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Effects of Target Signal Shape and System

Dynamics on Feedforward in Manual Control
Frank M. Drop, Student member, IEEE, Daan M. Pool, Member, IEEE, Marinus (René) M. van Paassen, Senior

member, IEEE, Max Mulder, Heinrich H. Bülthoff, Member, IEEE

Abstract—The human controller (HC) in manual control of a
dynamical system often follows a visible and predictable reference
path (target). The HC can adopt a control strategy combining
closed-loop feedback and an open-loop feedforward response.
The effects of the target signal waveform shape and the system
dynamics on the human feedforward dynamics are still largely
unknown, even for common, stable, vehicle-like dynamics. This
paper studies the feedforward dynamics through computer model
simulations and compares these to system identification results
from human-in-the-loop experimental data. Two target waveform
shapes are considered, constant velocity ramp segments and
constant acceleration parabola segments. Furthermore, three
representative vehicle-like system dynamics are considered: a
single integrator, a second-order system, and a double inte-
grator. The analyses show that the HC utilizes a combined
feedforward/feedback control strategy for all dynamics with the
parabola target, and for the single integrator and second-order
system with the ramp target. The feedforward model parameters
are, however, very different between the two target waveform
shapes, illustrating the adaptability of the HC to task variables.
Moreover, strong evidence of anticipatory control behavior in the
HC is found for the parabola target signal. The HC anticipates
the future course of the parabola target signal given extensive
practice, reflected by negative feedforward time delay estimates.

I. INTRODUCTION

MANUAL control of a dynamic system requires the

human controller (HC) to efficiently steer the system

along a certain target path while compensating for distur-

bances. An example is the manual control of an aircraft during

turns or ascends and descends in the presence of turbulence.

The HC uses all available sensory information and knowledge

gained through prior experience, to optimize performance and

reduce effort [1]. Automation and shared-control interfaces in

aviation, and the advent thereof in the automotive sector [2],

[3] demand a better understanding of high-level, goal-directed

steering inputs in human feedforward control [4].

The majority of existing HC models, identified from ex-

perimental human-in-the-loop data, describe compensatory

control behavior, where the HC acts as a closed-loop feedback

controller [5]. Models of higher level control behavior, such

as pursuit and preview control [6], commonly include a

feedforward on the target [7]–[9], providing better tracking

performance than pure feedback control [10]. These models

were, however, not identified from experimental data.
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cal Cybernetics, Tübingen (Germany), {frank.drop, hhb}@tuebingen.mpg.de.
All other authors are with the Control and Simulation section, Faculty of
Aerospace engineering, Delft University of Technology (Netherlands).

Models of compensatory control have limited applicability,

because realistic control tasks rarely induce a pure compen-

satory control strategy. These models do, however, reveal that

HC behavior depends primarily on the system dynamics and

the target and disturbance signal (the forcing functions) prop-

erties [11]. That is, the compensatory feedback equalization

dynamics depend primarily on the system dynamics [12], and

the quasi-linear model parameters depend primarily on the

forcing functions [5], [13]. The effect of system dynamics

and target signal properties on human feedforward control has

received little attention and is still mostly unknown [14].

This paper investigates the adaptation of feedforward dy-

namics to the system dynamics and the target signal properties.

Two main hypotheses were postulated in [10] and [15].

First, the ideal feedforward dynamics are equal to the

inverse system dynamics [10] and the HC is expected to utilize

similar dynamics. Wasicko et al. [10] indeed found evidence

for a (sub-optimal) inversion of system dynamics in pursuit

tasks. The deviations from the ideal dynamics likely stem from

human limitations in perception, cognition, and action. Recent

studies modeled these limitations by a gain, a low-pass filter,

and a time delay [14], [16], [17], but they disagree on the

exact model structure and order of the low-pass filter.

Second, it was stated that the utilization of feedforward

is affected by the predictability of the target signal [5], [8],

which is expected to depend on its waveform shape [15].

This hypothesis was, however, not experimentally investigated.

Nevertheless, upon comparing the results of [10] and [14], a

strong interaction between system dynamics and target signal

shape indeed seems present. Ref. [10] investigated feedfor-

ward with “unpredictable” sum-of-sine targets and found little

evidence of feedforward with a single integrator (SI), but

strong evidence with a double integrator (DI). Ref. [14] used

“predictable” ramp shaped targets and found the opposite:

strong evidence for feedforward with an SI, but less conclusive

evidence for a DI. However, objective metrics quantifying the

predictability of the targets were not presented.

Recent advances in system identification [18] now allow

for the investigation of feedforward control in realistic control

tasks. To investigate the adaptation of manual feedforward

control behavior to the target waveform shape and the system

dynamics, we consider two realistic target waveform shapes

and three classes of vehicle-like system dynamics. We will not

explicitly investigate the predictability of the two targets, but

rather focus on how the human feedforward dynamics adapt to

different waveform shapes. We will consider constant velocity

ramp segments, as used in [14], [16], [17], and compare
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these to constant acceleration parabola segments. The parabola

segments represent maneuvers in which the vehicle attitude

is changed in minimum time, whilst keeping the vehicle

accelerations within certain limits.

By far, the majority of vehicles under manual control are

dynamically stable systems, either by design or through added

augmentation systems, and can therefore be described by

integrator or second-order system dynamics; sometimes by

a double integrator [11]. While in very rare occasions HCs

may be briefly (e.g., during hover in unaugmented helicopter

flight) and unexpectedly (e.g., system malfunction) confronted

with unstable dynamics, in such cases improving control

performance through feedforward control will likely not play

an important role, given the required emphasis on retaining

stability. In this paper, we aim to study human behavior as

it appears in the vast majority of control tasks, and therefore

consider three stable, common, vehicle-like system dynamics,

i.e., the easy-to-control SI, a second-order system, and the

difficult-to-control DI.

The interaction between target waveform shape and system

dynamics is investigated by means of an offline analysis with

hypothesized HC models and a human-in-the-loop experiment.

The offline analysis will investigate the potential performance

improvement provided by a feedforward response as a function

of target signal waveform shape, system dynamics, and model

parameter values. Two complementary system identification

and parameter estimation methods are used to analyze exper-

imental human-in-the-loop data. A recently developed black-

box ARX identification procedure, which is robust to false-

positive feedforward identification, is used to identify HC

dynamics [18]. A time-domain parameter estimation method

[19], using HC models based on the ARX results, is used to

obtain further insight in the correct model structure and to

observe changes in control behavior.

The paper is structured as follows: Section II further

introduces the control task under investigation. Section III

introduces the HC model used in the offline analysis of

Section IV. The human-in-the-loop experiment is described

in Section V, the results of which are described in Section VI.

The paper ends with a discussion and conclusions.

II. CONTROL TASK

This paper focuses on human control behavior in a com-

bined target-tracking and disturbance-rejection task, as shown

in Fig 1. In this case an aircraft pitch attitude control task is

shown. The HC controls the dynamic system Yc such that the

Fig. 1. Control scheme studied here. The HC can use target signalft, the
system output θ and the error e to generate the control signal u.

error e defined as e = ft − θ, remains as small as possible.

Meanwhile, the system output is perturbed by a disturbance

signal fd, resulting in the perturbed output θ. The task is

presented visually to the HC by means of a pursuit display,

explicitly showing the target, the perturbed system output, and

hence also the tracking error, see Fig. 2.

Fig. 2. Pursuit displays for pitch control. The display shows only the current
values of the signals. No post or preview information is presented.

A. System Dynamics Yc

Three variations of Yc will be considered: the single inte-

grator (SI) of (1), the second order system (S2D) of (2), and

the double integrator (DI) of (3),

Y SI
c (s) = KSI

c /s (1)

Y S2D
c (s) =

2KS2D
c

s (s+ 2)
(2)

Y DI
c (s) = KDI

c /s2 (3)

With KSI
c = 1, KS2D

c = 2.75, and KDI
c = 5.

B. Target Signal ft

Three variations of ft are considered: 1) a signal composed

of constant velocity ramp (R) segments, 2) a signal composed

of constant acceleration parabola (P) segments, and 3) a con-

stant and zero target signal (Z), resulting in a pure disturbance-

rejection task. The purely compensatory control behavior

observed with the Z target is compared to the compensatory

behavior observed simultaneously with feedforward with the R

and P targets. Feedforward behavior can be investigated with

the predictable R and P signals only, which are composed of

several ramp and parabola segments of 3.75 and 7.5 s duration.

Fig. 3 shows one individual ramp and parabola segment of 7.5

s and their first and second derivatives.

(a) (b)

Fig. 3. Discrete target signal segments considered in this study. (a) Ramp.
(b) Parabola.
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The ramp signal velocity, Fig. 3(a), changes instantaneously

from zero to 5.3 deg/s and back to zero, rendering an in-

finitely large second derivative at the ramp discontinuities.

The parabola signal acceleration, Fig. 3(b), changes instan-

taneously thrice during a segment. First, it jumps from zero

to 2.8 deg/s2, causing the target velocity to increase linearly.

Then, at exactly half the segment duration, the acceleration

changes sign, causing the target velocity to decrease linearly,

resulting in a waveform of two smoothly connected parabolas.

Each combination of system dynamics and a target signal

will be referred to here with the syntax “{SI, S2D,DI} −
{Z,R,P}”. For example, SI-P designates the condition with

single integrator dynamics and the parabola target signal.

III. HC MODEL

We will first perform simulations with HC models to inves-

tigate the usefulness of a feedforward strategy and how this

depends on the hypothesized limitations in the feedforward

control action. Fig. 4 shows the structure of the HC model

assumed for all three system dynamics, identical to the Inverse

Feedforward Model (IFM) of [14]. The model consists of three

components: 1) a feedforward path Ypt
, 2) a feedback path Ype

,

and 3) a model of the neuromuscular system Ynms. Signal n
indicates remnant, accounting for non-linearities present in the

HC, and is the residual of the control signal that is not modeled

by the linear model.

Fig. 4. HC model block diagram.

The feedforward path Ypt
consists of a gain, inverse system

dynamics [10], [14], [17], a low-pass filter, and a time delay:

Ypt
(s) = Kpt

1

Yc(s)

1

(TIs+ 1)2
e−τpts (4)

The gain Kpt
determines the overall strength of the feed-

forward response; setting Kpt
= 0 transforms the model to a

pure feedback model. We will assume the theoretically ideal

feedforward gain Kpt
of 1, but note that previous studies have

identified slightly lower values, Kpt
≈ 0.9 [14], [17].

Parameter τpt
captures the time delay present in the feed-

forward response, originating throughout the entire perception

and action loop responding to the target signal. In our simu-

lations and experimental data analyses we will also consider

the possibility that τpt
< 0, modeling anticipatory control

behavior where the HC predicts the future course of the target.

To simulate negative time delays, the feedforward path Ypt

responds to f∗

t (t) = ft(t+1) with the time delay τ∗pt
= τpt

+1,

while the feedback path Ype
responds to the error e = ft − θ,

where ft is the unmodified target signal.

The low-pass filter parametrized by TI smoothens the ideal

waveform of upt
by filtering out high frequency content due

to the inversion of ft through 1/Yc, see Fig. 5. Note the

similarity in waveform shape between upt
in Fig. 5 and the

first and second derivatives of ft in Fig. 3. For example,

upt
of SI-R is a smoothed step similar to the ramp’s first

derivative, and upt
of DI-P is a smoothed doublet similar to the

parabola’s second derivative. The filter affects upt
especially

around discontinuities in the derivatives of ft; here the filter

removes the high frequent content of upt
.

(a) (b)

Fig. 5. The feedforward control signal upt plotted for three different values
of TI (0.2, 0.4, and 0.8 s). Arrows indicate evolution of signal shape as TI

is reduced. The target ft is scaled by 0.25 and shifted up to start at 0 deg for
clarity. (a) Ramp conditions. (b) Parabola conditions.

In [16] and [17], a first-order low-pass filter was assumed,

but in [14] the filter was second-order. Similarly, two different

assumptions regarding the position of the neuromuscular sys-

tem in the model were made in [17] and [14]. In [17], the NMS

acts on both the feedback and the feedforward path, whereas in

[14] it acts only on the feedback path. The simulation results

to be presented here are performed with the HC model and

identified parameter values of [14] for consistency with this

more recent work. The best model structure will be identified

from experimental data through two identification methods.

The compensatory feedback component Ype
of the com-

bined feedforward-feedback HC model is modeled with a

structure identical to McRuer’s Extended Crossover Model

[10], [11], [14], [17]. For second-order system dynamics (S2D

and DI), the compensatory dynamics are described by:

Ype
(s) = Kpe

(TLs+ 1)e−τpes (5)

For the SI the lead time TL is zero.

The neuromuscular system (NMS) is commonly modeled

as a mass-spring-damper system [11], [20]:

Ynms(s) =
ω2
nms

s2 + 2ζnmsωnmss+ ω2
nms

(6)

The HC model parameter values (Table I) are taken from

[14] for the fastest of the two ramp targets (4 deg/s); these are

closest to the ramp rate considered here (5.3 deg/s, Fig. 3(a)).

The same values are used for the parabola in the following

performance simulation analysis, to obtain a fair comparison.

IV. PERFORMANCE SIMULATIONS

We hypothesize that the utilization of a feedforward control

strategy by the HC depends on the potential performance

improvement (PI) that the additional feedforward path delivers
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TABLE I
HC MODEL PARAMETER VALUES USED IN SIMULATIONS

Kpt TI τpt Kpe TL τpe ωnms ζnms

- s s - s s rad/s -

SI 1 0.25 0.22 1.55 - 0.19 14 0.22

S2D 1 0.25 0.35 0.75 0.4 0.24 10.1 0.35

DI 1 0.32 0.45 0.25 1.2 0.23 9.5 0.28

compared to a pure feedback strategy. The larger the PI, the

larger the likelihood of observing a feedforward strategy in

the HC. We investigate how the PI is affected by the relative

strength of the target and disturbance signals and by the

hypothesized imperfections in the feedforward, expressed in

the HC model by parameters TI and τpt
.

Performance is expressed by the root mean square (RMS)

of the tracking error e, and the PI is expressed as a percentage:

PI =
RMS(eFB)− RMS(eFB+FF)

RMS(eFB)
× 100% (7)

Subscript FB designates a pure feedback HC model (Kpt
=

0), and subscript FB + FF designates a model with an ideal

feedforward contribution (Kpt
= 1). A PI of zero indicates no

benefit of feedforward (equal performance with and without

feedforward), a PI of 100% means that feedforward reduced

the RMS(e) to zero (perfect tracking), and negative PI values

indicate a detrimental effect of feedforward on performance.

A. Simulation properties

Simulations were performed with the models of Section III

and parameter values of Table I, unless stated otherwise.

The target and disturbance signals are identical to those in

the human-in-the-loop experiment, see Fig. 6. The ramp and

parabola target signals consist of one short (3.75 s) upward

segment, five longer (7.5 s) alternately downward and upward

segments, followed by a final short (3.75 s) upward segment.

Fig. 6. Target and disturbance signals. See Fig. 3 for individual ramp and
parabola segments. For visibility, the disturbance signal is shown for Kd = 3.

The unpredictable sum-of-sines disturbance signal fd con-

sists of twenty frequency components (Table II) generated by:

fd(t) = Kd

20
∑

i=1

Afd(i) sin (nfd(i)ωmt+ φfd(i)) , (8)

with ωm = 2π/Tm and Tm the measurement time equal to

81.92 s. The phases of the sinusoids were chosen such that

the signal appeared random.

TABLE II
DISTURBANCE SIGNAL COMPONENTS

nfd
Afd

, deg φfd
, rad nfd

Afd
, deg φfd

, rad

3 0.7828 1.2690 71 0.0525 0.3656
4 0.7637 2.6766 72 0.0515 4.8493

11 0.5597 4.5225 101 0.0328 0.9056
12 0.5290 1.1222 102 0.0325 4.4812
23 0.2788 4.1590 137 0.0238 1.4743
24 0.2640 1.6998 138 0.0236 5.8833
37 0.1420 1.4078 171 0.0198 3.8822
38 0.1364 6.2706 172 0.0197 5.1612
51 0.0864 5.9928 225 0.0168 0.8126
52 0.0839 0.6057 226 0.0168 4.3437

B. Relative strength of target and disturbance signals

First, the magnitude of fd is varied by multiplication with

gain Kd to modulate the emphasis on either target-tracking or

disturbance-rejection. In Fig. 6 fd is plotted for Kd = 3, but

note that during the human-in-the-loop experiment Kd was set

to 1. To cover a wide range between pure target-tracking and

pure disturbance-rejection tasks, we consider 0.1 < Kd < 100.

Fig. 7(a) shows that, for all conditions, the PI is positive and

it is largest for low values of Kd, indicating that feedforward

improves target tracking performance. The PI is almost zero

for high Kd, corresponding to a task with strong disturbances

that can be rejected through feedback only. Here, target-

tracking performance contributes little to task performance,

and thus the PI due to feedforward is small.

(a) (b)

Fig. 7. The performance advantage of the feedforward HC model for six
different conditions, as a function of Kd for different values of TI and τpt .
(a) TI and τpt as defined in Table I. (b) TI = 0.05 s and τpt = 0.05 s.

Comparing across conditions, Fig. 7(a) shows that the PI

is largest and always positive for both SI conditions, slightly

smaller but still positive for both S2D conditions, and smallest

for both DI conditions, for all values of Kd. For the DI-P

condition a small PI is attainable through feedforward, but

for the DI-R condition the PI is almost equal to zero. Here,

feedforward improves performance minimally.

The minor PI in the DI-R condition is caused by 1) limi-

tations and imperfections in the feedforward control strategy

(modeled by TI and τpt
) which cause upt

to be considerably

different from the optimal control input, and 2) the subsequent

interaction between the simultaneously operating feedback and

feedforward. The feedforward ideally generates a short, pulse-

like control input that accelerates the system to the velocity

of the ramp. The actual feedforward input is delayed by τpt

and is less ‘pulse-like’ due to the low-pass filter, resulting in
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a large tracking error following the ramp onset. If τpe
≈ τpt

,

the feedback will simultaneously respond to this error, causing

the system to overshoot the target. Thus, performance does not

improve by applying feedforward with a large τpt
and TI .

For illustration, simulations were performed with TI = 0.05
s and τpt

= 0.05 s, see Fig. 7(b). These parameter values

correspond to a hypothetically very skillful HC that is able

to accurately predict the ramp onsets and give sharp, pulse-

like control inputs of the correct magnitude and duration. The

actual feedforward control input resembles the ideal input

better and indeed the PI is much larger for small values of

Kd for all conditions, including the DI-R condition.

C. Anticipating the Target Signal

A well-trained HC might anticipate the future course of the

target and effectively have a negative time delay with respect

to ft. The PI was calculated as a function of τpt
to investigate

the potential benefits of anticipatory inputs. Here, TI was set

to 0.05 and 0.15 s (different from Table I) to illustrate the

effect of τpt
and the interaction between τpt

and TI .

(a) (b)

Fig. 8. The PI as a function of τpt , for Kd = 1 and all model parameters
fixed. (a) TI = 0.05 s. (b) TI = 0.15 s.

Fig. 8 shows that τpt
has a large effect on the PI in all

conditions for both values of TI . Clearly, an optimal time

delay τoptpt
exists where the PI is largest, which is smaller

than zero and depends on TI . For TI = 0.05 s, τoptpt
≈ −0.1

s; and for TI = 0.15 s τoptpt
≈ −0.30 s. The low-pass filter

smoothens upt
, but also increases lag. The anticipatory time

delay compensates for this additional lag, such that τoptpt
is

more negative for larger TI . In [14], TI values larger than

0.15 s were estimated from experimental data, so the HC

has incentive to anticipate the target to improve performance.

Note that [14] focused on the ramp onsets, and thus removed

the ramp endings from the parameter estimation analysis after

subjects reported they were able to anticipate these endings,

explaining why [14] found positive feedforward time delays.

V. EXPERIMENT

A human-in-the-loop experiment was conducted to validate

the proposed HC models and to test the hypotheses derived

from computer simulations with these models.

A. Method

1) Apparatus: The tracking task, representing an aircraft

pitch control task, was presented on a central visual display

in a pursuit configuration, that explicitly shows the target ft,
perturbed system output θ and tracking error e [see Fig. 2].

The ViewPixx Lite display, with an update rate of 120 Hz, has

a (measured) time delay of 15 ms, was located 90 cm from

the subject’s eyes. The area used for the pursuit display was

800 by 800 pixels large. The display gain was 16 pixels per

degree. No outside visuals and no motion cues were available.

Subjects used the fore/aft axis of an electrically-actuated

sidestick to give their control inputs, u. The stick, with the

application point of the subject’s hand 9 cm above the rotation

point, had no break-out force and a maximum deflection of

±17 deg. Its stiffness was set to 1.0 N/deg over the full

deflection range, and its inertia to 0.01 kg · m2; the damping

coefficient was 0.2. The lateral stick axis was locked.

2) Independent Variables: Three different system dynam-

ics, given in (1) through (3), and three different target signals

(R, P and Z, see Section II-B) were varied in the experiment.

Each subject performed each combination of system dynamics

and target signal, resulting in a total of nine conditions.

3) Subjects and Instructions: Twelve subjects, eleven males

and one female, aged 24-34 years (29 years avg.), were

instructed to minimize the pitch tracking error e. The mean

square of the error e was displayed after each run.

4) Procedure: Subjects performed the nine conditions in

three separate sessions. In each session, the system dynamics

were constant and all three target signal variations were

performed. The order of the sessions and the target signals

were randomized by a Latin Square design.

The individual tracking runs lasted 90 seconds, of which the

last 81.92 seconds were the measurement data, sampled at 100

Hz. Tracking performance was monitored by the experimenter:

when performance had reached an asymptote, five repetitions

were collected as the measurement data. The time traces of

e, u and θ were averaged over the five repetitions to reduce

remnant, yielding one time trace for each subject for each

condition. Note that averaging might blur distinctive features

of feedforward, see [14]. Here, we insist on averaging over

five runs to be consistent with the ARX method [18].

B. Dependent Measures

1) Nonparametric Measures: Tracking performance was

measured by the root mean square (RMS) of the error signal.

2) Black-box ARX Identification: The control behavior dur-

ing the ramp and parabola conditions are identified by means

of the black-box ARX identification method of [18]. It was

developed to objectively identify if and how the HC utilizes a

feedforward and/or feedback control strategy, without making

any prior assumptions concerning the HC dynamics. The

method fits and evaluates many ARX models in parallel and

selects the best model based on the quality of the fit and the

model complexity, measured by the number of free parameters.

The generic structure of each ARX model is shown in Fig. 9

and is described by the discrete time difference equation of

(9), with k denoting the discrete time samples of 0.04 s (the
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Fig. 9. Generic ARX model structure.

data are resampled to 25 Hz prior to identification, to reduce

estimation bias due to noise, and to reduce computation time).

A(q;na)u(k) = Bft(q;nbft
)ft(k − nkft

)+

Be(q;nbe)e(k − nke
) + ǫ(k)

(9)

In (9), ǫ is a white noise signal, q is the delay operator and

the polynomials A, Bft , and Be are defined in (10).

A(q;na) = 1 + a1q
−1 + . . .+ ana

q−na

Bft(q;nbft
) = bft,1 + bft,2q

−1 + . . .+ bft,nbft
q

(

−nbft
+1
)

Be(q;nbe) = be,1 + be,2q
−1 + . . .+ be,nbe

q(−nbe+1)

(10)

Each ARX model is described by three model orders and

one or two time delay parameters: the number of parameters

in the A polynomial na, the number of parameters in the

Bft polynomial nbft
, the number of parameters in the Be

polynomial nbe , the feedforward time delay nkft
, and the

feedback time delay nke
. Time delays are expressed in integer

multiples of the sample time 0.04 s. The total number of free

parameters d is the sum of na, nbft
and nbe , and the number of

time delay parameters. For a pure feedback model, d is equal

to na + nbe + 1; for a combined feedforward and feedback

model d = na + nbft
+ nbe + 2. The ARX feedforward path

requires at least 2 parameters to describe the inverse dynamics

of a SI and the low-frequency range of the S2D dynamics, and

at least 3 parameters to describe the inverse of a DI.

The ARX models are estimated from the first 40.96 s (1024

samples) of each set of data, and evaluated on the last 40.96

s. The model with the lowest “modified Bayesian Information

Criterion” (mBIC) value [18], [21] is selected as ‘best’ model:

mBIC = log V + c
d logNd

Nd

, (11)

where Nd equals the number of data samples used to calculate

V , c is the ‘model complexity penalty parameter’, and

V =
1

Nd

2Nd
∑

k=Nd+1

(u(k)− û(k))
2
, (12)

measures the quality of the fit, with Nd = 1024. In (12), û is

the control signal calculated by the model through simulation.

We set c = 3, based on a Monte Carlo analysis with a known

model very similar to the expected HC dynamics, as described

in detail in [18]. This particular value of c will prevent ‘false-

positive’ feedforward identification (i.e., a feedforward model

selected from data generated by a pure feedback model).

The target signal ft was shifted 1 s backward in time (in

similar fashion as in Section III) to allow for the identification

of negative feedforward time delays. Table III shows the range

of ARX model orders tested in full-factorial fashion. A total

of 336,000 ARX models were identified and considered.

TABLE III
RANGE OF TESTED ARX MODEL ORDERS

Order na nbft
nbe nkft

Equiv. τpt nke
Equiv. τpe

s s

LB 1 0 0 1 -0.96 1 0.04
UB 7 7 7 50 1.0 15 0.6

3) Parametric Model Parameter Estimation: We will fit six

parametric models, based on the ARX results and literature,

by means of the time domain estimation method of [19], to

obtain insight in the best model structure and the adaptation

of the HC. The quality of the obtained models is compared

through the Variance Accounted For (VAF):

VAF =

(

1−

∑N−1
k=0 |u(k)− û(k)|

2

∑N−1
k=0 u(k)2

)

× 100%, (13)

with û the modeled, and u the measured control signal.

C. Hypotheses

Simulations showed that feedforward improves performance

for all conditions, but only in specific circumstances for the

DI-R condition. Ref. [14] found evidence for feedforward

for all system dynamics considered here with a ramp target,

but results were less consistent across subjects for the DI.

Therefore, we expect to identify a feedforward operation for all

subjects in all conditions, except in the DI-R condition. Here

we expect considerable variability between subjects. (H.I)

The required feedforward control inputs upt
for the parabola

target appear more complex than for the ramp target. That is,

upt
has a triangular waveform for SI-P and S2D-P, and consists

of two plateaus of opposite sign for DI-P, whereas it is one

simple plateau for SI-R and S2D-R, and mostly zero for DI-R,

see Fig. 5. The parabola target requires the HC to match both

velocity and acceleration, which is possibly more difficult than

matching the ramp velocity. We expect the feedforward to be

weaker (lower Kpt
) and more ‘cautious’ (reflected by a higher

TI ) for the parabola than for the ramp.

We expect to find evidence for anticipatory feedforward

control, indicated by negative τpt
, but possibly only for very

skilled subjects and not in all conditions. (H.III)

VI. EXPERIMENT RESULTS

A. Measured Time Traces

Representative time traces of the measured control signal

u, error e, and output θ during a single ramp and parabola

segment are plotted in Fig. 10, for all R and P conditions.

Fig. 10(a) shows the control signal u measured during

ramp segments for all three system dynamics. The measured

control signal is similar to the feedforward signal generated

by the model, see Fig. 5(a), but also contains the effect of
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(a) (b)

(c) (d)

Fig. 10. Representative time traces (subject 1). (a) and (b) Control signal u
for ramp and parabola conditions, respectively. Target ft scaled by 0.25 and
shifted up. (c) and (d) Target ft, system output θ and tracking error e (scaled
by a factor 3) for ramp and parabola conditions, respectively.

the disturbances. For SI-R u is similar to a plateau, for S2D-

R it resembles a pulse followed by a plateau, and for DI-

R two pulses around the ramp onset and endings can be

distinguished. A similar resemblance between u measured

during the parabola segments and the models’ feedforward

signal is observed, see Fig. 10(b) and Fig. 5(b). For SI-P and

S2D-P u resembles a triangle, and for DI-P u resembles two

small plateaus of opposite sign. Note that the resemblance

between the ideal and measured control signals does not

provide evidence regarding the utilized control strategy.

Figs. 10(c) and 10(d) show that subjects could track the

target signals adequately, with errors smaller than ±5 deg.

Spikes in the error signal around the onset of the parabolas

were smaller than for the ramps.

B. Tracking performance

Fig. 11 shows the RMS error e, for each condition, averaged

over all subjects. Error bars indicate the 95% confidence inter-

vals corrected for between-subject variability. For all targets,

performance was best for SI dynamics, then S2D dynamics,

and worst for DI dynamics. For all dynamics, performance

was best for the zero target signal, where subjects could focus

entirely on the rejection of the disturbances, then the parabola,

and worst for the ramp. Performance was better for the

parabola than for the ramp, because the error increases slower

just following the sudden onsets of the parabola segments than

following the ramp onsets, see Fig. 10(c) and Fig. 10(d) at 24

and 32 s. These results contradict hypothesis H.II; apparently,

parabolas were not more difficult to track than ramps.

C. Black-Box ARX Identification Results

1) Results as a function of c: Fig. 12(a) shows how the

quality of the selected ARX models, measured by the VAF,

depends on the value of c, averaged over all subjects. Data

are presented on a logarithmic scale; the value of c (= 3), for

which all subsequent results are shown, is marked by a vertical

dashed line. As expected, model quality is high for small c
and decreases for larger c. The VAF first decreases slowly,

but then, at a specific value of c, it decreases rapidly. For the

SI conditions this ‘knee point’ is seen at c ≈ 80 and 150 (ramp

and parabola, respectively) and for both S2D conditions at 40.

The curves for DI-R and DI-P are more separated and the knee

points at c ≈ 70 for DI-R and at 30 for DI-P are less abrupt,

suggesting a larger between-subject variability.

Fig. 12(b) shows how the number of parameters (model

complexity) in the feedforward path nbft
depends on c.

Note that the ARX model for each individual subject has an

integer number of parameters; fractional results are caused by

averaging over 12 subjects. For the SI and S2D conditions, a

‘knee point’ is seen at exactly the same values of c for which

the quality of the model decreased rapidly. This indicates that

the feedforward path indeed contributes heavily to the model.

A strong correlation between the model quality and model

complexity metrics is seen for the DI-P condition, but they

do not show a clear ‘knee point’. That is, both the number

of feedforward parameters and the model quality decrease for

larger c, but not very abruptly. The results are averaged over

subjects and the lack of a knee point could indicate larger

differences between subjects’ feedforward usage than in the SI

and S2D conditions. We conclude that for the DI-P condition

the feedforward path is an essential model component.

Finally, for the DI-R condition there is little relation between

Fig. 12(a) and Fig. 12(b). Although the feedforward path on

average contains less than 1 parameter for c = 6 the VAF

is still well above 80%: only a few percentage points lower

than for c = 1. It seems that the feedforward path is not an

essential part of the HC model for DI-R and could be left out.

Based on the results obtained as a function of c, we see no

reason to change our choice to use c = 3, which was based

on Monte Carlo simulations [18]. For c = 3, the VAF of the

selected model is almost as high as for much smaller values

of c, but the models contain fewer parameters, suggesting that

these additional parameters are not needed to describe HC

control dynamics.

The histogram in Fig. 12(c) shows the number of subjects

for which a model with a particular number of feedforward

parameters was selected, to assess the consistency of the

selected models across subjects for c = 3. It shows that in all

SI and S2D conditions, a model with at least 2 feedforward

parameters was selected. For the DI-P condition the selected

models are consistent as well, with ten out of twelve subjects

for which nbft
= 3 and the remaining nbft

= 0. In the DI-R

condition a large variation is seen across subjects, illustrating

that the feedforward contribution is small and inconsistent.
2) Single integrator dynamics (SI): Figs. 13(a) and (b)

show the feedforward (Ŷpt
) and feedback (Ŷpe

) frequency

responses of the selected ARX models (c = 3) for the SI-

R condition of all subjects. The range for which the results
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Fig. 11. The RMS of the tracking
error for all conditions.

(a) (b) (c)

Fig. 12. Model selection results. (a) The VAF of the selected ARX models as a function of c, averaged over all
subjects. (b) The number of parameters in the feedforward path nbft

of the selected ARX models as a function of

c, averaged over all subjects. (c) Histogram of nbft
of the selected ARX models counted by subject, for c = 3.

are valid is indicated with two dashed vertical lines, marking

the lowest and highest frequency component in the disturbance

signal. Outside this frequency range, the HC dynamics were

not simultaneously exited by two uncorrelated forcing func-

tions, and therefore the estimates are not strictly valid.

Fig. 13(a) shows that for all subjects a feedforward response

was identified that approximates inverse SI dynamics. That is,

the magnitude plot has a slope equal to a differentiator and

the phase is close to +90 deg at frequencies lower than 1 rad/s

for most subjects. Between 1 and approximately 8 rad/s, the

magnitude of the feedforward response levels off in similar

fashion to a low-pass filter with a corner frequency between

1 and 4 rad/s. At even higher frequencies, most responses

show a peak similar to the NMS peak in the feedback path.

Furthermore, the phase response suggests that a considerable

time delay was present in the feedforward for most subjects.

The two subjects for which the phase becomes exponentially

positive correspond to selected models with a negative time-

delay, evidence for their anticipation of the target signal.

Fig. 13(b) shows the identified feedback response of all sub-

jects. The structure of the feedback responses are as expected

for SI dynamics based on McRuer’s Extended Crossover

Model [11]: they resemble a gain at lower frequencies and

have a neuromuscular peak around 10 rad/s.

Figs. 13(c) and (d) show the frequency responses of the

selected ARX models for the SI-P condition. Results are

very similar to the SI-R condition. The feedforward response

resembles inverse system dynamics for all subjects at low to

medium frequencies. The corner frequency of the apparent

low-pass filter is more consistent across subjects and at a lower

frequency (around 1 rad/s). The exponentially positive phase

responses indicate that all but one subject anticipated for the

target signal, suggesting a negative feedforward time delay.

Feedback responses are very similar to those identified for

the SI-R condition, but are less consistent across subjects.

3) Second-order system (S2D): Figs. 14(a) and (b) show the

feedforward and feedback frequency responses of the selected

ARX models for the S2D-R condition. For all subjects a feed-

forward response was identified that follows the inverse system

dynamics closely below 1 rad/s. It resembles a differentiator

up to 10 rad/s, where a NMS peak is seen. A considerable

time delay is present for all but one subject. The feedback

response [see Fig. 14(b)] resembles the Extended Crossover

Model: a gain at lower frequencies, a lead around crossover

and a neuromuscular peak around 10 rad/s. The phase response

provides evidence for a considerable time delay.

The primary difference in the feedforward responses be-

tween S2D-R and S2D-P [see Fig. 14(c)] is the phase: for S2D-

P the subjects anticipate for the target signal. The feedback

responses of S2D-P [see Fig. 14(d)] are very similar to S2D-

R and resemble the Extended Crossover Model.

4) Double integrator dynamics (DI): Figs. 15(a) and (b)

show the frequency responses of the selected ARX models for

the DI-R condition. The five subjects for which 0 < nbft
< 3

are plotted in a different style, for easy comparison with the

theoretically ideal 1/Yc feedforward. For five other subjects a

model for which nbft
≥ 3 was selected: these models follow

the inverse system dynamics, albeit with a low gain (≈ 0.2),

suggesting that these subjects utilized feedforward. The se-

lected models of the remaining two subjects had nbft
= 0, as

it is not clear whether they utilized feedforward. It is possible

that the subjects used a feedforward for certain ramps, but

not for all, resulting in an ambiguous model selection. The

feedback dynamics are similar to the Extended Crossover

Model: a low frequency gain and a lead around crossover.

Figs. 15(c) and (d) show the frequency responses of the

selected ARX models for the DI-P condition. The feedforward

responses of ten subjects approximate 1/Yc, but with a smaller

magnitude than the ideal. For these subjects, nbft
= 3, which

is needed to invert the double integrator. A low-pass filter is not

present, possibly because its effect is too small and the NMS

affects the feedforward control signal in a similar way. The

phase shows strong variation between subjects, likely due to

high remnant levels, common for DI dynamics, and the small

contribution of the feedforward. The feedback responses are

again very similar to the Extended Crossover Model.

D. Time Domain Parameter Estimation Results

Now that the black-box ARX method identified a feedfor-

ward response approximating inverse system dynamics con-

sistently across subjects for all SI and S2D conditions and the

DI-P condition, it is considered appropriate to fit parametric

HC models to gain further insight in the precise feedforward

dynamics. The ARX method did not reveal the order of the
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(a) (b) (c) (d)

Fig. 13. The frequency response of the selected ARX models for c = 3 for all subjects. (a) SI-R, Ŷpt . (b) SI-R, Ŷpe . (c) SI-P, Ŷpt . (d) SI-P, Ŷpe .

(a) (b) (c) (d)

Fig. 14. The identified ARX models for all subjects, condition S2D-R. (a) S2D-R, Ŷpt . (b) S2D-R, Ŷpe . (c) S2D-P, Ŷpt . (d) S2D-P, Ŷpe .

(a) (b) (c) (d)

Fig. 15. The identified ARX models for all subjects for DI conditions. For DI-R, an ARX model without feedforward contribution was selected for 3 out

of 12 subjects, for DI-P for 2 out of 12 subjects. (a) DI-R, Ŷpt . Note the deviating range of the ordinate axis from the other presented Bode plots. (b) DI-R,

Ŷpe . (c) DI-P, Ŷpt . (d) DI-P, Ŷpe .
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low-pass filter and even suggested that it is not required in the

DI conditions. Also, all feedforward responses included NMS

dynamics, but this is possibly due to the common denominator

of the feedforward and feedback paths in the ARX models:

either both paths have NMS dynamics, or none.

We attempt to reveal the best feedforward model by fitting

six candidate models: the different models contain either no

low-pass filter (nLPF), a first-order low-pass filter (LPF1), or a

second-order low-pass filter (LPF2), and the NMS acts either

on the feedback path only (nNMS), or on the feedforward and

feedback path simultaneously (NMS). For example, the model

with a first-order low-pass filter and the NMS acting on both

paths simultaneously is designated NMS-LPF1.

Fig. 16 shows the VAF of the six candidate models for

all conditions. VAF values are large for all models and

all conditions and differences between models are small.

Differences in VAF are largest between models without a low-

pass filter and models including a filter, with the LPF2 models

slightly better than LPF1 models for all conditions, but not

statistically significant. A choice for a model with a second

order low-pass filter seems justified based on these results,

for its consistently higher VAF for all conditions. Comparing

nNMS-LPF2 to NMS-LPF2, no significant differences are

seen, most likely because the second-order filter removes

virtually all high frequency content from ft and thus the NMS

does not affect the feedforward control signal. The choice

for the ‘best’ model structure remains ambiguous; here we

choose the nNMS-LPF2 model for further analysis, also to be

consistent with [14].

1) SI and S2D Conditions: Fig. 17 shows the mean and

95% confidence intervals of the estimated model parame-

ter values for the nNMS-LPF2 model, for all subjects and

all conditions. The estimates are generally consistent across

subjects, with the ARX analysis and with literature [14],

[17]. For the Z conditions, the fit model was identical to

the nNMS-LPF2 model, except that the feedforward path was

removed. Hence, only estimates for the compensatory and

neuromuscular elements are shown for these conditions.

We decided not to do a statistical analysis concerning

the significance of observed differences and trends, because

1) different models were fit to the Z condition (feedback

Fig. 16. The VAF of all six models for all ramp and parabola conditions
averaged over all subjects, error bars show 95% confidence intervals corrected
for between-subject variability.

only) and the R and P conditions (feedforward/feedback), 2)

different models were fit to the SI conditions and the S2D and

DI conditions (additional lead term), and 3) the ARX analysis

showed that HC behavior in the DI-R condition requires a

different HC model than the one used in this analysis.

The feedforward gain Kpt
is slightly lower than 1 for all

conditions except SI-P, where the estimated value is slightly

above 1. In previous studies involving ramps, Kpt
was indeed

found to be lower than 1, believed to reflect a strategy to

prevent overshoot at the end of a ramp segment. Overshoot is

less likely with the parabola, because it has a lower velocity

towards the end, explaining slightly higher values for Kpt
here.

The feedforward time delay τpt
depends strongly on the

target signal: it is close to zero for SI-R and S2D-R, but

negative for SI-P and S2D-P, indicating anticipatory control

inputs. In [14], the estimated values for τpt
were larger than

zero, most likely because all ramp endings were removed

from the analysis after subjects reported that these were easier

to anticipate than ramp onsets. Here, the individual ramp

segments were also shorter and more tightly spaced, making

it easier to predict the ramp onsets and endings.

Estimated values for TI are similar to [14] despite the

previously described differences in the analysis. For S2D-

R, the mean and confidence intervals do not represent the

distribution well, as one outlier result is situated at TI = 0.95
s. TI is smaller for ramp than for parabola targets; reflecting a

quicker response with more high-frequency content. Because

subjects can anticipate the parabola better than the ramp, there

is possibly less incentive to give quick, aggressive control

inputs; a gentle, well-timed input is sufficient.

The feedback gain Kpe
and lead time constant TL depend on

the system dynamics only, not on the target. They are similar to

values found in literature [14], [17]. For the SI, τpe
was found

to be higher for the parabola than the ramp. The maximum

velocity of the parabola target is larger than the ramp velocity;

larger time delays were also found for faster ramps in [17].

Finally, ωnms and ζnms depend only on the system dynamics.

2) DI Conditions: Individual subject results are plotted next

to the mean and confidence intervals in Fig. 17, because of

the non-uniform ARX model selection in DI conditions [see

Fig. 12(c)]. Three parameters are necessary to describe inverse

dynamics of a DI, therefore subjects for which the selected

model had fewer parameters are marked differently.

For the DI-P condition, Kpt
estimates are consistent with

the ARX results: the two subjects for which a pure feedback

model was selected have a considerably smaller feedforward

gain than the other subjects. This is the first reliable feed-

forward identification for the DI: it was identified through

a black-box ARX method first, followed by a parameter

estimation analysis that provides consistent results.

For the DI-R condition, however, there is no apparent cor-

relation between Kpt
and the ARX results. The feedforward

contribution is small and short, and concentrated around the

ramp discontinuities where human remnant is large, resulting

in a large variability in the model selection. To obtain more

insight in the DI-R condition, other analyses are necessary.

The low-pass filter time constant TI is larger for the DI-

P than the SI and S2D conditions, and τpt
is estimated
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 17. Model fit parameter values averaged over all subjects, error bars show 95% confidence intervals corrected for between-subject variability.

strongly negative indicating anticipatory control inputs. These

parameter values reflect a ‘cautious’ feedforward response: the

inputs are smaller than ideal (Kpt
≈ 0.9), low-frequency, and

anticipatory to prevent overshoot. Furthermore, the feedback

estimates are consistent with the DI-Z condition and literature.

E. Anticipatory Feedforward Control Inputs

The previous analyses suggest that the feedforward response

is anticipatory in all parabola conditions. Evidence of antic-

ipatory feedforward control is also found in recorded time

traces. Fig. 18 compares the ‘ideal’ feedforward control signal

uideal
pt

(t) = ft(t)/Yc(s), to the measured control signal u
minus an estimate of the feedback contribution ûpe

(t) = e(t) ·
Ype

(s)·Ynms(s), which is an estimate of upt
without assuming

a specific model for Ypt
. Furthermore, ûpt

as provided by the

NMS-LPF2 parametric model is shown.

(a) (b)

Fig. 18. Feedforward control signals for (a) SI-R and (b) SI-P.

For SI-R, Fig. 18(a), u−ûpe
is delayed with respect to uideal

pt

following the target discontinuities (onset and endings of the

ramp segment), while during the ramp segment it oscillates

around the ideal feedforward input. The estimated feedforward

control signal ûNMS−LPF2
pt

is also delayed (such that τpt
> 0

s), and of slightly smaller magnitude than the ideal (such that

Kpt
< 1), suggesting no anticipatory behavior.

For SI-P, Fig. 18(b), u− ûpe
is also delayed after the onset

of the parabola segment, but is mostly ‘synchronized’ with

or even leads uideal
pt

during the remainder of the parabola

segment. The sharp peak in uideal
pt

around 60 s is absent

from u − ûpe
, demonstrating that subjects indeed provide a

feedforward control input with a limited bandwidth (TI > 0).

Furthermore, it seems that at 59 s the feedforward control

input u− ûpe
is reduced, in anticipation of the reversal in the

target acceleration at 61 s, see also Fig. 3(b).

VII. DISCUSSION

The ARX method provided strong evidence for an inverse

system dynamics feedforward response on the target, confirm-

ing hypothesis H.I. It is the first identification of feedforward

from experimental data using a black-box method that ex-

plicitly considers model complexity to prevent false-positive

feedforward identification [18]. It is also the first feedforward

identification for the difficult-to-control DI dynamics.

For the DI-R condition, the feedforward model has a good

quality of fit (>80%), but the feedforward parameter estimates

are not consistent between subjects. The performance improve-

ment analysis showed that feedforward is useful here only if

the feedforward is fast and timed appropriately (anticipatory).

Subjects likely attempt to give an anticipatory input at every

ramp discontinuity, but succeed only for a few, depending

on how well these can be predicted (e.g., by counting).

The analysis method assumes behavior to be stationary over

81.92 s and is therefore not suited for the DI-R condition. This

condition is not considered in the remainder of this discussion.

We expected that using a feedforward control operation

would be more difficult for the parabola target signal (H.II),

but no evidence was found to support this hypothesis. Contrary

to our expectations, a slightly stronger feedforward response

was found (larger Kpt
) for parabola conditions. Small differ-

ences in the low-pass filter settings were found for the SI only

(larger TI for SI-P than SI-R), but these were not large enough

to argue that a feedforward operation was more difficult.
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Anticipatory feedforward control was identified in all con-

ditions for one or more subjects, but mainly in parabola condi-

tions, confirming hypothesis H.III. Possibly, the differences in

the feedforward time delay between ramp and parabola condi-

tions are caused by a complex interaction between non-linear

HC behavior and the used (linear) identification methods. Two

types of delay could have been present in the feedforward

response of the HC: 1) a discrete reaction time in detecting

the ramp or parabola onsets, and 2) a continuous delay during

the ramp and parabola segments. Then, we observe that τpt

can be estimated only during time instances where upt
is

varying in time. For all ramp conditions, upt
is time-varying

around the discontinuities only, but otherwise constant. Hence,

the analysis methods will identify the time delay just follow-

ing the discontinuities, corresponding with the reaction time

of approximately 200 ms [22]. For all parabola conditions,

however, upt
is time-varying throughout the entire parabola

segment. Thus, τpt
is estimated close to the continuous time

delay, which is negative for all but one subject.

In this experiment, the feedforward control behavior could

have consisted of learned pre-cognitive motor commands.

First, the HC cannot accurately perceive object acceleration

[23], which would be required for visually guided pursuit

control in the DI-P condition. Second, the anticipatory feedfor-

ward time delay suggests that the HC gives control commands

before the target can be perceived visually. The pre-cognitive

motor commands are triggered by the recognition of a ramp

or parabola onset, after which they are executed in open-loop

fashion. The actual control strategy is possibly considerably

different from the one in the model used to analyze the results.

The identification method of [18] was developed to objec-

tively identify HC dynamics from tasks involving realistic

targets that possibly invoke feedforward control behavior.

The model selection criterion is tuned through the model

complexity penalty parameter c based on the number of ‘false-

positive’ or ‘false-negative’ results found in Monte Carlo

simulations. The model complexity penalty parameter also

provides an intuitive means to investigate the relation between

model quality and complexity post-hoc. The complexity of

the selected models does not change for a wide range of c
values, which is strong evidence for the feedforward model

and warrants further analysis with the parameter estimation

method. The identification method should not replace, but

complement parameter estimation analyses in future studies.

We used simulations with HC models to investigate the

performance improvement with feedforward and used this

as a predictor for feedforward behavior. This approach has

limited applicability, because the actual control strategy is

different from the HC model; thus, the model needs further

improvements. An important, but poorly understood aspect of

feedforward behavior that needs to be addressed in future work

is the predictability of the target signal [15], [24].

Finally, in this paper we studied the HC in control of stable,

linear, vehicle-like dynamics. Establishing a theory that allows

us to predict the systematic adaptation of the HC to these

everyday dynamics would allow us to significantly improve

our control interfaces. In rare situations, the HC might be

(perhaps temporarily) confronted with unstable or nonlinear

dynamics, for instance because of a system failure. Such

unstable dynamics are likely similar to the S2D dynamics,

but with an unstable pole (ωb < 0 rad/s) [11]. For such

dynamics, it can be shown (through simulations equivalent to

those presented in this paper) that an HC model with an inverse

dynamics feedforward path results in stable tracking of a target

signal. Furthermore, the potential performance improvement of

feedforward is of the same order of magnitude as for the stable

S2D dynamics. These simulations, however consider only the

HC in steady-state, with fixed controlled element dynamics.

Studying the HC response and adaptation to (sudden) changes

in system dynamics, like from stable to unstable dynamics,

would require a fundamentally different approach, and reaches

beyond the state-of-the-art in cybernetics tools and methods

[25]; it is one of the main avenues of future research.

VIII. CONCLUSIONS

This paper studied the effects of target signal waveform

shape and system dynamics on human feedforward control

behavior in tracking tasks with predictable target signals

and an unpredictable disturbance signal. Two target wave-

form shapes were evaluated, consisting of constant velocity

ramp segments or constant acceleration parabola segments.

Three vehicle-like system dynamics were investigated: a single

integrator, a second-order system, and a double integrator.

From a human-in-the-loop tracking experiment we conclude

that: 1) a combined feedforward/feedback control strategy,

modeled accurately by a quasi-linear model, was identified

for all dynamics with the parabola target, and for the single

integrator and second-order system with the ramp target; 2)

evidence of non-stationary control behavior was found for

the double integrator and ramp task; 3) the HC is able to

anticipate the future course of the parabola target signal given

extensive practice, reflected by negative feedforward time

delay estimates; and 4) the feedforward model parameters are

influenced by the target waveform shape. Model predictions

of possible performance improvement show partial agreement

with these results, notably the used model does not include the

influence of target shape on feedforward parameters, a non-

linear effect that was apparent in the identified parameters.

REFERENCES

[1] J. Rasmussen, “Skills, Rules, and Knowledge; Signals, Signs, and
Symbols, and Other Distinctions in Human Performance Models,” IEEE

Trans. on Systems, Man, and Cybernetics, vol. 13, no. 3, pp. 257–266,
1983.

[2] M. Mulder, D. A. Abbink, M. M. van Paassen, and M. Mulder, “Design
of a haptic gas pedal for active car-following support,” IEEE Trans. on

Intelligent Transportation Systems, vol. 12, no. 1, pp. 268–279, 2011.
[3] D. A. Abbink, M. Mulder, F. C. T. van der Helm, M. Mulder, and E. R.

Boer, “Measuring neuromuscular control dynamics during car following
with continuous haptic feedback,” IEEE Trans. on Systems, Man, and

Cybernetics – Part B: Cybernetics, vol. 41, no. 5, pp. 1239–1249, 2011.
[4] D. A. Abbink and M. Mulder, “Neuromuscular Analysis as a Guideline

in designing Shared Control,” in Advances in Haptics. InTech, 2010,
pp. 499–416.

[5] D. T. McRuer and H. R. Jex, “A Review of Quasi-Linear Pilot Models,”
IEEE Trans. on Human Factors in Electronics, vol. 8, no. 3, pp. 231–
249, 1967.

[6] K. van der El, D. M. Pool, H. J. Damveld, M. M. van Paassen,
and M. Mulder, “An Empirical Human Controller Model for Preview
Tracking Tasks,” IEEE Trans. on Cybernetics, vol. 46, no. 11, pp. 2609–
2621, 2016.



13

[7] E. S. Krendel and D. T. McRuer, “A Servomechanics Approach to Skill
Development,” J. of the Franklin Inst., vol. 269, no. 1, pp. 24–42, 1960.

[8] R. W. Pew, J. C. Duffendack, and L. K. Fensch, “Sine-Wave Tracking
Revisited,” IEEE Trans. on Human Factors in Electronics, vol. 8, no. 2,
pp. 130–134, 1967.

[9] T. Yamashita, “Effects of Sine Wave Combinations on the Development
of Precognitive Mode in Pursuit Tracking,” J. of Experimental Psychol-

ogy, vol. 42A, no. 4, pp. 791–810, 1990.
[10] R. J. Wasicko, D. T. McRuer, and R. E. Magdaleno, “Human Pilot

Dynamic Response in Single-loop Systems with Compensatory and
Pursuit Displays,” Air Force Flight Dynamics Laboratory, Tech. Rep.
AFFDL-TR-66-137, Dec. 1966.

[11] D. T. McRuer, D. Graham, E. S. Krendel, and W. Reisener Jr., “Human
Pilot Dynamics in Compensatory Systems, Theory Models and Exper-
iments with Controlled Element and Forcing Function Variations,” Air
Force Flight Dynamics Laboratory, Tech. Rep. AFFDL-TR-65-15, 1965.

[12] D. M. Pool, P. M. T. Zaal, H. J. Damveld, M. M. van Paassen, J. C.
van der Vaart, and M. Mulder, “Modeling Wide-Frequency-Range Pilot
Equalization for Control of Aircraft Pitch Dynamics,” J. of Guidance,

Control, and Dynamics, vol. 34, no. 5, pp. 1529–1542, 2011.
[13] G. C. Beerens, H. J. Damveld, M. Mulder, M. M. van Paassen, and J. C.

van der Vaart, “Investigation into Crossover Regression in Compensatory
Manual Tracking Tasks,” J. of Guidance, Control, and Dynamics,
vol. 32, no. 5, pp. 1429–1445, 2009.

[14] V. A. Laurense, D. M. Pool, H. J. Damveld, M. M. van Paassen,
and M. Mulder, “Effects of Controlled Element Dynamics on Human
Feedforward Behavior in Ramp-Tracking Tasks,” IEEE Trans. on Cy-

bernetics, vol. 45, no. 2, pp. 253–265, 2015.
[15] R. E. Magdaleno, H. R. Jex, and W. A. Johnson, “Tracking Quasi-

Predictable Displays Subjective Predictability Gradations, Pilot Models
for Periodic and Narrowband Inputs,” in Fifth Annual NASA-University

Conference on Manual Control, 1969, pp. 391–428.
[16] D. M. Pool, M. M. van Paassen, and M. Mulder, “Modeling Human

Dynamics in Combined Ramp-Following and Disturbance-Rejection
Tasks,” in Proc. of the AIAA Guidance, Navigation, and Control Conf.,
no. AIAA-2010-7914, 2010.

[17] F. M. Drop, D. M. Pool, H. J. Damveld, M. M. van Paassen, and
M. Mulder, “Identification of the Feedforward Component in Manual
Control With Predictable Target Signals,” IEEE Trans. on Cybernetics,
vol. 43, no. 6, pp. 1936–1949, 2013.

[18] F. M. Drop, D. M. Pool, M. M. van Paassen, M. Mulder, and H. H.
Bülthoff, “Objective Model Selection for Identifying the Human Feed-
forward Response in Manual Control,” IEEE Trans. on Cybernetics,
vol. PP, no. 99, pp. 1–14, 2016.

[19] P. M. T. Zaal, D. M. Pool, Q. P. Chu, M. M. van Paassen, M. Mulder,
and J. A. Mulder, “Modeling Human Multimodal Perception and Con-
trol Using Genetic Maximum Likelihood Estimation,” J. of Guidance,

Control, and Dynamics, vol. 32, no. 4, pp. 1089–1099, 2009.
[20] D. T. McRuer, R. E. Magdaleno, and G. P. Moore, “A Neuromuscular

Actuation System Model,” IEEE Trans. on Man-Machine Systems, vol. 9,
no. 3, pp. 61–71, 1968.

[21] L. Ljung, System Identification Theory for the User, 2nd ed. Prentice
Hall, Inc., 1999.

[22] R. D. Luce, Response times. Oxford University Press, 1986, no. 8.
[23] R. M. Gottsdanker, “The Ability of Human Operators to Detect Accel-

eration of Target Motion,” Psychological Bulletin, vol. 53, no. 6, pp.
477–487, 1956.

[24] F. M. Drop, R. J. De Vries, M. Mulder, and H. H. Bülthoff, “The
Predictability of a Target Signal Affects Manual Feedforward Control,”
in Proc. of the 13th IFAC/IFIP/IFORS/IEA Symposium on Human-

Machine Systems, 2016, pp. 177–182.
[25] M. Mulder, D. M. Pool, D. A. Abbink, E. R. Boer, P. M. T. Zaal,

F. M. Drop, K. van der El, and M. M. van Paassen, “Manual Control
Cybernetics: State-of-the-Art and Current Trends,” IEEE Transactions

on Human-Machine Systems, accepted 2017.

Frank M. Drop (M’12) received the M.Sc. and
Ph.D. degrees from TU Delft, The Netherlands, in
2011 and 2016, respectively. He obtained the Ph.D.
degree on feedforward manual control in the context
of a collaborative project between the Faculty of
Aerospace Engineering and the Department of Hu-
man Perception, Cognition and Action, Max Planck
Institute for Biological Cybernetics, Tübingen, Ger-
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