

Delft University of Technology

GRAIL
Checking Transaction Isolation Violations with Graph Queries
Dumbrava, Stefania; Jin, Zhao; Ozkan, Burcu Kulahcioglu; Qiu, Jingxuan

DOI
10.1145/3639478.3643094
Publication date
2024
Document Version
Final published version
Published in
Proceedings - 2024 ACM/IEEE 46th International Conference on Software Engineering

Citation (APA)
Dumbrava, S., Jin, Z., Ozkan, B. K., & Qiu, J. (2024). GRAIL: Checking Transaction Isolation Violations with
Graph Queries. In Proceedings - 2024 ACM/IEEE 46th International Conference on Software Engineering:
Companion, ICSE-Companion 2024 (pp. 320-321). (Proceedings - International Conference on Software
Engineering). IEEE. https://doi.org/10.1145/3639478.3643094
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3639478.3643094
https://doi.org/10.1145/3639478.3643094

GRAIL: Checking Transaction Isolation Violations
with GraphQueries

Stefania Dumbrava

Zhao Jin

stefania.dumbrava@ensiie.fr

zhao.jin@ensiie.eu

ENSIIE

France

Burcu Kulahcioglu Ozkan

Jingxuan Qiu

b.ozkan@tudelft.nl

j.qiu-2@student.tudelft.nl

Delft University of Technology

The Netherlands

ABSTRACT
Distributed databases are surging in popularity with the growing

need for performance and fault tolerance. However, implementing

transaction isolation models on distributed databases is more chal-

lenging due to their sharding and replication. As a result, they can

produce executions that violate their claimed isolation guarantees.

In this work, we propose a novel isolation model-agnostic ap-

proach that utilizes graph databases to efficiently detect isolation

violations expressed as anti-patterns in transactional dependency

graphs. To illustrate our approach, we introduce the GRAIL frame-

work, implemented on top of the popular ArangoDB and Neo4j

graph databases. GRAIL combines soundness guarantees and high

performance with understandable, detailed counter-examples.

CCS CONCEPTS
• Information systems→ Distributed database transactions;
• Software and its engineering → Empirical software valida-
tion.

KEYWORDS
distributed databases, transaction isolation, testing, graph queries

ACM Reference Format:
Stefania Dumbrava, Zhao Jin, Burcu Kulahcioglu Ozkan, and Jingxuan Qiu.

2024. GRAIL: Checking Transaction Isolation Violations with Graph Queries.

In 2024 IEEE/ACM 46th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion ’24), April 14–20, 2024, Lisbon,
Portugal. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/363947

8.3643094

1 INTRODUCTION
Database isolation levels describe the degree to which the updates

of a running transaction are isolated from other concurrent trans-

actions. At the strongest level, the transactions run in complete

isolation, producing an execution where they run one after another.

Serializability ensures that the effect of concurrent transactions is

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0502-1/24/04

https://doi.org/10.1145/3639478.3643094

𝑇1 :

r ead (f i l e 1 . t i t l e , "A1 ")

w r i t e (f i l e 2 . t i t l e , " B2 ")

𝑇2 :

r ead (f i l e 2 . t i t l e , " B1 ")

w r i t e (f i l e 1 . t i t l e , "A2 ")

Figure 1: An execution with a cyclic dependency graph.

the same as running them serially in some order. While serializ-

ability provides strong guarantees, implementing it requires strong

synchronization in the databases with sharding and replication.

Many databases support isolation levels weaker than serializabil-

ity and aim to achieve higher performance by reducing the amount

of isolation in concurrent transactions. These isolation levels are

formally defined by the set of allowed and disallowed behaviors, e.g.,

the characteristics of anomalies prohibited in serializable databases.

Ensuring claimed isolation guarantees is, however, difficult as

witnessed by the many violations discovered in popular distributed

databases [10]. Moreover, checking the correctness of the execu-

tions for a given isolation level, e.g., for serializability or snapshot

isolation, is generally NP-complete [13, 4]. Execution anomalies can

be checked using dependency graphs, which model the read/write

dependencies between transactions [1, 2], as specific patterns in-

dicate violations of certain isolation guarantees. For example, the

execution in Figure 1 is not serializable since it has a cyclic de-

pendency between transactions. Moreover, the graph exhibits an

anti-pattern that characterizes a write skew anomaly.

We aim to explore the efficiency of using graph database queries

for checking such anti-patterns. Graph databases have been increas-

ingly used to analyze relational datasets with their built-in support

for modeling connectivity and providing query languages that can

efficiently explore patterns in graph models. Therefore, we inves-

tigate: Given transaction dependencies and transactional isolation
violation patterns naturally modeled by dependency graphs, how can
we utilize graph database queries to detect isolation violations?

2 APPROACH
We introduce GRAIL, a new GRAph-based Isolation Level checking

framework that, to the best of our knowledge, is the first to use
graph queries to detect database isolation violations.

GRAIL ’s architecture (Figure 2) consists of three main modules

for History Collection, Graph Construction, and Cycle Detection:

320

2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

https://doi.org/10.1145/3639478.3643094
https://doi.org/10.1145/3639478.3643094
https://doi.org/10.1145/3639478.3643094
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639478.3643094&domain=pdf&date_stamp=2024-05-23

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

Figure 2: GRAIL’s architecture.

History Collection initiates multiple transactions on a sequence

of concurrent workers in a distributed database cluster. We use

Jepsen [9] to record the execution histories.

Graph Construction processes the collected histories to build the

transaction dependency graph for each execution history.

Cycle Detection is the heart of GRAIL as it processes the depen-

dence graphs and identifies their isolation anti-patterns. We intro-

duce the proof-of-concept GRAIL implementation for checking se-

rializability violations using graph queries written in Cypher [6] for

Neo4j [12] and AQL (ArangoDBQuery Language) for ArangoDB [7].

GRAIL’s Neo4j-based checker runs a Cypher query to detect

all the cycles of a dependency graph. Its heuristic is based on the

shortest path algorithm of Neo4j’s APOC library, which, for each

given starting vertex, finds back paths connecting to it. We also

implement the approach in AQL, for ArangoDB, to evaluate the

performances of different graph database checkers. Similar to the

Neo4j checker, it also uses a shortest path algorithm to detect cycles.

Further work will extend the checkers to detect anomalies for a

spectrum of isolation levels, by running more extensive queries to

filter the cycles and find specific isolation anti-patterns.

3 EVALUATION
Figure 3 presents some initial results for the performance and scal-

ability of GRAIL’s ArangoDB and Neo4j checkers against that of

the state-of-the-art Elle [3] tool for checking serializability of exe-

cutions with an increasing collection time. As the plot shows, the

ArangoDB and Neo4j-based checkers have low analysis times with

smaller increases in history length. This is because graph databases

are inherently efficient at processing graphs, and our checkers

search for the shortest paths, returning an anti-pattern as soon as

they find it, without further traversals to detect all the cycles.

As another advantage of using a graph database, GRAIL presents

the detected cycle (which represents a violation, e.g., to serializ-

ability) to the user as an understandable counter-example. Figure 4

shows an example visualization of a serializability violation.

4 RELATEDWORK
Checking isolation guarantees of database executions has gained

attention due to the increasing distribution of database systems.

These works include the Knossos [11] linearizability checker, the

Gretchen [8] serializability checker that encodes the execution

Figure 3: Runtime for checking serializability anomalies in
the increasing size of execution histories.

Figure 4: An example violation.

constraints based on the transactional specifications of [5], and Co-

bra [14] using an efficient SMT solver for checking graph properties.

Unlike the state of the art, we design a transaction isolation checker

that exploits graph databases for checking violation patterns on

the dependency graphs. For this, we construct dependency graphs

in graph databases and use graph queries for pattern-matching.

5 CONCLUSIONS AND PERSPECTIVES
We presented the initial results for checking serializability using

GRAIL. The extended version of the work will explore an extensive

set of graph queries for checking a spectrum of isolation levels.

REFERENCES
[1] Atul Adya. 1999. Weak consistency: a generalized theory and optimistic im-

plementations for distributed transactions. Ph.D. Dissertation. Massachusetts

Institute of Technology, Dept. of Electrical Engineering and Computer Science.

[2] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. 2000. Generalized isolation

level definitions. In Proc. of the 16th Int. Conf. on Data Engineering, San Diego,
California, USA, February 28 - March 3, 2000. IEEE Computer Society, 67–78.

[3] Peter Alvaro and Kyle Kingsbury. 2020. Elle: inferring isolation anomalies from

experimental observations. Proc. VLDB Endow., 14, 3, 268–280.
[4] Ranadeep Biswas and Constantin Enea. 2019. On the complexity of checking

transactional consistency. Proc. ACM Program. Lang., 3, OOPSLA, 165:1–165:28.
[5] Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A framework

for transactional consistency models with atomic visibility. In 26th Int. Conf.
on Concurrency Theory, CONCUR 2015 (LIPIcs). Vol. 42, 58–71.

[6] Nadime Francis et al. 2018. Cypher: an evolving query language for property

graphs. In SIGMOD Conference. ACM, 1433–1445.

[7] ArangoDB Inc. 2023. Arangodb. https://www.arangodb.com/. (2023).

[8] Kyle Kingsbury. 2022. Gretchen: offline serializability verification, in clojure.

(2022). Retrieved July, 2023 from https://github.com/aphyr/gretchen.

[9] Kyle Kingsbury. 2022. Jepsen. (2022). Retrieved July, 2023 from http://jepsen.io/.

[10] Kyle Kingsbury. 2022. Jepsen analyses. (2022). Retrieved July, 2023 from https:

//jepsen.io/analyse.

[11] Kyle Kingsbury. 2022. Knossos. (2022). Retrieved July, 2023 from https://github

.com/jepsen-io/knossos.

[12] Neo4j. 2023. Neo4j. https://neo4j.com/. (2023).

[13] Christos H. Papadimitriou. 1979. The serializability of concurrent database

updates. J. ACM, 26, 4, 631–653. https://doi.org/10.1145/322154.322158.

[14] Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael Walfish. 2020. Cobra:

making transactional key-value stores verifiably serializable. In 14th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2020, Virtual
Event, November 4-6, 2020. USENIX Association, 63–80.

321

https://www.arangodb.com/
https://github.com/aphyr/gretchen
http://jepsen.io/
https://jepsen.io/analyse
https://jepsen.io/analyse
https://github.com/jepsen-io/knossos
https://github.com/jepsen-io/knossos
https://neo4j.com/
https://doi.org/10.1145/322154.322158

