]
TUDelft

Effect of parameter tuning on reducing the number of queries required to perform
model stealing

Floris van Veen
Supervisor(s): Chi Hong, Jiyue Huang, Stefanie Roos
EEMCS, Delft University of Technology, The Netherlands
June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering



Abstract

Model extraction attacks are attacks which generate
a substitute model of a targeted victim neural net-
work. It is possible to perform these attacks with-
out a preexisting dataset, but doing so requires a
very high number of queries to be sent to the vic-
tim model. This is otfen in the realm of several
million queries. The more difficult the dataset, the
more queries required to gain an accurate substitute
model. Through each state-of-the-art model extrac-
tion algorithm, one thing that is not thoroughly op-
timised are the hyperparameters of the models, and
optimizing them has been found to have a strong
impact on accuracy of the substitute model. To at-
tempt to reduce the number of queries required, re-
search has been done to find the effects of optimiz-
ing hyperparameters for both MNIST and fashion-
MNIST datasets. This is done through grid search
and random search. The results show that proper
hyperparameter tuning can reduce the number of
queries required to perform model stealing if they
are not already optimized. Examples include re-
quiring 125000 + queries to achieve 95% accuracy
for the MNIST dataset with some hyperparameter
combinations to only requiring 15000.

1 Introduction

As machine learning and deep neural networks are being used
in more applications than before, it is becoming increasingly
important to ensure that they are all working as intended, and
that malicious parties cannot exploit issues that are found.
One such issue is that of adversarial attacks [11]. There are
multiple types of adversarial attacks [30]. The most common
type of adversarial attack is evasion attacks that can create
images which avoid correct classification from the neural net-
work [12], while being nearly indistinguishable from the orig-
inal image [28]. Another important type are model extraction
attacks, which allows an attacker to make a substitute ’copy’
of a model which has been made available to query [30]. A
copy of this victim model can be made by having access to
the same dataset and training another neural network from
these samples, but model extraction allows attackers to create
a’copy’ without any prior training set [29]. The only require-
ment is that the attacker can make queries to the victim.

Model stealing attacks may be done for many different rea-
sons [13]. These reasons can include people wanting to make
use of the victim model, to competition, to utilising it for
monetary gain [23]. Different attackers can have different
goals, and that will correspond to different types of attacks.

This leads us to the research question: How can we reduce
the number of queries which are required to perform model
stealing?

In this work, we look at the ways that model stealing are
applied, and methods in which the number of queries which
are required to perform them can be reduced. We study and
apply methods to tune an existing data free model extraction
algorithm DFME [29] to require fewer queries in order to

gather an accurate copy of the victim model. This is done
through analysis of the existing algorithms, and on any as-
pects which are either less researched or could be improved.
Considering the time constraints given, the chosen methods
for reducing the number of queries must also take that into
consideration.

¢ First, the information which is available is discussed,
and how they relate to model stealing attacks

* Secondly, the problem is formally described and the po-
tential solutions are discussed

* A methodology which is used to find the optimal solu-
tion to the parameters is detailed.

* Our contributions to the research question are discussed

e The results of the research is displayed, discussed and
evaluated

* Finally, improvements that can be performed in the fu-
ture are introduced, and anything that could not be per-
formed during the experiment for any reason.

2 Related work

As of now, there are relatively few robust model stealing al-
gorithms, and each use slightly different theories to create
substitute models. Here, we discuss these algorithms and
other areas of research which are relevant to the theory used
in model stealing.

2.1 Data Free Model Extraction

DFME [29] is a model stealing algorithm published in 2021,
and primarily made use of the SVHN [25] and CIFAR-10 [18]
datasets. Truong et al. (2021) [29] have created a model steal-
ing algorithm that makes use of a generator that takes in a
vector of random noise, and utilises a resulting image to train
a student model. Zeroth order gradient estimation is used to
approximate the victim dataset and improve the generator’s
generated images. A single loss function is used to improve
the results of the generator and student models, though they
both aim to do different things with it. Truong et al. (2021)
[29] have managed to gain a model with 99% victim accu-
racy on the SVHN dataset with a query budget of 2 million
queries, and a 92% accuracy with regards to the victim model
on the CIFAR-10 dataset with a query budget of 20 million.
It has been found that both the choice of loss function and
hyperparameters have an impact on the accuracy which can
be achieved, though the extent of which has not been fully
researched by them.

2.2 MAZE

MAZE [15] is a data free model stealing attack algorithm
published in 2020, which uses zeroth order gradient estima-
tion to perform model stealing. In contrast to DFME, there
are two loss functions: one for the generator and one for the
student model. Kariyappa et al. (2020) [15] also utilise an
“experience replay’, where the student is retrained on previ-
ously seen examples to avoid catastrophic forgetting. This
has been found to improve the accuracy of the student model
by an average of 7.3%. The generator has 3 convolutional
layers.



2.3 Model Stealing Against Inductive Graph
Neural Networks

Shen et al. (2021) [27] have created a model stealing method
that works against graph neural networks [27], as opposed to
image based networks. To accomplish this, 2 unique attacks
were constructed to be used in different scenarios. Both these
attacks are robust for graph neural networks, and have some-
what comparable results to image based neural networks.

2.4 Data free knowledge distillation

Data free model distillation is a technique used to ’distill’
all the information known in a larger teacher model, to a
smaller student model [24]. The teacher can be trained on
a large dataset or an ensemble of separately trained models
[1], which altogether give individual strong results. A vari-
ety of model compression techniques can be utilised to better
distill and fine tune the model, which is then taught to the
student [24], [21]. Several knowledge distillation techniques
have been created, including data free model distillation [21]
and even adversarial based distillation [6]. These form a sim-
ilar basis to model extraction, and suggest its feasibility [29].

2.5 Generative adversarial models

A Generative Adversarial Network (GAN) is a generative net-
work which learns from a target generator being pitted against
a discriminator [9]. The generator generates its own fake
samples and the discriminator receives a given sample and
determines if the provided sample is a real sample from a
target dataset or if it was fabricated by the generator. The
’loser’ of this exchange updates their model and improves it-
self accordingly. Through repeated iterations, the generator
improves its image generation and the discriminator improves
its assessment of the dataset [9], though this can be somewhat
inconsistent [22]. We make use of two competing networks
in a similar fashion in order to allow the student to learn as
quickly as possible.

2.6 Effect of hyperparameters on optimizers

Hyperparameters of an optimizer for a neural network are
very important when training neural networks. Optimizers at-
tempt to minimize the loss in a model [2] and as such have an
influence on the learning rate of the model. Properly tuned
hyperparameters can improve accuracy, robustness and re-
duce computing costs [8], [5]. Individual hyperparameter
changes can have observable effects on a model, but when
used together the result does not directly correspond to the
sum of the individual changes [5].

2.7 Hyperparameter optimization algorithms

There are many algorithms with the express purpose of pick-
ing the best combinations of hyperparameters to ensure the
best performance of the target neural network [2]. Each al-
gorithm has its own strengths, weaknesses and specific use
cases, but we primarily make use of grid search [19] and ran-
dom search [3]. This is because they are relatively simple al-
gorithms to implement and their impact is very easy to view
and replicate (though random search is random so it is not
always completely reproducible).

2.8 Novelty of research

This research is deemed novel as there is no prior research ob-
serving methods to directly reduce the number of queries re-
quired to perform model stealing. To the extent of our knowl-
edge, there is no research directly observing the effect of hy-
perparameters on model stealing.

3 Problem Description

This section briefly outlines the problem which is faced and
what can possibly be done about it.

While performing model stealing with high accuracy is
possible through multiple different methods, one thing re-
mains consistent between them all: They require an ex-
tremely high number of queries to get any kind of results
[29], [15]. The exact number depends on the complexity of
the dataset [29], [15], but even copying simple datasets such
as MNIST [7] require millions of queries. To gain a substi-
tute model of the SVHN dataset [25], the DFME algorithm
required 2M queries to gain up to 99% model accuracy [29],
and this is not an outlier - model extraction is very difficult to
perform [13]. When this algorithm is applied to other, more
complex datasets, the number of queries required to achieve
high accuracy can increase dramatically.

In order to reduce the number of queries required to create
an accurate model, several approaches were considered:

1. The first considered approach was to improve the op-
timiser. Different optimisers have different strengths
and weaknesses [10], and should be utilised accordingly.
The optimisers used in the algorithm initially are Adam
and SGD.

2. The second considered approach was to improve the out-
puts of the generator, to make it closer to the actual type
of data which the victim model will be creating. This
could be done by using concepts from GAN’s [9], or
by changing input noise vector in some way. When ob-
serving the resulting images which were generated, even
after 87% similarity to a CIFAR-10 [18] victim model
the images showed absolutely no similarity to the actual
dataset [29].

3. The third approach relates to the initial hyperparameters
of the algorithm. Of all the citations for model extrac-
tion, only DFMEconsidered the effects that hyperparam-
eter tuning could have, and from their preliminary test-
ing, it appeared that extraction accuracy could be senti-
tive to the choice made [29]

4. A more advanced approach would be to alter the found
algorithms in some way to improve the learning rate and
reduce the number of queries required. This could be
done by utilising various techniques found in multiple
model stealing algorithms, or separately from it.

The third approach was chosen, after weighing the chances
of reducing the number of queries required and the time con-
straints. Utilising different optimisers were unlikely to real-
istically reduce the number of queries required as some of



the best optimisers were already being utilised in appropriate
conditions [10]. Regardless of this, the effects of using dif-
ferent optimisers can be briefly studied and it is possible to
test if there is a more optimal use for the SGD [26] and Adam
[17] optimisers.

Improving the outputs of the generator was deemed un-
likely to have a large impact, as the generator maximising
loss already causes it to search for the optimal image to train
the student model on. Utilising another GAN [9] to train im-
ages which are accurate to the target model is also not feasible
as it requires samples first to be able to train, which we do not
have access to.

As for why the final option was not chosen, while it is
likely that an alternate, optimal solution exists which can re-
duce the number of queries which are required, it is unrealis-
tic to find, implement and test this in the time which is given.

This leaves hyperparameters. Theoretically, initial hyper-
parameters can influence the number of queries which are re-
quired to make a copy of a system like this. Initial testing
showed that there was a large discrepancy in the rates that
the student learned from the victim model depending on the
hyperparameters chosen.

4 Methodology

This section outlines the steps which are taken to reduce the
number of queries required while performing model stealing.
This was primarily done through parameter optimisation, and
the process for this is detailed.

To achieve the goal of reducing the number of queries re-
quired to perform model stealing, data collection was done
systematically and applied accordingly.

Initially, investigation was done to view the relation be-
tween the rate in which the accuracy increases and the
maximum accuracy which we could achieve. The way in
which different hyperparameters affect the final accuracy,
other hyperparameters, and how the optimal changes between
datasets was also investigated. This information is compared
to other results which are found by our experiments, and if
applicable, results found in other instances of research (such
as [15], [29)).

Initial tests were done by simply observing the effect of
tuning hyperparameters manually to gather information on
the learning curves such as the rate in which the accuracy of
the student model increases in relation to the victim model.
Initial values for the hyperparameters are based off of those
chosen in [29], and iterated based on the results gathered.
This is done to gather a better idea of the range of values
which could feasibly give a positive result for the dataset.

Once the initial information is gathered, the information
found is applied to various optimisation algorithms, namely
grid search and random search algorithms. The number of
queries which are used during these processes is recorded and
factored in for the final result. After the optimization algo-
rithms are completed, a comparison between the arbitrarily
chosen hyperparameters and the optimized set is done. This
is first performed on the MNIST dataset [7], and secondly

performed on the fashion-MNIST dataset [31].

4.1 Model extraction algorithm

Algorithm 1 The Data free model extraction algorithm used

Require: Epoch range E, batch size for generator n¢, epoch
iterations e_itr, generator iterations g_itr, student itera-
tions s_itr student learning rate [r, generator learning rate
lrq, step timings step, scale scale, noise vector dimension
z_dim

Ensure:

(Optional) target student accuracy T'_acc
optimg < optimizer(lry)
Schedulerg < scheduler(optimg, step, scale)
optim¢ < optimizer(lry)
Schedulerg < scheduler(optimg, step, scale)
e+ 0
fore=1..Edo
for itr = 1...e_itr do
for eq = 1...g_itr do
z + randN (ng, z_dim)
x < Generate(z)
Query V using x
approximate gradient A0 L(x)
Apply to Optg
end for
for es = 1...s_itr do
z «+ randN (ng, z_dim)
x + Generate(z)
Query V using x
Calculate V (), L(z), AOsL(x)
Apply back propagation to gen using L(z)
Apply to Optg
end for
end for
Apply to schedulerg
Apply to schedulerg
if student_accuracy > T_acc then Break
end if
end for
Return e, student_accuracy

The algorithm used can be seen in Algorithm 1. It is
a slightly modified version of the DFME [29] algorithm,
changed to operate with a number of epochs rather than con-
tinuing until a certain query budget is completed.

Initially the algorithm takes the arguments:

* epoch range E - Number of epochs the algorithm will
run for. Influences the number of queries made by hav-
ing another iteration in which the student and generator
query the victim.

* batch size ng - Amount of images generated by the gen-
erator in each ’cycle’. Influences the number of queries
made as each image in the batch needs to be compared.

* epoch iterations e_itr - Number of times the process is
repeated per epoch, before the schedulers are applied.



Influences the number of queries made as the entire pro-
cess which is performed before the epoch ’completes’ is
repeated accordingly.

* student/generator iterations s/g_itr - The number of
times the student or generator are individually repeated
per epoch iteration These influence the number of
queries made as this causes the student and generator
to repeat their entire process according to the specifica-
tions.

* student learning rate Ir, - Learning rate for the student
optimizer

* generator learning rate 7, - Learning rate of the gener-
ator optimizer

* step timings step - Percent of the way through the entire
iteration process that the scale is utilised

* scale scale - The multiplier that is applied to the larn-
ing rate of both the student and generators on each step
timing

* noise vector dimension z_dim - the dimension of the
noise vector

The student is our ’final’ substitute network.

Schedulers for the student and generators are initialized us-
ing the learning rate, optimizers, steps and scale. The algo-
rithm repeats for each epoch which is entered. Each epoch is
repeated a number of times depending on the set epoch itera-
tions. For this experiment, the epoch iterations is always set
to 50.

First, the generator is worked on for the amount of times
that is specified in g_i¢tr. In this, a noise vector is generated
and the victim is queried using the resulting image. The gra-
dient is approximated and that is fed back to the generator
network.

Secondly, the same is applied to the student but instead of
approximating the gradient of the victim model, the loss L(x)
is used to back propogate the generator, and the optimizer
step is applied.

If the student accuracy is calculated to be higher than or
equal to the target accuracy, then the epoch loop breaks and
the number of queries is returned, along with the student
model. Otherwise, it continues until all the epochs are com-
plete.

4.2 Grid search

The first method of hyperparameter optimization is grid
search. Grid search is an extremely simple algorithm, but
is also very computationally intensive as it suffers from the
curse of dimensionality [4]. This is because it is an exhaus-
tive search algorithm, which covers all combinations of the
sets of input parameters. This allows us to find the optimal
combination of hyperparameters from the set of parameters
which are added.

A very obvious issue with grid search is the sheer amount
of computation which is required, which also lends itself to
requiring a very large amount of queries as the number of pa-
rameters added are increased. Adding additional parameters
very quickly increases the number of iterations which need to

Ir_s Ir_g step size scale
0.001 | 0.0001 | [0.08,0.4,0.9] 0.3
0.0035 | 0.0002 | [0.1,0.5,0.9]
0.006 | 0.0003 | [0.12,0.6,0.9]
0.0085 | 0.0004
Table 1: Hyperparameters searched through in grid search for
MNIST

be done, and as such the parameters should be chosen care-
fully. The set of chosen hyperparameters can be seen in Table
1

4.3 Random search

The second algorithm that is used to optimise the hyper-
paramers is random search. Random search is also a sim-
ple algorithm, but does not cover an exhaustive range like
grid search. Instead it only covers a range of values which
the specified hyperparameters can cover. The algorithm then
randomly selects values within these ranges for each hyperpa-
rameter that is done, and repeats until the specified number of
iterations has been reached. If the current iteration reaches a
target accuracy in fewer iterations than a saved minimum, it is
saved as the current best and the student accuracy, number of
iterations and current hyperparameters are saved. At the end,
the hyperparameters which reached the target accuracy in the
lowest number of iterations is returned. This can be seen in
Appendix A. Every iteration is recorded so information of the
suboptimal hyperparameters are also saved.

4.4 Fashion-MNIST

To observe the effects of hyperparameter tuning on a more
difficult dataset, random search and grid search will also be
applied onto the Fashion-MNIST dataset. Fashion-MNIST
was chosen because it has a similar structure to MNIST, and
as such requires minimal tuning to the algorithm. The only
thing that is required is to train a neural network on the
Fashion-MNIST dataset. As this dataset is much more dif-
ficult than MNIST, it is expected that the accuracy which can
be achieved by the model stealing algorithm is much lower,
and the differences in effectiveness of hyperparameter tuning
should be more visible as a result.

S Experimental results - MNIST

In this section, we will outline the results which were gath-
ered through the experimental data which was gathered and
discuss their implications.The victim model used has an ac-
curacy of 99.55%.

5.1 MNIST - Individual hyperparameter changes

Here, the effects of tuning individual hyperparameters are
observed and their implications are discussed.

The specific hyperparameters which have been tuned in
this investigation are the learning rate for the student, the
learning rate for the generator, the batch size (which affects
the number of queries which are done in a single epoch),
step timing and the scalar which is applied to the learning



rates when the steps are performed. In Figure 1 we can see
the effect of changing just the student learning rate. The
default hyperparameters can be seen in Appendix C. A full
set of 50 epochs with a batch size of 25 results in 125000
queries being made. In these 12500 queries, we can see that
the accuracy levels out at around 97% for all three values
of Ir_s which are around the order of magnitude 0.01. We
can observe the same thing in graph (Graph still needs to be
implemented)

= 01 == 001 0005 == 00025 == 0001
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Figure 1: learning rate when Ir_s is changed

5.2 MNIST Grid search results

Here, we can see the results of running Grid search on the tar-
get model. The full table of results is shown in Appendix D,
and the set of hyperparameters which were searched through
can be seen in Table 1

The condensed table of results can be found in Table 2.
The first row depicts the optimal hyperparameters given in
the first iteration, and the same follows for the second and
third rows. The fourth row shows the combination of hyper-
parameters which gives the average lowest number of epochs.
When running the same set of hyperparameters, the number
of epochs which is required to reach 95% accuracy changes
slightly each time.

The cause for this discrepancy is due to the randomness of
the input vector into the generator, and is explored in Section
7. The effect of this randomness can be quite pronounced,
as we can observe in the first row. The range between the
lowest number of epochs and the highest is very high, from 7
to 21. This triples the number of queries required, and as such
simply using these optimal hyperparameters from a single use
of grid search can lead to suboptimal results. This holds for
all three different optimal’ parameters. Instead, row 4 could
be considered the optimal’ as it has the averaged best result.

5.3 MNIST Random search results

As random search gives random sets of hyperparameters, the
results cannot be averaged out like what is seen in grid search.
Instead, the full graph can be seen in Appendix F, and the
graph of optimal results can be seen in Table 3. As we can see
from the optimal results, the number of epochs which are re-
quired to achieve 95% accuracy hovers around the same area,

Num epochs

Lr, : LR, Step timings 172713
0.0035 | 0.0003 | [0.12,0.6,09] | 7 21 11
0.0035 | 0.0004 | [0.1,0.5,09] | 16 | 8 14
0.0085 | 0.0003 | [0.1,0.5,09] | 10 19 | 6
0.0085 | 0.0004 | [0.08,0.4,09] | 10 8 13

Table 2: Table depicting the number of epochs it took to reach 95%.
The green highlights depict the optimal hyperparameters for each
iteration

Ex
Lrs LR g Step timings Scale | 1 2
0.00833 | 0.0007 | [0.082,0.648,0.832] | 0.388 | 6 -
0.00367 | 0.0007 | [0.204, 0.369, 0.906] | 0.352 | - 8

Table 3: Optimal hyperparameters from random search and the num-
ber of epochs required to reach a student accuracy of 95%

from 6 to 8 epochs. It is likely that if we ran these same
hyperparameters again that they would give different results,
similarly to what is seen in the grid search results. What we
do find however, is that even with a random selection of hy-
erparameters, the amount of epochs required to achieve this
level of accuracy does not change very much. Instead, we
find that a good selection of hyperparameters is important to
reduce the number of epochs required, but only to a certain
extent.

Past finding hyperparameters which are in the correct or-
der of magnitude, further optimizing them are not incredibly
effective. We do not see a significant difference in the num-
ber of queries required to achieve a desired target accuracy.
Instead, the results we see are often influenced by the vari-
ation observed in Table 2, and further optimization which is
performed in the grid search algorithm is not very useful for
a relatively simple dataset such as MNIST.

5.4 MNIST Post optimization

Grid search optimal Random search optimal

100
75

50

Student accuracy (%)

25

25000 50000 75000 100000

Number of queries

Figure 2: Difference between optimised results and previous results

After the results of grid and random search were returned,
the effects of both were recorded and displayed in Figure 2.
Compared to the previous results, both the results from grid



Lrg Lrg Step timings | scale | batch | epochs Lrg Lro Step timings scale | batch | epochs
Ex 1 | 0.001 | 0.0001 | [0.1,0.5,0.9] | 0.3 25 50 Ex1 | 0.01 | 0.0001 | [0.1,0.5,0.9] 0.3 50 50
Ex2 | 0.01 | 0.001 | [0.1,0.5,0.9] | 0.3 25 50 Ex2 | 0.01 | 0.001 | [0.1,0.5,0.9] 0.3 50 100
Ex3 | 0.01 | 0.001 |[0.3,0.5,09] | 0.3 25 50 Ex3 | 0.001 | 0.0006 | [0.17,0.5,0.9] | 0.225 | 50 100

Table 4: Initial hyperparameters used to observe accuracy with
queries for Fashion-MNIST

and random search performed significantly better. The ac-
curacy for grid search increases at a much more steady rate
than the random search result. This is likely due to the fact
that this is the set of hyperparameters which has the lowest
average number of required epochs over multiple repetitions,
while random search gave results with only a single trial mak-
ing more likely to give a result with more ’volatility’.

6 Experimental results - Fashion-MNIST

Here, we can see how hyperparameter tuning affects the re-
sults of a more difficult dataset: Fashion-MNIST [31]. It
is expected that the number of queries required to perform
model stealing to a reasonable accuracy will be much higher,
and that any changes will leave much larger impacts on the
number of queries required than were found for MNIST. The
victim model has an accuracy of 91.80%.

6.1 Fashion-MNIST Individual hyperparameter
changes

Here, the effects of tuning individual hyperparameters are ob-
served and their implications are discussed for the dataset of
fashion-MNIST.

== Exl == Ex2 Ex3
40
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Figure 3: Initial experiments run for the learning rate of Fashion-
MNIST. Ex1, 2 and 3 correspond to the parameters shown in Table
4

The first set of hyperparameters were chosen based off
of the same parameters that MNIST was initialised to. Ini-
tially, observations were made with regards to how the stu-
dent model learned with the same number of queries as for
the MNIST dataset. The student learning rate and step tim-
ings were slowly raised as more experiments were performed,
to observe exactly how the learning rate changed. The hyper-
parameters used can be seen in Table 4, and the graph of the
student accuracy can be seen in Figure 3. As expected, the

Table 5: Hyperparameters used when increasing the number of
epochs in Fashion-MNIST

new dataset is much more difficult to copy than MNIST, only
reaching a maximum of 37% accuracy in 125000 queries.
More queries are required to view if the maximum accuracy
continuously increases as more queries are utilised, or if the
maximum accuracy levels out.

As such, a larger batch size was utilised along with more
epochs. This increases the number of queries per epoch, and
increases the duration of time in which the model is trained
for. The exact hyperparameters chosen can be seen in Table
5, and the graph of the results can be seen in Figure 5. In-
creasing the batch size does have an impact on the maximum
accuracy the model reaches. As can be observed, the accu-
racy peaks at 45%, as opposed to the old peak of 37%. We
cannot draw direct conclusions of the effects of the batch size
or number of epochs here, as the steps and scale also impact
this. It is possible that instead, the step timing is suboptimal
and the experiments run in Figure 3 would be more optimal
without scaling at all.

= Ex1 = Ex2 Ex3

50

Student aceuracy (%)

100000 200000 300000 400000

Number of queries

Figure 4: Experiments run while increasing number of queries avail-
able. Exact hyperparameters are visible in Table 5

Regardless, we can observe that using more queries does
have an impact on the accuracy of the student model. This
reflects the observations found in [29] and [15]. To continue
this, the number of queries which were used were increased
to 3 million, and the impact it had on learning rate was also
recorded. These results can be seen in Figure 5. Both these
sets of hyperparameters are identical to those found in Figure
4, except for the batch size. We observe that the choice in
initial hyperparameters has a strong impact on the number of
queries which is required to achieve middling levels of accu-
racy. While it is possible to reach 70% accuracy with signifi-
cantly fewer queries through better hyperparameter choice, it
is not known if this continues to higher levels, such as to (95%
+ ) victim accuracy. It is possible that certain hyperparameter
choices may never reach that accuracy at all.



LI‘S LI‘G
Ex1 | 0.01 | 0.001
Ex2 | 0.01 | 0.001

Step timings | scale | batch | epochs
[0.1,0.5,09] | 0.3 300 100
[0.3,0.5,09] | 03 300 100

Table 6: hyperparameters used to test accuracy with 3 million
queries
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Figure 5: Experiments run to 3 million queries, hyperparameters
shown in Table 6

6.2 Fashion-MNIST Grid search results

The results for Grid search can be seen in Appendix G, and
the grid of hyperparameters chosen can be found in Table 15
in Appendix I. The reason that the batch size was chosen to
be 50 and for the maximum number of epochs was set to
50 was was to allow for somewhat reasonable computation
times. This is also the reason that the number of varying hy-
perparameters has been decreased. The target accuracy for
these iterations were to 60%, but was never reached.

The results can be seen in Table 7. Both experiments
yielded the same optimal set of hyperparameters, but their ac-
curacy was below 40% each time. This is in the same range
as Figure 3, both in accuracy and number of queries used.
As the datasets become more difficult, the range of effective
hyperparameters becomes more difficult to properly evaluate,
and as such grid search becomes less and less useful. This is
what is expected from grid search, but it is already clear that
is is relatively ineffective for finding a good range of viable
hyperparameters for more difficult datasets.

accuracy
Lr, : LR, Step timings scale | epochs | Ex1 | Ex2
0.006 | 0.0004 | [0.2,0.6,0.933] | 0.3 50 38.06 | 3941

Table 7: Results for optimal hyperparameter results for fashion-
MNIST grid search. There is only one column as the optimal was
the same both times

6.3 Fashion-MNIST Random search results

The full set of results can be found in Appendix H. Of these
results, the optimal hyperparameter combinations are shown
in Table 3. Both these results give noticeably higher accura-
cies than the grid search results in Table 7. As both of these
experiments use 125000 queries each, they prove to be signif-
icantly better than the results found in Figure 4, giving higher

ex
Lrs Lry step timing scale | epochs I ] 2

0.00857 | 0.000734 [0.21, 0.6, 0.929] 0.438 50 49.49 -

0.00666 | 0.000897 | [0.293,0.329, 0.895] | 0.425 50 - 46.64

Table 8: Results for the optimal set of hyperparameters for random
search in Fashion-MNIST

accuracies while using one quarter the number of queries. We
can already observe that to an extent, hyperparameter tun-
ing is effective at reducing the number of queries required to
achieve certain accuracies while performing model stealing.
As the algorithm used is currently unable to match the results
shown in DFME and MAZE, we are unable to verify if this
same effect can also be observed when attempting to perform
model stealing to a significantly higher target student accu-
racy.

6.4 Fashion-MNIST after optimization

Ex1 Ex2 Ex3 Random search optimal

60

40

20

Student accuracy (%)

100000 200000 300000 400000

Number of queries

Figure 6: Graph displaying the optimized results found from random
search

Post optimization, we can see from Figure 6 that the learn-
ing rate of the new optimal set of hyperparameters found
by random search outperforms all previously arbitrarily cho-
sen sets of hyperparameters. The student appears to learn
at an improved rate overall, and this combined with the re-
sults from MNIST shows that hyperparameter tuning can be
a viable method to reduce the number of queries required to
perform model stealing.

If scaled up to 3 million queries however, the effectiveness
of the results are less visible. This can be seen in Figure 7.
Scaling up batch sizes does not always result in a direct in-
crease in learning, as also explained in [5]

6.5 Optimizers

Neural network optimizers are extremely important when
minimizing the loss of a neural network [2]. This holds true
for our student and generator models, where each utilises a
chosen optimizer to ensure that the student manages to mini-
mize loss, while the generator seeks to maximise it as shown
in algorithm 1. As the choice in optimizer has a direct impact
on the results of the models, investigation should also be per-
formed on what combination of optimizers are optimal, and
for what situations.



Exl Ex2 Random search optimal
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Figure 7: Difference between optimised results and previous results

Only relatively few changes have been made for optimiz-
ers. Our default has the student using SGD and the generator
uses Adam. To verify whether this was the optimal usage, the
student and generators have been tested using all combina-
tions of SGD and Adam. Initial tests show that for fashion-
MNIST, student - SGD and generator - Adam is the clear opti-
mum. For MNIST brief experiments in both grid and random
search show that setting both to SGD could improve results,
as experiments have returned optimal results of 4 epochs re-
quired to achieve 95% accuracy, as opposed to minima of 6
for the standard setup. Full results can be seen in Appendices
J, K. The reasons for this are not very clear at the moment,
and should be explored more in the future.

7 Random number generator discussion

This section will discuss the effects of randomness found in
each experiment run.

When looking at the results found in Table 2, we run into
an issue regarding what is “optimal’. For the three experi-
ments, the ’optimal’ set of hyperparameters is different each
time, and the number of epochs (and as such, queries) which
are required to achieve the target accuracy changes signifi-
cantly each time. None of the resulting optimal results give
the lowest average number of queries.

Seededresults == MNon seeded

Student accuracy (%)
=
=3

15000 30000 45000 60000 75000 90000 105000 120000

Number of queriss

Figure 8: Brief experiments with random seeding. 6 seeded vs 1 non
seeded

To study the effect of the randomness of the input vector,
a seeded experiment was conducted. The noise vector was
set to random seed (3). The results can be seen in Figure
8, compared to a non seeded result performed immediately
afterward. This experiment was conducted with a single set
of arbitrarily chosen hyperparameters with a batch size of 15
to 8 epochs on the MNIST dataset.

The 6 sets of seeded results are not exactly the same but
are very similar, meanwhile the non seeded iteration performs
quite differently. This provides evidence that even with the
same set of hyperparameters, the randomness of the input
vector does have quite a significant impact on the perfor-
mance of individual experiments. This means we must re-
peat all optimization algorithms multiple times to draw more
accurate conclusions.

8 Conclusion

Overall, hyperparameter tuning is a viable method to reduce
the number of queries required to perform model stealing,
provided you are able to first perform the hyperparameter
optimization beforehand. There are noticeable effects when
performed on simple datasets such as MNIST, but this has
not been fully tested to very high target accuracies for more
difficult datasets such as fashion-MNIST. The highest target
accuracy which has been achieved in this study for fashion-
MNIST is 0.79x the target model’s accuracy of 91.80%. Still,
proper tuning does seem quite effective at reducing the num-
ber of queries required to achieve high accuracies.

The grid and random search algorithms were used to opti-
mize hyperparameters. While generally random search gave
better results, the randomness of the input vector to the gener-
ator causes some issues when determining the optimal set of
hyperparameters. More robust hyperparameter opimization
algorithms could be utilised to see if they can further improve
results.

The neural network optimizers were briefly tested to see if
using SGD for the student and Adam for the generator was
the optimal combination for these optimizers. For fashion-
MNIST this proved true, while for MNIST there seemed to
be some positive effect when using SGD for the generator as
well. This should be further tested however.

8.1 Future work

This section outlines possible improvements and additional
research that can still be done

1 - While the simple hyperparameter optimization algo-
rithms yielded decent results, more advanced algorithms such
as Bayesian hyperparameter optimization could prove more
effective. Research can be done to view the effects they can
have.

2 - Attempt to recreate the DFME experiment and test
if optimizing the hyperparameters there allows for fewer
queries to be used with their stealing of a CIFAR-10 model
compared to the parameters they used

3 - Research if different optimizers than simply SGD and
Adam give better results for the student and generators. This
should also research why SGD for both the student and gen-
erator appears to improve results for MNIST.



9 Responsible Research

The research found here is purely done for hypothetical pur-
poses, and should not be performed realistically. Intellectual
property theft is illegal [14], and should not be utilised on real
neural networks. Research behind model stealing is impor-
tant in order to gather a greater understanding of it, both how
it is performed and its limitations. There are already papers
researching model stealing and methods to defend against it
[20], [16]. Understanding the extent that hyperparameters can
influence the number of queries which are required to perform
model extraction has little effect on real world extraction at-
tacks.

Ensuring that the work is reproducible is also very impor-
tant. To this extent, the repository is made public !, and all
algorithms and values used are available in the appendices.
The repository contains easy to change specifications to run
the code, and includes the original results from each experi-
ment.
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Appendix start

A Grid search algorithm

Algorithm 2 Grid search algorithm

Require: Set of student learning rates S L7,
Set of generator learning rates SLr,
Set of step timings Sstep,
Set of scales to apply in the step timings Sscale

Ensure:
best NumFEpochs < Max_V alue
best Accuracy + 0
best ArgsSetup
for S,, =SLr,1to SLr,n do
for G,, = SLry1to SLrgn do
for step,, = Sstepl to Sstepn do
for scale,, = Sscalel to Sscalen do

numFEpochs, student Accuracy = run
Algorthm 1 with params(S,,, G, step,, scale;)

if numEpochs < best NumEpochs then
best NumFEpochs = numFEpochs
best Accuracy = student Accuracy
bestArgsSetup = (S,, Gnp, step,,
scale,,)
end if
end for
end for
end for
end for
Return bestArgsSetup, bestNumEpochs, and bestAccuracy

B Random search algorithm

Algorithm 3 Random search algorithm

Require: Range of student learning rates RLr,
Range of generator learning rates L7
Range of step timings Rstep,
Range of scales to apply in the step timings Rscale,
number of iterations desired iters

Ensure:

best NumFEpochs <— Max_V alue

best Accuracy < 0

best ArgsSetup

for n = 1toiters do
S, = Random within RLr
G, = Random within RLr
step, = Random within Rstep
scale, = Random within Rscale
numEpochs, student Accuracy = run Algorthm 1

with params(S,,, G, step,, scale,)

if numEpochs < best Num Epochs then
best NumEpochs = numEpochs
best Accuracy = studentAccuracy
bestArgsSetup = (S, G, step,, scaley,)
end if
end for
Return bestArgsSetup, bestNumEpochs, and bestAccuracy

C Default hyperparameters for individual
hyperparameter changes

hyperparameter value

Ir_S 0.001

Ir G 0.0001

step timings [0.1, 0.5, 0.9]

scale 0.3
number of epochs 50
batch size 25
Epoch iters 50

Table 9: Default hyperparameters for viewing the learning rate of
MNIST



D Grid search average results E Range of hyperparameters for random

search
min max
Lr, 0.0001 | 0.01
Lr, LR, Step timings | epochs | S_acc Lr, | 0.0001 | 0.001
[0.08, 0.4, 0.9] 50.00 | 80.68 1 0.01 0.3
0.0001 | [0.1,0.5,0.9] 50.00 | 77.94 step timings 2 0.31 0.7
[0.12,0.6, 0.9] 50.00 | 89.30 3 0.8 0.99
[0.08, 0.4, 0.9] 50.00 | 91.84 Scale 0.15 0.45
0.0002 | [0.1,0.5,0.9] 50.00 | 94.51
0.001 [0.12,0.6, 0.9] 39.33 | 94.33
’ [0.08,0.4,0.9] | 50.00 | 91.98 F Raw data for random search
0.0003 | [0.1,0.5,0.9] 24.00 | 95.39
[0.12,0.6, 0.9] 28.33 | 95.54
10.08, 0.4, 0.0] 46.00 1 92.55 0 S(gf:m 0 é(%’m ] 09252th g??go& 9453] (; ;;1;2 ep;);hs aC9C5u r';scy
0.0004 | [0.1,0.5,0.9] 36.00 | 95.33 0.00872 | 0.00067 | [0.0217.0.5352. 0.8727] | 04434 | 16 95.60
[0.12, 0.6, 0.9] 24.00 | 95.16 0.00154 | 0.00052 | [0.2559, 0.4127, 0.9866] | 0.3327 10 95.05
[0.08,0.4,0.9] 2433 | 95.66 0.00407 | 0.0002 | [0.2273,0.6839,0.9543] | 0.2574 | 15 9526
0.007 | 2.87E-05 | [0.0910, 0.3368, 0.81131] | 0.3914 | 50 9358
0.0001 | [0.1,0.5,0.9] 34.00 | 94.80 0.00318 | 0.00059 | [0.1556,0.3257,09137] | 02237 | 7 95.00
[0.12, 0.6, 0.9] 19.00 | 95.22 0.00003 | 0.00023 | [0.1842, 0.3495,0.9650] | 0.2151 | 18 95.20
[0.08.0.4.091| 17.33 | 9510 owey omon o rmosiorg el {0 |k
0.0002 | [0.1,0.5,0.9] 15.33 | 9547 0.00174 | 0.00046 | [0.1651.0.3505. 0.8230] | 0.1648 | O 95.07
0.0035 [0.12,0.6, 0.9] 22.67 | 95.54 0.00046 | 0.00093 | [0.1288, 0.5446, 0.8819] | 0.2846 | 32 9543
' [0.08,04,09] | 1533 | 9537 G005 | GI00085 | (00842 03160, 089201 | 02847 |50 8677
0.0003 | [0.1,0.5,0.9] 12.33 | 95.73 0.00098 | 0.00079 | [0.1990, 0.4929,0.9845] | 0.2414 | 23 95.42
[0.12, 0.6, 0.9] 13.00 95.08 (?(;)(?29643 (?(2%)654 [0.1300, 0.5769, 0.9235] | 0.1597 11 95.95
; ; [0.0431, 0.5947, 0.9888] | 0322 14 95.79
[0.08,0.4,0.9] 15.33 | 95.66 0.00546 | 0.00031 | [0.2515,0.5735, 0.9819] | 04429 | 10 95.08
0.0004 | [0.1,0.5,0.9] 12.67 | 95.68 0.00939 | 0.00071 | [0.2183, 0.6430, 0.9003] | 0.2443 | 11 95.16
0.00104 | 0.00047 | [0.1948, 0.3983,0.8219] | 0.2804 | 17 95.65
{8(% 82 83} ;ég; ggég 0.0006 | 0.00037 | [0.2008, 0.4981,0.8078] | 0.3182 | 50 9211
.08,04,0. . . 0.00575 | 0.00096 | [0.2652, 0.3497, 0.8873] | 0.1682 | 40 95.12
0.00346 | 0.00021 | [0.2260, 0.3830, 0.9043] | 0.2613 | 13 95.65
0.0001 [0.1,0.5,0.9] 22.00 | 95.57 0.00832 | 0.00072 | [0.0817, 0.6479, 0.8323] | 0.3883 6 95.68
[0.12, 0.6, 0.9] 38.00 | 94.96 0.00256 | 0.00027 | [0.1546, 0.3151, 0.8676] | 0.1852 | 32 95.00
[0.08, 0.4, 0.9] 18.33 | 95.81 0.00967 | 7.43E-05 | [0.2831, 0.6651, 0.9353] | 0.319 41 95.06
0.0002 0.1,0.5,0.9 16.67 | 95.63
0.006 [E).IZ 0.6.0 9]] 13.33 | 95.37 Table 11: Full results for the first set of random search with the
. L ’ ) following parameters
[0.08, 0.4, 0.9] 16.33 | 95.42 gp
0.0003 | [0.1,0.5,0.9] 15.67 | 95.40
[0.12,0.6, 0.9] 14.67 | 95.41 . .
[0.08,04,00] | 13.00 | 95.56 G Fashion MNIST average grid search results
0.0004 | [0.1,0.5,0.9] 11.67 | 95.39
[0.12,0.6, 0.9] 13.67 | 95.59
[0.08,0.4,0.9] 28.00 | 95.40 Lr, : LR, Step timings epochs | S_acc
0.0001 | [0.1,0.5,0.9] 24.67 | 95.41 0.0001 [0.1,0.5,0.9] 50 11.26
[0.12,0.6, 0.9] 23.00 | 95.45 0.001 ’ [0.2, 0.6, 0.933] 50 13.03
[0.08, 0.4, 0.9] 21.33 | 95.75 ’ 0.0004 [0.1, 0.5, 0.9] 50 13.67
0.0002 | [0.1,0.5,0.9] 13.00 | 95.46 ’ [0.2, 0.6, 0.933] 50 20.02
[0.12,0.6, 0.9] 22.33 | 95.45 [0.1,0.5,0.9] 50 16.13
0.0085 [0.08.04.09] | 1733 | 9551 0006 L0 '02,06,09337| 50 | 27.85
0.0003 | [0.1,0.5,0.9] 11.67 | 95.97 ’ 0.0004 [0.1,0.5,0.9] 50 26.51
[0.12,0.6, 0.9] 12.67 | 95.36 ’ [0.2, 0.6, 0.933] 50 38.74
[0.08, 0.4, 0.9] 10.33 | 95.16 0.0001 [0.1, 0.5, 0.9] 50 19.74
0.0004 | [0.1,0.5,0.9] 13.33 | 96.12 0.0085 ’ [0.2, 0.6, 0.933] 50 20.82
[0.12,0.6, 0.9] 16.00 | 95.32 ’ 0.0004 [0.1,0.5,0.9] 50 25.26

[0.2, 0.6, 0.933] 50 30.54

Table 10: Average results of three tests of grid search with the fol-
lowing hyperparameters. The step size was a constant 0.3, and was Table 12: Table of averaged grid search results performed for Fash-
omitted from the graph ion MNIST



H Fashion MNIST random search results

Lr, : LR, Step timings scale | epochs | accuracy
0.00549 | 8.60E-05 | [0.083,0.315,0.934] | 0.256 50 21.2
0.0063 | 0.000871 | [0.145, 0.485, 0.898] 0.39 50 42.67
0.00433 | 0.000489 | [0.061,0.328, 0.936] | 0.431 50 41.98
0.00699 | 0.000462 | [0.019, 0.615, 0.85] 0.298 50 35.95
0.00076 | 2.45E-04 | [0.054, 0.622,0.87] 0.221 50 13.14
0.00748 | 0.000896 | [0.018, 0.689,0.879] | 0.186 50 32.17
0.00831 | 0.000778 | [0.247,0.644,0.901] | 0.411 50 41.2
0.00066 | 0.000475 | [0.255,0.553,0.825] | 0.263 50 29.98
0.00857 | 0.000734 [0.21, 0.6, 0.929] 0.438 50 49.49
0.00089 | 0.000594 | [0.268, 0.419,0.815] | 0.312 50 29.29
0.00804 | 0.000711 | [0.069, 0.443,0.846] | 0.314 50 33.83
0.00506 | 0.000701 | [0.065, 0.504,0.884] | 0.172 50 24.27
0.00754 | 0.000935 | [0.265, 0.338, 0.865] | 0.363 50 39.7
0.00994 | 0.000659 | [0.279, 0.394,0.923] | 0.312 50 43.44
0.0056 | 0.000826 | [0.073,0.419,0.879] | 0.342 50 42.27
0.00248 | 0.000682 | [0.047, 0.468, 0.96] 0.392 50 32.57
0.00084 | 0.000489 | [0.154,0.439,0.876] | 0.437 50 30.16
0.00695 | 0.000474 | [0.097,0.555,0.979] | 0.285 50 38.9
0.00309 | 0.000776 | [0.066,0.514, 0.856] | 0.202 50 35.93
0.00877 | 0.000978 | [0.014, 0.607, 0.831] | 0.2340 50 39.37
0.00751 | 0.000645 [0.275, 0.4, 0.965] 0.17 50 35.32
0.00531 | 0.00015 [0.102, 0.677,0.873] | 0.245 50 33.19
0.00872 | 0.000141 | [0.016, 0.553,0.91] 0.204 50 19.16
0.004 9.60E-05 | [0.148, 0.422,0.982] | 0.421 50 29.32
0.00651 | 4.57E-04 | [0.217,0.479,0.882] | 0.178 50 34.58
0.00531 | 0.00015 [0.102, 0.677,0.873] | 0.245 50 33.19
0.00666 | 1.90E-05 | [0.031, 0.518,0.909] | 0.328 50 19.71
Table 13: Table of the first set of results for Fashion MNIST random
search
Lr, : LR, Step timings scale | epochs | accuracy
0.00557 | 6.07E-04 | [0.223,0.681,0.917] | 0.328 50 33.71
0.00666 | 0.000897 | [0.293, 0.329, 0.895] | 0.425 50 46.64
0.00618 | 0.000784 | [0.158,0.358, 0.856] | 0.396 50 43.53
0.00605 | 0.000889 | [0.128,0.504,0.813] | 0.423 50 42.92
0.00189 | 6.75E-04 | [0.297, 0.32, 0.951] 0.412 50 34.18
0.00227 | 0.000858 | [0.086, 0.484, 0.954] 0.24 50 37.8
0.00828 | 0.000174 | [0.134, 0.408, 0.923] | 0.252 50 31.95
0.00727 | 0.000744 | [0.016, 0.518,0.985] | 0.418 50 40.16
0.00476 | 0.000802 | [0.013,0.373, 0.923] 0.24 50 31.69
0.00024 | 0.000226 [0.041, 0.5, 0.84] 0.271 50 9.55
0.00125 | 0.000349 | [0.156, 0.674,0.931] | 0.159 50 27.16
0.00195 | 0.000978 | [0.286, 0.534, 0.902] | 0.385 50 37.9
0.00411 | 0.000724 | [0.215,0.501,0.811] | 0.243 50 35.17
0.00508 | 0.000759 | [0.268, 0.502, 0.808] | 0.162 50 39.47
0.00276 | 0.00047 | [0.211,0.517,0.911] | 0.173 50 29.57
0.00491 | 0.000261 | [0.292,0.616, 0.905] | 0.256 50 20.94
0.00629 0.0002 [0.098, 0.36, 0.868] 0.427 50 38.65
0.00036 | 2.40E-05 | [0.192,0.511, 0.838] | 0.449 50 13.2
0.00301 | 0.000493 | [0.035, 0.376,0.934] | 0.206 50 24.02
0.00947 | 0.000376 | [0.073, 0.428, 0.839] | 0.1690 50 23.87
0.00952 | 0.000464 | [0.177,0.376,0.941] | 0.297 50 32.42
0.00852 | 0.00067 [0.25, 0.39, 0.913] 0.302 50 45.41
0.00751 | 0.000936 | [0.114, 0.627,0.867] | 0.348 50 39.11
0.00666 | 1.90E-05 | [0.031,0.518, 0.909] | 0.328 50 19.71
0.00488 | 8.50E-04 | [0.133,0.351,0.903] | 0.156 50 30.97
Table 14: Table of the second set of results for Fashion MNIST

random search

I Fashion MNIST hyperparameters used

Ir Ir, step timings batch | epochs
0.001 | 0.0001 [0.1, 0.5,0.9] 50 50
0.006 | 0.0004 | [0.2,0.6,0.933]

0.0085

Table 15: Hyperparameters used in grid search for fashion MNIST

min max
Lry, | 0.0001 | 0.01
Lrg, Ie-05 | 0.001
1 0.01 0.3
step timings 2 0.31 0.7
3 0.8 0.99
scale 0.15 0.45

Table 16: Hyparparameter ranges used in random search for
Fashion-MNIST

J Optimizer experiment optimal results -
Grid search

There are far too many experiments run to properly
put them in the correct format at this time, and
as such only the optimal results are displayed
here. The full set of results can be found in the
repository >

J.1 MNIST

Grid of student learning rates:
0.006, 0.0085]

Grid of generator learning rates: [0.0001, 0.0002,
0.0003, 0.0004]

Grid of step timings: [[0.08, 0.4, 0.9], [0.1, 0.5,
0.9], [0.12, 0.6, 0.9]]

Grid of scales used: [0.3]

[0.001, 0.0035,

Generator - SGD, Student - SGD
Experiment 1

The optimal set of hyperparameters were:
Dataset: MNIST

Learning rate of S: 0.0085

Learning rate of G: 0.0003

z_dim: 128

Zhttps://github.com/bwmfvanveen-I1I/BRP-
Adversarial Attacks.git



Step timings: [0.08, 0.4, 0.9], and scale: 0.3

Final student accuracy: 87.42Total time taken to
run: 1966.7234036922455 seconds

Total number of queries made: 830000

Number of epochs taken to achieve this result: 2

Experiment 2

The optimal set of hyperparameters were:
Dataset: MNIST

Learning rate of S: 0.006

Learning rate of G: 0.0003

z_dim: 128

Step timings: [0.08, 0.4, 0.9], and scale: 0.3
Final student accuracy: 95.41Total time taken to
run: 3394.7809166908264 seconds

Total number of queries made: 1472500
Number of epochs taken to achieve this result: 4

Generator - Adam, Student - Adam
Experiment 1

Dataset: MNIST

Learning rate of S: 0.001

Learning rate of G: 0.0004

z_dim: 128

Step timings: [0.1, 0.5, 0.9], and scale: 0.3
Final student accuracy: 95.02Total time taken to
run: 11066.722125768661 seconds

Total number of queries made: 3825000
Number of epochs taken to achieve this result: 9

Experiment 2

Dataset: MNIST

Learning rate of S: 0.001

Learning rate of G: 0.0004

z_dim: 128

Step timings: [0.1, 0.5, 0.9], and scale: 0.3

Final student accuracy: 95.64Total time taken to
run: 8657.446615219116 seconds

Total number of queries made: 3600000

Number of epochs taken to achieve this result: 7

J.2 Fashion-MNIST

Grid of student learning rates:
0.0085]
Grid of generator learning rates: [0.0001, 0.0004]

[0.001, 0.006,

Grid of step timings: [[0.1, 0.5, 0.9], [0.2, 0.6,
0.933]]
Grid of scales used: [0.3]

Generator - SGD, Student - SGD

The optimal set of hyperparameters were:
Dataset: FASHIONMNIST

Learning rate of S: 0.0085

Learning rate of G: 0.0004

z_dim: 128

Step timings: [0.1, 0.5, 0.9], and scale: 0.3

Final student accuracy: 36.06Total time taken to
run: 3277.818016052246 seconds

Total number of queries made: 1500000

Number of epochs taken to achieve this result: 50

Generator - Adam, Student - Adam

The optimal set of hyperparameters were:
Dataset: FASHIONMNIST

Learning rate of S: 0.006

Learning rate of G: 0.0004

z_dim: 128

Step timings: [0.2, 0.6, 0.933], and scale: 0.3
Final student accuracy: 37.02Total time taken to
run: 3740.83221411705 seconds

Total number of queries made: 1500000

Number of epochs taken to achieve this result: 50

K Optimizer experiment optimal results -
Random search

K.1 MNIST

Range of student learning rates: [0.0001, 0.01]
Range of generator learning rates: [1e-05, 0.01]
Range of step timings: [[0.01, 0.31, 0.8], [0.3, 0.7,
0.99]]

Range of scales used: [0.05, 0.5]

Generator - SGD, Student - SGD
Experiment 1

Dataset: MNIST

Learning rate of S: 0.00492
Learning rate of G: 0.009116



z_dim: 128
Step timings:
0.245

Final student accuracy: 96.25Total time taken to
run: 4335.1783266067505 seconds

Number of epochs taken to achieve this result: 6

[0.035, 0.492, 0.953], and scale:

Experiment 2

Dataset: MNIST

Learning rate of S: 0.00713
Learning rate of G: 0.000475
z_dim: 128
Step timings:
0.381

Final student accuracy: 95.55Total time taken to
run: 4310.891749858856 seconds

Number of epochs taken to achieve this result: 4
Generator - Adam, Student - Adam

[0.281, 0.496, 0.803], and scale:

The optimal set of hyperparameters were:
Experiment 1
Dataset: MNIST
Learning rate of S: 0.00158
Learning rate of G: 0.002818
z_dim: 128
Step timings:
0.221
Final student accuracy: 96.65Total time taken to
run: 3371.5163402557373 seconds
Number of epochs taken to achieve this result: 4

[0.13, 0.663, 0.871], and scale:

Experiment 2

The optimal set of hyperparameters were:
Dataset: MNIST

Learning rate of S: 0.00402

Learning rate of G: 0.004536

z_dim: 128
Step timings:
0.364

Final student accuracy: 95.16Total time taken to
run: 3166.7564690113068 seconds

Number of epochs taken to achieve this result: 3

[0.199, 0.482, 0.971], and scale:

K.2 Fashion-MNIST

Range of student learning rates:
0.0085]

Range of generator learning rates: [0.0001, 0.0004]
Range of step timings: [[0.1, 0.5, 0.9], [0.2, 0.6,
0.933]]

Grid of scales used: [0.3]

[0.001, 0.006,

Generator - SGD, Student - SGD

The optimal set of hyperparameters were:
Dataset: FASHIONMNIST

Learning rate of S: 0.00509

Learning rate of G: 0.000155

z_dim: 128
Step timings:
0.384

Final student accuracy: 38.57Total time taken to
run: 7556.132112979889 seconds

Number of epochs taken to achieve this result: 50

[0.183, 0.579, 0.933], and scale:

Generator - Adam, Student - Adam
Dataset: FASHIONMNIST

Learning rate of S: 0.00191

Learning rate of G: 0.003683

z_dim: 128
Step timings:
0.368

Final student accuracy: 41.6Total time taken to
run: 7188.755979537964 seconds

Number of epochs taken to achieve this result: 50

[0.081, 0.446, 0.883], and scale:
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