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Abstract 
Perlite products are used as a filter aid in the food industry. For such applications, the 
purity of the material is one of the most significant parameters of control. Early detection of 
heavy metals is therefore of great industrial interest. In this study, a sensor-based 
approach for chemical and mineralogical characterization enabled the identification of 
patterns in the distribution of heavy metals in the perlite ore. Integration of Laser-Induced 
Breakdown Spectroscopy (LIBS) and Near Infrared Spectroscopy (NIR) was used to 
determine the presence of heavy metals in perlite ores. The results have direct 
implications for the development of methods and techniques for material characterization, 
as well as for the mining of perlite ores.  

 

Introduction 
Perlite is a generic term for a naturally occurring hydrated volcanic glass. For commercial 
applications, perlite is heated to temperatures between 800 and 1100°C. This causes 
expansion up to twenty times its original size (Doǧan and Alkan 2004). Such treatment 
allows the production of a light-weight and highly porous aggregate. The exceptional 
expansion capabilities and chemical inertness of perlite make it a material of economic 
interest (Barker and Santini 2006). Main applications of perlite include construction 
products, horticultural aggregates, fillers and filter aids for filtration of water, 
pharmaceuticals, food products and chemicals. For the filter aid applications, the purity of 
perlite products is of outstanding importance. The regulations regarding the composition of 
processing aids, especially in the food industry, set strict parameters that suppliers should 
fulfill (FAO 2006; FCC 2012). The presence of chemical impurities in excess of those 
parameters are deleterious penalties for the perlite products. 

Perlite is formed by the chemical weathering of volcanic glass present in rhyolitic domes. It 
is composed mainly of opaline silica and occasionally is associated with clay minerals. The 
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geological conditions that lead to the formation of perlite deposits sometimes result in the 
occurrence of heavy metals. Depending on the physicochemical conditions of the system, 
perlite adsorbs these elements (Silber et al. 2012). This results in pollution of the ore, with 
a subsequent impact on the quality of perlite filter aids.  

Timely detection of heavy metals is of relevance during mining and mineral processing. 
However, a comprehensive understanding of the distribution and controls upon their 
distribution in the ore has not yet been developed. There is strong industrial interest in the 
development of methods and techniques to permit the detection of heavy metals in perlite 
ore. A sensor-based approach for in-pit characterization that integrates chemical and 
mineralogical analysis could provide real-time tools for the detection of the target 
elements.  

Laser-Induced Breakdown Spectroscopy (LIBS) is becoming more used for the 
identification of major and trace elements in geological samples (Harmon et al. 2013). The 
growing interest in real-time analysis has prompted the development of LIBS systems for 
qualitative and quantitative chemical analysis of raw ores in field conditions (Gaft et al. 
2007). Determination of heavy metal content using LIBS has been successful for detection 
of the levels of pollution in soils (Capitelli et al. 2002). This demonstrates the suitability of 
LIBS as a technique for detection of heavy metals associated with the perlite ore.   

Near Infrared (NIR) spectroscopy is a well-known technique for identification of alteration 
minerals (Clark 1999). Technological developments have led to a broad range of 
instruments that permit rapid and on-site recognition of minerals (Thompson et al. 1999). 
The main constituents of perlite, which are opal and clay minerals, have distinctive 
features in the NIR spectrum. Opal (SiO2∙H2O) has absorptions related to surface hydroxyl 
groups, structural water, and Si-OH bonds respectively at 1400nm, 1900nm and 2200nm. 
Clay minerals are distinctive by strong absorptions at 2200nm, associated with the Al-OH 
bonds, and other secondary absorptions depending on the type of clay (Hunt 1977).  

In this research, integrated LIBS and NIR spectroscopy are used for the characterization 
and the detection of heavy metals in a perlite mine. The samples were obtained from a 
deposit affected by hydrothermal alteration. Chemometrical analysis of LIBS, 
complemented with XRF data, detects the presence of heavy metals and establishes 
groups of correlated elements. Extraction of NIR spectral parameters determines the 
dominant mineralogy. The integration of chemistry and mineralogy shows that some of the 
heavy metals behave accordingly with the mineralogy.  

 
Materials and Methods 
A total of 19 samples were provided for this study from a perlite mine in Turkey. The 
samples were selected to be representative of an area in the pit that shows the influence 
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of hydrothermal alteration. One of the samples was from a rhyolite dyke that cuts the 
perlite deposit, causing hydrothermal alteration. The rest of the samples were taken from 
various distances around this dike. For the analysis, the samples were powdered using 
mortar and pestle.  

For the chemical characterization, XRF data were used as a reference for the LIBS study. 
One XRF measurement per sample was made using XRF Pro-Trace. Analyses comprised 
forty trace elements, Fe2O3, and TiO2. The LIBS measurements took place at an 
experimental set-up at TNO (the Netherlands Organization for Applied Scientific 
Research). The instrument specifications included a Litron laser Nd:YAG at 1064nm and a 
spectral range between 200 to 800 nm. For each sample, sixteen scans in a 4x4 grid were 
recorded. The NIST database (Kramida et al. 2014) assisted in the selection of specific 
emissions for the determination of elements. The data was processed in Matlab®. The 
XRF and LIBS analyzes were done in LatentiX, which is a specialized software for 
chemometrics. 

The NIR reflectance spectra were measured using an ASD LabSpec, from PANalytical. 
The spectral range covered both the visible and near infrared ranges, from 350 to 2500 
nm. Three measurements were made for each sample to ensure quality of the data. The 
spectral pre-processing included splice correction and continuum removal. Use of The 
Spectral Geologist software (TSG) assisted in the extraction of spectral parameters for 
mineral identification. The USGS spectral library was used as reference (Clark et al. 2007). 

The selection of the analytes was based on the parameters established by the legislation 
regarding food processing aids (FAO 2006; FCC 2012), and the general purity acceptance 
criteria set by perlite customers for food, wine, and cosmetic applications. The heavy 
metals of high interest are arsenic (As), lead (Pb), cadmium (Cd), mercury (Hg). The 
metals of secondary interest are antimony (Sb), neodymium (Nd), cobalt (Co), chromium 
(Cr), nickel (Ni), iron (Fe), copper (Cu), selenium (Se), zinc (Zn) and barium (Ba).  

The data analysis approach consisted first of a chemical characterization of the selected 
analytes using the XRF dataset, followed by interpretation of the LIBS data. The 
mineralogical characterization was conducted with NIR spectroscopy. Finally, the results of 
chemistry and mineralogy were integrated. A chemometrical analysis of the XRF and LIBS 
datasets using Principal Component Analysis (PCA) assisted in the identification of 
possible correlations between heavy metals and the definition of parameters for analysis. 
The basis of the mineralogical characterization was the extraction of depth, width and 
wavelength position of the spectral absorptions as main parameters. This led to the 
identification of the mineral content, and to the establishment of mineral relationships. The 
correlation between chemistry and mineralogy was assessed with an integrated 
interpretation of the XRF-LIBS and NIR results.  
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Results 
Chemical characterization 
XRF analysis 

To characterize the heavy metal content of the samples, a PCA analysis was performed 
for the elements of interest (twelve elements and two oxides). The objective of the analysis 
was to identify patterns in the distribution of the heavy metals, which would serve as a 
basis for the further LIBS analysis. The first and the second PCA components gave the 
most relevant information. According to the loadings of these components, displayed in 
Figure 1, some of the heavy metals were correlated along the sample-set, meaning that 
their concentration in the samples varied similarly. Based on this, three groups could be 
described. The first component suggested a good correlation among As, Rb, and Ba, and 
among TiO2, Fe2O3 and Zn. The loadings suggested that there was a negative correlation 
between these two groups. The second component indicated that Pb, Nd, and Cu were 
also associated. The other elements did not have any clear pattern. 

 

Figure 1 Loadings of the 1st and 2nd component of the heavy metals PCA analysis. Three groups of elements 
are identified: As-Rb-Ba, TiO2-Fe2O3-Zn, and Pb-Nd-Cu, 

 

The definition of three groups of correlated elements, plus a fourth group with the 
remaining ones, constituted the basis of the LIBS analysis. For this, the groups are labeled 
as Group 1: As, Ba, Rb; Group 2: Zn, TiO2, Fe2O3; Group 3: Pb, Nd, Cu; and Group 4: Co, 
Hg, Sb, Cr.  

LIBS analysis 

For the evaluation of the LIBS data set, two main parameters were taken into 
consideration. The first one refers to the groups defined by the XRF-PCA analysis. The 
second parameter was given by the actual concentration of the heavy metals in the 
samples, the industrial standards for purity criteria and the limit of detection of the LIBS 
instrument. Table 1 shows all these considerations and reveals that not all the elements 
were suitable for a successful LIBS analysis. However, based on the established 
correlation by XRF, the detection of at least one element per group could be used as a 
proxy for the remaining heavy metals. In Group 1, arsenic was far below the detection 
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limit, and rubidium is close to it, although LIBS could easily detect barium. In Group 2 all 
the elements were detectable; nevertheless, the complex spectra of iron and titanium 
hindered their reliable identification, whereas detection of zinc was simpler.  In Group 3, 
lead was the element with the most accurate detection. In this way, LIBS analysis of Ba, 
Zn and Pb was considered as representative of their respective groups. Given the lack of 
correlation of the elements in Group 4, the selection of a single element as group 
representative was not valid. Moreover, the heavy metals in this group were either below 
or close to the LIBS limit of detection;  in other elements the concentration was below the 
purity criteria. For these reasons, Group 4 was excluded from the LIBS analysis.  

Table 1 Parameters for the selection of analytes for LIBS. The selected analytes per group are in bold letters 

Group Heavy 
metal 

Samples 
content* (ppm) 

Purity criteria 
(ppm) 

LIBS detection 
limit (ppm) 

Suitable for 
LIBS analysis 

1 
As 2-10 <5 100-500 No 
Ba 618-1259 Only detect 1-10 Yes 
Rb 16-130 Not reported 10-100 Probable 

2 
Fe** 0.649-1.585 <300 <1 Yes 
Ti** 0.108-0.159 Not reported 1-10 Probable 
Zn 32-69 Only detect 1-10 Yes 

3 
Pb 34-58 <5 1-10 Yes 
Cu 1-21 Only detect 1-10 Probable 
Nd 17-33 <20 Not reported No 

4 

Co 1-3 <1 10-100 No 
Hg 0.002-0.14 <1 <1 Yes 
Sb 4-6 <2 >500 No 
Cr 1-3 <5 <1 Probable 

* Sample content range corresponds to the minimum and maximum values reported by XRF 
** Sample content for Fe and Ti are reported as oxides in Wt% 

 

For the analysis of Ba, Zn, and Pb, the three strongest LIBS lines were selected. Table 2 
lists the LIBS lines utilized in the analysis.  

Table 2 Selected LIBS emissions for the identification and analysis 

 Ba Zn Pb 
1st strongest emission 493.56 637.23 363.28 
2nd  strongest emission 456.52 334.84 404.76 
3rd  strongest emission 553.73 250.81 357.71 

 

A PCA analysis intended to assess if the relationship among these elements was 
comparable to the XRF-PCA results. The LIBS-PCA loadings, displayed in Figure 2, 
showed that the second component differentiates Zn from Ba and Pb. It indicates that the 
variation in the concentration of Zn had an opposite pattern than the other two elements. 
The third component separated Pb and Ba, due to their negative correlation. Due to the 
nature of the dataset, the LIBS loadings are inverted in relation to the XRF loadings. In this 
case, high loads represent low concentrations. 
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Figure 2 Loadings of the 2nd and 3rd component of the selected elements for LIBS-PCA analysis. The 2nd 
component differentiates Zn, whereas the 3rd component differentiates Ba from Pb. 

 

Mineralogical Characterization 
NIR analysis 

The near-infrared spectrum of a common perlite is usually dominated by the fingerprints of 
opal, which is its main component. Three absorptions characterize the opal spectra: 1400 
nm, 1900 nm, and 2200 nm. Since the mineral structure of opal is nearly amorphous, the 
spectral absorptions tend to be weak. This produces shallow and broad features for the 
hydroxyl-related features. The water absorption is always dominant. However, the NIR 
spectra of the studied samples showed variations in the shape of these absorptions, 
indicating the presence of another mineral. The main differences were present in the depth 
and width of the 1400 and 2200 nm absorptions, respectively. According to the USGS 
spectral library, the most likely mineral to be present in these samples was 
montmorillonite. In contrast with opal, montmorillonite produced a stronger absorption at 
1400 nm, and a narrower feature at 2200 nm, as Figure 3 shows. XRD data confirmed the 
presence of montmorillonite. 

 

Figure 3 Spectral profiles of opal-like and montmorillonite-like spectra in the studied samples. The depth at 
1400 nm and the width at 2200 nm are the main differences between opal and montmorillonite.   
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To be able to automate the identification of the dominant mineralogy, it was necessary to 
create a method that differentiates opal from montmorillonite. Figure 4 shows the 
relationship between the spectral features of the target minerals. Absorptions that are 
deep at 1400 nm and narrow at 2200 nm were distinctive of montmorillonite. In contrast, 
opal was characterized by shallow 1400 nm and broad 2200 nm features. This relationship 
was the basis to develop the Opal-Montmorillonite (OM) Index, shown in Equation 1. In 
this equation, 2200w refers to the width and 1400d to the depth at the corresponding 
features. The OM Index favors high values for opal-like spectra, aiming to detect 
montmorillonite-free perlite. 

 

Figure 4 Relationship between the opal and montmorillonite features. Opal dominant phase is wide at 2200 
nm and shallow at 1400nm. The montmorillonite-dominant phase is narrow at 2200nm and deep at 1400nm. 

 

Equation 1 Formulation of the OM Index. 2200w = width at 2200nm, 1400d = depth at 1400nm. The 
logarithm expression is used to simplify the units.  

𝑂𝑂𝑂𝑂 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑙𝑙𝑙𝑙𝑙𝑙10 �2200𝑤𝑤 ∗ �
1

1400𝐼𝐼
�� 

In the studied sample-set, the lowest OM values were from the rhyolite, which was 
expected. The samples collected close to the rhyolite dyke also showed low OM values. In 
contrast, samples gathered farther away had the highest OM values. This showed that the 
hydrothermal alteration gave rise to the increasing montmorillonite content.  

 
Integration of chemistry and mineralogy 
In order to identify whether there is a correlation between chemistry and mineralogy, the 
PCA scores of the XRF and LIBS analysis were compared with the OM Index. 

The XRF-PCA scores plot colored by OM index, shown in Figure 5, revealed that high 
TiO2, Fe2O3, and Zn corresponded to a low OM index. In contrast, high As, Rb and Ba 
were more likely to have high OM index. The third group, Pb, Nd, and Cu, did not seem to 
have any correlation with the mineralogical content. 
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Figure 5 Scores of the 1st and 2nd component of the heavy metals XRF-PCA analysis, colored by OM Index. 
The montmorillonite-dominant phase has the highest Fe2O3-Zn concentrations, whereas the opal-dominant 
phase is richer in As-Rb-Ba 

 

To verify whether the correlation with mineralogy was also evident in the LIBS data set, the 
LIBS-PCA scores for the second and third component were also plotted (Figure 6). The 
correlation between mineralogy and the second component, that described the correlation 
between Ba and Zn, was not as clear as in the XRF analysis, but the pattern remained. 
The differences in the nature of the XRF and LIBS data results in inversion of the loadings, 
nevertheless, the meaning is the same. The concentration of Ba tended to be low in low 
OM index, whereas Zn decreased with high OM index.  

 

Figure 6 Scores of the 2nd and 3rd component of the group representatives LIBS-PCA analysis, colored by 
OM Index. The montmorillonite-dominant phase is poor in Ba, whereas the opal-dominant phase is poor in 
Zn. 

 
Discussion 
The integration of two sensor technologies, LIBS and NIR for the detection of heavy 
metals in the perlite ore permitted the identification of correlations between heavy metals 
and their relation to the ore mineralogy. These relationships are significant from a sensor-
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based point of view since they lead to a simplification of the approach for data collection 
and data analysis.  

The use of LIBS, complemented with XRF data, resulted in a qualitative analysis of the 
heavy metal content in the perlite. Various groups of elements were defined according to 
their correlations. Elements that had similar variations among the set of samples 
constituted a group. This classification is important since it eases the interpretation of the 
results and enables the integration of the chemical data with other datasets. Moreover, the 
classification can be utilized for the extrapolation of observations within a certain group. 
The use of an element as a representative of its group implies that it is not always 
necessary to perform a comprehensive analysis. Regarding sensor development, this 
means that for certain applications, simplified systems that focus on specific targets is a 
viable option, provided there is not a requirement for detailed and quantitative information.  
In this case, the LIBS detection of Ba, Zn, and Pb can be used as an estimate of the 
abundance of the elements in their respective groups that would be otherwise difficult to 
detect. Nevertheless, calibration of the method with reference data is always needed.  

The mineralogical analysis with NIR spectroscopy allowed the detection of the mineral 
mixtures present in the perlite ore. The developed the OM Index, which gives an 
estimation of the opal-montmorillonite proportion, can be used for automation in the 
identification of the mineral phase that is dominant in a particular sample. Furthermore, the 
determination of a dominant phase can be used as a proxy for the abundance of some 
heavy metals. In this sense, samples with low OM index are montmorillonite-dominant and 
are more likely to have high levels of Zn, Fe2O3, and TiO2. Likewise, samples with high OM 
index are opal-dominant and probably have high concentrations of Ba, As and Rb.  

LIBS and NIR spectroscopy have proved to be complementary techniques for the 
detection of heavy metals. Their integration provides not only with more robust information, 
but it also enables to perform smarter data analysis. This integrative approach could be 
used for implementing selective mining in the perlite ore. A method for in-pit detection of 
heavy metals would include the collection of NIR spectra, followed by calculation of the 
OM index for identification of dominant mineralogy. Based on this, the most likely heavy 
metal group can be determined. Later, collection of LIBS data and analysis can be focused 
on the group representative (Ba, Zn, Pb) to check for abundance. Lastly, selection areas to 
mine according to the NIR-LIBS results, preferring the lowest concentrations of heavy 
metals.  

 
Conclusions 
The integration of LIBS with NIR spectroscopy has shown to be an appropriate approach 
for the determination of heavy metals in the perlite ore. The determination of groups of 
elements that co-exist in the ore enabled a simplified detection of the representatives of 
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their groups using LIBS. The development of the OM index with NIR spectroscopy 
permitted the rapid identification of the dominant mineralogy in the samples. The 
integration of the groups of elements with the OM index showed the relationship between 
the concentration of heavy metals and the mineralogical content in the perlite. 

Regarding sensor-based characterization, the results of this work indicate that the 
integration of technologies provides not only with robust and relevant information but also 
eases the interpretation of the acquired data. The implementation of this approach in the 
mining of perlite ores would lead to selective extraction of raw material based on the heavy 
metal content. As a consequence, it would result in the generation of high-quality perlite 
products. 
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