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Abstract

Algebraic effects and handlers are a new paradigm
in functional programming. They aim at modularly
handling side effects, by separating the declaration
of those effects, from how they are handled. In this
paper, we show how we can leverage their use to
create an interface for concurrency using algebraic
effects for which we can prove a list of concurrency
laws, and also design handlers that allow us to run
programs concurrently, thereby demonstrating the
practical application of algebraic effects and han-
dlers in managing concurrency.

1 Introduction

A big challenge in the realm of computer science is
the reconciliation of theoretical models with their
practical implementations. While models provide
a good framework for understanding and think-
ing about computational concepts, actual applied
implementations of these models often introduce
complexities and problems that diverge significantly
from these models. This divergence can lead to im-
plementations that seem too pragmatic or too dis-
tinct from their theoretical model, which makes the
formal proof of their correctness challenging.

1.1 Algebraic effects and handlers

There is a relatively new paradigm in functional
programming, called algebraic effects and handlers,
which can help us with that issue. Algebraic ef-
fects and handlers are a modern, modular approach
to managing side effects in programming, provid-
ing a structured and flexible framework for effect-
ful computation. Unlike traditional methods that
embed side effects directly within the core logic of
functions, algebraic effects separate the description
of effects from their implementation. This separa-
tion is achieved through defining effects abstractly
in terms of their interface with the rest of the pro-
gram, while handlers are used to concretely imple-
ment these abstract effects. It is this separation
between effects and handlers that could help us rec-
oncile theory with implementation.

1.2 Concurrency

In computer systems, one of the most challenging
and essential areas where theory and practical im-
plementation frequently diverge is in the manage-
ment of concurrent processes, also known as con-
currency. Concurrency involves the simultaneous
execution of multiple tasks. This approach enables
a computer system to perform various operations at
once, either by interleaving multiple tasks on a sin-
gle processor or by executing them in parallel across

multiple processors. By using concurrency, systems
can achieve better resource utilization, leading to
increased efficiency and improved responsiveness in
multitasking environments.

However, implementing concurrency is not with-
out its challenges. The unpredictable nature of
task execution order can result in race conditions,
where the outcome of operations depends on the
sequence and timing of uncontrollable events [11].
This can make software behavior difficult to predict
and debug. Additionally, deadlocks are a common
issue, occurring when multiple programs lock each
other out by holding resources needed by the oth-
ers. There is also the risk of data inconsistency,
as simultaneous access to shared resources can lead
to conflicts unless properly managed. These issues
highlight the need for a properly designed inter-
face for concurrency. In 1984, Bergstra and Klop
published a paper, ”Algebra of communicating pro-
cesses” [3], in which they state a list of laws govern-
ing the nondeterministic behaviour of concurrent
programs. This leads to the research question of
this paper: Can we write an interface for con-
currency using algebraic effects and handlers
that respects the concurrency laws from ”Al-
gebra of communicating processes” [3]?

Using effects and handlers for implementing con-
currency allows us to separate the interface from
the implementation. We can use algebraic effects
to clearly define the behaviour of concurrency and
prove the concurrency laws, while handlers enable
us to execute programs concurrently in various
ways, whether deterministic or nondeterministic.

Concurrency has already been approached us-
ing effects and handlers. For example, in the pa-
per ”Asynchronous effects” [1], Ahman and Pretnar
give an implementation of concurrency that uses
signals and interrupts, where a signal from a send-
ing program will be an interrupt for a receiving pro-
gram. Another notable mention is the paper ”A
poor man’s concurrency monad” [6], which does not
involve algebraic effects but instead uses monads
with continuations, and implements concurrency in
a way similar to us. However, the implementation
in this paper does not account for the nondetermin-
ism of interleaving, which is one of the main focuses
of our own.

In this paper, we make several technical contri-
butions. We present in section 3 our interface for
interleaving concurrency, which makes use of an ef-
fect for nondeterminism. To the best of our knowl-
edge, this is the first of its kind. Then, in section
4, we prove that the laws from ”Algebra of com-
municating processes” [3] hold for this interface. In
section 5, we present a case study of the ABP model
that makes use of our interface, which demonstrates
the use of our interface in formalizing concurrent
programs. The rest of the paper is structured as
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follows. In section 2, we explain effects and han-
dlers more in detail, as well as how we are covering
concurrency. It also goes over the methodology of
the project. In section 6, we explore the ethical im-
plications of this project. In section 7, we discuss
other papers that relate to the field or that try to
achieve the same purpose as us. In section 8, we
consider different concepts that are left unexplored
by the project. Finally, in section 9, we summarize
the work done and give direction for future improve-
ments.

2 Background and Methodol-
ogy

2.1 Algebraic Effects and Handlers

Before delving into the implementation, we look at
the workings of algebraic effects and handlers we
use. This implementation comes from Casper Bach
Poulsen’s blog post [15], which is itself based on the
concepts introduced in the paper ”Data types à la
carte” [18]. The principle of an effect is based on
the free monad, which we can define in Haskell as
the datatype Free:

data Free f a = Pure a | Op (f (Free f a))

In which a Pure is a holder for a value of type a,
while an Op holds an effect as f, which itself holds
a Free recursively. Here is a possible example of an
effect which could take the place of f:

data State s k = Put s k | Get (s -> k)

The State effect represents the access of the pro-
gram to an external value. s represents the type of
the value, while k represents the type of the contin-
uation (which should be Free). Here is an example
of a program implementing the State effect.

program = Op (Get (\s -> Op (Put 3 (Pure s))))

This code represents a program which uses that
effect. To make this snippet look more like a pro-
gram, let us make an instance of monad for the
Free data type. The monadic bind uses a fold func-
tion which transforms the Free data type recursively
when given a function to transform a Pure and a
function to transform an Op.

instance Functor f => Monad (Free f) where

m >>= k = fold k Op m

return = Pure

fold :: Functor f => (a -> b) -> (f b -> b)

-> Free f a -> b

fold gen _ (Pure x) = gen x

fold gen alg (Op f) = alg (fmap (fold gen alg) f)

This allows us to write the previous program in
the following way:

program = do s <- get; put 3;return s

Now we have a way to represent programs using
algebraic effects. But how can we give implemen-
tations for handlers that will take care of these ef-
fects? We once again use the fold function, and give
it a function that removes the effect handled, and
changes the type held by Pure using the function
that takes care of the Pure. Here is its implemen-
tation, an example of handler for State, as well as
the result of handling our initial program using this
handler with a given initial state of 0.

data Handler_ f a p f' b

= Handler_ { ret_ :: a -> (p -> Free f' b)

, hdlr_ :: f (p -> Free f' b)

-> (p -> Free f' b) }

handle_ :: (Functor f, Functor f')

=> Handler_ f a p f' b -> Free (f + f') a

-> p -> Free f' b

handle_ h = fold

(ret_ h)

(\x -> case x of

L x -> hdlr_ h x

R x -> \p -> Op (fmap (\m -> m p) x))

hState :: Functor g

=> Handler_ (State s) a s g (a, s)

hState = Handler_

{ ret_ = \x s -> pure (x, s)

, hdlr_ = \x s -> case x of

Put s' k -> k s'

Get k -> k s s }

handle_ hState program 0 == Pure (0, 3)

There are also simpler handlers that do not take
an argument p.

This is the basic working of effects and handlers.
More details are included in Poulsen’s blog post
[15].

2.2 Concurrency

As mentioned in the introduction, we use effects
to make a model for concurrency that respects the
laws from Bergstra and Klop’s paper [3]. However,
we base ourselves on the more recent version of the
laws stated in the book ”Modelling and Analysis of
Communicating Processes” [7]. Figure 1 states all
of those laws.
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Figure 1: Concurrency laws [7]

The figure makes use of a lot of different opera-
tors, of which it is important we know the meaning:

• The symbol for alternative composition, +,
represents the nondeterministic choice between
two alternatives.

• ∥ is the symbol for concurrency.

• The leftmerge operator, T, represents the con-
currency of two programs, with the program
on the left having the priority (the first action
to take place will be an action from the left
program)

• The α symbol represents a program composed
of a single operation.

• The δ symbol represents a deadlock.

• The · operator indicates a sequential composi-
tion.

We look more closely at each of those laws in sec-
tion 4. This model focuses on the nondeterminism
of concurrency, which has to do with the random-
ness of the order of operations from two concurrent
programs. Figure 2 shows this nondeterminism il-
lustratively.

!

a c

b c a d

c b d a

d b

a|c

b|c a|d

b|d

Figure 4.3: The behaviour of a·b ∥ c·d

these are two different operators, we use them interchangeably as their meaning in both cases is the same.
More concretely, a|b both represents a multiaction and a synchronisation of two processes both consisting
of a single action.

The process p ≪ q (pronounce p before q) describes the part of process p that can happen before q is
forced to perform an action.

The first axiom marked M in table 4.12 characterises our view on parallelism. The first action in x ∥ y
can either come from x, come from y or is an action that happens simultaneously in both of them. In axiom
LM1 it is expressed that multi-action α must happen before the process x must do an action. Consider the
process a ! b↪2. Then the a action must happen before the b action, and hence it must happen before time
2.

Consider the following process a·b ∥ c·d. Using the axioms it can be rewritten to an expression in
which the parallel operator does not occur anymore. This is called expansion. We get:

a·b ∥ c·d =
a ! (b ∥ c·d) + c ! (a·b ∥ d) + a·b|c·d =
a·(b ! c·d + c·d ! b + b|c·d) + c·(a·b ! d + d ! a·b + a·b|d) + (a|c)·(b ∥ d) =
a·(b·c·d+c·(b ∥ d)+(b|c)·d) + c·(a·(b ∥ d)+d·a·b+(a|d)·b) + (a|c)·(b ! d+d ! b+b|d) =
a·(b·c·d+c·(b·d+d·b+b|d)+(b|c)·d) + c·(a·(b·d+d·b+b|d)+d·a·b+(a|d)·b) + (a|c)·(b·d+d·b+b|d)

In this expansion quite a number of axioms have been applied each time. We have not even made appli-
cations of the before operator visible. Expansion is a very time consuming activity that shows how many
options there are possible when parallel behaviour is involved. Later on, we treat ways to get rid of the
parallel operator, without getting entangled in parallel expansion. Although not evident from the expansion
above, parallel processes have a very typical structure, which becomes clear if the behaviour is plotted in a
labelled transition system (see figure 4.3).

The synchronisation operator binds stronger than all other binary operators. The parallel composition
and left merge bind stronger than the sum operator but weaker than the conditional operator: |, ↪, ·, {≫,≪},
→, {∥, !},∑, +.

Exercise 4.4.1. Expand the process a·b ∥ c. Indicate precisely which axioms have been used.

Exercise 4.4.2. Expand the process a↪1·b↪3 ∥ c↪2.

Exercise 4.4.3. Prove that the parallel operator is both commutative and associative, i.e. x ∥ y = y ∥ x and
x ∥ (y ∥ z) = (x ∥ y) ∥ z.

Exercise 4.4.4. Prove that x≪ (c→ y) = c→ (x≪ y).

57

Figure 2: Nondeterminism in concurrency [7]

Our model follows the concurrency laws and im-
plements interleaving concurrency, so it is not par-
allel in any way. We discuss what we mean by in-
terleaving concurrency more in detail in section 8.

2.3 Methodology

In order to implement the interface, we expanded
upon the code snippets given in Poulsen’s blog post
[15], which is all written in Haskell, with which we
were able to create relevant effects and handlers.
We used equational reasoning for proving the laws,
and wrote the proofs in text files. Both the imple-
mentation and the proofs are available in the repos-
itory of the project.

3 Implementation

How can we simulate concurrency by interleaving
two programs represented by free monads? Since
the free monad uses continuation-passing style, the
answer to this question is very straightforward, and
is illustrated in the following snippet.

a = Op f (Op g (Pure x))

b = Op h (Op i (Pure y))

par a b = Op (f (Op h (Op g (Op i (Pure (x,y))))))

The rest of this chapter goes over the implemen-
tation of the model for concurrency. First, we de-
fine the behaviour of our interface using the laws.
We then implement the effect to represent nonde-
terminism. Finally, we give our interface for con-
currency.

3.1 Defining our interface through
the laws

In order to define our interface, we first state what
the laws entail. We first focus on the laws M
through LM3. The first law M describes the be-
haviour of the concurrency of two programs x and y
as the conjunction of the case where x is prioritized,
the case where y is prioritized, and the case where
both x and y go simultaneously (which we ignore
for our interface). The law LM1 and LM3 describes
better the behaviour of the leftmerge. LM1 states
that if a single-action program has priority over an-
other program, it is equivalent to the action of the
first program followed by the second program, while
LM3 states that a program that has priority over
another program with which it is run concurrently
is equivalent to the first operation of that program
followed by the rest of the program ran concurrently
with the other program. This law is very important
as it shows the recursive step involved in concur-
rency. The law LM2 describes the behaviour of a
deadlock. It states that if a deadlock has priority
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over a program, the resulting concurrent program
is a deadlock as well, as the program is then halted.
The important features to consider for our inter-

face are thus the plus operator, the leftmerge oper-
ation, and the deadlock.

3.2 Implementing the plus operator

As mentioned in the introduction, concurrency
comes with some inherent nondeterminism, com-
ing from the interleaving of the actions of the pro-
gram. In the concurrency laws, that nondetermin-
ism is handled by the plus operator, which describes
the division into different cases. This can be imple-
mented using the Choose effect taken from the pa-
per ”Handlers in action” [8]. However, in the paper,
Choose is given both continuations, which we can-
not do using the version of free monad that we use.
We hence use the same implementation as the amb
effect from Leijen’s paper [10], and then use that
effect to build the plus operator which we can later
use. Leijen wrote it in Koka, so we need to adapt
it in Haskell. The effect Failure from ”Handlers in
action” is transformed into Zero, which corresponds
to the deadlock from the laws.

data Choose k

= Choose (Bool -> k) | Zero

deriving Functor

choose :: Choose <: f => Free f Bool

choose = Op (inj' (Choose Pure))

zero :: Choose <: f => Free f a

zero = Op (inj' Zero)

(~+~) :: Choose <: f => Free f a -> Free f a

-> Free f a

m1 ~+~ m2 = do

b <- choose

if b then m1 else m2

We then implement the equivalent of the AllRe-
sults handlers from ”Handlers in action” [8], which
we call hChoose’, and which accumulates the results
of all the nondeterministic branches and discards
any failing continuation.

hChoose' :: Functor f' => Handler Choose a f' [a]

hChoose' = Handler

{ ret = \x -> pure [x]

, hdlr = \case

Choose f -> f False >>= \l

-> fmap (++ l) (f True)

Zero -> pure []}

3.3 Interface for concurrency

With the plus operator implemented, we now give
our interface for concurrency:

par :: Choose <: f => Free f a -> Free f b

-> Free f (a, b)

par (Pure x) y = fmap (x,) y

par x (Pure y) = fmap (,y) x

par x y = do

goesFirst x y ~+~ fmap swap (goesFirst y x)

goesFirst :: Choose <: f => Free f a -> Free f b

-> Free f (a, b)

goesFirst (Pure x) y = par (Pure x) y

goesFirst (Op x) y = Op (fmap (`par` y) x)

The function par works by using the Choose ef-
fect to non-deterministically decide which of the two
programs to prioritize. This prioritization, which is
the same as the leftmerge operation from the con-
currency laws, is encapsulated in the function goes-
First, which calls par recursively with the continu-
ation of the prioritized program and the entirety of
the other one.

We then look at some use of this interface. To
do so, we need to use effects that make sense to use
with concurrency. Let’s use the State effect, as in-
troduced in the paper ”Handling Algebraic Effects”
[14]. This one makes sense to use in the context of
concurrency, as it represents a shared state between
the two threads. We also use the Exception effect,
developed in the same paper [14]. Implementations
of both State and Err (Exception) as well as their
handlers are however taken from Poulsen’s blog post
[15]. Consider the following programs:

program1 :: (Err <: f, State Int <: f)

=> Free f Int

program1 = do

(s::Int) <- get'

put' (s + 4)

(s::Int) <- get'

if s > 7 then err' "foo" else Pure s

program2 :: (Err <: f, State Int <: f)

=> Free f Bool

program2 = do

(s::Int) <- get'

put' (s+5)

(s::Int) <- get'

Pure (s > 7)

pairing :: (Err <: f, Choose <: f, State Int <: f)

=> Free f (Int, Bool)

pairing = par program1 program2

un(handle hChoose' (handle_ hState'

(handle hErr triplepairing) [0::Int]))

We use a function that counts the amount of time
that each outcome happens, which results in the
following list of all possible concurrent orderings of
the two programs:
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(Right (4,True) ,[9,4,0]): 2
(Left "foo",[9,4,0]): 3
(Right (4,False) ,[4,5,0]): 6
(Right (4,False) ,[5,4,0]): 2
(Right (5,False) ,[5,4,0]): 4
(Left "foo",[9,5,0]): 5
"length"
22

4 Proving the laws

4.1 The laws

In section 3.1, we have explained a few of the laws
stated in ”Modelling and Analysis of Communicat-
ing Systems” [7]. In this chapter, we aim at proving
that those laws and the others hold for our inter-
face. However, we cannot prove them all. Law LM5
is a generalization of LM4 but with a list of un-
known size of program ran concurrently, which is
not how our interface works. The laws S1-8 and
TC3 are concerned with operations run simultane-
ously, which our interface does not cover. The rest
of the laws can be proven to hold for our interface.
The laws can be rewritten using the interface in

the following way:

M: par m1 m2

== goesFirst m1 m2 ~+~ fmap swap (goesFirst m2 m1)

LM1: goesFirst (Op (f (Pure x))) m

== Op (f (Pure x)) >>= (\x -> fmap (x,) m)

LM2: goesFirst zero m

== zero

LM3: goesFirst (Op (f (Pure a)) >>= x) y

== Op (f (par (Pure a >>= x) y))

LM4: goesFirst (x ~+~ y) z

== goesFirst x z ~+~ goesFirst y z

TC1: goesFirst (goesFirst x y) z

== goesFirst x (par y z)

TC2: goesFirst x (Op Zero) == x >>= (Op Zero)

Apart from those, it would also make sense to
prove commutativity and associativity for the par
function, which looks as follows:

Commutativity: par x y == fmap swap (par y x)

Associativity: par x (par y z)

== fmap assoc (par (par x y) z)

4.2 Proofs

The law M holds trivially, as it is simply a one step
unfolding of the function par. The proof for LM1
goes as follow:

goesFirst (Op (f (Pure x))) m

= {by definition of goesFirst}

Op (f (par (Pure x) m))

= {by definition of par}

Op f (fmap (x,) m)

Here is the proof for LM2:

goesFirst zero m

= {by definition of zero}

goesFirst (Op Zero) m

= {by definition of goesFirst}

Op (fmap (`par` m) Zero)

= {by definition of fmap for Zero}

Op Zero

= {by definition of zero}

zero

The proof for LM3 holds trivially. The proof re-
lied on a change in the function goesFirst which
makes it recursively call itself instead of par when
encountering a Choose effect. We do not show that
change in code here, but it is available in the repos-
itory.

goesFirst (x ~+~ y)

= {by unfolding the plus operator}

goesFirst (Op (Choose (\k -> if k then x

else y))) z

= {by applying fmap on the function

of the choose with the goesFirst}

Op (Choose (\k -> if k then goesFirst x z

else goesFirst y z))

= {by folding the plus operator back}

= goesFirst x z ~+~ goesFirst y z

The proof for TC1 reduces to the proof for asso-
ciativity of par, which we cover later.

LHS

fmap assoc (goesFirst (goesFirst (Op (f k)) y) z)

= {by unfolding the inner goesFirst}

fmap assoc (goesFirst (Op (f (par k y))) z)

= {by unfolding goesFirst}

fmap assoc (Op (f ( par (par k y) z)))

= {by using lemma b}

Op f (fmap assoc (par (par k y) z))

RHS

goesFirst (Op (f k)) (par y z)

= {by unfolding the goesFirst}

Op (f (par k (par y z)))

For the proof for TC2, we used induction, as well
as the instance of alternative for the Free monad, as
expressed in chapter 5 of the paper ”Freer Monads,
More Extensible Effects” [9], which we adapt to our
implementation.

instance (Functor f, Choose <: f)

=> Alternative (Free f) where

empty = zero

(<|>) = (~+~)

Induction step:

LHS
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goesFirst (Op (f k)) (Op Zero)

= {by unfolding goesFirst}

Op (f (par k (Op Zero)))

= {by unfolding the par}

Op (f (goesFirst k (Op Zero)

~+~ fmap swap (goesFirst (Op Zero) k)))

= {by unfolding the second goesFirst}

Op (f (goesFirst k (Op Zero)

~+~ fmap swap (Op Zero)))

= {by using the alternative instance}

Op (f (goesFirst k (Op Zero)))

RHS

(Op (f k) >>= zero)

= {using lemma a}

Op (f (k >>= zero))

Base case:

LHS

goesFirst (Pure x) (Op Zero)

= {unfolding the goesFirst}

fmap (x,) (Op Zero)

= {applying the fmap}

Op Zero

RHS

(Pure x) >>= zero

= {by definition of >>=}

Op Zero

4.3 Properties of the plus operator

In order to prove the associativity and the commu-
tativity of the par function, we first need to prove
them for the plus operator. To do so, we use the
handler hChoose’, defined in section 3. If the lists
of accumulated results from applying hChoose’ to
two free monads contain the same entries, regardless
of the order or frequency, the two free monads are
considered equal. Unfortunately, this means that
we can only prove properties of the plus operator
if this handler is applied to a program with only
the Choose effect, as we cannot predict the reper-
cussions of other arbitrary effects. This translates
to having to apply the handler for Choose last for
these properties to hold. Because of the way han-
dlers work, this means that we will only have to
prove those properties for free monads only com-
posed of the Choose effect, and of a Pure. We do
not show the proofs here, but one can find them in
the repository of the project.

4.4 Commutativity and Associativ-
ity

Using the conditional commutativity and associa-
tivity of the plus operator, we can prove the commu-
tativity and associativity of the par function. Com-
mutativity turns out to be pretty straightforward
and can be proven as follows.

LHS

par m1 m2

= {unfolding the par}

goesFirst m1 m2 ~+~ fmap swap (goesFirst m2 m1)

RHS

fmap swap (par m2 m1)

= {unfolding the par}

fmap swap (goesFirst m2 m1

~+~ fmap swap (goesFirst m1 m2))

= {using lemma p}

(fmap swap (goesFirst m2 m1)

~+~ (fmap (swap . swap) (goesFirst m1 m2)))

= {by cancelling the swap's}

(fmap swap (goesFirst m2 m1)

~+~ (goesFirst m1 m2))

= {by using the commutativity of the ~+~}

goesFirst m1 m2 ~+~ fmap swap (goesFirst m2 m1)

The proof for associativity was more intricate.
We used structural indexing, to prove that the in-
ductive step, where all three programs are of the
form Op (f k), calls recursively three other cases,
for each of which one of the programs turns into a
Pure (the cases are separated by the + operator,
and we make use of its commutativity and associa-
tivity). Those three cases each recursively call two
other cases, for each of which one of the remain-
ing Op’s turns into a Pure. It also uses LM4 as a
lemma. We do not show the actual proof in this
paper. It is however available in the repository.

5 Applications

We have now proven that our interface respects the
laws from the book. We can now ask: What is a
possible use for this interface? In ”Modelling and
analysis of communicating systems” [7], the author
gives an example of a real-world program that im-
plements concurrency, the ABP model:

Figure 3: Illustration of the ABP Model [7]

The ABP model ensures reliable data transmis-
sion from sender (S) to receiver (R) over lossy chan-
nels. The sender transmits data packets with an
alternating control bit via channel K. The receiver
processes the packet if the control bit matches the
expected sequence and sends an acknowledgment
(ACK) through channel L. Upon receiving the cor-
rect ACK, the sender switches the control bit and
sends the next packet. If the ACK is not received,
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the sender retransmits the packet, ensuring data
integrity and reliability despite packet loss or du-
plication. Bergstra’s paper demonstrates that this
approach is valid [4]. We now provide an imple-
mentation of this algorithm using our interface. To
achieve this, we first need to address an effect re-
lated to concurrency, which is locking.

5.1 Locking

To implement locking, we make use of a new effect,
Lock :

data Lock k = Lock k | Unlock k

Then we need a new modified version of the par
function that will handle those effects differently
from others, in that it ”locks” on the current pri-
oritized process in case of a Lock, and goes back to
normal when encountering an Unlock. The handler
for Lock simply removes it from the program, and is
only applied to the program when the par function
has already been applied, or when you do not want
the locking mechanism to take action any longer.
This feature allows us to group effects together

and guarantee them to follow each other, even if
the program they are a part of is run concurrently
with some other program.

5.2 ABP Model

Now that we have a locking mechanism in place,
we can give an implementation of the ABP model.
We do not show the code, but instead explain how
we went about it. It consists of two programs run
concurrently using par, one of which represents the
sender, and the other the receiver. Each of those
is itself a function taking as a parameter a boolean
representing the internal state of the process. Both
lossy channels are represented using a State, one
containing a boolean and a chunk of data for chan-
nel K and one containing simply a boolean for chan-
nel L. So the communication as explained in the
book is covered by a simple put or get. The prob-
lem of not having communication through simul-
taneity of actions is further explored in section 8.
The lossiness of the channels is covered by the use
of the Choose effect through the function par, where
a program being prioritized translates to a success-
ful transmission to or from the channel, and then
the error message is not sent, which we consider
equivalent to the state not changing. In the case
where one of the booleans contained in the States
representing the respective channels tells the pro-
gram that no action is required (silent step), the
same program is called recursively. A proof of the
validity of this implementation is available on the
repository of the project.

This implementation of the ABP Model demon-
strates the use of our interface in modelling concur-
rent programs. It allows us to prove properties us-
ing equational reasoning, while also providing the
possibility of using handlers to execute these pro-
grams. This approach showcases the versatility of
algebraic effects and handlers in both theoretical
and practical contexts.

6 Responsible research

The code written for this implementation as
well as the proofs for the laws have been made
public through the use of GitHub, at the address
https://github.com/Arthur158/concurrency effects.
The methodology for writing this code has also
been described, and the sources containing the
code on which we base ourselves have also been
stated.

This paper has as its goal to explore the use of
algebraic effects and handlers in formalizing the in-
tegrity of concurrency models, as well as giving an
implementation to be able to use the given inter-
face. The highly theoretical nature of the subject
and the current lack of practical applications of our
interface makes the given implementation seemingly
harmless, and we could not think of a way it could
be used with malicious intent.

7 Related work

The theoretical foundations of algebraic effects and
handlers were first given by Plotkin and Power, who
introduced algebraic operations to model side ef-
fects within programming languages [12]. This work
was further developed by Plotkin and Pretnar, who
explored the management of these effects through
handlers, advancing the practical application of the
theory [13]. The practical implications and im-
plementations of these theories have been demon-
strated by Bauer and Pretnar, whose work on the
Eff programming language showcases the utilization
of algebraic effects and handlers to enhance soft-
ware modularity and reusability [2]. These founda-
tional studies have established a robust framework
that continues to influence contemporary research
in handling computational effects in functional pro-
gramming.

In the introduction, we mentioned the paper
”Asynchronous effects” [1], which also aims at han-
dling concurrency using algebraic effects and han-
dlers. However, it does so in a very different fash-
ion. While our interface works by interleaving the
steps to simulate the random order of execution,
their implementation instead keeps the programs
separate, and lets those programs send signals to
one another. Those signals will then interrupt the
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other program for it to react in some fashion. This
approach provides a much more practical way to
handle concurrency, but it does not relate to the
concurrency laws, as it does not have the notion of
interleaving.
The paper ”A poor man’s concurrency monad”

[6] gives an implementation much closer to our own.
In it, Claessen also decided to simulate concur-
rent processes by interleaving them. When talking
about how to suspend a process, he also mentions
the need to ”grab the future and stick it away for
later use”, and then mentions continuation pass-
ing style as a way to do so. This resembles the
behaviour of algebraic effects, and the way our in-
terface works. It however differs in that it does not
account for the nondeterminism inherent to concur-
rency. It instead iterates over all processes run con-
currently and adds new forked processes or contin-
uations at the end of the list. Our interface makes
use of the Choose effect to represent that nondeter-
minism, and delegates its execution to handlers.

8 Discussion

We now have an interface for concurrency, proven
to respect some concurrency laws, as well as a work-
ing implementation of the ABP model that is also
proven to work correctly. in this section, we will dis-
cuss different aspects in which this implementation
lacks, as well as how it relates to the literature.

8.1 Concurrency as an effect

Our interface for concurrency is based on the func-
tion par, which combines two programs represented
by free monads into a single program by using the
Choose effect to delegate the handling of nondeter-
minism. However, an alternative to this approach
would be to model concurrency itself as an effect,
for which we could then design a handler to execute
concurrency whichever way we want. However, as
is explored in the paper ”Hefty Algebras: Modu-
lar Elaboration of Higher-Order Algebraic Effects”
[16], we would run into the problem that that ef-
fect would be a higher-order effect, which the im-
plementation of the free monad that we used does
not support. In the paper, Poulsen and Van der
Rest also develop a solution to this problem in the
form of Hefty Algebras.

8.2 Interleaving concurrency

The main problem with this interface, as mentioned
in the section 2, is that it implements interleaving
concurrency, and not true concurrency. Interleav-
ing concurrency is a model of concurrent execution
where multiple tasks or processes are executed by
alternating between them, giving the appearance of

simultaneous execution. Our interface, as imple-
mented, does not effectively reduce the execution
time when running programs concurrently. This
mostly stems from how the laws we used treated
concurrency. They treat each program as a list of
atomic operations, and two programs run concur-
rently as an interleaving of those. However, true
concurrency involves a different approach in which
atomicity is not assumed, as mentioned in the paper
”Concurrency vs Interleaving, an instructive exam-
ple” [5].

8.3 Lack of simultaneity

A part of the concurrency laws that we chose to
ignore is the part concerning simultaneity. In the
book [7], simultaneity of two execution steps from
different programs can represent communication
between those two processes.

Now let us consider effect fusion. Fusion between
effects has already been explored in the literature,
for example in the paper ”Reasoning about effect
interaction by fusion” [19] as well as more briefly
in the paper ”Effect handlers in scope” [17]. It en-
tails handlers of several different effects ”merging”,
to create a theory that encompasses all the sub-
theories. Since our concurrency interface works by
interleaving different effects, such a fusion of effects
could be an interesting way to tackle the lacking
simultaneity.

9 Conclusion and future work

In this paper, we considered the laws relating to
concurrency as given in the paper ”Algebra of com-
municating processes” [3], and used those to write
an interface for concurrency using algebraic effects
and handlers, using the Choose effect to represent
the nondeterminism involved. Once that interface
was functional, we proved that those laws held for
our interface using equational reasoning. We then
used this interface to give a working implementation
of the ABP model, and were then able to prove its
integrity.

There are different ways in which the work done
here could be pursued. Currently, the interface is
based on a function, but hefty algebras can be ex-
plored to make concurrency into an effect. One
could also try to find a way to make it more practi-
cal, by basing it on true concurrency. However, we
are here limited by the nature of the laws we used,
which assume atomicity of actions. Another possi-
ble direction would be to explore the resemblance
between simultaneity as defined in the concurrency
laws and the concept of fusion of effects. This could
make the interface more thorough, as we could then
potentially cover all the concurrency laws.
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