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We demonstrate a strong coupling between the flexural vibration modes of a clamped-clamped

micromechanical resonator vibrating at low amplitudes. This coupling enables the direct measurement

of the frequency response via amplitude- and phase modulation schemes using the fundamental mode

as a mechanical detector. In the linear regime, a frequency shift of 0.8 Hz is observed for a mode with

a line width of 5.8 Hz in vacuum. The measured response is well-described by the analytical model

based on the Euler-Bernoulli beam including tension. Calculations predict an upper limit for the room-

temperature Q-factor of 4:5� 105 for our top-down fabricated micromechanical beam resonators.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769182]

Nonlinear interactions between the vibration modes in

micro- and nanomechanical resonators have attracted signifi-

cant interest recently. In extensional structures, such as

clamped-clamped bridges, the modes are coupled by the

displacement-induced tension,1 which yields a quadratic rela-

tion between the resonance frequency of the mode considered

and the amplitudes of the other modes. In singly clamped

cantilevers the displacement-induced tension is absent; here,

the inextensionality condition couples the horizontal and ver-

tical displacements of all modes, resulting in qualitatively

similar dynamics.2–5 Several applications and consequences

have been put forward based on the modal interactions, such

as enhancement of the dynamic range,1 modification of the

resonator damping by employing phonon-phonon cavities,6,7

frequency stabilization,8 the study of relaxation mechanisms,9

and linear frequency conversion.10 In thermal equilibrium,

via the modal interactions the displacement fluctuations in

one mode give rise to frequency fluctuations in the other

modes, thus broadening their spectral line. In recent theoretic

work these frequency fluctuations were quantified for a car-

bon nanotube,11 yielding a boundary for the experimental

Q-factor of such resonators at finite temperature. Experiments

on suspended carbon nanotube resonators in the Coulomb

blockade regime demonstrate that single-electron-tunneling

processes provide a strong electrostatic coupling between the

modes, in addition to the mechanical mode coupling.12,13

While the recent experimental work has focused on the

mode coupling in strongly driven resonators exhibiting non-

linear vibrations, in this letter we investigate these interac-

tions in the low-amplitude regime. We demonstrate that the

modal interactions play a significant role in the dynamic

behavior of a linear resonator, as the vibrations of a weakly

driven mode modulate the motion of a second vibration

mode. We employ this coupling to perform swept-frequency

type measurements of the linear frequency response of a

high frequency (target) mode, by measuring the induced am-

plitude (AM) and phase modulation (PM) in a low frequency

(probe) mode which is weakly driven at a fixed frequency.

This provides a practical way to measure the frequency

response, and it should be contrasted to the scheme presented

earlier,1 where the frequency response of the target mode is

reconstructed from a series of resonance frequency measure-

ments on the probe mode. The observed modulation depth is

in agreement with a model based on the Euler Bernoulli

beam including tension.1 Using this model with the parame-

ters extracted from experiment, the spectral broadening of

the fundamental mode when the higher mode is in thermal

equilibrium is estimated. An upper limit Q ¼ 4:5� 105 is

found for our micrometer-scale silicon beam resonator. This

indicates that modal interactions play a significant role in the

experimentally observed Q-factors of micromechanical

resonators.

To detect the modal interactions in the linear regime we

deploy the fundamental flexural mode as the probe, by driv-

ing it at a fixed frequency fprobe. Its response is modulated by

the averaged tension induced by the displacement of a sec-

ond mode of the resonator, which is driven at ftarget. Fig. 1(a)

shows the principle of this AM scheme. The experiments are

conducted using silicon beams with dimensions L� w� h
¼ 1000� 2� 2 lm3, fabricated by anisotropic wet etching

of silicon-on-insulator wafers with an (110)-oriented device

layer.14 Fig. 1(b) shows the resonator and the setup; the

beam is driven by applying an alternating current in the pres-

ence of a permanent magnetic field,15 via a thin conductive

layer evaporated on top (70 nm of chromium/gold). The driv-

ing force and the detector couple to the in-plane motion of

the device. To eliminate broadening of the resonance peak

by the viscous force, the experiment is conducted at a pres-

sure of � 10�4 mbar. Frequency response measurements

when one mode is driven and the other mode is in thermal

equilibrium are shown in Fig. 1(c). The linear resonance

frequencies for the first and third mode (n¼ 1,3), fR;1
¼ 26 765:7 Hz, and fR;3 ¼ 127 294 Hz, and the corresponding

Q-factors, Q1 ¼ 4527 and Q3 ¼ 7476, are obtained from

damped-driven harmonic oscillator fits (solid lines).16

The sensitivity of the probe mode to the motion of the

target mode varies with fprobe and maximizes when the sec-

ond derivative of the probe mode frequency response is zero.

In Fig. 2(a) the fitted amplitude (left) and phase (right)

responses of the fundamental mode (grey) of Figure 1 are

repeated, together with their second derivatives (blue solid

lines). The inflection points, marked B and D, occur at detun-

ing Df � 1

Q
ffiffi
8
p , whereas the phase modulation maximizes on

resonance, Df ¼ 0 (C). Figure 2(b) shows measurements of

the magnitude (left) and phase (right) response of the probe

mode while sweeping ftarget through the resonance frequency
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of mode 3. The (fixed) drive frequencies correspond to A-E

in panel (a). At fprobe ¼ 26:76 kHz, A, the probe mode is off-

resonance and the target mode is not detected. In B, on the

positive slope of the frequency response curve of the probe

mode, the amplitude modulation maximizes. The tension of

the target mode tunes the resonance frequency of the probe

mode to a higher value and produces in a dip in the amplitude

response of the probe mode. When the probe mode is on reso-

nance (C) the amplitude modulation is close to zero: here the

phase response maximizes. Probing at a higher frequency

results in maximization of the AM response in D, and off-

resonance (E) the modulation is zero. These measurements

demonstrate that the fundamental mode can be conveniently

used to probe the response of a mode that is 5 times higher in

frequency, in a swept-frequency type measurement.

Figure 2(c) shows the full measurement from which the

traces are extracted. The target mode is swept along the hori-

zontal (fast) axis, while the frequency of the probe mode is

incremented along the vertical (slow) axis. The color scales

represent the amplitude (left) and phase (right) response of

the probe mode. The probe response when the target mode is

off-resonance is subtracted to reveal the resonant feature

more clearly. Figure 2(d) shows the modulation depth as a

function of the probe mode frequency, when the target mode

is driven on-resonance. The AM modulation depth is 10 mV,

which corresponds to a frequency tuning of 0.8 Hz. This fre-

quency shift is of the same order as the line-width of the res-

onator, 5.8 Hz, indicating the strong coupling between the

modes vibrating in the linear regime. Notably, in these meas-

urements the applied drive force for both modes is the same

as in Fig. 1(c), and no apparent sign of nonlinearity is

observed in the line shapes. In Fig. 2(d) the back-action from

the target mode causes a small but noticeable upwards shift

of the resonance frequency of the probe mode response.

To describe the modulation between the two linear

driven modes, we calculate the complex response of mode 1

while driving mode 3 through resonance, using the model

developed in Ref. 1. The amplitudes a1;3 of modes 1,3 driven

at frequency x1;3 are then given by

ðx2
R;1 � x2

1 þ ix1xR;1=Q1 þ
s
4
ja1j2I2

11

þ s
4
ðja3j2I11I33 þ ja3j2I2

13ÞÞa1 ¼
ð1

0

fac;1n1dx; (1)

ðx2
R;3 � x2

3 þ ix3xR;3=Q3 þ
s
4
ja3j2I2

33

þ s
4
ðja1j2I33I11 þ ja1j2I2

31ÞÞa3 ¼
ð1

0

fac;3n3dx: (2)

FIG. 1. (a) Amplitude modulation scheme to probe the modal interactions at low amplitudes. The response of the probe mode is modulated by the

displacement-induced tension of the target mode. (b) Measurement setup and colored scanning electron micrograph (top view) of the silicon (110) beam reso-

nator. The motion is in the plane of the figure. (c) Linear frequency response of the probe and target modes.
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The scaled Lorentz force per unit length acting on the

beam is fac;i ¼ 12L4

Ewh4 BIi, where I1 ¼ 715 pA and I3 ¼ 10:7 nA

are the rms currents through the resonator and B¼ 1.9 T is

the permanent magnetic field. For a stress-free beam with a

rectangular cross section s ¼ 12, the integrals Iij ¼
Ð 1

0
ni
0

ðxÞnj
0ðxÞdx are I11 ¼ 12:3; I33 ¼ 98:9, and I13 ¼ I31 ¼ �9:7,

and the average displacements per unit deflection are
Ð 1

0
n1dx0

¼0:83 and
Ð 1

0
n3dx0¼0:36 for the beam-like mode shapes ni.

Young’s modulus equals E¼169GPa for our device, which

bends about the silicon (110) axis.17 Figure 2(d) (solid lines)

shows the modulation depth as calculated by numerically

solving the coupled equations of motion. Agreement is

found between the measured and the calculated sensitivity

curves, where the phase shift is quantitatively predicted

by the model, and the magnitude is scaled by a constant

factor as the detector gain is not accurately known in this

experiment.

The above analysis demonstrates that the modal interac-

tions give rise to a significant tuning of the modes in the

low-amplitude regime. The driven displacements of mode 1

in the experiment exceed the thermomechanical fluctuations

by only 2 orders of magnitude, and introduce a significant

frequency tuning when compared to the resonator band-

width. It is interesting to consider the frequency shifts when

the modes are in thermal equilibrium and the external driv-

ing force is zero. Here, the displacement fluctuations give

rise to frequency fluctuations via the displacement-induced

tension. For carbon nanotube resonators this broadening

was calculated using a thermodynamic approach and a dis-

cretized model of the resonator.11 With the continuous

Euler-Bernoulli theory, which accurately describes the

experimentally observed interaction between the modes at

low amplitudes, the frequency shift for our top-down fabri-

cated micromechanical resonators equals 0:09 Hz=nm2.

For an rms thermal displacement a3;th ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=mx2

R;3

q
¼ 0:026 nm this figure implies an upper bound for the exper-

imentally observed Q-factor of mode 1 of approximately

Q1;max < 4:5� 105 at room temperature, due to the interac-

tion with mode 3. This value will be lower when the motion

of other degrees of freedom is taken into account.

The predicted upper bound is lower than the experimental

Q-factors for string resonators under tension, for which values

over a million have been reported at room-temperature.18 The

difference can be explained as follows. The string devices

incorporate a large residual tension, which forms the main

contribution to the restoring force.19 As a result, the flexural

displacements due to thermal energy are small, and so is the

displacement-induced tension. The dispersion due to a fluctu-

ating displacement via the modal interactions therefore

reduces with the residual tension. This is mathematically

expressed via the interaction matrix Iij, which for devices with

negligible bending rigidity (strings) contains only nonzero di-

agonal terms (Ii 6¼j ¼ 0), thus limiting the available dispersive

interactions for strings. Finally, in a perfect string the spec-

trum is harmonic with fR;n ¼ nfR;1. In this case the energy is

recycled between the modes as the motion of one mode gives

rise to a parametric excitation of the other modes via the

displacement-induced tension. In a perfect string this paramet-

ric excitation is effective, as it always occurs at integer

FIG. 2. (a) Frequency response of the probe (fundamental) mode and its sec-

ond derivative. (b) Amplitude (left) and phase (right) response of the probe

mode driven at the frequencies indicated in (a), while driving the target

mode through resonance. (c) Amplitude (color scale, left) and phase (right)

of the probe mode, after subtracting the harmonic oscillator response back-

ground. (d) Sensitivity of the probe mode in AM and PM detection schemes

as a function of the drive frequency of the probe (solid lines: calculation).

The target mode is driven on resonance. (e) Response as calculated by solv-

ing the coupled equations of motion.
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multiples of the resonance frequencies and all harmonics are

parametrically degenerate.

In conclusion, we have studied the modal interactions in

clamped-clamped resonators in the regime of linear vibra-

tions. At drive strengths that are 5 orders of magnitude lower

than in previous experiments on micromechanical resona-

tors,1 we observe a strong mechanical interaction between

the modes, inducing frequency shifts on the order of the res-

onance line width in vacuum. The interaction is employed to

perform swept-frequency type measurements by measuring

the amplitude and phase modulation of the fundamental by a

mode that is 5 times higher in frequency. The presented

scheme, i.e., coupling the motion to a mechanical detector,

may be favorable compared to an electronic detector as it

does, e.g., not suffer from signal loss due to parasitic capaci-

tance. The amplitude and phase modulation is quantitatively

described by an Euler-Bernoulli beam model including ten-

sion. This model predicts that the fluctuating displacements

in thermal equilibrium result in frequency broadening and

limit the room-temperature Q-factor of our micromechanical

resonators to 4:5� 105. In reality this value will be lower

since the model only considers broadening by the third mode

and neglects the contribution of the other modes.
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