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1. Introduction

In statistical inference, a fundamental problem consists of finding a suitable prob-
ability model for a given dataset. Historically, research has focused on parametric
solutions, where the probability distribution is specified up to a finite-dimensional
parameter. While this simplicity comes with mathematical and computational
convenience, the risk of misspecification is considerable. That is, the class of
presumed probability distributions may exclude the data-generating distribution.
Nonparametric methods aim to alleviate this by allowing for infinite dimensional
parameters, thereby enriching the the class of considered probability distributions.

The estimation framework can either be frequentist or Bayesian. In classical
frequentist inference, model parameters are considered fixed and unknown. Hence,
there is a clear distinction between the data, that are modelled using a probability
distribution, and the parameter. Within Bayesian statistics both data and param-
eters are equipped with a probability distribution. Once specified, the approach
is conceptually simple as all inference is to be based on the posterior distribution,
which is the distribution of the parameters, conditional on the data. Whereas, this
distribution is virtually never tractable in closed form, the past two decades have
witnessed a tremendous development of computational tools that enable to sample
from the posterior. Using such samples, uncertainty quantification on parame-
ters is relatively straightforward, especially compared to the frequentist approach.
Moreover, Bayesian derived point estimates enjoy favourable properties such as
admissibility and shrinkage. In the nonparametric setting, maximum likelihood
estimators may fail to be consistent. The same can be said about Bayesian esti-
mators if the prior is not chosen carefully.

For nonparametric problems, constructing a prior on the space of all suitable
probability density functions is a delicate and difficult matter. Popular priors in
Bayesian nonparametric models include Gaussian processes, Dirichlet processes,
Pólya Trees and mixtures of these. In most Bayesian nonparametric models, there
is no closed form of posterior distribution which increases the practical difficulties
to the computations of the posterior distribution. Computational methods need
to be developed to sample from the posterior. This is an approximation method
for the posterior and in order to apply it, an algorithm is needed. The class of
stochastic simulation methods known as Markov Chain Monte Carlo (MCMC)
algorithms constitute efficient methods for this purpose. Apart from the computa-
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1. Introduction

tional aspect, understanding the theoretical properties is also crucial for Bayesian
nonparametric inference. Typically, theoretical studies in Bayesian nonparametrics
focus on the asymptotic properties of the posterior distribution from a frequentist
point of view. The tools which describe the posterior properties lead to the notion
of posterior consistency and contraction rate. Posterior consistency means that
the posterior probability distribution asymptotically concentrates on any arbitrar-
ily small neighborhood of the true value of the parameter, under the true data
generating measure. A stronger property, a (Bayesian) contraction rate, is a lower
bound on the radius of balls around the true parameter, while maintaining most
of the posterior mass.

In statistical modelling, often there is prior knowledge on the shape of a param-
eter. For example, it is natural to assume that the expected height of children is
nondecreasing with age. Apart from situations in which shape constraints appear
naturally, these can also be induced by the inverse nature of a statistical problem.
This occurs for example in survival analysis when indirect observations or censored
data lead to an inverse problem where the sampling density depends on the dis-
tribution of interest in a particular way. Then the monotonicity property of the
distribution function of interest induces a shape constraint on the sampling distri-
bution. If available, it is natural to incorporate shape constraints in the statistical
inferential method.

In this thesis, we focus on Bayesian nonparametric estimation in the presence
of shape constraints. We start with a literature review of Bayesian nonparametric
estimation which includes some general results and methods we will use in the
following chapters. In the second chapter we deal with the problem of estimating
a deceasing density. We derive pointwise contraction rates. In the third and
the fourth chapter, we study the distribution of the time until the occurrence of a
certain event, where the event time can not be observed directly due to a censoring
scheme. The third chapter addresses the mixed case interval censoring problem
under the assumption that the distribution function of the event time is concave.
The fourth chapter is on estimating a bivariate distribution in the current status
continuous mark model.

1.1. Asymptotic properties of the posterior

In this section we restrict our attention to asymptotic properties of the posterior
distribution. We begin with a discussion on posterior consistency. Throughout
this section, let P be the parameter set which includes all probability densities p
with respect to a dominating measure µ on a sample space (Ω,H). We assume
the set P is equipped with a suitable topology and σ−field. Consider estimating

2



1.1. Asymptotic properties of the posterior

an unknown probability density p0 ∈ P based on observations X1, . . . , Xn
iid∼ p0.

Write Xn = (X1, . . . , Xn). Let Π be the prior distribution on P and Π(·|Xn) be
the posterior distribution. An expression for the posterior distribution is given by
the Bayes’ formula,

Π(A | Xn) =

∫
A

∏n
i=1 p(Xi) dΠ(p)∫

P
∏n

i=1 p(Xi) dΠ(p)

for any measurable set A.

Definition 1.1.1. (Posterior consistency) The posterior distribution is said to be
consistent at p0 if for every neighbourhood U of p0, Π(U | Xn) → 1, p0−almost
surely.

A well known result in posterior consistency for dominated models was de-
rived in Schwartz (1965). This result requires that the prior puts sufficient mass
near the true density p0 and the existence of a uniformly consistent sequence
for testing p = p0 versus p ∈ U c. The first condition is quantified using the
Kullback-Leibler divergence. Denote the KL-divergence between p0 and p as
KL(p0, p) =

∫
p0 log(p0/p)dµ. We state Schwartz’s Theorem as below.

Theorem 1.1.2. (Schwartz (1965)) Assume X1, . . . , Xn are independent and iden-
tically distributed with common density p0. If Π(p : KL(p0, p) < ε) > 0 for all
ε > 0 and for every neighborhood U of p0 there exist test functions Φn : Ωn → [0, 1]
such that

Ep0(Φn(Xn))→ 0,

sup
p∈Uc

Ep(1− Φn(Xn))→ 0, (1.1)

then the posterior distribution is consistent at p0.

Having posterior consistency, a natural refinement is the quantification of the
rate at which the posterior concentrates around the true distribution. To obtain
posterior consistency, a neighborhood is defined as a fixed ball of radius ε around
p0. If we let the radius depend on n, so ε = εn. We consider the rate at which we
can let εn ↓ 0 while still capturing most of posterior mass.

Definition 1.1.3. (Contraction rate) A sequence εn such that for sufficiently large
M , Ep0Π(p : d(p, p0) ≥Mεn | Xn)→ 0 is called a contraction rate of the posterior
with respect to the semimetric d.

3



1. Introduction

With a similar idea as in Schwartz’s theorem, theorem 8.9 of Ghosal & Van der
Vaart (2017) gives a general result for deriving contraction rates by using a rate
related version of the Kullback-Leibler condition for the prior. Let N(ε,P , d) be
the minimal number of balls of radius ε needed to cover P .

Theorem 1.1.4. (Ghosal & Van der Vaart (2017)) Suppose that for two sequences
0 ≤ εn → 0 and 0 ≤ ε̄n ≤ εn with nε̄2

n →∞, there exists a constant c > 0 and sets
Pn ⊂ P, such that

Π(Pcn) ≤ exp(−(c+ 4)nε̄2
n), (1.2)

logN(εn,Pn,d) ≤ nε2
n, (1.3)

Π

(
p:

∫
p0 log(p0/p) ≤ ε̄2

n,

∫
p0(log(p0/p))

2 ≤ ε̄2
n

)
≥ exp(−cnε̄2

n). (1.4)

Then for sufficiently large M , Ep0Π(p: d(p, p0) ≥Mεn|Xn)→ 0 as n→∞.

Condition (1.4) is similar to the KL-divergence in Schwartz’s theorem but with
an additional restriction on the expectation of (log(p0/p))

2. Condition (1.2) indi-
cates that there exists a sequence of sieves Pn capturing most of the prior mass.
Then we only need to consider the model on these smaller sets Pn in condition (1.3).
Condition (1.3) encapsulates that the size of the model should not be too large,
it guarantees the existence of a uniformly exponentially consistent test sequence.
More precisely, existence of a sequence of test functions Φn such that

Ep0(Φn) ≤ exp(−KM2nε2
n),

sup
{p∈Pn:d(p,p0)>Mεn}

Ep(1− Φn) ≤ exp(−KM2nε2
n). (1.5)

for some constant K > 0. In the argument of the following proof only this weaker
condition is used.

Sketch of the proof of theorem 1.1.4. Write the posterior mass on set U as

Π(U | Xn) = D−1
n

∫
U

n∏
i=1

p(Xi)

p0(Xi)
dΠ(p),

where

Dn =

∫ n∏
i=1

p(Xi)

p0(Xi)
dΠ(p).

By lemma 8.1 in Ghosal, Ghosh & Van der Vaart (2000), condition (1.4) implies
that

P0(Dn ≤ exp(−(c+ 2)nε̄2
n))→ 0, as n→∞.

4



1.1. Asymptotic properties of the posterior

Then we can restrict attention to the event {Dn ≥ exp(−(c+ 2)nε̄2
n)}. Taking M

large enough such that KM2 > c+ 2 and using (1.5), the posterior distribution on
Un = {p: d(p, p0) > Mεn} satisfies

Ep0Π(Un | Xn) = Ep0Π(Un | Xn)Φn + Ep0Π(Un | Xn)(1− Φn)

≤ Ep0Φn + e(c+2)nε̄2n

(
Π(Pcn) + Ep0

∫
Un∩Pn

n∏
i=1

p(Xi)

p0(Xi)
(1− Φn) dΠ(p)

)

= Ep0Φn + e(c+2)nε̄2n

(
Π(Pcn) +

∫
Un∩Pn

Ep(1− Φn) dΠ(p)

)
≤ e−KM

2nε2n + e(c+2)nε̄2n

(
eKM

2nε2n + Π(Pcn)
)
→ 0.

In conclusion, studying consistency and contraction rates of a posterior distri-
bution includes three aspects:

1. computing a metric entropy which is used for controlling the size of the model
or checking the existence of uniformly exponentially consistent tests;

2. finding suitable sieves that capture most of the prior mass;

3. ensuring that the prior assigns positive probabilities on neighbourhoods around
the true distribution.

There is an extensive literature on Bayesian nonparametrics. Key references
include Schwartz (1965), Barron, Schervish & Wasserman (1999), Ghosal, Ghosh
& Ramamoorthi (1999), Walker & Hjort (2001), Walker (2004), Ghosal, Ghosh
& Van der Vaart (2000), Shen & Wasserman (2001) and Walker, Lijoi & Prun-
ster (2007). There are many specific models the theory has been applied to. For
instance, Ghosal & Van der Vaart (2007b) study the rates of convergence of the
posterior distribution for estimating smooth densities with Dirichlet mixtures of
normal distributions as the prior. A similar prior was considered by Tokdar (2006)
and Ghosal & Van der Vaart (2001). For other type of priors, Tokdar & Ghosh
(2007) derived the posterior consistency of density estimation using logistic Gaus-
sian process priors. The Bayesian approach also provides a natural way to incor-
porate shape constraints, like monotonicity in Salomond (2014) and Shively, Sager
& Walker (2009), convexity in Hannah & Dunson (2011) and Shively, Walker &
Damien (2011), and log-concavity in Mariucci, Ray & Szabó (2017), etc.
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1. Introduction

1.2. Dirichlet Process (DP)

In this section we introduce a useful and important family of prior distributions
known as the Dirichlet process, first proposed by Ferguson (1973). The Dirichlet
Process is a probability distribution over probability measures. This process, ac-
tually measure, has a large support (with respect to weak topology) and in some
cases yields tractability of the posterior distribution. For these reasons it is often
used as a prior in Bayesian nonparametrics. We begin with the definition of the
Dirichlet process, which arises naturally from the finite-dimensional Dirichlet dis-
tribution. Then we address more explanations and important properties, as well
as its application.

The Dirichlet process has two parameters: a distribution function G0 referred to
as the base measure and a scalar α > 0 known as the concentration parameter. The
base measure is the expected value of the process and the concentration parameter
specifies how close to G0 a realisation can be expected.

Definition 1.2.1. (Dirichlet Process) A random measure P on (R,B) has the
Dirichlet process distribution DP(G0, α), if for every finite partition B1, B2, . . . , Bk

of R,
(P (B1), . . . , P (Bk)) ∼ Dir(k, αG0(B1), . . . , αG0(Bk)),

where Dir(k, a1, . . . , ak) denotes Dirichlet distribution of order k with parameters
a1, . . . , ak for which the density function is given by

f(x1, . . . , xk) =
Γ(
∑k

i=1 ai)∏k
i=1 Γ(ai)

k∏
i=1

xai−1
i , min

1≤i≤k
xi ≥ 0 and

k∑
i=1

xi = 1.

1.2.1. Constructions

Multiple ways exist for constructing a realisation from the Dirichlet process. The
following theorem shows how a realisation from DP(G0, α) can be obtained by a
stick-breaking process.

Theorem 1.2.2. (Sethuraman (1994)) Let Y1, Y2, . . . be independent and identi-
cally distributed random variables with distribution function G0. Let V1, V2, . . . be
independent Beta(1, α) distributed random variables, independent of the Yi’s. De-
fine C1 = V1 and for k ≥ 2, Ck = Vk

∏k−1
j=1(1 − Vj). Then the discrete measure

assigning mass Ck to Yk(k ≥ 1), is a realisation from the DP(G0, α) distribution.

Note that the mass of Vi shifts towards 1 as α ↓ 0. This implies that the smaller
α, the more likely it is that realisations from the DP(G0, α) distribution visually
show only a few large jumps. On the other hand, when α is relatively large, G will

6
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Figure 1.1.: Distribution functions generated from a Dirichlet process with different
concentration parameters α. In all cases, the base measure is the
standard normal distribution (thick black curve). Each case contains
5 independent realizations (grey dark curves). Note how α controls
not only the variability of the realizations around G0, but also the
relative size of the jumps.

show small jumps at many of the Yi’s sampled. Therefore, G is most likely close
to G0 or, put differently, the distribution will be highly concentrated around G0,
see an example in figure 1.1.

There are other ways to generate a sample from the DP (G0, α).

• Pólya urn Process (Blackwell and MacQueen (1973)): Starting from an
empty urn, the following steps are taken in order to fill the urn with num-
bered balls. Set n = 1.

1. Draw from the probability distribution G0. Put a new ball in the urn
labelled by the outcome of the draw.

2. With probability n
α+n

, pick a ball already present in the urn and put it
back with another ball having the same label. With probability α

α+n
, go

to step 1. Raise n by one.

3. Repeat step 2 infinitely often.

The empirical cumulative distribution function based on the numbers on balls
in the urn is a draw from DP(G0, α). Note also that with this procedure,
a large value of α will lead to many new number additions to the urn, so a
realisation will likely be close to the base distribution function G0.

• The Chinese restaurant process (CRP) (Aldous (1985)): This process follows
the same procedure as the Pólya urn Process but explains it in a different

7



1. Introduction

way. It can be interpreted as follows: Suppose that a Chinese restaurant
has an infinite number of tables. The first customer picks a table. The (n+
1)-th customer chooses one of the already occupied tables with probability
m
α+n

, where m is the number of customers sitting at that table. Otherwise,
this customer chooses a new table. After time n, there is a partition of n
customers into k ≤ n tables. Suppose each table is labelled with a draw from
the base measure G0. With infinitely many customers having entered, the
resulting probability distribution over the different tables is a draw from a
Dirichlet process with parameters α and G0.

• Gamma Process (see section 4.2.3 in Ghosal & Van der Vaart (2017)): Let
t 7→ γ(t) be a Gamma process, i.e. a stochastic process for which γ(t2) −
γ(t1) ∼ Gamma(t2 − t1, 1) for t2 > t1. Define a random distribution by

G(t) = γ(αG0(t))
γ(α)

. The law of G is the DP(α,G0) process.

1.2.2. Properties

We now list some important properties of the Dirichlet Process, more properties
can be found in Ghosal & Van der Vaart (2017), chapter 4.

1. Discreteness. Realisations from the Dirichlet process are almost surely dis-
crete.

2. Support. The support (with respect to the weak topology) of DP(G0, α) is
given by all probability measures G whose supports are contained in the
support of G0, that is,

support(DP(G0, α)) = {G : support(G) ⊂ support(G0)}.

3. Mean. For every measurable set B, if G ∼ DP(G0, α), then E(G(B)) =
G0(B) and for any measurable function ψ, E(

∫
ψdG) =

∫
ψdG0.

4. Conjugacy. Let G ∼ DP(G0, α) and Θ1,Θ2, . . . ,Θn be independent with
common probability measure G. Then the posterior distribution of G given

Θ1,Θ2, . . . ,Θn is DP
(
αG0+

∑n
i=1 δΘi

α+n
, α + n

)
where δu denotes the Dirac mea-

sure on {u}.

5. Distinct values. Let G ∼ DP(G0, α) and Θ1,Θ2, . . . ,Θn be independent with
common probability measure G. Then the number of distinct values in the
vector (Θ1, . . . ,Θn), Kn, satisfies Kn/log n→ α as n→∞.
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1.2. Dirichlet Process (DP)

1.2.3. Dirichlet Process Mixture Models (DPM)

Based on the Dirichlet process important ‘induced’ models, can be obtained, like
for example the hierarchical Dirichlet process, a Dirichlet process mixture, a nested
Dirichlet process and dependent Dirichlet process. The Dirichlet process mixture
model is a general and useful prior in Bayesian nonparametric density estimation.
Let {ψ(·, θ) : θ ∈ Θ} be a parameterized class of probability density functions. For
a probability measure G, define the mixture density function

fG(x) =

∫
Θ

ψ(x, θ) dG(θ).

By putting a distribution on the mixing measure G, we obtain a distribution on the
mixture densities fG. Dirichlet process mixture models (introduced by Antoniak
(1974)) are obtained by endowing G with a Dirichlet process prior. The model can
be written as

fG(·) =

∫
R
ψ(·, θ) dG(θ),

G ∼ DP(G0, α).

Sampling n realizations from fG can be done according to the following hierarchical
scheme:

Xi | Θi
ind∼ fXi|Θi = ψ(xi, θi),

Θ1,Θ2, . . . ,Θn | G
ind∼ G,

G ∼ DP(G0, α).

Given Xn = (X1, . . . , Xn), the posterior expectation of fG has a simple represen-

tation. By conjugacy of the DP, we knowG | Θ1, . . . ,Θn ∼ DP
(
αG0+

∑n
i=1 δΘi

α+n
, α + n

)
and the mean of DP is the base measure, then for any measurable function ψ,

E

(∫
ψ(x, θ) dG(θ)

∣∣∣Θ1, . . . ,Θn

)
=

1

α + n

(
α

∫
ψ(x, θ) dG0(θ) +

n∑
i=1

ψ(x,Θi)

)
.

Averaging out with respect to the posterior distribution of Θ, we have an expression
for the posterior mean for density fG:

E (fG(x) | Xn) =
1

α + n

(
αfG0(x) + E

[
n∑
i=1

ψ(x,Θj)
∣∣∣Xn

])
.

9



1. Introduction

The first part comes from the prior and the second part comes from the obser-
vations. From this formula, we see that a large value of the parameter α reflects
strong belief in the prior. To approximate the posterior expectation, it is general
practice to average out the second part using samples generated from the posterior
distribution of Θ1, . . . ,Θn.

Many algorithms have been developed for drawing from the posterior in the
DPM model. For instance, if a conjugate prior is assumed, i.e., G0 is a conjugate
distribution of ψ, Gibbs sampling is straightforward and can easily be implemented
(see for instance Bush & MacEachern (1996), MacEachern (1994)). In case of
non-conjugate priors, West, Müller & Escobar(1994) first presented the algorithm
using a Monte Carlo approximation. MacEachern and Müller (1998) proposed
the ‘no gaps’ and ‘complete’ algorithms that are based on introducing auxiliary
parameters. Moreover, Neal (2000) reviewed the past work and proposed new
MCMC algorithms for solving this problem.

1.3. Censoring schemes

Survival analysis is concerned with the analysis of data that correspond to the
time until the occurrence of some event of interest. The event can be death, the
response to a treatment, or the occurrence of a symptom. However, often the
exact survival time is not observed and this is referred to as censoring. The most
studied censoring scheme is right censoring, which means we only know the exact
event time if it occurred before a particular time (censoring time). Otherwise, the
censoring time is observed, with the information that the event has not occurred
yet at that time. In a medical study for example this censoring happens when
subjects have not yet experienced the event of interest by the end of the study.
Another, more general type of censoring is interval censoring. This arises when the
event time of interest cannot be directly observed and we only know if it occurred
in a specific interval, henceforth leading to observations that are intervals. This
situation is encountered in many longitudinal studies where the event of interest,
for example the occurrence of a symptom, can only be observed at an examination
time. It is clear that right censoring can be viewed as a special case of interval
censoring, where the intervals are either of type [t, t] or [t,∞), but the term interval
censoring is often used in situation where intervals of zero length do not occur.

The review book on semiparametric Bayesian models by Ibrahim, Chen & Sinha
(2001) presents Bayesian methods for survival analysis and examines several types
of parametric and semiparametric models. For nonparametric models, Susarla &
Van Ryzin (1976) define a nonparametric Bayesian estimator of the survival func-
tion by minimizing the risk under the squared-error loss function when the data
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1.4. Outline

are right censored. They use the class of Dirichlet processes as prior and prove that
the Kaplan-Meier estimator (the frequentist maximum likelihood estimator) is a
special case of this Bayesian estimator. Under the same model and prior, Ghosh,
Ramamoorthi & Srikanth (1999) establish posterior consistency. They also con-
sider the prior (for the underlying distribution) is generated through a prior for
the distribution of the observations. and show that a natural extension of their
approach to interval censored data is not straightforward. From the computational
perspective, Doss (1994) and Doss & Huffer (2003) propose a Gibbs sampling algo-
rithm to deal with censored data from Dirichlet mixture process models. Alterna-
tively, Calle & Gómez (2001) propose an approach by introducing latent variables,
only requiring sampling from a Dirichlet distribution.

1.4. Outline

This thesis focusses on Bayesian nonparametric function estimation under shape
constraints and/or censoring. For three specific models we

1. derive theoretical properties of the Bayesian procedure (consistency, contrac-
tion rates);

2. develop computational methods for obtaining draws from the posterior dis-
tribution;

3. apply these methods to real data examples.

We now give a more specific outline of the chapters in this thesis.
In Chapter 2 we deal with nonparametric estimation of a bounded decreasing

density function on R+ with particular emphasis on estimation of the density at
zero. Estimating a monotone density constitutes a well studied topic in the litera-
ture. The maximum likelihood estimator has been derived in Grenander (1956). It
has been pointed out in Woodroofe & Sun (1993) that the MLE is not consistent at
0. This is problematic in a number of inverse problems where estimation crucially
depends on the estimate at zero. Some have thus tried to fix this inconsistency with
various strategies, such as Kulikov & Lopuhaä (2006),Woodroofe & Sun (1993). It
is well known that any decreasing density can be represented as a scale mixture of
uniform densities. This suggests that within the Bayesian setting a natural prior
distribution on the set of decreasing densities is obtained by endowing the mixing
measure with a prior distribution. A prime example of such a prior is the Dirichlet
process prior. Indeed, Salomond (2014) considered this model and derived the the
posterior contraction rates for the L1, Hellinger metric and supremum norm, but
also pointwisely at any fixed point x > 0. For x = 0, only posterior consistency is

11



1. Introduction

derived. We explain why the techniques in the proof of Salomond (2014) cannot
be used to obtain rates at zero and present an alternative proof (using different
arguments). This proof not only yields consistency but also yields a contraction
rate of (log n/n)2/9 (up to log factors) that coincides with the case x > 0. We
argue that with the present method of proof a better rate is not easily obtained.
Additionally, we empirically investigate the rate of convergence of the Bayesian
procedure for estimating the density at zero when the density of the base measure
satisfies g0(θ) ∼ e−1/θ or g0(θ) ∼ θ for θ ↓ 0. In a simulation study, we compare
the performance of existing frequentist methods and the Bayesian procedure.

Chapter 3 considers estimation of a concave distribution function with mixed
interval censored data. This means that for each subject under study, we observe a
finite number of inspection times together with information on whether the event
has occurred before each of these times. The set of inspection times, including
the number of inspections, may be different for each subject. We are interested
in estimating the underlying distribution function of the event time, assuming
it is concave. Schick & Yu (2000) study the maximum likelihood estimator and
show that it si L1-consistent. Wellner & Zhang (2000) consider a panel count
model which includes the mixed case interval censoring model as a special case.
This problem has not been addressed before from a theoretical perspective within
a Bayesian nonparametric setting. We prove that under weak conditions on the
prior the posterior is consistent. The proof relies on Schwartz’s method for proving
posterior consistency. We also provide computational methods for drawing from
the posterior by adapting the algorithms in Calle & Gómez (2001) and Doss &
Huffer (2003) and illustrate the performance of the Bayesian method in both a
simulation study and two real datasets.

In Chapter 4 we study Bayesian nonparametric estimation for the current status
continuous mark model. Here, an event time X is observed under current status
censoring (interval censoring case 1). Furthermore, a continuous mark variable
Y is only observed in case the event occurred before the censoring time. We are
interested in estimating the joint distribution function of (X, Y ). This model has
applications in the analysis of HIV vaccine trials (see more in Hudgens, Maathuis
& Gilbert (2007)). Maathuis & Wellner (2008) show that the nonparametric max-
imum likelihood estimator for the joint distribution function is inconsistent. Al-
ternative nonparametric estimators, that are consistent, have been proposed in
Groeneboom, Jongbloed & Witte (2011) and Groeneboom, Jongbloed & Witte
(2012). However, for both estimators no convergence rates have been derived.
Within the Bayesian approach, we introduce two histogram type priors for which
we derive posterior contraction rates. Using the general theory in Ghosal, Ghosh
& Van der Vaart (2000), we derive that this rate is upper bounded by n−1/9 un-
der some regularity assumptions on the true distribution function. We propose
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1.4. Outline

computational methods for obtaining draws from the posterior under both priors.
For one prior this is a data-augmentation algorithm, whereas for the other one we
use probabilistic programming software that is based on Hamiltonian Monte Carlo
methods.

13





2. Bayesian estimation of a
decreasing density

Suppose X1, . . . , Xn is a random sample from a bounded and decreasing density
f0 on [0,∞). We are interested in estimating such f0, with special interest in
f0(0). This problem is encountered in various statistical applications and has
gained quite some attention in the statistical literature. It is well known that the
maximum likelihood estimator is inconsistent at zero. This has led several authors
to propose alternative estimators which are consistent. As any decreasing density
can be represented as a scale mixture of uniform densities, a Bayesian estimator
is obtained by endowing the mixture distribution with the Dirichlet process prior.
Assuming this prior, we derive contraction rates of the posterior density at zero
by carefully revising arguments presented in Salomond (2014). Several choices
of base measure are numerically evaluated and compared. In a simulation various
frequentist methods and a Bayesian estimator are compared. Finally, the Bayesian
procedure is applied to current durations data described in Keiding et al. (2012).

2.1. Introduction

2.1.1. Setting

Consider an independent and identically distributed sample X1, . . . , Xn from a
bounded decreasing density f0 on [0,∞). The problem of estimating f0 based on
the sample, only using the information that it is decreasing, has attracted quite
some attention in the literature. One of the reasons for this is that the estimation
problem arises naturally in several applications.

To set the stage, we discuss a simple idealized example related to the waiting time
paradox. Suppose buses arrive at a bus stop at random times, with independent
interarrival times sampled from a distribution with distribution function H0. At
some randomly selected time, somebody arrives and has to wait for a certain
amount of time until the next bus arrives. A natural question then is: ‘what is the
distribution of the remaining waiting time until the next bus arrives?’ In order to
derive this distribution, two observations are important.
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2. Bayesian estimation of a decreasing density

The first is, that the time of arrival of the traveller is more likely contained in
a long interarrival interval than a short interarrival interval. Under mild assump-
tions, one can show that actually the length of the whole interarrival interval (so
between arrival of the previous and the next bus) containing the time the traveller
arrives, can be viewed as a draw from the length biased distribution associated to
distribution function H0. This is the distribution with distribution function

H̄0(y) =
1

µH0

∫ y

0

z dH0(z) with µH0 =

∫ ∞
0

z dH0(z). (2.1)

It is assumed that 0 < µH0 <∞.

The second observation is that the remaining waiting time for the traveller is a
uniformly distributed fraction of the interarrival time. A residual waiting time X
is therefore interpreted as

X = UY,

where U is uniformly distributed on (0, 1) and, independently of U , Y according
to distribution function H̄0 defined in (2.1).

These observations imply that on [0,∞), X has survival function

P (X > x) = P (UY > x) =

∫ ∞
y=x

∫ 1

u=x/y

du dH̄0(y) =

∫ ∞
y=x

(
1− x

y

)
dH̄0(y)

=
1

µH0

∫ ∞
y=x

(y − x) dH0(y) =
1

µH0

∫ ∞
y=x

(1−H0(y)) dy,

using integration by parts in the last step. Differentiating with respect to x, yields
the following relation between the sampling density f0 and distribution function
H0:

f0(x) =
1

µH0

(1−H0(x)) , x ≥ 0. (2.2)

In words: the sampling density is proportional to a survival function of the inter-
arrival distribution, which is by definition decreasing. Note that in the classical
waiting time paradox, the underlying arrival process is taken to be a homoge-
neous Poisson process, with exponential interarrival times. In view of (2.2), this
leads to the ‘paradox’ that the distribution of the residual waiting time equals the
distribution of the interarrival time itself.

More examples where exactly this model comes into play can for instance be
found in the introductory section of Kulikov & Lopuhaä (2006), in Vardi (1989),
Watson (1971), Keiding et al. (2012) and references therein. In those examples,
the challenge is to estimate the interarrival distribution function H0 based on a
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2.1. Introduction

sample from density f0. To do this, the ‘inverse relation’ of (2.2), expressing H0

in terms of f0 can be employed:

H0(x) = 1− µH0f0(x) = 1− f0(x)

f0(0)
, x ≥ 0. (2.3)

Here it is used that H0(0) = 0.
From (2.3) it is clear that in order to estimate H0 at some specific point x > 0,

estimating the decreasing sampling density f0 at zero is of special interest. This
value occurs at the right hand side for any choice of x > 0.

2.1.2. Literature overview

The most commonly used estimator for f0 is the maximum likelihood estimator
derived in Grenander (1956). This estimator is defined as the maximizer of the log
likelihood `(f) =

∑n
i=1 log f(Xi) over all decreasing density functions on (0,∞).

The solution f̂n of this maximization problem can be graphically constructed.
Starting from the empirical distribution Fn based on X1, . . . , Xn, the least concave
majorant of Fn can be constructed. This is a concave distribution function. The
left-continuous derivative of this piecewise linear concave function yields the maxi-
mum likelihood (or Grenander) estimator for f0. For more details on the derivation
of this estimate, see Section 2.2 in Groeneboom & Jongbloed (2014). As can im-
mediately be inferred from the characterization of the Grenander estimator,

f̂n(0) := lim
x↓0

f̂n(x) = max
1≤i≤n

Fn(Xi)

Xi

≥
Fn(X(1))

X(1)

=
1

nX(1)

,

where X(i) denotes the i-th order statistic of the sample. Denoting convergence in

distribution by
d→,

nf0(0)X(1)
d→ Y as n→∞

where Y has the standard exponential distribution. It is clear that f̂n(0) does not
converge in probability to f0(0). This inconsistency of f̂n(0) was first studied in
Woodroofe & Sun (1993). There it is also shown that

f̂n(0)

f0(0)

d→ sup
t>0

N(t)

t
d
=

1

U
as n→∞,

where N is a standard Poisson process on [0,∞) and U is a standard uniform
random variable.

It is clear from (2.3) that this inconsistency is undesirable, as estimating the
distribution function of interest, H0, at any point x > 0, requires estimation of
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2. Bayesian estimation of a decreasing density

f0(0). Various approaches have been taken to obtain a consistent estimator of
f0(0). The idea in Kulikov & Lopuhaä (2006) is to estimate f0(0) by f̂n evaluated
at a small positive (but vanishing) number: f̂n(cn−1/3) for some c > 0. There it is
shown that the estimator is n1/3-consistent, assuming f0(0) <∞ and |f ′0(0)|<∞.

A likelihood related approach was taken in Woodroofe & Sun (1993). There a
penalized log likelihood function is introduced, where the estimator is defined as
maximizer of

`α(f) =
n∑
i=1

log f(Xi)− αnf(0).

For fixed α ≥ 0, this estimator can be computed explicitly by first transforming
the data using a data dependent affine transformation and then applying the basic
concave majorant algorithm to the empirical distribution function based these
transformations data. It is shown (again, assuming f0(0) < ∞ and |f ′0(0)|< ∞)
that the optimal rate to choose α is n−2/3. Then, the maximum penalized estimator
f̂Pn,α̂n(0) is n1/3-consistent.

Groeneboom & Jongbloed (2014) proposed to estimate f0(0) by the histogram
estimator b−1

n Fn(bn), where {bn} is a sequence of positive numbers with bn → 0
if n → ∞. The bin widths bn can e.g. be chosen by estimating the asymptoti-
cally Mean Squared Error-optimal choice. Also this estimator is n1/3- consistent
assuming f0(0) <∞ and | f ′0(0) |<∞.

2.1.3. Approach

In this paper we take a Bayesian nonparametric approach to the problem. An
advantage of the Bayesian setup is the ease of constructing credible regions. To
construct frequentist analogues of these, confidence regions, can be quite cumber-
some, relying on either bootstrap simulations or asymptotic arguments.

To formulate a Bayesian approach for estimating a decreasing density, note that
any decreasing density on [0,∞) can be represented as a scale mixture of uniform
densities (see e.g. Williamson (1956)):

fG(x) =

∫ ∞
0

ψx(θ)dG(θ), where ψx(θ) = θ−11[0,θ](x), (2.4)

where G is a distribution function concentrated on the positive half line. Therefore,
by endowing the mixing measure with a prior distribution we obtain the posterior
distribution of the decreasing density, and in particular of f0(0). A convenient and
well studied prior for distribution functions on the real line is the Dirichlet pro-
cess (DP) prior (see for instance Ferguson (1973) and Van der Vaart and Ghosal
(2017)). This prior contains two parameters: the concentration parameter, usually
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denoted by α, and the base probability distribution, which we will denote by G0.
The approach where a prior is obtained by putting a Dirichlet process prior on G in
(2.4) was previously considered in Salomond (2014). In that paper, the asymptotic
properties of the posterior in a frequentist setup are studied. More specifically, con-
traction rates are derived to quantify the performance of the Bayesian procedure.
This is a rate for which we can shrink balls around the true parameter value, while
maintaining most of the posterior mass. More formally, if L is a semimetric on the
space of density functions, a contraction rate εn is a sequence of positive numbers
εn ↓ 0 for which the posterior mass of the balls {f : L(f, f0) ≤ εn} converges
in probability to 1 as n → ∞, when assuming X1, X2, . . . are independent and
identically distributed with density f0. A general discussion on contraction rates
is given in Chapter 8 of Van der Vaart and Ghosal (2017).

2.1.4. Contributions

In Theorem 4 in (Salomond (2014)) the rate (log n/n)2/9 is derived for pointwise
loss at any x > 0. For x = 0, only posterior consistency is derived, essentially
under the assumption that the base measure admits a density g0 for which there
exists 1 < a1 ≤ a2 such that e−a1/θ . g0(θ) . e−a2/θ when θ is sufficiently small
(theorem 4). These are interesting results, though one would hope to prove the
rate n−1/3 for all x ≥ 0. Under specific conditions on the underlying density, this
rate is attained by estimators to be discussed in section 2.4. We explain why the
techniques in the proof of (Salomond (2014)) cannot be used to obtain rates at
zero and present an alternative proof (using different arguments). This proof not
only reveals consistency, but also yields a contraction rate equal to n−2/9 (up to log
factors) that coincides with the case x > 0. We argue that with the present method
of proof a better rate is not easily obtained. Many results from Salomond (2014)
are important ingredients to the proof we present. The first key contribution of
this paper is to derive the claimed contraction rate, combining some of Salomond’s
results with new arguments.

We also address computational aspects of the problem and show how draws from
the posterior can be obtained using the algorithm presented in Neal (2000). Using
this algorithm we conduct four studies.

• For a fixed dataset, we compare the performance of the posterior mean under
various choices of base measure for the Dirichlet process.

• We investigate empirically the rate of convergence of the Bayesian procedure
for estimating the density at zero when g0(θ) ∼ e−1/θ or g0(θ) ∼ θ for θ ↓ 0.
The simulation results suggest that for both choices of base measure the
rate is n−1/3. If g0(θ) ∼ e−1/θ this implies that the derived rate n−2/9 (up
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2. Bayesian estimation of a decreasing density

to log factors) is indeed suboptimal, as anticipated by (Salomond (2014)).
If g0(θ) ∼ θ the rate n−1/3 is interesting, as it contradicts the belief that
“due to the similarity to the maximum likelihood estimator, the posterior
distribution is in this case not consistent“ (page 1386 in (Salomond (2014))).

• We compare the behaviour of various proposed frequentist methods and the
Bayesian method for estimating f0(0). Here we vary the sample sizes and
consider both the Exponential and half-Normal distribution as true data
generating distributions.

• Pointwise credible sets can be approximated in a direct way from MCMC-
output, which is much more straightforward than the construction of fre-
quentist confidence intervals based on large-sample limiting results.

2.1.5. Outline

In section 2.2 we derive pointwise contraction rates for the density evaluated at x,
for any x ≥ 0. In section 2.3 a Markov Chain Monte Carlo method for obtaining
draws from the posterior is given, based on the results of Neal (2000). This is
followed by a review of some existing methods to consistently estimate f0 at zero.
Section 2.5 contains numerical illustrations. The appendix contains some technical
results.

2.1.6. Frequently used notation

For two sequences {an} and {bn} of positive real numbers, the notation an . bn
(or bn & an) means that there exists a constant C > 0 that is independent of n and
such that an ≤ Cbn. We write an � bn if both an . bn and an & bn hold. We denote
by F and F0 the cumulative distribution functions corresponding to the probability
densities f and f0 respectively. We denote the L1-distance between two density
functions f and g by L1(f, g), i.e. L1(f, g) =

∫
|f(x) − g(x)| dx. The Kullback-

Leibler divergence ‘from f to f0’ is denoted by KL(f, f0) =
∫
f(x) log f(x)

f0(x)
dx.

2.2. Point-wise posterior contraction rates

Let F denote the collection of all bounded decreasing densities on [0,∞) and
recall that X1, X2, . . . are i.i.d. with density f ∈ F . Denote the distribution of
Xn = (X1, . . . , Xn) under f by Pf and expectation under Pf by Ef . In this section
we are interested in the asymptotic behaviour of the posterior distribution of f(x)
in a frequentist setup. This entails that we study the behaviour of the posterior
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distribution on F while assuming a true underlying density f0. Set P0 = Pf0 and
E0 = Ef0 . Denote the prior measure on F by Π and the posterior measure by
Π(· | Xn).

Given a loss function L on F , we say that the posterior is consistent with respect
to L if for any ε > 0, E0Π(L(f, f0) > ε | Xn) → 0 when n → ∞. If {εn} is a
sequence that tends to zero, then we say that the posterior contracts at rate εn
(with respect to L) if E0Π(L(f, f0) > εn | Xn) → 0 when n → ∞. The rate {εn}
is called a contraction rate.

Salomond (2014) derived contraction rates based on the Dirichlet process prior
for the L1−, Hellinger- and point-wise loss function.

In the following theorem we derive sufficient conditions for posterior contraction
in terms of the behaviour of the density of the base measure near zero. In that,
we closely follow the line of proof in Salomond (2014). Although the argument in
Salomond (2014) for proving posterior contraction rate εn for f0(x) with x > 0 is
correct, we prove the theorem below for x ≥ 0 rather than only for x = 0. The
reason for this is twofold: (i) many steps in the proof for x > 0 are also used in the
proof for x = 0; (ii) we obtain one theorem covering pointwise contraction rates
for all x ≥ 0. For the base measure we have the following assumption.

Assumption 2.2.1. The base distribution function of prior, G0, has a strictly
positive Lebesgue density g0 on (0,∞). There exists positive numbers θ0, a, k, a
such that

ke−a/θ ≤ g0(θ) ≤ θa for all θ ∈ (0, θ0). (2.5)

For the data generating density we assume

Assumption 2.2.2. The data generating density f0 ∈ F and

• there exists an x0 > 0 such that supx∈[0,x0]|f
′
0(x)|<∞;

• the exist positive constants β and τ such that f0(x) ≤ e−βx
τ

for x sufficiently
large.

Theorem 2 in (Salomond (2014)) asserts the existence of a positive constant C
such that

Π

(
f ∈ F :L1(f, f0) ≥ C

(
log n

n

)1/3

(log n)1/τ | Xn

)
→ 0,

P0 − almost surely(n → ∞). This result will be used in the proof for deriving an
upper bound on the pointwise contraction rate of the posterior at zero.
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2. Bayesian estimation of a decreasing density

Define a sequence of subsets of F by

Fn = {f ∈ F : f(0)− f(x) ≤Mnx, for all x ∈ [0, ξn]}, (2.6)

where ξn � n−2/9 and Mn � (log n)β.

Theorem 2.2.3. Let X1, X2, . . . be independent random variables, each with den-
sity f0 satisfying assumption 2.2.2. Let Πn be the prior distribution on Fn that
is obtained via (2.4), where G ∼ DP (G0, α) and G0 satisfies assumption 2.2.1.
Assume β > 1/3 (in the behaviour of the sequence {Mn}). For any x ∈ [0,∞)
with f

′
0(x) < 0 there exists a constant C > 0 such that,

E0Π
(
f ∈ Fn: |f(x)− f0(x)|> Cn−2/9(log n)β

∣∣∣Xn
)
→ 0.

for n→∞.

In the proof we will use the following lemma (see appendix B and lemma 8 of
(Salomond (2014))).

Lemma 2.2.4. Let εn = (log n/n)1/3 and f0 satisfy assumption 2.2.2. Define

Dn =

∫ n∏
i=1

f(Xi)

f0(Xi)
dΠ(f). (2.7)

There exist strictly positive constants c1 and c2 such that

P0

(
Dn < c1e

−c2nε2n
)

= o(1) as n→∞. (2.8)

We now give the proof of Theorem 2.2.3.

Proof of Theorem 2.2.3. The posterior measure of a measurable set E ⊂ F is given
by

Π(E|Xn) = D−1
n

∫
E

n∏
i=1

f(Xi)

f0(Xi)
dΠ(f),

where Dn is as defined in (2.7). By lemma 2.2.4 there exist positive constants c1

and c2 such that P0(Dn) = o(1), where Dn = {Dn < c1e
−c2nε2n}. Let C > 0. Define

ηn = n−2/9(log n)β, Bn(x) = {f ∈ Fn: |f(x) − f0(x)|> Cηn} and consider (test-)
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2.2. Point-wise posterior contraction rates

functions Φn : R→ [0, 1]. We bound

E0Π(Bn(x)|Xn)

= E0Π(Bn(x)|Xn)1Dn + E0Π(Bn(x)|Xn)1DcnΦn(x)

+ E0Π(Bn(x)|Xn)1Dcn(1− Φn(x))

≤ E0 [1Dn ] + E0(Φn(x)) + E0

[
D−1
n

∫
Bn(x)

n∏
i=1

f(Xi)

f0(Xi)
(1− Φn(x)) dΠ(f)1Dcn

]

≤ P0 (Dn) + E0(Φn(x)) + c−1
1 ec2nε

2
nE0

∫
Bn(x)

n∏
i=1

f(Xi)

f0(Xi)
(1− Φn(x)) dΠ(f)

= o(1) + E0(Φn(x)) + c−1
1 ec2nε

2
n

∫
Bn(x)

Ef (1− Φn(x)) dΠ(f). (2.9)

To construct the specific test functions Φn(x), we distinguish between x > 0 and
x = 0. For case x > 0, it follows from the proofs of theorems 3 and 5 in Salomond
(2014) that there exists a sequence test functions such that

E0 Φn(x) = o(1)

sup
f∈Bn(x)

Ef (1− Φn(x)) ≤ e−C
′n(Cηn)3

= e−C
′C3nε2n .

for some constant C ′ > 0. Substituting these bounds into (2.9) and choosing
C > (c2/C

′)1/3 shows that E0Π(Bn(x)|Xn)→ 0 as n→∞. This finishes the proof
for x > 0.

We now consider the case x = 0. Define subsets

B+
n (0) = {f ∈ Fn: f(0)− f0(0) > Cηn}

B−n (0) = {f ∈ Fn: f(0)− f0(0) < −Cηn}.

As Bn(0) = B+
n (0) ∪ B−n (0), Π(Bn(0)|Xn) ≤ Π(B+

n (0)|Xn) + Π(B−n (0)|Xn). For
bounding E0Π(B−n (0)|Xn), use the same test function defined in Salomond (2014).
Then it follows from the inequalities in (2.9), applied with B−n (0) instead of Bn(x),
that E0Π(B−n (0)|Xn) = o(1) as n→∞.

For bounding E0Π(B+
n (0)|Xn), we also use the inequalities in (2.9), applied with

B+
n (0) instead of Bn(x). However, we also intersect with the event

An = {f :L1(f, f0) ≤ Cεn(log n)1/τ}

to obtain

E0Π(B+
n (0)|Xn) ≤ o(1) + E0(Φn(0)) + c−1

1 ec2nε
2
n

∫
B+
n (0)∩An

Ef (1− Φn(0)) dΠ(f).
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2. Bayesian estimation of a decreasing density

This holds true since theorem 2 in (Salomond (2014)) gives Π(Acn|Xn) → 0, P0-
almost surely.

Now define

Φ+
n (0) = 1

{
n−1

n∑
i=1

1[0,ξn](Xi)−
∫ ξn

0

f0(t) dt > c̃n

}
,

where
ξn � n−2/9 and c̃n = Cξnηn/3 � n−4/9(log n)β. (2.10)

By Bernstein’s inequality (Van der Vaart (1998), lemma 19.32),

E0 Φ+
n (0) ≤ 2 exp

(
−1

4

nc̃2
n

Mξn + c̃n

)
= o(1).

Here we bound the second moment of 1[0,ξn](Xi) under P0 by f0(0)ξn and use that
f0(0) ≤M .

It remains to bound

I: = ec2nε
2
n

∫
B+
n2(0)∩An

Ef (1− Φ+
n (0)) dΠ(f).

Since both f and f0 are nonincreasing we have∫ ξn

0

(f(t)− f0(t)) dt ≥ (f(ξn)− f0(0))ξn.

Hence ∫ ξn

0

f0(t) dt ≤
∫ ξn

0

f(t) dt+ (f0(0)− f(ξn))ξn

≤
∫ ξn

0

f(t) dt+ ξn(f0(0)− f(0) +Mnξn),

the final inequality being a consequence of f ∈ Fn. Since for f ∈ B+
n (0) we have

f0(0)− f(0) ≤ −Cηn we get∫ ξn

0

f0(t) ≤
∫ ξn

0

f(t) dt+ ξn(Mnξn − Cηn).

Using the derived bound we see that

I2 ≤ ec2nε
2
n

∫
B+
n (0)∩An

Pf

(
√
n

(
1

n

n∑
i=1

1[0,ξn](Xi)−
∫ ξn

0

f(t) dt

)
≤ −vn

)
dΠ(f),
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2.2. Point-wise posterior contraction rates

where

vn = −
√
n (c̃n + ξn(Mnξn − Cηn)) . (2.11)

Note that Mnξn � ηn, by choice of Mn, ξn. Taking C big enough such that Mnξn ≤
Cηn/3 we have vn ≥ C

√
nηnξn/3 is positive (recall that c̃n is defined in (2.10)).

Using that f is nonincreasing and that f ∈ An we get

Ef1[0,ξn](X1) =

∫ ξn

0

f(t) dt ≤ ‖f0 − f‖1+ξnf0(0)

≤ Cεn(log n)1/τ +Mξn ≤ 2Mξn.

Bernstein’s inequality gives

I ≤ 2ec2nε
2
n exp

(
−1

4

v2
n

2Mξn + vn/
√
n

)
.

If we take ηn = n−2/9(log n)β , then

v2
n

2Mξn + vn/
√
n
& n1/3(log n)2β.

This tends to infinity faster than nε2
n = n1/3(log n)2/3 whenever 2β > 2/3, i.e.

when β > 1/3.

Remark 2.2.5. The derived rate is not the optimal but cannot be easily improved
upon with the present type of proof. At first sight, one may wonder whether the
tests Φ+

n (0) can be improved upon by choosing different sequences {c̃n} and Mn, ξn.
Unfortunately, the choice of ξn and Mn cannot be much improved upon. To see
this, for bounding I with Bernstein’s inequality we need that vn in (2.11) is positive.
Assume ξn = n−β1 and ηn = n−β2 (up to log n factors), we must have β1 ≥ β2.
Hence this restriction leads to vn � −

√
n(c̃n + ξnηn).

Define bn = max(εn(log n)1/τ , ξn). Then Ef1[0,ξn](X1) . bn, we can bound I by

2 exp

(
c2n

1/3(log n)2/3 − 1

4

v2
n

bn + vn/
√
n

)
.

We have two cases according to sequence bn.

1. bn = ξn, implies β1 ≤ 1/3. We have v2
n

bn+vn/
√
n
� nξnη

2
n = n1−β1−2β2 should

tend to infinity faster than n1/3, hence β1 + 2β2 ≤ 2/3. By combine all
restrictions, we derive that β2 necessarily has to satisfy 1/6 ≤ β2 ≤ 2/9.
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2. Bayesian estimation of a decreasing density

2. bn = εn(log n)1/τ , implies β1 > 1/3. Then v2
n

bn+vn/
√
n
� n4/3(ξnηn)2 = n4/3−2β1−2β2 ≥

n1/3 gives β1 + β2 ≤ 1/2. Hence β2 < 1/6.

Therefore, ηn can not go to zero faster than n−2/9(log n)β.

Remark 2.2.6. As point-wise consistency is proved in Theorem 2.2.3, Theorem
4 in Salomond (2014) implies that the posterior median is a consistent estimator
at any fixed point. Moreover, the posterior median has the same converge rate
n2/9(log n)β. The consistency of the posterior mean is not clear now. However, the
posterior mean of f is a decreasing density function, which provides a convenient
way for estimation. We use either mean or median estimator according to different
purpose in the simulation study.

2.2.1. A difficulty in the proof of theorem 4 in Salomond

The construction of the tests {Φ+
n (0)} in the proof of theorem 2.2.3 is new. In

Salomond (2014) a different argument is used, which we now shortly review (it
is given in section 3.3 of that paper). First we give a lemma for the following
discussion.

Lemma 2.2.7. Let Π be the prior distribution on F that is obtained via (2.4),
where G ∼ DP (G0, α) and G0 satisfies there exists positive numbers θ0, a, k such
that

g0(θ) ≤ ke−a/θ for all θ ∈ (0, θ0).

Then for any x (possibly sequence) in (0, θ0),

Π ({f : f(0)− f(x) ≥ A}) ≤ k

aA
xe−a/x for every A > 0.

Proof. By the mixture representation of decreasing function f , (2.4), and Markov’s
inequality we have

Π ({f : f(0)− f(x) ≥ A}) = Π

(∫ x

0

θ−1 dG(θ) ≥ A

)
≤ A−1

∫ x

0

θ−1g0(θ) dθ.

By assumption 2.2.1 this is bounded by

kA−1

∫ x

0

θ−1e−a/θ dθ = kA−1

∫ ∞
1/x

u−1e−au du

≤ kA−1x

∫ ∞
1/x

e−au du = k(aA)−1xe−a/x.
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2.2. Point-wise posterior contraction rates

Let {hn} be a sequence of positive numbers. Trivially, we have

f(0)− f0(0) = f(0)− f(hn) + f(hn)− f0(0).

Since both f and f0 are nonincreasing, f(hn) ≤ f(x) and f0(0) ≥ f0(x), for all
x ∈ [0, hn]. Hence,

f(0)− f0(0) ≤ f(0)− f(hn) + f(x)− f0(x), for all x ∈ [0, hn].

This implies
f(0)− f0(0) ≤ f(0)− f(hn) + h−1

n L1(f, f0).

Using this bound and define a new sequence η̃n, we get

E0Π (f(0)− f0(0) > Cη̃n|Xn) ≤ E0Π (f(0)− f(hn) > Cη̃n/2|Xn)

+ E0Π (L1(f, f0) > Cη̃nhn/2|Xn) .
(2.12)

Choose η̃n and hn such that η̃nhn = 2εn. Theorem 1 in Salomond (2014) implies
that the second term on the right-hand-side tends to zero. We aim to choose η̃n
such that the first term on the right-hand-side in (2.12) also tends to zero. This
term can be dealt with using lemma 2.2.4:

E0Π (f(0)− f(hn) > Cη̃n/2|Xn) ≤ P0(Dn) + c−1
1 ec2nε

2
nΠ (f(0)− f(hn) > Cη̃n/2)

= o(1) + c−1
1 ec2nε

2
nΠ (f(0)− f(hn) > Cη̃n/2) .

Using lemma 2.2.7, the second term on the right-hand-side can be bounded by

2k

ac1C

hn
η̃n
ec2nε

2
n−ah

−1
n � h2

n

εn
ec2nε

2
n−ah

−1
n

Since nε2
n = n1/3(log n)2/3, the right-hand-side in the preceding display tends to

zero (n→∞) upon choosing h−1
n � n1/3(log n)β and β > 2/3. This yields

η̃n � εnh
−1
n � (log n)β+1/3,

which unfortunately does not tend to zero. Hence, we do not see how the presented
argument can yield point-wise consistency of the posterior at zero.

2.2.2. Attempt to fix the proof by adjusting the condition on
the base measure

A natural attempt to fix the argument consists of changing the condition on the
base measure. If the assumption on g0 would be replaced with

ke−a/θ
γ ≤ g0(θ) ≤ ke−a/θ

γ

for all θ ∈ (0, θ0), (2.13)
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2. Bayesian estimation of a decreasing density

then lemma 2.2.7 would give the bound

Π ({f : f(0)− f(x) ≥ A}) ≤ k

aA
xe−a/x

γ

.

Now we can repeat the argument and check whether it is possible to choose γ and
{hn} such that both η̃n → 0 and

h2
n

εn
ecnε

2
n−ah

−γ
n = o(1) (2.14)

hold true simultaneously. The requirement η̃n → 0 leads to taking hn = n−1/3(log n)β̃,
with β̃ > 1/3. With this choice for hn, equation (2.14) can only be satisfied if γ > 1.
Now if we assume (2.13) with γ > 1, then we need to check whether lemma 2.2.4
is still valid. This is a delicate issue as we need to trace back in which steps of its
proof the assumption on the base measure is used. In appendix B of (Salomond
(2014)) it is shown that the result in lemma 2.2.4 follows upon proving that

Π(Sn) ≥ exp
(
−c1nε

2
n

)
, (2.15)

with εn = (log n/n)1/3 (as in the statement of the lemma). Here, the set Sn is
defined as

Sn =

{
f : KL(f0,n, fn) ≤ ε2n,

∫
f0,n(x)

(
log

f(x)

f0(x)

)2

dx ≤ ε2n,

∫ θn

0

f(x) dx ≥ 1− ε2n

}
,

where

θn = F−1
0 (1− εn/(2n)), fn(·) =

f(·)I[0,θn](·)
F (θn)

, f0,n(·) =
f0(·)I[0,θn](·)
F0(θn)

.

In lemma 8 of (Salomond (2014)) it is proved that Π(Sn) & exp (−C1ε
−1
n log εn) for

some constant C1 > 0, which implies the specific rate εn. The proof of this lemma
is rather complicated, the key being to establish the existence of a set Nn ⊂ Sn
for which Π(Nn) & exp (−C1ε

−1
n log εn). Next, upon tracking down at which place

the prior mass condition is used for that result (see appendix A.1), we find that it
needs to be such that

mn∑
i=1

logG0(Ui) & ε−1
n log εn (2.16)

where mn � ε−1
n and Ui = (iεn, (i+ 1)εn] (see in particular inequality (A.1) in the

appendix). Now assume (2.13), then

G0(Ui) ≥ k

∫
Ui

e−a/θ
γ

dθ ≥ kεn exp
(
−a(iεn)−γ

)
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2.3. Gibbs Sampling in the DPM model

Hence

mn∑
i=1

logG0(Ui) & log k + ε−1
n log εn − a

n∑
i=1

(iεn)−γ

& log k + ε−1
n log εn − ε−γn ,

if γ > 1 (which we need to assume for (2.14) to hold). From this inequality we
see that (2.16) can only be satisfied if γ ∈ (0, 1]. We conclude that with the line
of proof in (Salomond (2014)) the outlined problem in the proof of consistency
near zero cannot be fixed by adjusting the prior to (2.13): one inequality requires
γ > 1, while another inequality requires γ ∈ (0, 1] and these inequalities need to
hold true jointly.

2.3. Gibbs Sampling in the DPM model

Since a decreasing density can be represented as a scale mixture of uniform densities
(see (2.4)) and the mixing measure is chosen according to a Dirichlet process, the
model is a special instance of a so-called Dirichlet Process Mixture (DPM) Model.
Algorithms for drawing from the posterior in such models have been studied in
many papers over the past two decades, a key reference being Neal (2000). Here
we shortly discuss the algorithm coined “algorithm 2” in that paper. We assume
G0 has a density g0 with respect to Lebesgue measure.

Let #(x) denote the number of distinct values in the vector x and let x−i denote
the vector obtained by removing the i-th element of x. Denote by ∨(x) and ∧(x)
the maximum and minimum of all elements in the vector x respectively.

The starting point for the algorithm is a construction to sample from the DPM
model:

Z := (Z1, . . . , Zn) ∼ CRP(α)

Θ1, . . . ,Θ#(Z)
iid∼ G0

X1, . . . , Xn | Θ1, . . . ,Θ#(Z), Z1, . . . , Zn
ind∼ Unif(0,ΘZi).

(2.17)

Here CRP(α) denotes the “Chinese Restaurant Process” prior, which is a distri-
bution on the set of partitions of the integers {1, 2, . . . , n}. This distribution is
most easily described in a recursive way. Initialize by setting Z1 = 1. Next, given
Z1, . . . , Zi, let Li = #(Z1, . . . , Zi) and set

Zi+1 =

{
Li + 1 with probability α/(i+ α)

k with probabilityNk/(i+ α).
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2. Bayesian estimation of a decreasing density

where k varies over {1, . . . , Li} and Nk =
∑i

j=1 1{Zj = k} is the number of current
Zj’s equal to k. In principle this process can be continued indefinitely, but for our
purposes it ends after n steps. One can interpret the vector Z as a partitioning of
the index set {1, . . . , n} (and hence the data X = (X1, . . . , Xn)) into #(Z) disjoint
sets (sometimes called “clusters”). For ease of notation, write Θ = (Θ1, . . . ,Θ#(Z)).

An algorithm for drawing from the posterior of (Z,Θ) is obtained by successive
substitution sampling (also known as Gibbs sampling), where the following two
steps are iterated:

1. sample Θ | (X,Z);

2. sample Z | (X,Θ).

The first step entails sampling from the posterior within each cluster. For the
k−th component of Θ, Θk, this means sampling from

fΘk|X,Z(θk|x, z) ∝ fΘk(θk)
∏
j:zj=k

fXj |Θk(xj|θk) = g0(θk)
∏
j:zj=k

ψ(xj|θk). (2.18)

Sampling Z | (X,Θ) is done by cycling over all Zi (1 ≤ i ≤ n) iteratively. For
i ∈ {1, . . . , n} and k ∈ {1, . . . , 1 + ∨(Z)} we have

fZi|Z−i,X,Θ(k | z−i, x, θ) ∝ fXi|Zi,Z−i,Θ(xi | k, z−i, θ)fZi|Z−i,Θ(k | z−i, θ)
= fXi|ΘZi (xi | θk)fZi|Z−i(k | z−i) (2.19)

The right-hand-side of this display equals

Nk,−i

n− 1 + α
ψ(xi | θk) if 1 ≤ k ≤ ∨(Z),

α

n− 1 + α

∫
ψ(xi | θ)dG0(θ) if k = 1 + ∨(Z),

(2.20)

where Nk,−i =
∑

j∈{1,...,n}\{i} 1{Zj = k}. The expression for k = 1 + ∨(Z) follows

since in that case sampling from Xi | Θk boils down to sampling from the marginal
distribution of Xi. Summarising, we have the algorithm 1.

It may happen that over subsequent iterations of the Gibbs sampler certain
clusters disappear. Then #(Z) and ∨(Z) will not be the same. If this happens,
the Θj corresponding to the disappearing cluster is understood to be removed
from the vector Θ (because the cluster becomes “empty”, the prior and posterior
distribution of such a Θj are equal). The precise labels do not have a specific
meaning and are only used to specify the partitioning into clusters.

In this step we need to evaluate
∫
ψ(xi|θ) dG0(θ). One option is to numerically

evaluate this quantity for i = 1, . . . , n (it only needs to be evaluated once). Alter-
natively, the “no-gaps” algorithm of MacEachern and Müller (1998) or “algorithm
8” of Neal (2000) can be used and refer for further details to these papers.
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2.4. Review of existing methods for estimating the decreasing density at zero

Algorithm 1 Gibbs Sampling in DPM model

1: Initialise Z,Θ.
2: for each iteration do
3: for i = 1, 2, . . . , n do
4: Update Zi according to (2.19),
5: That is, set Zi equal to k with probabilities proportional to those given

in (2.20).
6: end for
7: for k = 1, . . . ,#(Z) do
8: Update Θk by sampling from the density in (2.18).
9: end for
10: end for

2.4. Review of existing methods for estimating the
decreasing density at zero

In this section we review some consistent estimators for a decreasing density f0

at zero that have appeared in the literature. These will be compared with the
Bayesian method of this paper using a simulation study in section 2.5.

2.4.1. Maximum penalized likelihood

In Woodroofe & Sun (1993), the maximum penalized likelihood estimator is defined
as the maximizer of the following penalized log likelihood function:

`α(f) =
n∑
i=1

log f(Xi)− αnf(0).

Here α ≥ 0 is a (small) penalty parameter. This estimator has the same form as
the maximum likelihood estimator (MLE), being piece-wise constant with at most
n discontinuities. For fixed α ≥ 0, for ease of notation here let x1 < · · · < xn <∞
denote the ordered observed values and

w0 = 0 and wk = α + γxk, k = 1, . . . , n

where γ is the unique solution of the equation

γ = min
1≤s≤n

{
1− αs/n

α + γxs

}
.
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2. Bayesian estimation of a decreasing density

Denote by fP (α, ·) the penalized estimator with penalty parameter α. Taking
α < xn, fP (α, ·) is a step function with

fP (α, x) = fP (α, xk), ∀xk−1 < x ≤ xk, ∀k = 1, . . . , n.

At zero it is defined by right continuity and for x 6∈ [0, xn] as fP (α, x) = 0. Here

fP (α, xk) = min
0≤i<k

max
k≤j≤n

(j − i)/n
wj − wi

.

Geometrically, for k = 1, 2, . . . , n, fP (α, xk) is the left derivative of the least
concave majorant of the empirical distribution function of the transformed data
wi, i = 1, . . . , n evaluated at wk. Note that an alternative expression for fP (α, 0)
is (1− γ)/α which can be easily calculated.

Theorem 4 in Woodroofe & Sun (1993) states that

n1/3{fP (αn, 0)− f0(0)} ⇒d sup
t>0

W (t)− (c+ βt2)

t

where αn = cn−2/3, β = −f0(0)f ′0(0)/2 and W (t) denotes the standard Brownian
motion. In Woodroofe & Sun (1993), the theoretically optimal constant c is deter-
mined by minimizing the expected absolute value of the limiting distribution fP ,
resulting in c = 0.649 · β−1/3.

2.4.2. Simple and ‘adaptive’ estimators

In Kulikov & Lopuhaä (2006), f0(0) is estimated by the maximum likelihood es-
timator f̂n evaluated at a small positive (but vanishing) number: f̂n(cn−1/3) for
some c > 0. Of course, the estimator depends on the choice of the parameter c.

In Kulikov & Lopuhaä (2006), Theorem 3.1, it is shown that

A21

{
n1/3(f̂n(cB21n

−1/3)− f0(cB21n
−1/3)) + cB21f

′
0(0)

}
converges in distribution to DR[W (t) − t2](c) when n → ∞. Here DR[Z(t)](c) is
the right derivative of the least concave majorant on [0,∞) of the process Z(t),
evaluated at c. Furthermore, B21 = 41/3f0(0)1/3|f ′0(0)|−2/3 and A21 =

√
B21/f0(0).

Based on this asymptotic result, two estimators are proposed, denoted as fS

and fA (‘S’ for simple, ‘A’ for adaptive). The first is a simple one with cB21 = 1,
then fS(0) = f̂n(n−1/3). The second is fA(0) = f̂n(c∗B21n

−1/3), where c∗ ≈ 0.345
is taken such that the the second moment of the limiting distribution is minimized.
Of course, to really turn this into an estimator, B21 has to be estimated. Details
on this are presented in section 2.5.5.
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2.5. Numerical illustrations

2.4.3. Histogram estimator

In chapter 2 of Groeneboom & Jongbloed (2014) a natural and simple histogram-
type estimator for f0(0) is proposed. Let {bn} be a vanishing sequence of pos-
itive numbers and consider the estimator fH(0) = b−1

n Fn(bn), where Fn is the
empirical distribution of X1, . . . , Xn. It can be shown that EfH(0) − f0(0) be-
haves like bnf

′
0(0)/2 and the variance of fH(0) behaves like f0(0)/(bn) as n →

∞. Then the asymptotic mean square error (MSE) optimal choice for bn is
(2f0(0)/f ′0(0)2)1/3n−1/3 = 2−1/3B21n

−1/3, where B21 is as defined in the Section
2.4.2.

2.5. Numerical illustrations

In this section we use the algorithm described in Section 2.3 to sample from the pos-
terior distribution. We consider two data generating settings for the true density
function: the standard Exponential distribution and the half-Normal distribution.
Both densities are bounded, decreasing and satisfy assumption 2.2.2. Suppose in
the j-th iteration of the Gibbs sampler (possibly after discarding “burn in” sam-

ples) we have obtained
(

Θ
(j)
Z1
, . . . ,Θ

(j)
Zn

)
. At iteration j, if the stationary region of

the mcmc sampler has been reached, a sample from the posterior distribution is
given by

f̂ (j)(x) :=
1

n

n∑
i=1

ψx(Θ
(j)
Zi

). (2.21)

Two natural derived Bayesian point estimators are the posterior mean and the
median. Assuming J iterations, a Rao-Blackwellized estimator for the posterior
mean is obtained by computing J−1

∑J
j=1 f̂

(j)(x) and an estimator for the posterior

median at x is the median value in {f̂ (j)(x), j = 1, . . . , J}. We implemented our
procedures in Julia, see Bezanson et al.(2017). The computer code and datasets for
replication of our examples forms part of the BayesianDecreasingDensity repository
(https://github.com/fmeulen/BayesianDecreasingDensity). For plotting we
used functionalities of the ggplot2 package (see Wickham (2016)) in R. The com-
putations were performed on a MacBook Pro, with a 2.7GHz Intel Core i5 with 8
GB RAM.

2.5.1. Base measures

To assess the influence of the base measure in the Dirichlet-process prior, we con-
sider the following choices for the base measure:
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2. Bayesian estimation of a decreasing density

(A) The density of the base measure vanishes exponentially fast near zero, as the
lower bound of Assumption 2.2.1 requires:

g0(θ) ∝ e−θ−θ
−1

1[0,∞)(θ). (2.22)

(B) The density of the Gamma(2, 1) distribution

g0(θ) = θe−θ1[0,∞)(θ).

(C) The density of the Pareto(ᾱ, τ) distribution. That is

g0(θ) = ᾱτ ᾱθ−ᾱ−11[τ,∞)(θ).

Here, we consider various choices for the threshold parameter τ .

(D) The density is obtained as a mixture of the Pareto(ᾱ, τ) density, where the
mixing measure on τ has the Gamma(λ, β) distribution. This implies that
g0(θ) � θλ−1 for θ ↓ 0. The parameter ᾱ is fixed here, but could be equipped
with with a “hyper” prior without adding much additional computational
complexity.

Note that cases (A), (B), (D)(when λ > 1) satisfy Assumption 2.2.1 and case (C)
does not. In cases (A) and (B) the update on the “cluster centra” θ does not boil
down to sampling from a “standard” distribution. In this case either rejection
sampling or a Metropolis-Hastings step can be used, the details of which are given
in section A.2 in the appendix. In case (C) we have partial conjugacy, which in
this case means that the θ’s can be sampled from a Pareto distribution. Finally,
case (D) can be dealt with by Gibbs sampling. More precisely, conditional on the
current value of τ , the θ’s can be sampled from the Pareto distribution just as in
case (C). Next, τ is sampled conditional on (θ1, θ#z) from the density

p(τ | θ1, θ#z) ∝ p(θ1, θ#z | τ)p(τ) ∝ τλ+(#z)ᾱ−1e−βτ1{τ ≤ min(θ1, . . . , θ#z)}

(where we use “Bayesian notation”, to simplify the expressions). Hence, this boils
down to sampling from a truncated Gamma distribution.

2.5.2. Estimates of the density for two simulated datasets

We obtained datasets of size 100 by sampling independently from both the standard
Exponential distribution and the halfNormal distribution. In the prior specifica-
tion, the concentration parameter α was fixed to 1 in all simulations, while the
base measure was varied over cases (A), (B), (C) with ᾱ = 1, τ ∈ {0.005, 0.05, 0.5}
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Figure 2.1.: In each panel the same dataset was used, which is a sample of size
100 from the standard Exponential distribution. The black curve is
the posterior mean and the shaded grey area depicts pointwise 95%
credible intervals. The dashed red curve is the true density. The title
in each of the figures refers to the base measure. In the mixture Pareto
case, the mixing measure on τ was taken to be the Gamma(2, 1) dis-
tribution. In the lower left figure, the solid blue step-function is the
maximum likelihood estimate. The inconsistency of this estimator
at zero is clearly visible. Moreover, the figure suggests also inconsis-
tency of the posterior mean when the base measure is taken to be the
Pareto(1, 0.005) distribution.
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Figure 2.2.: Same experiment as in Figure 2.1, this time with a sample of size 100
from the halfNormal distribution.

and (D) with ᾱ = 1, λ = 2 and β = 1. The algorithm was run for 50.000 iterations
and the first half of the iterates were discarded as burn in. The computing time
was approximately 2 minutes. In case Metropolis-Hastings steps were used for
updating θ’s, the acceptance rates of the random-walk updates was approximately
0.35, both in case (A) and (B). The results are displayed in figures 2.1 and 2.2.
From the top figures we see that the posterior mean and pointwise credible bands
visually look similar for the choices of base-measure under (A) and (B). If the base
measure is chosen according to (C), the middle and bottom-left figures show the
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2.5. Numerical illustrations

effect of the parameter τ . Choosing τ too small (here: 0.005) the posterior mean
appears inconsistent at zero, similar as the Grenander estimator which is added
to the figure for comparison. For somewhat larger values of τ (middle-left figure),
the estimate near zero is like a histogram estimator. Finally, the bottom-right
figure shows the posterior mean under the base measure specification (D). Here,
the posterior mean looks comparable as obtained under (A) and (B), suggesting
that we are able to learn the parameter τ from the data. In fact, whereas the
prior mean of τ equals 2, the average of the non burn in samples of τ equals 0.66.
We have repeated the whole experiment with sample size 1000. The results are in
Appendix A.3.

2.5.3. Distribution of the posterior mean for f(0) under various
bases measures

In this section we compare base measures (A), (B) and (D) for estimating f at zero.
In the experiment, we considered samples of sizes either 50 or 250. We computed
the posterior mean for f(0) for each sample based on 10, 000 MCMC-iterations,
discarding the first half as burnin. The Monte-Carlo sample size was taken equal
to 500. Figure 2.3 summarises the results. While the density for base measure (D)
is slightly more spread, contrary to base measures (A) and (B), it concentrates on
correct values for both the Exponential and HalfNormal distribution.

2.5.4. Empirical assessment of the rate of contraction

We also performed a large scale experiment to empirically assess the rate of con-
traction of the posterior median at zero, under either choices (A), (B) or (D) for
the base measure. Our proof for deriving the contraction rate really requires a
base-measure as under (A) and now the underlying idea is to see in a simulation
study whether g0(θ) ∼ θ for θ near 0 is suitable or not. In the experiment, we first
fixed a sample size n and generated n independent realisations from the standard
Exponential distribution. We then ran the MCMC sampler for 20.000 iterations,
and kept the final iterate for initialisation of all chains ran for that particular
sample size. Next, we repeated 50 times

1. sample a dataset of size n from the standard Exponential distribution;

2. run the MCMC algorithm for 2500 iterations;

3. compute the median value at zero obtained in those samples.
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Figure 2.3.: Posterior mean estimator for f(0) for sample sizes 50, 250 in case
the true data-generating distribution is either standard Exponential
or halfNormal. The posterior mean is computed by taking 10, 000
MCMC-samples and discarding the first 5, 000 as burnin samples. The
Monte-Carlo sample size was taken equal to 500. For the considered
sample sizes, only method (D) concentrates around the correct values.

The Metropolis-Hastings proposals for updating the θ’s were tuned such that
the acceptance rate was about 20% in all cases. If the averages are denoted
by y1, . . . , y100, we finally computed the Root Mean Squared Error, defined by√

0.02
∑50

i=1(yi − 1)2. By repeating this experiment for all three choices of base

measure and various values of n, we obtained figure 2.4. The contraction rate is
an asymptotic property, and hence there is definitely uncertainty on which values
of n correspond to that. The computed slopes do not give a conclusive answer
to the actual rate of contraction. For the halfNormal distribution, it is conceiv-
able that methods (A) and (B) yield rate n−1/3, whereas method (D) gives a rate
almost n−1/2. The latter can intuitively be explained by the fact that the slope
of the density of the halfNormal is zero at zero which coincides with realisations
from the prior. For the Exponential distribution, methods (A) and (B) support
rate n−2/9, whereas method (D) has worse rates. For completeness, we tabulated
the computed slopes in Table 2.1. The difficulty with rate-assessment by finite
samples for Dirichlet mixture priors has been noted recently in Wehrhahn, Jara &
Barrientos (2019) as well.
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Figure 2.4.: The base10-log of the RMSE versus the base10-log of the sample size
under 3 different base measures (method A: g(θ) ∝ exp(−θ − 1/θ),
method B: g(θ) ∝ θ exp(−θ), method D: mixture of Pareto). Each
dot corresponds to the average of the posterior means using Monte-
Carlo size 50. In each panel a least-squares fit is added along with a
95%-confidence interval. The dashed and dotted lines are best least
squares fits with slopes −2/9 and −1/3 respectively.

Method
A B D

Exp −0.166 −0.260 −0.126
halfNormal −0.286 −0.321 −0.520

Table 2.1.: Slopes of fitted lines in Figure 2.4.

2.5.5. Comparing between Bayesian and various frequentist
methods for estimating f0 at 0

In this section we present a simulation study comparing our Bayesian estimator
(posterior median) with various frequentist estimators available for f0(0) discussed
in section 2.4. We simulated 50 samples of sizes n = 50, 200, 10000 from the
standard exponential distribution and halfNormal distribution. For each sample,
the following estimators are calculated: the posterior median estimator fB, the
penalized NPMLE fP , the two estimators fS and fA and the histogram type
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2. Bayesian estimation of a decreasing density

estimator fH . All these estimators require choosing some input parameters.

1. The posterior median estimator fB(0) is computed using the DPM prior
with concentration parameter α = 1 and base measure in (2.22). The total
number of MCMC iterations was chosen to be 30000, with 15000 burn-in
iterations. The posterior median was computed as median value of samples
for f̂(0) in equation (2.21).

2. For the penalized estimator fP (αn, 0) the parameter αn = 0.649β̂
−1/3
n n−2/3

was taken with

β̂n = max

{
fP (α0, 0)

fP (α0, 0)− fP (α0, xm)

2xm
, n−1/3

}
.

Here xm is the second point of jump of fP (α0, ·) and α0 = 0.0516, 0.0205 for
n = 50, 200 (listed in Woodroofe & Sun (1993)).

3. For fS(0) = f̂n(n−1/3) no tuning is needed. For the other estimator we take
fA(0) = f̂n(0.345B̂21n

−1/3), where

B̂21 = 41/3fS(0)1/3|f̂ ′n(0)|−2/3, (2.23)

a consistent estimator of B21 where

f̂ ′n(0) = min{n1/6(f̂n(n−1/6)− f̂n(n−1/3)),−n−1/3}.

4. For the histogram estimator fH(0) = Fn(b̂n)/b̂n, b̂n = 2−1/3B̂21n
−1/3 was

chosen with B̂21 as in (2.23).

Figure 2.5 shows, for each combination of sample size and estimation method
described, the boxplots of the 50 realized values based on samples from the stan-
dard exponential distribution. Figure 2.6 shows these boxplots for the samples
from the halfNormal distribution.

In table 2.2 we compare the bias, variance and mean squared error of these
consistent estimators based on data from the standard exponential distribution.
For the standard exponential data, the penalized estimator fP (0) performs best
in the MSE sense. The Bayesian estimator fB has smallest variance, but big bias
when the sample size is large (n = 10000). This might be explained by the small
contraction rate n−1/6 at zero, but also by the fact that the Bayesian method is
not specifically aimed at only estimating the density at zero, but instead the full
density.
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Figure 2.5.: Boxplots based on 50 replications, where a sample of size n is drawn
from the standard exponential distribution. Here P ,S,A,H,B cor-
respond to the penalized maximum likelihood-, simple-, adaptive-,
histogram- and posterior median- estimator respectively. The hori-
zontal lines indicate the true value of f0(0) = 1.

Table 2.3 lists the bias, variance and MSE values of the estimators with ob-
servations sampled from the halfNormal distribution. For the halfNormal data,
the histogram estimator fH behaves best in the bias and MSE sense. This can
probably be explained by the behaviour of f0 near zero, note that f ′0(0) = 0 in the
halfNormal case. The estimator for f ′0(0), f̂ ′n(0), probably quite unstable which
leads to big value for B̂21 resulting in a big bandwidth b̂n. As the behaviour of the
underlying density is “flat” near zero, the MSE-optimal choice of bandwidth is of
the slower order n−1/5. The posterior mean again has smallest variance.

2.5.6. Application to fertility data

In Keiding et al. (2012) data concerning the fertility of a population are analysed.
The aim is to estimate the distribution of the duration for women to become preg-
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Figure 2.6.: Boxplots based on 50 replications, where a sample of size n is drawn
from the halfNormal distribution. The rows correspond to the sample
sizes n = 50, 200 and 10000. Here P ,S,A,H,B correspond to the
penalized maximum likelihood-, simple-, adaptive-, histogram- and
posterior median- estimator respectively. The horizontal lines indicate
the true value of f0(0) =

√
2/π.

nant from when they start attempting, based on data from so-called current du-
rations. These current durations can be modeled as described in the introduction.
Indeed, the true durations are modeled as sample from an unknown distribution
function H0. According to length-biased sampling, individuals are selected and
then the time since the start of attempting to become pregnant is administered.
This is called the current duration, and can be seen as a uniform random fraction
of the true duration of the selected individual. This current duration then has
bounded decreasing probability density f0 as given in (2.2). The distribution func-
tion of the durations H0, can be expressed in terms of f0 as in Equation(2.3). For
more information on the design of this study we refer to Keiding et al. (2012). For
illustration purpose we only used the n = 618 measured current durations that do
not exceed 36 months. Figure 2.7 shows the histogram of 618 raw data, modeled
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n fP fS fA fH fB

50
Bias -0.067 -0.423 -0.402 -0.214 -0.266
Var 0.033 0.042 0.049 0.030 0.013

MSE 0.037 0.222 0.210 0.076 0.084

200
Bias -0.001 -0.286 -0.271 -0.158 -0.221
Var 0.029 0.020 0.027 0.015 0.007

MSE 0.029 0.101 0.100 0.040 0.056

10000
Bias -0.011 -0.084 -0.072 -0.041 -0.112
Var 0.002 0.002 0.003 0.002 0.0004

MSE 0.002 0.010 0.009 0.004 0.013

Table 2.2.: Simulated bias, variance and mean squared error for the five estimators
from standard exponential distribution.

n fP fS fA fH fB

50
Bias 0.063 -0.182 -0.185 -0.043 -0.073
Var 0.029 0.022 0.022 0.016 0.007

MSE 0.033 0.055 0.056 0.018 0.012

200
Bias 0.080 -0.086 -0.088 -0.011 -0.051
Var 0.014 0.012 0.012 0.004 0.005

MSE 0.020 0.019 0.020 0.004 0.008

10000
Bias 0.0216 -0.0022 -0.0060 -0.0019 -0.0239
Var 0.0010 0.0005 0.0006 0.0005 0.0002

MSE 0.0015 0.0005 0.0006 0.0005 0.0008

Table 2.3.: Simulated bias, variance and mean squared error for the five estimators
based on samples from the standard halfNormal distribution.

as sample from the decreasing density f0.

In this section we estimate the density f0 using base measure choice (A) which
satisfies assumption 2.2.1 and (D) which does not satisfy assumption 2.2.1 with
concentration parameter α = 1. Then each MCMC iterate of the posterior mean
can be converted to an iterate for H0 using the relation (2.3). In Groeneboom &
Jongbloed (2015) chapter 9, pointwise confidence bands for f0 and H0 are con-
structed based on the smoothed maximum likelihood estimator. Having derived
the estimators, producing such confidence bands needs quite some fine tuning. In
this section, we construct the Bayesian counterpart of the confidence bands, cred-
ible regions for H0. Contrary to the frequentist approach, having the machinery
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Figure 2.7.: Histogram of the current durations fertility data that do not exceed
36 months.

available for computing the posterior mean, the pointwise credible sets can be
obtained directly from the MCMC output. The results for the fertility data are
shown in Figures 2.8 using base measures (A) and (D) respectively.

2.6. Discussion

In this paper we have used Bayesian analysis to nonparametrically estimate a
decreasing density based on a random sample. Particular emphasis is given to
estimation of the density at zero and sufficient criteria on the base measure of
the prior are derived to obtain contraction rate n−2/9. Besides a base measure
attaining this rate, we have investigated the relative performance of other base
measures by means of a Monte Carlo study. This study was extended to compare
multiple frequentist estimators for estimating the density at zero to a Bayesian
derived point estimator.

It remains an open question whether for a given density function f there exists
a base measure such that the contraction rate for estimation of f(0) is n−1/3. From
the simulation study it appears that taking a mixture of Pareto densities as base
measure empirically yields satisfactory performance and henceforth we recommend
taking base measure (D) from Section 2.5.1.
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Figure 2.8.: Fertility data. Top: results for base measure (A) and α = 1. Bottom:
results for base measure (D) and α = 1. Left: posterior mean and
95% pointwise credible sets for probability density function f0. Right:
corresponding estimate and pointwise credible sets for the distribution
function H0(x) = 1− f0(x)/f0(0).

45





3. Bayesian nonparametric
estimation of a concave
distribution function with mixed
interval censored data

Assume we observe a finite number of inspection times together with informa-
tion on whether a specific event has occurred before each of these times. Suppose
replicated measurements are available on multiple event times. The set of inspec-
tion times, including the number of inspections, may be different for each event.
This is known as mixed case interval censored data. We consider Bayesian esti-
mation of the distribution function of the event time while assuming it is concave.
We provide sufficient conditions on the prior such that the resulting procedure is
consistent from the Bayesian point of view. We also provide computational meth-
ods for drawing from the posterior and illustrate the performance of the Bayesian
method in both a simulation study and two real data sets.

3.1. Introduction

In survival analysis, one is interested in the time a certain event occurs. For
example, the event may be the onset of a disease. A well known complication
often encountered in practice is censoring, where the precise time at which an event
occurs is unknown, but partial information on it is available. In right censoring for
example, one only observes the event if it occurs before a certain censoring time,
otherwise one observes the censoring time accompanied by the information that
the event occurred after this time. In interval censoring, one never sees the exact
event time. Only an interval of positive length (possibly infinite) is observed which
contains the event time of interest.

Suppose X models the actual event time for one subject. Instead of observing X
directly, we observe a finite number of inspection times 0 < t1 < t2 < · · · < tk <∞,
together with the information which of the intervals (tj−1, tj] contains X. We will
assume a setting in which we obtain data that are modelled as independent and
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3. Bayesian estimation with mixed interval censored data

identically distributed realisations of X1, . . . , Xn, each of which is distributed as
X. For each subject, the set of inspection times, as well as the number of inspec-
tions, may be different. This type of data is known as mixed-case interval censored
data. Our model includes both the interval censring case 1 model (also known as
current status model) and interval censoring case 2 model for which k = 1 and
k = 2 respectively. In many statistical models, there are reasons to impose specific
assumptions on functional parameters, for example shape constraints. Incorporat-
ing such constraints into the estimation procedure often improves the accuracy of
the resulting estimator. In this paper, we consider the problem of estimating the
distribution function F of X, assuming that F is concave.

3.1.1. Related literature

In Groeneboom & Wellner (1992), the point-wise asymptotic distribution of the
maximum likelihood estimator (mle) of the distribution function in the interval
censoring case 1 model is derived. For interval censoring case 2, the asymptotic
point-wise distribution of the mle is still not known. In the mixed case interval
censoring model, the mle has been studied by Schick & Yu (2000) where it is
shown to be L1-consistent. In Wellner & Zhang (2000) a panel count model is
considered, which includes the mixed case interval censoring model as a special
case, namely when the counting process has only one jump. For this panel count
model, Wellner & Zhang (2000) study two estimators. In case the counting process
has only one jump and there is one inspection time, their estimators coincide with
the mle for current status data (k = 1). If k > 1, this is not the case. Dümbgen,
Freitag & Jongbloed (2004) consider the current status model with the additional
constraint that the underlying distribution function F0 is concave. It is shown that
the supremum distance between the nonparametric least squares estimator and the
underlying distribution function F0 is of order (log n/n)2/5. For mixed case interval
censoring, the MLE is shown to be asymptotically consistent under the assumption
that F0 is concave or convex-concave in Dümbgen, Freitag & Jongbloed (2006). In
addition, an algorithm for computing the mle is proposed there.

From the Bayesian perspective, Susarla & Van Ryzin (1976) derived a non-
parametric Bayesian estimator for the event time distribution function based on
right-censored data, using the Dirichlet process prior. A special feature in this
right-censoring model is that the posterior mean estimator can be constructed ex-
plicitly. For interval censored data, this explicit construction is not available. Calle
& Gómez (2001) propose a nonparametric Bayesian approach in the interval cen-
soring model and use a Markov Chain Monte Carlo algorithm to obtain estimators
for the posterior mean. Doss & Huffer (2003) consider the Dirichlet Process prior
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in the interval censoring model. They develop and compare various Monte Carlo
based algorithms for computing Bayesian estimators. A host of closely related
Bayesian nonparametric models have been implemented in the DP-package in the
R-language, Cf. Jara et al. (2011).

3.1.2. Contribution

In this paper, we define and study a Bayesian estimator of the event time distribu-
tion based on mixed-case interval censored data under the additional assumption
that the distribution function is concave. An advantage of the Bayesian setup is
the ease of constructing credible regions. To construct frequentist analogues of
these, confidence regions, can be quite cumbersome, relying on either bootstrap
simulations or asymptotic arguments. We address this problem from a theoretical
perspective and provide conditions on the prior such that the resulting procedure
is consistent. That is, assuming data are generated from a “true” distribution,
we show that the posterior asymptotically (as the sample size increases) converges
to this distribution. The proof relies on Schwartz’ method for proving posterior
consistency (Cf. Section 6.4 in Ghosal & Van der Vaart (2017)). In addition, we
provide computational methods for drawing from the posterior and illustrate its
performance in a simulation study. Finally, we apply the Bayesian procedure on
two real data sets and construct pointwise credible sets.

3.1.3. Outline

Section 3.2 sets off with introducing notation and formally describing the model.
In section 3.3 we derive posterior consistency under a weak assumption on the prior
distribution on the class of concave distribution functions. A Markov Chain Monte
Carlo algorithm for obtaining draws from the posterior using the Dirichlet Mixture
Process prior is detailed in section 3.4. In section 3.5 we perform a simulation
study to illustrate the behaviour of the proposed Bayesian method. Furthermore,
we apply it to two data sets in section 3.6, one concerned with Rubella and the
other with breast cancer. The appendix contains proofs of some technical results.

3.2. Model, likelihood and prior

3.2.1. Model and likelihood

Suppose X is a random variable in [0,∞) with concave distribution function F0.
Instead of observing X, we observe the random vector (K,T,∆) that is constructed
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3. Bayesian estimation with mixed interval censored data

as follows. First, K is sampled from a discrete distribution with probability mass
function pK on {1, 2 . . . }, representing the number of inspection times. Given
K = k, T ∈ Rk is sampled from a density gk supported on the set {t = (t1, . . . , tk) ∈
(0, L]k : 0 < t1 < · · · < tk <∞} for some constant L. This random vector contains
the (ordered) inspection times. Finally, ∆ ∈ {0, 1}k+1 is the vector indicating in
which of the k+ 1 intervals generated by T the event actually happened. Thus, it
is defined as the vector with j-th component

∆j = 1(Tj−1,Tj ](X) for 1 ≤ j ≤ k + 1

where T0 = 0 and Tk+1 =∞ by convention.
This procedure is repeated independently, so for sample size n the data is a

realisation of

Dn := {(Ki, T
i,∆i) = (Ki, Ti,1, . . . , Ti,Ki ,∆i,1, . . . ,∆i,Ki+1), i = 1, . . . , n}.

Define the sets

Ck = {t ∈ (0, L]k : 0 < t1 < · · · < tk <∞} (3.1)

andHk = {δ ∈ {0, 1}k+1 :
∑k+1

j=1 δj = 1}, k = 1, 2, . . . . ThenDn ∈ (
⋃∞
k=1{k} × Ck ×Hk)

n
.

Upon conditioning on the observed inspection times, we can define the likelihood
of the distribution function F by

L(F ) =
n∏
i=1

(
pK(Ki)gKi(T

i)

Ki+1∏
j=1

(F (Ti,j)− F (Ti,j−1))∆i,j

)
. (3.2)

We denote the joint distribution of {(Ki, T
i), 1 ≤ i ≤ n} by PK,T . Given these

(Ki, T
i)s the vectors ∆i have multinomial distributions with probabilities depend-

ing on F0. The distribution of Dn will be denoted by P0. Expectation with respect
to measures will be denoted by E, supplemented by a subscript referring to the
measure.

3.2.2. Prior specification

In order to estimate the underlying concave distribution function in a Bayesian
way, we construct a prior distribution on the set of all concave distribution func-
tions. For θ > 0, denote the uniform density function on [0, θ] by ϕ(· | θ) and its
distribution function by Ψ(· | θ), i.e.

ϕ(x, θ) =
1

θ
1{x ≤ θ} and Ψ(x, θ) =

min(x, θ)

θ
respectively, x ≥ 0. (3.3)
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3.3. Posterior consistency

It is well known that any concave distribution function F on [0,∞) allows the
mixture representation (see Feller (1966))

F (x) =

∫
Ψ(x, θ) dG(θ), (3.4)

where G is a distribution function on [0,∞). In what follows, we sometimes stress
this representation and denote the concave distribution function by FG. In order
to put a prior measure Π on the set

F =
{
F : F is a concave distribution on [0,∞)

}
,

we use (3.4) together with a prior distribution Π∗ on the set of all mixing distribu-
tion functions G on (0,∞) (denote as M). Having chosen such a prior measure,
we denote the resulting posterior measure on F by Π(·|Dn).

3.3. Posterior consistency

In this section we establish consistency of the posterior distribution Π(·|Dn) under
a weak condition on the prior measure Π. Generally, the posterior is said to be
consistent at F0 (with respect to a semimetric d) if for any ε > 0, E0Π(d(F, F0) >
ε | Dn)→ 0 when n→∞.

For any distribution function G, denote Gi,j = G(Ti,j) − G(Ti,j−1). Given the
inspection times {T i, 1 ≤ i ≤ n}, we say that distribution functions G and F
belong to the same equivalence class if the increments between the adjacent times
are the same: Gi,j = Fi,j for all i = 1, . . . , n, j = 1, . . . , Ki+1. Then given data Dn,
we define a distance d between two (equivalence classes of) distribution functions
G and F by

dn(G,F ) =
1

n

n∑
i=1

Ki+1∑
j=1

|Gi,j − Fi,j| . (3.5)

Recall that Π∗ is a prior on the set M, then G is in the weak support of Π∗ if
every weak neighborhood of G has positive measure.

Theorem 3.3.1. Fix F0 ∈ F and x ∈ [0,∞). Consider the mixed-case interval
censoring model described in section 3.1. Assume F0 has a continuous density
function f0 on (0,∞) with f0(0) ≤M <∞ and that the weak support of the prior
distribution Π∗ isM. If EKr <∞, for some r > 1/2, then for any ε > 0, we have
P0-almost surely that

Π(F ∈ F : dn(F, F0) > ε| Dn)→ 0 as n→∞.
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3. Bayesian estimation with mixed interval censored data

Note that dn in Theorem 3.3.1 is a random semidistance since it depends on the
inspection times {Ki, T

i, i = 1, . . . , n}, also depending on n. Define the measure
µ on the Borel σ−field B on [0,∞) that measures the “expected proportion of
inspection times contained in a Borel set B ∈ B” by

µ(B) =
∞∑
k=1

pK(k)k−1

∫
gk(t)

k∑
j=1

1B(tj) dt.

As a special case, assume that given k, S1, . . . , Sk are independent and identically
distributed with density function ξ on [0,∞) and {T1 < T2 < · · · < Tk} are the
ordered Sj’s. Then when k = 1,

µ(B) =

∫
g1(t1)1B(t1) dt1 =

∫
B

ξ(x) dx.

When k = 2, for any a ∈ [0,∞)

µ((0, a]) =
1

2

∫
g2(t)(1{t1 ≤ a}+ 1{t2 ≤ a}) dt =

1

2
(P(t1 ≤ a) + P(t2 ≤ a))

=
1

2

(
1−

(
1−

∫ a

0

ξ(x) dx

)2

+

(∫ a

0

ξ(x) dx

)2
)

=

∫ a

0

ξ(x) dx

Hence, measure µ has density ξ in interval case 1 and 2.
The following result establishes posterior consistency with respect to L1(µ) loss.

Theorem 3.3.2. Let F0, Π and K satisfy the conditions of Theorem 3.3.1. Then
for any ε > 0, we have

E0 Π

(
F ∈ F :

∫
|F − F0| dµ > ε|Dn

)
→ 0 as n→∞.

3.3.1. Proofs

For proving Theorem 3.3.1 we use the Schwartz’s approach to derive posterior con-
sistency. In the proof of this theorem, Lemma 3.3.3 is used to control the prior
mass of a neighbourhood of the true distribution. Lemma 3.3.4 provides appro-
priate test functions. Both lemmas are stated below; the proofs are in appendix
B.

Lemma 3.3.3. Let F0 and Π∗ satisfy the conditions of Theorem 3.3.1. Define, for
F1, F2 ∈ F , k = 1, 2, . . . and t ∈ Ck as defined in (3.1):

hk,F1,F2(t) =
k+1∑
j=1

(F0(tj)− F0(tj−1)) log
F1(tj)− F1(tj−1)

F2(tj)− F2(tj−1)
(3.6)
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3.3. Posterior consistency

(where t0 = 0 and tk+1 =∞ by convention). If we define,

S(η) =

{
F ∈ F :

∞∑
k=1

pK(k)

∫
gk(t)hk,F0,F (t) dt < η

}
. (3.7)

then for all η > 0, Π(S(η)) > 0.

Note that that for the specific choice F1 = F0, by Jensen’s inequality, hk,F0,F ≥ 0
for all F ∈ F .

Lemma 3.3.4. For ε > 0, define Uε := {F ∈ F : dn(F, F0) > ε}. Then there exists
a sequence of test functions Φn such that for all n ≥ 1,

E0(Φn) ≤ Ce−nc

E(K,T )

{
sup
F∈Uε

EF [1− Φn|K,T ]

}
≤ Ce−nc

(3.8)

for some positive constants c and C.

Proof of Theorem 3.3.1. Choose ε > 0 and define the set Uε as in Lemma 3.3.4.
Define

Zi,j =
F (Ti,j)− F (Ti,j−1)

F0(Ti,j)− F0(Ti,j−1)
.

Using expression (3.2) of the likelihood, the posterior mass of the set Uε can be
written as

Π(Uε|Dn) = D−1
n

∫
Uε

n∏
i=1

Ki+1∏
j=1

Z
∆i,j

i,j dΠ(F ),

where

Dn =

∫ n∏
i=1

Ki+1∏
j=1

Z
∆i,j

i,j dΠ(F ).

Fix 0 < η < c/2, where c is as it appears in Lemma 3.3.4. Also fix F ∈ S(η).
We first show that Lemma 3.3.3 implies for any η′ > η we have P0-a.s. that

Dn ≥ exp(−nη′)Π(S(η))

for all n sufficiently large. By Lemma 3.3.3, we have Π(S(η)) > 0. Let ΠS(η) be Π
restricted to S(η) and normalised to a probability measure. For i ≥ 1 define

Yi,j = −
∫

∆i,j logZi,j dΠS(η)(F )1{1,2,...,Ki+1}(j).
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3. Bayesian estimation with mixed interval censored data

Note that,

E0

[
K1+1∑
j=1

Y1,j

]
= EK1,T1

[
EF0

[
K1+1∑
j=1

Y1,j|TK1 , K1

]]

= EK1,T1

[
K1+1∑
j=1

∫
−(F0(T1,j)− F0(T1,j−1)) logZi,j dΠS(η)(F )

]

=
∞∑
k=1

pK(k)

∫ ∫
gk(t)hk,F0,F (t) dt dΠS(η)(F ) ≤ η <∞.

Therefore, the law of large numbers yields

1

n

n∑
i=1

Ki+1∑
j=1

Yi,j → E0

[
K1+1∑
j=1

Y1,j

]
≤ η, P0 − a.s.

Hence, P0-a.s. for any η′ > η,

Dn ≥
∫
S(η)

n∏
i=1

Ki+1∏
j=1

Z
∆i,j

i,j dΠ(F ) = Π(S(η))

∫ n∏
i=1

Ki+1∏
j=1

Z
∆i,j

i,j dΠS(η)(F )

= Π(S(η))

∫
exp

(
n∑
i=1

Ki+1∑
j=1

∆i,j logZi,j

)
dΠS(η)(F )

≥ Π(S(η)) exp

(
−n · 1

n

n∑
i=1

Ki+1∑
j=1

Yi,j

)
≥ exp(−nη′) Π(S(η)) (3.9)

for n sufficiently large, where we used Jensen’s inequality in the second inequality.
Now we can finish the proof by combining this result with the test functions Φn

satisfying (3.8) (by Lemma 3.3.4).
By inequality (3.9), we can bound E0Π(Uε|Dn) as follows,

E0Π(Uε|Dn) = E0Π(Uε|Dn)Φn + E0Π(Uε|Dn)(1− Φn)

≤ E0Φn + Π(S(η))−1enη
′E0

∫
Uε

n∏
i=1

Ki+1∏
j=1

Z
∆i,j

i,j (1− Φn) dΠ(F )

= E0Φn + Π(S(η))−1enη
′E(K,T )

∫
Uε

EF (1− Φn) dΠ(F )

≤ Ce−cn + Π(S(η))−1 · Ce−(c−η′)n = o(1) as n→∞.
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3.3. Posterior consistency

The final step follows by choosing η′ < c. Since
∑∞

n=1 e
−bn < ∞ for any constant

b, almost sure convergence follows by the Borel-Cantelli lemma.

Proof of Theorem 3.3.2. First note that the proof of (16) in Dümbgen, Freitag &
Jongbloed (2006) shows for all distribution functions F, F0 ∈ F ,

d′n(F, F0) =
1

n

n∑
i=1

K−1
i

Ki∑
j=1

|F (Ti,j)− F0(Ti,j)| ≤ dn(F, F0). (3.10)

For any ε > 0, denote set

An =

{
sup
F∈F

∣∣∣∣d′n(F, F0)−
∫
|F − F0|dµ

∣∣∣∣ > ε/2

}
,

Now we prove that P(K,T )(An)→ 0 as n→∞. Fix F0 ∈ F and denote

ψi(F ) = n−1K−1
i

Ki∑
j=1

|F (Ti,j)− F0(Ti,j)|.

Then d′n(F, F0) =
∑n

i=1 ψi(F ). Note that E(K,T )d
′
n(F, F0) =

∫
|F − F0| dµ. It is

sufficient to show that

E(K,T ) sup
F∈F
|d′n(F, F0)− E(K,T )d

′
n(F, F0)|→ 0. (3.11)

By theorem B.1.2, it is implied by the existence of a sequence δn → 0 such that

E(K,T )

n∑
i=1

sup
F∈F
|ψi(F )|= O(1), (3.12)

E(K,T )

n∑
i=1

1{sup
F∈F
|ψi(F )|> δn} sup

F∈F
|ψi(F )|= o(1), (3.13)

for anyu > 0, logN (u,F , ρn) = c(u). (3.14)

Here

N (u,F , ρn) = min

{
#G:G ⊂ F , inf

G∈G
ρn(F,G) ≤ u for allF ∈ F

}
,

and

ρn(F, F ′) =
n∑
i=1

|ψi(F )− ψi(F ′)|.
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3. Bayesian estimation with mixed interval censored data

For (3.12) and (3.13), note that supF∈F |ψi(F )|≤ n−1, hence E(K,T )

∑n
i=1 supF∈F |ψi(F )|≤

1. By taking nδn →∞, e.g. δ = 1√
n
,

E(K,T )

n∑
i=1

1{sup
F∈F
|ψi(F )|> δn} sup

F∈F
|ψi(F )|≤ n−1E

n∑
i=1

1{n−1 > δn} = 1{n−1 > δn} → 0

For (3.14), note that

ρn(F, F ′) =
n∑
i=1

|ψi(F )− ψi(F ′)|≤ n−1

n∑
i=1

K−1
i

Ki∑
j=1

||F (Ti,j)− F0(Ti,j)|−|F ′(Ti,j)− F0(Ti,j)||

≤ n−1

n∑
i=1

K−1
i

Ki∑
j=1

|F (Ti,j)− F ′(Ti,j)|=
∫
|F − F ′| dυ ≤

(∫
|F − F ′|2 dυ

)1/2

where the measure υ is defined by υ(·) = n−1
∑n

i=1K
−1
i

∑Ki
j=1 δTi,j(·). In the final

step, we use Hölder’s inequality and that υ has total mass 1. Further, using Lemma
2.1 and equation (2.5) in van de Geer (2000) we obtain

logN (u,F , ρn) ≤ logN (u,F , L2(υ)) ≤ Cu−1

for some constant C and any u > 0.
Therefore, denote Bε = {F ∈ F :

∫
|F − F0| dµ > ε}, by P(K,T )(An) → 0 as

n→∞ and inequality (3.10), we have

E0Π(Bε|Dn) = E0Π(Bε|Dn)1An + E0Π(Bε|Dn)1Acn
≤ E0(1An) + E0Π(F ∈ F : d′n(F, F0) > ε/2|Dn)

≤ P(K,T )(An) + E0Π(F ∈ F : d(F, F0) > ε/2|Dn)→ 0

as n→∞.

3.4. Computational methods

Assume the mixing measure G is a Dirichlet process with base measure G0 (with
density g0) and concentration rate α. The prior distribution this induces on F
through (3.4) is called a Dirichlet Mixture Process (DMP). Denoting by #(x) the
number of distinct values in a vector x, a sample X1, . . . , Xn from the DMP can
be generated using the following steps:

Z := (Z1, . . . , Zn) ∼ CRP(α)

Θ1, . . . ,Θ#(Z)
iid∼ G0

X1, . . . , Xn | Θ1, . . . ,Θ#(Z), Z1, . . . , Zn
ind∼ Unif(0,ΘZi).

(3.15)
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3.4. Computational methods

Here CRP(α) denotes the “Chinese Restaurant Process” that can be viewed as
follows. Assume in a Chinese restaurant, the first customer sits at the first table.
Then, given a number of occupied tables, the next customer joins one of these
tables with a probability proportional to the number of customers already there,
or starts a new table with probability proportional to α. Interpreting Zi as the
number of customers sitting at table i after n customer arrivals, this leads to a
distribution on the space of partitions of the integers {1, 2, . . . , n}.

In the interval censoring model, we do not observe the Xi’s, but for each i
the interval (Li, Ri] = (Ti,Ji−1, Ti,Ji ] that contains Xi. We are then interested
in the conditional distribution of (Z,Θ) given the data Dn. In case we would
have complete observations X1, . . . , Xn, there are algorithms to sample from this
conditional distribution (see Neal (2000)). Having only the interval censored data,
we can adapt such algorithms, treating the unobserved event times Xi as latent
variables in the same fashion as this is done in the case of right censoring by Hansen
& Lauritzen (2002). Given the exact values Xi, we can use existing algorithms to
generate samples from the posterior. Subsequently, we update the Xi’s in each
iteration by sampling conditionally on the time intervals (Li, Ri] where the event
happened.

We initialise a Gibbs sampler by specifying values of (Z,Θ, X) that satisfy the
constraints in the model. This means that ΘZi ≥ Xi and Xi ∈ (Li, Ri] for i =
1, . . . , n. For ease of notation let Θ = (Θ1, . . . ,Θ#(Z)) and X = (X1, . . . , Xn) for
i = 1, . . . , n. Then the following steps are iterated:

1. sample Z | (X,Θ,Dn);

2. sample Θ | (X,Z,Dn);

3. sample X | (Dn,Θ, Z).

Given X, Dn does not play any role when sampling Z and Θ. Hence the first two
steps are the same as in the case of precise observations. More details on this step
in that setting can be found in section 2.3 and Neal (2000). The final step is to
sample the latent variables X given Dn, Z and Θ. For this, note that

fXi|Dn,Θ,Z(x|Dn, θ, z) ∝ f(x|θzi)1(Li,Ri](x) = ϕ(x|θzi)1(Li,Ri](x).

This is the density of the uniform distribution on interval (Li, Ri] ∩ [0,ΘZi ]. Note
that with the initialisation described above, (Li, Ri] ∩ [0,ΘZi ] is non-empty.
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3. Bayesian estimation with mixed interval censored data

Using the conjugacy property of Dirichlet process (see e.g. Ferguson (1973)),
the conditional expectation of the posterior of F is given by

E
[∫

Ψ(x, θ)dG(θ) |Θ, Z,Dn
]

=
1

α + n

(
α

∫
Ψ(x, θ)dG0(θ) +

n∑
i=1

Ψ(x,ΘZi)

)
.

Hence, the posterior mean of F can be obtained using a Markov Chain Monte
Carlo approximation of the posterior of (Θ, Z) given Dn. Having the algorithms
to generate from the distribution of (Θ, Z)|Dn, assume in the j-th iteration we

obtained

(
Θ

(j)

Z
(j)
1

, . . . ,Θ
(j)

Z
(j)
n

)
. At iteration j, a sample from the posterior is given

by

F̂ (j)(x) :=
α

α + n

∫
Ψ(x, θ)dG0(θ) +

1

α + n

n∑
i=1

Ψ(x, (Θ
(j)

Z
(j)
i

)). (3.16)

After J iterations, an estimator for the posterior mean is given by J−1
∑J

j=1 F̂
(j)(x).

Remark 3.4.1. In case the Dirichlet process is truncated, the target density is
of fixed dimension. One of the referees raised the question whether probabilistic
programming languages such as JAGS, BUGS, Stan or Turing can be used. First
of all, we do not consider truncation here as, strictly speaking, it is not necessary.
However, we fully agree that from a practical point of view the proposed approach
may be implemented using one of the suggested Bayesian computational packages
in case of truncation. What might be tricky here is that the workehorse algorithm
in for example Stan (Hamiltonian Monte Carlo) uses automatic differentiation for
computing gradients. However the density of the uniform distribution on [0, θ],
viewed as a function of θ is not differentiable.

A host of related Bayesian nonparametric models have been implemented in the
DP-package (Cf. Jara et al. (2011)).

3.5. Simulation results

In this section, we first study the posterior mean estimators of a concave distri-
bution function based on simulated interval censored data. Next, we compare the
Bayesian and the frequentist methods in this setting.

We simulate data by repeating independently n times the following scheme:

1. sample K from the discrete uniform distribution on the integers {1, · · · , 20};

2. sample K inspection times T1 < · · · < TK by sorting K independent and
identically distributed random variables (we choose the Gamma distribution
with shape parameter equal to 2 and rate parameter equal to 1);

58



3.5. Simulation results

3. sample X from the standard Exponential distribution;

4. set L := supj{Tj : Tj < X} and R := infj{Tj : Tj ≥ X} (where T0 = 0,
Tk+1 =∞).

This leads to the dataset Dn containing the observation intervals (Li, Ri] for 1 ≤
i ≤ n.

The prior is specified by a Dirichtlet Process for the mixture measure. As seen
in the formula (3.16), the concentration parameter α expresses our confidence on
the prior. In the following, we take a “small” value α = 1. Write Y ∼ Par(s, ξ)
with s > 0 and ξ > 0 if fY (y) = ξsξy−ξ−11{y ≥ s}. We choose the base measure to
be a mixture of Par(s, ξ) distributions, where ξ = 1 is fixed and the parameter s is
drawn from the Gamma(2, 1)-distribution. This hierarchical specification leads to
partial conjugacy in the Gibbs sampler with one extra step in which S is updated.
For both algorithms, S can be sampled from

fS|Θ,Z(s|θ, z) ∝ fΘ|S,Z(θ|s, z)fS(s)

= fS(s)

#(z)∏
i=1

fΘi|S(θi|s) ∝ fS(s)sξ#(z)1{s ≤ ∧(θ)},

the product being taken over all (distinct) values in the vector θ.
We take sample size n = 100. To show the algorithm’s performance, we show

a traceplot and autocorrelation function of F̂ j(1) over 30.000 iterations in Figure
3.1.

We compute the posterior mean estimator for the function F0 using equation
(3.16) for two samples from the standard exponential distribution: one with sample
size 50 and the other with sample size 500. Figure 3.2 shows the results. The
total number of MCMC iterations was chosen to be 30, 000, with 15, 000 burn-in
iterations.

We now compare different estimation methods:

• the posterior mean for a concave distribution function;

• the maximum likelihood estimator under concavity;

• the maximum likelihood estimator without shape constraints.

We took n = 500 and considered Ki = 1, Ki = 2 for i = 1, . . . , n (interval censoring
case 1 and 2) and Ki independently sampled from the discrete uniform distribution
on the integers {1, 2, . . . , 20}, which we denote by K ∼ Unif(1, 20).
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Figure 3.1.: Traceplot (left) and autocorrelation plot (right) for the posterior distri-
bution function evaluated at 1 using the algorithm detailed in Section
3.4. The horizontal line in the left-hand figure depicts the true value
F0(1) = 1− e−1.

We use the same prior specification as before. Figure 3.3 depicts the estimators
F̂ (here we have three estimators: the NPMLE using the algorithm in Wellner &
Zhan (1997), the concave MLE studied in Dümbgen, Freitag & Jongbloed (2006)
and the Bayesian posterior mean estimator) and error curves F̂ − F0, where F0

is the true underlying distribution function. As the true distribution is smooth it
is not surprising that NPMLE performs worst, as it is a step function. With an
increasing number of inspection times, the procedure of generating the inspection
time and event time gives a narrow inspection interval for each event. Although the
NPMLE does not consider the concavity assumption on F0, it suggests a concave
shape. As can be seen in all cases, the concave MLE and the posterior mean
estimator behave similarly.

Using the setting of mixed interval censoring (K ∼ Unif(1, 20)), we generated 50
data sets of sizes n = 50, 100, 200, 400, 800 from the standard exponential and half-
normal distribution and computed the NPMLE, the concave MLE, the posterior
mean for each of the cases. Fix grid points tj = j/100, j = 1, . . . ,m, where we

took m = 800. Figures 3.4 and 3.5 show the log of the mean square error of F̂
evaluated at t = tj, j = 1, . . . ,m for each sample size n, that is

logR(F̂ , F )(t) = log
1

50

50∑
k=1

(F̂ (k)(t)− F (t))2
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Figure 3.2.: Posterior mean in case the data are sampled from the standard expo-
nential distribution. Two solid lines depict the posterior mean and the
dashed line is true distribution function (standard exponential). The
concentration parameter is α = 1 and the base measure is a mixture
of Pareto distributions. The total number of MCMC iterations was
chosen to be 30.000, with 15.000 burn-in iterations.

where F̂ (k) represent estimator based on the k−th data set. We see that all three
estimators give small error. As seen from figure 3.3, it can be explained by the
setting of how to generate mixed interval censoring data. We see that the pos-
terior mean gives smallest error when t is small, whereas all three estimators are
comparable when t ∈ [1, 4] of case n = 800. Finally, the NPMLE performs best
when t is big based on the data sets sample from the half-normal distribution.

We also consider a global value, the integrated square errors:

ISE(k)(F̂ , F ) =
1

m

m∑
j=1

(F̂ (k)(tj)− F (tj))
2

for each sample size n, where F̂ (k) represent estimator based on the k−th data set,
k = 1, . . . , 50. Figure 3.6 shows the mean of integrated square errors. In most of
the cases, we see that the concave MLE has the smallest mean integrated square
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Figure 3.3.: Three cumulative distribution function estimators of F0 (left) and er-
ror curves (right) F̂ − F0, F̂ : posterior mean, NPMLE and concave
MLE in case n = 500 sample size data are sampled from the standard
exponential distribution. From top to bottom corresponding different
inspection time K = 1, 2 and K ∼ Unif(1, 20).

error, The posterior mean laying between NPMLE and the concave MLE and close
to the concave MLE in case of half-normal distribution.

3.6. Case study

In this section we illustrate the applicability of our method in real data examples.
Using a nonparametric frequentist approach, producing confidence bands for the
underlying distribution usually needs quite some fine tuning (see e.g. Groeneboom
& Jongbloed (2014)). Contrary to the frequentist approach, within the Bayesian
approach it is simple to construct pointwise credible regions from MCMC output.
We applied the Bayesian approach and two frequentist estimators to the Rubella
data and Breast cancer data sets.

Example 3.6.1. Rubella is a highly contagious childhood disease. The Rubella
data concerns the prevalence of rubella in n = 230 Austrian males (see for more
information Keiding et al. (1996)). The male individuals included in the data set
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Figure 3.4.: The log mean square error (logR(F̂ , F )) evaluated at grid points
{0.01, 0.02, . . . , 8.0} for NPMLE, the concave MLE and posterior mean
in 50 data sets of different sample size n = 50, 200, 800 case sampled
from the standard exponential distribution.
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Figure 3.5.: The log mean square error (logR(F̂ , F )) evaluated at grid points
{0.01, 0.02, . . . , 8.0} for NPMLE, the concave MLE and posterior mean
in 50 data sets of different sample size n = 50, 200, 800 case sampled
from the standard halfnormal distribution.
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Figure 3.6.: Mean of ISE(k)(F̂ , F ) for NPMLE, the concave MLE and posterior
mean in 50 data sets of different sample size n = 50, 100, 200, 400, 800
case sampled from the standard exponential and halfnorm distribution.

represent an unvaccinated population. The data records whether a person got
infected or not before a certain time. Here the upper limit of a persons’s life span
is set equal to 100. Because there is only one inspection time per person, the data
are actually case 1 interval censored. Figure 3.7 visualises the data, showing that
the time intervals either start at 0 or end at 100.

The settings for computing the posterior mean are as described in the previous
section (DP as the prior, with concentration parameter α = 1 and the mixture of
Pareto as the base measure. The total number of iterations was set to 30.000 where
the initial 15.000 iterations have been treated as burn. Figure 3.8 shows the three
estimators and 95% pointwise credible sets for the underlying distribution function.
The mle (assuming the distribution function to be concave) is comparable with the
posterior mean. However, the posterior mean provides a smoother estimator as it
is obtained by averaging and not as a maximizer of a likelihood (both the mle and
mle under concavity assumption only change slope at censoring times).

Example 3.6.2. In the Breast cancer study discussed in Finkelstein & Wolfe
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Figure 3.7.: Visualisation of Rubella data. The x-axis is the range of event time.
The horizontal lines displays the time intervals.

(1986), 94 early breast cancer patients were given radiation therapy with (RCT,
48) or without (RT, 46) adjuvant chemotherapy between 1976 and 1980. They
were supposed to be seen at clinic visits every 4 to 6 months. However, actual visit
times differ from patient to patient, and times between visits also vary. In each
visit, physicians evaluated the appearance breast retraction. The data contain
information about the time to breast retraction, hence, interval censored. Figure
3.9 visualises the data, we use the right end point 100 for the right censoring case.

The settings for computing the posterior mean are as in example 3.6.1. Figure
3.10 shows the three estimators under two treatments (RT and RCT) and 95%
credible sets for the underlying survival function.
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Figure 3.8.: NPMLE, concave MLE and posterior mean estimators (A) and 95%
point-wise credible sets of the estimated posterior mean (B) for the
underlying distribution function based on the Rubella data.
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Figure 3.9.: Visualisation of the Breast cancer data (left: RT, right: RCT). The
x-axis is the range of event times. The horizontal lines display the
time intervals.
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Figure 3.10.: NPMLE, concave MLE and posterior mean estimators (top) and 95%
point-wise credible sets of the estimated posterior mean (bottom) for
the underlying survival function 1 − F (x) (F (x) denotes the distri-
bution function) based on the Breast cancer data.
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4. Bayesian nonparametric
estimation for current status
continuous mark model

This chapter consider the current status continuous mark model where, if the
event takes place before an inspection time T a “continuous mark” variable is
observed as well. A Bayesian nonparametric method is introduced for estimating
the distribution function of the joint distribution of the event time (X) and mark
(Y ). We consider a prior that is obtained by assigning a distribution on heights
of cells, where cells are obtained from a partition of the support of the density of
(X, Y ). As distribution on cell heights we consider both a Dirichlet prior and a prior
based on the graph-Laplacian on the specified partition. Our main result shows
that under appropriate conditions, the posterior distribution function contracts
pointwisely at rate (n/log n)−ρ/3(ρ+2), where ρ is the Hölder smoothness of the true
density. In addition to the theoretical results, computational methods for drawing
from the posterior using probabilistic programming are provided. The performance
of the computational methods is illustrated in two examples.

4.1. Introduction

4.1.1. Problem formulation

Survival analysis is concerned with statistical modelling of the time until a partic-
ular event occurs. The event may for example be the onset of a disease or failure of
equipment. Rather than observing the time of event exactly, censoring is common
in practice. If the event time is only observed when it occurs prior to a specific
(censoring) time, one speaks of right censoring. In case it is only known whether
the event took place before a censoring time or not, one speaks of current status
censoring. The resulting data are then called current status data.

In this chapter we consider the current status continuous mark model where, if
the event takes place before an inspection time T , a “continuous mark” variable
is observed as well. More specifically, denote the event time by X and the mark
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4. Bayesian nonparametric estimation for current status continuous mark model

by Y . Independent of (X, Y ), there is an inspection time T with density function
g on [0,∞). Instead of observing each (X, Y ) directly, we observe inspection time
T together with the information whether the event occurred before time T or not.
If it did so, the additional mark random variable Y is also observed, for which we
assume P (Y = 0) = 0. Hence, an observation of this experiment can be denoted by
W = (T, Z) = (T,∆ ·Y ) where ∆ = 1{X≤T} (note that, equivalently, ∆ = 1{Z>0}).
We will assume this experiment is repeated n times independently, leading to the
observation set Dn = {Wi, i = 1, . . . , n}. We are interested in estimating the joint
distribution function F0 of (X, Y ) nonparametrically, based on Dn.

An application of this model is the HIV vaccine trial studied by Hudgens,
Maathuis & Gilbert (2007). Here, the mark is a specifically defined viral dis-
tance that is only observed if a participant to the trial got HIV infected before the
moment of inspection.

4.1.2. Related literature

In this section we review earlier research efforts on models closely related to that
considered here.

Survival analysis with a continuous mark can be viewed as the continuous ver-
sion of the classical competing risks model. In the latter model, failure is due
to either of K competing risks (with K fixed) leading to a mark value that is of
categorical type. As the mark variable encodes the cause of failure it is only ob-
served if failure has occurred before inspection. These “cause events” are known as
competing risks. Groeneboom, Maathuis & Wellner (2008) study nonparametric
estimation for current status data with competing risks. In that paper, they show
that the nonparametric maximum likelihood estimator (NPMLE) is consistent and
converges globally and locally at rate n1/3.

Huang & Louis (1998) consider the continuous mark model under right-censoring,
which is more informative compared to the current-status case because the exact
event time is observed for noncensored data. For the nonparametric maximum
likelihood estimator of the joint distribution function of (X, Y ) at a fixed point,
asymptotic normality is shown.

Hudgens, Maathuis & Gilbert (2007) consider interval censoring case k, k = 1
being the specific setting of current-status data considered here. In this paper the
authors show that both the NPMLE and a newly introduced estimator termed
“midpoint imputation MLE” are inconsistent. However, coarsening the mark vari-
able (i.e. making it discrete, turning the setting to that of the competing risks
model), leads to a consistent NPMLE. This is in agreement with the results in
Maathuis & Wellner (2008).

Groeneboom, Jongbloed & Witte (2011) and Groeneboom, Jongbloed & Witte
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(2012) consider the exact setting of this paper using frequentist estimation meth-
ods. In Groeneboom, Jongbloed & Witte (2011) two plug-in inverse estimators
are proposed. They prove that these estimators are consistent and derive the
pointwise asymptotic distribution of both estimators. Groeneboom, Jongbloed &
Witte (2012) define a nonparametric estimator for the distribution function at a
fixed point by finding the maximiser of a smoothed version of the log-likelihood.
Pointwise consistency of the estimator is established. In both papers numerical
illustrations are included.

4.1.3. Contribution

In this chapter, we consider Bayesian nonparametric estimation of the bivariate
distribution function F0 in the current status continuous mark model. This ap-
proach has not been adopted before, neither from a theoretical nor computational
perspective (within the Bayesian setting). Whereas consistent nonparametric es-
timators exist within frequentist inference, convergence rates are unknown. We
prove consistency and derive Bayesian contraction rates for the bivariate distri-
bution function of (X, Y ) using a prior on the joint density f of (X, Y ) that is
piecewise constant. For the values on the bins we consider two different prior spec-
ifications. Our main result shows that under appropriate conditions, the posterior
distribution function contracts pointwisely at rate (n/log n)−ρ/3(ρ+2), where ρ is
the Hölder smoothness of the true density.

The proof is based on general results from Ghosal & Van der Vaart (2017) for ob-
taining Bayesian contraction rates. Essentially, it requires the derivation of suitable
test functions and proving that the prior puts sufficient mass in a neighbourhood
of the “true” bivariate distribution. The latter is proved by exploiting the specific
structure of our prior. In addition to our theoretical results, we provide computa-
tional methods for drawing from the posterior using probabilistic programming in
the Turing Language under Julia (see Bezanson et al.(2017), Ge, Xu & Ghahra-
mani (2018)). The performance of our computational methods is illustrated in two
examples.

4.1.4. Outline

The outline of this chapter is as follows. In section 4.2 we introduce further notation
for the current status continuous mark model and detail the two priors considered.
Subsequently, we derive posterior contraction rates under some assumptions on
the underlying bivariate distribution in section 4.3. The proof is given in section
4.4. Section 4.5 contains numerical illustrations.
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4. Bayesian nonparametric estimation for current status continuous mark model

4.1.5. Notation

For two sequences {an} and {bn} of positive real numbers, the notation an . bn
(or bn & an) means that there exists a constant C > 0, independent of n, such
that an ≤ Cbn. We write an � bn if both an . bn and an & bn hold. We denote by
F and F0 the cumulative distribution functions corresponding to the probability
densities f and f0 respectively. The Hellinger distance between two densities f, g
is written as h2(f, g) = 1

2

∫
(f 1/2 − g1/2)2. The Kullback-Leibler divergence of f

and g and the L2-norm of log(f/g) (under f) by

KL(f, g) =

∫
f log

f

g
, V (f, g) =

∫
f

(
log

f

g

)2

.

4.2. Likelihood and prior specification

4.2.1. Likelihood

In this section we derive the likelihood for the joint density f based on data Dn.
As W1, . . . ,Wn are independent and identically distributed, it suffices to derive the
joint density of W1 = (T1, Z1) (with respect to an appropriate dominating mea-
sure). Recall that f denotes the density of (X, Y ). Let F denote the corresponding
distribution function of (X, Y ). The marginal distribution function of X is given
by FX(t) =

∫ t
0

∫∞
0
f(u, v) dv du. Define the measure µ on [0,∞)2 by

µ(B) = µ2(B) + µ1({x ∈ [0,∞) : (x, 0) ∈ B}), B ∈ B

where B is the Borel σ−algebra on [0,∞)2 and µi is Lebesgue measure on Ri. The
density of the law of W1 with respect to µ is then given by

sf (t, z) = g(t)
(
1{z>0}∂2F (t, z) + 1{z=0}(1− FX(t))

)
, (4.1)

where ∂2F (t, z) = ∂
∂z
F (t, z) =

∫ t
0
f(u, z) du. By independence the likelihood of f

based on Dn is given by l(f) =
∏n

i=1 sf (Ti, Zi).

4.2.2. Prior

In this section, we define a prior on the class of all bivariate density functions on
R2, denote as

F =

{
f : R2 → [0,∞) :

∫
R2

f(x, y) dx dy = 1

}
.
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For any f ∈ F , if S denotes the support of f and ∪jCj, j = 1, . . . , pn is a partition
of S, we define a prior on F by constructing

fθ(x, y) =
∑
j

θj
|Cj|

1Cj(x, y), (x, y) ∈ R2,

where |C|= µ2(C) is the Lebesgue measure of the set C. Let θ denote the vector
θ = (θ1, , . . . , θpn). We require that all θj are nonnegative and that θ satisfies∑

j θj = 1. We consider two types of prior on θ.

1. D irichlet. For a fixed parameter α = (α1, . . . , αpn) consider θ ∼ Dirichlet(α).
This prior is attractive as draws from the posterior distribution can be ob-
tained using a straightforward data-augmentation algorithm (Cf. Section
4.5).

2. N ormal with graph Laplacian covariance matrix. For a positive-definite ma-
trix Υ, let H ∼ Npn(0, τ−1Υ−1), conditionally on τ . Each element of H
corresponds to one value of θ. Next, set

θj =
ψ(Hj)∑
j ψ(Hj)

, where ψ(x) = ex/(1 + ex). (4.2)

The matrix Υ is chosen as follows. The partition of S induces a graph
structure on the bins, where each bin corresponds to a node in the graph,
and nodes are connected when bins are adjacent (meaning that they are either
horizontal or vertical “neighbours”). Let L denote the graph Laplacian of
the graph obtained in this way. This is the pn × pn matrix given by

Li,i′ =


degree node i if i = i′

−1 if i 6= i′ and nodes i and i′ are connected

0 otherwise.

. (4.3)

Now we take
Υ = L+ p−2

n I.

Remark 4.2.1. A property of the Dirichlet prior is that values of θj in adjacent
bins are a negatively correlated, preventing the density to capture smoothness.
See more in numerical study section 4.5. The idea of the graph-Laplacian prior
is to induce positive correlation on adjacent bins and thereby specify a prior that
produces draws is smoother on the graph corresponding to the partition. As we
will see, this comes at the cost of increased computational complexity.
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4. Bayesian nonparametric estimation for current status continuous mark model

Remark 4.2.2. One can argue whether the presented prior specifications are truly
nonparametric. It is not if one adopts as definition that the size of the parame-
ter should be learned by the data. For that, a solution could be to put a prior
on pn as well. While possible, this would severely complicate drawing from the
posterior. As an alternative, one can take large values of pn (so that the model is
high-dimensional), and let the data determine the amount of smoothing by incor-
porating flexibility in the prior. As the Dirichlet prior lacks smoothness properties,
fixing large values of pn will lead to overparametrisation, resulting in high variance
estimates (under smoothing). On the contrary, as we will show in the numerical
examples, for the graph Laplacian prior, this overparametrisation can be substan-
tially balanced/regularised by equipping the parameter τ with a prior distribution.
The idea of histogram type priors with positively correlated adjacent bins has re-
cently been used successfully in other settings as well, see for instance Gugushvili
et al. (2018), Gugushvili et al. (2019).

4.3. Posterior contraction

In this section we derive a contraction rate for the posterior distribution of F0.
Denote as Πn(· | Dn) under the prior measure Πn described in section 4.2.2.

Assumption 4.3.1. The underlying joint density of the event time and mark, f0,
has compact support given by M = [0,M1] × [0,M2] and is ρ-Hölder continuous
on M (ρ ∈ (0, 1]). That is, there exists a positive constant L such that for any
(x1, y1) and (x2, y2) in M,

|f0(x1, y1)− f0(x2, y2)|≤ L ‖(x1, y1)− (x2, y2)‖ρ. (4.4)

In addition, there exist positive constants M and M such that

M(min(x, y)ρ) ≤ f0(x, y) ≤M, for all (x, y) ∈M. (4.5)

Assumption 4.3.2. The censoring density g is bounded away from 0 and infinity
on (0,M1). That is, there exist positive constants and K such that 0 < K ≤
g(t) ≤ K <∞ for all t ∈ (0,M1) .

Assumption 4.3.3. Conditions for prior:

1. For the Dirichlet prior, parameter α = (α1, . . . , αpn) satisfies ap−1
n ≤ αl ≤ 1

for all l = 1, . . . , pn and some constant a ∈ R+.
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2. For the graph-Laplacian prior, the prior specification is completed by speci-
fying a prior distribution for τ supported on the positive halfline. For com-
putational convenience, we assign the Gamma(β, γ) distribution prior for τ
with density function fτ (τ) ∝ τβ−1e−γτ which is a conjugate prior of normal
distribution.

Theorem 4.3.4. Fix (x, y) ∈ [0,M1] × (0,M2]. Consider either of the priors
defined in section 4.2.2 and hyper-parameters satisfy assumption 4.3.3. Define

ηn = (n/log n)−
ρ

3(ρ+2) where ρ denotes the Hölder parameter in assumption 4.3.1.
If f0 and g satisfy assumptions 4.3.1 and 4.3.2 respectively, then for sufficiently
large C

E0Πn(f ∈ F : |F (x, y)− F0(x, y)|> Cηn | Dn)→ 0, as n→∞.

Before we give a proof of theorem 4.3.4, we state two lemmas which are sufficient

to give the contraction rate in the theorem. Define εn � (n/log n)−
ρ

2(ρ+2) (more
specifically (C.9)), note that εn ≤ ηn and nε2

n →∞ as n→∞.

Lemma 4.3.5. Fix f0 and g satisfying the conditions in assumption 4.3.1 and
4.3.2. Define

Sn =
{
f ∈ F :KL(sf0 , sf ) ≤ ε2

n, V (sf0 , sf ) ≤ ε2
n

}
. (4.6)

Then we have Πn(Sn) ≥ e−cnε
2
n for some constant c > 0.

Lemma 4.3.6. Fix (x, y) ∈ [0,M1]×(0,M2]. Define Un(x, y) := {f ∈ F : |F (x, y)−
F0(x, y)|> Cηn}. There exists a sequence of test functions Φn such that

E0(Φn) = o(1),

sup
f∈Un(t,z)

Ef (1− Φn) ≤ c1e
−c2C2nε2n , (4.7)

for some positive constants c1, c2 and C appeared in theorem 4.3.4.

Proof of Theorem 4.3.4. The proof follows from the general idea in Ghosal, Ghosh
& Van der Vaart (2000). Fix (x, y) ∈ [0,M1] × (0,M2], define Un(x, y) := {f ∈
F : |F (x, y)− F0(x, y)|> Cηn}. Write the posterior mass on the set Un(x, y) as

Πn(Un(x, y) | Dn) = D−1
n

∫
U

n∏
i=1

sf (Wi)

sf0(Wi)
dΠn(f),

where

Dn =

∫ n∏
i=1

sf (Wi)

sf0(Wi)
dΠn(f).
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Lemma 4.3.5 implies that (see lemma 8.1 in Ghosal, Ghosh & Van der Vaart (2000))

P0(Dn ≤ exp(−(c+ 1)nε2
n))→ 0, as n→∞.

Then we can only consider on event {Dn ≥ exp(−(c + 1)nε2
n)}. Using the test

sequence in lemma 4.3.6 the posterior mass of Un(x, y) satisfies

E0Πn(Un(x, y) | Dn) = E0Πn(Un(x, y) | Dn)Φn + E0Πn(Un(x, y) | Dn)(1− Φn)

≤ E0Φn + e(c+1)nε2nE0

∫
Un(x,y)

n∏
i=1

sf (Wi)

sf0(Wi)
(1− Φn) dΠn(f)

= E0Φn + e(c+1)nε2n

∫
Un(x,y)

Ef (1− Φn) dΠn(f)

≤ o(1) + c1e
(c+1)nε2ne−c2C

2nε2n → 0.

The final step follows by taking C (appeared in theorem 4.3.4) large enough such
that c2C

2 > c+ 1.

4.4. Proof of Lemmas

4.4.1. Proof of lemma 4.3.5

Proof. To give a lower bound for Πn(Sn), we construct a subset Ωn of Sn and derive
a lower bound of Πn(Ωn) for both priors considered in section 4.2.2.

We first give a sequence of approximations for f0. Let δn = (n/log n)−
1
ρ+2 .

Denote An,j = ((j − 1)δn, jδn], Bn,k = ((k − 1)δn, kδn] for j = 1, 2, . . . , Jn −
1, k = 1, 2, . . . , Kn − 1 and An,Jn = ((Jn − 1)δn,M1], Bn,Kn = ((Kn − 1)δn,M2],
Jn = bM1δ

−1
n c, Kn = bM2δ

−1
n c. Then ∪j,k(An,j×Bn,k) is a regular partition onM.

Let f0,n be the piecewise constant density function defined by

f0,n(t, z) =
Jn∑
j=1

Kn∑
k=1

w0,j,k

|An,j ×Bn,k|
1An,j×Bn,k(t, z), (4.8)

where w0,j,k =
∫
An,j

∫
Bn,k

f0(u, v) dv du. That is, we approximate f0 by averaging

it on each bin. Note that f0,n has support M. Define the set

Ωn :=

{
f ∈ F : ||f − f0,n||∞≤

1

6
Mδρn, supp(f) ⊇M

}
. (4.9)
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By Lemma C.1.1 in appendix, we know that Ωn ⊆ Sn. Now we give a lower bound
for Πn(Ωn), for the two type of priors.

Let pn = JnKn denote the total number of bins. According to the prior specifi-
cations in section 4.2.2, for any f ∈ F , we parameterize

fθ(x, y) =
∑
j,k

θj,k
|An,j ×Bn,k|

1An,j×Bn,k(x, y), (x, y) ∈ R2,

where θ denotes the vector obtained by stacking all coefficients {θj,k, j = 1, . . . , Jn, k =
1, . . . , Kn}. Recall that f0,n is defined by the local averages {w0,j,k, j, k ≥ 1}. For
any (t, z) ∈ An,j ×Bn,k, j, k ≥ 1, we have

|fθ(t, z)− f0,n(t, z)|= |An,j ×Bn,k|−1|θj,k − w0,j,k|≤ δ−2
n max

j,k
|θj,k − w0,j,k|.

In the second step we use |An,j ×Bn,k|≥ δ2
n for all j, k. Hence{

fθ ∈ F : max
j,k
|θj,k − w0,j,k|≤

1

6
Mδρ+2

n

}
⊆ Ωn. (4.10)

Consider the two type of priors defined in section 4.2.2.
• Endowing prior θ ∼ Dirichlet(α), fixed α = (α1, . . . , αpn), ap−1

n ≤ αl ≤ 1 for
all l = 1, . . . , pn.

By Lemma 6.1 in Ghosal, Ghosh & Van der Vaart (2000), we have

Πn(Ωn) ≥ Πn

(
max
j,k
|θj,k − w0,j,k|≤

1

6
Mδρ+2

n

)
≥ Γ

(
pn∑
l=1

αl

)(
1

6
Mδρ+2

n

)pn pn∏
l=1

αl

≥ exp

(
log Γ(a) + pn log

(
1

6
Mδρ+2

n

)
+ pn log(ap−1

n )

)
& exp(−C1δ

−2
n log n) = exp(−cnε2

n)

for some constant C1, c > 0. This finishes the proof for the Dirichlet prior.

• Let θj,k =
ψ(Hj,k)∑
j,k ψ(Hj,k)

as defined in (4.2) and let τ ∼ Gamma(β, γ), H | τ ∼
Npn(0, τ−1Σ−1), where

Σ = L+ p−2
n I

and each element of the vector H has exactly same order with θ).
For the fixed values w0,j,k, 1 ≤ j ≤ Jn, 1 ≤ k ≤ Kn, there exists a matrix H0

such that

w0,j,k =
ψ(H0,j,k)∑
j,k ψ(H0,j,k)

.
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For the ease of exposition, we choose H0 such that it satisfies
∑

j,k ψ(H0,j,k) = 1,
then w0,j,k = ψ(H0,j,k) for all j, k.

Denote x = (x1, . . . , xm), x ∈ Rm for some m ∈ N. Define the function ζ(x) =
ψ(x1)∑m
j=1 ψ(xj)

. Using the inequality ab
(a+b)2 ≤ 1

4
for a, b ≥ 0, the partial derivatives of ζ

satisfy ∣∣∣∣∂ζ(x)

∂x1

∣∣∣∣ =
ψ(x1)(

∑
j≥2 ψ(xj))

(
∑m

j=1 ψ(xj))2(1 + ex1)
≤ 1

4
,∣∣∣∣∂ζ(x)

∂xl

∣∣∣∣ =
ψ(x1)ψ(xl)

(
∑m

j=1 ψ(xj))2(1 + exl)
≤ 1

4
, l = 2, . . . ,m.

Then we have for any x = (x1, . . . , xm) and x0
l = (x1, . . . , x

0
l , . . . , xm) ∈ Rm,

l = 1, . . . ,m

|ζ(x)− ζ(x0
l )|≤

1

4
|xl − x0

l |.

Hence for any x,x0 = (x0
1, . . . , x

0
m) ∈ Rm,

|ζ(x)− ζ(x0)| ≤ |ζ(x)− ζ(x0
1, x2, . . . , xm)|+|ζ(x0

1, x2, . . . , xm)− ζ(x0
1, x

0
2, . . . , xm)|

+ · · ·+ |ζ(x0
1, . . . , x

0
m−1, xm)− ζ(x0

1, . . . , x
0
m−1, x

0
m)|

≤ 1

4

m∑
l=1

|xl − x0
l |.

Let m = pn and x correspond to the vector H . Then we have for j, k ≥ 1,

|θj,k − w0,j,k|≤
1

4

∑
j,k

|Hj,k −H0,j,k|.

Combining this with (4.10), we have

Πn(Ωn) ≥ Πn({fH ∈ F : H ∈ Bn}),

where

Bn =

{
H : |Hj,k −H0,j,k|≤

2

3
Mδρ+2

n p−1
n , for all j, k

}
.

It is therefore sufficient to give a lower bound for the prior probability on {fH :
H ∈ Bn}. Note that

Πn({fH : H ∈ Bn})

=
γβ

Γ(α)

∫ ∞
0

τβ−1e−γτ (2π)−
pn
2 τ pn/2|Σ−1|1/2

∫
Bn

exp

(
− 1

2
τHTΣH

)
dH dτ.
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In order to calculate the integral
∫
Bn

exp(−1
2
τHTΣH) dH at the right hand side

for τ fixed, we first note the following facts. Denote the eigenvalues of Σ by
0 < λ1 < · · · < λpn . Then Σ has the following properties:

|Σ| = λ1 · · ·λpn ≤ (λpn)pn , (4.11)

tr(Σ) =

pn∑
l=1

λl =

pn∑
l=1

(Ll,l + p−2
n ) = p−1

n +

pn∑
l=1

Ll,l, (4.12)

xTΣx ≤ λpnx
Tx, for any pn dim vectorx, (4.13)

where |Σ| denotes the determinant of Σ. By definition of the Laplacian matrix L,
(4.3), we know

pn∑
l=1

Ll,l = 2 · 4 + 3(2(Jn − 2) + 2(Kn − 2)) + 4(Jn − 2)(Kn − 2) < 4pn,

the first term denotes we have 4 nodes of 2 connections (corners), the second item
denotes 2(Jn − 2) + 2(Kn − 2) of 3 connections (edges) and the final term counts
(Jn − 2)(Kn − 2) of full 4 connections (inside). Using (4.12), we know

λpn ≤
pn∑
l=1

λl = p−1
n +

pn∑
l=1

Ll,l ≤ 4pn + p−1
n (4.14)

Using (4.13), we have∫
Bn

exp

(
− 1

2
τHTΣH

)
dH ≥

∫
Bn

exp

(
− 1

2
τλpnH

TH

)
dH .

We give an upper bound for HTH . By assumption (4.5) again, we have Mδρ+2
n ≤

w0,j,k = ψ(H0,j,k) ≤ 4Mδ2
n, then we can bound H0,j,k by

log(Mδρ+2
n ) ≤ log

(
Mδρ+2

n

1−Mδρ+2
n

)
≤ H0,j,k ≤ log

(
4Mδ2

n

1− 4Mδ2
n

)
≤ log(8Mδ2

n) < 0.

Then for any H ∈ Bn,

Hj,k ≤ H0,j,k + 2Mδρ+2
n p−1

n ≤ log(8Mδ2
n) +Mδρ+2

n p−1
n < 0.

Hence

H2
j,k ≤ (H0,j,k − 2Mδρ+2

n p−1
n )2 ≤ (log(Mδρ+2

n )− 2Mδρ+2
n p−1

n )2 ≤ C2(log n)2
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for some constant C2 > 0. Then we have

HTH ≤ C2pn(log n)2.

Using this and the fact that Bn is a hyper-rectangle in Rpn ,∫
Bn

e−
1
2
τHTΣH dH ≥ exp

(
−1

2
C2τλpnpn(log n)2

)∫
Bn

1 · dH

=

(
4

3
Mδρ+2

n p−1
n

)pn
exp

(
−1

2
C2τλpnpn(log n)2

)
.

Hence we have

Πn({fH : H ∈ Bn}) ≥
γβ

Γ(α)
(2π)−

pn
2 3−pn(4Mδρ+2

n p−1
n )pn|Σ−1|1/2

×
∫ ∞

0

τβ+ pn
2
−1 exp

(
−
(1

2
C2λpnpn(log n)2 + γ

)
τ

)
dτ

=
γβ

Γ(α)
(4M(12π)−

1
2 δρ+2
n p−1

n )pn|Σ−1|1/2 Γ(β + pn/2)

(1
2
C2λpnpn(log n)2 + γ)β+ pn

2

≥ γβ

Γ(α)
(4M(12π)−

1
2λ
− 1

2
pn δ

ρ+2
n p−1

n )pn
(

β + pn/2

(1
2
eC2λpnpn(log n)2 + γ)

)β+ pn
2

(β + pn/2)−1/2.

In the final step we use (4.11), |Σ−1|1/2= |Σ|− 1
2≥ (λpn)−

1
2
pn and Γ(x) � (x/e)xx−1/2

when x is large enough. By the inequality (4.14), we further have

Πn({fH : H ∈ Bn}) & exp

(
pn log(4M(12π)−

1
2 δρ+2
n p−1

n (4pn + p−1
n )−

1
2 )

+
(
β +

pn
2

)
log(C3p

−1
n (log n)−2)− 1

2
log(β + pn/2)

)
& exp(−C4δ

−2
n log n) = exp(−cnε2

n)

for some positive constants C3, C4, c. In the last step we use (C.9).
For both types of prior, we derived Π(Ωn) & exp(−cnε2

n), finishing the proof.

4.4.2. Proof of lemma 4.3.6

Proof. Recall that ηn = (n/log n)−
ρ

3(ρ+2) . Note that ηn � ε
2/3
n . For (t, z) ∈ [0,M1]×

(0,M2], define sets

Un,1(t, z) = {f : F (t, z) > F0(t, z) + Cηn},
Un,2(t, z) = {f : F (t, z) < F0(t, z)− Cηn}.
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Then Un(t, z) = Un,1(t, z) ∪ Un,2(t, z). We consider different test functions in dif-
ferent regimes of t: t ∈ (0,M1) and t ∈ {0,M1}.

Now fix (t, z) ∈ (0,M1)× (0,M2]. Define test sequences

Φ+
n (t, z) = 1

{
1

n

n∑
i=1

κ+
n (t, z;Ti, Zi)−

∫ t+hn

t

g(x)F0(x, z) dx > en/2

}
,

Φ−n (t, z) = 1

{
1

n

n∑
i=1

κ−n (t, z;Ti, Zi)−
∫ t

t−hn
g(x)F0(x, z) dx < −en/2

}
,

where

κ+
n (t, z;T, Z) = 1[t,t+hn](T )1(0,z](Z),

κ−n (t, z;T, Z) = 1[t−hn,t](T )1(0,z](Z),

and let

hn = (2M2)−1Cηn min(1,M
−1

) and en =
1

2
CKηnhn

be two sequences tending to zero. Recall that C is defined in theorem 4.3.4. By
assumption 4.3.2, we have K ≤ g ≤ K. Then for any bivariate density function f ,

Ef (κ+
n (t, z;T, Z)) =

∫
1[t,t+hn](x)1(0,z](u)sf (x, u) dµ(x, u)

=

∫ t+hn

t

∫ z

0

g(x)∂2F (x, u) dµ2(x, u)

=

∫ t+hn

t

g(x)F (x, z) dx

≤
∫ t+hn

t

g(x) dx ≤ Khn

where sf is the density function of (T, Z) defined in (4.1). The same upper bound
holds for Ef (κ−n (t, z;T, Z)). By Bernstein’s inequality (Van der Vaart (1998),
lemma 19.32),

E0(max(Φ+
n (t, z),Φ−n (t, z))) ≤ 2 exp

(
− 1

16

ne2
n

Khn + en/2

)
= o(1).

When f ∈ Un,1(t, z), for any x ∈ [t, t + hn], by the monotonicity of F and
f0 ≤M , we have

F (x, z)− F0(x, z) ≥ F (t, z)− F0(t, z)− (F0(x, z)− F0(t, z))

≥ Cηn −MM2hn ≥ Cηn/2.
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Then it follows∫ t+hn

t

g(x)(F (x, z)− F0(x, z)) dx ≥ Cηn
2

∫ t+hn

t

g(x) dx ≥ CK

2
ηnhn = en.

Hence, for f ∈ Un,1 we have

Ef (1− Φ+
n (t, z)) = Pf

(
1

n

n∑
i=1

κ+
n (t, z|Ti, Zi)−

∫ t+hn

t

g(x)F0(x, z) dx < en/2

)

≤ Pf

(
1

n

n∑
i=1

κ+
n (t, z|Ti, Zi)−

∫ t+hn

t

g(x)F (x, z) dx ≤ −en/2

)
.

Further, Bernstein’s inequality gives

Ef (1− Φ+
n (t, z)) ≤ 2 exp

(
− 1

16

ne2
n

Khn + en/2

)
≤ c1e

−c2C2nε2n

for some constants c1, c2 > 0.
When f ∈ Un,2(t, z), x ∈ [t− hn, t], we have

F (x, z)− F0(x, z) ≤ F (t, z)− F0(t, z) + F0(t, z)− F0(x, z)

≤ −Cηn +MM2hn ≤ −Cηn/2

and ∫ t

t−hn
g(x)(F (x, z)− F0(x, z)) dx ≤ −CK

2
ηnhn = −en.

Hence for f ∈ Un,2, the type II error satisfies

Ef (1− Φ−n (t, z)) ≤ Pf

(
1

n

n∑
i=1

κ−n (t, z|Ti, Zi)−
∫ t

t−hn
g(x)F (x, z) dx ≥ en/2

)
.

Using Bernstein’s inequality again, we have

Ef (1− Φ−n (t, z)) ≤ c1e
−c2C2nε2n , for some c1, c2 > 0.

For the boundary case (t, z) ∈ {0,M1}× (0,M2]. With the similar idea, in order
to give non-zero test sequences, we use κ+

n define Φ+
n (0, z),Φ−n (0, z) and κ−n define

Φ+
n (M1, z),Φ

−
n (M1, z). When f ∈ Un,1(0, z), using the tests sequence Φ+

n (0, z)
defined in case t ∈ (0,M1), we have

sup
f∈Un,1(0,z)

Ef (1− Φ+
n (0, z)) ≤ c1e

−c2C2nε2n .
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When f ∈ Un,2(M1, z), using the tests sequence Φ−n (M1, z) defined in case t ∈
(0,M1), we have

sup
f∈Un,2(M1,z)

Ef (1− Φ−n (M1, z)) ≤ c1e
−c2C2nε2n .

Note that for any f ∼ Πn and t ∈ An,j, j = 1, . . . , Jn,∫ M2

0

f(t, v) dv = |An,j|−1

Kn∑
k=1

θj,k ≤ δ−1
n Kn = M2. (4.15)

Here we use θj,k ≤ 1 and |An,j|≥ δn. When f ∈ Un,2(0, z), for any x ∈ [0, hn], using
(4.15) we have

F (x, z)− F0(x, z) ≤ F (x, z)− F (0, z) + F (0, z)− F0(0, z)

≤
∫ x

0

∫ z

0

f(u, v) dv du− Cηn

≤M2hn − Cηn ≤ −Cηn/2

and ∫ hn

0

g(x)(F (x, z)− F0(x, z)) dx ≤ −en.

Define tests sequence

Φ−n (0, z) = 1

{
1

n

n∑
i=1

κ+
n (0, z|Ti, Zi)−

∫ hn

0

g(x)F0(x, z) dx < −en/2

}
.

Hence by the Bernstein’s inequality,

Ef (1− Φ−n (0, z)) ≤ c1e
−c2C2nε2n .

By the similar arguments as above, when f ∈ Un,1(M1, z), for any x ∈ [M1 −
hn,M1], using (4.15) we have

F (x, z)− F0(x, z) ≥ F (x, z)− F (M1, z) + F (M1, z)− F0(M1, z)

≥ Cηn −
∫ M1

M1−hn

∫ z

0

f(u, v) dv du

≥ Cηn −M2hn ≥ Cηn/2

and ∫ hn

0

g(x)(F (x, z)− F0(x, z)) dx ≥ −en.
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Define tests sequence

Φ+
n (M1, z) = 1

{
1

n

n∑
i=1

κ−n (M1, z|Ti, Zi)−
∫ M1

M1−hn
g(x)F0(x, z) dx > en/2

}
,

hence,
Ef (1− Φ+

n (M1, z)) ≤ c1e
−c2C2nε2n .

To conclude, take Φn(t, z) = max(Φ+
n (t, z),Φ−n (t, z)), we derived

E0Φn(t, z) = o(1),

sup
f∈Un(t,z)

Ef (1− Φn(t, z)) ≤ c1e
−c2C2nε2n .

4.5. Computational study

In this section we present algorithms for drawing from the posterior distribution
for both priors described in section 4.2.2.

4.5.1. Dirichlet prior

First, we consider the case where {(Xi, Yi), i = 1, . . . , n} is a sequence of inde-
pendent random vectors, with common density f0 that is piecewise constant on
An,j ×Bn,k and compactly supported. This “no-censoring” model has likelihood

l(θ) =
∏
j,k

θ
Cj,k
j,k ,

where Cj,k =
∑

i 1{(Xi, Yi) ∈ An,j×Bn,k} denotes the number of observations that
fall in bin An,i × Bn,k. Clearly, the Dirichlet prior is conjugate for the likelihood,
resulting in the posterior being of Dirichlet type as well and known in closed form.
In case of censoring, draws from the posterior for the Dirichlet prior can be obtained
by data-augmentation, where the following two steps are alternated

1. Given θ and censored data, simulate the “full data”. This is tractable since
the censoring scheme tells us in which collection of bins the actual observation
can be located. Then one can renormalise the density f conditional on these
bins and select a specific bin accordingly and generate the “full data”. Cf.
Figure 4.1.

2. Given the “full data”, draw samples for θ from the posterior according to a
Dirichlet distribution.
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ti ti

Figure 4.1.: Left: if xi ≤ ti the mark is observed. Right: if xi > ti the mark is not
observed.

4.5.2. Graph Laplacian prior

For the graph-Laplacian prior, one could opt for a data-augmentation scheme as
well, but its attractiveness is lost, since step (2) is not anymore of simple form.
Therefore, we propose to bypass data-augmentation in this case and use a prob-
abilistic programming language to draw from the posterior. In such a language,
only the hierarchical scheme and sampling method need to be specified. From this,
the likelihood and prior are computed. Subsequently generic implementations of
sampling methods are called. An example of such a language is STAN, where
Hamiltonian Monte Carlo (HMC), or more specifically the No U-Turn Sampler
(NUTS) (see for instance Robert et al. (2018), Van de Meent et al. (2018), Betan-
court (2018)), is the sampler used. More recently, an implementation in the Julia
language (see Bezanson et al.(2017)) has been provided in the Turing package (see
Ge, Xu & Ghahramani (2018)). In this section we will use this package.

Unfortunately, there is presently no easy way to specify models with censored
observations within the Turing-language. However, the model with censoring can
easily be tweaked into a more familiar form that specifies the likelihood correctly.
The only essential for a probabilistic programming language are the likelihood and
hierarchical model specification. Specification of the prior is completely straight-
forward, while the likelihood can be specified by assuming a model with (condi-
tionally independent) Bernoulli distributed random variables Z1, . . . , Zn. For the
i-th observation, let Ii denote the set of indices corresponding to the shaded areas
as in either left- or right-hand-side panel of Figure 4.1. Hence, the union of all
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4. Bayesian nonparametric estimation for current status continuous mark model

boxes with indices in Ii specifies the area where the i-th observation is located.
The success probability of Zi is then given by inner product of the vector of shaded
areas with the vector of corresponding probabilities θj,k. Viewed in this way, the
observation vector is simply a vector of length n consisting of ones, corresponding
to observations z1 = z2 = . . . = zn = 1. The actual amount of programming is
modest (Cf. appendix C.2).

4.5.3. Numerical examples

In the following simulations, we use the DynamicNUTS sampler from Hoffman
& Gelman (2014). For the Dirichlet prior we took 5, 000 iterations of which the
first half was discarded as burn-in. For the graph-Laplacian prior we took 2, 000
iterations or which the first 100 iterations were discarded as burn-in.

We will consider the following data generating settings for the joint distribution
of (X, Y ):

1. f(x, y) = (x + y)1[0,1]×[0,1](x, y) (similar to example in Groeneboom, Jong-
bloed & Witte (2012));

2. the density of a Gaussian copula with correlation equal to −0.7.

In all cases we assume that T ∼
√
U where U is uniformly distributed on [0, 1]. This

implies that the density of T is given by t 7→ 2t1[0,1](t). For the graph-Laplacian
prior we took Σ = L+ 0.01I where L is defined in (4.3).

Experiment 1

Here we take density (1), sample size 100 and Jn = Kn = 5. In Figure 4.2 we show
traceplots for the DynamicNUTS sampler. In the top row of Figure 4.3 we show
for both priors a plot where each bin is coloured according to the deviation of the
estimated posterior mean bin probability from the true bin probability. Clearly, the
graph-Laplacian gives a much better fit. Moreover, the deviations visually appear
to be smoother, in the sense that adjacent blocks tend to have similar colours.

Next, we repeat the experiment, though with a much finer grid specified by
Jn = Kn = 10. Traceplots and a plot of the errors made are in figures 4.4 and the
bottom panel of 4.3 respectively. Clearly, the errors are much smaller compared
to Jn = Kn = 5. Moreover, the smoothing effect induced by the graph Laplacian
prior is clearly visible. The sampler seems to have mixed after iteration 500 and for
this reason the initial 500 samples were discarded as burnin samples. To compare
the performance under both priors, we calculated the square root of the summed
squared errors (

√
SSE). The results are as follows:
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Figure 4.2.: Trace plots for a selected group of parameters in experiment 1, Jn =
Kn = 5.

Resolution / prior Dirichlet graph-Laplacian

Jn = Kn = 5 0.201 0.035
Jn = Kn = 10 0.070 0.018

This confirms the superior performance of the graph-Laplacian prior for this ex-
ample. As the true density is smooth, the latter is as expected.

Experiment 2

Here, we take the Gaussian copula, again with sample size n = 100. The setup
of the experiment is the same as that of experiments 1. The results are displayed
in figure 4.5. Again, we computed the square root of the summed squared errors
(
√
SSE). The results are as follows:

Resolution / prior Dirichlet graph-Laplacian

Jn = Kn = 5 0.225 0.147
Jn = Kn = 10 0.160 0.080

As expected, the performance of the graph-Laplacian outperforms that of the
Dirichlet.
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Figure 4.3.: Experiment 1: each bin is coloured according to the error within the
bin, which is the estimated posterior mean of the bin probability minus
the true bin probability. Left: Dirichlet prior. Right: graph-Laplacian
prior. Note that the scale of colouring is the same in both figures.
Top: Jn = Kn = 5. Bottom Jn = Kn = 10.
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Figure 4.4.: Trace plots for a selected group of parameters in experiment 1, Jn =
Kn = 10.
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Figure 4.5.: Experiment 2: each bin is coloured according to the error within the
bin, which is the estimated posterior mean of the bin probability minus
the true bin probability. Left: Dirichlet prior. Right: graph-Laplacian
prior. Note that the scale of colouring is the same in both figures.
Top: Jn = Kn = 5. Bottom Jn = Kn = 10.
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A.1. Review and supplementary proof of inequality
(2.15)

In this section we point out a technical issue arising in the proof of inequality
(2.15). As mentioned in section 2.2.2, it suffices to lower bound the prior mass
of a certain subset Nn of Sn, for which lower bounding Π(Nn) is tractable. To
construct this set, we first need some approximation results.

Lemma A.1.1. For any θ0 > 0 there exists a discrete measure P̃ =
∑Ñ

i=1 p̃iδyi,

with yi ∈ [θ0,∞), pi ∈ [0, 1], Ñ . 1/εn and
∑Ñ

i=1 pi =
∫∞
θ0
f0(x) dx such that∫ ∞

θ0

(√
f0(x)−

√
fP̃ (x)

)2

dx . ε2
n.

Moreover, the sequence {yi} can be taken such that |yi − yj|≥ 2ε2
n for all i, j ≤ Ñ .

Proof. Without the claimed separation property, existence of the discrete measure
follows from lemma 11 in Salomond (2014). Denote this measure by P =

∑N
i=1 piδzi

and note that N . 1/εn. The set y1, . . . , yÑ is obtained from {z1, . . . , zN} by
removing points from the latter set which are not 2ε2

n-separated. Clearly, Ñ ≤
N . 1/εn. The mass pi of any removed point zi is subsequently added to the point
yj (1 ≤ j ≤ Ñ) that is closest to zi. Denote the mass of yj, obtained in this way,

by p̃j. Hence, we can written P̃ =
∑Ñ

j=1 p̃jδyj =
∑N

i=1 piδyk(i)
, where k(i) = j if pi

assigned to p̃j. Furthermore,

L1 (fP , fP̃ ) =

∫ ∣∣∣ N∑
i=1

piψx(zi)−
Ñ∑
j=1

p̃jψx(yj)
∣∣∣ dx

=

∫ ∣∣∣ N∑
i=1

pi(ψx(zi)− ψx(yk(i)))
∣∣∣ dx

=

∫ ∣∣∣ ∑
i:zi 6=yk(i)

pi(ψx(zi)− ψx(yk(i)))
∣∣∣ dx
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Since for any θ0 < θ1 < θ2,∫
|ψx(θ1)− ψx(θ2)| dx =

∫
x≤θ1

+

∫
θ1<x≤θ2

+

∫
x>θ2

|ψx(θ1)− ψx(θ2)| dx

= 2(θ2 − θ1)/θ2 . θ2 − θ1.

This implies that

L1 (fP , fP̃ ) ≤
∑

i:zi 6=yk(i)

pi

∫
|ψx(zi)− ψx(yk(i))| dx

≤
∑

i:zi 6=yk(i)

piε
2
n . ε2

n

The claimed result now follows from the triangle inequality and that the squared
Hellinger distance is bounded by the L1-distance.

Lemma A.1.2. Assume f0 satisfies assumption 2.2.2. There exists a discrete
probability measure P̃ , supported on {iεn, 1 ≤ i ≤ N ′} ∪ {yj, 1 ≤ j ≤ Ñ}, with
N ′ = bx0/εnc such that∫ ∞

0

(√
f0(x)−

√
fP̃ (x)

)2

dx . ε2
n.

Proof. By lemma A.1.1 applied with θ0 = x0 it suffices to prove
∫ x0

0
(
√
f0(x) −√

fP̃ (x))
2 dx . ε2

n. Define the measure P̃ =
∑N ′

i=1 p
′
iδiεn +

∑Ñ
j=1 p̃jδyj , where p̃j is

as defined in lemma A.1.1 and

p′i =

{
(f0((i− 1)εn)− f0(iεn))iεn if i < N ′

(f0((N ′ − 1)εn)− a)N ′εn if i = N ′

with a =
∑Ñ

j=1 p̃j/yj. Then for x ∈ ((i− 1)εn, iεn],

fP̃ (x) =
N ′∑
k=i

p′kψx(kεn) +
Ñ∑
j=1

p̃jψx(yj) =
N ′∑
k=i

p′k
kεn

+ a

=
N ′−1∑
k=i

kεn
f0((k − 1)εn)− f0(kεn)

kεn
+
f0((N ′ − 1)εn)− a

N ′εn
N ′εn + a

= f0((i− 1)εn)
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By the mean value theorem, it follows that∫ x0

0

(√
f0(x)−

√
fP̃ (x)

)2

dx =
N ′∑
i=1

∫ iεn

(i−1)εn

(√
f0(x)−

√
f0((i− 1)εn)

)2

dx

≤
N ′∑
i=1

∫ iεn

(i−1)εn

(
f ′0(ζi)

2
√
f0(ζi)

(x− (i− 1)εn)

)2

dx

≤
(supx∈[0,x0]|f ′0(x)|)2

4f0(θ0)

N ′∑
i=1

∫ iεn

(i−1)εn

(x− (i− 1)εn)2 dx

=
(supx∈[0,x0]|f ′0(x)|)2

12f0(θ0)

N ′∑
i=1

ε3
n . ε2

n

where ζi ∈ ((i− 1)εn, iεn).

By lemmas A.1.1 and A.1.2 we have.

Corollary A.1.3. Assume f0 satisfies assumption 2.2.2. There exists a discrete
probability measure P̃ , supported on {iεn, 1 ≤ i ≤ N ′} ∪ {yj, 1 ≤ j ≤ Ñ}, with
min1≤j≤Ñ yj ≥ x0, N ′ = bx0/εnc and Ñ . 1/εn such that∫ ∞

0

(√
f0(x)−

√
fP̃ (x)

)2

dx . ε2
n.

Moreover, the sequence {yi} can be taken such that |yi − yj|≥ 2ε2
n for all i, j ≤ Ñ .

For easy reference, we redefine the weights p̃j of the measure P̃ from this corollary

so that we can write P̃ =
∑N ′

j=1 p̃jδjεN +
∑Ñ

j=1 p̃N ′+jδyj .

Next, we use the support points and masses of the constructed measure P̃ . To
this end, define

Ui = (iεn, (i+ 1)εn] for i = 1, . . . , N ′

UN ′+i = [θ0 ∨ (yi − ε2
n), yi + ε2n] for i = 1, . . . , Ñ

U0 = [0,∞) ∩ (∪Ñ+N ′

i=1 Ui)
c,

such that U0, U1, . . . , UN ′+Ñ is a partition of [0,∞). Now define the following set
of decreasing densities

Nn = {fP ′ : P ′([0,∞)) = 1, |P ′(Ui)− p̃i|≤ ε2n/Ñ, 1 ≤ i ≤ Ñ +N ′}
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To prove that Nn is a subset of Sn a key property is that the measure P̃ is con-

structed such that
∫∞

0

(√
f0 −

√
fP̃
)2

. ε2
n (see the proof of lemma 8 in Salomond

(2014)). Moreover, the prior mass of Nn is tractable because U0, U1, . . . , UN ′+Ñ is
a partition of [0,∞).

Remark A.1.4. If the set Nn is defined with the masses p1, . . . , pN from lemma
A.1.1 (as is done in Salomond (2014), then the resulting sets {Ui} do not form a
partition. This results in intractable expressions for Π(Nn). For that reason, we
defined another discrete measure P̃ such that the support points are 2ε2

n separated
thereby fixing the issue.

The arguments for lower bounding Π(Nn) can now be finished as outlined in
Salomond (2014). Without loss of generality, for n sufficiently large we can assume
αG0(Ui) < 1, for i = 0, 1, . . . , N ′ + Ñ . Similar to Lemma 6.1 in Ghosal, Ghosh &
Van der Vaart (2000), we have

Π(Nn) ≥ Dir(P ′(Ui) ∈ [p̃i ± ε2n/Ñ ], 1 ≤ i ≤ Ñ +N ′)

≥ Γ(α)
N ′+Ñ∏
i=1

1

Γ(αG0(Ui))

∫ p̃i+ε
2
n/Ñ

0∧(p̃i−ε2n/Ñ)

x
αG0(Ui)−1
i dxi.

Here we use (P ′(U0))αG0(U0)−1 ≥ 1. As x
αG0(Ui)−1
i ≥ 1 we have∫ pi+ε

2
n/Ñ

0∧(pi−ε2n/Ñ)

x
αG0(Ui)−1
i dxi ≥ 2ε2nÑ

−1.

Substituting this bound into the lower bound on Π(Nn), combined with the in-
equalities βΓ(β) = Γ(β + 1) ≤ 1 for 0 < β ≤ 1 and Ñ . ε−1

n , we obtain

Π(Nn) & ε3(N ′+Ñ)
n

N ′+Ñ∏
i=1

G0(Ui) = exp

3(N ′ + Ñ) log εn +
N ′+Ñ∑
i=1

logG0(Ui)

 .

When N ′ < i ≤ N ′ + Ñ it is trivial that G0(Ui) & ε2n and therefore

N ′+Ñ∑
i=N ′+1

logG0(Ui) & Ñ log εn.

For bounding G0(Ui) when i ≤ N ′, we use the property of g0 in (2.5): g0(θ) ≥
ke−a/θ. In this case we have

G0(Ui) ≥ k

∫
Ui

e−a/θ dθ ≥ kεn exp(−a/(iεn)).
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Implying
N ′∑
i=1

logG0(Ui) ≥ N ′ log(kεn)− aε−1
n

N ′∑
i=1

i−1.

Since
∑N ′

i=1 i
−1 � log(N ′) � log ε−1

n , we therefore have

N ′∑
i=1

logG0(Ui) & ε−1
n log εn. (A.1)

Therefore, we obtain

Π(Sn) ≥ Π(Nn) & eC1ε
−1
n log εn & e−C1nε2n

for some C1 > 0. This is exactly as is required.

A.2. Some details on the simulation in section 2.5

In this section we provide some computational details for updating the θ-values in
the MCMC-sampler. Given the initialisation of (X,Z,Θ), we numerically evaluate∫
ψ(xi|θ)dG0(θ) for i = 1, . . . , n. If g0 is not conjugate to the uniform distribution,

we use the random walk type Metropolis-Hastings method sampling from fΘk|X,Z
using the normal distribution. For update each Zi, if NZi,−i = 0, we first remove
ΘZi . If we draw a new ”cluster” for Zi, 1 +∨(Z), then we also draw a new sample
for ΘZi according to (2.18). In this case, the product

∏
j:zj=k

ψ(xj|θk) only has

one item, that is fΘ|X,Z(θ|x, z) ∝ g0(θ)ψ(xi|θ). Sampling a value for θ is done as
follows:

1. If the base density g0 is as in (2.22), then we use rejection sampling. To that
end, if we set Y = 1/Θ, then

fY |X,Z(y|x, z) =
1

y2
fΘ|X,Z

(
1

y
|x, z

)
= C

1

y
e−y−1/y1[0,1/xi](y),

where C is a constant such that
∫∞

0
fY |X,Z(y|x, z) dy = 1. For reject sam-

pling, we choose the proposal density g(y) to be uniform on [0, 1/xi]. Since
1
y
e−y−1/y ≤ 0.18 for any y > 0, an upper bound for fY (y)

g(y)
is given by

M = 0.18·C
xi

. Hence, we sample from fY |X,Z as follows:

a) sample y ∼ g(y), u ∼ Unif(0, 1);
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b) if

u ≤ f(y)

Mg(y)
=
Ce−y−1/y

Myxi
=
e−y−1/y

0.18y
,

then accept and set θzi = 1/y; else return to step (a).

2. If the base density g0 is Gamma(2, 1), then

fΘ|X,Z(θ|x, z) = Ce−θ1[xi,∞)(θ),

where C = 1/
∫∞
xi
e−θ dθ = exi . Hence the cumulative distribution function

FΘ satisfies FΘ(θ) =
∫ θ
xi
Ce−t dt = 1 − exi−θ, when θ ≥ xi. By the inverse

cdf method, θ can be sampled by first sampling u ∼ Unif(0, 1) and next
computing xi − log(u).

A.3. Results for the simulation experiment of
Section 2.5.2 with sample size n = 1000

The results with n = 1000 are shown in figures A.1 and A.2.
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Figure A.1.: Same experiment as in Figure 2.1, this time with a sample of size 1000
from the standard Exponential distribution.
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Figure A.2.: Same experiment as in Figure 2.2, this time with a sample of size 1000
from the halfNormal distribution.
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B.1. Proofs of technical results

In the proof of lemma 3.3.3, we use the following lemma, it constructs a sequence
of approximations for F0.

Lemma B.1.1. Let F0 satisfy the conditions stated in theorem 3.3.1. Then there
exists a sequence of piece-wise linear concave distribution functions (Fm) such that

∞∑
k=1

pK(k)

∫
gk(t)hk,F0,Fm(t) dt→ 0 as m→∞.

Proof. Since F0 is a concave distribution function, its density f0 is decreasing on
[0,∞). We start off with the construction of functions fm that approximate f0

(Cf. Theorem 18 in Wu & Ghosal (2008)). Choose m ∈ N and let f̃0,m =
f01[0,m]

F0(m)
,

then f̃0,m → f0 point-wise as m → ∞. Let a1 and a2 be real numbers such that
f0(0) > a1 > a2 > 0. By the continuity of f0, there exists x2 > x1 satisfying
f̃0,m(x1) = a1 and f̃0,m(x2) = a2. See also Figure B.1. Let m1 ∈ N and m2 ∈ N
satisfy m1

m
< x1 ≤ m1+1

m
and m2

m
< x2 ≤ m2+1

m
. Then define

f̃m(x) =


f̃0,m( i

m
), i−1

m
< x ≤ i

m
, 1 ≤ i ≤ m1

a1,
m1

m
< x ≤ m1+1

m

f̃0,m( i−1
m

), i−1
m
< x ≤ i

m
,m1 + 1 < i ≤ m2.

and f̃m(0) = f̃0,m(m−1). Because f0 is continuous on [0,m], f̃m converges point-
wise to f0 as m → ∞. Note f̃m is not a probability density function, as it will
not integrate to one. We now normalize f̃m to a density function fm. First we can
rewrite f̃m as

f̃m(x) =
m2∑
i=1

w̃iϕ(x, i/m),
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where ϕ is defined as (3.3) and

w̃i =



i
m

(f̃0( i
m

)− f̃0( i+1
m

)), 1 ≤ i < m1

m1

m
(f̃0(m1

m
)− a1), i = m1

m1+1
m

(a1 − f̃0(m1+1
m

)), i = m1 + 1
i
m

(f̃0( i−1
m

)− f̃0( i
m

)), m1 + 1 < i < m2

mf̃0(m
2−1
m

), i = m2.

Let

wi =

w̃i
1−

∑m1−1
j=1 w̃j−

∑m2

j=m2+1 w̃j∑m2
j=m1

w̃j
, m1 ≤ i ≤ m2,

w̃i, otherwise.

Then
∑m2

i=1wi = 1 and wi ≥ 0 (for m sufficiently large). Finally, define a sequence
of probability density functions

fm(x) =
m2∑
i=1

wiϕ(x, i/m). (B.1)

Note that for x ≥ x2, fm(x) = f̃m(x). For each x ∈ [0,m],

|fm(x)− f̃m(x)| =

∣∣∣∣∣
m2∑
i=1

wiϕ(x,
i

m
)−

m2∑
i=1

w̃iϕ(x, i/m)

∣∣∣∣∣
=

∣∣∣∣∣
m2∑
i=m1

(wi − w̃i)ϕ(x, i/m)

∣∣∣∣∣
=

∣∣∣∣∣
(

1−
∑m1−1

j=2 w̃j −
∑m2

j=m2+1 w̃j∑m2

j=m1
w̃j

− 1

)
m2∑
i=m1

w̃iϕ(x, i/m)

∣∣∣∣∣
≤

∣∣∣∣∣1−
∑m1−1

j=2 w̃j −
∑m2

j=m2+1 w̃j∑m2

j=m1
w̃j

− 1

∣∣∣∣∣
(

m2∑
i=m1

w̃i

)
m

m1

=

∣∣∣∣∣1−
m1−1∑
i=2

w̃i −
m2∑

i=m2+1

w̃i −
m2∑
i=m1

w̃i

∣∣∣∣∣ mm1

=
∣∣∣1− 1

m

m2∑
i=2

f̃0,m(i/m)− a1

m

∣∣∣ m
m1

→ 0

Here we use that m/m1 → x−1
1 and that the expression within the modular signs

converges to 0 as difference between
∫ m

0
f̃0,m(x) dx and its Riemann sum approxi-

mate. Then we have |fm − f̃0,m|→ 0 point-wise and f̃0,m → f0 point-wise. Hence
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fm is a decreasing density and converges to f0 point-wise. See an example in figure
B.1 for visualize f0, f̃m and fm.
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Figure B.1.: Approximation for a decreasing function f0. First we construct a step
function f̃m, then we normalize the weights w̃i to wi such that fm
defined by (B.1) is a decreasing density function.

Define Fm(x) =
∫ x

0
fm(t) dt, then using dominated convergence, we have Fm →

F0 point-wise. As m→∞ (m > L), then it follows that for all k and t

hk,F0,Fm(t) =
k+1∑
j=1

(F0(tj)− F0(tj−1)) log
F0(tj)− F0(tj−1)

Fm(tj)− Fm(tj−1)
→ 0.

The next step is to find an integrable upper bound for |hk,F0,Fm|. Denote pj =

F0(tj)− F0(tj−1) for j = 1, . . . , k + 1 and note that
∑k+1

j=1 pj = 1. Then

|hk,F0,Fm(t)|≤
k+1∑
j=1

pj|log pj|+
k+1∑
j=1

pj|log(Fm(tj)− Fm(tj−1))|.

Using Lagrange multipliers, the first sum achieves its maximal value over all
probability vectors when all pj’s would be equal. Hence it can be bounded by
log(k + 1). For the second sum, by the construction of fm we know that when
x < x2, fm(x) ≥ fm(x2) = f̃m(x2) = f̃0,m(m2/m) ≥ a2; when x2 ≤ x ≤ m,
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fm(x) = f̃m(x) ≥ f̃0,m(x) = f0(x)
F0(m)

≥ f0(x). Since there exists j0 ∈ {1, . . . , k + 1}
such that tj0−1 < x2 ≤ tj0 , the second sum can be bounded by I1 + I2 + I3, where

I1 = −
j0−1∑
j=1

pj log(a2(tj − tj−1))

I2 = −pj0 log(a2(x2 − tj0−1) + F0(tj0 ∧m)− F0(x2))

I3 = −
k∑

j=j0+1

pj log pj + pk+1|log(F0(m)− F0(tk))|

Again using the Lagrange multipliers, we have

I1 = −
j0−1∑
j=1

pj
a2(tj − tj−1)

(a2(tj − tj−1)) log(a2(tj − tj−1))

≤ −M
a2

j0−1∑
j=1

(a2(tj − tj−1)) log(a2(tj − tj−1)) ≤ M

a2

log k

In the second step we use pj ≤ M(tj − tj−1). In the final step, we use that∑j0−1
j=1 a2(tj − tj−1) ≤ 1. To bound I2, we know that −x log x ≤ 1

e
when x ∈ (0, 1].

Splitting I2 into two parts, we have

I2 ≤ −(F0(tj0)− F0(x2)) log(F0(tj0 ∧m)

− F0(x2))− (F0(x2)− F0(tj0−1)) log(a2(x2 − tj0−1))

≤ 1

e

(
F0(tj0)− F0(x2)

F0(tj0 ∧m)− F0(x2)
+
F0(x2)− F0(tj0−1)

a2(x2 − tj0−1)

)
≤ 1

e

(
F0(tj0)

F0(tj0 ∧m)
+
M

a2

)
≤ 1

e

(
1

F0(L)
+
M

a2

)

In the last step, we used that
F0(tj0 )

F0(tj0∧m))
≤ max(1, 1/F0(m)) ≤ 1/F0(L). Similarly,

we can bound I3 by

I3 ≤ log k + pk+1|log(F0(m)− F0(tk))|

≤ log k +
1

e

1− F0(tk)

F0(m)− F0(tk)
≤ log k +

1

e

1

F0(m)
≤ log k +

1

e

1

F0(L)

Therefore, having these bounds we obtain

| hk,F0,Fm(t) |≤
(
M

a2

+ 2

)
log(k + 1) +

1

e

(
2

F0(L)
+
M

a2

)
.
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By the assumption in theorem 3.3.1, we have E log(K + 1) ≤ C(r)Kr∞ < ∞ for
some constant C(r) depend on r, hence

∞∑
k=1

pK(k)

∫
gk(t)|hk,F0,Fm(t)| dt <∞.

Therefore, by the dominated convergence theorem,

∞∑
k=1

pK(k)

∫
gk(t)hk,F0,Fm(t) dt→ 0.

B.1.1. Proof of lemma 3.3.3

Proof. By lemma B.1.1, for any η > 0 there exists a sequence of piece-wise linear
concave distribution functions (Fm) such that

∞∑
k=1

pK(k)

∫
gk(t)hk,F0,Fm(t) dt < η/2 (B.2)

for all m big enough. Recall definition (B.1),

fm(x) =
m2∑
i=1

wiϕ(x,
i

m
) =

∫
ϕ(x, θ) dPm(θ)

where Pm(·) =
∑m2

i=1wiδi/m(·). Without loss of generality, assume wi > 0 for all
i = 1, . . . ,m2. Given m fixed, for some 0 < ε < min(1, eη/4 − 1), define a discrete

probability measure P ′m,ε(·) =
∑m2

i=1 wiδ(i+ε/2)/m(·). Moreover, define the bounded
Lipschitz distance on the set of probability measure on [0,∞) by

dBL(P,Q) = sup
ψ∈C1

∣∣∣∣∫ ψ dP −
∫
ψ dQ

∣∣∣∣ ,
where C1 denotes the set of Lipschitz continuous functions on [0,∞) with Lipschitz
constant 1. Then dBL induces the weak topology (See Appendix A.2 in Ghosal &
Van der Vaart (2017)). Choose 0 < δ ≤ ε

4m
(1− e−η/4) min1≤i≤m2 wi and define the

open set

Ωm =
{
P ∈M : dBL(P, P ′m,ε) < δ

}
.

103



B. Supplement to Chapter 3

Choose Lipschitz continuous functions ψj, j = 1, . . . ,m with compact support

[ j
m
, j+ε
m

], satisfying ψj(θ) = ε
4m

if θ ∈ (
j+ 1

4
ε

m
,
j+ 3

4
ε

m
) and 0 ≤ ψj ≤ ε

4m
. Denote

Uj = [ j
m
, j+ε
m

], j = 1, . . . ,m2. Then for any P ∈ Ωm, j = 1, . . . ,m2, we have∣∣∣∣∫ ψj dP −
∫
ψj dP ′m,ε

∣∣∣∣ ≤ dBL(P, P ′m,ε) < δ.

It also follows that for j = 1, . . . ,m2,

ε

4m
P (Uj) ≥

∫
ψj dP ≥

∫
ψj dP ′m,ε − δ

≥ ε

4m

∫ (j+ 3
4
ε)/m

(j+ 1
4
ε)/m

1 dP ′m,ε − δ =
ε

4m
wj − δ ≥

ε

4m
e−η/4wj.

That is P (Uj) ≥ e−η/4wj, for j = 1, . . . ,m2. Using this lower bound and the
mixture representation (3.4), we have for any x ≥ 0, P ∈ Ωm,

fm(x)

fP (x)
≤

∑m2

i=1wiϕ(x, i
m

)∑m2

i=1

∫
Ui
ϕ(x, θ) dP (θ)

≤
∑m2

i=1wi
m
i
1{x≤ i

m
}∑m2

i=1
m
i+ε

1{x≤ i
m
}P (Uj)

≤ (1 + ε)eη/4 ≤ eη/2.

As this implies

Fm(tj)−Fm(tj−1) =

∫ tj

tj−1

fm(x) dx ≤ eη/2
∫ tj

tj−1

fP (x) dx = eη/2(FP (tj)−FP (tj−1)),

we have that

hk,Fm,FP (t) =
k+1∑
j=1

(F0(tj)− F0(tj−1)) log
Fm(tj)− Fm(tj−1)

FP (tj)− FP (tj−1)

≤ η

2

k+1∑
j=1

(F0(tj)− F0(tj−1)) ≤ η/2. (B.3)

Note that hk,F0,FP (t) = hk,F0,Fm(t) + hk,Fm,FP (t). Combining inequalities (B.2) and
(B.3), we have

∞∑
k=1

pK(k)

∫
gk(t)hk,F0,FP (t) dt < η.

That means {FP ∈ F : P ∈ Ωm} ⊂ S(η). Since Ωm is an open weak neighborhood
of P ′m in the neighborhood a and support(Π∗) =M, we have Π∗(Ωm) > 0.

Recall that the prior Π on F is induced by the prior Π∗ on M and the mixture
representation (3.4), therefore Π(S(η)) ≥ Π∗(Ωm) > 0.
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B.1.2. Proof of lemma 3.3.4

Proof. We construct a test function depending on data Dn. For any ε > 0, define
the event An = {dn(F̂n, F0) ≥ ε/2}, where F̂n is the maximum likelihood estimator
of the underlying distribution based on observations Dn (see Theorem 3 in Dümb-
gen, Freitag & Jongbloed (2006)) and dn is defined as (3.5). Define Φn = 1{An},
then as n→∞,

E0Φn = EK,T{EF0 [Φn|K,T ]}
= EK,T{PF0 [dn(F̂n, F0) ≥ ε/2|K,T ]} → 0 (B.4)

The final step holds because the consistency of F̂n, PF0 [dn(F̂n, F0) ≥ ε/2|K,T ]→ 0
and this probability is bounded by 1. Similarly, given (K,T ), for all F ∈ Uε

EF [1− Φn|(K,T )] = PF [{dn(F̂n, F0) ≤ ε/2} ∩ {dn(F, F0) > ε}|(K,T )]

≤ PF [dn(F0, F )− dn(F̂n, F0) ≥ ε/2|(K,T )]

≤ PF [dn(F, F̂n) ≥ ε/2|(K,T )]

Then it is sufficient to prove for any ε > 0,

E(K,T )

{
sup
F∈Uε

PF [dn(F, F̂n) > ε|(K,T )]

}
→ 0.

We state that
sup
F∈Uε

PF [dn(F, F̂n) > ε|(K,T )]→ 0. (B.5)

Then (B.4) and (B.5) are equivalent to the existence of a uniformly exponentially
consistent test for testing H0:F = F0 versus H1:F ∈ Uε (see Proposition 4.4.1 in
Ghosh & Ramamoorthi (2003)).

Now we show the inequality (B.5) holds. For a fixed F ∈ F , the consistency
result in Dümbgen, Freitag & Jongbloed (2006) claims that dn(F, F̂n) →p 0, Ac-

tually, they proved that PF [dn(F, F̂n) > ε] → 0 given the censoring times (K,T ).
We checking all steps of the proof in Dümbgen, Freitag & Jongbloed (2006), the
consistency is follows from the finite expectation of K and the bound F ≤ 1.
Define

H2(F,G) = (2n)−1
∑
i,j

(Fi,j −Gi,j)
2.

The consistency result is follows from the following steps:

1. dn(F, F̂n) ≤ 81/2H(F, F̂n) ;

105



B. Supplement to Chapter 3

2. H(F, F̂n)2 ≤ n−1
∑

i,j(∆i,j − Fi,j)(F̂n,i,j/Fi,j)1/2;

3. n−1
∑

i,j(∆i,j − Fi,j)(F̂n,i,j/Fi,j)1/2 ≤ supG∈F |
∑

i(ψi(G)− EFψi(G))|;

where ψi(G) = n−1
∑

j ∆i,j(Gi,j/Fi,j)
1/2. Hence, it is sufficient to show

PF

{
sup
G∈F

∣∣∣∑
i

(ψi(G)− EFψi(G))
∣∣∣ > ε

}
→ 0.

By theorem B.1.2, this is a consequence of the following conditions: for some
sequences δn → 0, bn → 0,

EF
n∑
i=1

sup
G∈F
|ψi(G)|= O(1), (B.6)

EF
n∑
i=1

1{sup
G∈F
|ψi(G)|> δn} sup

G∈F
|ψi(G)|= bn, (B.7)

for anyu > 0, logN (u,F , ρn) ≤ c(u). (B.8)

where

N (u,F , ρn) = min

{
#G:G ⊂ F , inf

G′∈G
ρn(G,G′) ≤ u for allG ∈ F

}
,

and

ρn(G,G′) =
n∑
i=1

|ψi(G)− ψi(G′)|.

We first give the main inequalities to derive these conditions. For (B.6),

EF
n∑
i=1

sup
G∈F
|ψi(G)|≤ n−1

∑
i

(Ki + 1)1/2.

For (B.7),

EF
n∑
i=1

1{sup
G∈F
|ψi(G)|> δn} sup

G∈F
|ψi(G)|≤ n−1

∑
i

(Ki + 1)r(nδn)−2κ → 0,

where κ ∈ (0, 1
2
), recall that EKr < ∞ and choosing nδn → ∞. As for (B.8), ρn

can be bounded by a finite measure, hence

logN (u,F , ρn) ≤ Cu−1
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for some constant C. (For more details see the proof of Theorem 3 in Dümbgen,
Freitag & Jongbloed (2006)). Hence,

bn = n−1
∑
i

(Ki + 1)r(nδn)−2κ, c(u) = Cu−1.

By equation (B.12), we have

PF

{
sup
G∈F

∣∣∣∑
i

(ψi(G)− EFψi(G))
∣∣∣ > ε

}
≤ 4ε−1bn + 128Cε−1ε−1 exp

(
− ε2

512nδ2
n

)
Note that the right side do not depend on F , hence the inequality (B.5) holds.

B.1.3. A technical result for proving uniform convergence

The following theorem follows from theorem 8.2 in Pollard (1990).

Theorem B.1.2. Let f1(w, t), f2(w, t), . . . , fn(w, t) be independent processes with
integrable envelopes F1(w), F2(w), . . . , Fn(w). If for each ε > 0,

1. there is a sequence δn → 0 such that

1

n

n∑
i=1

EFi1{Fi > δn} < ε, for all n,

2. logN(u,Fnw, ρn) = c(u),

then

sup
t
|
n∑
i=1

(fi(w, t)− Efi(w, t))|→ 0 in probability.

Here N (u,Fnw, ρn) is the covering number of Fnw with distance

ρn = ρn(t, t′) =
n∑
i=1

|fi(w, t)− fi(w, t′)|.

Proof. Define event An,i := {Fi > δn}, then we split the expectation into two
parts:

sup
t

∣∣∣∑
i

(fi(w, t)− Efi(w, t))
∣∣∣ ≤ sup

t

∣∣∣∑
i

(fi(w, t)1{An,i} − Efi(w, t)1{An,i})
∣∣∣

+ sup
t

∣∣∣∑
i

(fi(w, t)1{Acn,i} − Efi(w, t)1{Acn,i})
∣∣∣
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For the first item in the right side, by the condition 1, we have

P

{
sup
t

∣∣∣∑
i

(fi(w, t)1{An,i} − Efi(w, t)1{An,i})
∣∣∣ > ε/2

}

≤ 2ε−1E

{
sup
t

∣∣∣∑
i

(fi(w, t)1{An,i} − Efi(w, t)1{An,i})
∣∣∣}

≤ 4ε−1E

{∑
i

sup
t
fi(w, t)1{An,i}

}
= 4ε−1bn

(B.9)

For the second item, denote f ∗i = fi1{Acn,i}. Using symmetrization, we have

P

{
sup
t

∣∣∣∑
i

(f ∗i (w, t)− Ef ∗i (w, t))
∣∣∣ > ε/2

}
≤ 4EσP

{
sup
t

∣∣∣∑
i

σif
∗
i (w, t)

∣∣∣ > ε/8

}
,

where σi = 1 or −1 with probability 1/2 independently. By the definition of
covering number N (ε/16,Fnw, ρn), given w, for each t in Fnw, there exists t′ such
that the distance ρn(t, t′) ≤ ε/16. Then we have

P

{
sup
t

∣∣∣∑
i

σif
∗
i (w, t)

∣∣∣ > ε/8

}
≤ P

{
max
t′

∣∣∣∑
i

σif
∗
i (w, t′)

∣∣∣+ ρn(t, t′) > ε/8

}

≤ P

{
max
t′

[∑
i

σif
∗
i (w, t′)

]
> ε/16

}

≤ N (ε/16,Fnw, ρn) max
t′

P

{∣∣∣∑
i

σif
∗
i (w, t′)

∣∣∣ > ε/16

}
(B.10)

By the Hoeffding’s inequality and f ∗i (w, t′) ≤ δn, we further have

P

{∣∣∣∑
i

σif
∗
i (w, t′)

∣∣∣ > ε/16

}
≤ 2 exp

(
− 2(ε/16)2∑

i(2f
∗
i (w, t′))2

)
≤ 2 exp

(
− ε2

512nδ2
n

)
(B.11)

Therefore, combining inequalities (B.9), (B.10) and (B.11), we have

P

{
sup
t

∣∣∣∑
i

(fi(w, t)− Efi(w, t))
∣∣∣ > ε

}
≤ 4ε−1bn + 8c(ε/16)ε−1 exp

(
− ε2

512nδ2
n

)
.

(B.12)
By choosing nδ2

n → 0, we have the right side tend to 0.

108



C. Supplement to Chapter 4

C.1. Technical proof

Lemma C.1.1. Define set

Ωn :=

{
f ∈ F : ||f − f0,n||∞≤

1

6
Mδρn, supp(f) ⊇M

}
,

where f0,n is defined in (4.8). Then Ωn is a subset of Sn (which is defined in (4.6)).

Proof. By the definition of f0,n in (4.8), for any (t, z) ∈ An,j ×Bn,k,

|f0,n(t, z)− f0(t, z)| =

∣∣∣∣∣|An,j ×Bn,k|−1

∫
An,j

∫
Bn,k

f0(u, v) dv du− f0(t, z)

∣∣∣∣∣
≤ |An,j ×Bn,k|−1

∫
An,j

∫
Bn,k

|f0(u, v)− f0(t, z)| dv du

≤ max
(u,v)∈An,j×Bn,k

|f0(u, v)− f0(t, z)|.

By assumption (4.4) on f0, we have

max
(u,v)∈An,j×Bn,k

|f0(u, v)− f0(t, z)|≤ L max
(u,v)∈An,j×Bn,k

||(u, v)− (t, z)||ρ≤ L(2
√

2δn)ρ.

Hence

||f0,n − f0||∞ = max
j,k
| max
(t,z)∈An,j×Bn,k

|f0,n(t, z)− f0(t, z)||

≤ max
j,k
| max
(t,z)∈An,j×Bn,k

L(2
√

2δn)ρ|= L(2
√

2δn)ρ. (C.1)

Note that for any (t, z) ∈M and f1, f2 ∈ F ,

|sf1(t, z)− sf2(t, z)| =

∣∣∣∣∣g(t)

(
1{z>0}

∫ t

0

(f1(u, z)− f2(u, z)) du

+ 1{z=0}

∫ M1

t

∫ M2

0

(f1(u, v)− f2(u, v)) dv du

)∣∣∣∣∣
≤ g(t)(M1||f1 − f2||∞+M1M2||f1 − f2||∞)

≤M1(1 +M2)g(t)||f1 − f2||∞.
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Further, we have

‖sf1 − sf2||1=

∫
M
|sf1 − sf2| dµ ≤ KM2

1M2(1 +M2)||f1 − f2||∞. (C.2)

By Lemma 8 of Ghosal & Van der Vaart (2007b), we know

KL(sf0 , sf ) . h2(sf0 , sf ) (1 + log||sf0/sf ||∞) ,

V (sf0 , sf ) . h2(sf0 , sf ) (1 + log||sf0/sf ||∞)2 .
(C.3)

For any f ∈ Ωn, we give upper bounds of h2(sf0 , sf ) and ||sf0/sf ||∞. By (C.1) and
(C.2), we know

||sf0 − sf ||1≤ KM2
1M2(1 +M2)(||f0 − f0,n||∞+||f0,n − f ||∞) . δρn.

Using the inequality h2(f1, f2) ≤ 1
2
||f1 − f2||1, we then have

h2(sf0 , sf ) ≤
1

2
||sf0 − sf ||1. δρn. (C.4)

We now give an upper bound on ||sf0/sf ||∞, note that∥∥∥∥sf0

sf

∥∥∥∥
∞
≤ max

{∥∥∥∥∂2F0

∂2F

∥∥∥∥
∞
,

∥∥∥∥1− F0,X

1− FX

∥∥∥∥
∞

}
≤
∥∥∥∥f0

f

∥∥∥∥
∞
≤
∥∥∥∥ f0

f0,n

∥∥∥∥
∞
·
∥∥∥∥f0,n

f

∥∥∥∥
∞
.

(C.5)
By the lower bound in inequality (4.5), we have for any (t, z) ∈ An,j ×Bn,k,

f0,n(t, z) = |An,j ×Bn,k|−1w0,j,k ≥M |An,j ×Bn,k|−1

∫
An,j×Bn,k

(min(u, v))ρ dv du.

When min(j, k) > 1,∫
An,j×Bn,k

(min(u, v))ρ dv du ≥ δρn|An,j ×Bn,k|.

When min(j, k) = 1 and j 6= k,∫
An,j×Bn,k

(min(u, v))ρ dv du =
1

ρ+ 1
δρn|An,j ×Bn,k|.

When j = k = 1,∫
An,j×Bn,k

(min(u, v))ρ dv du = 2

∫ δn

0

dv

∫ v

0

uρ du =
2

(ρ+ 1)(ρ+ 2)
δρ+2
n .
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Hence, in any of the cases, using ρ ≤ 1, we obtain∫
An,j×Bn,k

(min(u, v))ρ dv du ≥ 1

3
δρn|An,j ×Bn,k|.

Then it follows that

f0,n(t, z) ≥ M

3
δρn. (C.6)

Combining with (C.1),∥∥∥∥ f0

f0,n

∥∥∥∥
∞
≤ 1 +

∥∥∥∥f0 − f0,n

f0,n

∥∥∥∥
∞
≤ 1 +

2ρ3L

M
. (C.7)

Further, using (C.6) again, by definition of Ωn, for f ∈ Ωn,

f(t, z) ≥ f0,n(t, z)− 1

6
Mδρn ≥

1

2
f0,n(t, z).

Note that this implies if f = 0, then we have f0,n = 0. Hence,∥∥∥∥f0,n

f

∥∥∥∥
∞
≤ 2. (C.8)

Substituting (C.7) and (C.8) into (C.5) gives that∥∥∥∥sf0

sf

∥∥∥∥
∞
≤ 2

(
1 +

2ρ3L

M

)
.

Substituting this bound and (C.4) into (C.3) implies that there exists a C1 > 0
such that

KL(sf0 , sf ) ≤ C1δ
ρ
n, V (sf0 , sf ) ≤ C1δ

ρ
n.

Define
εn =

√
C1(n/log n)−

ρ
2(ρ+2) =

√
C1δ

ρ
2
n , (C.9)

then we have Ωn ⊆ Sn.

C.2. Programming details in the Turing language

For each observation index i ∈ {1, . . . , n} the indices Ii need to be computed
and stored. Say that information is in the object ci (censoring information). Say
that we define a function bernpar that takes the full parameter vector theta and
ci and outputs the corresponding success probability. Finally, if z denotes the
observation vector (taken to be a vector of length n containing solely ones) and L
is the graph-Laplacian, then the model is specified as follows:
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C. Supplement to Chapter 4

@model GraphLaplacianModel(z,ci,L) = begin

tau ~ InverseGamma(.1,.1)

H ~ MvNormalCanon(L*tau)

theta = invlogit(H)

for k in eachindex(z)

z[k] ~ Bernoulli(bernpar(theta,ci[k]))

end

end

Here, invlogit refers to the function ψ in (4.2).
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Bertoin J. (1998). Lévy Processes. Cambridge University Press.

Betancourt, M. (2018). A conceptual introduction to Hamiltonian Monte
Carlo. arXiv:1701.02434.

Bezanson, J. and Edelman, A. and Karpinski, S. and Shah, V. (2017). Julia:
A Fresh Approach to Numerical Computing. SIAM Review 59, p. 65-98.

Blackwell, D. and MacQueen J.B. (1973). Ferguson distributions via Polya
urn schemes. Ann. Statist. 1, p. 353-355.

Bush, C.A. and MacEachern, S.N. (1996). A Semiparametric Bayesian Model
for Randomised Block Designs. Biometrika. 83, p. 275–285.
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Summary

This thesis deals with a number of statistical problems where either censoring
or shape-constraints play a role. These problems have mostly been treated from a
frequentist statistical perspective. Over the past decades, the Bayesian approach
to statistics has gained popularity and this is the approach that is adopted in this
thesis. We consider nonparametric statistical models, i.e. models indexed by a pa-
rameter that is not of finite dimension. For three different models we investigate
the asymptotic properties of the posterior distribution under a frequentist setup.
We derive either posterior consistency or posterior contraction rates. Such results
are relevant, as these provides a frequentist justification of using point estimators
derived from the posterior. Besides theoretical results, we develop computational
methods for obtaining draws from the posterior. Overall, this work is at the inter-
section of the research areas “estimation under shape constraints and censoring”,
“Bayesian nonparametrics” and “Bayesian computation”.

In Chapter 2 we deal with nonparametric estimation of a bounded decreasing
density function on R+ and in particular on estimation the density at zero. It is well
know that the maximum likelihood estimator in this model is inconsistent at zero.
Any decreasing density can be represented as a scale mixture of uniform densities
and hence a prior on the set of decreasing densities can be obtained by endowing
the mixing measure with a Dirichlet process prior distribution. For x > 0, the
rate (log n/n)2/9 is derived for point-wise loss in a recent work by Salomond. For
x = 0, Salomond’s arguments do not show consistency. Under some assumption on
the base measure of the Dirichlet process prior, we derive a contraction rate equal
to (log n/n)2/9 (up to log factors) that coincides with the case x > 0. Besides,
we investigate empirically the rate of convergence of the Bayesian procedure for
estimating the density at zero. This investigation suggests that under specific
conditions on both the underlying density and the base measure, it is conceivable
that the optimal rate n−1/3 is attained by the posterior mean. In a simulation
study, we compare the performance of previously introduced frequentist methods
and our Bayesian procedure.

In Chapter 3, we study a Bayesian estimation of the event time distribution
based on mixed-case interval censored data. It is additionally assumed that the
distribution function is concave. We address this problem from a theoretical per-
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spective and provide weak conditions on the prior such that the resulting posterior
is consistent. The proof relies on Schwartz’s method for proving posterior consis-
tency. We also provide computational methods for drawing from the posterior and
illustrate the performance of the Bayesian method in both a simulation study and
two real datasets.

Finally, in Chapter 4 we consider the the current status continuous mark model
where we aim to estimate the joint distribution function of event time and mark
variable. For this model, the mle is inconsistent. Within the Bayesian approach,
we introduce two histogram type priors for which we derive posterior contraction
rates. Using the general theory introduced in chapter 1, we derive that this rate is
upper bounded by n−1/9 under Hölder smoothness assumptions of the true distri-
bution function. We propose computational methods for obtaining draws from the
posterior under both priors. For one prior this is a data-augmentation algorithm,
whereas for the other one we use probabilistic programming software that is based
on Hamiltonian Monte Carlo methods.
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Samenvatting

Dit proefschrift behandeld een aantal statistische problemen waar censuring en
vormrestricties een rol spelen. Deze problemen zijn tot op heden voornamelijk
beschouwd vanuit de frequentistische statistiek. Wij behandelen deze problemen
vanuit de Bayesiaanse statistiek, een aanpak die gedurende de afgelopen 20 jaar
aan populariteit heeft gewonnen. We gebruiken niet-parametrische statistische
modellen, dat wil zeggen, modellen die niet gëındexeerd zijn door een eindig-
dimensionale parameter. Voor drie verschillende modellen onderzoeken we de
aymptotische eigenschappen van de aposteriori verdeling onder frequentistische
aannamen. We bewijzen consistentie en leiden convergentiesnelheden af. Zulke re-
sultaten zijn relevant omdat ze frequentistische validatie geven van puntschatters
die gebaseerd zijn op de aposteriori verdeling. Afgezien van theoretische resultaten
ontwikkelen we ook computationale methoden om trekkingen uit de aposteriori
verdeling te genereren. In zijn geheel ligt dit proefschrift op het grensvlak van de
onderzoeksvelden “schatten onder vormrestricties en censurering”, “niet parame-
terische Bayesiaanse methoden” en “Bayesiaanse computationele methoden”.

In hoofdstuk 2 beschouwen we het niet-parametrisch schatten van een begrensde
dalend dichtheid op R+ en in het bijzonder het schatten van de dichtheid in nul.
Het is bekend dat de meest aannemelijke schatter in dit model inconsistent is in
nul. Iedere dalende dichtheid kan gerepresenteerd worden door een schaal-mengsel
van uniforme dichtheden en daarom kan een apriori verdeling op de verzameling
van dalende dichtheden verkregen worden door de maat op het schaal-mengsel van
een “Dirichlet process prior” te voorzien. Indien x > 0, dan is recent door Sa-
lomond aangetoond dat voor puntsgewijze verliesfunctie de convergentiesnelheid
(log n/n)2/9 is. Als x = 0, dan kan consistentie niet geconcludeerd worden op grond
van Salomond’s argumenten. Onder een zekere conditie op de “base measure” van
het Dirichlet proces leiden we convergentiesnelheid (log n/n)2/9 af (afgezien van
log factoren), wat overeenkomt met het geval x > 0. Bovendien onderzoeken we
empirisch de convergentiesnelheid onder de Bayesiaanse aanpak voor het schatten
van de dichtheid in nul. Dit onderzoek suggereert dat onder specifieke condities op
zowel de onderliggende dichtheid als ook de “base measure” het aannemelijk is dat
de optimale snelheid n−1/3 behaald wordt door de aposteriori verwachting. In een
simulatiestudie vergelijken we de kwaliteit van een aantal frequentistische meth-
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oden uit de literatuur en de voorgestelde Bayesiaanse aanpak, onder een aantal
keuzen voor de base measure.

In hoofdstuk 3 bestuderen we het Bayesiaans schatten van een tijdsduur gebaseerd
op zogenaamde “mixed-case interval gecensureerde data”. Een extra aanname
is dat de verdelingsfunctie van deze tijdsduur concaaf wordt verondersteld. We
beschouwen dit probleem vanuit theoretisch perspectief en leiden condities af op
de apriori verdeling zodat de aposteriori verdeling consistent is. Het bewijs is
gebaseerd op Schwartz’s methode voor het bewijzen van consistentie. We geven
ook computationele methoden om uit de aposteriori verdeling te trekken en illus-
treren de kwaliteit van de Bayesiaanse methode in zowel een simulatie studie als
ook door toepassing op twee dataverzamelingen.

Ten slotte beschouwen we in hoofdstuk 4 het “current status continuous mark”
model waar we beogen de de gezamenlijke kansverdeling van de tijdsduur en
“mark”-variabele te schatten. In dit model is de meest aannemelijke schatter
inconsistent. We introduceren twee histogram-priors en leiden voor beide aposteri-
ori convergentiesnelheden af. We laten zien dat de convergentiesnelheid begrensd
wordt door orde n−1/9 onder een Hölder gladheidsaanname op de echte verdelings-
functie. Voor beide apriori verdelingen geven we computationele methoden om
uit de apposteriori verdeling te kunnen trekken. Voor één van de apriori verdelin-
gen is dit een “data-augmentation” algoritme, voor het de andere gebruiken we
“probabilistic programming” welke gebaseerd is op Hamiltoniaanse Monte Carlo
methoden.
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