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An extension of Onsager’s second virial theory is developed to describe the isotropic-nematic phase
transition of tangent hard-sphere chain fluids. Flexibility is introduced by the rod-coil model. The
effect of chain-flexibility on the second virial coefficient is described using an accurate, analytical
approximation for the orientation-dependent pair-excluded volume. The use of this approximation
allows for an analytical treatment of intramolecular flexibility by using a single pure-component pa-
rameter. Two approaches to approximate the effect of the higher virial coefficients are considered,
i.e., the Vega-Lago rescaling and Scaled Particle Theory (SPT). The Onsager trial function is em-
ployed to describe the orientational distribution function. Theoretical predictions for the equation of
state and orientational order parameter are tested against the results from Monte Carlo (MC) simula-
tions. For linear chains of length 9 and longer, theoretical results are in excellent agreement with MC
data. For smaller chain lengths, small errors introduced by the approximation of the higher virial co-
efficients become apparent, leading to a small under- and overestimation of the pressure and density
difference at the phase transition, respectively. For rod-coil fluids of reasonable rigidity, a quantita-
tive comparison between theory and MC simulations is obtained. For more flexible chains, however,
both the Vega-Lago rescaling and SPT lead to a small underestimation of the location of the phase
transition. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4815916]

I. INTRODUCTION

The liquid crystalline state is a state of matter in which
molecules are arranged with a long-ranged (partial) orienta-
tional and/or positional order. The properties of these sys-
tems generally vary between those of the isotropic liquid and
the perfectly ordered crystal. Systems that can form liquid
crystalline phases consist of either low molecular weight or-
ganic molecules,1, 2 solutions of polymer melts or amphiphilic
molecules, or even suspensions of inorganic or biological col-
loidal particles such as V2O5,3, 4 bentonite clay platelets,4 or
viruses,5 respectively. Due to their interesting properties, liq-
uid crystals have found numerous applications,1, 6, 7 ranging
from food-products, cosmetics, and pharmaceuticals to, prob-
ably most evidently, the use in LCDs for electronic devices.
Recently, liquid crystals have also been proposed as novel sol-
vents for gas-absorption processes.8, 9

As already pointed out by Onsager in the early 1940s, a
key attribute for the formation of a liquid crystalline phase
is anisotropy in the shape of the molecular hard cores.10, 11

For a system of hard rods, Onsager showed that the orien-
tational ordering transition is completely entropically driven.
While at low density the orientational entropy dominates,
forcing the molecules in an isotropic (randomly orientated)
state, at higher densities there is a compensating transla-
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tional entropy/free volume that can be gained by align-
ing the molecules to minimize the excluded volume. On-
sager’s formalism can be generalized to many different types
of hard anisotropic molecules,12 and, as shown by Bolhuis
and Frenkel,13 it becomes exact in the low density limit
(i.e., for molecules of infinite shape anisotropy). Typical
model systems that have been studied in this respect, are
hard discs,14, 15 rods,16 cut spheres,17, 18 spherocylinders,13, 19

ellipsoids,20, 21 Gaussian overlap particles,22 and hard-sphere
chains.23–27 Despite the simplicity of these molecular mod-
els, a rich phase behavior, involving isotropic (iso), ne-
matic (nem), smectic, and columnar phases has been ob-
served both by experiments16 and by means of molecular
simulations13, 17, 20, 27 and theory.12, 18, 28

In the present work, the liquid crystalline state of inter-
est is the nematic state. Here, the distribution of molecules
is characterized by partial orientational order and no (long-
ranged) positional order. Although Onsager’s original sec-
ond virial theory and its extensions to higher density29–39

(to deal with molecules of only moderate shape anisotropy)
have been used successfully to describe nematic ordering
of many convex molecular models,18, 19, 22 the application
to non-convex models still needs consideration. Especially,
the introduction of intramolecular flexibility in these mod-
els is problematic, usually involving time-consuming Monte
Carlo (MC) simulations to compute ensemble averages of
the orientation-dependent pair-excluded volume over all in-
ternal degrees of freedom of the chain molecules.23, 40 The
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introduction of intramolecular flexibility is important, how-
ever, since this is a key aspect determining the stability of a
nematic phase.2, 25, 26, 41, 42

In this work, molecular flexibility is introduced through
the tangent hard-sphere chain model. To model the partial
flexibility of real liquid crystal molecules,2 one part of the
chain is arranged in a rigid, linear conformation while the
other part is fully flexible. Onsager’s second virial theory is
extended to incorporate the effects of intramolecular flexibil-
ity using the method of Fynewever and Yethiraj.23 In contrast
to the original work of Fynewever and Yethiraj, the ensem-
ble average of the pair-excluded volume that is needed to cal-
culate the second virial coefficient is here obtained from an
analytical approximation43 instead of MC simulations of two
chain molecules. Consequently, the resulting theory is compu-
tationally much more efficient, while, due to the high accuracy
of the approximation, a similar accuracy is maintained. A key
result of this new approach is that the flexibility of a molecule
is treated analytically and can be described by a single pure-
component parameter. In the spirit of molecular perturbation
theory,44, 45 this result is appealing since intramolecular flex-
ibility can with this approach be treated at the stage of the
purely repulsive reference fluid.

To describe the effect of higher virial coefficients, both
the Vega-Lago rescaling32 and Scaled Particle Theory33–39

(SPT) are used. A successful application of the Vega-Lago
approach requires an accurate description of the isotropic
equation of state (EoS). Inspired by the work of Hino and
Prausnitz,46 we evaluate the Liu-Hu (LH) EoS47 for this. In
addition, a recently developed extension of the LH EoS to
partially flexible (rod-coil) and linear hard-sphere chain fluids
is tested.48 To characterize the orientational distribution func-
tion (ODF), we use the hyperbolic trial function of Onsager.
As recently shown by Franco-Melgar et al.12 for the specific
case of a system of hard spherocylinders, the use of the On-
sager trial function leads to an almost identical description of
the nematic ordering compared to the use of a full numerical
solution of the ODF. We show that this observation also holds
for our case.

This paper is organized as follows. In Sec. II, the molec-
ular model is presented. In Sec. III, Onsager’s second virial
theory is extended to partially flexible chain molecules. In
addition, the Vega-Lago approach and SPT are discussed.
In Sec. IV, theoretical predictions for the equation of state
and nematic order parameter are extensively tested to MC
simulations from literature.27 We summarize our findings
in Sec. V.

II. MOLECULAR MODEL

The molecular model employed in this work assumes a
chain of m tangent hard spheres of diameter σ . To mimic the
structure of “real” liquid crystal molecules, one part of the
chain is arranged in a rigid, linear conformation (referred to
as “rod”) while the other part is completely flexible (referred
to as “coil”). This model will be referred to as rod-coil fluid.
In the remainder of this paper, we employ a general m-mR no-
tation to denote a rod-coil with a total number of m segments
and a number of mR segments in the rigid block. A completely

linear or flexible chain is simply referred to as a linear or flex-
ible m-mer.

As discussed in a previous work,43 it is convenient to in-
troduce a dimensionless rigidity parameter, defined as the ra-
tio of the total number of rigid bond angles and the total num-
ber of bond angles in a molecule:

χR =

⎧⎪⎨
⎪⎩

mR − 2

m − 2
for m > 2

1 for m ≤ 2.

(1)

The rigidity parameter serves as an input for the excluded vol-
ume expression and isotropic equation of state used in this
work. It varies conveniently from zero to unity between the
completely flexible- and rigid chain limit, respectively.

III. THEORY

Let us define the configuration r̃rr of a molecule by the
position vector rrr of its center of mass together with the
molecule’s conformation ω̃ωω. The latter is defined as the set of
all bond- and torsion angles ωωω′ of the molecule and the orien-
tation ωωω of the overall molecular axis with respect to some
fixed reference frame. Analogous to our previous work,43

the molecular axis is defined as the axis around which the
molecule has the smallest moment of inertia. The probability
density to find any molecule in a configuration r̃rr is denoted
by ρ(r̃rr), which is normalized as∫

ρ(r̃rr)dr̃rr = N. (2)

Here, N is the number of molecules.

A. Ideal part of the Helmholtz energy

According to the general graphical and functional for-
malism developed by Chandler and Pratt,49, 50 the ideal part of
the Helmholtz energy of an inhomogeneous canonical system
of N nonrigid chain molecules can be written as a functional
of ρ(r̃rr):

βAid[ρ(r̃rr)] =
∫

V

ρ(r̃rr)[ln(ρ(r̃rr)�3) − 1 + β�intra(r̃rr)]dr̃rr. (3)

Here, β−1 is the product of the Boltzmann constant and the
absolute temperature, � is the thermal De Broglie wave-
length, and �intra(r̃rr) is the total intramolecular potential en-
ergy, containing all bonding and flexibility constraints. For
the molecular model employed in this work, the bond length
is fixed; therefore, the functional dependence of �intra can be
reduced to ωωω′. Furthermore, since we are concerned with de-
scribing nematic phases, the single-molecule density can be
factorized into a uniform number density ρ = N/V and a
conformational distribution function f (ω̃ωω) as ρ(r̃rr) = ρf (ω̃ωω).
Consequently, all positional dependence of Eq. (3) can be av-
eraged out and the ideal part of the Helmholtz energy becomes

βAid[f (ω̃ωω)]

N
= ln (ρ�3) − 1 +

∫
f (ω̃ωω)[ln (f (ω̃ωω))

+β�intra(ωωω′)] dω̃ωω. (4)
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Since the conformational distribution function of a chain
molecule in a condensed fluid is in general unknown, some
approximations are required to transform this result into a
practical functional for nematic fluids. In this, we follow
the approach of Fynewever and Yethiraj23 and assume a
molecule’s internal configurational- (ωωω′) and orientational (ωωω)
degrees of freedom can be decoupled

f (ω̃ωω) ≈ f (ωωω′)f (ωωω). (5)

We note that this assumption is not completely in accordance
with the increase in the end-to-end length of a molecule that
is generally observed in molecular simulation studies of the
isotropic-nematic phase transition.25, 27, 51 However, it is anal-
ogous to that underlying many accurate theories for isotropic
fluids (e.g., SAFT,52 PC-SAFT53) where a similar increase in
the end-to-end length for vapor-liquid phase transitions54 is
neglected. Substituting Eq. (5) into Eq. (4), all ωωω′-dependence
can be averaged out to two temperature dependent terms. By
generalizing the definition of the De Broglie wavelength (de-
noted by �′), these temperature dependent terms can be con-
sidered in the isotropic part of the ideal Helmholtz energy.
Accordingly, the ideal Helmholtz energy contribution of a ne-
matic fluid of nonrigid tangent hard-sphere chain molecules
can be put in a simple Onsager-like form, as

βAid[f (ωωω)]

N
= ln

(
ρ�′3

	

)
− 1 +

∫
f (ωωω) ln (	f (ωωω)) dωωω.

(6)
Here, 	 = ∫

dωωω = 4π is a normalization constant. The
isotropic- and anisotropic contribution to the ideal Helmholtz
energy are given by, respectively

βAid
iso

N
= ln

(
ρ�′3

	

)
− 1, (7)

βAid
aniso[f (ωωω)]

N
=

∫
f (ωωω) ln (	f (ωωω)) dωωω. (8)

For an isotropic distribution of molecular orientations,
fiso(ωωω) = 1/	 and thus the anisotropic part is zero. For par-
tial orientational order, the anisotropic contribution becomes
larger than zero, corresponding to a decrease in orientational
entropy.

B. Residual part of the Helmholtz energy

To describe the residual Helmholtz energy, let us write a
virial expansion in the homogeneous number density ρ

Ares[f (ω̃ωω)]

NkT
= B2[f (ω̃ωω)]ρ + 1

2
B3[f (ω̃ωω)]ρ2 + . . . . (9)

For molecules interacting through the pair-potential φ(r̃rr1, r̃rr2),
the virial coefficients can be expressed as weighted integrals
of the Mayer function �(r̃rr1, r̃rr2) = exp [−βφ(r̃rr1, r̃rr2))] − 1
over configurational space.55, 56 The second virial coefficient,
for example, can be written as

B2[f (ω̃ωω)] = − 1

2V

∫∫
�(r̃rr1, r̃rr2)f (ω̃ωω1)f (ω̃ωω2)dr̃rr1dr̃rr2, (10)

where, for the purely repulsive molecules considered in this
work, the integration over the positions results in a conforma-
tional average of the pair-excluded volume, according to

B2[f (ω̃ωω)] = 1

2

∫∫
Vex(ω̃ωω1, ω̃ωω2)f (ω̃ωω1)f (ω̃ωω2)dω̃ωω1dω̃ωω2, (11)

Vex(ω̃ωω1, ω̃ωω2) = −
∫

�(r̃rr1, r̃rr2)drrr12. (12)

Here, rrr12 is the vector between the center of mass of
molecules 1 and 2. Since the conformational dependence of
the pair-excluded volume is generally not known, we decou-
ple the conformational distribution function as in Eq. (5) and
treat the pair-excluded volume on an ensemble-average basis

B2[f (ωωω] = 1

2

∫∫
〈Vex(ω̃ωω1, ω̃ωω2)〉ωωω′

1,ωωω
′
2
f (ωωω1)f (ωωω2)dωωω1dωωω2.

(13)
The resulting ensemble average 〈. . . 〉 can be readily obtained
from MC simulations of two chain molecules.23, 43 Thereby,
due to the averaging, it is a function solely of the angle γ

between the molecular axes, as

〈Vex(ω̃ωω1, ω̃ωω2)〉ωωω′
1,ωωω

′
2
= Vex(γ ). (14)

In our previous work,43 the orientation-dependent excluded
volume Vex(γ ) was calculated for a wide range of different
rod-coil molecules. An analytical approximation was devel-
oped by correlating the MC simulation results:

V ∗
ex(γ ) = Vex(γ )

Vm

= C1(m,χR) + C2(m,χR) sin(γ ) + C3(m,χR) sin2(γ ).

(15)

Here, Vm = (π/6)mσ 3 is the molecular volume of a chain of
m tangent hard spheres of diameter σ . The functional form
of the coefficients C1, C2, and C3, is listed in Appendix A.
The correlation accurately covers the entire range of the rigid-
ity parameter χR = [0, 1] for chain lengths up to 30. For
longer chains, a small, systematic overestimation of the pair-
excluded volume of more flexible chains is observed.43 It can
be expected, however, that these small inaccuracies have a
negligible effect on the prediction of the isotropic-nematic
phase equilibrium. The reason is that, for the second-virial
theories used in this work (discussed later in this section),
the driving force, and thus the location (pressure/coexistence
densities) of the isotropic-nematic phase transition is deter-
mined solely by the difference of the orientational average of
the pair-excluded volume between an isotropic and nematic
distribution of molecular orientations. This difference will be
relatively unaffected by these errors. For linear chains, the
correlation of Eq. (15) reduces to the quasi-exact result of
Williamson and Jackson.57

To describe the higher order terms in the virial expansion
from Eq. (9), two different approximate methods are evalu-
ated in this work: the Vega-Lago rescaling,32 and Scaled Par-
ticle Theory (SPT).33–39 The approach of Vega and Lago is
based on a simple rescaling of the higher virial coefficients to
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those of the isotropic fluid of the system being described, with

Bn[f (ω̃ωω)] ≈ Bn,iso
B2[f (ω̃ωω)]

B2,iso
. (16)

Although the rescaling of virial coefficients might seem ad
hoc in nature, it has a sound statistical mechanical basis in the
form of the decoupling approximation,19, 29–31 which is briefly
discussed in Appendix B. Resuming the virial expansion from
Eq. (9), and using Eq. (13) for the second virial coefficient,
leads to the residual Helmholtz energy, according to

βAres[f (ωωω)]

N
= βAres

iso

N

B2[f (ωωω)]

B2,iso
. (17)

Upon differentiation, the compressibility factor Z ≡ PV

/NkT is obtained as

Z = 1 + Zres
iso

B2[f (ωωω)]

B2,iso
. (18)

Clearly, a major advantage of using the rescaling is that the
conformation dependence of the complete virial expansion
is approximately considered in the second virial coefficient.
Due to the use of Eqs. (13)–(15) for the second virial coeffi-
cient, the resulting expressions retain a functional dependence
on the orientational distribution function only. An Onsager-
like theory for non-rigid chain molecules is thereby obtained.
Furthermore, the rescaling allows for the use of an accurate
EoS for the description of the isotropic fluid. In this work,
we evaluate the Liu-Hu (LH) EoS47 and an extension of the
LH EoS to partially flexible (rod-coil) and linear hard-sphere
chain fluids for this.48 In the remainder of this paper, this ex-
tended EoS will be referred to as the LHrc EoS (where rc is
an abbreviation for “rod-coil”). In a previous work48 we have
shown that, compared to the LH EoS, the LHrc EoS leads to
a more reliable description of the isotropic equation of state
of linear and partially flexible (rod-coil) tangent hard-sphere
chain fluids. It is interesting to evaluate to what extend these
improved results for the isotropic fluid are reflected in the pre-
dicted isotropic-nematic phase equilibrium. The second virial
coefficient of the isotropic fluid that is required in Eqs. (17)
and (18) can be obtained by substituting fiso(ωωω) = 1/4π in
Eqs. (13)–(15):

B2,iso = Vm

[
C1(m,χR)

2
+ π

C2(m,χR)

8
+ C3(m,χR)

3

]
.

(19)
In the remainder of this paper, Eqs. (6), (13)–(15), and
(17)–(19) will be referred to as the Onsager Vega-Lago (OVL)
theory.

In contrast to the OVL theory, SPT cannot be derived
directly from the virial expansion. However, SPT shows the
same features in that the higher virial terms are approxi-
mated by a nonlinear dependence on density whereas the sec-
ond virial coefficient is treated explicitly. By combining the
work of Cotter33–35 and Boublík et al.,36–39 Jaffer et al.58 pro-
posed a SPT that is directly applicable to describe both the
isotropic and nematic phase of tangent hard-sphere chain flu-
ids. The residual Helmholtz energy and compressibility factor

obtained from this SPT are given by, respectively

βAres

N
= (ψ − 1) ln(1 − η) + 3aη

1 − η
+ ψη

(1 − η)2
, (20)

Z = 1

1 − η
+ 3aη

(1 − η)2
+ 3ψη2

(1 − η)3
− ψη3

(1 − η)3
. (21)

Here, η = ρVm is the packing fraction of the system. Us-
ing the definition of the reduced second virial coefficient
B∗

2 = B2/Vm = ∂Z/∂η|η=0, the non-sphericity parameter a
can be written as

a = B∗
2 − 1

3
. (22)

Since the non-sphericity parameter is expressed explicitly in
the reduced second virial coefficient, the SPT can be directly
applied to nematic fluids through the use of Eqs. (13)–(15).
Please note that in related work, the non-sphericity parameter
is usually referred to as α. Since this symbol will be used as
the variational parameter for the Onsager Trial function (see
Sec. III C) we have used the symbol a instead. The reduced
second virial coefficient in the isotropic phase can be calcu-
lated from Eq. (19). The ψ-parameter in Eq. (20) is given by58

ψ = σSm

9Vm

[
3a −

(
σSm

4Vm

) (
1 − m − 1

4

)]
. (23)

Here, Sm = πmσ 2 is the surface area of a chain molecule.
Equations (6), (13)–(15), and (19)–(23) will be referred to as
SPT.

C. Solving the phase equilibrium

In principle, phase equilibrium is attained when two
phases are in thermal, mechanical, and material equilibrium.
The conditions for this are equality of temperature (T), pres-
sure (P), and chemical potential (μ), respectively. For the hard
molecules considered in this work, however, temperature is
an irrelevant parameter. Consequently, for these systems the
phase equilibrium can be solved by equating the pressure P
and chemical potential μ of both phases

P iso(ρiso) = P nem[feq(ωωω); ρnem], (24)

μiso(ρiso) = μnem[feq(ωωω); ρnem]. (25)

The equilibrium orientational distribution function feq(ωωω)
minimizes the total Helmholtz energy A = Aid + Ares and can
be obtained by solving the following variational equation:(

δA[f (ωωω)]

δf (ωωω)

)
NV T,f (ωωω)=feq(ωωω)

= 0. (26)

The pressure and chemical potential can be obtained from

P = −
(

∂A[feq(ωωω)]

∂V

)
NT

, (27)

μ =
(

∂A[feq(ωωω)]

∂N

)
V T

. (28)
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Although, in principle Eq. (26) can be solved by numerical
techniques,59–64 a well chosen trial function can make the so-
lution more tractable without losing too much of the numeri-
cal accuracy.12 In this work, we use the hyperbolic trial func-
tion as originally proposed by Onsager11 (referred to as OTF)
and consider the degree of orientational order in a single pa-
rameter α:

f (ωωω) ≈ fOTF(θ ) = α cosh[α cos(θ )]

4π sinh(α)
. (29)

Here, θ is the polar angle of a molecule’s axis with respect to
the nematic director (mean direction of all molecules). For an
isotropic phase fOTF = 1/4π and thus α = 0. For higher values
of α, the OTF becomes sharply peaked at the parallel orien-
tations θ = 0 and θ = π , thereby modeling a nematic phase.
The use of the OTF allows the orientation-dependent terms
of the Helmholtz energy (Eqs. (8) and (13)) to be expressed
as a function solely of α (see Appendix C for details). Ac-
cordingly, the variational problem from Eq. (26) can be trans-
formed to a simple one-dimensional parameter optimization
of the equilibrium degree of orientational order αeq, as(

∂A(α)

∂α

)
NV T,α=αeq

= 0. (30)

A modified Newton method was used to solve this equation.
The resulting α = αeq determines the orientational distribu-
tion function f (ωωω) according to Eq. (29). Therefore, the ne-

matic order parameter S2 can be calculated as

S2 =
〈

3

2
cos2(θ ) − 1/2

〉
ωωω

, (31)

= 1 − 3 coth(α)

α
+ 3

α2
. (32)

The nematic order parameter varies between zero and unity
for the isotropic and perfect nematic phase, respectively. It is
therefore a convenient measure of the degree of orientational
order in a system.

IV. RESULTS

In this section, theoretical results for the pressure and
nematic order parameter are compared to the results from
isobaric-isothermal NPT MC simulations from Ref. 27. To
show the effect of hysteresis around the phase transition, both
the results from MC simulations started from an isotropic and
a nematic initial configuration are included.

A. Linear m-mers

First we assess the accuracy of the OVL theory in predict-
ing the isotropic-nematic phase equilibrium of linear chains.
In Fig. 1, the equation of state of a system of linear 7-, 11-,
15-, and 20-mers as obtained from the OVL-LH and OVL-
LHrc theory is compared to MC simulations. The results show
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FIG. 1. The equation of state of a system of (a) linear 7-mers, (b) linear 11-mers, (c) linear 15-mers, and (d) linear 20-mers, as predicted from the OVL theory
using the LHrc (solid line) and LH (dotted line) equations of state as input compared to MC simulations27 (symbols). The MC simulations were started either
from an isotropic or a nematic initial configuration.
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a large sensitivity of the OVL theory towards the EoS that is
used for the isotropic phase. It is rewarding to see that the rel-
atively small improvement in the description of the isotropic
phase obtained from using the LHrc EoS results in a con-
siderably more accurate description of the isotropic-nematic
phase equilibrium. The deviation of the theory from simula-
tions observed for the 7-mer system, points at limitations in
the use of the rescaling of virial coefficients from Eq. (16).
For smaller chain lengths, the phase equilibrium is shifted to
higher packing fractions; therefore, more error is introduced
due to the approximate treatment of the higher virial coeffi-
cients in Eq. (16). The observation that, for this system, the
OVL-LH theory results in a better prediction of the phase
transition pressure and nematic branch, is most likely caused
by a fortuitous cancellation of errors from the approximate
rescaling of virial coefficients and the inaccurate description
of the isotropic equation of state in Eq. (18). In fact, given that
the chemical potentials of both phases are equal at the phase
equilibrium, we can write for the phase transition pressure

Ptrans = −anem − aiso

vnem − viso
. (33)

Here, a and v are the molar Helmholtz energy and volume, re-
spectively. Accordingly, the observation that Ptrans is predicted
correctly while the difference in coexistence packing fractions
(and thus molar volumes) is overestimated, can only be due

to an overestimation of the isotropic-nematic Helmholtz en-
ergy difference. Consistently, the nematic order parameter ob-
tained from the OVL-LH theory for this system (see Fig. 2(a))
is also overestimated.

In Fig. 2, the nematic order parameter obtained from
the OVL-LHrc theory is compared to that obtained from the
OVL-LH theory and MC simulations for the same systems as
in Fig. 1. For the OVL-LHrc theory, the results show consis-
tency with those obtained for the equation of state in Fig. 1.
For the linear 11-, 15-, and 20-mer systems, the theory is in
excellent agreement with the MC data. As indicated by the re-
sults from Fig. 3, where we compare predictions based on the
OTF and a full numerical solution of the orientational distri-
bution function, the small overestimation of the order param-
eter close to the phase equilibrium is most probably an artifact
of the use of the OTF. For the OVL-LH theory, the seemingly
accurate comparison with MC data for the order parameter of
the linear 11-mer system (Fig. 2(b)) is merely an effect of the
overestimation of the nematic coexistence packing fraction.

In Figs. 4 and 5, we show the results obtained from SPT
(dotted lines) for the same systems as in Figs. 1 and 2. The
results obtained from the OVL-LHrc theory (solid lines) are
also included for comparison. The predicted equation of state
and nematic order parameter obtained from both theories are
very similar. Quantitative agreement between theory and MC
data is obtained for the linear 11-, 15-, and 20-mer systems.
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FIG. 2. The nematic order parameter S2 of a system of (a) linear 7-mers, (b) linear 11-mers, (c) linear 15-mers, and (d) linear 20-mers, as predicted from the
OVL theory using the LHrc (solid line) and LH (dotted line) equations of state as input compared to MC simulations27 (symbols). The MC simulations were
started either from an isotropic or a nematic initial configuration.
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FIG. 3. The equation of state and nematic order parameter of a system of
linear 7-mers as obtained from OVL-TPT1 based on the OTF (solid line) and
a full numerical solution of the orientational distribution function24 (dotted
line) compared to MC simulations27 (symbols). The MC simulations were
started either from an isotropic or a nematic initial configuration.

As indicated by the results for the linear 7-mer system, SPT
suffers from the same shortcomings as the OVL theory and re-
sults in a less accurate description of the phase transition for
smaller chain lengths. A comparison of results obtained from
SPT and the OVL-LHrc theory to the MC simulations from
Ref. 27 (not included for brevity) showed that both theories
are accurate down to a chain length of 9, resulting in an un-
derestimation of the coexistence pressure, isotropic packing
fraction, and nematic packing fraction of less than 7%, 5%,
and 1%, respectively.

In Fig. 6, the density difference �η at the phase transi-
tion as obtained from the OVL-LHrc theory, SPT, and MC
simulations is plotted against the chain length m. As is com-
mon with theories of this type, both OVL-LHrc and SPT re-
sult in an overestimation of the density difference for small
chain lengths. For larger chain lengths, however, theoretical
results are in excellent agreement with the MC simulations.
Although the MC data only include chain lengths up to 20,
the observation that the theory becomes more accurate for
longer chain lengths suggests these results can be extrapolated
to larger chain lengths as well. For very large chain lengths,
the coexistence densities obtained from SPT and OVL-LHrc
converge to the same constant values (corresponding to the
Onsager limit) and a constant density difference (relative to
the isotropic coexistence density) of approximately 34% is
obtained.

It is important to note that in molecular simulation stud-
ies of linear tangent hard-sphere chain fluids,65 no nematic
phase is observed for chain lengths smaller than 5. The rea-
son is that for such short chains the isotropic-nematic phase
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FIG. 4. The equation of state of a system of (a) linear 7-mers, (b) linear 11-mers, (c) linear 15-mers, and (d) linear 20-mers, as predicted from OVL-LHrc
(solid line) and SPT (dotted line) compared to MC simulations27 (symbols). The MC simulations were started either from an isotropic or a nematic initial
configuration.
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FIG. 5. The nematic order parameter S2 of a system of (a) linear 7-mers, (b) linear 11-mers, (c) linear 15-mers, and (d) linear 20-mers, as predicted from
OVL-LHrc (solid line) and SPT (dotted line) compared to MC simulations27 (symbols). The MC simulations were started either from an isotropic or a nematic
initial configuration.

equilibrium is shifted to packing fractions beyond the
isotropic-solid phase equilibrium. The isotropic-nematic co-
existence packing fractions obtained from the theory are in
accordance with these results. For example, for a linear 3- and
4-mer, the OVL-LHrc theory predicts isotropic-nematic coex-
istence packing fractions of ηiso = 0.541 and ηnem = 0.551,
and ηiso = 0.433 and ηnem = 0.448, respectively. These values
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FIG. 6. The chain-length-dependence of the density difference �η at the
isotropic-nematic phase transition. Comparison between predictions obtained
from OVL-LHrc (triangles), SPT (plus signs), and MC simulations27 (cir-
cles). The lines are a guide for the eye. The solid line corresponds to OVL-
LHrc; the dotted line corresponds to SPT.

are larger than the isotropic-solid coexistence packing frac-
tions obtained from molecular simulations,65 i.e., ηiso ≥ 0.430
and ηsolid ≤ 0.529 for a linear 3-mer, and ηiso = 0.43 and ηsolid

= 0.51 for a linear 4-mer. Since the theory presented in this
work does not include a description of the solid phase, no
direct comparison between theory and molecular simulations
can be made for the isotropic-solid coexistence packing frac-
tions.

B. Rod-coil fluids

Given the results obtained in Sec. IV A for linear m-mers,
only SPT and the OVL-LHrc theory are evaluated further for
the description of rod-coil fluids. The equation of state and ne-
matic order parameter obtained from these theories are com-
pared to MC simulations in Figs. 7 and 8, respectively. The
test systems included are (a) a linear 15-mer, (b) a 15-14 rod-
coil, (c) a 15-13 rod-coil, and (d) a 15-12 rod-coil. For all sys-
tems shown, the overall agreement of SPT and the OVL-LHrc
theory with MC simulations is satisfactory. The general trends
with molecular rigidity are well captured. It can be clearly ob-
served that for less rigid chains, the phase transition is shifted
to higher packing fractions. The reason is that the shape of
such molecules is less anisotropic. Accordingly, the differ-
ence of the orientational average of the pair-excluded volume
between an isotropic and nematic distribution of molecular
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FIG. 7. The equation of state of a system of (a) linear 15-mers, (b) 15-14 rod-coils, (c) 15-13 rod-coils, and (d) 15-12 rod-coils, as predicted from OVL-LHrc
(solid line) and SPT (dotted line) compared to MC simulations27 (symbols). To check the effect of using the correlation from Eq. (15) for the pair-excluded
volume, the pair-excluded volume of the 15-12 rod-coil was calculated from MC simulations (using the method from Ref. 43). A third order series in sin (γ )
essentially gave a perfect fit. The results obtained from OVL-LHrc based on this fit are included (dash-dotted line) in (d). It is rewarding to see that both
approaches practically yield the same results.
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FIG. 8. The nematic order parameter S2 of a system of (a) linear 15-mers, (b) 15-14 rod-coils, (c) 15-13 rod-coils, and (d) 15-12 rod-coils, as predicted from
OVL-LHrc (solid line) and SPT (dotted line) compared to MC simulations27 (symbols).
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orientations (as obtained from Eq. (15)) is smaller, resulting
in a smaller driving force for the phase transition.

As shown in Figs. 7 and 8, both SPT and the OVL-
LHrc theory results in a small underestimation of the loca-
tion (pressure and coexistence densities) of the phase transi-
tion for more flexible chains. Part of the reason is that, due
to the increased flexibility of the molecules, the phase transi-
tion is shifted to higher packing fraction and thus errors in-
troduced by the approximate treatment of the higher virial
coefficients become apparent. As shown previously for lin-
ear m-mers, inaccuracies of this kind result in an underes-
timation of the location of the phase transition. Compared
to linear chains, however, the underestimation seems to be
more severe. This could be due to several reasons. The first,
and most probable, reason is that the approximate descrip-
tion of the higher virial coefficients becomes less accurate
for chains of increased flexibility. Second, it could be due to
the introduction of small inaccuracies through the use of the
correlation for the pair-excluded volume from Eq. (15). To
test this hypothesis, we calculated the orientation-dependent
pair-excluded volume of a 15-12 rod-coil using the Monte
Carlo method from Ref. 43. A third order series in sin (γ )
(i.e., Vex(γ ) = ∑4

i=1 Ci sini−1(γ ), with C1 = 22.5871, C2

= 17.1903, C3 = 26.4334, and C4 = −16.3469) gave a nearly
perfect fit. Calculations of the OVL-LHrc theory based on this
fit are included (dash-dotted line) in Fig. 7(d). It is comforting
to see that the difference with the results obtained from using
Eq. (15) is very small. Moreover, the use of the fit leads to a
slightly lower — not higher — prediction of the location of
phase transition. Finally, the reason could be the decoupling
of the conformational distribution function in Eq. (5). First of
all, the decoupling is in contradiction to the increase in end-to-
end length at the isotropic-nematic phase transition. Given the
results from Ref. 27 (i.e., increase end-to-end-length <2%),
however, it is unlikely this effect is significant here. Further-
more, the increase in end-to-end length has two opposite ef-
fects on the driving force of the phase transition (a negative
effect due to a decrease in chain-conformational entropy and
a positive effect due to an increase in shape anisotropy of the
molecules) which may just as well cancel each other out. The
second implication of the decoupling is of more fundamental
nature. Essentially, the decoupling comes down to modeling
a (partially) flexible molecular model by a cylindrically sym-
metric, rigid molecular model the pair-excluded volume in-
teraction of which can be described by Eq. (14). It could be
that due to the averaging, part of the destabilizing effect of
molecular flexibility on the isotropic-nematic phase transition
is lost. Having said that, it seems reasonable to assume these
effects are minor for the relatively stiff chains shown in Figs. 7
and 8. In conclusion, we expect the approximate treatment of
the higher virial coefficients to cause the deviations of theory
to simulations in Figs. 7 and 8.

In Fig. 9, we show the density difference �η at the phase
transition and part of the phase diagram, respectively, of a
15-mR rod-coil. Compared to the MC data,27 both SPT and the
OVL-LHrc theory capture the general trends with respect to
the rigidity parameter, i.e., for more flexible chains the phase
transition is shifted to higher packing fraction and the den-
sity difference (relative to the isotropic coexistence density)
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FIG. 9. The variation of (a) the density difference �η at the isotropic-
nematic phase transition and (b) the phase diagram with the rigidity parame-
ter χR for a 15-mR rod-coil. Comparison between predictions obtained from
OVL-LHrc (solid line) and SPT (dotted line), compared to MC simulations27

(symbols). The lines are a guide for the eye. The solid line corresponds to
OVL-LHrc; the dotted line corresponds to SPT.

is decreased. For all rod-coils shown, however, an overesti-
mation of the density difference is observed. It is important to
note that Jiang and Wu40 studied the same test system using
SPT with a numerical solution of the ODF. Their results do
not differ significantly from those shown in Fig. 9 — justi-
fying the use of the OTF. Interestingly, Jiang and Wu found
isotropic-nematic coexistence for relatively stiff chains only
(χR ≥ 0.46). For the SPT developed in this work, a stable
nematic phase is found over the whole range of the rigidity
parameter (not shown for brevity). For intermediate-to-low
values of the rigidity parameter, however, care must be taken
with respect to the theoretical results. As we have shown in a
recent Monte Carlo simulation study,27 rod-coil fluids of inter-
mediate flexibility (for example 14-10, 10-8, or 8-6 rod-coils)
experience a direct transition from the isotropic to a smectic
phase. Therefore, to compare the theory to molecular simu-
lation results, a description of the smectic phase would be
required. Although it is possible to extent Onsager-like the-
ories to describe smectic phases,28 this is beyond the scope
of this work. For a value of the rigidity parameter equal (and
probably close) to zero, the isotropic phase will experience a
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direct transition to the solid phase.66 An extension of the the-
ory to the solid phase is also beyond the scope of this work.

V. CONCLUSION

An extension of Onsager’s second virial theory is devel-
oped that analytically accounts for the effect of intramolec-
ular flexibility on the isotropic-nematic phase behavior. The
effect of chain flexibility on the second virial coefficient is
described using an accurate, analytical approximation for the
orientation-dependent pair-excluded volume. To approximate
the higher order virial coefficients, both the Vega-Lago rescal-
ing and Scaled Particle Theory (SPT) were evaluated.

Theoretical results for the equation of state and nematic
order parameter were extensively tested against the results
from MC simulations. For all systems considered, the re-
sults from the Vega-Lago rescaling and SPT are of simi-
lar accuracy. For linear chains, we found that both theories
compare accurately to the MC data for chain lengths down
to 9. For shorter chains, the isotropic-nematic transition is
shifted to such high density that errors introduced by the ap-
proximation of the higher virial coefficients become apparent
and, consequently, the pressure and density difference at the
phase transition are under- and overestimated, respectively.
It is important to note that the results for the Vega-Lago ap-
proach were obtained using an improved description of the
isotropic EoS that was developed in a previous work.48 This
new EoS explicitly treats the effect of intramolecular flexibil-
ity. When using isotropic equations of state for fully flexible
chain fluids instead, the Vega-Lago approach was less suc-
cessful. Although for many purposes, the isotropic phase be-
havior of linear and fully flexible chains can be assumed to be
identical,39, 67 the results obtained in this work show that there
are differences that need to be captured to arrive at a satisfac-
tory description of the isotropic-nematic phase equilibrium.

For rod-coil fluids, a near-quantitative agreement be-
tween theory and simulation data is obtained. The theoreti-
cal results correctly capture the general trends of the phase
behavior with respect to the rigidity of the molecules. With
increased rigidity, the shape anisotropy of the molecules is
increased, resulting in a shift of the isotropic-nematic phase
equilibrium to lower density. In addition, the relative density
difference at the phase transition grows for increasingly rigid
chains. Our results suggest that the approximate description
of the higher virial coefficients that results from the Vega-
Lago rescaling and SPT becomes less accurate for chains of
increased flexibility.
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APPENDIX A: COEFFICIENTS FOR CALCULATING
THE PAIR-EXCLUDED VOLUME

In our previous work,43 we developed an accurate an-
alytical approximation for the orientation-dependent pair-
excluded volume of rod-coil molecules. The functional form
of this approximation is given by Eq. (15) of the main text.
The coefficients of Eq. (15) are given by

C1(m,χR) = 11m − 3

m
+ (m − 1)2

m

3∑
k=1

ak(1 − χR)k, (A1)

C2(m,χR) = 3.5339
(m − 1)2

m
χ2

R, (A2)

C3(m,χR) = (m − 1)2

m

2∑
k=1

bk(1 − χR)k, (A3)

where the a2, a3, and b2 parameters have an additional m-
dependence as

a2 = a21 + a22

m
, (A4)

a3 = a31 + a32

m
, (A5)

b2 = b21 + b22

m
. (A6)

Here a1, a21, a22, a31, a32, b1, b21, and b22 are dimensionless
constants that were adjusted to MC data of the excluded vol-
ume of pure rod-coil fluids. The values of these constants are
listed in Table I.

APPENDIX B: THE DECOUPLING APPROXIMATION

In this appendix, the OVL theory is derived based on Par-
sons’ decoupling approximation.29 Although originally Par-
sons considered rigid molecules (hard rods) only, his method
is also perfectly valid for nonrigid chain molecules.

Assuming pairwise additive intermolecular interactions,
the compressibility factor Z = βP/ρ of an inhomogeneous
system of anisotropic, nonrigid chain molecules can be ob-
tained from the pressure equation as44

Z = 1 − β

6ρV

∫∫∫
r12

∂φ(rrr12, ω̃ωω1, ω̃ωω2)

∂r12
g(rrr12, ω̃ωω1, ω̃ωω2)ρ(r̃rr1)

× ρ(r̃rr2)dr̃rr1dr̃rr2. (B1)
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Here, g(rrr12, ω̃ωω1, ω̃ωω2) is the pair distribution function of
molecules 1 and 2. The intermolecular potential is defined as

φ(rrr12, ω̃ωω1, ω̃ωω2) =
{

∞ when r12 < σ (r̂̂r̂r12, ω̃ωω1, ω̃ωω2),

0 when r12 ≥ σ (r̂̂r̂r12, ω̃ωω1, ω̃ωω2),
(B2)

where σ (r̂̂r̂r12, ω̃ωω1, ω̃ωω2) is the conformation-dependent contact
distance. This contact distance is a function of the conforma-
tions of molecules 1 and 2 and the orientational unit vector
r̂rr12 between the molecule’s centers of mass.

Since we are concerned with describing nematic phases,
the single-molecule density can be factorized into a uni-
form number density and a conformational distribution as
ρ(r̃rr) = ρf (ω̃ωω) to obtain

Z = 1 − β

6
ρ

∫∫∫
r12

∂φ(rrr12, ω̃ωω1, ω̃ωω2)

∂r12
g(rrr12, ω̃ωω1, ω̃ωω2)f (ω̃ωω1)

× f (ω̃ωω2)drrr12dω̃ωω1dω̃ωω1. (B3)

The analogue of Onsager’s original second virial theory for
nonrigid molecules is obtained from the above equation by in-
serting the low-density limit of the pair distribution function
and integrating the pressure over the volume. To extend the
Onsager result to higher densities, Parsons used an improved
approximation for the pair distribution function which is usu-
ally referred to as the “decoupling approximation.” By writ-
ing both the intermolecular potential and the pair distribution
function as a function of a reduced intermolecular separation
y = r12/σ (r̂̂r̂r12, ω̃ωω1, ω̃ωω2), all translational and conformational
dependencies can be decoupled, according to

Z = 1 − β

6
ρ

∫
y3 ∂φ(y)

∂y
g(y)dy

×
∫∫∫

σ 3f (ω̃ωω1)f (ω̃ωω2)dr̂rr12dω̃ωω1dω̃ωω2. (B4)

The conformational part of this integral can be rewritten
in terms of the pair-excluded volume, which is defined in
Eq. (12), by writing

Vex(ω̃ωω1, ω̃ωω2) =
∫

(1 − exp [−βφ(rrr12, ω̃ωω1, ω̃ωω2)]) drrr12

=
∫ r12=σ (r̂̂r̂r12,ω̃ωω1,ω̃ωω2)

r12=0

∫
r2

12dr12dr̂̂r̂r12

= 1

3

∫
σ (r̂̂r̂r12, ω̃ωω1, ω̃ωω2)3dr̂̂r̂r12. (B5)

To deal with the discontinuity of the intermolecular potential
in the translational integral, a cavity correlation function Y(y)
= g(y) exp (βφ) can be introduced as44∫

y3 ∂φ(y)

∂y
g(y)dy = − 1

β

∫
y3 ∂ exp(−βφ(y))

∂y
Y (y)dy.

(B6)
For the purely repulsive molecules considered in this work,
the Boltzmann factor is a Heaviside step-function, the deriva-
tive of which is a Dirac delta function. Accordingly, the trans-
lational integral can be reduced to∫

y3 ∂φ(y)

∂y
g(y)dy = − 1

β
g(1+). (B7)

Here, g(1+) is the value of the pair distribution function in
the limit of contact approaching from above (contact value
theorem).44 Inserting Eqs. (B5) and (B7) into Eq. (B4), one
obtains

Z = 1 + 1

2
ρg(1+)

∫∫∫
Vex(ω̃ωω1, ω̃ωω2)f (ω̃ωω1)f (ω̃ωω2)dω̃ωω1dω̃ωω2.

(B8)
Using Eq. (11), this result can be recast in the form of a virial

Z = 1 + g(1+)B2[f (ω̃ωω)]ρ. (B9)

Finally, integration over density gives the residual Helmholtz
energy

βAres

N
=

∫
Z − 1

ρ
dρ

= B2[f (ω̃ωω)]
∫

g(1+)dρ. (B10)

Let us now assume that g(1+) of the system being described
can be approximated by that of a reference system of the same
molecular volume at the same packing fraction. Assuming the
virial from Eq. (B9) is valid for the given reference system
(note that this is only exact for a system of hard spheres), we
can write

g(1+) ≈ gref(1
+) =

(
Zref − 1

ρ

)
1

B2,ref
. (B11)

Substitution in Eq. (B9) and integrating the compressibility
leads to

βAres

N
= βAres

ref

N

B2[f (ω̃ωω)]

B2,ref
. (B12)

APPENDIX C: SOLUTION OF EQS. (6) AND (11)
IN TERMS OF THE OTF

In this appendix, we summarize the solution of Eqs. (6)
and (11) in terms of the OTF. The resulting equations are ex-
pressed solely in terms of the degree of orientational order
α. For details on the derivations, the reader is referred to the
work of Franco-Melgar et al.12, 68 The solution of Eqs. (6) and
(11) in terms of the OTF can be derived as, respectively

βAid
aniso

N
= ln[α coth(α)] − 1 + arctan(sinh(α))

sinh(α)
(C1)

and

B2,nem = C1

2
+ C2

πI2(2α)

4 sinh2(α)

+ C3

2 sinh2(α)

{
sinh(2α)

[
2

α
+ 6

α3

]
+

− cosh(2α)

[
5

α2
+ 3

α4

]
− 1

α2
+ 3

α4

}
. (C2)

Here, C1, C2, and C3 are the coefficients of the excluded vol-
ume expression from Eq. (15). The quantity I2(2α) is a mod-
ified Bessel function of second order, which is defined by the
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following general integral representation:

I2(2α) = 1

π

∫ π

u=0
exp(2α cos u) cos(2u)du. (C3)

The Bessel function is solved by numerical integration. The
derivatives of Eqs. (C1) and (C2) to α, which are required to
solve Eq. (30) for α = αeq, can be derived as(

∂
[
βAid

aniso/N
]

∂α

)
NV T

= 1

α
+ arctan[sinh(α)] cosh(α)

sinh2(α)
,

(C4)

(
∂B2,nem

∂α

)
NV T

= C2π

2 sinh2(α)

{
I2(2α)

[
α2 + 3

3α
− coth(α)

]
− α

3
I4(2α)

}

+ C3

sinh2(α)

{
cosh(2α)

(
2

α
+ 11

α3
+ 6

α5

)

− sinh(2α)

(
6

α2
+ 12

α4

)

+ 1

α3
− 6

α5
− coth(α)

[
sinh(2α)

(
2

α
+ 6

α3

)
− cosh(2α)

×
(

5

α2
+ 3

α4

)
− 1

α2
+ 3

α4

]}
. (C5)

Once a value for αeq is obtained, the nematic order parameter
can be calculated from Eq. (31).
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