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Numerical generation of omnistrain failure
envelopes

Mohamed H. Elalfy1,2, Mostafa M. Abdalla3 and
Nader Abuelfoutouh4

Abstract
Traditional failure criteria for composites are usually formulated in material coordinates and depend on all three inplane stresses,
hence failure evaluation depends on the ply angle. The omnistrain failure envelope describes the most critical failure envelope in
strain space irrespective of ply orientation. This independence of ply orientation leads to an isotropic failure criterion that
depends only on the principal strains. Omnistrain envelopes greatly simplify the task of design and optimisation of composite
laminates. This paper proposes a numerical technique to generate omnistrain failure envelopes for different composite failure
criteria. The failure index, describing how far a point in strain space is from the failure boundary, is used to describe the failure
surface. Assuming convexity of the failure surface, a set of points is generated on the surface, and the convex hull algorithm is
used to generate a polygonal approximation of the failure surface. Representing strains in terms of principal strains and the angle
between the principal and material coordinates, allows us to eliminate the angle analytically by considering the worst case
condition. The omnistrain envelope is thus directly generated from the approximate three-dimensional failure surface. The
proposed algorithm does not require analytic expressions of the failure surface. An adaptive algorithm is proposed to generate
the omnistrain envelope with relatively small number of points. As demonstration of the proposed algorithm, the omnistrain
envelopes for various composite materials are generated for a number of composite failure criteria. The omnistrain envelopes
generated for the Tsai-Wu criteria accurately match to existing analytic expressions.

Keywords
Composite failure, omnistrain envelope

Introduction

Strength of conventional Engineering materials such as
Aluminum, Copper, Steel etc., can be dealt with as a unique
value regardless of loading and dimensions. However,
special attention should be given when assessing failure in
composite materials, due to their non-homogeneity and
anisotropy. Strength properties and failure mechanisms of
composite materials, change with the direction of loading
which makes the problem more complicated. Many theories
have been developed for decades to predict the failure for
fiber reinforced composites either in lamina or laminate. A

set of theories, such as maximum stress and maximum strain
criteria, are called limit or non-interactive theories, as they
predict failure by comparing individual stress or strain
components with corresponding strengths or ultimate
strains. There is no interaction between stress or strain
components. On the other hand, interactive theories predict
failure through formulas that include interactions between
all stress or strain components but the mode of failure is still
undetermined. The most known interactive criteria that are
used till now are Tsai-Hill1 and Tsai-Wu2 criteria. The
previously mentioned methods did not account for failure
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modes for matrix and fiber which is covered by failure-
mode-based-theories, where separate criteria are given for
each constituent. As an example, Hashin3 proposed to
separate matrix failure modes from those of the fiber. For
each failure mode or mechanism, tension is distinguished
from compression resulting in four distinct failure modes.

Tsai4 proposed the omnistrain failure envelope which is
defined as the most critical inner failure envelope. This idea
facilitates the design of composite materials as the generated
envelopes are independent of ply orientations. Tsai and Melo5

generated omni strain last ply failure envelopes based on Tsai-
Wu and maximum strain failure criteria. They proposed a unit
circle failure envelope for any carbon faiber laminate. Furtado
et al6 predicted the notched strength of carbon/epoxy laminates
using invariant-based approached introduced by.4,5 Millen and
Aravand7 assessed the unit circle failure envelope and results
showed it was conservative in general.

There were attempts in literature to find analytical expressions
of the omnistrain envelopes. Analytical expressions of the om-
nistrain failure envelopes based on Tsai-Wu failure criteria, have
been derived by IJsselmuiden et al.8 In this paper, omnistrain
failure envelopes are generated numerically, instead. This nu-
merical technique can deal with complex failure criteria which
includes multiple modes of failure like Hashin failure criteria.

The rest of this paper is organized as follows: section
Three dimensional failure Envelopes discusses the prop-
erties and the generation of the three dimensional failure
envelopes. Section Omnistrain Failure Envelope Generation
for Composite Materials proposes a numerical technique to
generate the omnistrain failure envelopes from the three
dimensional envelope. Section Results presents the resulted
omnistrain envelopes based on Tsai-Wu, Hashin and Puck
failure criteria. It also includes a comparison between both
of the criteria and results from the literature. The results of
the adaptive algorithm are also presented in this section.
Section Conclusion discuses the conclusion of this paper.

Three dimensional failure envelopes

Three dimensional failure envelopes usually represented in
material coordinates in terms of the critical stresses at failure
(σc1, σ

c
2 and τc12),

f
�
σc
1, σ

c
2, τ

c
12

� ¼ 1 (1)

The safe region is represented by the following
inequality,

f
�
σc1, σ

c
2, τ

c
12

�
≤ 1 (2)

Based on the factor of safety definition given in9, the
failure envelope can be redefined,

f ðλσ1, λσ2, λτ12Þ ¼ 1 (3)

where, λ is the factor of safety which is function of the
stresses (σ1, σ2 and τ12).

Omnistrain failure envelopes are defined in strain space
mainly because the failure strains in fiber and matrix di-
rections are comparable, while failure envelopes in stress
space are highly elongated. Since the composites in general
are brittle, a linear relationship can be assumed between
stresses and strains to transform the previous expressions
into strain space.

gðλϵ1, λϵ2, λγ12Þ ¼ 1 (4)

In the absence of a direct functional definition of the failure
envelope, and with the assumption that the failure envelope
is convex, a function called the failure index can be defined
as shown in Figure 1 to be

r
�
ε
� ¼ OP

OP0 ¼
1

λ
�
ε
� (5)

It can be shown that the failure index is the inverse of the
factor of safety defined in9 and is a convex function of
strains as proved in appendix Convex Sets and Convex
Functions

In order to sample the failure surface, a set of points
ðϵs1, ϵs2, γs12Þ are generated in the strain space that are not
necessarily on the failure surface. For each point the failure
index is calculated numerically depending on the failure cri-
teria involved. By definition the inverse of the failure index
multiplied by the strain generates a point on the failure surface,

ϵ1 ¼ 1

r
ϵs1 ϵ2 ¼ 1

r
ϵs2 γ12 ¼

1

r
γs12 (6)

where (ϵ1, ϵ2, γ12) is a point on the failure surface. In this
way, a set of points on the failure surface are generated.
Then, Qhull algorithm10 is used to generate a polygonal
approximation of the surface as shown in Figure 1(b).

The failure criteriamay be defined bymore than one function
as in Hashin failure criterion.3 In this case the failure index is
calculated for each function, then the maximum failure index is
used. The maximum of multiple failure indices represents the
most critical inner intersection of multiple envelopes.

Omnistrain failure envelope generation for
composite materials

In the previous section, a convex hull is obtained as an
approximation of the failure surface. Convex hull is defined
to be the smallest convex enclosure containing a set of
points. Each facet of the convex hull is simply a plane with
the safe region being a halfspace. The halfspaces of all
planes (forming the convex hull) are represented by a set of
linear inequalities in the strain space.
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l1ϵ1 þ m1ϵ2 þ n1γ12 ≤ c1
l2ϵ1 þ m2ϵ2 þ n2γ12 ≤ c2
«
lMϵ1 þ mMϵ2 þ nM γ12 ≤ cM

(7)

Strains generateds in the previous section were in
material coordinates which can be transformed into
principal coordinates through the following
relations,

ϵ1 ¼ ϵ01cos
2θ þ ϵ02sin

2θ

ϵ2 ¼ ϵ01sin
2θ þ ϵ02cos

2θ

γxy ¼
�
ϵ01 � ϵ02

�
2sinθcosθ

(8)

where θ is the angle between the principal and material
coordinates. Substituting equation (8) into (7), a set of
equations in the following form are obtained.

li
�
ϵ01cos

2θ þ ϵ02sin
2θ
�þ mi

�
ϵ01sin

2θ þ ϵ02cos
2θ
�þ

ni
��
ϵ01 � ϵ02

�
2sinθcosθ

�
≤ ci, i ¼ 1 :M

(9)

where li, mi, ni and ci are the coefficients of the equations of
the halfspaces, then the following double angle relations
will be used:

cos2θ ¼ 1

2
ð1þ cos2θÞ

sin2θ ¼ 1

2
ð1� cos2θÞ

(10)

leading to the following form of the inequality:�ðli � miÞ
2

cos2θ þ nisin2θ

�
ðϵ1 � ϵ2Þþ�

li þ mi

2

	
ðϵ1 þ ϵ2Þ ≤ ci, i ¼ 1 :M

(11)

which could be rewritten in terms of volumetric strain (ϵv =
ϵ1 + ϵ2) and maximum shear strain (γM = ϵ1� ϵ2) as follows:�ðli � miÞ

2
cos2θ þ nisin2θ

�
γMþ�

li þ mi

2

	
ϵv ≤ ci, i ¼ 1 :M

(12)

This equation represents a family of linear constraints in
the plane ϵv � γM parameterized by the angle θ. Variation of
the angle represents plies of different orientations at the
stacking sequence of the composite. To obtain the omni-
strain envelope, the most critical case—out of all the
possible constraints—should be considered.

The critical constraint is obtained by maximizing the left
hand side with respect to the angle θ. The coefficient of γM is
harmonic in θ which means that its maximum is the am-
plitude. Now the most critical constraint is represented in
the following form:

�
li þ mi

2

	
ϵv ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
li � mi

2

	2

þ n2i

s
γM ≤ ci, i ¼ 1 :M (13)

The maximum shear strain γM can be positive or nega-
tive, thus a plus or minus sign is given to the amplitude term.
The set of constraints defined by equation (13) represents a
polygonal approximation of the omnistrain failure
envelope.

Algorithm

(1) Generate a set of arbitrary principal strains

ϵ01 ¼ cosψ ϵ02 ¼ sinψ, ψ ¼
�
0 :

2π
M1

: 2π

�
(14)

where 2π/M1 is a fixed increment

Figure 1. Generation of the failure surface from a set of arbitrary points in the strain space. (a) Sampled points of the failure surface. (b)
Polygonal approximation of the failure surface.
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(2) All possible rotations of the generated principal
strains are obtained using the following equation:

ϵ1 ¼ ϵ01cos
2fþ ϵ02sin

2f

ϵ2 ¼ ϵ01sin
2fþ ϵ02cos

2f

γxy ¼
�
ϵ01 � ϵ02

�
2sinfcosf,f ¼

�
0 :

π=2
M2

:
π
2

� (15)

where (M = M1M2) is the number of sampled strain points.

3. For each strain point, the failure index is calculated
and a point on the failure surface is defined by
equation (6).

4. In the presence of multiple failure modes as in ex-
ample Hashin, the most critical failure index is the
maximum.

5. Using Qhull the convex hull is constructed from the
set of strain points

6. Qhull output is set to generate halfspace form re-
sulting in a set of inequalities 7.

7. Each halfspace is used to generate two constraints of
the form 13. This set of constraints now represents
the halfspace representation of the omnistrain
envelope.

8. Run Qhull over the intersections halfspaces to obtain
the convex hull of the omnistrain envelope.

Adaptive algorithm

The accuracy of the omnistrain envelopes showed de-
pendence on the number of sampling points. An adaptive
algorithm is suggested to minimize the number of sam-
pling points. The algorithm is based on starting with the
least number of sampling points in the strain space and
evaluating the corresponding points on the failure surface.
The convex hull is then obtained as discussed before in
section Algorithm. The convex hull consists of a set of
triangles. Then, the centroid of each triangle is defined.

The failure index will be calculated for these centroids.
Five percent of these centroids which have the lowest
failure indices, will be chosen and added to the sampling
points as shown in Figure 2.1 The error is defined as
follows:

e ¼ ð1�minfrc1, rc2, rc3,…:, rcigÞ 100 (16)

The algorithm is repeated until a threshold on the error
value is achieved.

Results

In this section, we consider the generation of omnistrain
failure envelopes for the composite materials listed in
Tables 1, 2 and 3.

Tsai-Wu failure criteria

The analytic expressions of the omnistrain failure envelopes
of Tsai-Wu failure criterion are generated in.8 Incorporating
these expressions into the algorithm stated in section Al-
gorithm for a different number of sampling points, Figures
3, 4 and 5 are obtained.

In analytic expression based on the type of material, there
exists two types of envelopes. One type is essentially an
ellipse as shown in Figures 3(a) and 4(a). The other type is
an intersection of two ellipses as in Figure 5(a). The pre-
vious results prove the robustness and the ability of the
algorithm to track the envelope irrespective of the shape of
the envelope. Additionally, they clearly show that fewer
sampling points result in increasing error as shown in
Figures 3(c), 4(c) and 5(c).

Adaptive algorithm

In this section, omnistrain failure envelopes are gen-
erated for Carbon Peek and Boron Epoxy using the

Figure 2. Application of the adaptive algorithm on the polygonal approximation of the failure surface. (a) Polygonal approximation of the
failure surface. (b) Polygonal approximation of the failure surface after applying adaptive algorithm.
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Table 2. Material properties.

Boron/Epoxy (B5.6) E-Glass/Epoxy

Longitudinal modulus ðE1, GPaÞ 201.0 41.0
Transverse modulus ðE2, GPaÞ 21.7 10.4
Shear modulus ðG12, GPaÞ 5.4 4.3
Poisson’s ratio ðv12Þ 0.17 0.28
Longitudinal tensile strength ðXt , MPaÞ 1380.0 1140.0
Longitudinal compressive strength ðXc , MPaÞ 1600.0 620.0
Transverse tensile strength ðYt , MPaÞ 56.6 39.0
Transverse compressive strength ðYc , MPaÞ 125.0 128.0
Shear strength (S, MPa) 62.6 89.0

Table 1. Material properties.

Carbon/PEEK (AS4) Carbon/epoxy (IM6)

Longitudinal modulus ðE1, GPaÞ 142.0 177.0
Transverse modulus ðE2, GPaÞ 10.3 10.8
Shear modulus ðG12, GPaÞ 7.2 7.6
Poisson’s ratio ðv12Þ 0.27 0.27
Longitudinal tensile strength ðXt , MPaÞ 2280.0 2860.0
Longitudinal compressive strength ðXc , MPaÞ 1440.0 1875.0
Transverse tensile strength ðYt , MPaÞ 57.0 49.0
Transverse compressive strength ðYc , MPaÞ 228.0 246.0
Shear strength (S, MPa) 71.0 83.0

Table 3. Material properties.

S-Glass/Epoxy

Longitudinal modulus ðE1, GPaÞ 45.0
Transverse modulus ðE2, GPaÞ 11.0
Shear modulus ðG12, GPaÞ 4.5
Poisson’s ratio ðv12Þ 0.29
Longitudinal tensile strength ðXt , MPaÞ 1725.0
Longitudinal compressive strength ðXc , MPaÞ 690.0
Transverse tensile strength ðYt , MPaÞ 49.0
Transverse compressive strength ðYc , MPaÞ 158.0
Shear strength (S, MPa) 70.0

Figure 3. Carbon peek. (a) M = 2500 (b) M = 625 (c) M = 144. Tsai-Wu strain envelopes for θ = 0, 5, …, 90 deg . Omnistrain
envelope based on Tsai-Wu failure criteria .
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Figure 4. Carbon Epoxy. (a) M = 2500 (b) M = 625 (c) M = 144. Tsai-Wu strain envelopes for θ = 0, 5,…, 90 deg . Omnistrain
envelope based on Tsai-Wu failure criteria .

Figure 5. Boron Epoxy. (a) M = 2500 (b) M = 625 (c) M = 144. Tsai-Wu strain envelopes for θ = 0, 5, …, 90 deg . Omnistrain
envelope based on Tsai-Wu failure criteria .

Figure 6. Adaptive algorithm results at different correction steps for Carbon Peek (a) Step 1, M = 9, Error = 61.45% (b) Step 21, M = 72,
Error = 6.61% (c) Step 42, M = 532, Error = 0.94%.

Figure 7. Adaptive algorithm results at different correction steps for Boron Epoxy (a) Step 1, M = 9, Error = 72.29% (b) Step 21, M = 72,
Error = 6.46% (c) Step 41, M = 493, Error = 0.96%.
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adaptive algorithm as shown in Figures 6 and 7.
Clearly, Figures 6(c) and 7(c) exhibit results that are
remarkably congruent with those depicted in Figures
3(a) and 4(a), respectively. This observation is note-
worthy as Figures 6(c) and 7(c) were generated using a
significantly reduced number of sampling points. The
profound similarity between the two sets of results
serves as a proof of the computational efficiency of the
algorithm and its ability to achieve comparable

outcomes while operating with a reduced
computational cost.

Comparison of different failure criteria

The analytic expressions derived in the appendices are
used to generate the curves of Figures 8, 9, 10, 11
and 12.

Figure 8. Comparison between different failure criteria (Hashin
failure criteria , Tsai-Wu failure criteria , Puck
failure criteria ).

Figure 10. Comparison between different failure criteria (Hashin
failure criteria , Tsai-Wu failure criteria , Puck
failure criteria ).

Figure 11. Comparison between different failure criteria (Hashin
failure criteria , Tsai-Wu failure criteria , Puck
failure criteria ).

Figure 9. Comparison between different failure criteria (Hashin
failure criteria , Tsai-Wu failure criteria , Puck
failure criteria ).
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It is clear that Hashin is more conservative than Tsai-Wu
in the third quadrant which represents the compression-
compression case.

Conclusion

Numerical generation of omnistrain failure envelopes
based on different failure criteria is presented. Three
dimensional failure surfaces are constructed as a po-
lygonal approximation of sampled failure points in the
strain space. Sampling the points of the three dimen-
sional failure surface relies on calculating the failure
index, which is proved to be a convex function, and
does not require a functional description of the failure
surface. As a result, omnistrain envelopes can be
generated for any failure criteria including those that
are not defined by a single analytical expression such as
Hashin criteria. The number of sampling points highly
affects the accuracy of the generated envelopes. Re-
sults based on Tsai-Wu failure criteria showed a great
match with analytic expressions regardless the shape of
the envelope. Comparison between Hashin criteria and
Tsai-Wu criteria showed that Hashin criteria is more
conservative in the third quadrant (compression-
compression) and is very close to Tsai-Wu criteria in
the other quadrants.

Discussion

This work presents a strain-based failure criterion. The
developed omnistrain envelopes take advantage of the

invariance of failure envelopes in strain space. Hence, a
master failure envelope can be developed for a laminate in
strain space, regardless of the layup. Being expressed in
terms of strain makes it more robust and universal as strains
are almost constant at the onset of irreversible damage.
Unlike stresses, which vary dramatically at failure, de-
pending on deformation mode, strains are almost identical
and independent of failure mode or the load type. Strains
can also be easily measured through experiment and cal-
culated using different laminate theories, rather than using
arbitrary assumed parameters that were used for fitting
envelopes on test data11. Moreover, strains represent a
physical meaning related to deformations.

The proposed methodology allows for evaluating the most
critical omnistrain failure envelope by comparing different
failure criteria as shown in Figures 8, 9, 10, 11 and 12. Ad-
ditionally, it opens the door for using criteria that deal with
composite materials as two discrete constituents (matrix and
fiber), such as the Strain Invariant Failure Theory (SIFT) 11,
where each constituent needs to be assessed for each failure
mode independently. It is assumed that both kinds of defor-
mation modes (distortion and dilatation) are coexisting. The
focus should be onwhichmodewill become critical first and in
which constituent (fiber or matrix). Furthermore, the scope of
this research can be extended to incorporate plasticity as in this
work only brittle composites were considered. Moreover, an
enhancement could be made by incorporating time-dependent
failure criteria into the study.

Author’s notes

In Memoriam: Dr. Mostafa Abdalla
This publication is dedicated to the memory of our esteemed

coauthor, Dr. Mostafa Abdalla, who regrettably passed away on
July 2023. Dr. Mostafa left an indelible mark on the field of
composite materials and structural optimization. Dr. Mostafa’s
academic journey spanned continents, from Cairo University to
Virginia Tech and Delft University of Technology, where he earned
his PhD. Finally, he was a full professor at Zewail City of Science
and Technology in Egypt, where he held the position of Head of the
Department of Aerospace Engineering.

Dr. Mostafa was renowned for his pioneering contributions to
the optimization of composite materials, particularly in the context
of aerospace applications. His remarkable insights and ingenuity
paved the way for revolutionary advancements in the design and
manufacturing of composite structures. Notably, his work on
optimizing fiber-steered laminates, which entail an intricate design
space, remains invaluable to composite and aircraft manufacturers
worldwide.

Beyond his remarkable scientific achievements, Dr. Mostafa’s
warm and inspiring personality touched the lives of his colleagues,
students, and friends alike. His wisdom, patience, humanity, and
kindness serve as a guiding light for all who had the privilege of
knowing him.

Figure 12. Comparison between different failure criteria (Hashin
failure criteria , Tsai-Wu failure criteria , Puck
failure criteria ).
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Note

1. It is important to clarify that Figures 1 and 2 represent two
dimensional projection of the three dimensional convex hull.
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Appendices

Convex Sets and Convex Functions

A closed set C is convex at the following condition:

"x1, x1 2C0ð1� αÞx1 þ αx2 2C, α2 ½0; 1� (17)

A function f(x) is convex if the following condition is
attained:

f ðð1� αÞx1 þ αx2Þ ≤ ð1� αÞf ðx1Þ þ αf ðx2Þ (18)

Failure envelopes define a space of safe loading which is
observed to be a convex set. An arbitrary point P in the safe
space can be related to another point P0, on the failure
surface and along the line connecting P to the origin O, as
follows:

OP0

OP
¼ λ

�
ε
�

(19)

Another function which is well-behaving near the origin,
unlike λ

�
ε
�
, is called the failure index and is defined as

follows:

r
�
ε
� ¼ 1

λ
�
ε
� ¼ OP

OP0 (20)

Proposition 1. r
�
ε
�
is a convex function over C

Proposition 2. r
�
ε
�
is homogeneous function of order 1

Tsai-Wu Criterion

Tsai-Wu failure criterion2 was an improvement of Tsai-
Hill. In order to get a better match with the experimental
data, the number of terms in the prediction equation need to
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be increased. In tensor form the criterion is defined as
follows,

Fiσi þ Fijσiσj ¼ 1 i, j ¼ 1, :::, 6 (21)

where Fi is second order tensor and Fij is fourth order tensor,
both representing strength parameters. Being expressed in
tensorial form, added a great advantage and flexibility to the
criterion. The criterion is invariant under rotation and obeys
tensor transformation which made analysis easier.

In case of an orthotropic lamina under plane stress
conditions, equation (21) reduces to the following form,

F1σ1 þ F2σ2 þ F11σ
2
1 þ F22σ

2
2 þ 2F12σ1σ2 þ F66τ

2
12 ¼ 1

(22)

where,

F1 ¼ 1

Xc
þ 1

Xt
,F2 ¼ 1

Yc
þ 1

Yt
,F11 ¼ �1

XcXt
,

F22 ¼ �1

YcYt
,F66 ¼ 1

S2
,F12 ¼ �1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XtXcYtYc

p

For an arbitrary point in the strain plane (ϵ1, ϵ2 and γ12),
the corresponding point on the failure envelope is defined
by first calculating the stresses through stress-strain relation:2

4 σ1

σ2

τ12

3
5 ¼

2
4Q11 Q12 0
Q12 Q22 0
0 0 Q66

3
5
2
4 ε1
ε2
γ12

3
5 (23)

where the Qij are the reduces stiffnesses for a plane stress
state and they are defined from material properties. The
stresses are then scaled to their critical values using the
safety factor and substituted in equation (22):

F1λσ1 þ F2λσ2 þ F11λ
2σ21 þ F22λ

2σ22 þ 2F12λ
2σ1σ2

þF66λ
2τ212 ¼ 1

(24)

Since the previous expression is quadratic in λ, two
solutions are obtained for the safety factor which cor-
responds to two values of failure indices:

λ1;2 ¼ �b ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
0 r1;2 ¼ 2a

�b ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
(26)

The critical failure index at this point, which is the
maximum of the two values, is used to define a point on the
failure envelope using equation (6). The procedure ex-
plained in section Omnistrain Failure Envelope Generation

for Composite Materials is then followed to generate the
omnistrain failure envelope using Tsai-Wu failure criterion.

Hashin Criterion

Hashin3 proposed to separate matrix failure modes from
those of the fiber. For each failure mode or mechanism, tension
is distinguished from compression resulting in four distinct
failure modes. Stress interactions in each failure mode are
expressed in terms of quadratic polynomials as follows,

Tensile Fiber FailureMode :

�
σ1

Xt

	2

þ
�τ12
S

�2
≥ 1 (27)

Compressive Fiber FailureMode :
�σ1
Xc

≤ 1 (28)

TensileMatrix FailureMode :

�
σ2
Yt

	2

þ
�τ12
S

�2
≥ 1 (29)

CompressiveMatrix FailureMode :

�
σ2

Yc

	2

þ
�τ12
S

�2
≥ 1

(30)

The inequality constraints will become equality con-
straints when substituting with the critical stresses:

�
λσ1
Xt

	2

þ
�λτ12

S

�2
¼ 1→ λ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

σ1

Xt

	2

þ
�τ12
S

�2s

→ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
σ1
Xt

	2

þ
�τ12
S

�2s (31)

�λσ1

Xc
¼ 1→ λ ¼ �Xc

σ1
→ r ¼ σ1

�Xc
(32)

�
λσ2
Yt

	2

þ
�λτ12

S

�2
¼ 1→ λ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

σ2

Yt

	2

þ
�τ12
S

�2s

→ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
σ2
Yt

	2

þ
�τ12
S

�2s (33)

λ2
�
F11σ

2
1 þ F22σ

2
2 þ 2F12σ1σ2 þ F66τ

2
12

�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a

þλðF1σ1 þ F2σ2Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
b

�1|{z}
c

¼ 0
(25)

4612 Journal of Composite Materials 57(29)



�
λσ2

Yc

	2

þ
�λτ12

S

�2
¼ 1 → λ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

σ2

Yc

	2

þ
�τ12
S

�2s

→ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
σ2

Yc

	2

þ
�τ12
S

�2s

(34)

Now for each strain combination, the corresponding
stress values meet only two conditions from the previous
condition. For example if σ1 ≥ 0 and σ2 ≥ 0, then equations
(31) and (33) apply.

Puck’s Criterion

Puck12 developed his theory based on Hashin’s work
but with more physical foundation. Two independent
failure criteria had been developed one for fiber fracture
and the other for inter-fiber fracture (IFF). Puck as-
sumed that fiber polymer structures behave in a brittle
manner. The formulation was made for a rotating plane
system called the fracture plane, at which the brittle
fracture takes place. Three principal directions were
defined to predict failure in different orientations. L and
T are the in-plane longitudinal and transverse direc-
tions, while N is the normal out of plane direction.

The conditions for fiber failure (FF) were developed
based on maximum strain criteria. With the addition of
empirical coefficients, failure predictions came in a good
agreement the experimental data. These conditions are
formulated as follows,

Tensile FibCer Failure Mode:

1

Xεt

�
ε1 þ νf 12

Ef 1

mσf σ2

	
≥ 1, ϵ1 þ νf 12

Ef 1

mσf σ2 > 0 (35)

Compressive Fiber Failure Mode:

1

Xεc

����
�
ε1 þ νf 12

Ef 1

mσf σ2

	���� þð10γ21Þ2 ≥ 1,

ϵ1 þ νf 12
Ef 1

mσf σ2 < 0

(36)

Inter-fiber failure (IFF) conditions were developed
based on the assumption that the composite behave in a
very brittle manner at failure. The conditions are for-
mulated as follows, Inter Failure Fiber - Mode A (Tensile
Matrix Failure Mode):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�τ12
S

�2
þ
�
1� Pþ

’k
Yt

S

	2�σ2

Yt

	2
s

þ Pþ
’k
σ2
S

þ
���� σ1

σ1D

���� ≥ 1, σ2 ≥ 0
(37)

Inter Failure Fiber - Mode B (Compressive Matrix
Failure Mode):

1

S

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ212 þ

�
P�
’kσ2

�2q
þ P�

’kσ2

	
þ
���� σ1

σ1D

���� ≥ 1,
σ2 < 0, 0 ≤

����σ2

τ12

���� ≤ RA
’’

jτ21cj
(38)

Inter Failure Fiber - Mode C (Compressive Matrix
Failure Mode):��

τ12
2
�
1þ P�

’’

�
S

	2

þ
�
σ2
Yc

	2� Yc

ð�σ2Þ ≥ 1,

σ2 < 0, 0 ≤

����τ12σ2

���� ≤ jτ21cjRA
’’

(39)

where mσf is a mean magnification factor of the transverse
stress for the fiber, p is the slope of the fracture envelope and
σ1D is an empirical stress value, determining the degradation
of the fracture.

The inequality constraints will become equality con-
straints when substituting with the critical stresses:

Tensile Fiber Failure Mode:

λ
σ1

Xt
þ λ

�
νf 12

E1

Ef 1

mσf

Xt
� ν12

Xt

	
σ2 ¼ 1

→ λ ¼ 1
σ1
Xt

þ
�
νf 12

E1

Ef 1

mσf

Xt
� ν12

Xt

	
σ2

→ r ¼ σ1

Xt
þ
�
νf12

E1

Ef1

mσf

Xt
� ν12

Xt

	
σ2 (40)

Compressive Fiber Failure Mode:

1

Xc

����λ
�
σ1
E1

þ
�
E1

Ef 1

νf 12mσf � ν12

	
σ2

�����
þ100

G2
12

λ2τ12
2 ¼ 1

λ2
�
100τ122

G2
12

	
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

a

þ

���������
λ

��������

����σ1

E1
þ
�
E1

Ef 1

νf12mσf � ν12

	
σ2

����
Xc

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b

�1|{z}
c

¼ 0
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λ ¼ max

(
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
,
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a

)
,

→ r ¼ 1

λ

(41)

Inter Failure Fiber - Mode A (Tensile Matrix Failure Mode):ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
λ2
τ12
S

�2
þ
�
1� Pþ

’k
Yt

S

	2

λ2
�
σ2
Yt

	2
s

þ Pþ
’kλ

σ2
S

¼ 1

λ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
τ12
S

�2
þ
�
1� Pþ

’k
Yt
S

	2�
σ2
Yt

	2
s

þ Pþ
’k

σ2
S

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�τ12
S

�2
þ
�
1� Pþ

’k
YT

S

	2�σ2
YT

	2
s

þ Pþ
’k
σ2
S

(42)

Inter Failure Fiber - Mode B (Compressive Matrix
Failure Mode):

1

S

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2τ122 þ λ2

�
P�
’kσ2

�2q
þ λP�

’kσ2

	
¼ 1

λ ¼ S� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ122 þ

�
P�
’kσ2

�2q
þ P�

’kσ2

	

r ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ122 þ

�
P�
’kσ2

�2q
þ P�

’kσ2

	
S

(43)

Inter Failure Fiber - Mode C (Compressive Matrix
Failure Mode):�

λ2
�

τ12
2
�
1þ P�

’’

�
S

	2

þ λ2
�
σ2

Yc

	2� Yc

ð�λσ2Þ ¼ 1

λ ¼ �σ2

Yc

��
τ12

2ð1þP�
’’ÞS

	2

þ
�

σ2
Yc

	2�

r ¼ �Yc

σ2

��
τ12

2
�
1þ P�

’’

�
S

	2

þ
�
σ2
Yc

	2�
(44)

Empirical parameters estimation
The meaning magnification factor is estimated in13 to be

as follows:

Reinforcement Type mσf

Glass fiber=epoxy 1:3
Carbon fiber=epoxy 1:1

(45)

Based on14 the recommended values of the slopes of the
fracture envelopes are as follows:

Reinforcement Type pð�Þ
’k pðþÞ

’k
Glass Fiber 0:25 0:3

Carbon Fiber 0:3 0:35

(46)

More relationships are derived in13 relating parameters:

P�
’’ ¼ P�

’k
RA
’’

S
(47)

RA
’’ ¼ S

2P�
’k

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2P�

’k
YC

S

r
� 1

!
(48)

τ21c ¼ S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2P�

’’

p
(49)

The degrdation effect is very small so it can be ne-
glected as concluded in.13 Regarding Boron the same
empirical parameters of Carbon will be used since no data
exist in literature.
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