. L 0 0L 73

xiii

https://3dbag.nl

List of Tables

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
49

4.10

4.11

Statistics on the input datasets. L L L. 47
Delft-Tiny: Results of the simplification methods. 48
Delft-Small: Results of the simplification methods. 48
Single Tile: Results of the simplification methods. 53
Two Tiles: Results of the simplification methods. 56
Four Tiles: Results of the simplificationmethods. 56
Six Tiles: Results of the simplification methods. 58
Eight Tiles: Results of the simplification methods. 58

Comparison of simplification results from Single Tile to the results recorded by Isenburg
etal. [2006d]. oL e 60

Comparison of simplification results from Single Tile to the results recorded by Hegeman
etal. [2014]. e 60

Comparison of Simplification Results to Dukai [2020] based on the data seen in Figure 4.19. 62

XV

List of Algorithms

3.1 Drop-heuristicdecimation. L L L L 27
32 Greedyrefinement 30
3.3 First-Come-First-Serve Refinement, 31
3.4 MAT Simplification. L 34

Xvii

Acronyms

AHN
RIVM
TIN
DSM
DTM
GIS
cDT
DT
AWS
RMSE
SSDs
sst
DEM
EPV
LFS
MAT
MASB
FCFS
CSV
SQL
SSD
DBMS

Algemeen Hoogtebestand Nederland 1
Rijksinstituut voor Volksgezondheid en Milieu 1
triangular irregularnetwork L Lo oL Lo 1
digital surfacemodel L L 1
digital terrainmodel Lo 1
geographical informationsystem oL L Lo 2
constrained Delaunay triangulation 3
Delaunay triangulation Lo L L 3
Amazon Web Services 8
rOOt-IMEAN-SQUATE €ITOT+« o v v vt v e e e et e e e e e e 8
solidstatedrives. 8
streaming startin L 12
digital elevationmodel L L L L 16
EITOT-POI-VETteX it ittt e 19
local feature size 20
medial axis transform L L 20
medial axis shrinkingball L o o oo 20
First-Come-First-Serve 30
comma separated values 42
structured query language L L 42
solidstatedrive 47
database managementsystem Ll 70

Xix

1 Introduction

The amount of geospatial data collected is growing at a velocity and volume much greater than current
computer systems can handle. The combination of sensor data, satellite images, and geotagged social
media are only a few of many examples leading to the creation of immense pools of data that are too
large to process with the most commonly used techniques [Yao and Li, 2018, p. 192]. The density
of these existing geospatial datasets is also increasing as new technologies are created to make higher
resolution datasets. The consequence of this is that more storage capacity is needed to store all this data,
and that data has become more difficult to work with. The same problem is encountered with the LIDAR
dataset containing elevation data for the Netherlands (Algemeen Hoogtebestand Nederland (AHN)),
which has grown from 2.5 billion points in 1997, to almost 600 billion points in 2019, a 23,900% increase
in overall density [AHN, 2020].

In the Netherlands, the choice is made to split this big dataset into smaller tiles of 6.25 by 5km (31.25km?)
so they are easier to work with. Nevertheless, the size of the files is often still too large to fit in the main
memory of modern computers, let alone allow easy viewing or processing data in bulk. This is because
these datasets are often larger than 14GB and doing calculations with the dataset requires extra memory
overhead. This results in an inability to perform calculations on entire AHNS3 tiles, let alone have the
processing power to process multiple AHNS3 tiles at once.

A
5
3\

)
\

,\\ \
\VA)L7

’\[g

/ R

P

7

/\,

e

~

Figure 1.1: 3D Noise Simulation from a Triangulated Irregular Network. Figures from van Rijssel et al.
[2020, p. 8, 26].

One of the ways a LIDAR dataset, such as AHN, is commonly processed is to triangulate the points to
create a triangular irregular network (TIN). A TIN is a representation of the surface created by triangles
between relevant neighboring points. One of the reasons you might want to use such a large triangu-
lation is to model noise propagation in an environment, explored by van Rijssel et al. [2020]. Here, the
TIN is used to model how reflections from noise sources traverse an environment and affect the level
of noise pollution at another location. An example of how this looks can be seen in Figure 1.1. The
Dutch institute for health and the environment (Rijksinstituut voor Volksgezondheid en Milieu (RIVM))
wants to use a similar technique on a single contiguous TIN to model the noise for the entire country.
This ensures the surface is always the same for all analyses and is continuous from pollution source to
receiver.

One method used by the providers of AHN to reduce the size of the dataset is by providing a rasterized
digital terrain model (DTM) and digital surface model (DSM) which have a precision of either 5m or

1 Introduction

0.5m. The reduced precision means that the ~15 points per m? of the original dataset are reduced to
0.2-2 data values per m?. This allows the size of the dataset to be drastically reduced and provides
datasets that are more usable in day-to-day operations. Examples of operations that can be done on
these rasterized datasets include watershed calculations, calculation of line-of-sight, or determining
solar irradiance. However, in this process precision is lost due to the cell size being fixed, never allowing
for more precision if necessary. It is arguably preferable that datasets with the highest possible accuracy
are used when applicable, allowing for down-scaling to be done if necessary. However, considering
the current density of the AHN dataset, combined with the lack of a full country-sized TIN, it is very
difficult to use this high-precision dataset for day-to-day operations.

Figure 1.2: How a 3D TIN models a surface by creating representative triangulations between
coordinates with a z-value. Figure from URI [2021].

Ensuring precision is not lost can be done by creating a TIN of the available points. Figure 1.2 shows how
a TIN is formed, and how points with elevation values can be triangulated to represent a 3D surface.
The advantage of creating a TIN is that representative surfaces are created between points, allowing
for more complex operations such as interpolation to be performed. However, a disadvantage is that
by triangulating an entire AHN tile the file size increases as even more data is added to represent the
triangles created.

To overcome the issues of large TINs, it is possible to simplify the triangulations by reducing the number
of triangles that represent the same surface, as can be seen in Figure 1.3. This ensures that precision is
kept where relevant, while drastically reducing the file size of the TIN. Flat surfaces can generally be
represented with fewer triangles without loss of accuracy. While triangulations for 3D models can often
be simplified by off-the-shelf geographical information system (GIS) software, these are not capable
of handling triangulations that contain many tens of millions of points, as the software will run into
memory limitations or crash for other reasons.

One approach taken to creating large Delaunay triangulations is used by Dukai [2020]. This approach
relies on splitting one AHNS3 tile into nine sub-tiles to create more manageable datasets. Subsequently,
triangulations can now be created within each sub-tile because the size of the dataset is reduced. To
ensure that the triangulation is still continuous, extra vertices (Steiner points) are added along the edges
of all the tiles which are inserted into the triangulation. This ensures a mutual vertex in the triangula-
tion for both sides of a border, thus making the triangulation continuous. Further elaboration on this
approach can be found in Section 2.1.

Another way to deal with triangulations containing tens of millions of points without having to load
them all into memory is to apply the streaming geometries paradigm [Isenburg et al., 2006b]. The
streaming principle reads a large file sequentially; reading a file line by line from start to finish and
using a small portion of the entire dataset to determine what needs to be done. This principle can be
applied to any type of data processing and is a common technique seen within the field of big data to
deal with consistent streams of data. In the case geometries are streamed each line in the file contains
a geometric reference; a vertex or an edge. By using this method, the main memory of a computer
is never exhausted and various analyses can be done on these large Delaunay triangulations, such as

1.1 Delaunay Principle

(a) Terrain model of Crater Lake (199,114 (b) Simplified model with 999 faces (took 46
faces). seconds).

Figure 1.3: Effect of directed simplification methods on a small-scale. Figure from Garland and
Heckbert [1997b, p.7].

simplification, extraction of contour lines, and creation of rasterized data. Theoretically, this allows for
infinitely large geometries to be processed as data is continuously loaded into memory, processed, and
unloaded from memory to disk. How streaming works in detail is further discussed in Section 2.3.1.

Streaming of geometries only works if the data has high enough spatial coherence, which means that
points that are nearby geographically are also close to one another when stored in a file. The principle
of spatial coherence is further defined in Section 2.2.

1.1 Delaunay Principle

A TIN is almost exclusively created to adhere to the Delaunay principle, adding a layer of complex-
ity to the calculation used to create these large triangulations. The Delaunay principle states that the
circumcircle of each triangle contains no other points. This ensures that triangulations that adhere to
this principle maximize the angle of the triangles as well as preventing slivers. Slivers are triangles that
are so small and narrow that they hardly have a surface area, making it difficult to perform any opera-
tion on them because calculations can result in precision errors. Examples of what a valid and invalid
Delaunay triangulation (DT) looks like can be seen in Figure 1.4 and Figure 1.5. Here, vertices A and C
in Figure 1.5 are the vertices that violate the Delaunay principle because they are within the circumcircle
of vertices ABD and BCD.

Furthermore, it is also possible to create a constrained Delaunay triangulation (cDT), which ensures that
specific polygons are maintained within the triangulation. A cDT can be used in cases where building
footprints, or other relevant shapes, should be maintained within the output triangulation. This means
that the polygons are provided to the triangulation and the triangulator will maintain these polygons
as edges of the triangulation. An example of how these polygons are maintained is seen in Figure 1.6,
where the line DB is the constraint. This is a similar situation to Figure 1.5, where an invalid DT is
presented. This invalid triangulation can be resolved by creating the edge AC marked in red. However,

1 Introduction

E D
c
D A
A
E
B B
C
Figure 1.4: Example of a valid Delaunay Figure 1.5: Example of an invalid Delaunay
triangulation. All circumcircles of the triangles triangulation. Two of the circumcircles contain a
contain no other vertices. vertex, marked in red.

due to the added constraint of edge DB this is not possible and the triangulation will not adhere to the
Delaunay principle. This is one of the characteristics of a cDT, where the Delaunay principle is often
broken to ensure the constraints are met.

D

Figure 1.6: Example of a constrained Delaunay triangulation where edge DB is the constraint. To
maintain Delaunay edge AC would need to be created instead of DB, but this is not possible.

For the scope of this research constrained Delaunay Triangulations are not taken into account, as the
complexity in adhering to the additional polygon constraints is quite high. Furthermore, this research
focuses on the streaming geometries paradigm, making the task of constructing a cDT even more chal-
lenging as it requires correctly splitting the constraints across quadtree cells.

1.2 Research Questions

1.2 Research Questions

The main question for this research is related to how seamless Delaunay triangulations may be created
using the entire AHN3 dataset, while also simplifying this triangulation in the process. Combining
these two aspects leads to the following main research question:

How can a seamless, simplified, Delaunay TIN for all AHN3 points be constructed using the streaming geometries
paradigm?

This research is related to various stages in the process for which the main goal is to achieve a seamless,
simplified, Delaunay TIN. One of the supporting questions is therefore:

How can TIN simplification be integrated into the streaming creation of a Delaunay triangulation?

This question relates to the challenges in simplifying the triangulation based on local decisions, as op-
posed to being able to simplify on a global level. Local decisions are decisions made using only a subset
of the entire file, whereas global decisions use all data available in the file. Section 2.4 describes how vari-
ous simplification methods provide guarantees that are applicable when addressing the global overview
of a Delaunay triangulation. As streaming loads and unloads data continuously, using a global metric
is not possible and it is therefore necessary to assess how these methods perform when used within a
local scope.

For the TIN simplification process, multiple methods are examined and evaluated which are addressed
in Section 2.4. Therefore, it is relevant to research which of the simplification methods produces the
best results, based on metrics defined in Section 3.3. This leads to another supporting question which
reads:

Which TIN simplification method produces the best results when used in a streaming pipeline?

Here, the question focuses on assessing how the simplification methods will yield different results when
used in a streaming pipeline. A large part of the performance of the simplification methods depends on
user-specified parameters, such as which threshold to use for the error of a vertex. However, optimized
tweaking of parameters is out of scope for this research due to requiring a lot of extra computation time
to test various combinations.

After creation and assessment of the streaming simplification methods, another relevant aspect is to
compare the performance to existing methods. This is based on using the datasets from other researches
to quantify how the performance of the methods applied in this thesis relate to the those. The relevant
research papers used for comparison are discussed in Section 2.1. In many cases it may not be possible
to use the same dataset as described in the existing research due to limited availability, in that case a
comparison is made between various metrics to determine how the methods relate to one another. The
assessment made using these metrics is discussed in Section 3.3. All this leads to another supporting
research question stating:

How does the streaming creation and simplification of a Delaunay TIN perform in comparison to existing methods
in terms of execution time, memory usage, and accuracy?

1.2.1 Scope

To limit the size of this research, a number of choices are made that determine the scope within which
this research is conducted. One of these choices is that the sst program made by Ledoux [2020] is used
as the main framework in which the simplification modules are introduced. How sst works is further
discussed in Section 2.3.1. This streaming geometries pipeline provides a robust starting point for the
development of the simplification modules, as the program is open-source, functions well, and is main-
tained.

Furthermore, this research will be limited to three simplification methods and a control. These methods
are further discussed in Section 2.4.

1 Introduction
1.3 Outline of this Research

The content of this thesis is separated into four main chapters. Chapter 2 discusses existing research
that is relevant to the topic. The main principles are discussed, including how previous large simplified
triangulations have been created, as well as information on the chosen simplification methods for this
research.

Chapter 3 is used to elaborate on the design choices that are made based on existing research. This
chapter goes into depth on specifics of why choices are made, as well as discussing initial findings.

Chapter 4 deals with how these choices can be used. This chapter elaborates on the technical implemen-
tation of this research. Furthermore, this chapter also shows all the results obtained.

Finally, Chapter 5 provides a conclusion and discussion by answering the research questions and pro-
viding depth on the usability of this research. This chapter also reflects on the results and suggests
future work that is possible with this research.

2 Related Work

To better understand the possibilities and limitations of streaming geometries and streaming simplifi-
cation, this chapter discusses the previous findings from other related research. Firstly, the streaming
of geometries is tackled and other relevant methods for dealing with large Delaunay triangulations are
reviewed. After this, the TIN simplification methods that are applicable in the context of the streaming
geometries paradigm are presented.

2.1 Previous Work in Constructing Massive Delaunay Triangulations

Besides the works of Isenburg et al. [2006d] and Constantin et al. [2010] related to simplifying Delaunay
triangulations by streaming geometries which are explained in Section 2.3, there are very few methods
that do not rely on the streaming geometries paradigm to create massive Delaunay triangulations. Fur-
thermore, there is a lack of relevant research that aims to simplify a large Delaunay triangulation while
it is being created. Many researchers focus merely on the creation of large Delaunay triangulations
without including a simplification step.

Isenburg et al. [2006d] focus on the streaming creation of contour lines, but choose to implement a sim-
plification step to make it easier to create clean contour lines. The inner workings of this simplification
step are omitted though a stated simplification of 90% is achieved with no error metric provided. Fig-
ure 2.1 shows the result of the contour line extraction before and after simplification. Despite the result
in Figure 2.1 hardly changing between with and without simplification, it is difficult to state whether the
simplification done by Isenburg et al. [2006d] is randomized simplification or a directed simplification
method.

Figure 2.1: Comparison of resulting TIN and contour lines between unsimplified (left) and simplified
(right). Figure from [Isenburg et al., 2006d, p. 4].

The main reason it is not possible to determine what kind of simplification method is used in Isenburg
et al. [2006d] is because randomized thinning creates a near-constant error across the TIN, which may
result in contour lines that are nearly the same as before. Nevertheless, Isenburg et al. [2006d] also state

2 Related Work

that the simplification module takes the most CPU time of the entire pipeline, which suggests many
calculations are done within this module. Therefore it can be assumed a directed simplification method
is used to perform simplification in this streaming pipeline to create contour lines. This means that
for later reference the method used by Isenburg et al. [2006d] for simplification prior to contour line
extraction can be best compared to the directed simplification methods created for this research, further
discussed in Section 2.4. Unfortunately no binary or code is available of the exact method, thus the
statements made in Isenburg et al. [2006d] for the number of points processed in a period of time are
used to perform comparisons in Table 4.9.

Hegeman et al. [2014] is one of the few methods for creating massive Delaunay TINs and explores how
large Delaunay triangulations can be created using computing clusters available from Amazon Web Ser-
vices (AWS). The approach of Hegeman et al. [2014] uses a distributed computing cluster with memory
capacities between 128GB and 2.2TB to process datasets between 12GB and 95GB. The methodology
is focused towards the practicalities of computing a coherent Delaunay triangulation in a distributed
cluster by splitting and merging data efficiently. However, the research does state that it achieves a
0.069m root-mean-square error (RMSE) with 32% of the vertices removed, and a 1.9m RMSE with 81%
of vertices removed. Considering the high RMSE of 1.9m with 81% of the vertices removed it is likely
that the simplification method used by Hegeman et al. [2014] is based on a simple thinning method
which probably relies on randomized thinning or removal of 1/# points. Therefore, the performance of
this distributed cluster computing method is best compared to randomized thinning (Section 3.2.1) in a
streaming pipeline.

Another approach is the out-of-core method which has been applied by Agarwal et al. [2005] to create
constrained Delaunay triangulations. cDTs use a polygon to indicate lines that must be present in the
output triangulation, as explained in Section 1.1. An out-of-core algorithm aims to organize the data on
disk in such a way that it can be optimally read into the internal memory. The goal is to ensure that the
next data block to be read is the next physical block on the disk which ensures minimal seeking of the
storage device. This is something that has been relevant for mechanical drives but is now being quickly
outdated by the widespread availability of solid state drives (55Ds) which feature a linear access time.
Therefore Agarwal et al. [2005] will not be taken into account as a relevant, modern, option for creating
massive Delaunay TINs. Nevertheless, the approach used to create a cDT provides insight into possible
future work in the creation of constrained triangulations within the streaming pipeline. This future
work is discussed in Section 5.4.

Agarwal et al. [2005] state they are able to create a cDT from 10GB of real-life LIDAR data using 128MB
of memory in roughly 7.5 hours [Agarwal et al., 2005, p. 357]. This is done by taking a heavily math-
ematical approach towards creating an I/O efficient algorithm which initially creates a triangulation of
the dataset using a user-specified block size, which is followed by introducing the polygon constraints
into this triangulation. The block size specifies how much data should be stored in each segment on
the disk. By determining the relation between the completed blocks, these blocks can be stored in the
correct geospatial order allowing for fast access when adding the polygon constraints later on. For this,
Agarwal et al. [2005] use a Hilbert order to create the geospatially efficient storage. At the end of the
processing the result is a set of blocks on disk which are in the correct geospatial order to be written to
a readable file for output. This writing to file is much faster on a mechanical drive compared to other
methods also using mechanical drives because the drive requires minimal movement to write the data
blocks in the correct order.

Another proposed method relies on sorting the dataset within the file itself prior to processing it. Buchin
and Mulzer [2011] discuss how they create a Delaunay triangulation by initially sorting all the ver-
tices within the dataset on disk and subsequently triangulating the sorted dataset. Triangulating sorted
points ensures that subsequent points read from the file are always nearby to one another, reducing the
number of very large triangles created that require insertions within these triangles at a later moment.
The approach is interesting, though sorting nearly 600 billion points for the entire AHN3 is a task that
will take too long to complete and is therefore not a feasible method for my research. Furthermore, as
is discussed in Section 2.2, real-world datasets have inherent spatial coherence which prevents the need
to sort them prior to processing.

2.1 Previous Work in Constructing Massive Delaunay Triangulations

A different approach is proposed by Wu et al. [2011] in which the multi-core capability of modern CPU’s
is utilized to divide and conquer the workload across different cores. As can be seen in Figure 2.2, the
memory usage is increased but execution time is decreased. Wu et al. [2011] achieve this by spreading
their workload across multiple CPU cores, effectively increasing the number of computations that can
be done. Their approach can be combined with Funke et al. [2019] who discuss how to best divide
the workload across the cores. Funke et al. [2019] create a methodology that ensures data is logically
separated and workload sizes are equally spread. Their methodology is relevant because it ensures that
each core is provided with a task that can be solved and can be performed in a similar amount of time
to other cores.

The approach of Funke et al. [2019] builds upon the multi-core workflow discussed in Funke and
Sanders [2017], and thereby provides an improvement upon the original research by Wu et al. [2011].
Funke et al. [2019] is the first research to combine both streaming TIN with multi-core processing as
described by Wu et al. [2011]. This approach is very relevant as it ensures that the tasks within the
streaming pipeline that can be parallelized run much faster. Examples of this are the parallelization
of the three passes within the finalizer, as discussed in Section 5.4, or the simplification of multiple
quadtree cells in parallel as discussed in Section 4.2.1. As such, similar principles to the ones described
by these three research papers are applied to improve the execution time of the simplification methods
created for this research. The methods are discussed in Section 3.2 and how multi-core processing is
combined with these methods can be found in Section 4.2.1.

60 500 x
A
50+ —&— ParaStream - 400
- - - Triangle
s -4 Streaming TIN o
3 40 E - -@- - ParaStream
;, ' + 300 -] —d— Trianglg
£ = s s A Streaming TIN
< 30+ - = 3
S - el £
5 > 200
S 1<
2 20+ 2
w 2 *
100
10 v
e . .* S B - —mmm o m o m—— = === - |
el - R 4
0 v T T T T 0 T T T
0 5 10 15 0 5 10 15
Number of points (million) Number of points (million)
(a) Execution time (b) Memory footprint

Figure 2.2: Comparison of execution time and memory footprint between ParaStream, Triangle, and
Streaming TIN. Figures from Wu et al. [2011, p. 1361, 1362].

Lastly, Dukai [2020] has recently taken an approach towards processing the entire AHN3 dataset into
a TIN by using additional points along tile borders, called Steiner points, shown in Figure 2.3. This
method splits a single AHN3 tile into nine sub-tiles for easier processing and storage. The method
consists of interpolating the Steiner points along the sub-tile borders every ten meters. By doing this,
tiles that share a border have mutual points that can be used to connect the triangulations of those tiles
together. This method is successful in producing a country-sized TIN, while keeping each tile available
separately. Therefore, the results of this method can be used as a comparison for vertex count and
accuracy when comparing to the result of this research.

Dukai [2020] uses multiple processes to achieve the simplified TINs. To start, the AHNS3 tiles are split
and the borders are densified; adding Steiner points every ten meters. After this, each sub-tile can be
processed by 3dfier which is configured to simplify the dataset to a maximum error of 0.3m using greedy
refinement [Ledoux et al., 2021b]. Finally, duplicate points along the edges are removed and the result
is stored to a PostGIS database. This methodology relies on a number of different programs that are
chained together, similar to the streaming geometries paradigm. However, in this case the cell size is
determined by the size of the sub-tiles and the streaming is done by chaining various different programs

2 Related Work

Figure 2.3: Steiner points being added along sub-tile borders to enforce common triangulation points.
Figure from Dukai [2020].

together. It should be noted this chaining is done manually as the entire AHN3 dataset is processed for
each stage before moving on to the next step. Therefore it is not possible to state what the processing
time of this methodology is and a comparison can only be made for the outcome of this approach, which
is performed in Table 4.11.

2.2 Spatial Coherence

Spatial coherence is a property which correlates the proximity of geometries in their 3D space with
the position of their representation when being streamed [Isenburg et al., 2006b, p. 1]. This property
ensures that when creating a triangulation, nearby points can be triangulated and finalized on a frequent
basis. By having high spatial coherence it ensures that few vertices need to be kept in memory and the
application can continue to function memory-efficiently. [Isenburg et al., 2006b] has shown how spatial
coherence is an inherent property of real-world datasets by analyzing the spatial coherence for two
datasets seen in Figure 2.4.

2
. al
points from
f \ beginning of
all points from stream

end of stream points from
beginning and
end of stream

occupied cells

of grid at depth six sample points

of the actual terrain

center color
indicates first point ~ boundary color

|
color codes
position of point

in stream indicates last point) '/
[[
(a) 6 million point Baisman Run dataset in Broadmoor, (b) 500 million point Neuse river basin dataset in North
Maryland Carolina

Figure 2.4: Spatial coherence as inherent property of real-world datasets. Adapted from Isenburg et al.
[2006b, p. 3].

10

2.3 Streaming Principle

To determine spatial coherence, a dataset can be split into cells that are used to show how correlated the
points within that cell are. After this, the dataset is streamed and it is determined within which of these
cells the point lies. The "time’ is measured by how many vertices have been processed at that moment.
When all points in the dataset have been processed, the result is a raster grid with cells that contain a
start time and a last update time. This provides all necessary data to determine the spatial coherence of
that dataset. Using this approach and applying it to AHN3 shows that for various AHN3 tiles located
in different locations in the Netherlands this property is valid. Two examples of this can be seen in
Figure 2.5.

07BZ2 - Bedum

Cell Time (# points)
o

[94385707.3
1188771415
[283157122
I 377542829

37EN1 - Delft

Cell Time (# points)
I o

[118543871
[237087741
[355631612
Il 472175482

(a) 37EN1 (Delft, Zuid-Holland) (b) 07BZ2 (Bedum, Groningen)

Figure 2.5: Inner cell color indicates time in stream of first point in that cell, cell border indicates time in
stream of last point in cell. Both tiles show a few outliers, but overall spatial coherence is very high
for the tested AHNG tiles.

2.3 Streaming Principle

Streaming consists of two (or more) programs that are connected with a pipe operator. This is an operator
that takes the output of the previous program and uses that as input for the next program, an example of
this is echo “Hello World” | wc —w. The pipe operator is denoted as |. This will output “Hello World”
to the pipe operator, which will then be fed into wc (word count) and tell us how many words are in
the input sentence (two). This same principle is used to chain applications together that in- and output
geometric data.

The way these pipes function is that data is sent continuously as the programs in the stream are running.
Therefore it is not necessary to wait for one of these programs to finish running in its entirety before
being able to continue. In the simple case stated above, where the number of words is counted, the
same operation can be applied to a continuously growing file and the word count will continue to count
the words in that file until it is finalized.

2.3.1 Streaming of Geometries

Streaming of geometries is used to process geospatial datasets that are too large to fit in the main mem-
ory of a computer. Initially presented by Isenburg and Gumhold [2003], it allows for the processing of

11

2 Related Work

large datasets on commodity hardware. Though powerful hardware is more common nowadays, the
size and density of datasets continues to grow faster than the capability to process these datasets. The
two programs used for streaming are a finalizer and a triangulator, seen in Figure 2.6, both of which are
explained more elaborately in the following sections.

Point Cloud (LAS) — Finalizer % Triangulator P TIN (OBJ)

Figure 2.6: Configuration of the streaming geometries pipeline to create large Delaunay triangulations
as proposed by Isenburg et al. [2006b], and later used by Ledoux [2020].

The streaming geometries principle presented by Isenburg and Gumbhold [2003] is later elaborated on
in Isenburg and Lindstrom [2006], and Isenburg et al. [2006b]. These three researches together create a
methodology in which large meshes can be rendered and processed while streaming. In the latter it is
also discussed how Delaunay triangulations can be created while streaming. Isenburg and Gumhold
[2003] aim to create a methodology to visualize existing large-scale meshes, whereas the other two re-
searches aim to apply an operator on the streaming mesh and target Delaunay triangulations more
specifically. The third manages to create a Delaunay triangulation from 11GB (500 million points) of
LIDAR data in less than an hour using 70MB of memory, the process and result of this can be seen in
Figure 2.7. This methodology consists of two main elements: a finalizer and a triangulator. Both of these
elements are discussed in more detail in the following sections.

Figure 2.7: Visualization of vertex geometries being streamed into a Delaunay Triangulation. Blue
quadrants show unfinalized space where points will arrive in the future. Black points have already
been written to disk or piped to the next application. Adapted from Isenburg et al. [2006b, p. 1].

2.3.1.1 Sprinkling

Sprinkling is the process in which some points are promoted to the beginning of the stream, which
means that prior to triangulating these points are already present. The sprinkling process is performed
as part of the finalizer (discussed in the following section). The reason that sprinkling is necessary is that
in some (rare) cases points are read from the input file in such a way that triangulating requires moving
of all previously created triangles due to creating slivers. These sprinkle points are inserted to ensure
that there is always a larger triangulation present, thus preventing these slivers from being created. A
possible scenario in which sprinkle points are necessary to prevent unnecessary computations can be
seen in Figure 2.8. This figure clearly shows a large number of slivers that will result in many operations
to correctly adjust these triangles upon inserting a new vertex, followed by a triangulation including
sprinkle points showing how these slivers are avoided.

Sprinkling can be done by promoting a certain percentage of points to the top of the stream as they
are released from the finalizer, discussed in Section 2.3.2. Another method is to promote one point per
cell, ensuring that there is always at least one randomized point present in a cell. streaming startin

12

2.3 Streaming Principle

(sst) functions by promoting a certain percentage of points (0.1%) to the top of the finalization stream.
Isenburg et al. [2006b] relies on efficiently promoting a single point per cell, though it is stated that these
points are only released as soon as the quadtree cell becomes relevant [Isenburg et al., 2006b, p. 6].
Releasing when a quadtree cell becomes relevant is more complex than promoting all sprinkle points
to the top of the stream, but it prevents releasing a large number of points at the start of the streaming
pipeline which improves the overall processing time.

Figure 2.8: Skinny temporary triangles (left) are avoided by lazily sprinkling one point into each
unfinalized quadrant at each level of the evolving quadtree (right). [Isenburg et al., 2006b, p. 6]

2.3.2 Finalizer

With its misleading name, the finalizer is the first application in the streaming geometries pipeline that
a file is piped through, as can be seen in Figure 2.6. The task of this operator is to do all necessary
initialization steps before processing begins. The reason it is called finalizer is because it releases cells
in chunks of a specified dimension and thus “finalizes” these chunks. How finalization and releasing of
chunks works is further explained in the rest of this section. The finalizer relies on passing over all the
data in the input file(s) to obtain the necessary information to allow processing of the data to start. This
is done in three passes and can therefore take a while to initialize for larger datasets, as each pass reads
every point in the file(s). Each pass has its own function and uses information from the previous pass.
Therefore, it is not possible to everything in a single pass (yet), though advancements could be made to
reduce the number of passes and their respective complexity.

What the finalizer initially does is retrieve the number of points that are in the file, which is used to
determine how many points need to be sprinkled. If this information cannot be retrieved from the
header of the file, this is the first full pass of the input file. A specified percentage of points, around 0.1%,
is chosen at random from the file to be released to the rest of the pipeline immediately. Furthermore,
the bounding box is determined by determining what the minimum and maximum X, y, and z value
is. These values are needed to create the quadtree structure that is used to subdivide all points. In
Figure 2.9 an example is shown of what this quadtree structure may look like for an AHN3 tile.

After the sprinkling is completed, the finalizer moves on to a second pass of the data in which the num-
ber of points per quadtree cell is summed. Furthermore, points can be filtered at this stage dependent
on their classification. Filtering is done in the second pass, as opposed to the first pass, because with the
current structure of sst this implementation meant less adjustments. Preferably, however, the filtering is
done in the first pass, which also counts the number of points, to ensure the correct number of points
is taken into account. Filtering means that, for example, all non-ground points can be rejected to cre-
ate TIN of the surface. Other filtering combinations are also possible depending on the classifications
present in the dataset. The calculation for determining in which x and y cell a point lies is seen in Equa-
tion 2.1. This second pass creates a grid of dimensions cell-size x cell-size. Each cell now contains the
value of the number of points that are present in that cell.

celly = floor((xpos — miny)/cellsize) celly = floor((ypos — miny)/cellsize) (2.1)

13

2 Related Work

cell size

dataset bounding box

point e

Figure 2.9: Cells outside the bounding box of the dataset are empty and thus finalized at the start.
When four neighbors are finalized they are merged into a larger cell.

The regular grid is initially used to determine the smallest cell size within which vertices can be sub-
divided. Using the regular grid it is possible to determine when a cell is finalized and can be merged
with its parent cell. By using this regular grid it is always possible to use a simple calculation, seen
in Equation 2.1, to determine within which cell the point lies. As soon as cells start being merged into
larger cells, as seen in Figure 2.9, it requires much more tracking of parent and child cells to determine
within which cell a point lies. Therefore, the choice is made within sst to use this regular grid which is
only merged with a parent upon finalization of all four child cells. This ensures that no points will enter
those quadtree cells at a later moment in time, reducing the amount of bookkeeping that is necessary to
keep up with cell dimensions and positions of points.

An example output of the finalizer is seen in Figure 2.10. Figure 2.10 is also used to reference the line
numbers indicated in the text to provide a textual and visual idea of the content of this module. In
the third and final pass of points through the finalizer, each point is released per quadtree cell to the
pipeline for further processing. This is done by initially writing the background information to the
pipeline, allowing the next processes to use this information. This background information relates to:
the number of points in the entire dataset (line 3), the number of cells (line 5), the size of each cell (line
7), and the bounding box of the dataset (line 9). All the background information is relevant for either the
simplification method that follows, or the triangulator to create an initial grid. After this information has
been written to the next module of the pipeline, all quadtree cells that have no points can be released as
they require no further processing and can be finalized immediately. Subsequently, the sprinkle points
are released since these are necessary to ensure slivers don’t occur. Lastly, the points in each quadtree
cell are released cell-by-cell, with one vertex on each line of output data (lines 11-14 and 18-19). After
all the points in a cell are released, the cell can be finalized with a finalization tag (line 17). When all the
quadtree cells have been released to the stream the finalizer is finished with its task.

Furthermore, it is important for the finalizer to operate with a minimal memory footprint as the entire
streaming pipeline is meant to easily fit in the main memory of a computer. The memory footprint of

14

2.3 Streaming Principle

1 # sstfin

2 # number of vertices in dataset

3 n 212550

4 # number of cells in x and y direction
5 c 2

6 # width/height of each cell

7 s 50

8 # bounding box of dataset

9 b 84600.000 447000.000 84699.998 447099.999
10 # vertices

11 v 84693.724 447051.214 1.410

12 v 84628.038 447085.693 9.739

13 v 84684.830 447073.781 0.877

14 v 84650.951 447082.913 0.584

15

16 # finalizing cell x=1 y=0

17 x 10

18 v 84699.781 447050.264 1.284

19 v 84699.508 447050.050 1.307

20

Figure 2.10: Example of the output stream from the finalizer.

the finalizer has been measured to be a maximum of 40MB, which is well within bounds. Data held in
memory mainly relates to the input parameters and characteristics of the input data, i.e. which files to
use as input, the id’s of vertices to sprinkle, which point classifications to keep, and the bounding box
of the dataset.

2.3.3 Triangulator

While the finalizer is still busy releasing information to the pipeline, the triangulator can start processing
all data that it receives immediately. The advantage of using a streaming pipeline lies here, as the
triangulator is constantly processing each vertex that the finalizer releases and finalizing the cell when
it receives a finalization tag.

The triangulator functions differently from the finalizer, as it reads all its data from the previous module
and thus has no knowledge of the entire dataset besides what it is provided by the finalizer. The input
of the triangulator is the output of the finalizer, as shown in Figure 2.10. Using the provided tags
containing the background information (lines 1-9), the triangulator is able to create the same cell grid
as is made in the finalizer. For each point that the triangulator then receives it inserts it into the correct
cell.

When it receives a finalization tag in the shape of “x cell, cell,” (line 17), the triangulator knows it is
allowed to finalize all the points in that cell, as no new ones will enter it later on. Finalization can then be
done when there are no edge cases such as vertex edges being on the convex hull, or if the circumcircle
of a triangle is near the bounding box of the dataset. If these checks pass, the triangulation that has been
created of all points in the cell is written to the next module in the pipeline. The triangulator is generally
the last module in the pipeline, which means that all the results from the triangulator are written to disk
and thus released from memory, keeping the memory usage minimal.

The triangulator writes the resulting triangulation in the OBJ file format which is easily readable by a
number of programs. This format outputs vertices and their corresponding edge relationships into a
string format on file. Edge relationships are defined as ’faces’ and represent each triangle that is present

15

2 Related Work

in the triangulation. Faces in OB] may also be defined as quadrilaterals as opposed to triangles, though
only triangles are used to store the results of the triangulations.

As with the finalizer, the triangulator should also use a limited amount of memory to stay within bounds
of the main memory of a computer. The amount of memory used by the triangulator has been measured
to be around 50MB maximum, which is used to store all active vertices and their triangulations.

2.3.4 Applications of the Streaming Geometries Principle

Isenburg et al. [2006b] also looked further than the creation of triangulations, by exploring possibilities
in streaming geometries by looking at compression [Isenburg et al., 2006a], creation of contour lines
[Isenburg et al., 2006d], and creation of digital elevation model (DEM)s [Isenburg et al., 2006¢c]. With
these resources a majority of the desired techniques for processing large LIDAR datasets by streaming
is created. One issue is that no corresponding code or binaries are released for most of these researches.
Ledoux [2020] has since recreated the main streaming pipeline proposed in Isenburg et al. [2006b] and
made the project available open source. This includes the finalizer, triangulator, and a statistical analysis
tool. However, further tools similar to those described are not readily available.

2.4 Simplification Algorithms

Considering that simplification is the main goal of this research, a number of simplification methods are
used to assess which method will best answer the research questions. Most of the methods discussed
are not designed to be applied with streaming geometries, thus adaptations are necessary to be able to
use them within the sst streaming geometries pipeline. The versions of these methods as used for this
thesis are discussed in Section 3.2. For this thesis three base simplification types are considered, which
are:

1. Decimation
2. Refinement

3. Medial Axis Transform

Simplification algorithms can be applied globally, as regular GIS software does (described in Chapter 1),
within which the algorithms use the entire dataset to create an optimal solution using all the available
data. By using a global algorithm a maximum € vertex error can be guaranteed as all points in the
dataset are usable by the simplification algorithms. This provides security that the desired € is always
achieved.

As opposed to regular GIS software packages, when using a streaming geometries pipeline it is only
possible to access the subset of data held in memory at that moment in time. Therefore, a streaming
simplification algorithm will never be able to use a global metric to determine what the maximum e
vertex error is for the resulting triangulation. Instead, the simplification algorithms used while stream-
ing rely on a local metric, namely the € within the subset of data that the algorithm is processing at
that moment. For some of the following simplification algorithms the data used by simplification is the
content of a quadtree cell, for other simplification algorithms this is a user-specified number of points
that should be used. Because of this locality in simplification a global € cannot be guaranteed, thus
increasing the probability that the user-specified maximum vertex error is not be achieved for the entire
dataset.

16

2.4 Simplification Algorithms

2.4.1 Decimation Principle

Decimation is the first main type of simplification that can be done to simplify TINs. This type of
simplification works by taking a full triangulation and removing all vertices that have an error value
that is beneath a user-specified threshold. An example of how this error threshold works can be seen in
Figure 2.11. Here, it is shown that the curved surface is approximated within e threshold to retain its
original features.

error(p,) > ¢,

&

error(p,) < ¢,

ax

Figure 2.11: How decimation can provide simplified results within a user specified error threshold.
€max denotes the user-specified vertex error threshold. Figure from [Ledoux et al., 2021a, p. 84]

The main method within this category is the drop-heuristic method developed by Lee [1989]. This
method works by determining the error of each vertex in a triangulation if it were to be removed. Subse-
quently, the vertex with the least error of all the vertices is permanently removed from the triangulation.
Error is measured by removing the vertex from the triangulation; linearly interpolating what the value
of the vertex is with it removed; then re-adding the vertex to the triangulation. A visual representation
of how this process works can be seen in Figure 2.12. The error value is determined to be the difference
between the actual z-value of the vertex and the interpolated value. After all vertices are measured,
the vertex with the least z-error is permanently removed from the triangulation as long as that z-error
is above a certain threshold. If the smallest z-error available in the entire triangulation is above the
threshold, the triangulation has been simplified sufficiently and the decimation process can finish.

Temporarily remove vertex Determine z-error Reinsert vertex and repeat for all remaining vertices

Figure 2.12: How z-error is determined for drop-heuristic decimation in a triangulation. Figure drawn
in perspective viewing a triangulation at an angle from above.

Decimation can also be done by means of edge contraction, which is a method that uses a metric based
on the sum of the quadric error of two vertices. The two vertices with the overall lowest quadric error
sum between them are subsequently contracted into a single vertex along their connecting edge. The
quadric error is determined based on a matrix calculation using the squared distance of a vertex v to a
a plane p, about which more details can be found in Garland and Heckbert [1997b, p. 4]. Garland and
Heckbert [1997b] also show how this metric can be applied to perform mesh simplification by means of
edge contraction to achieve good results.

17

2 Related Work

By using the quadric error edge contraction method, vertices are physically moved to find the optimal
position along the edge connecting the two vertices with the lowest combined error metric. The result of
this is a more fine-tuned € as more granular adjustments can be made to the triangulation. Despite this,
this method is not used as one of the possible simplification algorithms within my research, because the
computational complexity of calculating the sum of quadric errors for each vertex pair is larger than
calculating a vertical error delta. Nevertheless the quadric error edge contraction algorithm is a method
which should be applicable to simplification in a streaming pipeline and should be considered for future
work within this research topic, as further discussed in Section 5.4.

contract

Before After

Figure 2.13: An example of how edge contraction shifts and merges vertices along the connecting edge.
The highlighted edge is contracted to a single point. The shaded triangles are removed. Figure from
Garland and Heckbert [1997a, p. 2].

An extension of this quadric error method is introduced by Constantin et al. [2010] who allow for extra
limitations to be provided. Such limitations are: only simplifying points with a certain classification,
using object ID’s to determine what should be simplified, or using building boundaries as constraints.
This approach is particularly interesting because it provides a way to apply local simplification in a
streaming pipeline, allowing for reductions in the number of vertices up to 95% while still maintaining
the structure of the TIN, as seen in Figure 2.14.

(a) Original mesh (995k vertices) (b) Simplified mesh (49k vertices)

Figure 2.14: Streaming simplification of a TIN which shows how features are maintained. The left half
of each figure only shows triangles, the right half also shows their surfaces. Figures from Constantin
etal. [2010, p. 154].

One of the innovative ideas introduced by Constantin et al. [2010] is to adjust the target error threshold
during processing. This is done based on the error of the portions of the triangulation which have
already been completed. By doing so, corrections can be made for the global error metric by monitoring
how the local error metric is developing over time. If the error of the already finalized sections of the
triangulation is higher than the specified global threshold, the local threshold for the remaining sections
of the triangulation is lowered. The same works in the opposite way, where the local threshold can be

18

2.4 Simplification Algorithms

increased if the error of the finalized sections is lower than the global threshold.

Constantin et al. [2010] state a performance that scales linearly with the input size for an approximate
throughput of 50,000 vertices per second Constantin et al. [2010, p. 155]. This is achieved by using
a buffer of a set number of vertices within which edge contraction with quadric error measurement is
applied as simplification algorithm. The buffer is filled by new triangles coming in from the streaming
pipeline and cleared as triangles are finalized following simplification.

The largest dataset simplified using this approach is 2.3GB, containing 65 million vertices, similar to
20% of a single AHNS3 tile. Constantin et al. [2010] state they are able to simplify this dataset in 19
minutes keeping 25% of all the points in the input set. An error metric is not provided for this specific
dataset. Another, smaller, dataset is run using the same methodology to achieve an error-per-vertex
(EPV) (which is the same as RMSE) of 309 for a dataset of 995,000 vertices and 0.15 for a dataset of
200,000 vertices. Why there is such a large difference between the EPV of the 995,000 vertices dataset
compared to the 200,000 vertices dataset is not further explained in their research.

2.4.2 Refinement Principle

The second main method for TIN simplification is refinement. This type of simplification is done by
starting with a very basic (e.g. four corners of bounding box) triangulation and subsequently checking
which point has the largest error and adding that point to the triangulation. Error is defined by linearly
interpolating the value of the point on the triangulation and comparing that to the actual z-value, as
shown in Figure 2.15. In each iteration the point with the largest error is added to the triangulation until
a certain user-specified threshold for minimum accuracy of the triangulation is reached.

Refinement can be implemented as a greedy algorithm, which means that the algorithm makes the best
local decision using the information at hand. This can result in a locally optimal solution that adheres to
the user-specified maximum error threshold. However, this means that the threshold is not guaranteed
globally and the global threshold is likely to be surpassed [Ledoux et al., 2021a, p. 84-85]. Two different
approaches to a refinement algorithm are used for this thesis. The one uses the error of the next point
in the stream, inserting it immediately if the error is above the threshold, while the other approach uses
the point with the largest error available in a larger subset of points. This difference, and the difference
in the outcome, is highlighted in Section 3.2.3.1 and Section 3.2.3.2.

rrrrrrr > >

Start with basic triangulation Determine z-error for each vertex Insert vertex with largest z-error

Figure 2.15: How z-error is determined for refinement methods and which vertex is subsequently
inserted into the triangulation. Figure drawn in perspective viewing a triangulation at an angle from
above.

The origin of usable refinement algorithms lies with Ruppert [1995], who is able to produce meshes
without small angles and with control over the density of triangles. This research focuses mainly on the
creation of constrained Delaunay triangulations and simplifies triangulations by specifying a minimum
angle for triangles. Defining a minimum angle for each triangle results in a sparser triangulation due
to enforcing the creation of larger triangles through this metric. What effect this constraint has on a
triangulation can be seen in Figure 2.16.

The refinement method defined by Garland and Heckbert [1997a] is one of the more practical and effi-
cient methods. It makes use of greedy insertion, meaning that it will insert one or more points into the
triangulation on each pass. Furthermore, this method makes use of a max heap to store the vertex errors.
A max heap is an efficient data structure for storing ordered values and removing/inserting points. The

19

2 Related Work

RE

(a) Triangulation with a minimum angle of (b) Triangulation with a minimum angle of
22.5° 20°

Figure 2.16: How a minimum angle requirement affects the degree of simplification in a constrained
Delaunay triangulation. Figure from Ruppert [1995, p. 3].

advantage of the method defined by Garland and Heckbert [1997a] is that it only stores the worst er-
ror vertex per triangle and only recalculates the errors of vertices that are affected by an insertion. This
method is practical if there is knowledge on which points are contained in a specific triangle because this
allows for recalculating only the vertices affected by the insertion of another vertex. However, within
the triangulation software used for this thesis (Startin) no information is provided on which points are
contained within a specific triangle. Therefore it is not practical to use the method defined by Garland
and Heckbert [1997a] as it would rely on doing expensive point-in-triangle checks.

2.4.3 Medial Axis Transform

The last main simplification method is based on using a medial axis transform (MAT) combined with
the local feature size (LFS) to simplify massive point clouds. A MAT is a 3D surface representation of
a point cloud that approximates the surface created by the points. It is created using the medial axis
shrinking ball (MASB) algorithm, which is seen in Figure 2.17. Using a sphere of decreasing radius this
algorithm is able to determine when it is ‘inside’ the point cloud by checking whether the sphere is
contained in the point cloud. The interior and exterior MAT represent the interior and exterior surface
of the point cloud. It should be noted that it is generally necessary to have a buffer of points around
the target area to create an accurate MAT. This will not be possible within the streaming geometries
pipeline and will thus likely have a negative effect on the results of this method.

A

(d) Fourth iteration

(a) Initial ball (b) Second iteration (c) Third iteration yields an empty ball

Figure 2.17: How MASB creates the interior surface of a dataset. Figure from Peters [2018a, p. 37].

20

2.4 Simplification Algorithms

The LFS is a measure introduced by Amenta and Choi [2008] which represents the shortest distance
between a surface point and an MAT. Using LFS allows for determining whether a point is geometrically
significant by identifying if the curvature near the point is high [Peters, 2018a, p. 89]. A high curvature
indicates that the point is most likely significant as it lies near a sharp change in the surface structure.
These points should be kept as they define edges of features, whereas points with lower significance
(curvature) can be discarded.

The method avoids using a KD-tree for simplification by using a three-dimensional regular grid to
approximate the thinning factor and subsequently randomly thinning a grid cell Peters [2018a, p. 90].
Using the three-dimensional regular grid ensures that the simplification algorithm is able to run in linear
time. Furthermore, Peters [2018a] provides a number of parameters that can be set by the user, making it
challenging to optimize the parameters without sufficient knowledge of the inner workings. However,
if a near-optimal set of parameters is achieved the results are promising, as can be seen in Figure 2.18.

(c) e = 0.4 88835 points

(e) e = 0.6, 53359 points (f) e = 0.6, quadratic, 54385 points

Figure 2.18: Results of MAT point cloud simplification for various €. Figure from Peters [2018a, p. 92].

21

3 Methodology

This chapter discusses the methodology developed to construct and simplify massive Delaunay trian-
gulations in a single streaming pipeline. Simplification is added to the streaming geometries pipeline
sst, as described in Section 3.1. Depending on the simplification algorithm, the position of the algorithm
within the pipeline can change between one of the three possible positions. Different implementations
of the simplification types discussed in Section 2.4 are explained in the following sections, as well as
reasons why the simplification method may work best in a streaming pipeline. Furthermore, there is
one control method called randomized thinning which is used as a comparison.

Section 3.2 goes more into depth about different adaptations that have been made to the simplification
methods to use them within a streaming pipeline. Most notably, a combined methodology between
refinement and decimation is introduced and some initial results are presented.

Lastly, Section 3.3 discusses which parameters are relevant to judge the performance of the simplifica-
tion methods within the streaming pipeline. These evaluation criteria are essential in understanding
how each method performs for different parameters. Therefore, four criteria are identified which will
provide insight to the results of each simplification method.

3.1 Integrating Simplification in a Streaming Pipeline

In the following sections the design choices for implementing simplification into sst are explained, as
well as more in-depth information on the placement of the simplification methods within the streaming
pipeline. The different types of simplification are tested for their speed, accuracy, and memory usage.
These results are important because the algorithms need to be capable of processing massive TINs, thus
a trade-off between these three factors is required. Based on the results from these tests, variations of the
simplification methods are created that solve different problems such as; keeping too many triangles,
and taking too long to compute the simplified triangulation.

3.1.1 Architecture of Simplification within the Streaming Geometries Pipeline

Simplification can be implemented into the streaming geometries pipeline by adding a simplification
algorithm within the finalizer or the triangulator. The advantage of implementing simplification within
the existing finalizer or triangulation is that their functionality is expanded. However, when assessing
this design choice from the streaming geometries principle there is a better option; making the simplifi-
cation method its own module in the streaming pipeline.

Making the simplification method a separate module in the streaming pipeline will allow for the use of
any programming language in creating the module. The major advantage of the streaming pipeline is
that it relies only on a standard input and standard output. By using this modular approach the simpli-
fication methods can be written in any programming language and still work flawlessly with the other
components in the pipeline. In turn, this approach creates a more sustainable ecosystem of components
and allows for a lower barrier to entry if other researchers want to create their own modules.

Furthermore, in the future this design choice may lead to the creation of other modules that provide

separate functionalities. An example of another useful module is a streaming visualization module,
such as the one discussed in Section 4.1.4. Other possible modules that come to mind are ones that

23

3 Methodology

follow the ideas of Isenburg et al. [2006d], in which contour lines are created in a streaming pipeline,
or a DEM is generated. Anyone, in any programming language, could choose to create a module using
the output from the finalizer or triangulator that turns their result into valid contour lines. Therefore,
the simplification implementations serve a good example project and are created as an sstmod(ule) to
provide an example for future usage.

3.1.2 Possible Placement of Simplification in the Streaming Pipeline

The decision to make the simplification methods modular leads to another decision, namely where to
place these modules within the streaming pipeline. There are three main positions where simplification
could be implemented: A, B, or C in Figure 3.1.

Point Cloud (LAS) — A > Finalizer — B { Triangulator }—u c — TIN(0BJ)

Figure 3.1: Possible placement positions for a simplification module within the sst pipeline.

The advantage of position A is that it simplifies the input data, ensuring that the finalizer and triangu-
lator have less points to process which reduces the time taken by these steps. The disadvantage is that
not all of the methods can work with raw point cloud data. Furthermore, methods in position A rely on
the dataset having extremely high spatial coherence, as points are passed to the simplification method
entirely sequentially. A possible consequence of this decision can be seen in Figure 3.13 and is further
discussed in Section 3.2.5.

For position B, the advantage is that the finalizer has already categorized these points into cells and
releases them cell-by-cell. Doing so ensures that there is always a similar number of points released to
the simplification module, as well as that they are highly spatial coherent. This correlates with the work
of Funke et al. [2019] in spreading the workload evenly across multiple cores. There is a possibility that
simplification within each cell may lead to artefacts on the borders of the cells due to these being sharp,
strict, borders. Whether artefacts are actually introduced is further analyzed in Section 3.4.

Position C has the advantage that it can work with a finalized triangulation, which means that it pre-
vents possible border artefacts from occurring. The disadvantage of position C is that the triangulator
will need to triangulate all points in the dataset prior to passing this information to the simplifier, in-
creasing its computation time. Furthermore, the simplification module will also have to deal with more
data compared to position B, because it relies on using the triangles released by the triangulator as
opposed to only vertices as released from the finalizer.

Based on the above advantages and disadvantages, different simplification algorithms are implemented
at different positions. The effects of these choices is further analyzed in Chapter 4.

3.2 Use of Simplification Methods in the Streaming Geometries
Pipeline

The following sections discuss the various simplification methods that are implemented. Each section
shows what the position is of the module within the streaming pipeline and shows the input and output
data processed by the module.

24

3.2 Use of Simplification Methods in the Streaming Geometries Pipeline
3.2.1 Randomized Thinning

Randomized thinning is used as a control method to compare with the results of other simplification
modules. Randomized thinning is the most basic form of simplification, thus providing a clear baseline
when a method performs better than random. Ideally this method is implemented at module position
A, as this reduces the workload for the finalizer. However, doing so requires rewriting the finalizer to
accept data from a prior module, which it is currently not capable of. Therefore, to ensure modularity is
maintained, randomized thinning is implemented at position B, shown in Figure 3.2.

Point Cloud (LAS) — Finalizer ~>{Random ThinningH Triangulator P TIN (OBJ)

Figure 3.2: Randomized thinning of the input dataset as simplification method implemented at
position B in the sst pipeline.

The randomized thinning method relies on randomly allowing one in every n points through the stream-
ing pipeline and on to the next application. This is done by using a pseudo-random number generator
that generates numbers between 1 and n. When the result of the random generator is n/2, the value is
allowed to pass through to the next application. In further sections, randomized thinning is referred to
as rand + n, e.g. rand100 if one in every 100 points is passed on.

3.2.2 Drop-Heuristic

Drop-heuristic is a decimation-type simplification which relies on removing points that are below a
certain accuracy threshold from a triangulation, as described in Section 2.4.1. The drop-heuristic method
is implemented at position C in the streaming pipeline (see Figure 3.3). The reason for this is that it is
desirable to use the same triangulation twice, i.e. in the triangulation and for drop-heuristic. To do so,
the triangulator sends its entire triangulation to the drop-heuristic module to reuse for simplification.
Doing so the other way around, with drop-heuristic sending a full triangulation to the triangulator, is
not possible due to requiring changes to the triangulator.

Point Cloud (LAS) — Finalizer *>{ Triangulator H Drop-heuristic P TIN (OBJ)

Figure 3.3: Drop-Heuristic implemented at position C in the sst pipeline.

Figure 3.4 shows what the input for drop-heuristic simplification looks like. This input is received line-
by-line from the triangulator and subsequently simplified using the drop-heuristic method. Line 1 is the
line that provides the bounding box of the dataset, which is ignored for drop-heuristic simplification.
Lines 2-6 show how vertices are received by drop-heuristic in X, y, z order. Line 7 indicates that the vertex
with id 1 has all of its neighboring vertices already present and can therefore be finalized. To ensure that
this simplification module is able to rebuild the same triangulation as provided by the triangulator, line
7 also contains the vertex id’s of the neighbors in counter-clockwise order. How the triangulation is
rebuilt using the provided information can be seen in Figure 3.5.

Using the information seen in Figure 3.4, the exact same triangulation as created by the triangulator is
rebuilt inside the drop-heuristic method. Doing so ensures that the triangulation is built in the same way
and no recalculation is required. Furthermore, this ensures that it is clear when a point can be finalized,
as it should have all its neighbors loaded before it can be finalized. As can be seen in Figure 3.5, it is
possible for vertex 1 to be finalized, while not all of its neighbors are finalized. In the example, vertex 1,
2, and 5 are finalized, but 3 and 4 are not. This means that vertex 1 is not ready to be simplified yet and
can be excluded from the simplification for now.

25

3 Methodology

84600.000
84662.229
84662.238
84662.315
84662.222
84661.998

447000.000
447029.124
447029.101
447029.061
447029.331
447029.189

84699.998 447099.999
.745
.745
.759
.758
722

OO O OO

1 [2, 3, 4, 5]

84656.722 447016.696 3.582
84656.805 447016.542 0.683
84656.812 447016.733 0.704

S W

R OOV OOk WN -
< < < X << << < T

_ =

Figure 3.4: Output example from the Triangulator showing how edges and vertices can be rebuilt for
use in drop-heuristic decimation.

Figure 3.5: Example of what the data from Figure 3.4 may look like after more points are finalized.
Dotted lines represent non-existent edges to unfinalized neighbors.

Simplification with drop-heuristic decimation works by waiting for a number of points (e.g. 5000) to
be received as input before attempting to simplify all points that are now held in memory. Due to the
requirement of vertices and their neighbors needing to be loaded into memory it is possible that none, or
very few, points are simplified in a single pass. In that case, another set of the same number of points are
received and simplification is re-attempted. This process is repeated until enough vertices are available
and ready to be finalized to perform the simplification process and the simplified points can be released
to the standard output. All vertices that are not ready to be finalized are kept in memory to be finalized
at a later moment, when they adhere to the requirements to be finalized. Algorithm 3.1 explains the
drop-heuristic simplification as it is implemented in pseudo-code to provide a better overview of each
step.

Choosing different recalculation intervals has an effect on both the accuracy and the computation time.
A larger recalculation interval will lead to less computation time as the errors are recalculated less fre-
quently. However, because multiple vertices are removed at a time it may lead to relevant vertices being
removed as well. Relevant vertices may be removed despite ordering these vertices for the largest error.
As seen in Figure 3.6, it may occur that the ten vertices that are scheduled for removal are all within the
same area. If this area represents a building, then all vertices that represent it are removed, resulting in a
large error in the final TIN compared to the original dataset. This can be mitigated by double-checking
whether a vertex is valid for removal prior to actually removing it, but this would add extra computa-
tional complexity to the simplification method. The naming used for drop heuristic decimation is decim
+ the recalculation interval, e.g. decim10 for a recalculation interval of once every ten insertions.

26

3.2 Use of Simplification Methods in the Streaming Geometries Pipeline

Algorithm 3.1: Drop-heuristic decimation

1 foreach line from stdin do

2 lineldentifier = first char of line from stdin
3 data = rest of chars of line from stdin
4 if lineldentifier == "v” then
// data contains vertex x, y, 2z
5 insert data into triangulation as new vertex
6 else if lineldentifier == "x” then
// data contains center vertex id followed by list of neighbor vertex ids
7 define a new star in triangulation (center vertex + neighbors)
8 end
9 if length(verticesInserted) % processinglnterval == 0 then
10 for all finalized vertices do
11 zError = abs(trueZ - interpolatedZ)
12 push zError to heap
13 end
14 while heap contains an element do
15 smallestErrorVertex = pop from heap
16 if zError of smallestErrorVertex < errorThreshold then
17 | remove smallestErrorVertex from triangulation
18 end
19 if length(heap) % recalculationInterval == 0 then
20 | recalculate zError for all vertices
21 end
22 end
23 Release all points from triangulation to standard output
24 Clear vertices
25 end
26 end

Figure 3.6: How drop decimation as used can lead to removal of relevant vertices. When removing ten
vertices at a time it may occur that all vertices within the red building footprint are removed. This
results in a large error between the TIN and the original dataset.

27

3 Methodology

3.2.3 Refinement

Refinement works almost opposite from drop-heuristic decimation; the algorithm looks for the vertex
with the most error and adds this vertex to the triangulation. Repeating this process until the vertex with
maximum error is below a user-specified threshold, thus refining the triangulation on a point-by-point
basis. Therefore, the outcome of both methods is similar even though the algorithms are totally different.
However, with refinement, there are some decisions that can be made to implement the method in a
number of different ways. In the following sections two different implementation choices are discussed;
greedy refinement and first-come-first-serve refinement.

Point Cloud (LAS) — Finalizer ~>{ Refinement H Triangulator F* TIN (OBJ)

Figure 3.7: All types of refinement are implemented at position B in the sst pipeline, as shown.

The position of refinement in the pipeline is at position B, as seen in Figure 3.7. The reason for choosing
this position for refinement is that the refinement methods use the cells released by the finalizer as
blocks within which simplification is performed. Performing simplification within the released cells is
different from decimation, which relies on a number of points to accumulate prior to simplifying. Using
the released cells to simplify the data is an advantage because there is a very clear grouping of data that
is to be simplified. The disadvantage is that there is a possibility of introducing border artefacts around
tile borders, further discussed in Section 3.4.

With the placement of the refinement simplification algorithms in position B it means that a triangu-
lation will be created by the refinement algorithm prior to the triangulator. Doing so means that the
triangulation is re-created in the triangulator using the vertices from the simplified triangulation, in-
stead of keeping the triangulation that has already been created by the refinement algorithm. Therefore,
an optimization that can be made is to ensure the output of refinement in position B can be directly
stored to an output OBJ file. Doing so provides two distinct advantages: less processing time needed
because one step is removed from the pipeline, and the output triangulation is guaranteed to be the same
as for which the error is measured. The latter cannot be guaranteed when keeping the triangulator as
the triangulator will re-triangulate the vertices, which may result in a different outcome. Despite being
more efficient this option is not used for any of the simplification algorithms at this time. However, it is
a relevant option further discussed as possible future work in Section 5.4.

The refinement algorithms receive information from the finalizer as shown in Figure 3.8. Lines 1-4
denote background information about the dataset that is to follow; number of vertices (n), number of
cells in x and y direction (c), width and height of each cell (s), and the bounding box (b). Of these lines,
the bounding box and the width and height of each cell are used by the refinement algorithms. These
are used to be able to determine artificial corner points necessary to initialize a triangulation, further
discussed in Section 3.2.3.1. All these lines are necessary at the top of the file for the triangulator to
function, thus they are also sent to the triangulator when they are received.

The lines that follow (line 5 onwards) contain all the vertices that are being sprinkled into the triangula-
tion which are left untouched by the refinement algorithms. These sprinkle vertices are used to prevent
the triangulation from creating slivers. When the tag on line 9 (# endsprinkle) is received, the refinement
algorithm knows that all sprinkle vertices have passed and it should simplify all the following vertices.
Every following line starting with v denotes a new vertex. Line 14 shows a finalization tag for cell x=1,
y=0, which means that all vertices within that cell have been released in the stream and the cell can be
simplified.

Data released by the refinement module is sent in the same format as it is received, this is done to
ensure that no modifications are necessary to the triangulator. There is a discontinuity here where the
refinement algorithm will report the original number of vertices to the triangulator, but sends less due
to the simplification. This has no further consequences besides marginally increasing the memory usage
of the triangulator.

28

3.2 Use of Simplification Methods in the Streaming Geometries Pipeline

1 n 212550

2 c 2

3 s 50

4 b 84600.000 447000.000 84699.998 447099.999
5 v 84693.724 447051.214 1.410
6 v 84628.038 447085.693 9.739
7 v 84684.830 447073.781 0.877
8

9 # endsprinkle

10 v 84650.190 447038.811 7.305
11 v 84650.147 447038.293 7.528
12 v 84650.111 447037.837 7.735
13

14 x10

15 v 84699.781 447050.264 1.284
16 v 84699.508 447050.050 1.307
17 v 84699.989 447050.783 1.277
18

Figure 3.8: Sample input for all refinement algorithms as received from the finalizer.

3.2.3.1 Greedy Refinement

Greedy refinement is a methodology that relies on storing all points within a cell received from the
standard input and then creating a simplified triangulation point-by-point. This method is created by
Garland and Heckbert [1997b] and is named greedy because it inserts one or more vertices on every
pass. However, it should be noted that greedy refinement still uses a global measure to determine
which vertex is the best candidate to be inserted. This differs from other greedy refinement techniques
that use a similar method to Section 3.2.3.2.

To perform greedy refinement, an initial triangulation is created using four corner points to ensure all
subsequent points are within the convex hull of this triangulation and can be interpolated. The X and
Y position of these corner points is calculated by using the corners of the cell that is being finalized.
The z-value of these corner points is determined by taking an average of the ten nearest vertices to
the corner. This allows for a relatively accurate elevation value for these corner points to ensure they
are representative for the triangulation that follows. Using this initial triangulation, the error of each
remaining point is calculated to improve the accuracy of the triangulation, after which the point with
the largest error is inserted into the triangulation. The implementation of this algorithm is seen in
pseudo-code in Algorithm 3.2.

Ideally, the errors of each remaining vertex are recalculated every time after a new vertex has been
added to the triangulation. This is because with the adding of each vertex the triangulation changes
and thus the error of all remaining vertices. However, due to the computational cost of recalculating the
errors, it is not feasible to do so while still simplifying the triangulation in a reasonable amount of time.
One approach is to recalculate the error every n insertions, i.e. insert 10 vertices before recalculating the
errors. The disadvantage of this is that at the start of the refinement process the odds are very high that
the n vertices with the highest error are located very close to each other. This is because the triangulation
is still flat at this moment in time, thus all vertices on the tallest object will have the largest error. This
results in the creation of numerous small triangles which do not affect the accuracy of the result, but
add unnecessary triangles to the triangulation, as seen in Figure 3.9.

To avoid this, the errors can be recalculated incrementally. What this means is that at the start of the
refinement process, when the triangulation is flat, the errors are recalculated after every insertion. How-
ever, as the triangulation more accurately approximates the true values of the vertices, the probability
that the vertices with the worst errors are all located next to one another decreases. This means that if

29

3 Methodology

Algorithm 3.2: Greedy refinement

1 foreach line from stdin do

2 lineldentifier = first char of line from stdin
3 data = rest of chars of line from stdin
4 if lineldentifier == "v” then
// data contains vertex x, y, z
5 insert data into triangulation as new vertex
6 else if lineldentifier == "x” then
7 if length(vertices) > 0 then
8 foreach vertex in vertices do
9 | push zError to heap
10 end
1 while heap contains an element do
12 largestErrorVertex = pop from heap
13 if zError of largestErrorVertex > errorThreshold then
14 | insert largestErrorVertex into triangulation
15 else
16 | break loop
17 end
18 if length(vertices) % floor(recalculationlnterval) == 0 then
19 recalculate errors of vertices still in heap
20 increment recalculationInterval by step size (0.25)
21 end
22 end
23 Remove artificial corner points from triangulation
2 Release all vertices from triangulation to standard output
25 end
26 end
27 end

more vertices are inserted at once there is a lower chance that it will lead to the creation of small unnec-
essary triangles. Therefore, the interval at which recalculation is done is slowly increased over time to
reduce the number of times this costly operation has to be run.

The identifier for greedy refinement is therefore based on the step size used to increase the recalculation
interval. For a step size of 0.25, this will increase the recalculation interval by one every four insertions
which means the identifier is Greedy025. For a step size of 1, this will increase the recalculation interval
by one every insertion which means the identifier is Greedyl1.

3.2.3.2 First-Come-First-Serve Refinement

First-Come-First-Serve (FCFS) refinement relies on inserting vertices as soon as possible. This is done
by inserting a vertex into the triangulation at the moment it is received in the case that its error is
above the user-specified threshold. By doing so, there is no longer a waiting time between receiving the
vertex and determining whether it should be added to the triangulation. Furthermore, it prevents the
computationally heavy task of determining the error for each vertex.

This results in a very fast simplification method, as it removes the need to recalculate the errors of each
vertex to determine whether they should be inserted into the triangulation. Pseudocode showing how
FCFS refinement is implemented can be seen in Algorithm 3.3. What can be noticed is that there are
two moments at which points can be inserted into the triangulation; upon being received and when the
cell is finalized. The reasoning behind this is that if the second processing stage upon finalization is

30

3.2 Use of Simplification Methods in the Streaming Geometries Pipeline

not added, there are too many small triangles around sharp inclines. The difference between this can
clearly be seen in Figure 3.9. The example here shows what the triangulation looks like when vertices
are always inserted directly and no secondary processing step is added.

The goal for the coarse threshold, seen on line 7, is to create an initial approximation of the triangulation.
By adding only the vertices with a very large error ensures that the triangulation follows the shape of
the most distinct objects. This means that for the loop starting from line 13 the errors of these vertices
are much lower. The result of this is that only the smaller features are added to the triangulation.

FCFS as used to create the results discussed in Section 4.4 are all created using a primary threshold of
2m and a secondary threshold of 0.2m. Therefore whenever FCES is mentioned these threshold can be
assumed.

Algorithm 3.3: First-Come-First-Serve Refinement

1 foreach line from stdin do

2 lineldentifier = first char of line from stdin

3 data = rest of chars of line from stdin

4 vertices = empty list

5 | if lineldentifier == "v” then

// data contains vertex x, y, z
6 zError = abs(trueZ - interpolatedZ)
// coarseThreshold is around 2 meters

7 if zError > coarseThreshold then

8 ‘ insert vertex into triangulation

9 else

10 | append vertex to vertices
11 end
12 else if lineldentifier == "x” then
13 foreach vertex in vertices do

14 zError = abs(trueZ - interpolatedZ)

// fineThreshold is desired final accuracy

15 if zError > fineThreshold then

16 ‘ insert vertex into triangulation

17 end
18 end
19 Release all vertices from triangulation to standard output
20 end
21 end

31

3 Methodology

(a) FCFS refinement with a single insertion moment (b) FCFS refinement with two insertion moments, the
with 0.2m threshold. first with 2m threshold, the second with 0.2m.

Figure 3.9: Comparison of two First-Come-First-Serve refinement techniques. Clear improvement in
the number of small triangles between (a) and (b).

32

3.2 Use of Simplification Methods in the Streaming Geometries Pipeline

3.2.4 Combining First-Come-First-Serve Refinement with Drop-Heuristic
Decimation

Combining FCFS refinement with drop-heuristic decimation is implemented in the same place within
the streaming pipeline as refinement, as seen in Figure 3.10. This method introduces an extra step to
FCFS refinement method by adding drop-heuristic decimation at the end. This ensures that the trian-
gulation created by FCFS, which contains numerous small triangles, is cleaned up by the drop-heuristic
decimation.

Point Cloud (LAS) — Finalizer *»{ FCFS+Decim H Triangulator P TIN (OBJ)

Figure 3.10: FCFS + Decimation simplification implemented at position B in the sst pipeline.

The artefact introduced by FCFES refinement is that multiple nearby points are inserted because each
point has an error that is above the threshold at the moment they are checked. Adding a decimation
step after the secondary insertion loop ensures that this artefact is removed from all present locations
by double-checking whether a vertex is necessary to maintain the specified error threshold. The reason
this approach is chosen is because decimation on its own runs quite slowly due to the sheer number of
vertices that need to be recalculated. By initially creating the triangulation using the FCFS refinement
method, this results in a reduction of the number of vertices that need to be calculated by the decimation
method. A comparison between the greedy refinement method and this hybrid method can be seen in
Figure 3.11.

(a) FCFS refinement with two insertion moments, the (b) FCFS refinement with two insertion moments and a
first with 2m threshold, the second with 0.2m. decimation step as final filtering.

Figure 3.11: Comparison of FCFS refinement against FCFS with decimation. Visible improvement to
the number of small triangles can be seen, especially around steep inclines.

This simplification algorithm will be identified as FCFS+Decim(recalculation interval). For example, for
a recalculation interval of once every 100 points the identifier is FCFS+Decim100. This is in line with the
previously mentioned identifiers for each simplification algorithm.

33

3 Methodology

3.2.5 Medial Axis Transform Simplification

Point Cloud (LAS) — Finalizer *>{ MAT Simplifier H Triangulator P TIN (OBJ)

Figure 3.12: MAT simplification implemented at position B in the sst pipeline.

The MAT method uses the code of Peters [2018a] which is provided as open-source online under the
MIT license, allowing for very flexible usage for this simplification method [Peters, 2018b]. MAT simpli-
fication is implemented at position B in the streaming pipeline, shown in Figure 3.12. Implementation
of this method relies on using the code provided by Peters [2018a] and adjusting usage for application
in the streaming pipeline. This is initially done by combining the three separate stages of the program
into a single file, allowing for easier piping of data in and out of the MAT simplification. The calculation
steps taken in the various functions within the simplification method are seen as a black box as they are
out of scope for this research.

Algorithm 3.4: MAT Simplification

foreach line from stdin do

1

2 lineldentifier = first char of line from stdin

3 data = rest of chars of line from stdin

4 | vertices = empty list

5 if lineldentifier == "v” then

6 ‘ insert vertex into array of points

7 else if lineldentifier == "x” then

8 remove duplicate points

9 compute normals of all vertices
10 compute the medial axis shrinking ball (MASB) of the points
1 simplify the local feature size (LFS)
12 release simplified points to standard output
13 end
14 end

For this method, it is possible to place it in position A due to the ability to simplify a raw point cloud.
However, the decision is made for position B to ensure that all cells processed by the simplification are
the same size. This is relevant for the MAT simplification method because otherwise the resulting den-
sity of the point cloud varies, as can be seen in an example in Figure 3.13. This example shows the effects
of processing the point cloud while relying entirely on the inherent spatial coherence of the dataset. Fur-
thermore, this means the same approach is used as for other methods implemented at position B, such
that vertices are stored until a finalization tag is read, after which all vertices stored at that moment are
simplified. This method relies entirely on the implementation created by Peters [2018a]. For this reason
the inner workings of the algorithm are more unknown compared to the other simplification methods.
The general overview of how the algorithm works can be seen in Algorithm 3.4.

MAT simplification is further identified as MAT(epsilon), where the epsilon is the error threshold speci-
fied to the MAT simplification algorithm as designed by Peters [2018a]. For example, MAT simplification
with an epsilon of 0.4 is identified at MAT04.

34

3.3 Evaluation Criteria: Parameters that Determine the Optimal Simplification Method

Figure 3.13: Variation in output point cloud density when simplifying using MAT simplification based
on n points per processing loop. This varying density results in a TIN with varying density,
something that is not desirable.

3.3 Evaluation Criteria: Parameters that Determine the Optimal
Simplification Method

The following sections explain which evaluation parameters are necessary to determine the success of
each simplification method. Despite accuracy being an important parameter for simplification methods,
the size of dataset targeted with this thesis means that memory usage and processing time are possibly
more important. It is easy to create a highly accurate simplification given enough time and power, but
for massive TINs there has to be a trade-off between how accurate the result is to ensure the triangulation
is still created within a reasonable amount of time. Further elaboration on this trade-off is included in
the discussion; Section 5.3.

3.3.1 Accuracy

It is necessary to determine the accuracy of the resulting simplified triangulation to assess whether the
result produced by the simplification method is still within the desired specified vertex error threshold.
This measurement is used to determine whether a simplification method is performing as expected. All
methods should perform close to the specified vertex error threshold, else they should not be used.

To determine the accuracy of a simplified TIN, the result is compared to the input dataset on a point-
by-point basis. Initially, the simplified TIN is loaded, after which for each point in the original dataset
the z-error of the point within the simplified TIN is determined by comparing the linearly interpolated
z-value within the TIN to the actual z-value. The difference between the interpolated z-value and the
actual z-value is stored as the error, which results in an output containing all the original points from
the dataset with their respective z-error value.

All interpolation done in this research is done with linear interpolation. Linear interpolation works
by finding which triangle contains a vertex and subsequently using the elevation values of the corner

35

3 Methodology

timated height = 99
estimatec et m (b) Calculation used to determine the elevation of a

(a) How elevation of a point is estimated using the point within a triangle.
triangulation.

Figure 3.14: How linear interpolation of a vertex in a TIN works. Figures from Ledoux et al. [2021a].

vertices of that triangle to estimate the value of the requested point. Figure 3.14 provides an example
of how the distances between each corner point and the requested point are used to determine the
elevation value (x) of the request point.

Further relevant statistics that can be created using this information are the RMSE and the maximum
error. RMSE is used as a statistic to determine whether the simplified TIN is close to the user-specified
threshold and thus works as a simplification method. The maximum error is used to show the spread of
the error values. Using this can show whether some methods may produce a higher RMSE but a lower
maximum error or a lower RMSE with a higher maximum error. In most use-cases a low RMSE with a
high maximum error is acceptable, but for some it may be necessary to achieve a low RMSE as well as a
low maximum error.

3.3.2 Computation Time

Computation time is a relevant measurement because the simplification methods need to be able to
process large datasets in a reasonable amount of time. Whether it is reasonable in this case is measured
as a situation in which the computation time does not exceed 4 hours per AHN3 tile. Despite this target,
processing the entire AHN3 dataset would still take around 170 days to complete, which is an important
observation that is further discussed in Section 5.3 (discussion). This threshold is currently chosen to
ensure that the methodology chosen is applicable to be used on the target dataset of up to 8 tiles without
exceeding the time limitation of this research.

Computation time is measured by comparing the Unix time at the start and end of the entire streaming
pipeline. This means that comparison includes the initialization of the finalizer and completion of the
triangulator. These programs will remain unchanged between the various simplification methods to
ensure a fair measurement between all methods.

3.3.3 Throughput

The throughput is a measurement of the average number of points per minute a simplification method
can process. This is based on the number of points that can be processed by the simplification method
from the standard input. This measurement is taken just prior to the simplification method starting its
processing. This works as a measurement, because while the simplification method is busy it won't
accept new input from the pipeline, thus providing a fair measurement of how many vertices can be
read by each method.

36

3.4 Dealing with Artefacts on Quadtree Borders

Throughput is used in combination with the computation time to determine how efficient a simplifi-
cation method is in simplifying the input dataset. This is because a low computation time with a high
throughput could mean that the simplification method is not removing as many points as desired. An
opposite situation is also possible in which a high computation time combined with a low throughput
means that the method is very efficient in simplifying the dataset, but it takes a long time to do so.
Therefore the relation between these two measurements can, to a certain extent, be defined as what the
efficiency of a simplification method is.

3.3.4 Memory Usage

Memory usage is logged to ensure that the memory usage is still within reasonable bounds when ap-
plying simplification within the streaming pipeline. The advantage of a streaming pipeline is that it
uses very little memory, therefore it would be counter intuitive to have a simplification method that
increases the memory usage by too much. In this case 'too much’ is measured as 'no longer fitting in
the main memory of a modern desktop computer’. With the increase in memory module size since the
introduction of the streaming pipeline (2006), this upper limit can be adjusted to a maximum of 8GB of
memory usage for the entire streaming pipeline, including a simplification method. This ensures that
the aim of being able to process large datasets on regular computers is achievable, as 8GB of RAM is
currently commonly found on many workplace PC’s.

3.4 Dealing with Artefacts on Quadtree Borders

All of the simplification modules that are implemented at position B use the quadtree cells as a way to
clearly simplify highly spatially coherent sections of the dataset. This is an advantage because it allows
for each cell to be processed in parallel, further discussed in Section 4.2.1, thus reducing the time it takes
for the calculation to complete. However, a disadvantage is that simplifying within these quadtree cells
can result in (visual) artefacts. An artefact can be a clear cell boundary along each cell, which has no
effect on the accuracy but is visually obtrusive. Another artefact that can occur is that a larger error
is measured along boundaries of quadtree cells due to difficulties in stitching the results of the cells
together.

To combat the latter artefact, the streaming pipeline waits with finalizing the vertices that are on the
border of a quadtree cell until the parent cell is ready to be released. This means that the vertices that
connect two neighboring cells are only released when both cells are finalized, ensuring that there are
always accurate vertices to connect quadtree cells.

The visual artefact will occur mainly because a simplified triangulation highlights the four corners of
a quadtree cell, which is then also seen in the final result. This behavior occurs because the vertices
nearest to the corners are essential in determining whether a triangulation is accurate, as these are used
to interpolate points within the cell. These artefacts may be clearly visible while the triangulation is still
being simplified, as each cell that is released at that moment in time will not directly be connected to
a subsequent cell. However, once a cell is connected to another cell the vertices along the border are
finalized, which ensures that the sharp edges of the quadtree cell are connected to more vertices. By
doing so these edges also nearly completely disappear, thus resulting in a simplified triangulation with
hardly any (visual) artefacts.

It is important to take into account that even if there are clear boundaries along the borders of a quadtree
cell, the triangulation is still accurate locally as these borders represent the triangulation within. This
means that despite the result looking artificial, the validity of the result is no less true. In Figure 3.15
an example is seen of how much of the quadtree cell borders remain for FCFS simplification on a large
sample set.

37

3 Methodology

Figure 3.15: The level of visual artefacts that can occur for simplification methods implemented at
position B. Red lines denote cell boundaries and are shown to assist in detecting visual artefacts.

38

4 Implementation and Results

This chapter discusses the specific details related to how the methodology is implemented in practice,
including examples. These implementations can be found here in a GitHub repository, freely accessible
to anyone interested. Furthermore, this chapter shows all the obtained results and which methods
performed well enough to be used on a large scale. In Section 4.1, it is explained how the evaluation
criteria discussed in Section 3.3 are implemented and how they can be visualized. This is followed by in-
depth information relating to how the implementations have been written in code in Section 4.2. Here,
information is provided on how the multi-core capability of most CPU’s is leveraged to improve the
processing speed of simplification modules. In Section 4.3 the datasets which are used to validate the
simplification methods are introduced before the results for each simplification method are discussed in
the final section of this chapter; Section 4.4. This includes an overview of how the created simplification
methods compare to the other relevant researches discussed in Chapter 2.

4.1 Evaluation Tools

In this section the tools used to evaluate the results of this research are explained. These tools are
necessary to retrieve the statistics used to evaluate the functioning of the simplification modules. These
statistics are retrieved using a number of different methods; accuracy is calculated after processing using
another script and memory is logged while each simplification algorithm is running.

4.1.1 Time measurement

Measuring how long a simplification module takes to process a dataset may seem straightforward, but
it is necessary to define which time is measured for this research as ambiguity is possible. Time needed
by a process to complete can be measured by using the time command on Linux, which will display
an overview of the time taken, as seen in Figure 4.1. This shows three different times; real, user, and
sys(tem) time. The real time is the amount of time that has passed on a clock. Combining user and
system time results in the amount of CPU time that is spent running the program. CPU time is measured
on a per-core basis which means that if a program uses multiple cores the user+sys time can exceed the
real time.

1 real 142m50.959 s
2 user 217m30.334s
3 sys 35m45.572s

Figure 4.1: Example of the output from the time module in Linux showing real, user, and sys(tem) time.

For this research the choice is made to use the real time as a measurement for the time taken to triangu-
late and simplify a set of points. This decision is made because some of the methods are less efficient,
but can be run in parallel (more about this in Section 4.2.1). These processes use a lot of CPU time, but
can run a lot faster in real time. Furthermore, the real time is used because in the end it is relevant to
know how long the wait is for a result.

It should be noted that the time taken by the finalizer and triangulator is also taken into account within
the time measurement. However, because these run much faster than the simplification methods the

39

https://github.com/mdjong1/simpliPy/tree/main/methods

4 Implementation and Results

total time a simplification module is active is nearly identical to the real time measured including the
finalizer and triangulator. This has been tested by comparing the active time reported by the simplifica-
tion module with the time reported from the time command.

4.1.2 Accuracy

To measure the accuracy of the simplified TINs created by the simplification modules, 1 in 10 points from
the input dataset are randomly selected and measured against the simplified TIN. The measurement is
done using linear interpolation of the elevation value in the TIN with Startin, which is a library used
to easily create Delaunay triangulations in Python. Error is measured vertically, as seen in Figure 4.2,
this means that it does not necessarily take into account the minimum distance of a point to the TIN.
Using the minimum distance between a point and the TIN is a good accuracy measurement because
it allows for more freedom in determining the vertex error. The reason for not using the minimum
distance between a point and the TIN to measure accuracy is because not all parts of the TIN are loaded
into memory at all times. This could result in the point being closest to a triangle in the TIN already
having been written to disk, thus returning an unknown value or a poor estimate. Furthermore, using
the minimum distance between a point and the TIN increases the computational complexity of the
simplification methods, resulting in a slower simplification.

Error measured vertically

P

True ground surface.- -~ _—oer’e.,c-=—r TeiNne TIN

Figure 4.2: Figure showing that error is measured vertically and how a TIN subsequently approximates
the real surface. Adapted from Ledoux et al. [2021b].

From these error measurements, a GeoJSON is created which contains every tested point with an at-
tribute that indicates the accuracy. This method is used because it allows the accuracy to be visualized
in QGIS by plotting the points and defining their error property as a heatmap. An example of what this
looks like is seen in Figure 4.3.

This heatmap is generated by QGIS and uses the location of a point to draw a circle of a user-specified
radius around that point. The color of the circle is defined based on the accuracy value of the point,
ranging from transparent for 0 - 0.2m error to dark red for any errors above 3m. This range is defined
as such because errors within the threshold are not relevant for the assessment and any error of 3m or
more is significant and should be clearly highlighted.

This information can also be used to extract information about the RMSE and the deviation of the errors,
as the number of occurrences combined with the error is available in the GeoJSON dataset. For this, a
Python script is made which takes the GeoJSON of the errors and processing this into a plot with the
relevant data indicated. An example of such a plot is seen in Figure 4.4.

For the datasets that are an entire AHN3 tile or more, the accuracy is measured by taking a subset from
the entire tile or set of tiles. This is done because the size of the TINs that result from these datasets are
too large to retrieve this accuracy measurement for an entire tile. Within each tile the same segment is
chosen but the vertices that are tested from the original dataset are randomized.

40

a—
5 VA
R/t

S———

{}‘ <

pal :
I

Nl

iy

/]
/

7

&
)y

4.1 Evaluation Tools

Pas
=

7

=

DS

N
i

=
=

z

\/A

N

I~/

Figure 4.3: Example showing how QGIS is used to plot the error of each tested vertex on top of the

simplified TIN for the smallest test set.

108 Threshold: 0.20

Delft Tiny - MAT02

1edian: 0.02
RMSE: 1.06
107 4

-
o
>

i
o
=

-
o
ES

Frequency

= = =
o, o o
= ™ o

-
o
°

Figure 4.4: Example showing what plotting the histogram looks like. Vertical lines added to show

relevant values: threshold, median, and RMSE.

41

4 Implementation and Results
4.1.3 Memory Analysis

Memory analysis is necessary to ensure that the principle of the streaming geometries paradigm is not
broken by adding simplification to the pipeline. As a reminder, the paradigm exists to ensure that large
datasets, that do not fit in memory, can still be processed. Therefore, if simplification uses more memory
than is available on the system, the method is not suitable for use within the pipeline. It should also be
noted the memory usage stated in the results is the memory usage of just the simplification modules,
excluding the memory usage of the finalizer and triangulator. The memory usages for the finalizer and
triangulator have been identified in Section 2.3.2 and Section 2.3.3 respectively and can be taken into
account if necessary.

Memory analysis is done by making each process that is running in the simplification module output its
own memory usage to a common queue. Another process then writes these messages from the common
queue to a comma separated values (CSV) file for later plotting. This data can then be plotted for each
process against the timestamp to show what the memory usage per process and total memory usage
of the simplification module is. An example of this is seen in Figure 4.5. Maximum memory usage is
identified by taking the largest sum of memory usages found at a given moment in time. Memory is
logged every second, thus the second with the highest cumulative memory usage is used as maximum
memory usage.

Usage (MB)

HH”WI ‘\ | “"H\”\ l H\“
i HH Ll I Ll I HV‘] V u 1

i
“" | !\ H

'] i i H)\

Memory Usage (MB)

Time since start of simplification (s)

Figure 4.5: Example showing the memory usage plot of a simplification module may look like.

The plot is created by inserting the memory usage CSV that is created by each simplification method
into a structured query language (SQL) database and plotting this using JavaScript in a browser. This
method is chosen because the dataset is quite large and storing this in a SQL database allows for easy
manipulation of the data. This means it is much easier to sum or exclude data compared to using Excel
or writing an analysis script in Python.

4.1.4 Streaming Geometries Visualizer

As part of this thesis, a simple visualizer is created to show which geometries are being created by the
streaming pipeline in real-time. This tool is written in Python using the PyGame library which is capable
of rendering 2D graphics to a window. The visualizer, dubbed sstvis, can be plugged into the streaming
pipeline at position C, but with adjustments can also be used in position A or B. In Figure 4.6 a sample

42

4.2 Engineering Decisions

image can be seen of geometries being streamed into sstvis in real-time. Statistics showing how long
the visualizer has been live as well as how many points and triangles are in the triangulation are also
updated as data is received.

Time taken: 120s

Average # points per second: 6146
Points processed past minute: 368771
Total# of points: 781845
Total # of triangles: 1544654

Figure 4.6: The capability of sstvis to render streaming geometries in real-time. The red line denotes the
bounding box of the dataset which will be entirely filled by the triangulation by the time the pipeline
is finished. The quadtree structure can clearly be seen while rendering.

4.2 Engineering Decisions

This section discusses some of the specifics around the choice of programming language as well as
choices made to increase the speed at which the simplification methods are able to process data. For
all simplification methods Python is used as main language as it allows for rapid prototyping without
dealing with typing variables and compilers. Python has some limitations in speed as it is an interpreted
programming language, as opposed to a compiled language such as C++ or Rust. This means that it
takes more time to evaluate some functions or types of variables. The reason Python is still used as the
main language for the simplification methods is for two reasons: to show how easily a simplification
module can be written for this streaming geometries pipeline and because most of the functionality used
is actually C or Rust in the underlying code.

Many libraries that are written in Python are actually written in other languages and include a wrap-
per to allow Python to communicate with the internal functions. This is the case for the max heap
which is used in some simplification modules, where C is the underlying language. This is also the
case for Startin, a library used for creating and interpolating Delaunay triangulations, where Rust is the

43

4 Implementation and Results

underlying language. These implementations will always be slower than writing the entire simplifica-
tion method in either C or Rust, but Python is a useful language to bring all these separate elements
together.

Combining libraries written in other programming languages in Python together with the use of paral-
lelization, discussed in Section 4.2.1, shows how accessible the processing of massive TINs can become
using the streaming geometries paradigm.

Each of the simplification methods relies on reading data from the standard input, processing that data,
and subsequently releasing it to the standard output. Depending on the position of the simplification
method in the pipeline the internal processing of the input data differs, as well as the format in which
the result is released to the standard output. The formats within which data is read and written is as
discussed in Section 3.2.3.

4.2.1 Parallelization

Point Cloud (LAS) — A H Finalizer — B H Triangulator }—» c —> TIN (OBJ)

Figure 4.7: Possible placement positions for a simplification module within the sst pipeline.

One of the approaches used to increase the processing speed of the simplification algorithms at position
B in the pipeline (see Figure 4.7 for a reminder), is to finalize each cell in a separate process. This can
be done because the finalizer releases all vertices on a cell-by-cell basis. This means that depending on
the number of cores available on the CPU a large number of simplifications can be run in parallel. An
example of how this works is seen in Figure 4.8. It should be noted that only one process is allowed to
release its result to the output stream at a time to ensure that written lines do not clash with one another.
If processes are to write to the standard output at the exact same time this results in corrupt data and
the triangulator will crash. Essentially, parallelization is related to the divide-and-conquer technique
introduced by Wu et al. [2011] which is discussed in Section 2.1.

The user is able to define how many cores should be used, though the recommended limit is just below
the total number of cores. This is because a system will always want some overhead for other processes,
allowing each core to work at full capacity. What is also important to know, is that when all processing
slots are in use, the simplification module is unable to process new data. The effect is that the entire
pipeline is halted until a process is completed and a processing slot is opened up. An advantage is that
data is not buffered into memory while waiting for a processing slot to free up, thus maintaining the
low memory characteristic of the streaming pipeline. Instead the first process in the pipeline is literally
stalled until it is able to release data further.

Using parallelization for simplification modules in position A or C is more challenging because modules
rely on all available points, as opposed to merely the points present within a quadtree cell. This is
because points are simplified after every n insertions and not in spatially coherent cells. Because not
all points are inserted as connected components each time the internal simplification function is run,
simplification heavily depends on reusing points from previous iterations as reference data. Therefore
it is not possible to apply parallelization for the modules implemented in these positions and thus they
are significantly slower in comparison to the simplification modules in position B.

4.3 Real-World Datasets

The goal for this research is to triangulate and simplify up to 8 AHNS3 tiles using the streaming geome-
tries paradigm. However, 8 AHN3 tiles is 250km? and thus approximately 4 billion points, or a little
over 18 GB of compressed LIDAR data (LAZ). Therefore, running this dataset several times for testing

44

4.3 Real-World Datasets

sstfin

number of vertices in dataset
n 212550

number of cells in x and y direction 1,0 2,0 3,0
c?2
width/height of each cell . . .
s 50
bounding box of dataset °
b 84600.000 447000.000 84699.998 447099.999 . .
vertices
v 84693.724 447051.214 1.410 LIS *
v 84628.038 447085.693 9.739 *

v 84684.830 447073.781 0.877 . ° * « . . .
v 84650.951 447082.913 0.584 . * .

finalizing cell x=1y=0
x10
v 84699.781 447050.264 1.284
v 84699.508 447050.050 1.307

Processes

Figure 4.8: Vertex data being stored into a cell which is subsequently simplified in a separate process
when a finalization tag is received. In the meantime the filling of a new cell can continue and
finalization can be done until all processor slots are filled.

is hardly practical, so a number of test sets have been chosen that are representative areas which can
be processed quicker to show possible issues with the simplification methods and to show how these
methods scale with the size of the dataset. The following sections elaborate on the different test sets
that have been chosen. The following three types of tests have been deemed necessary to validate the
workings of the simplification techniques:

1. Frequent tests
2. Less-Frequent tests

3. One-time tests

4.3.1 Frequent tests (Small-Scale)

The datasets used for frequent tests are relatively small datasets. The first dataset is a subset of the
37ENT1 tile located at Delft and contains 212,550 points. This dataset can be processed in about two
seconds when using sst on a cell size of 50 without adding a simplification module. The second dataset
used for frequent tests contains approximately 28 million points and can be triangulated using sst at a
cell size of 50 in about five minutes. This dataset is also a subset of the 37EN1 tile at Delft. Both subsets
are seen in the top left corner of Figure 4.9, and are marked in red in the larger overviews. The smallest
of the two datasets is 0.01km? and is further referred to as Delft-Tiny. The larger of the two is 1.4km?
and is further referred to as Delft-Small.

These specific clipped sections are chosen because both contain a mix of water, buildings, and height
differences in the terrain. Their size is chosen to contain a relevant section of data while still being small
enough to be processed on a frequent basis. These datasets are meant to be run multiple times a day
after each (small) iteration to the simplification methods has been made. The aim is to be able to validate
the quality of the result of the simplification methods.

45

4 Implementation and Results

ERREEN B N PR
Sl \ \ f
o 7 || A+B+ B+C+ |
—pt 3 \ s
psuRE B adRanni] C+D+E| D+E
T 1 |
D J I ; B A / i \\
/’} \
/ g A I
| H B~ e
: T C+D+E
/ e 4
A T { |
P .
A F \
| N o
- L -
i N T~ JAS % D-I_\E
\\ - 3 s \\
/ ™ it
(& /r’:k N el Hl \\ . : £ e
g N i1
S T LT g - \\\ F
: ~ E
o =
| {]
[
LA -

Figure 4.9: Overview of all the datasets used.

4.3.2 Less-Frequent tests (Large-scale)

The large-scale tests are made to be be run on a less-frequent basis to validate the methodology for
its processing speed when simplifying large amounts of data. This dataset consists of either a single
AHNS tile, 37ENT1 at Delft, but can be extended with 1-3 more tiles to cover 125km? by adding 37EN2,
37EZ1, and/or 37EZ2. The total number of points in these four tiles is just under two billion. These
four tiles represent half of the desired target area and therefore are used to validate the functioning of
simplification prior to running an even more extensive test.

The dataset consisting of a sing]le tile is referred to as the Single Tile dataset in the results, or in Figure 4.9
as A. The dataset with two tiles consists of 37EN1 and 37EN2 and is referred to as the Two Tiles dataset
in the results, or dataset B in Figure 4.9. Lastly, the dataset with four tiles consists of 37EN1, 37EN2,
37EZ1, and 37EZ2 and is referred to as the Four Tiles dataset in the results, or dataset C in Figure 4.9.

4.3.3 One-Time tests (Full-scale)

The full-scale dataset (8 tiles) covers 250km? and contains approximately 4 billion points. For this rea-
son this dataset is only processed once to show the capabilities of the streaming geometries pipeline
combined with simplification. This dataset is chosen because it provides a challenging combination
of AHNS tiles that are mostly water, tiles that are separated by the river Maas, and tiles containing
large cities with many buildings of various sizes. Processing this dataset is a combination of validating
whether the streaming simplification method functions well for large-scale triangulations but moreover

46

4.4 Results

it tests whether the sst streaming geometries pipeline is capable of dealing with very large Delaunay tri-
angulations. This application has yet to be validated on such a scale and therefore this test set is perfect
to combine the validation of both simplification and sst.

This dataset is referred to as Eight Tiles in the results, or as E in Figure 4.9. Here it can clearly be seen how
the segment stretches across a body of water and is quite a narrow, tall, dataset. The Six Tiles dataset is
also a one-time run and is marked as D in Figure 4.9.

4.4 Results

In the following sections the results per test set are discussed. First of all, the results for the small-scale
datasets are shown and analyzed. The small-scale datasets are the only datasets that can be visual-
ized as a whole because they are small enough to be rendered. For all the larger datasets a section is
clipped from the large TIN for analysis. For each of the larger datasets the same analyses are done as for
the small-scale datasets. Here, the focus will mainly lie on differences between the small-scale results
compared to the larger-scale results.

All tests are run using an Intel Core i7-8700K 6-core, 12-thread, processor running at 4.8GHz with 32GB
of 3000MHz RAM. A 1TB solid state drive (SSD) with 3400MB/s reads and 2300MB/s writes is used as
file storage. With simplification modules that support multiprocessing the maximum number of cores
used is 8. For each test the threshold accuracy for vertex z-error is 0.2m. The amount of randomized
thinning is chosen to achieve a number of vertices similar to that of the other simplification modules
which allows for fair comparison between the resulting values. Furthermore, the finalizer uses a cell
size of 50m and uses only points that are classified as building, ground, or water, effectively ruling out
vegetation and unclassified points.

Table 4.1: Statistics on the input datasets. All sets contain ground, water, and building points with excep-
tion of the last.

area number of points average density
Delft-Tiny 0.01km? 212,550 21.3 points/m?
Delft-Small 1.40km? 20,310,070 14.5 points/m?
One Tile 31.25km? 343,044,606 11.0 points/m?
Two Tiles 62.50km? 642,167,999 10.3 points/m?
Four Tiles 125.00km? 1,354,295,996 10.0 points/m?
Six Tiles 197.50km? 1,902,652,509 9.6 points/m?
Eight Tiles 250.00km? 2,424,250,813 9.7 points /m?
Dukai Comparison (only ground) 13.89km? 118,552,841 8.5 points/m?

4.4.1 Small-Scale

This section shows the results obtained for all the possible simplification methods when applied to the
Delft-Small dataset of 212,550 points. Table 4.2 includes the number of output vertices and triangles,
indicating the level of simplification that has occurred as an effect of these simplification methods. Fur-
thermore, these measurements are used to determine whether some methods are performing so bad that
they can be excluded from further tests. The decision to remove methods from further testing is based
upon the expectations set in Section 3.3.

Only one decimation method is present in this test set as the time taken at a recalculation interval of once
every 100 points is already too large, thus reducing this interval will not improve this metric. Besides

47

4 Implementation and Results

Table 4.2: Delft-Tiny: Results of the simplification methods.

time taken vertices triangles RMSE maxerror (m) max memory (MB)

No Simplification 2s 212,550 425,046 - - -

Rand5 1s 35,318 70,600 0.94 10.3 12
Decim100 27m25s 53,345 104,999 0.23 8.4 675
Greedy025 1m25s 37,651 75,270 0.07 5.2 357
Greedyl 44s 39,994 39,957 0.09 5.3 362
Greedy5 23s 44,570 89,109 0.06 1.4 358
FCFS 1s 34,704 69,395 0.13 6.2 337
FCFS + Decim10 8m30s 26,419 52,825 0.31 7.8 400
MAT02 15s 14,551 29,057 1.06 11.0 142

this, it is possible to increase the interval to improve the time taken, but this would result in missing the
desired RMSE of around 0.2m.

The histogram displaying the errors for each of the results can be seen in Figure 4.10. What is apparent
is how the greedy refinement methods show the least spread of vertex error followed by decimation.
FCFS follows closely and performs surprisingly well for how fast the method is. Contrary to that,
FCFS+Decim10 performs surprisingly bad considering it is made to improve upon the result of FCFS
alone. This is possibly due to the 1-in-10 recalculation interval used, which results in relevant points
being removed in one of the batches of 10.

Based on the results obtained from the Delft-Tiny dataset (Table 4.2), the most promising methods are
greedy refinement and FCFS refinement. The RMSE for MAT simplification with an € of 0.2 is too far
above the desired threshold to be considered as an accurate enough method. This is supported by
the statistic that random thinning provides similar results to the MAT method. Notably, the level of
simplification for the MAT method appears to be too much when comparing the number of remaining
vertices and triangles. Therefore, attempts are also made for MAT simplification using lower € values
of 0.1, 0.05, and 0.001. Unfortunately these lower error thresholds show no significant improvement in
error metrics nor do they increase the number of vertices and triangles by a large amount. This may
suggest that the € input argument of this method is not working as intended.

Furthermore, the time taken by the decimation method is also too far above the other methods and is
therefore not considered as a viable method for further analysis. The time taken would greatly exceed
the desired half a day processing time per AHNS3 tile. Despite this, these methods are still tested for the
Delft-Small dataset to determine if the methods may perform differently at a larger scale. The results of
this are seen in Table 4.3.

Table 4.3: Delft-Small: Results of the simplification methods.

time taken vertices triangles RMSE maxerror (m) max memory (MB)

No Simplification 3m30s 20,319,438 40,638,770 - - -

Rand3 1m37s 5,079,401 10,158,749 1.38 30.0 12
Decim100 >18h - - - - -

Greedy025 29m26s 5,021,178 10,042,286 0.12 12.3 684
Greedyl 17m15s 5,333,951 10,667,831 0.10 9.0 630
Greedy5 9m12s 5,970,399 11,940,721 0.11 10.9 773
FCFS 4mds 4,916,929 9,833,779 0.20 15.0 491
FCFS + Decim10 8hdm 3,614,934 7,229,797 0.46 24.0 385
MATO02 14mbs 2,236,205 4,472,145 1.53 55.7 345
Full Refinement 17h53m 4,210,394 8,420,723 0.16 20.0 673

48

4.4 Results

As can be seen in Table 4.3 the Decim100 method has no results. This is because the module took over
18 hours to process before it was decided to break off the run. Therefore, this method is definitively
removed from further analysis as the runtime is far too large to realistically continue using it for larger
datasets.

In Table 4.3, a result for full refinement can also be seen, which is added as a comparison method for
the Greedy methodologies. The full refinement method relies on a static recalculation interval that does
not increase while calculating and is based on recalculating all vertex errors on every insertion. As can
be seen, the time taken with this methodology is much longer when compared to the Greedy methods,
resulting in an execution time of almost eight-teen hours compared to less than 30 minutes at worst.
This shows how important the addition is of the increasing recalculation interval that is being used by
the Greedy methods as explained in Section 3.2.3.2.

In addition, the RMSE and max error of the result do not differ much from the other methods with an
0.20m RMSE and 20.0m max error. Why this is the case is most likely due to the implementation of
the refinement methodology which is geared towards being capable of processing as many points as
possible and is less optimized towards accuracy.

What is apparent from the histograms seen in Figure 4.12 is that it is clearly more difficult to achieve a
lower spread of errors with a larger, more diverse, dataset. This makes sense, as when a dataset becomes
more complex, it is more difficult for the simplification methods to create accurate representations using
only local information. However, it is good to see that this expectation is reflected in the results. The
greedy and FCFS modules are, once again, the best performing ones, being able to keep the lowest
frequency of error occurrences to 0. All the other methods have a lowest frequency of at least 100 or
more, thus clearly struggling with the larger dataset.

49

4 Implementation and Results

Delft Tiny - Rands

Threshold: 0.20 Delft Tiny - Decim100
r

RMSE: 0.94

Frequency
Frequency

4 H 3 4
Vertex z-error (m) Vertex z-error (m)

(a) Rand5 (b) Decim100

Loe 4 Thresold 020 Delft Tiny - Greedy025 1o - ThrEshold: 020 Delft Tiny - Greedyl
Tiddian: 0.02
{RMSE: 0.07
i
109911
10041 |
g1 g
z g
£ &

2
Vertex z-error (m) Vertex z-error (m)

(c) Greedy025 (d) Greedyl

100 - Threshold: 0.20 Delft Tiny - GreedyS 10¢ - Threshold: 0.20 Delft Tiny - FCFS
ddian: 0.02 3dian: 0.02
{RMSE: 0.06 {RMSE: 0.13
107411 107
1004 | 10°
1004 | 109
2100 210
z g
£ 100 £ 100
102 100
100 100
100
0 1 2 3 4 5 6 7 4 7
Vertex z-error (m) Vertex z-error (m)
Lo¢ - Threshold: 020 Delft Tiny - FCFS + Decim10 1o Threshold: 020 Delft Tiny - MAT02
TMEgian: 0.03 ddian: 0.02 |
RMSE: 0.31 | RMSE: 1.06
107 |
1094 |
1001 |
21 g :
F 2
M E
102
100

4 5 3 4
Vertex z-error (m) Vertex z-error (m)

(g) FCFS+Decim10 (h) MAT02

Figure 4.10: Delft-Tiny: Error histograms showing the distribution of error for each method.

50

4.4 Results

N TZ
SoCe

o
S 1y s
‘V o]
g : .,F
.m m LR
SN s :
N
YAV ,
_mn/_u Lo
9 ; @
(=1 : e
& w m
r @)
< i)

VIS

51

(h) MATO02
Figure 4.11: Delft-Tiny: Error heatmaps for each method.

(g) FCFS+Decim10

4 Implementation and Results

Delft Small - Rand3

Threshold: 0.20
o 001]

| RMSE: 1.38

Frequency

3

a
Vertex z-error (m)

(a) Rand3

Delft Small - Greedyl

Threshold: 0.20
eaian: 0.01

Delft Small - Greedy025

Threshold: 0.20
Wddian: 0.01
{RMSE: 0.12

Frequency
Frequency

2 3 4 5 6 7 8 3 4 H
Vertex z-error (m) Vertex z-error (m)

(c) Greedy025 (d) Greedy1

Threshold: 0.20 Delft Small - FCFS

[Médian: 0.01
1RMSE: 0.20

Threshold: 0.20 Delft Small - Greedys -

[Madian: 0.01
{AMSE: 0.11

Frequency
Frequency

4
Vertex z-error (m)

2
Vertex z-error (m)

(e) Greedy5 (f) FCFS

Delft Small - MAT02

Threshold: 0.20
Médian: 0.02 T

Threshold: 0.20 Delft Small - FCFS + Decim10

RMSE: 1.53

Frequency
Frequency

4
Vertex z-error (m)

a
Vertex z-error (m)

(g) FCFS+Decim10 (h) MATO02

Figure 4.12: Delft-Small: Error histograms showing the distribution of error for each method.
Decim100 (b) failed to complete in a reasonable time and is therefore excluded from this comparison.

52

4.4 Results

4.4.2 Large-Scale

With the poor performance of the decimation and MAT simplification modules, these are excluded from
further analysis with the large scale datasets. This is chosen because their respective computation time
and RMSE are much larger than the goals set and the methods show no sign of performing better at a
larger scale. Furthermore, because the RMSE and max error of all Greedy methods are so similar, the
decision is made to continue the analysis with Greedyl and Greedy5 due to being faster compared to
Greedy001 and Greedy025. In Table 4.4 the results for the Single Tile can be seen for the best performing
simplification methods from the small-scale tests.

Table 4.4: Single Tile: Results of the simplification methods.

time taken vertices triangles RMSE maxerror (m) max memory (MB)
No Simplification 1h27m 343,038,929 686,077,602 - - -
Randé6 31m10s 48,995,882 97,991,696 1.44 41.8 12
Greedyl 2h34m 45,341,040 90,681,998 0.14 20.7 792
Greedy5 1h49m 53,559,849 107,119,616 0.14 24.1 792
FCFS 1h30m 40,869,309 81,738,535 0.18 20.9 709

Table 4.4 shows how the various simplification modules perform on a larger dataset. What is positive
to see is that the RMSE and max memory usage only increase marginally compared to the results from
the Delft-Small test set. There is an average increase in the RMSE of 0.3m, and the maximum memory
usage only increases by 200MB in the worst case. This means that the streaming pipeline is working
as desired by keeping memory usage stable despite datasets of larger sizes and that the pipeline is
capable of producing consistent results in terms of accuracy. However, the maximum error tested is
much larger for almost all methods, with a worst-case increase from 10.9m to 24.1m for Greedy5, an
increase of 13.2m. Most likely this is related to taller buildings being included in this dataset compared
to the Delft-Small dataset.

53

4 Implementation and Results

single Tile - Greedy1

single Tile - Rande

Threshold: 0.20
an 001

I RMSE: 1.44

Frequency

Frequency

3 3 4
Vertex z-error (m)

4
Vertex z-error (m)

(a) Rand6 (b) Greedyl

single Tile - FCFS

Threshold: 0.20
i
IRMSE: 0.18

single Tile - Greedys

Frequency

Frequency

3 4 H
Vertex z-error (m)

3 4 5
Vertex z-error (m)

(c) Greedy5 (d) FCFS

Figure 4.13: Single Tile: Error histograms showing the distribution of error for each method.

54

4.4 Results

(a) Rand6

(c) Greedyb (d) FCFS

Figure 4.14: Single Tile: Error heatmaps for each method. Zoom in for more detail.

55

4 Implementation and Results

Table 4.5: Two Tiles: Results of the simplification methods.

time taken vertices triangles RMSE maxerror (m) max memory (MB)
No Simplification 2h50m 692,857,134 1,385,713,924 - - -
Rand7 37m36s 86,615,876 173,231,679 1.27 50.5 12
Greedyl 5h12m 85,675,406 171,350,670 0.14 314 955
Greedy5 3h53m 97,792,691 195,585,235 0.14 33.3 993
FCFS 2h57m 85,292,678 170,585,217 0.16 36.2 698

Two Tiles - Greedyl

o Threshold: 0.20
[Médian: 0.01 |
| I RMSE: 1.27

3

4
Vertex z-error (m)

(a) Rand7 (b) Greedyl

Two Tiles - Greedy5 Two Tiles - FCFS

‘Threshold: 0.20

3 4
Vertex z-error (m) Vertex z-error (m)

(c) Greedy5

(d) FCFS

Figure 4.15: Two Tiles: Error histograms showing the distribution of error for each method.

Table 4.6: Four Tiles: Results of the simplification methods.

time taken vertices triangles RMSE maxerror (m) max memory (MB)
No Simplification 5h53m® 1,354,295,996 - - - -
Rand10 1h15m 127,728,716 255,457,357 1.29 49.3 12
Greedyl 9h39m 132,594,102 265,188,048 0.11 36.2 897
Greedy5 8h32m 159,092,817 318,185,478 0.11 249 804
FCFS 5h47m 115,640,355 231,280,566 0.17 423 650

@ data piped to /dev/null instead of file

At this point the size of the TIN with no simplification became too large to be able to store it on the main
drive of the PC used to run the streaming pipeline. For this reason the data is written to /dev/null,
which means that everything written is never stored anywhere. This means that the pipeline can become
slightly faster as it does not have to deal with the I/O of a storage solution. Therefore, a comparison
is made for the Two Tiles dataset between the simplification while writing to a file and simplification

56

4.4 Results

when writing to /dev/null. The difference is 15 minutes for this dataset, where the /dev/null ver-
sion achieves a time taken of 2h35m compared to the 2h50m while storing the file. For all results from
Four Tiles and up it should be noted that this /dev/null time taken is used to provide an indication of
how long this triangulation would take, but it is not a true comparison to previous time taken measure-
ments.

Furthermore, because data is no longer stored, the number triangles and vertices from the result cannot
be reported. The data presented in Table 4.6 is therefore the number of vertices seen in Table 4.1. The
number of triangles can be assumed to be approximately two times the number of vertices, which is
a property seen in all of the prior results. Considering that the non-simplified versions of the data is
already too large to fit in the free space of the computer used for these tests highlights the importance
of having a way to effectively simplify massive datasets.

Four Tiles - Greedyl

Four Tiles - Rand10

RMSE: 1.29

Frequency

Vertex z-error (m)

(a) Rand10 (b) Greedyl

 __Threshold: 0.20 Four Tiles - Greedy5 o Threshold: 0.20 Four Tiles - FCFS.
10,02

RMSE: 0.17

Frequency

4
Vertex z-error (m)

(c) Greedyb5 (d) ECFS

Figure 4.16: Four Tiles: Error histograms showing the distribution of error for each method.

57

4 Implementation and Results

4.4.3 Full-Scale

Table 4.7: Six Tiles: Results of the simplification methods.

time taken vertices triangles RMSE maxerror (m) max memory (MB)
No Simplification 10h19m® 1,902,652,509 - - - -
Rand10 1h48m 177,564,511 355,128,936 1.75 442 12
Greedyl 13h31m 188,354,538 376,708,778 0.18 31.5 776
Greedy5 12h20m 227,937,404 455,874,508 0.16 32.8 804
FCFS 8h32m 165,468,046 330,935,798 0.20 35.9 859

() data piped to /dev/null instead of file

Threshold: 0.20 Six Tiles - Rand10

© o RMSE:177

Frequency

4
Vertex z-error (m)

(a) Rand10

Six Tiles - Greedys

Frequency

4
Vertex z-error (m)

(c) Greedy5

Threshold: 0.20 Six Tiles - Greedyl

WMEdian: 0.02
IRMSE: 0.18

Frequency

(b) Greedy1l

Six Tiles - FCFS

Frequency

(d) FCFS

Figure 4.17: Six Tiles: Error histograms showing the distribution of error for each method.

Table 4.8: Eight Tiles: Results of the simplification methods.

time taken vertices triangles RMSE maxerror (m) max memory (MB)
No Simplification 12h55m® 2,424,250,813 - - - -
Rand10 2h23m 225,004,204 450,008,309 1.76 442 12
Greedyl 17h11m 228,154,328 456,308,291 0.16 31.5 729
Greedy5 15h23m 279,231,753 558,463,139 0.16 38.4 828
FCFS 10h50m 199,632,116 399,263,875 0.21 39.1 776

() data piped to /dev/null instead of file

58

4.4 Results

Threshold: 0.20 Eight Tiles - Rand10
fdaian: 0.01 T

Eight Tiles - Greedyl

| RMSEL76

Frequency

Vertex z-error (m)

(a) Rand10 (b) Greedyl

Threshold: 0.20 Eight Tiles - Greedys
Wdian: 0.02
{RMSE: 0.16

Eight Tiles - FCFS

Frequency

4
Vertex z-error (m)

(c) Greedyb5 (d) ECFS

Figure 4.18: Eight Tiles: Error histograms showing the distribution of error for each method.

4.4.4 Comparison of Results to other Methods

The following section elaborates on how the results obtained from the simplification modules relate to
the results available in prior research. In Chapter 2 (related work) three papers are identified that have
applied simplification for massive triangulations; Isenburg et al. [2006d], Hegeman et al. [2014], and
Dukai [2020]. Therefore, a comparison between the obtained results from the simplification modules
and their prior research is made based on the available metrics or results presented in the research
papers. Where possible, results or code are used.

The results shown in Constantin et al. [2010] prove to be difficult to use for comparison purposes. There
is a table which links datasets and simplification rate to the time taken for simplification, however there
is no stated RMSE for this set of results. Another table indicates the RMSE, but these appear to be
different results because the simplification rates differ from those stated in the time measurement table.
Due to the confusion between these tables no comparison is made against the results in Constantin et al.
[2010].

Comparison of Results vs. Isenburg et al. Isenburg et al. [2006d] has shown that simplification can
be applied in a streaming pipeline by simplifying TINs for use with a contour line extraction algorithm.
They note that the simplification step is the most computationally heavy step, though they are still
able to simplify around 100 thousand triangles per second on a Dell Inspiron laptop with a 2.13GHz
mobile Pentium (2 core) processor and 1GB of RAM Isenburg et al. [2006d, p. 4]. The simplification
step is placed at position C in the streaming pipeline thus simplifying triangles, as with the decimation
module.

The comparison between the results of the simplification modules against Isenburg et al. [2006d] is based
on the statistics mentioned in the research paper. This is because no code or results are available for their

59

4 Implementation and Results

methodologies and thus it is impossible to reproduce their research to make an equal comparison. Using
the data available in the paper, Table 4.9 shows that the method created by Isenburg et al. [2006d] is
outperformed in terms of number of triangles per second by almost all the methods created in this thesis,
except for Greedyl. In terms of simplification percentage, the method created by Isenburg et al. [2006d]
is still able to simplify more triangles, though this could be compensated by adjusting the threshold
specified for each simplification method in this thesis. It should also be noted that Isenburg et al. [2006d]
do not state what the RMSE of their method is, so a comparison of this error metric, or the maximum
error, is not possible.

To calculate how many triangles can be simplified per second, the total number of triangles in the non-
simplified result is divided by the number of seconds taken by the simplification method. This results
in how many input triangles a simplification method can simplify on average.

Table 4.9: Comparison of simplification results from Single Tile to
the results recorded by Isenburg et al. [2006d].

triangles per second simplification

Isenburg et al. [2006d] 100,000 90%
Greedyl 74,251 87%
Greedy5 104,905 84%
FCFS 127,051 88%

Comparison of Results vs. Hegeman et al. Hegeman et al. [2014], who simplify TINs using a large
memory cluster in AWS, do provide some more information on the RMSE of their simplified dataset.
Furthermore, the number of vertices that are simplified per second can be deduced using the total num-
ber of vertices with the time taken to simplify the dataset. In this case, the dataset consists of 3.64 billion
vertices which can be simplified in 37 minutes using nine nodes in a cluster [Hegeman et al., 2014, p.
262].

A comparison between the method created by Hegeman et al. [2014] and the methods created in this
thesis is seen in Table 4.10. Vertices per second is calculated by taking the total number of vertices in
the dataset (343,038,929) and dividing that by the time taken by the pipeline to simplify and triangulate
these vertices. The discrepancy between the two methods is very large in this scenario, with Greedy1l
performing around 116x worse and Rand6 around 23x worse. However, it should be noted there ap-
pears to be a large trade-off between how many vertices are simplified and the RMSE of the result for
Hegeman et al. [2014], who state a very large RMSE for the % reduction obtained, similar to the Rand6
method which comes closest in terms of performance. Furthermore, to achieve this result a total of
2196GB of RAM is used, 288 vCPU cores, 10Gbps networking, and 6400GB of SSD storage as these re-
sults are obtained on a 9-node cluster where each node has 288GB of RAM, 32 vCPU cores, and 800GB
of SSD storage.

Table 4.10: Comparison of simplification results from Single Tile to the results
recorded by Hegeman et al. [2014].

vertices per second simplification RMSE (m)

Hegeman et al. [2014] 1,600,000 32% 0.07
Hegeman et al. [2014] 4,300,000 81% 1.90
Rand6 184,430 86% 1.44
Greedyl 37,125 87% 0.14
Greedy5 52,452 84% 0.14
FCFS 63,526 88% 0.18

60

4.4 Results

Comparison of Results vs. Dukai. The final comparison is against the methodology created by Dukai
[2020]. This simplified TIN only uses points classified as ground, which is different from all results
obtained within this thesis so far. Therefore, the simplification methods created for this thesis are also
re-run with only ground points to ensure a fair comparison can be made. The dataset used to compare
the amount of simplification and the RMSE between these methods is seen in Figure 4.19. The results of
this comparison are shown in Table 4.11.

! y - o G
‘ 2 = W W L)/
30022+ \ 7 30621 K R, Tl S s

\) \ Steiner-Téstset

37BN2 ~ 1 37EN1 B A\ 37EN2 \ 37FN1

Steiner Testset
IESCEINENES

Steipek Testset \

,\‘/

37822 37621 37EZ2 AT 37FZ1

i \
N fd SN

Figure 4.19: Dataset used for the comparison with Dukai [2020].

Dukai [2020] uses 3dfier [Ledoux et al., 2021b], to simplify each sub-tile using TIN simplification to a
maximum threshold of 0.3m. TIN simplification is refinement while recalculating the point of maximum
error after every iteration, as defined by Garland and Heckbert [1997b]. Because the 0.3m threshold
differs from the 0.2m that has been used for all the previous results, each simplification method is re-
run using the same threshold to ensure a fair comparison. The results show that the method used by
Dukai [2020] performs worse in terms of accuracy as the RMSE of 0.10m and max error of 8.9m is higher
then the 0.09m RMSE and all max errors of my simplification methods (6.7m, 4.4m, 6.3m). Histograms
of these results can be seen in Figure 4.20. The histograms show that the spread of vertex errors is also
lower for my methods. However, because there is no mention of the processing time taken to produce
the dataset, it is difficult to say how the methods compare in terms of speed.

The advantage that Dukai [2020] achieves compared to my methods is that there is more simplification,
achieving 99.7% of vertices removed compared to the next best method (FCFS) which achieves 99.3%
simplification. Greedyl and Greedy5 achieve a 98.5% and 97.6% simplification, respectively. Consider-
ing a 4 billion vertex dataset, such as the Eight Tiles dataset, Dukai [2020] would keep only 12 million
vertices. FCFS would keep more than double that amount with 28 million vertices (16 million more),
Greedyl1 follows with 60 million vertices (48 million more), and Greedy5 would keep 96 million ver-
tices (84 million more). The difference in how many vertices are kept for such a large dataset clearly
shows the importance of the minor differences in simplification percentages. In some use-cases having

61

4 Implementation and Results

Table 4.11: Comparison of Simplification Results to Dukai [2020]
based on the data seen in Figure 4.19.

simplification RMSE (m) max error (m)

Dukai [2020] 99.7% 0.10 8.9
Greedyl 98.5% 0.09 6.7
Greedy5 97.6% 0.09 44
FCFS 99.3% 0.09 6.3

as few as possible vertices may be preferable over the 0.01m increase in RMSE and marginal increase in
maximum vertex error.

. Threshold: 0.20 Dukai Comparison - Dukai
"Median: 0.06

Dukai Comparison - Greedyl

AMSE: 0.10

4 5 4
Vertex z-error (m) Vertex z-error (m)

(a) [Dukai, 2020] (b) Greedyl

o+ __Threshold: 0.20 Dukai Comparison - Greedy5
[Mdian: 0.04
|{RMSE: 0.09

Dukai Comparison - FCFS

4 H 3 4
Vertex z-error (m) Vertex z-error (m)

(c) Greedy5 (d) FCFS

Figure 4.20: Comparison of results from this thesis vs. Dukai [2020]: Error histograms showing the
distribution of error for each method.

4.5 Artefacts

During the simplification of the points or TINs in the streaming pipeline artefacts may occur, as shortly
discussed in Section 3.4. In the following sections a number of different artefacts are discussed which
occur in the final results of the various simplification algorithms. The first of these is the quadtree border
artefact which has been previously highlighted in Section 3.4. After this, the artefact at building facades
is shown and its occurrence is analyzed, though it is difficult to pinpoint exactly why this artefacts
occurs.

62

4.5 Artefacts

4.5.1 Quadtree Border Artefacts

The possibility of quadtree border artefacts has already been discussed by showing an example of a
simplified TIN that indicates a minor level of quadtree border artefacts in Section 3.4. The image shown
in that section is seen in Figure 4.21, where there is an indication of vertex clustering around the edges
of quadtree borders. However, when looking at the results obtained for the Eight Tiles dataset using
the Greedyl methodology, seen in Figure 4.22, it is very difficult to discern these quadtree border arte-
facts.

The lack of visible quadtree border artefacts indicates that the methodology used within sst to stitch
each quadtree cell together works well to mitigate these artefacts. This stitching methodology relies on
releasing the true borders of each quadtree cell upon connecting cells; this ensures that in practice there
is a buffer with extra points around each cell. Nevertheless, no other artefacts occur because of this
buffer of higher density because these points are also simplified, resulting in a uniform distribution of
points along the quadtree cell borders.

Figure 4.21: The level of visual artefacts that can occur for simplification methods implemented at
position B. Red lines denote cell boundaries and are shown to assist in detecting visual artefacts.

4.5.2 Facade Artefacts

On the facades of buildings, two other clear artefacts sometimes occur which can be seen in Figure 4.23.
Both of these types of artefacts occur by connecting vertices that are on the edge of a building roof to
vertices on the ground that are far away from where the facade connects to the surface.

63

4 Implementation and Results

)

(L PRH AT
e
R

S|
<X |75/
: gig‘iﬁ\(m ch

~SS

i/
y: ' b
g s : vl : s A

2 ‘Nb\‘/ Wﬁg‘ = A i ' A i\\‘ ‘$‘§I

N =
=) o N7 V& A ~ S & \M ‘
’A’l‘% ’vAw ';': “‘\ T <IN A= il /strs{"‘“\\ 4 4§ﬂ§\
< R e e | Fala

\Vé\,_
W ATASTON
L= ALK T
*‘b"ﬁ\!“;%’r‘«m/a
TN

s
VA’\’ S\
N\

[~ AN
=
“}AW“%‘A

SALHSIEREA
A

N
A —>
-

Figure 4.22: No indication of quadtree border artefacts in a small section within the Eight Tiles dataset
using Greedy1.

However, the first artefact, seen in Figure 4.23a, occurs because a building is directly adjacent to a body
of water and the triangles created between the roof of the building and the ground surface span this
body of water. This happens because there are no LIDAR points in the water body, either due to the
original dataset not containing these, or the points being filtered due to miss-classification (i.e. marked
as unclassified instead of water points). The occurrence of this artefact is not avoidable within the
current methodology because there is no surface approximation for building facades. Therefore, with
the data that is provided to the simplification and triangulation algorithms this is the best solution that
can be made, despite not being the most accurate representation of reality. Furthermore, it should be
noted that the accuracy of the solution will not decrease in these cases as there are no vertices in the
original dataset, thus no error will be detected and technically the provided solution is valid.

(a) Artefacts that occur between building roofs when (b) Artefacts that occur between building roofs and the
water is adjacent to the building. ground.

Figure 4.23: The two types of artefacts that occur between building roofs and the ground surface of the
TIN.

64

4.5 Artefacts

In the case of the second artefact, seen in Figure 4.23b, a visually similar artefact happens. However,
here there is no water body directly adjacent to the building and it is theoretically possible for the
simplification and triangulation algorithms to create triangles that better represent the vertical facade.
One of the reasons that this artefact may occur is that there are trees or parked cars nearby the facade of
the building, which results in a similar issue to the water bodies; these points are removed by filtering
and thus excluded from the triangulation. Another reason this artefact occurs is because the dataset
is not entirely free from occlusion. This means that due to the angle of scanning some points behind
buildings may be occluded. Often combined with the presence of a tree or other object this will lead
to a similar issue with lack of vertices near the connection between the building facade and the ground
surface.

To mitigate both of these artefacts which are likely to be caused by similar issues it is necessary to
either use algorithms that can detect vertical surface of buildings, use the footprints of the buildings (as
constraints), or by providing estimated points along the edges of water bodies (hydro-flattening). All of
these solutions are out of scope for this research but will provide improved results when dealing with
urban environments in triangulations in general, whether simplified or not.

Lastly, to demonstrate how well the simplification and triangulation algorithm functions in most cases,
Figure 4.24a shows a complex curved building roof. The roof of the Reactor Institute in Delft in a dome
shape and built as radiation barrier. Due to the dome shape some simplification methods that rely on
creating straight surface will have difficulty in recreating this roof. In Figure 4.24a it can also be seen how
the rest of the building is handled without introducing the same facade artefacts as described above. An
example of the dome shape simplification can be seen when comparing the result of Greedy1 within
the streaming simplification performed for my this to the dataset in the 3D BAG. It should be noted the
the number of triangles within the 3D BAG version of this building is much less than are present in the
Greedy1 simplified version.

q
AN
el) L

W L

W s "

Mgy,
(a) Ability of Greedy1 simplification to accurately (b) How simplification of the dome-shaped roof can

portray complex curved building features. lead to less-defined portrayal of the surface.

Figure 4.24: Comparison of the Reactor Institute dome-shaped roof between Greedy1 simplification
and the 3D BAG dataset.

65

https://3dbag.nl
https://3dbag.nl

5 Conclusions and Discussion

This chapter discusses the results as presented in Chapter 4 and how these results answer the specified
research questions raised in Section 1.2. Furthermore, the applicability of this research within the field
of Geomatics is discussed as well as whether it makes sense to use a streaming pipeline instead of other
methods. In the discussion there is an important question to answer related to the real-world practicality
of TINs of this size. It may be desirable to create large contiguous TINs but storage will have to be done
in segments or by using a DBMS, as the resulting files are still very large. Lastly, I believe the streaming
geometries paradigm can be developed much further than has currently been explored in this research.
Therefore, I recommend possible future work which can be done related to streaming geometries and
creation of massive Delaunay TINs.

Overall, this research contributes to the geospatial world by providing something that is currently not
readily available; an easy, open-source, methodology to triangulate and simplify massive point clouds
when used in conjunction with sst. As far as has been found this is the first open-source simplification
module available, as a binary or code, that is capable of simplifying triangulations of this size on a
regular computer. Furthermore, the use of this streaming pipeline is not limited to AHN3 in any way
and is expected to work on any other LIDAR dataset. This flexibility in dataset type may also open
doors for researchers or institutions outside of the TU Delft and the Netherlands to simplify datasets
using the simplification methods created.

The results show that my approach is able to create simplified TINs from a large number of points while
maintaining a low RMSE, combined with limited memory usage. From the first result using a full AHN3
tile (Single Tile), to the Eight Tiles dataset, the memory usage for each simplification method is stable,
ranging between 729MB and 955MB for the greedy refinement algorithms. It is interesting to see that
the lower memory usage of these two was achieved on the Eight Tiles dataset, and the highest on the
Two Tiles dataset. This means that the algorithms perform irrespective of the size of the input dataset,
since memory usage shows no direct correlation with input dataset size.

5.1 Research questions

How can a seamless, simplified, Delaunay TIN for all AHN3 points be constructed using the streaming geometries
paradigm?

This thesis has shown how a seamless, simplified, Delaunay TIN can be constructed using the streaming
geometries paradigm by including a simplification algorithm as a step within the streaming pipeline of
sst. This has been shown to function well for datasets ranging from around 200 thousand points to
datasets containing around 4 billion points. For each increase of 500 million vertices in dataset size, the
processing time increases by around 2h30m with the best performing method (FCFS). This is the main
hurdle to overcome when scaling to the dataset size of the entire AHN3, which contains roughly 600
billion points. The methodologies presented in this thesis show that it is possible to simplify a TIN with
minimal memory usage, ensuring that it is possible to construct massive Delaunay TINs on a regular
PC.

Therefore, the expectation is that using the methods presented in this research it is possible to con-
structed a seamless, simplified, Delaunay TIN for all AHN3 points, though a lot of time is necessary
to do so. All results obtained for this thesis were calculated using 8 CPU cores, assuming the same
8 core are used to calculate the entirety of the Netherlands this will take around 86 days. This is as-
suming every 12 hours eight tiles are processed using FCFS and there are 1374 total tiles in the AHN3

67

5 Conclusions and Discussion

dataset. Theoretically, however, double the number of CPU cores means that approximately half the
time is needed to process all this data, reducing the total time to around 43 days of non-stop processing.
Switching to Greedy5 results in processing eight tiles roughly every 15 hours, or 107 days for the entire
AHNS3 dataset.

Using more cores will mainly benefit the simplification methods as the main pipeline cannot be paral-
lelized to ensure data continuity between programs. However, as will be discussed in Section 5.4, the
finalizer can be parallelized to improve performance in the initialization phase of the streaming pipeline.
Therefore, a combination of more CPU cores, combined with a performance improvement to the final-
izer, leads to a realistic scenario for using this methodology to process the entire AHN3 dataset.

How can TIN simplification be integrated into the streaming creation of a Delaunay triangulation?

TIN simplification can be applied at three positions within the streaming geometries pipeline sst; po-
sition A, B, or C (see Figure 5.1). Position C is the most disadvantageous position because a complete
triangulation is created initially, prior to simplifying this triangulation. Therefore position C should
never be used for simplification within a streaming geometries pipeline. Position A has the advantage
of reducing the number of vertices that the finalizer has to process, increasing the processing speed of the
pipeline. However, position A does not allow for multiprocessing because results depend on each other
as they are not being segmented in a logical way, e.g. by releasing each finalized cell of the quadtree.
This leaves position B, which has the advantage of being able to simplify data within the cells released
by the finalizer, while also providing less data for the triangulator to process. With this reasoning posi-
tion B is the most likely position for a simplification method to be implemented, as it allows for boosting
the processing speed while working seamlessly with the existing streaming geometries infrastructure
provided by sst.

Point Cloud (LAS) — A H Finalizer — B ﬂ Triangulator }—» c —> TIN (OBJ)

Figure 5.1: Possible placement positions for a simplification module within the sst pipeline.

Position B also shows indications that almost all type of mesh simplification can be applied to geometries
arriving at this position. This is mainly due to the isolated nature of each cell release by the triangulator,
allowing for the cells to be treated as individual meshes within which a multitude of simplification
operations can be done.

Which TIN simplification method produces the best results when used in a streaming pipeline?

Depending on the aim of simplification the answer to this research question can be either of the three
methods that have been tested for the specified datasets. If the aim is to achieve the lowest RMSE in
combination with the least amount of vertices, then Greedyl is the answer. If the aim is to achieve a low
RMSE with a trade-off between better execution times and a higher number of vertices, then Greedy5 is
the answer. In the last case, if the aim is to achieve a fast result with very low vertex count and higher
RMSE and max error, the FCFS method provides the best option. Each of these algorithms is capable
of creating a seamless, simplified TIN for all of the tested datasets, while keeping memory usage and
execution time within reason.

However, taking into considering the aim to be able to process the entirety of the AHN3 dataset it is
likely that computation time is more important compared to the relatively small increase in RMSE. This
is because this dataset is so large that speed is a more important metric compared to accuracy at this
point. Furthermore, the FCFS method consistently has the least number of vertices and triangles of all
the methods, which is preferable and will scale as the size of the dataset grows even further. For the
Eight Tiles dataset of almost 2.5 billion points FCFS manages to outperform Greedy5 by around 4h30m.
With the Six Tiles dataset of nearly 2 billion points this difference is around 4 hours. This suggests that
for each increase of 500 million points the FCFS method is 30 minutes faster. Scaling this to 600 billion
vertices easily shows how why it is preferably to choose for the FCFS method. For example, at 60 billion

68

5.2 Applicability

points (1/10" of the AHNB3) the difference between FCFS and Greedy5 could be 1800 hours; or 75 days
of processing time.

How does the streaming creation and simplification of a Delaunay TIN perform in comparison to existing methods
in terms of execution time, memory usage, and accuracy?

It is apparent that it is difficult to compare the streaming creating and simplification of Delaunay TINs
to existing methods, as there are few existing methods that exist for the creation of massive TINs, nor
are these methods that are commonly well documented. Nevertheless, using the information that is
provided by the existing methods, a comparison is made to Isenburg et al. [2006d] and Dukai [2020].
Here, it can be seen that the method used by Isenburg et al. [2006d] is capable of processing a similar
number of triangles per second and achieves a higher simplification percentage. It is unsure what type
of simplification is applied by Isenburg et al. [2006d], though it is likely to be a simple form of sim-
plification if they were able to processing 100,000 triangles per second on a single core on a laptop in
2006. Furthermore, no accuracy measurements or TIN output data is provided by Isenburg et al. [2006d]
making it very difficult to validate or reproduce their results. Therefore execution time, memory usage,
and accuracy cannot be relevantly compared between Isenburg et al. [2006d] and this thesis.

Luckily Dukai [2020] has provided results that can be checked and happen to be available for the same
datasets as for this research. However, execution time is not measured for Dukai [2020], nor is memory
usage. This leaves a comparison of the accuracy, discussed in Table 4.11. The comparison seen in that
section shows that the method developed for this thesis outperforms Dukai [2020] based on the RMSE
measurement of the tested dataset.

5.2 Applicability

The applicability in creating a seamless, simplified, Delaunay TIN for the entire AHNS3 is quite small,
mainly due to the size of the resulting files on disk. Despite simplification percentages between 80 and
90%, the Eight Tiles dataset simplified by FCFS (least resulting vertices and triangles), is still 17GB on
disk as OB]J file. Considering all the tiles in the entire AHN3 dataset, storing this amount of data in a
single file is impossible. Therefore it will always be necessary to split this contiguous TIN into smaller
segments. This ensures that the datasets can still be loaded on a regular PC without overflowing the
main memory of that PC, which is the goal of simplifying these TINs.

Using the streaming geometries paradigm for process large datasets is probably the best way to ap-
proach the issues of dealing with large datasets. Realistically, streaming of geometries is the only way
to process the ever-growing geospatial datasets that are being created nowadays. Developing robust
streaming ecosystems are essential to ensure that open-source geospatial data processing without the
need for large servers remains possible in the future, making this research an important step in the right
direction. LAStools shows the practicality of streaming data for some of their tools, such as: clipping,
merging, and retrieving LAS info. Critically, however, LAStools lacks streaming for essential processes
such as triangulation, simplification, and conversion to DEM or contour lines. Therefore, this research
provides an initial step in the direction of filling this gap.

5.3 Discussion

Simplification within a streaming geometries pipeline is clearly possible and is capable of producing
accurate results. However, Isenburg et al. [2006d] is able to perform comparably using older CPU cores,
which leads to the idea that the method used by Isenburg et al. [2006d] is similar to that of Hegeman
et al. [2014], and performs simple simplification in the form of thinning. Therefore, when comparing
my results to that of Hegeman et al. [2014] the RMSE of my methods is better. Furthermore, it is nice
to see that my methods are able to outperform the results obtained by Dukai [2020] using Ledoux et al.

69

https://rapidlasso.com/lastools/

5 Conclusions and Discussion

[2021b]. This supports the idea that using the streaming of geometries combined with a simplification
method is able to produce accurate results for massive datasets.

Practicality of massive TINs. One of the main discussion points that arises from the creation of these
massive contiguous TINSs is the practicality of creating these TINs in the first place. As mentioned, the
FCFS Eight Tiles dataset which consists of “only” 200 million vertices (starting from 4 billion) after sim-
plification is around 17GB when stored in OBJ format on disk. It is highly impractical to keep these
massive TINs stored as single files and it will always be necessary to split these files into smaller seg-
ments or store these in a distributed way in a database management system (DBMS). More suggestions
towards how this large amount of data can be stored is found in Section 5.4.

Performance of Parallelization on Older Hardware. Another observation made is that parallelization
of a process does not always function as expected, because when moving to a server with 40 cores the
overall processing speed was reduced. Despite the older cores on the server machine, the expectation is
that using more 4x as many cores would still increase the overall processing speed of the simplification
methods. However, in practice using 32 cores compared to 8 resulted in an overall reduction in the
processing speed of around 50%. Even considering the overhead in the parallelization this reduction
should not be this large. In the future it is interesting to perform these simplification methods on a
server with more modern CPU cores and comparing how this compares to the results obtained in my
research. If a more modern server is capable of producing a more similar result to the results obtained in
this thesis then that explains the 50% speed reduction. However, if this is not the case then there might
be a difference in how multiprocessing is handled by Python on native Linux (installed on the server),
compared to WSL2 (installed on the PC used for the results).

Creation of Simplification Algorithms. For this research most of the simplification methods were writ-
ten from the ground up, which requires considerable effort in understanding methodologies and recreat-
ing specific algorithms. While educational and allowing for the tweaking of every part of the algorithm,
it is likely preferable to combine simplification with more established existing methods. MAT simplifi-
cation is implemented by calling the simplification program from the streaming pipeline in a separate
process. This same technique can be applied to nearly any simplification method at position B. This is
the case because generally the number of points within a single quadtree cell is small enough for non-
streaming specific simplification methods to deal with. By using this method it is also possible to iterate
through a larger number of simplification methods.

Inclusion of Building Points in Simplification. Another discussion point is that the choice has been
made to keep building points when simplifying the datasets, which increases computational complexity
and extends processing time by quite a lot. When comparing to the method created by Dukai [2020] this
became apparent when a simplification was made of only surface points. This suggests that creating
a TIN of only the surface of all AHN3 points is more doable than when including building points.
Therefore, it may be interesting to use the streaming geometries paradigm to create the DSM of the
entire dataset and combine this with the 3D models created by the 3D BAG to create a full representation
of the Netherlands. Nevertheless, not many countries have a 3D BAG dataset containing 3D models of
all buildings, thus it is good to see that my methods are capable of dealing with buildings while creating
relatively few critical artefacts.

Memory Limitations of Simplification. Lastly, it is interesting to determine whether there is a limita-
tion to how large the input dataset can be when limited in the amount of RAM that can be used. When
considering only the simplification methods, the theoretical limit is based on the number of cores that
can be used. The simplification methods do not store any persistent data and only keep the points from
the quadtree cells that are being processes in memory while they are being simplified. The number of
quadtree cells is dependent on the number of cores, where the results obtained suggest a maximum of
200MB of RAM per quadtree cell may be used at a time. Therefore, as long as a PC has 200MB of free

70

https://3dbag.nl

5.4 Future work

RAM per processing core available the simplification methods will not run out of memory. This calcula-
tion is done based on the cell size of 50m which has been used throughout this research. For larger cell
sizes the amount of memory necessary will be more and can thus lead to bottlenecks.

Limiting Interval for Greedy Algorithms. Currently the interval for the greedy algorithms increments
indefinitely until the triangulation is finalized. The effect of this is that at a certain point the number
of points being added in each iteration is very high, which may result in the introduction of more of
the small triangles. Therefore, it makes sense to limit how far this interval is allowed to increase. This
would ensure that, for example, a maximum of 25 vertices is ever added in a single iteration. This is a
relatively small change, but may significantly affect the visual quality of the resulting TINs.

5.4 Future work

Considering the enormous growth in volume and density of geospatial data, it is hard to ignore that
streaming of geometries provides an adequate processing solution. Despite having been introduced in
2006 there have hardly been real improvements made to the overall process. Therefore, there is still
quite a lot of future work that is possible with the streaming geometries paradigm.

Performance of the Finalizer. The finalizer that is part of sst currently does three passes over the
dataset to determine certain required initialization parameters. When supplying multiple files as an
input dataset the finalizer will pass over each file sequentially to retrieve these parameters. However, it
is also possible to pass over these files in parallel, offloading each file to a separate process to be handled
by a different core. This will benefit the initialization time needed by the finalizer to start releasing points
to the streaming pipeline, thus increasing the overall processing time of the sst pipeline.

Storing Massive TINs. The storage of the massive TINs created in my thesis is done in a single (stream-
ing) OBJ file which includes finalization tags as separate lines at the moment, which is far from practical
due to the file size. Therefore, it is necessary to use a more practical method for storing massive TINs
to allow them to be more usable, better accessible, and highly compressed. One of the most logical ap-
proaches to storing these massive TINs is to use a DBMS, or more specifically the approach suggested
by Ledoux [2009]. This method relies on storing vertices with their X, y, and z coordinate, as well as
their star. The star provides information on the neighboring vertices that comprise the triangles around
the vertex. Another advantage of using a DBMS is that it allows for accessing of smaller sections of data
from the large dataset. An example of this is drawing a bounding box and only requesting the TIN that
is contained within that bounding box. From a DBMS this information can be retrieved in a reasonably
easy fashion.

A useful addition to create as a module within sst’s streaming geometries ecosystem is to be able to
store the TIN data directly to a DBMS. This should be fairly straightforward as long as the triangulator
has the vertex position and its neighbors. Using that data another module can write this output to the
DBMS in the format suggested by Ledoux [2009].

Expanding FCFS with more processing loops. Currently FCFS features two processing loops, a coarse
loop with a threshold of 2m and a fine loop with a threshold of 0.2m. It would be interesting to exam-
ine what the effect would be of adding more processing loops. For example, adding an even coarser
threshold prior to the 2m threshold to remove only the largest vertex errors. Or adding another loop
between the coarse and fine thresholds that can be used to reduce the number of small triangles that
are still created by the current FCFS configuration. Another option is to combine both these additional
loops to have four increasingly fine thresholds that may theoretically increase the accuracy of the results
produced by FCFS, while only marginally increasing the processing time.

71

5 Conclusions and Discussion

Simplification with Quadric Error. Based on the related work assessed for this thesis, the quadric
error method with edge contraction has the potential to create TINs with a low RMSE while also being
reasonably fast to compute. For this thesis the approach is not used as it results in moving vertices from
their original location. However, considering that a simplified TIN is made to represent the surface
created by a point cloud with as few vertices as possible, using quadric error edge contraction may
prove to provide better results. Since edge contraction relies on moving vertices, it allows for better
fine-tuning of the output TIN, theoretically reducing the number of vertices while keeping the RMSE
within bounds. One of the complications with edge contraction may occur around cell borders, where
more severe artefacts may occur as moving of vertices is not possible there. However, it is still relevant
to assess the practicality of this methodology.

Determining which points are within a triangle. Being able to determine which points lie within a
triangle will benefit the simplification methods but is currently not possible within Startin, the triangu-
lation library used within the simplification methods. The benefit lies in being able to recalculate the
errors of relevant vertices, as opposed to recalculating all vertex errors. It is difficult to say how this can
be achieved without increasing the computational complexity of Startin. One of the options is to use the
coordinates of a triangle to determine which points are within the bounding box to subsequently do a
point in triangle test for each point to link the triangle and point together. However, this method will
be very slow as it relies on using a point in triangle test. Another method may be to track each point
within a triangle from the start, then when inserting a new point determining whether the points that
are within that triangle are on the left or right of the created edge. The added complexity here is related
to having to retrieve the points from an adjacent triangle when a flip action is done after inserting a
new point. However, it sounds like a doable approach and can be explored as future work to greatly
improve the performance of the simplification methods.

Creation of more modules for sst. Besides the creation of a module to store the resulting TIN to a
DBMS, other modules should also be explored which can enrich the streaming geometries ecosystem.
Examples of these modules are: contour line extraction, DTM/DSM creation, noise modelling, and wa-
tershed calculation. The two latter problems would require starting with a completed TIN before being
able to use streaming to perform these calculations. Creating these modules allows for the creation of
more types of data from these massive datasets and supports the ability to create contiguous datasets.

Streaming of Real-Time Data. A possible application that would be interesting to see is whether
real-time (sensor) data can also be streaming into the streaming geometries pipeline. This can become
interesting when doing calculations related to determining flood risk of certain areas. By using the
sensor data that is pushed into the streaming pipeline the calculation for possible risk areas can be
kept up to date on a large scale. This would allow for larger target areas to be addressed compared to
focusing on a specific high-risk areas.

72

A Reproducibility self-assessment

A.1 Marks for each of the criteria

[level] Data criteria [~~~ """ "7 TTTTTTTTT T OOTTTTTOTTO OO OO

[0] unavailable (including available upon request) and
not recreatable (even if documented or with metadata)

[1] documented (including metadata) and
recreatable (same or similar data can be retrieved from original source)

Input Data

[2] available, but non-public licenses/no license or non-permanent websites (e.g. no DOI)

[3] available, open and permanent (with DOI)

1
1
1
I
1
|
I
|
|
|
|
I
\

I
} [0] unavailable (including available on request) i

} [1] documented (text, pseudo code, workflow description, }

C rite ria for Preprocessing } versions, Dockerfile, Vagrantfile) i
. | [2] available (source code online, e.g. Github; |
Reprodu01ble I referring to specific example from paper) |
! I

! I

Research Methods i !

! U

[3] available and open (runtime image/container,
standardised metadata, open license)

[0] unavailable/insufficient

|
|
|
I [1] documented (understandable, context provided), i.e.

| reasonable statistical measures/summaries, textual descriptions, tables, maps
|

I

I

|

Results

[2] available, i.e. models, "output data", scripted plots/maps

[3] available, open and permanent

Figure A.1: Reproducibility criteria to be assessed.

Grade/evaluate yourself for the 5 criteria (giving 0/1/2/3 for each):
1. input data: 3
2. preprocessing: 3
3. methods: 3

4. computational environment: 2

5

. results: 1

A.2 Self-reflection

In theory everything is available to reproduce the contents of this thesis in the GitHub repo https:
//github.com/mdjongl/simpliPy combined with https://github.com/hugoledoux/sst. This former
repository also includes an explanation on how to use the sst pipeline and how to incorporate the var-
ious simplification methods into the pipeline. An attempt has been made here to make the scripts as
friendly as possible by including command line arguments for the parameters allowing the simplifica-
tion methods to be treated as a black box.

73

https://github.com/mdjong1/simpliPy
https://github.com/mdjong1/simpliPy
https://github.com/hugoledoux/sst

A Reproducibility self-assessment

The input data, AHNG3, is publicly available on https://downloads.pdok.nl/ahn3-downloadpage/
and can be downloaded by anyone free of charge. Further preprocessing is not necessary as the fi-
nalizer in sst has been modified to include a command line argument that allows for choosing of which
classes to keep. This prevents having to preprocess the point cloud with a tool such as las2las.

The computational environment is not complex and a requirements.txt is included where necessary for
the Python scripts. The compilation of the sst and installation of the required Python packages may be
the hardest part, though these should be easily manageable for most people interested in this research.

For the results I feel like I am lacking slightly, as the results are only available within this thesis and
on my personal computer and do not live in a repository or website in an easily accessible way. This
is partially due to the size of the results (TINs of multiple GBs) and partially because there are a lot of
different methods run for a lot of different datasets, making uploading of all these results separately a
task.

Overall I believe the research should be fairly reproduce-able with the available repositories, explana-
tions within those repositories, and freedom granted in the form of an MIT license on all the methods
created. Furthermore, some extra care is taken to write clean code with comments where necessary to
allow for further development to take place in the future.

74

https://downloads.pdok.nl/ahn3-downloadpage/

Bibliography

Agarwal, P. K., Arge, L., and Yi, K. (2005). I/O-efficient construction of constrained delaunay triangula-
tions. Lecture Notes in Computer Science, 3669:355-366.

AHN (2020). AHN Kwaliteitsbeschrijving. https://www.ahn.nl/kwaliteitsbeschrijving.

Amenta, N. and Choi, 5. (2008). Voronoi methods for 3d medial axis approximation. In Computational
Imaging and Vision, pages 223-239. Springer Netherlands.

Buchin, K. and Mulzer, W. (2011). Delaunay triangulations in O(sort(n)) time and more. Journal of the
ACM, 58(2):1-27.

Constantin, C., Brown, S., and Snoeyink, J. (2010). Implementing streaming simplification for large la-
beled meshes. 2010 Proceedings of the 12th Workshop on Algorithm Engineering and Experiments, ALENEX
2010, pages 149-158.

Dukai, B. (2020). Full AHNB3 TIN using Steiner Points. http://godzilla.bk.tudelft.nl/tin/gpkg/.

Funke, D. and Sanders, P. (2017). Parallel d-D delaunay triangulations in shared and distributed mem-
ory. Proceedings of the Workshop on Algorithm Engineering and Experiments, 0:207-217.

Funke, D., Sanders, P.,, and Winkler, V. (2019). Load-Balancing for Parallel Delaunay Triangulations.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 11725 LNCS:156-169.

Garland, M. and Heckbert, P. (1997a). Fast triangular approximation of terrains and height fields. Sub-
mitted for publication, (October 1999):1-19.

Garland, M. and Heckbert, P. S. (1997b). Surface simplification using quadric error metrics. Proceedings
of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1997, pages
209-216.

Hegeman, J. W., Sardeshmukh, V. B., Sugumaran, R., and Armstrong, M. P. (2014). Distributed LiDAR
data processing in a high-memory cloud-computing environment. Annals of GIS, 20(4):255-264.

Isenburg, M. and Gumhold, S. (2003). Out-of-core compression for gigantic polygon meshes. ACM
SIGGRAPH 2003 Papers, SIGGRAPH "03, pages 935-942.

Isenburg, M. and Lindstrom, P. (2006). Streaming Meshes. pages 231-238.

Isenburg, M., Lindstrom, P., Gumhold, S., and Shewchulk, J. (2006a). Streaming compression of tetrahe-
dral volume meshes. Proceedings - Graphics Interface, 2006:115-121.

Isenburg, M., Liu, Y., Shewchuk, J., and Snoeyink, J. (2006b). Streaming computation of delaunay trian-
gulations. ACM Transactions on Graphics, 25(3):1049-1056.

Isenburg, M., Liu, Y., Shewchuk, J., Snoeyink, J., and Thirion, T. (2006c). Generating raster DEM from
mass points via TIN streaming. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 4197 LNCS:186-198.

Isenburg, M., Liu, Y., and Snoeyink, J. (2006d). Streaming Extraction of Elevation Contours from LIDAR
Points. Citeseer, (1):6.

Ledoux, H. (2009). Storage and analysis of massive tins in a dbms.

75

https://www.ahn.nl/kwaliteitsbeschrijving
http://godzilla.bk.tudelft.nl/tin/gpkg/

Bibliography

Ledoux, H. (2020). Streaming Startin. https://github.com/hugoledoux/sst.
Ledoux, H., Arroyo Ohori, K., and Peters, R. (2021a). Terrainbook.

Ledoux, H., Biljecki, F.,, Dukai, B., Kumar, K., Peters, R., Stoter,]., and Commandeur, T. (2021b). 3dfier:
automatic reconstruction of 3d city models. Journal of Open Source Software, 6(57):2866.

Lee, J. (1989). A drop heuristic conversion method for extracting irregular networks for digital elevation
models. In Proceedings GIS/LIS ‘89, pages 30-39, Orlando, USA.

Peters, R. (2018a). Geographical point cloud modelling with the 3D medial axis transform.
Peters, R. (2018b). masbcpp. https://github.com/tudelft3d/masbcpp/tree/kdtree?.

Ruppert, J. (1995). A delaunay refinement algorithm for quality 2-dimensional mesh generation. Journal
of Algorithms, 18(3):548-585.

URI (2021). TIN Model - University of Rhode Island. https://www.edc.uri.edu/nrs/classes/
NRS409509/Lectures/8Models/AnalysisGraphics/TIN_Model.gif.

van Rijssel, L., Dinklo, C., Prusti, M., Giannelli, D., and Hobeika, N. (2020). 3D noise simulation. http:
//resolver.tudelft.nl/uuid:9e83e3c1-0d7b-4026-a34c-2fbb6laaec2c.

Wu, H,, Guan, X,, and Gong, J. (2011). ParaStream: A parallel streaming Delaunay triangulation algo-
rithm for LiDAR points on multicore architectures. Computers and Geosciences, 37(9):1355-1363.

Yao, X. and Li, G. (2018). Big spatial vector data management: a review. Big Earth Data, 2(1):108-129.

76

https://github.com/hugoledoux/sst
https://github.com/tudelft3d/masbcpp/tree/kdtree2
https://www.edc.uri.edu/nrs/classes/NRS409509/Lectures/8Models/AnalysisGraphics/TIN_Model.gif
https://www.edc.uri.edu/nrs/classes/NRS409509/Lectures/8Models/AnalysisGraphics/TIN_Model.gif
http://resolver.tudelft.nl/uuid:9e83e3c1-0d7b-4026-a34c-2fbb61aaec2c
http://resolver.tudelft.nl/uuid:9e83e3c1-0d7b-4026-a34c-2fbb61aaec2c

Colophon

This document was typeset using IXTEX, using the KOMA-Script class scrbook. The main font is Palatino.

%
TUDelft

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Introduction
	Delaunay Principle
	Research Questions
	Scope

	Outline of this Research

	Related Work
	Previous Work in Constructing Massive Delaunay Triangulations
	Spatial Coherence
	Streaming Principle
	Streaming of Geometries
	Sprinkling

	Finalizer
	Triangulator
	Applications of the Streaming Geometries Principle

	Simplification Algorithms
	Decimation Principle
	Refinement Principle
	Medial Axis Transform

	Methodology
	Integrating Simplification in a Streaming Pipeline
	Architecture of Simplification within the Streaming Geometries Pipeline
	Possible Placement of Simplification in the Streaming Pipeline

	Use of Simplification Methods in the Streaming Geometries Pipeline
	Randomized Thinning
	Drop-Heuristic
	Refinement
	Greedy Refinement
	First-Come-First-Serve Refinement

	Combining First-Come-First-Serve Refinement with Drop-Heuristic Decimation
	Medial Axis Transform Simplification

	Evaluation Criteria: Parameters that Determine the Optimal Simplification Method
	Accuracy
	Computation Time
	Throughput
	Memory Usage

	Dealing with Artefacts on Quadtree Borders

	Implementation and Results
	Evaluation Tools
	Time measurement
	Accuracy
	Memory Analysis
	Streaming Geometries Visualizer

	Engineering Decisions
	Parallelization

	Real-World Datasets
	Frequent tests (Small-Scale)
	Less-Frequent tests (Large-scale)
	One-Time tests (Full-scale)

	Results
	Small-Scale
	Large-Scale
	Full-Scale
	Comparison of Results to other Methods

	Artefacts
	Quadtree Border Artefacts
	Facade Artefacts

	Conclusions and Discussion
	Research questions
	Applicability
	Discussion
	Future work

	Reproducibility self-assessment
	Marks for each of the criteria
	Self-reflection

	Bibliography

