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Abstract

Reset control is a "simple" nonlinear control strategy that has the potential of being widely
adopted and improving the performance of systems traditionally controlled with PIDs. Lack
of suitable methods for proving stability, that are in line with the current industrial practice,
hampers the wider acceptance of reset control. In this thesis, novel sufficient conditions for
stability of reset control systems, that can be evaluated using measured frequency response
function of a system to be controlled, are derived using the hybrid passivity and finite-gain
framework. A method for analysing the hybrid passivity and finite-gain parameters of reset
systems, that can be extended to other classes of nonlinear systems, is developed. Addition-
ally, a variant of the “Constant in Gain Lead in Phase” reset element, that facilitates the
use of the proposed method for the stability analysis, is introduced. Stability of several pre-
cision positioning systems with reset controllers, designed for different objectives, is studied
to demonstrate the applicability of the proposed hybrid passivity and finite-gain approach
for the stability analysis of reset control systems. Guidelines for design of reset systems such
that their stability can be concluded using the hybrid passivity and finite gain method are
shown. This thesis presents a new view on the stability of reset systems and addresses the
need for frequency-domain tools for stability analysis of nonlinear control systems in precision
mechatronics applications.
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Chapter 1

Introduction

In this introductory chapter, the motivations behind this research are explained. The prob-
lems addressed in this project and the main contributions made are presented. The chapter
is concluded with the outline of this report.

1-1 Research motivations

Moore’s law is the observation that the number of transistors in a dense integrated circuit
doubles about every two years [1]. The law has been generalized, and it is assumed that the
exponential growth should also characterize the development of a wider range of technologies
[2]. Chasing these expectations leads to ever-increasing requirements for precision and speed
of production machines and scientific instruments enabling this progress.

An increase of speed can be achieved with the development of improved mechanical structures
of machines and new actuators. The behaviour of the system can be closely predicted using
new modelling techniques what leads to better feedforward control. Finally, robustness against
disturbances and uncertainties in the system can be achieved with feedback control techniques
based on the measurement of errors appearing in the system. In the past few decades,
relatively little has changed in the feedback laws controlling the motion systems, while the
other areas witnessed significant improvement.

The vast majority of industrial control systems is based on the PID controllers [3], which
generate an input signal for the system that is proportional to the error between the desired
and measured behaviour, its integral and derivative. It is a common practice in the high-tech
industry to design the controllers using the frequency-domain techniques. These techniques
can be used to illustrate the interplay between all the elements of the system and to precisely
predict the performance.

The main drawback of the PIDs are the limitations like the magnitude-phase relationship and
the Bode sensitivity integral, also known as the waterbed effect [4] [5]. These limitations are
inherent to all linear control systems with the relative degree larger than one, and lead to
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2 Introduction

tradeoffs that prevent the improvement of some performance indicators without deteriorating
the others.

To overcome these limitations, nonlinear controllers have to be used. Many control strategies
that can provide better performance than currently used linear systems exist, for example,
model predictive control [6], sliding mode control[7] or impulsive control [8]. However, they
are not widely adopted by industry because of design procedures that are complicated and
not matching with current practice.

There is a need for "simple" nonlinear controllers for linear plants, that could alleviate trade-
offs typical for linear controllers, while being easy to implement and tune. This need has been
addressed through i.a. development of variable gain integral controllers [9], split-path nonlin-
ear integrators [10] [11] or reset controllers, which were first introduced by Clegg in 1958 [12].
These approaches can be combined to even further improve performance of a system [13].

This project is focused on reset control. A reset element is a linear time-invariant system
whose states, or a subset of states, reset to values defined by a reset law if its input, state or
output satisfy a specified condition [14]. It has been proven that reset systems can overcome
limitations of linear controllers [15] [16]. Examples of applications of reset in various fields
like process control or networked systems can be found in textbooks [14] [17] [18]. Moreover,
reset elements have been successfully applied to control precision positioning systems [13] [19]
[20] [21] [22] [23] [24].

One of the factors hampering the wider adoption of reset control is the lack of techniques for
assessing the stability of reset systems that are in line with the current industrial practice.
Stability of linear controllers is checked using the same frequency-domain tools that are used
to predict the performance of the systems. The stability conditions can be evaluated using
measured frequency response data. In the case of the reset systems, the stability analysis
requires a parametric model of the plant1 [14] [17]. This complicates the design procedure.

1-2 Problem statement

The goal of this thesis is to develop conditions for assessing the stability of reset
control systems that can be evaluated using the measured frequency response of
the system to be controlled. The method of choice is to represent the control system
as a feedback interconnection of the reset element and a linear block, consisting of the plant
and remaining components of the controller. This approach should simplify the process since
well-established techniques can be used to analyse the linear components and the analysis of
reset elements is simpler than that of the closed-loop reset systems. In the next step, the
stability of the feedback system can be concluded using appropriate tools.

The stability of precision mechatronic systems can rarely be assured using the passivity or
finite-gain techniques [26]. To accommodate this problem, the hybrid passivity and finite-gain
approach is used. Note, that the term hybrid does not refer here to the dynamics of the
system but to the blending of the passivity and finite-gain concepts. The idea of blending
the passivity and finite-gain properties have been introduced in [27][28] for linear systems,

1The only known stability conditions for reset systems, that can be evaluated using the measured FRF of
the plant, have been developed for specific classes of reset systems in [19] and [25]
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1-3 Main contributions 3

extended to nonlinear systems in [29] and further developed in [30]. One of the motivations
for the development of the hybrid approach was to create a framework for the analysis of
systems that lose passivity because of high-frequency dynamics. It is done by using the fact
that many systems that lose passivity have low gain at high frequencies. The hybrid passivity
and finite-gain framework is closely connected to properties of systems on finite-frequency
intervals and the generalized Kalman–Yakubovich–Popov lemma [31][32][33][34].

It has been shown that the hybrid approach can be successfully used for the design of con-
trollers for vibrating structures [35][36], which are robust against passivity violations due to
not collocated sensors and actuators [37]. It has been also used for the stability analysis of
scheduled [36] and switched controllers [38] which indicates that it may be extended to other
classes of nonlinear controllers. However, it has not been applied to the analysis of reset
systems.

The research motivations lead to the formulation of questions that this work answers:

How can the hybrid passivity and finite-gain framework be extended to reset
systems?
In the case of LTI systems, the frequency-domain description is used to conclude the hybrid
passivity and finite-gain. This approach does not apply to nonlinear elements. Further-
more, the methods used for concluding the hybrid passivity and finite gain of scheduled and
switched systems cannot be directly extended for the reset systems. In [36], a particular way
of scheduling is assumed and in [38], state jumps are not present in the considered dynamics.
Therefore, new tools have to be developed.

How can a reset control system be designed such that its stability can be con-
cluded using the hybrid passivity and small-gain theorem?
The hybrid passivity and small-gain theorem [30] provides only a sufficient condition for the
stability of feedback systems. It is, therefore, possible that this condition can be satisfied only
by a specific class of reset control systems. Formulating guidelines for the design of controllers
suited to the proposed method for the stability analysis would be a valuable insight.

1-3 Main contributions

The following are the main contributions made in this project.

Development of a method for analysis of the hybrid passivity and finite-gain
parameters of reset systems.
In this project, it is shown that the hybrid passivity and finite-gain defined in [30] can not
be easily applied to systems producing harmonics of the input signal. To extend the hybrid
passivity and small-gain theorem to reset systems, a new definition of the finite-frequency
gain is proposed. Subsequently, a method for assessing the finite-frequency gain of a system,
based on its steady-state response is proposed. The method can be applied not only to reset
systems but also to other classes of reset elements like the hybrid integrator-gain systems
(HIGS) [39].
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4 Introduction

Development of a novel Constant in gain Lead in phase element in a parallel
configuration (CgLpP)
The new CgLpP element is introduced to demonstrate an example reset control system whose
stability can be concluded using the hybrid passivity and small-gain theorem. The controller
can be tuned using techniques in line with the industrial practice. The describing function
analysis indicates that the element relaxes the inherent limitations of LTI controllers.

1-4 Thesis outline

The structure of the report is as follows. The background knowledge, fundamental to this
research, is presented in Chapter 2. The reset systems are introduced and an approach to
represent them in the frequency domain is demonstrated. Next, the input-output approach
for the stability analysis of systems is presented. Finally, the hybrid passivity and finite-gain
approach is explained.

In Chapter 3 the hybrid passivity and finite-gain of reset systems are developed. We first
consider the passivity and gain of reset systems at finite intervals separately. Subsequently,
a modified hybrid passivity and finite-gain property and a corresponding stability theorem
are introduced. The developed methods are used to analyse the hybrid properties of selected
reset elements.

In Chapter 4 the developed theory is applied to design reset controllers for a precision mecha-
tronic system. After considering the structure of the controllers, the use of the proposed
method for the stability analysis is presented on an example. Finally, a detailed analysis of a
precision positioning system with a reset controller tuned for different objectives is presented.

This project is concluded in Chapter 5, where the answers to the research questions posed
above are summarized. Recommendations for further research and open questions are also
presented.
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Chapter 2

Background knowledge

In this chapter, the theoretical concepts, which are fundamental for this work, are introduced.
The first subsection presents the nomenclature used in this report. Subsequently, the class of
reset systems is introduced in Section 2-2. The frequency response functions and describing
functions are demonstrated in the context of the reset systems in Section 2-3. Finally, the
dissipative system framework is used to describe the blending of the passivity and finite-gain
properties in Sections 2-4 and 2-5.

2-1 Nomenclature

The L2-space is a space of square integrable functions defined by

L2 =
{
v : R+ → Rm|

∫ ∞
0

v>(t)v(t)dt <∞
}
, (2-1)

where R+ = [0,∞), v is an arbitrary vector function of time and v> is its transpose. The
L2-space is a Hilbert space, where the inner product 〈·, ·〉 defines the norm

〈w, v〉 =
∫ ∞

0
w>(t)v(t)dt,

‖v‖2 =
√
〈v, v〉,

where v ∈ L2, w ∈ L2.

The truncation of a vector function is defined as

vT (t) =
{
v(t), 0 ≤ t ≤ T,
0, t > T

.

The extended L2-space is defined as L2,e = {v : R+ → Rm|vT ∈ L2, 0 ≤ T < ∞}, thus
L2 ⊂ L2,e.
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6 Background knowledge

R P
-

r e y

nd

uC

Figure 2-1: Reset control system (RCS). Reset controller R is applied to an LTI plant P . The
"broken" box is often used to represent reset elements in block diagrams. Adapted from [14]

The truncated inner product of two arbitrary signals is

〈w, v〉T =
∫ T

0
w>(t)v(t)dt = 〈wT , vT 〉.

The truncated L2-norm is
‖v‖2,T =

√
〈v, v〉T .

Given an operator G, its operator adjoint G∼ is defined using an inner product

〈w,Gv〉 = 〈G∼w, v〉.

2-2 Reset control systems

In general, a reset control system is a hybrid dynamical system, created as a feedback inter-
connection of a continuous-time plant and a controller with a reset mechanism. The reset
causes an instantaneous change of controllers state whenever some condition is met. In this
thesis, only the systems with linear base dynamics, which are reset whenever a certain signal
crosses zero, are considered. Here, this class of reset systems is briefly presented. More details
and information about other classes of reset systems can be found in the monographs [14]
[17] [18].

2-2-1 Reset control system definition

The structure of a Reset Control System (RCS) is presented in Figure 2-1. An LTI plant P
is described by:

P :
{
ẋp(t) = Apxp(t) +Bpu(t)
y(t) = Cpxp(t)

, (2-2)

where xp ∈ Rnp , u ∈ R1, y ∈ R1 and Ap, Bp and Cp are matrices of appropriate dimension.

A reset controller R with a zero-crossing reset condition is described by:
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2-2 Reset control systems 7

R :


ẋr(t) = Arxr(t) +Bre(t), if e 6= 0
xr(t+) = Aρrxr(t), if e = 0
u = Crxr(t) +Dre(t)

, (2-3)

where xr ∈ Rnr is the controller state, e = r− y is the tracking error, r is the reference input
and Ar, Br, Aρr , Cr, Dr are constant matrices of appropriate dimension.
The linear reset law xr(t+) = Aρrxr(t) describes the change of state that occurs when the
reset condition e = 0 is satisfied. Alternative reset laws and conditions that can be found
in literature are not considered in this work. Further in this document the time indices are
omitted and x+ = x(t+) = limε→0+ x(t+ ε) is used for clarity.
The linear system described with (Ar, Br, Cr, Dr) is referred to by the term Base Linear
System (BLS) and describes dynamics of the system in absence of reset.
A closed-loop description of the reset control system, obtained by combining the plant (2-2)
and the reset controller Eq. (2-3), is given by


ẋ = Ax+Br, if e 6= 0
x+ = Aρx, if e = 0
y = Cx,

(2-4)

with x = [xTp , xTr ]T and

A =
[
Ap −BpDrCp BpCc
−BrCp Ar

]
,B =

[
BpDr

Br

]
, C =

[
Cp 0

]
,Aρ =

[
Inp×np 0

0 Aρr

]
. (2-5)

The equilibrium point of reset system xeq is defined in [17, Ch. 1]. xeq should be the equi-
librium of both the BLS and of the reset mapping. In the case of constant reference r we
have


Axeq +Br = 0,
Cxeq − r = 0,
Aρxeq − xeq = 0

. (2-6)

Since reset systems are a special case of hybrid systems, pathological behaviours like beating,
deadlock and Zeno behaviour may occur [8].
In practice, existence and uniqueness of the solution are assured by time-regularization [40].
Time-regularization is a modification of reset system, such that reset instants happen only if
a minimum time between resets ∆m > 0 has lapsed. Then, the reset system is described by


∆̇(t) = 1, ẋ(t) = Ax(t) +Bu(t), if (e 6=)0 ∨ (∆ ≤ ∆m)
∆(t+) = 0, x(t+) = Aρx(t), if (e = 0) ∧ (∆ > ∆m)

y(t) = Cx(t) +Bu(t).
(2-7)

More details about solutions of reset systems can be found in [14] and [17].
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8 Background knowledge

2-2-2 Stability of reset control systems

In the case of reset systems, both base dynamics and reset of states play an important role
in establishing stability properties. A reset action can destabilize a stable base system, what
makes use of reset for performance improvement not straight forward. Conversely, an unstable
base system can be stabilized by the introduction of a reset.
For reset systems with stable base dynamics, stability can be proven without considering when
reset actions take place. This fact gives rise to so-called reset-times independent stability
conditions. The issue of stability of reset systems with stable base linear dynamics has been
addressed in [41]. The main result is:

Theorem 2-2.1. [41] Let V (x) : Rn → R be a continously-differentiable, positive-definite,
radially unbounded function such that

V̇ (x) =
[
∂V

∂x

]
Ax < 0 if x /∈ ker(C), (2-8)

∆V (x) = V (x+)− V (x) ≤ 0 if x ∈ ker(C), (2-9)

Then,

1. there exist a left-continuous function x(t) satisfying Eq. (2-4) for all t ≥ 0

2. the equilibrium point xeq = 0 is globally uniformly asymptotically stable.

The use of a quadratic Lyapunov function V (x) = xTPx leads to stability conditions that
can be tested by LMI solving [17] or with use of the so-called Hβ condition derived in [41].
The Hβ condition is based on the Kalman-Yakubovich-Popov Lemma, and for systems where
only one state is reset, it can be checked visually. The quadratic stability of reset systems
has been summarized in [14] by the following proposition.

Proposition 2-2.2. [14] The following conditions are equivalent:

1. The reset system (2-4) with Aρr = 0nr×nr is quadratically stable.

2. There exists a constant β ∈ Rnρ and positive matrix P > 0 such that

ATP + PA < 0 (2-10)
BT

0 P = C0 (2-11)

3. (Hβ condition) There exist a positive-definite matrix Pρ ∈ Rnρ×nρ and β ∈ Rnρ such
that

Hβ(s) = C0(sI −A)−1B0 (2-12)
is a strictly positive real (SPR) transfer function, where (A,B0) is controllable and
(A,C0) is observable.

C0 and B0 are defined as

C0 =
[
βCp 0nρ×(nc−nρ) Pρ

]
B0 =

 0nρ×nρ
0(nc−nρ)×nρ
Inρ×nρ

 (2-13)
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2-3 Frequency domain properties of reset systems 9

Guo at al. [17] have shown that if the Hβ condition is satisfied, then the RCS is quadratically
stable for any reset matrix Aρ such that

ATρ PρAρ − Pρ ≤ 0. (2-14)

The notions of stability presented above apply only to reset systems with stable base dynamics.
Other aspects of stability and conditions applicable to different classes of reset system can be
found in monographs [14] [17] [18].

2-3 Frequency domain properties of reset systems

Frequency domain techniques are widely accepted in the engineering community for analysis,
modelling and controller design for LTI systems. The Frequency Response Function (FRF)
and its representations such that Bode, Nyquist and Nichols plots are standard engineering
tools for the design of dynamical systems in the industry. These techniques have been ex-
tended for certain classes od nonlinear systems to facilitate the use of nonlinear controllers
and simplify the analysis of systems in which nonlinearities can have a significant effect on
performance.

A comparative overview of frequency-domain methods for nonlinear systems is presented in
[42]. Here, the nonlinear frequency response functions [43] and describing functions [44] [45]
[46] are briefly presented in the context of rest systems with the zero-crossing reset condition.

2-3-1 Nonlinear frequency response functions

The nonlinear frequency response functions have been introduced for convergent systems in
[43]. First, a class of convergent systems with uniformly bounded steady-state is defined to
guarantee that for a given input and any initial conditions all solutions converge the same
steady-state solution. Next, the steady-state solutions for sinusoidal inputs are described
using the nonlinear FRF. Although the nonlinear FRF is not frequency domain function it is
closely liked to the frequency-domain concepts. Therefore, is presented here for consistency
of the report.

Consider the system
ẋ(t) ∈ F (x,w(t)), (2-15)

where x ∈ Rn is the state and w : R → Rm is the continuous input. F (x,w) is a set-
valued mapping F : Rn+m → {subset of Rn}. It is assumed that for any (x,w) ∈ Rn+m the
set F (x,w) is upper semi-continuous in x,w. The system ẋ = f(x,w(t)) with a single-valued
continuous f(x,w) can be considered as a particular case of (2-15). It is also assumed that the
system (2-15) is regular i.e. for any continuous input w(t) and any initial condition x0 ∈ Rn,
t0 ∈ R its corresponding solution xw(t, t0, w) is right unique.

Definition 2-3.1. [43] System (2-15) with a given continuous input w : R → Rm is said to
be (uniformly, exponentially) convergent if:
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10 Background knowledge

a) all solutions xw(t, t0, x0) are defined for all t ∈ [t0,+∞) and all initial conditions x0 ∈
Rm, t0 ∈ R

b) there is a solution x̄w(t) defined and bounded on R

c) the solution x̄w(t) is (uniformly, exponentially) globally asymptotically stable

System (2-15) is said to be (uniformly, exponentially) convergent for a class of inputs I if it
is (uniformly, exponentially) convergent for every input w ∈ I.

Definition 2-3.2. [43] System (2-15) that is convergent for some class of inputs I is said
to have the uniformly bounded steady-state property if for any ρ > 0 there exists R > 0 such
that for any input w ∈ I the following implication holds:

|w(T )| ≤ ρ ∀t ∈ R⇒ |x̄w(t)| ≤ R ∀t ∈ R. (2-16)

The class of uniformly convergent systems with the UBSS property can be considered as
an extension of the class of asymptotically stable LTI systems [43]. An important property
of uniformly convergent systems is that if the input applied to the system is constant then
the corresponding steady-state solution is also constant and if the input is periodic then the
corresponding steady-state solution is also periodic with the same period [47].

After defining convergent systems, the nonlinear FRF can be introduced. Consider an uni-
formly convergent system {

ẋ ∈ F (x, u)
y = h(x)

(2-17)

with state x ∈ Rn, input u ∈ R and output y ∈ R.

Theorem 2-3.3. [43] Suppose system (2-17) is regular and uniformly convergent with the
UBSS property for the class of continuous bounded inputs. Then there exists a continuous
function α : R3 → Rn such that for any harmonic excitation of the form u(t) = a sin(ωt), the
system has a unique periodic solution

x̄a,ω(t) := α(a sin(ωt), a cos(ωt), ω) (2-18)

and this solution is UGAS.

The function α(a sin(ωt), a cos(ωt), ω) contains all information on the steady-state solution
of system (2-17) corresponding to harmonic excitations. For that reason it is called the state
frequency response function. The function h(α(a sin(ωt), a cos(ωt), ω)) is called the output
frequency response function. In general, the frequency response functions cannot be easily
found [43]. Examples of nonlinear FRF derived analytically can be found in [43] and [48].

In the case of LTI systems, the Bode magnitude plot is a representation of the gain with which
the system amplifies harmonic signals at various frequencies. Similar information about the
steady-state response can be represented with the Nonlinear Bode Plot introduced in [43].
Consider system (2-17) excited by an harmonic signal a sin(ωt). The ratio of the maximal
absolute value of the steady-state output and the input amplitude a can be considered as a
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2-3 Frequency domain properties of reset systems 11

frequency dependent amplification gain of the convergent system. Formally, the amplification
gain γabs(ω) is defined as

γabs(ω) := 1
a

 sup
v2

1+v2
2=a2
|h(α(v1, v2, ω))|

 (2-19)

In general nonlinear case, γabs depends not only on the frequency but also on the amplitude
of the input signal.

An alternative frequency-dependent gain for convergent systems excited by periodic signals
has been proposed in [49]. Consider a convergent system excited by periodic input signal u(t)
with period T . As mentioned before, the steady-state response of the system ȳ(t) is also a
periodic signal with the same period T as the input. The gain of the system γrms can be now
defined by writing

∫ t0+T

t0
ȳ>(τ)ȳ(τ)dτ ≤ γ2

rms

∫ t0+T

t0
u>(τ)u(τ)dτ (2-20)

This inequality can be rewritten as

‖ȳ‖2,T ≤ γrms‖u‖2,T (2-21)

This definition of the gain of a nonlinear system links the rms values of the periodic exogenous
input u and of the corresponding periodic steady-state response ȳ.

2-3-2 Nonlinear frequency response functions of reset systems

In this subsection, convergence and nonlinear frequency response functions of reset systems
are analysed. We focus especially on the open-loop reset systems described by Equation (2-3),
whose states are reset whenever the input signal e is equal to zero. Convergence of closed-loop
reset systems, like the one presented in Equation (2-4), whose states are reset based on an
internal signal different than the systems input, is a topic of ongoing research [50].

For the open-loop reset system excited with a sinusoidal input

e(t) = a sin(ωt) (2-22)

we have

Proposition 2-3.4. [45] The reset system (2-3) with input (2-22) has a globally asymptoti-
cally stable 2π/ω-periodic solution if and only if

ρ
(
Aρre

π
ω
Ar
)
< 1. (2-23)

ρ(·) denotes the spectral radius of a matrix.

Proposition 2-3.5. [45] The reset system (2-3) has a globally asymptotically stable 2π/ω-
periodic solution under sinusoidal input with arbitrary frequency ω > 0 if and only if

ρ
(
Aρre

Arδ
)
< 1 ∀δ ∈ R+. (2-24)
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12 Background knowledge

In fact, Proposition 2-3.5 gives condition for convergence of the open-loop reset system (2-3)
for the class of sinusoidal inputs. Note, that the reset matrix Aρr has to satisfy ρ(Aρr) ≤ 1,
for the condition in Proposition 2-3.5 to be satisfied. At the same time, the condition can be
satisfied if Ar is not Hurwitz.

For convenience, define:

Λ(ω) = ω2I +A2
r , (2-25a)

∆(ω) = I + e
π
ω
Ar , (2-25b)

∆r(ω) = I +Aρre
π
ω
Ar , (2-25c)

Γr(ω) = ∆−1
r (ω)Aρr∆(ω)Λ−1(ω). (2-25d)

The set of reset time instants {tk} for the reset system (2-4) with input (2-22) is given by

tk = kπ/ω, k ∈ {0, 1, 2, . . . }. (2-26)

If the conditions of Proposition 2-3.4 are satisfied, the steady-state solution ȳ(t) of system
(2-3) corresponding to input (2-22) is given by [45]

ȳ(t) = aCre
Artθk(ω)− aCrΛ−1(ω) (ωI cos(ωt) +Ar sin(ωt))Br +Dra sin(ωt) (2-27)

θk(ω) = (−1)k+1e−Artk
(
Γr(ω)− Λ−1(ω)

)
ωBr,

when t ∈ (tk, tk+1].

Function (2-27) is in fact the nonlinear frequency response function of the open-loop reset
system (2-3). Note, that the amplitude of ȳ is proportional to the amplitude a of the input
signal. Knowing ȳ, the nonlinear Bode plot mentioned earlier can be easily calculated for the
open-loop reset system.

2-3-3 Describing functions of reset systems

Describing function (DF) is a quasi-linearization of a nonlinear element subject to a certain
input [17, Ch.2]. There exist many types of Describing Functions (DF) which are defined for
different classes of systems and signals [42]. Typically, definitions of DF are similar to the
definition of the FRF for the LTI systems. Here, the DF are presented for open-loop reset
systems. DF of the closed-loop reset systems are a topic of ongoing research [50].

Sinusoidal Input Describing Functions (SIDF) are commonly used for analysis and design of
reset control systems [14] [17]. They have been used to motivate the use of reset since the very
beginning of works on this topic [12]. In [45], an analytical formula for a describing function
of a reset element with the zero-crossing reset condition is given. Based on this work, an
analytical formula for Higher-Order Sinusoidal Input Describing Functions (HOSIDF) of the
same kind of reset systems was derived in [46].

Consider the open-loop reset system (2-3) excited with sinusoidal input (2-22). If the condi-
tions of the Proposition 2-3.4 are satisfied, the system has a corresponding globally asymp-
totically stable solution ȳ with the same period as the input signal. The steady state solution
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2-3 Frequency domain properties of reset systems 13

Figure 2-2: Block diagram representation of HOSIDF for a reset system. For reset system the
HOSIDF Hq(ω) is a function of the input frequency only. Adapted from [46]

ȳ can be written using the Fourier series as a sum of harmonics of the input signal e(t). The
describing function of order q is defined as the complex ratio of the qth harmonic component
of the output signal to the virtual qth harmonics signal derived from the excitation signal.
SIDF of the system is a HOSIDF of order q = 1. Formally, the qth HOSIDF is defined by [46]

Hq(ω) = Ȳq(ω)
Eq(ω) (2-28)

Ȳq(ω) = ω

2π

∫ 2π
ω

0
ȳ(t)e−jωqtdt

Eq(ω) = ω

2π

∫ 2π
ω

0
a sin(qωt)e−jωqtdt

The reset element can be modelled using the virtual harmonic generator as described in
[44]. The virtual harmonic generator converts the sinusoidal input e(t) into a harmonic
signal ě(t) =

∑∞
q=1 a sin(qωt). The harmonic components are inserted into corresponding

describing function subsystems Hq(ω) which are relating a harmonic component of the non-
linear system output to the corresponding harmonic component of the virtual harmonics
generator. The response of the system is an infinite sum of outputs generated by Hq. The
concept is illustrated for a reset element in Figure 2-2. For resets systems HOSIDF does not
depend on the amplitude of the input signal.

Theorem 2-3.6. [46] For the reset control system (2-3) the Higher-Order Sinusoidal In-
put Describing Functions (HOSIDF) Hq(ω), where ω ∈ R is the angular frequency of input
excitation and q ∈ Z+ is an order of HOSIDF, is given by

Hq(ω) =


Cr(jωI −Ar)−1(I + jΘD(ω))Br +Dr for q = 1
Cr(jωqI −Ar)−1jΘD(ω)Br for odd q ≥ 2
0 for even q ≥ 2

(2-29)
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14 Background knowledge

where

ΘD(ω) = −2ω2

π
∆(ω)[Γr(ω)− Λ−1(ω)]

Λ(ω) = ω2I +A2
r

∆(ω) = I + e
π
ω
Ar

∆r(ω) = I +Aρre
π
ω
Ar

Γr(ω) = ∆−1
r (ω)Aρr∆(ω)Λ−1(ω)

2-4 L2-gain, passivity and dissipativity

L2-gain and passivity are fundamental concepts in control theory. They are commonly used
to analyse the stability of feedback interconnections of systems and provide a robustness
guarantee [26]. Both concepts can be described using the dissipativity theory, which is based
on energy-related considerations [51]. Here, all three notions are presented as a foundation
to introduce the blending of passivity and finite-gain in the subsequent section.

2-4-1 Input-output stability and the small gain theorem

In the input-output approach, a model of the system is used, which relates the output di-
rectly to the input without focusing on the internal structure that is represented by the state
equation. The following basic results are presented as in [52, Ch.5].

Consider a system whose input-output relation is given by

y = Hu (2-30)

where H is some mapping that specifies y ∈ Rq in terms of u : [0,∞)→ Rm [52, Ch.5]. The
mapping H is defined as a mapping from extended space Lm2,e to extended space Lq2,e (see [52,
Ch.5])

Definition 2-4.1. [52] A mapping H: Lm2,e → Lq2,e is L2 stable if there exist a class K
function α, defined on [0,∞), and a non negative constant β such that

‖(Hu)τ‖2 ≤ α(‖uτ‖2) + β (2-31)

for all u ∈ Lm2,e and τ ∈ [0,∞). It is finite-gain L2 stable if there exists non negative constants
γ and β such that

‖(Hu)τ‖2 ≤ γ‖uτ‖2 + β (2-32)

for all u ∈ Lm2,e and τ ∈ [0,∞).

For an LTI system with rational transfer function H(s), i.e. y(s) = H(s)u(s), where all poles
of H(s) have real parts less than zero, the system has finite L2-gain if the Nyquist plot H(jω)
is inside the circle of radius γ centred at the origin.
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H1
-

r1 u1

r2u2H2

y1

y2

Figure 2-3: Closed-loop system with two external inputs.

Consider now a feedback interconnection of systems presented in Figure 2-3. Suppose that
two systems H1 : Lm2,e → L

q
2,e and H2 : Lq2,e → Lm2,e are finite gain stable, that is

‖y1τ‖2 ≤ γ1‖u1τ‖2 + β1 ∀u1 ∈ Lm2,e, ∀τ ∈ [0,∞) (2-33)
‖y2τ‖2 ≤ γ2‖u2τ‖2 + β2 ∀u2 ∈ Lq2,e,∀τ ∈ [0,∞) (2-34)

Assume that the feedback system is well defined, that is for every pair of inputs r1 ∈ Lm2,e
and r2 ∈ Lq2,e there exist unique outputs u1, y1 ∈ Lm2,e and u2, y2 ∈ Lq2,e. The small-gain theo-
rem presented below gives a sufficient condition for finite-gain L2 stability of the considered
feedback connection.

Theorem 2-4.2. [52] Under the preceding assumptions, the feedback connection is finite gain
L stable if γ1γ2 < 1

2-4-2 Passivity

Passivity techniques are a powerful tool for nonlinear control. They are suitable for analysis
of interconnected systems and in the case of linear plants, frequency-domain conditions can
be used.

Consider the input-output system H: L2,e → L2,e.

Definition 2-4.3. [26] [51] A system y = H(u) is called passive if there is a constant β such
that ∫ T

0
yT (τ)u(τ)dτ ≥ β,∀u ∈ L2,e (2-35)

If, in addition there are constants δ ≥ 0, ε ≥ 0 such that

∫ T

0
yT (τ)u(τ)dτ ≥ β + δ

∫ T

0
uT (τ)u(τ)dτ + ε

∫ T

0
yT (τ)y(τ)dτ,∀u ∈ L2,e (2-36)

then the system is, respectively, said to be:

1. Input Strictly Passive (ISP) if δ > 0

2. Output Strictly Passive (OSP) if ε > 0

3. Very Strictly Passive (VSP) if δ > 0 and ε > 0
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16 Background knowledge

The system is said to be pseudo very strictly passive is there are constants β, δ, ε ∈ R such
that 2-36 holds.

Note, that systems which are OSP or VSP have also a finite L2-gain.

The passivity of a linear time-invariant system can be conveniently checked using the following
frequency domain conditions.

Theorem 2-4.4. [51] Given a LTI system with a rational transfer function matrix H(s).
Assume that all the poles of H(s) have negative real parts. Then the following assertions
hold:

1. The system is passive if and only if Re(H(jω)) ≥ 0 for all ω ∈ [−∞,∞]

2. The system is input strictly passive (ISP) if and only if there exist a δ > 0 such that
Re(H(jω)) ≥ δ > 0 for all ω ∈ [−∞,∞]

3. The system is output strictly passive if and only if there exist a ε > 0 such that
Re(H(jω)) ≥ ε|H(jω)|2 > 0 for all ω ∈ [−∞,∞].
It is equivalent to (Re(H(jω))− 1

2ε)
2 + (Im(H(jω)))2 ≤ ( 1

2ε)
2

In a SISO, LTI case, these properties can be checked in a Nyquist diagram: if H(jω) is in
the closed right half plane then the system is passive, if H(jω) is in Re{H(jω)} ≥ δ > 0 the
system is ISP and if H(jω) is inside the circle with center 1

2ε and radius 1
2ε the system is OSP.

The passivity theorem can be used to show the stability of a feedback interconnection of
systems presented in Figure 2-3.

Theorem 2-4.5. [51] Assume that H1, H2 are pseudo VSP. The feedback system shown in
Figure 2-3 is finite L2-gain stable if both

ε1 + δ2 > 0 and
ε2 + δ1 > 0

(2-37)

are satisfied, where εi, δi may be negative.

2-4-3 Dissipativity

Dissipative system theory was developed in [53], where the concept of passivity was extended
to non-mechanical systems. Later, the theory has been adapted for hybrid systems in [8].

Consider a dynamical system represented by the state-space model{
ẋ = f(x, u)
y = g(x, u)

(2-38)

where f : Rn × R → Rn is locally Lipschitz, g : Rn × R → R is continuous, f(0, 0) = 0,
g(0, 0) = 0, x ∈ Rn is the state variable and u, y ∈ L2,e are the input and output, respectively.
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2-4 L2-gain, passivity and dissipativity 17

Definition 2-4.6. [51] System (2-38) is said to be dissipative with the supply rate w(u, y) if
there exist a storage function V (x) ≥ 0 such that

V (x(T )) ≤ V (x(0)) +
∫ T

0
w(u(t), y(t))dt, ∀T ≥ 0,∀u ∈ L2,e, ∀x(0) (2-39)

If it is imposed that the storage functions satisfy V (0) = 0, the dissipativity definition intro-
duced by Hill and Moylan [54] can be used [51].

Definition 2-4.7. [51] System (2-38) is dissipative with respect to the supply rate w(u, y) if
for all admissible u and all t1 ≥ t0 one has

0 ≤
∫ t1

t0
w(u(t), y(t))dt (2-40)

with x(t0) = 0 and along all trajectories of the system.

The system H is said to be (Q,S,R)-dissipative when it is dissipative w.r.t. quadratic supply
rate

w(u, y) = y>Qy + 2y>Su+ u>Ru (2-41)

where Q,S,R are bounded linear operators.

The relationship between dissipative and passive and finite-gain systems is given by the choice
of a particular supply rate [51]:

1. The system is passive if it is dissipative with respect to supply rate wp(u, y) = uT y (if
it is (0, 1/2, 0)-dissipative) and V (0) = 0

2. The system is ISP if it is dissipative with respect to supply rate wi(u, y) = uT y− δuTu,
for some δ > 0 (if it is (0, 1/2,−δ)-dissipative)

3. The system is OSP if it is dissipative with respect to supply rate wo(u, y) = uT y−εyT y,
for some ε > 0 (if it is (−ε, 1/2, 0)-dissipative)

4. The system is VSP if it is dissipative with respect to supply rate wv(u, y) = uT y −
δuTu− εyT y, for some ε > 0 and δ > 0 (if it is (−ε, 1/2,−δ)-dissipative)

5. The system has finite gain if it is dissipative with respect to supply rate wg(u, y) =
γuTu− γ−1yT y, for some γ > 0 (if it is (−γ−1, 0, γ)-dissipative)

The formulation in point 5 above is equivalent to ‖y‖22T ≤ γ2‖u‖22T . It is deliberately chosen
for convenience in further derivations.

2-4-4 Passivity of reset systems

The passivity framework can be used for systems with full reset since the system loses all of
its memory at every reset time. For systems with a general reset matrix, dissipativity theory
has to be used [55]. In both cases, the reset system is assumed to have no Zeno solutions.
This can be achieved, for example, by using the time regularization shown in Eq. (2-7).
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18 Background knowledge

Theorem 2-4.8. [55] The reset system (2-3) with Aρ = 0n×n is passive, ISP, OSP or VSP
if its BLS is passive, ISP, OSP or VSP respectively.

Conditions for dissipativity of reset system have been derived for the systems with partial
reset in [55] but can be also applied for the case of general reset matrices [17, Ch. 3.5].

Theorem 2-4.9. [55] The reset system (2-3) is passive, ISP, OSP or VSP if its BLS is
dissipative with respect to supply rates wp(u, y), wi(u, y), wo(u, y) or wv(u, y), respectively,
and with a storage function V (x) satisfying V (Aρx) ≤ V (x), ∀x ∈ Rn.

2-5 Hybrid passivity and finite-gain

In this section, the idea of blending of the passivity and finite-gain theories is presented. First,
an example is given to illustrate the overall concept. Subsequently, the elements of the hybrid
passivity and finite-gain theory are introduced in two steps. The concept of finite-frequency
properties, introduced by Iwasaki in [31], is summarized in Subsection 2-5-2. Systems which
are passive in a low-frequency range and have finite-gain otherwise can be said to have the
hybrid passivity and finite-gain property, what is explained in Subsection 2-5-3. Note, that
here the term hybrid does not refer to the dynamics of the system, but to the blending of
the passivity and finite-gain approaches. The idea has been first introduced in [29] and later
developed further to the form which is presented in this report in [30]. This framework is
extended to the analysis of reset control systems in the main contribution of this thesis.

2-5-1 Illustrative example

To illustrate the general idea of the hybrid passivity and finite-gain, an example adapted from
[27] is presented here. The concepts are formally introduced in the following subsections.

The motivation behind the blending of the passivity and small-gain theorems is to provide
stability results for feedback interconnections of a class of systems, broader than those that
can be analysed with the small-gain or passivity theorems [27].

Consider a negative feedback system consisting of two LTI elements with transfer functions

H1(s) = 5
(s+ 1)(s+ 2) H2(s) = 5

(s+ 0.5)(s+ 4)

In some frequency range [0,Ω] both systems are passive (i.e. the real party of each of the
transfer functions is positive) and in the frequency range [Ω,∞) the product of the amplitudes
of the transfer functions is less than one. The later can be checked by evaluating the maximal
absolute values of the transfer functions in the high-frequency range, denoted by γ1, γ2. In
this case, it is not possible that the Nyquist diagram of the cascade H1H2 encircles the point
−1. Accordingly, the closed-loop system is stable. The example is illustrated in Figure 2-4

Stability of the considered feedback system can not be concluded using the small-gain theorem
since both subsystems have L2 gains greater than 1. The subsystems are also not passive and
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2-5 Hybrid passivity and finite-gain 19

Figure 2-4: Illustration of the hybrid passivity and finite-gain property for LTI systems

multipliers or loop transformations that would enable the use of the passivity theorem can
not always be found.

In the case of simple LTI systems, the stability of the closed-loop system can be easily
concluded by finding the eigenvalues of the closed-loop system or by plotting the Nyquist plot
of the cascade. However, the hybrid passivity approach is beneficial if one of the subsystems
is nonlinear [36] [38] or during the synthesis of controllers for flexible structures [56] [37].

2-5-2 Finite-frequency properties

Consider the dissipation inequality from Definition 2-4.6 with the quadratic supply rate given
in Equation (2-41). By moving the truncations from the integration limits to the signals uT ,
yT we have

V (x(T ))− V (x(0)) ≤
∫ ∞

0
y>T QyTdt+ 2

∫ ∞
0

y>T SuTdt+
∫ ∞

0
u>T RuTdt (2-42)

Assuming that the operators Q,S,R are LTI, the inequality (2-42) can be expressed (via the
Parseval’s theorem) in the frequency domain

V (x(T ))− V (x(0)) ≤ 1
2π

∫ ∞
−∞

yH
T (jω)Q(ω)yT (jω)dω

+ 1
π

Re
{∫ ∞
−∞

yH
T (jω)S(ω)uT (jω)dω

}
+ 1

2π

∫ ∞
−∞

uH
T (jω)R(ω)uT (jω)dω

(2-43)
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To define passivity/finite-gain of a system on a finite frequency interval the integration limits
in the Inequality (2-43) can be changed to finite values. For example, system (2-38) is VSP on
the frequency interval [−ωH , ωH ] if there exist a storage function V defined in (2-4.6), ε > 0,
δ > 0 such that

V (x(T ))− V (x(0)) ≤− 1
2π

∫ ωH

−ωH
yH
T (jω)εyT (jω)dω

+ 1
2π Re

{∫ ωH

−ωH
yH
T (jω)uT (jω)dω

}
− 1

2π

∫ ωH

−ωH
uH
T (jω)δuT (jω)dω

(2-44)

To obtain an equivalent definition, introduce function α(ω) : R → {0, 1} which takes value
1 in the frequency interval where the finite-frequency property is satisfied and 0 elsewhere.
The function can be considered as an ideal low-pass filter. α is formally defined by

α(ω) :=
{

1, −ωH < ω < ωH

0, |ω| ≥ ωH
= A(−jω)A(jω) = |A(jω)|2

(2-45)

The transfer function A(s) ∈ H∞ and A(s)A(−s) is the spectral factorisation of the Laplace
transform of the inverse Fourier transform of α(ω). It has been shown in [30], that A(s) can
be approximated with a low-pass Butterworth filter.

Now, the finite-frequency VSP is defined using the Inequality (2-43) with new operators
Q,S,R given as

Q(ω) = −α(ω)ε (2-46a)

S(ω) = α(ω)1
2 (2-46b)

R(ω) = −α(ω)δ (2-46c)

Definition of a finite-frequency finite-gain system can be obtained in an analogue manner.

The finite-frequency passivity/finite-gain can be described in the time domain, what enables
use of this approach for analysis of nonlinear systems. The time domain equivalent of A(s)
is the causal convolution operator A : L2 → L2.

Define

α(ω) + β(ω) = 1⇔ A(−s)A(s) +B(−s)B(s) = 1⇔ A∼A+ B∼B = 1 (2-47)

where β(ω) is an ideal high-pass filter with the same corner frequency as the low-pass filter
α(ω). Now, the finite-frequency VSP is described in the time domain using the Inequality
(2-42) with Q,S,R operators defined as

Q = −εA∼A, (2-48a)

S = 1
2A
∼A, (2-48b)

R = −δA∼A. (2-48c)
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2-5 Hybrid passivity and finite-gain 21

The finite-frequency finite-gain can be characterized in the time-domain in an analogue man-
ner.

A generalization of the KYP lemma, which can be used to prove the finite-frequency properties
of the LTI state-space systems has been introduced in [33]. The authors also provide an
alternative time-domain interpretation of the finite-frequency properties [34].

2-5-3 Hybrid passivity and finite gain

A system has the hybrid passivity and finite-gain property, introduced in [30], if it is passive
in the given low-frequency range and has a finite gain at other frequencies. This property is
expressed in the following definition.

Definition 2-5.1. [30] System (2-38) is hybrid passive and finite-gain if there exists a storage
function V defined in Definition 2-4.6 such that the Inequality 2-43 is satisfied with

Q(ω) = −
[
εα(ω) + γ−1(1− α(ω))

]
(2-49a)

S(ω) = 1
2α(ω) (2-49b)

R(ω) = [γ(1− α(ω))− δα(ω)] . (2-49c)

Remark 2-5.2. [30] Alternatively, the hybrid passivity and finite-gain can be described in the
time-domain using the Inequality (2-42) and

Q = −
[
εA∼A+ γ−1B∼B

]
(2-50a)

S = 1
2A
∼A (2-50b)

R = [γB∼B − δA∼A] . (2-50c)

If V (0) = 0 and x(0) = 0 are imposed, Definition 2-4.7 can be used to characterize dissipativ-
ity, what simplifies analysis of systems. In this case, the change of the storage function does
not need to be included in the considered inequalities.

In [30] it has been shown that the hybrid passivity/finite-gain property leads to the hybrid
passivity and small-gain theorem. The hybrid approach has been used to give sufficient
conditions for both the Lyapunov and L2 stability of nonlinear systems.

Theorem 2-5.3. [30] Consider the negative feedback interconnection (presented in Fig. (2-
3)) of two systems which are dissipative w.r.t. (Qi,Si,Ri) supply rates defined in Equation
(3-25) with the same operators A, B. A sufficient condition for the feedback system with no
exogenous inputs r1 = r2 = 0 to have a globally asymptomatically stable equilibrium is〈[

y1
y2

]
,

[
−Q1 −R2 S1 − S∼2

S2
1 − S2 −R1 −Q2

] [
y1
y2

]〉
T

> 0 (2-51)

for all admissible signals y1, y2 and all T .
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Theorem 2-5.4. [30] Consider the negative feedback interconnection (presented in Fig. (2-
3)) of two systems which are dissipative w.r.t. (Qi,Si,Ri) supply rates defined in Equation
(3-25) with the same operators A, B. A sufficient condition for the feedback system to be
input-output L2-stable is〈[

y1
y2

]
,

[
−Q1 −R2 S1 − S∼2

S2
1 − S2 −R1 −Q2

] [
y1
y2

]〉
T

> 0 (2-52)

for all admissible signals y1, y2 and all T .

It has been also shown that the conditions of Theorems 2-5.3 and 2-5.4 are satisfied if the
parameters εi, δi, γi corresponding to the subsystems satisfy [30]

ε1 + δ2 > 0 (2-53a)
ε2 + δ1 > 0 (2-53b)
γ1γ2 < 1 (2-53c)

The difference between the conditions in Equation 2-53 and the standard passivity and finite
gain theorems is that the parameters εi, δi and γi are defined on separate frequency ranges.
This makes the hybrid approach applicable to a wider class of systems.

2-5-4 Finding the hybrid passivity and finite-gain parameters

After defining the hybrid passivity and finite-gain property, we focus on the ways to find
whether a given system satisfies the conditions of the definition. The main focus is on the
properties of SISO systems.
Analysis of the hybrid passivity and finite gain of the SISO LTI systems is relatively straight
forward, which can already be seen in the example presented in Subsection 2-5-1. The corre-
sponding procedure for finding the hybrid parameters is illustrated in Figure 2-5.
For a SISO LTI transfer function H(jω) we have [35]

δ = inf
−ωH<ω<ωH

Re {H(jω)} , κ = sup
−ωH<ω<ωH

|H(jω)|, ε = δ

2κ2 , γ = sup
|ω|≥ωH

|H(jω)|.

(2-54)

The benefit of the formulas above is that the values of estimates can be easily calculated.
However, the estimate of ε is conservative. To obtain a closer estimate of ε, recall that the
Nyquist plot of an output strictly passive SISO LTI system is inside a circle with center
at 1

2ε and radius 1
2ε . A similar approach is taken here to find the finite-frequency passivity

parameters of an LTI system.
Proposition 2-5.5. Consider a LTI system with a transfer function matrix H(s). Assume
that all the poles of H(s) have negative real parts. The system is output strictly passive on a
frequency range [−ωH , ωH ] if and only if there exists an ε > 0 such that

Re {H(jω)} ≥ ε|H(jω)|2, ∀ω ∈ [−ωH , ωH ].

This is equivalent to(
Re {H(jω)} − 1

2ε

)2
+ (Im {H(jω)})2 ≤

( 1
2ε

)2
, ∀ω ∈ [−ωH , ωH ]. (2-55)
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2-5 Hybrid passivity and finite-gain 23

Figure 2-5: Illustration of the procedure for finding the hybrid passivity and finite-gain parameters
for SISO LTI systems. The solid black line illustrates the frequency response of a system, and the
border frequency ωH is indicated with the symbol ∗. The choice of the ωH influences the values
of the parameters. Increasing the border frequency leads to a decrease of the high-frequency gain
γ and of the low-frequency passivity parameters. The grey zone corresponds to the ωH such that
δ = 0.

This result is given without a proof since it is a straightforward extension of a classical result
for output passive systems [51]. In the SISO LTI case, the ε can be found by solving the
linear optimization problem

min r s.t.− 2 Re {H(jω)} r ≤ −
(
Re {H(jω)}2 + Im {H(jω)}2

)
, (2-56)

with ω ∈ [−ωH , ωH ] and ε = 1/2r.
In the case of LTI multiple-input multiple-output (MIMO) systems, more complicated pro-
cedures have to be applied. In [57] and [37] the hybrid passivity and finite-gain parameters
of MIMO LTI systems are found using the generalized Kalman–Yakubovich–Popov lemma
[33]. In [58] a frequency-domain test to check whether a MIMO LTI systems satisfies the
conditions of the "mixed" passivity and finite-gain property, related to the hybrid approach,
is developed.
Although the conditions of the definition 2-5.1 can be satisfied by a nonlinear system, a general
procedure to check if this is the case for a given system is not available. Only examples of
analysis of specific classes of systems can be found in the literature.
In [36], gain scheduling of a number of hybrid passive and finite-gain LTI controllers is con-
sidered. It is shown, that use of a particular scheduling scheme yields a resulting controller
also hybrid passive and finite-gain. The "mixed" passivity and finite-gain of switched systems
is analysed in [38].
None of the approaches mentioned above can be directly applied for the hybrid passivity and
finite-gain analysis of reset systems. Since the reset systems are nonlinear, the methods used
for LTI systems are not applicable. Moreover, the two solutions proposed for the scheduled
and switched systems can not be easily extended, since they rely on specific properties of the
considered classes of systems.
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2-6 Concluding remarks

This chapter presented the concepts that are fundamental to this research. In reset systems,
the state jumps are introduced to alleviate the tradeoffs inherent to linear controllers. The
stability of such systems is often shown using the so-called Hβ condition. The fact that a
parametric model of the system to be controlled is required for the stability analysis is one
of the main factors hampering the wider adoption of reset control systems. The behaviour of
the reset system can be approximately described in the frequency domain using the nonlinear
frequency response functions and the describing functions.

The hybrid passivity and finite-gain approach can be used to guarantee the stability of a
feedback interconnection of systems and is an extension of the passivity and the small-gain
theorems. Finding whether a given system is hybrid passive and finite-gain is relatively
simple in the LTI SISO case. While methods for concluding this property for specific classes
of nonlinear systems exist, they cannot be easily extended to reset systems. This issue led to
the formulations of the first research question. A solution to this problem is proposed in the
next chapter.
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Chapter 3

Hybrid passivity and finite-gain
property for reset systems

In this chapter, the hybrid passivity and finite-gain properties of reset systems are developed.
Analysis of the available methods for concluding whether a given system has the hybrid
passivity and finite-gain, conducted in the previous chapter, showed that they cannot be
extended to reset systems. To develop a method applicable to reset elements, we consider the
finite-frequency passivity and the finite-frequency gain of a system separately. To simplify the
problem, only passive systems are analysed. In the next step, the finite-frequency gain of a
system is calculated using the nonlinear frequency response function. The adjustments in the
definition of the hybrid passivity and finite-gain property, required to simplify the analysis
of the reset systems, lead to a modification of hybrid passivity and small-gain theorem for
the stability analysis of feedback systems. Finally, the hybrid passivity and gain of selected
first-order reset systems are studied.

3-1 Finite-frequency passivity of reset systems

In this section, it is shown that a passive system is also finite-frequency passive. This result
applies not only to reset systems but also to general nonlinear systems.
The passivity of a reset system is analysed in [55] using the dissipativity theory. It is shown
that a reset system is passive if its base system is dissipative w.r.t. supply rate w(u, y) = u>y
with a storage function V (x) such that

V (Aρx)− V (x) ≤ 0 (3-1)

for every x ∈ Rn. The condition in Eq. (3-1) means that the storage function should not
increase at reset instants.
To show that every passive system is also finite-frequency passive it is required that V (0) = 0.
In this case, the Definition 2-4.7 according to Hill and Moylan can be used [51]. We have
then the following result.
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26 Hybrid passivity and finite-gain property for reset systems

Theorem 3-1.1. Every system satisfying the conditions of Definition 2-4.7 with the supply
rate w(u, y) = u>y is finite-frequency passive at any frequency interval [−ωF , ωF ].

Proof. If a system satisfies the conditions of Definition 2-4.7 with the supply rate w(u, y) =
u>y it is passive. It holds then that

∫ T

0
y>r urdt ≥ 0 ⇐⇒

∫ ∞
−∞

y>r,T (−jω)ur,T (jω)dω ≥ 0, (3-2)

where, with some abuse of notation, ur,T (jω), yr,T (jω) denote the Fourier transform of signals
ur,T (t), yr,T (t).
Consider the supply rate corresponding to the finite-frequency passivity. We have

Re
{∫ ∞
−∞

y>r,T (−jω)α(ω)ur,T (jω)dω
}
≥ inf
−∞<ω<∞

{α(ω)}︸ ︷︷ ︸
=0

Re
{∫ ∞
−∞

y>r,T (−jω)ur,T (jω)dω
}

︸ ︷︷ ︸
≥0

= 0

(3-3)

where α(ω), α : R → R is an ideal low-pass filter, whose corner frequency ωH defines the
passive frequency range. The relationship in Eq. (3-3) confirms that every passive system
with a storage function that satisfies V (0) = 0 is finite-frequency passive for any frequency
range.

3-2 Finite-frequency finite-gain of reset systems

A system has the finite-frequency finite-gain property if the relationship

γ2
∫ ∞
−∞

u>r,T (−jω)β(ω)ur,T (jω)dω −
∫ ∞
−∞

y>r,T (−jω)β(ω)yr,T (jω)dω ≥ 0 (3-4)

holds for any input signal ur [30] . Function β(ω), β : R→ R is a high-pass filter, defined in
Section 2-5, whose corner frequency ωH defines the finite-gain frequency range.
The property described by Equation 3-4 does not hold for any system producing output signal
consisting of higher harmonics of the input signal. To see that, consider such a system with
a sinusoidal input ur(t) = sin(ωt) with ω < ωH . In this case, the first integral of (3-4) is
equal to zero. Since the output of the system can be described as an infinite sum of higher
harmonics of the input signal, the second integral is greater than zero. Condition (3-4) is
therefore not satisfied.
A new definition of finite-frequency finite-gain property, more suited to systems producing
higher harmonics of the input signal, is proposed.

Definition 3-2.1. A system has the finite-frequency finite-gain property if

γ2
∫ ∞
−∞

u>r,T (−jω)ur,T (jω)dω −
∫ ∞
−∞

y>r,T (−jω)β(ω)yr,T (jω)dω ≥ 0 (3-5)

holds for any input signal ur.
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3-2 Finite-frequency finite-gain of reset systems 27

Figure 3-1: Comparison of a response of a reset integrator to a sum of sinusoids with sum of
responses to component sinusoids. ω1 = 1 rad/s, ω2 = 8 rad/s, a1 = 1, a2 has been varied to
illustrate different behaviours of the system.

In this definition, the "high-pass filter" β(ω) is included only in the output integral and not
in the input integral.

For convergent reset systems the finite-frequency gain corresponding to a given border fre-
quency ωH , described by the property (3-5), can be found using the nonlinear FRF of the
system. As described earlier, formulas for the steady-state output of a reset system with
sinusoidal excitation given in [45] are the nonlinear FRF of the reset system. It is assumed,
that the transient response of the reset controller does not have a significant influence on the
stability of the overall system.

The superposition principle does not hold for reset systems with the state-dependent reset.
Nevertheless, the following assumption is made

Assumption 3-2.2. For the reset system excited by an input signal consisting of multiple
harmonics, the magnitude of the sum of responses caused by separate harmonics is identical
or greater than the magnitude of the response caused by combined harmonics.

Assumption 3-2.2 is supported by an illustrative example presented in Figure 3-1, where a
response of a reset integrator to a sum of sinusoids a1 sin(ω1t)+a2 sin(ω2t) with ω1 = 1 rad/s,
ω2 = 8 rad/s and a1 = 1, is considered. Presence of higher frequency sinusoid does not cause
new reset instants when a2/a1 ≤ ω1/ω2 [59], what can be observed in Figure 3-1 with a2 = 1/8.
When few new reset instants are introduced, magnitudes of y(a1 sin(ω1t) + a2 sin(ω2t)) and
y(a1 sin(ω1t)) + y(a2 sin(ω2t)) are comparable, what can be seen in Figure 3-1 with a2 =
0.5. When many new resets are introduced y(a1 sin(ω1t) + a2 sin(ω2t)) � y(a1 sin(ω1t)) +
y(a2 sin(ω2t)).

The following definition is introduced as a step towards finding the high-frequency gain of a
convergent system, defined in the Definition 3-2.1.
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28 Hybrid passivity and finite-gain property for reset systems

Definition 3-2.3. The high-frequency nonlinear frequency response function Bȳ(t), with the
border frequency ωH , of a convergent system is given by

Bȳ(t) =
∞∑

n=nF+1
Ȳn(ω)ejωnt = ȳ(t)−

nF∑
n=0

Ȳn(ω)ejωnt, (3-6)

where nF = max n ∈ Z+ s.t. nω ≤ ωH , Ȳn(ω) denotes the n-th HOSIDF and ȳ(t) is the
nonlinear FRF of the system.

To motivate the Definition 3-2.3, consider the steady-state response ȳ(t) of the reset system
corresponding to a sinusoidal excitation with frequency ω. ȳ(t) can be expressed as an infinite
sum of the Fourier series components Ȳn(ω), n ∈ Z+

Ȳn(ω) = ω

2π

∫ 2π
ω

0
ȳ(t)e−jωntdt (3-7)

ȳ(t) =
∞∑
n=0

Ȳn(ω)ejωnt (3-8)

Analytical formulas for Ȳn(ω) have been derived in [46] and are presented in Section 2-3-3 of
this report.
To find the finite-frequency gains described by Eq. (3-5) with given ωH , the right-hand side
of Eq. (3-8) is written as

ȳ(t) =
nF∑
n=0

Ȳn(ω)ejωnt +
∞∑

n=nF+1
Ȳn(ω)ejωnt, (3-9)

where nF = max n ∈ Z+ s.t. nω ≤ ωH . Now, the low- and high-pass filtered steady state
response of the convergent reset system can be calculated as

Aȳ(t) =
nF∑
n=0

Ȳn(ω)ejωnt, (3-10)

Bȳ(t) =
∞∑

n=nF+1
Ȳn(ω)ejωnt = ȳ(t)−Aȳ(t) = ȳ(t)−

nF∑
n=0

Ȳn(ω)ejωnt, (3-11)

where A and B are operators used to express the low- and high-pass filters α(ω) and β(ω) in
the time domain, as described in Section 2-5. The low and high-frequency components of the
steady state response of a rest integrator are illustrated in Figure 3-2.
The high-frequency nonlinear FRF of a convergent system, introduced in the Definition 3-2.3,
is used to find the high-frequency gain of a convergent reset system.

Theorem 3-2.4. The high-frequency gain of a convergent system, with the border frequency
ωH , defined in the Definition 3-2.1, is given by

γ = sup
−∞<ω<∞

γB(ω), (3-12)

where γB(ω) is the gain, calculated as described in Equation (3-22) or (3-23), of the high-
frequency nonlinear FRF of the system with the same border frequency ωH .
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3-2 Finite-frequency finite-gain of reset systems 29

Figure 3-2: Low and high-frequency components of a steady-state response of a reset integrator
to input sin t with ωH = 10 rad s−1

Proof. We suppose assumption 3-2.2 is satisfied. Consider a response of a reset system to an
arbitrary signal. The input signal utot(t) can be expressed using the Fourier series as a sum
of sinusoids ui(t) = a sin(ωit+ φi).

utot(t) =
∞∑
i=1

ui(t). (3-13)

According to the Assumption 3-2.2, the high frequency component of the steady-state response
to the total signal satisfies

Bȳtot(t) ≤
∞∑
i=1
Bȳi(t), (3-14)

where ȳi(t) denote the steady-state response of the reset system to a component sinusoid
ui(t). We have then

|Bȳtot(t)|2 ≤ |
∞∑
i=1
Bȳi(t)| ≤

∞∑
i=1
|Bȳi(t)| (3-15)

∫ ∞
0
|Bȳtot(t)|2dt ≤

∞∑
i=1

∫ ∞
0
|Bȳi(t)|2dt (3-16)

Using the Parseval’s theorem we have∫ ∞
−∞

ȳ>tot(−jω)β(ω)ȳtot(jω)dω ≤
∞∑
i=1

∫ ∞
−∞

ȳ>i (−jω)β(ω)ȳi(jω)dω (3-17)

where ȳtot(jω) and ȳi(jω) denote the Fourier transforms of the total steady-state response
and the response to the component sinusoid of the input.
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In the second step, note that the high-frequency component of the response Bȳ(t) can be used
to find the finite-frequency gain of the considered system. First, consider the high-frequency
component Bȳ(t) of the response to the sinusoidal excitation ui(t). The corresponding non-
linear bode plot magnitudes γB,abs, γB,rms can be calculated as described in Equations (3-22)
and (3-23). We have then∫ ∞

0
|Bȳi(T )|2dt ≤ γ2

B,abs(ωi)
∫ ∞

0
|ai sin(ωit+ φi)|2dt, (3-18)∫ ∞

0
|Bȳi(T )|2dt ≤ γ2

B,rms(ωi)
∫ ∞

0
|ai sin(ωit+ φi)|2dt. (3-19)

Using the Parseval’s theorem, the relationships above can be translated to the frequency
domain as

∫ ∞
−∞

ȳ>i (−jω)β(ω)ȳi(jω)dω ≤ γ2
B,abs(ωi)

∫ ∞
−∞

u>i (−jω)ui(jω)dω, (3-20)∫ ∞
−∞

ȳ>i (−jω)β(ω)ȳi(jω)dω ≤ γ2
B,rms(ωi)

∫ ∞
−∞

u>i (−jω)ui(jω)dω, (3-21)

where ui(jω) denotes the Fourier transform of the input signal ui(t).

When Equation (3-17) is combined with (3-20) we get∫ ∞
−∞

ȳ>tot(−jω)β(ω)ȳtot(jω)dω ≤
∞∑
i=1

∫ ∞
−∞

ȳ>i (−jω)β(ω)ȳi(jω)dω

≤
∞∑
i=1

γ2
B,abs(ωi)

∫ ∞
−∞

u>i (−jω)ui(jω)dω

=
(

sup
−∞<ω<∞

γB,abs(ω)
)2 ∫ ∞
−∞

u>tot(−jω)utot(jω)dω

(3-22)

Similarly, after combining Equations (3-17) and (3-21) we get∫ ∞
−∞

ȳ>tot(−jω)β(ω)ȳtot(jω)dω ≤
(

sup
−∞<ω<∞

γB,rms(ω)
)2 ∫ ∞
−∞

u>tot(−jω)utot(jω)dω (3-23)

Inequalities (3-22) and (3-23) present two approaches to estimate the finite-frequency gain of
reset system based on its nonlinear FRF. The presented method may be easily applied to
other classes of convergent systems.

3-3 Stability of systems with the modified hybrid passivity and
finite gain definition

In the previous sections, the finite-frequency passivity and gain of reset systems were consid-
ered. Based on them, a modified definition of hybrid passivity and finite-gain, suitable for
systems creating harmonics of the input signal in their response, is given below
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Definition 3-3.1. The reset system (2-7) is said to be hybrid passive and finite-gain if it
satisfies the dissipation inequality (2-43) with

Q(ω) = −
[
εα(ω) + γ−1(1− α(ω))

]
(3-24a)

S(ω) = 1
2α(ω) (3-24b)

R(ω) = [γ − δα(ω)] (3-24c)

Remark 3-3.2. Equivalently, the hybrid passivity and finite-gain can be described in the
time-domain using the Inequality (2-43) with

Q = −
[
εA∼A+ γ−1B∼B

]
(3-25a)

S = 1
2A
∼A (3-25b)

R = [γ − δA∼A] (3-25c)

Note, that systems producing higher harmonics of the input signals, including the reset sys-
tems, may still satisfy the conditions of the Definition 2-5.1. However, this can not be shown
by considering the passivity and gain of a system over separate frequency ranges, like it is
done for LTI systems. The reason is that the nonlinear systems, unlike the LTI systems, can
shift the energy of an input signal to other frequencies. Additionally, note that the Section
3-1 provides tools only to the check finite-frequency passivity with δ = ε = 0.

Consider a negative feedback interconnection of a system that is hybrid passive and finite-gain
according to the Definition 2-5.1, with a system satisfying the modified definition of hybrid
passivity and finite gain 3-3.1. Such a system can be obtained, for example, by connecting
appropriate linear and reset systems.

Since the modified definition 3-3.1 has been used, the hybrid passivity and small-gain theorem
(2-5.3, 2-5.4) has to be adjusted.

Theorem 3-3.3. The negative feedback interconnection of systems H1 : L2,e → L2,e and
H2 : L2,e → L2,e, presented in Figure 2-3, where system H1 satisfies conditions of Definition
2-5.1 and system H2 satisfies conditions of Definition 3-3.1, is L2-stable if

ε1 + δ2 − γ2 > 0 (3-26a)
δ1 + ε2 > 0 (3-26b)
γ1γ2 < 1 (3-26c)

Proof. As in Theorem 2-5.4, to guarantee the Lyapunov and L2-stability of the feedback
system we require

〈[
y1
y2

]
,

M︷ ︸︸ ︷[
−Q1 −R2 S1 − S∼2

S2
1 − S2 −R1 −Q2

] [
y1
y2

]〉
T

> 0 (3-27)
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32 Hybrid passivity and finite-gain property for reset systems

Assume that Q1,S1,R1 correspond to the subsystem satisfying the definition 2-5.1 and
Q2,S2,R2 to the subsystem satisfying the definition 3-3.1. Consider the operator M in
the frequency domain. In the considered case, it is given by

M(ω) =
[
ε1α(ω) + γ−1

1 β(ω)− γ2 + δ2α(ω) 1
2α(ω)− 1

2α(ω)
1
2α(ω)− 1

2α(ω) −γ1β(ω) + δ1α(ω) + ε2α(ω) + γ−1
2 β(ω)

]
(3-28)

When α(ω) = 1, β(ω) = 0 M(ω) is given by

M(ω)|α(ω)=1 =
[
ε1 + δ2 − γ2 0

0 δ1 + ε2

]
(3-29)

When α(ω) = 0, β(ω) = 1 M(ω) is given by

M(ω)|α(ω)=0 =
[
γ−1

1 − γ2 0
0 γ−1

2 − γ1

]
(3-30)

Recall that α and β are defined over ω ∈ (−∞,∞) such that over the "passive frequency
range" (−ωH , ωH) α(ω) = 1 and β(ω) = 0, and overt the (−∞,−ωH ]∪ [ωH ,∞) α(ω) = 0 and
β(ω) = 1. Clearly, inequality (3-28) is satisfied if

ε1 + δ2 − γ2 > 0 (3-31a)
δ1 + ε2 > 0 (3-31b)
γ1γ2 < 1 (3-31c)

The difference between conditions in (3-26) and the conditions of the hybrid passivity and
small-gain theorem presented in (2-53) is presence of −γ2 in the first inequality. This is caused
by the change of the definition of the finite-frequency gain for reset systems, which resulted
in an artificial shortage of input passivity. In view of Section 3-1, this shortage has to be
compensated by the excess of output passivity in the ε1, since a way to calculate δ2 is not
available.

3-4 Hybrid properties of first-order reset systems

In this section, the finite-frequency properties of first-order rest elements (FORE) are anal-
ysed. The FORE are frequently used in reset control systems. They can be applied both as
Clegg integrators or reset low-pass filters and be a basis for more complex elements like the
CgLp [20]. For this reason, they are a relevant class of elements to study.

After introduction of the FORE, the finite-frequency passivity and gain of reset integrators
and low-pass filters are analysed separately. Next, the hybrid passivity and finite-gain is
concluded as described in the previous chapter.
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3-4 Hybrid properties of first-order reset systems 33

3-4-1 First order reset elements

The First Order Reset Element (FORE) is a reset element described by Equation (2-3) with
xr ∈ R, e ∈ R and u ∈ R. The two most commonly used FOREs are reset integrators and
reset low-pass filters.

The matrices of the reset integrator in (2-3) are

Ar = 0, Br = 1, Cr = 1, Dr = 0, Aρr = ρ, (3-32)

where ρ ∈ R is a parameter describing the level of reset. The reset integrator was the first
reset element introduced in [12].

The matrices of the first order reset low-pass filter in (2-3) are

Ar = −ωr, Br = ωr, Cr = 1, Dr = 0, Aρr = ρ, (3-33)

where ωr ∈ R is the corner frequency of the filter. The element has been introduced in [60]
and generalized in [45], by considering non full reset ρ 6= 0.

The benefits of using reset integrators and low-pass filters can be seen with the DF analysis.
At steady state, both elements have the magnitude of the response similar to their linear
counterparts while the phase lag they introduce is reduced and depends on the value of the
parameter ρ [45].

3-4-2 Finite-frequency passivity of FORE

As has been shown in Section 3-1, a passive system is finite-frequency passive for any frequency
range. This fact, in combination with [55], is used here to show finite frequency passivity of
reset systems.

According to Theorem 2-4.9, the reset system is passive if its base system is dissipative with
respect to supply rate w = eu with a storage function V (x) satisfying V (Aρrx) ≤ V (x), ∀x ∈
R.

Consider a time-regularized reset low-pass filter with (3-33) and a quadratic storage function
V (x) = 1

2ωr x
2. The dissipativity of the base dynamics can be studied using the differential

dissipation inequality [26]. We have

V̇ (x) = ∂V

∂x
ẋ = −x2 + xe = −u2 + eu ≤ eu (3-34)

It can be concluded that the base dynamics of the system are dissipative w.r.t. w = eu for all
ωr > 0. For the storage function we have

V (Aρrx) = ρ2 1
2ωr

x2 ≤ 1
2ωr

x2 = V (x), ∀x ∈ R,∀ρ ∈ (−1, 1) (3-35)

A similar procedure can be repeated for the reset integrator. It is concluded that time-
regularized reset integrators and low-pass filters are finite-frequency passive at any frequency
range if ρ ∈ (−1, 1) and ωr > 0.
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34 Hybrid passivity and finite-gain property for reset systems

3-4-3 Finite-frequency gain of FORE

The finite-frequency L2-gain has been defined for reset systems in Section 3-2. Here, the
finite-frequency gains of selected FORE are analysed.

A Matlab implementation of the procedure for calculating the gain is presented in Appendinx
A. For each frequency of the input sinusoid, the steady-state response of the element is
calculated using formula (2-27). Subsequently, the HOSIDF up to the considered corner
frequency ωH are computed, and the low and high-frequency parts of the output signal are
obtained, as described in Equations (3-10) and (3-11). Next, the gains γA(ω) and γB(ω) for
the specific frequency can be calculated as in Equations (2-19) and (2-20). This procedure
is repeated for a grid of frequencies. The finite-frequency gain of the reset system is the
supremum of γB,abs(ω) or γB,rms(ω) over the entire frequency range.

The nonlinear bode magnitude plots γA(ω), γB(ω), calculated using the absolute and rms-
values of the signals, are compared for reset integrators and low-pass filters in Figure 3-3.
At high frequency range ω > ωH , the steady-state response of the system is equal to the
high-frequency component ȳ = Bȳ and the low-frequency component Aȳ is equal to zero. At
low frequencies ω < ωH , both components contribute to the steady-state response.

The high-frequency gain defined using the absolute value is significantly higher than to gain
calculated using the rms values. This is a result of the nature of the high-frequency signal
component, which can be observed in Figure 3-2.

Recall, that in the Theorem 3-2.4, the supremum of the gain of the high-frequency component
Bȳ over all frequencies ω is used to find the high-frequency gain of the system. In the case
of the reset integrator, the gain γB(ω) of the high-frequency component is increasing as the
frequency ω decreases, which can be seen in Figures 3-3a and 3-3b. It is therefore concluded
that reset integrators do not have a finite high-frequency gain. The high-frequency gain can
be found for the reset low-pass filter. In this case, the gain γB(ω) has a clear maximum and
decreases as frequency ω tends to zero (Figures 3-3c and 3-3d). It is concluded that the reset
low-pass filters are hybrid passive and finite gain.

Figure 3-3d presents γB,rms of the reset low-pass filter for different border frequencies ωH .
Using the Theorem 3-2.4, it can be concluded that the value of γB,rms can be underestimated
using the values of γrms at the corresponding ωH . When the difference between ωH and
ωR is smaller then approximately 1 order of magnitude, the γB,rms is equal to γrms(ωH).
This observation is used later in this report to simplify the stability analysis of reset control
systems.

3-5 Concluding remarks

In this chapter, the hybrid passivity and finite gain of reset systems were studied. In this
way, the first research question: How can the hybrid passivity and finite-gain framework be
extended to reset systems? was answered. These considerations lead to general observations,
that apply to a wide range of nonlinear systems.

The finite frequency passivity and gain of systems were considered separately. It has been
shown that every passive system is also finite-frequency passive on any frequency interval.
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Figure 3-3: Nonlinear Bode magnitude plots of First order reset elements. (a),(b) Reset
integrator with Ar = 0, Br = 1, Cr = 1, Dr = 0, Aρ = 0 and ωH = 10 rad s−1,(c),(d) reset
low-pass filter with Ar = −0.01, Br = 0.01, Cr = 100, Dr = 0, Aρ = 0 and ωH = 10 rad s−1.

Figure (d) presents also γB,rms for other values of ωH .
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36 Hybrid passivity and finite-gain property for reset systems

Analysis of finite-frequency gains of reset systems revealed that the definition of the finite-
frequency passivity used in [30] is not suitable for nonlinear systems whose responses consist
of higher harmonics of the input signal. To enable the analysis of hybrid passivity and gain
of reset systems, an alternative definition of the finite-frequency passivity of finite gain was
proposed. In consequence, a new definition of the hybrid passivity and finite-gain property
was coined, and a new variant of the hybrid passivity and small-gain theorem for stability
analysis of feedback systems was derived.

It is important to note that systems producing higher harmonics of the input signal may still
have the hybrid passivity and finite-gain property defined in [30]. However, showing this is
complicated, since the energy of the input signal can be shifted to other frequencies in the
response.

The proposed approach has been used to analyse the properties of selected first-order reset
elements. It has been concluded that first-order reset low-pass systems satisfy the conditions
of the proposed definition of the hybrid passivity and finite-gain.
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Chapter 4

Application of the hybrid passivity and
finite gain to stability of reset control

systems

In this chapter, the hybrid passivity and finite gain of reset systems, derived in the previous
chapter, are applied to the stability analysis of a reset control system. First, a class of control
systems suitable for analysis using the proposed method is presented. Next, the stability of a
reset control system for a precision positioning stage is studied as an example. The chapter
is concluded with a summary regarding the benefits and limitations of the proposed method.

4-1 Reset control systems suitable for the hybrid stability analysis

The hybrid passivity and finite-gain theorem and its variant adjusted for reset systems (intro-
duced in Section 3-3), can be used to analyse feedback interconnections of systems presented
in Figure 2-3. In this section, examples of reset control systems that can be analysed using
the Theorem 3-3.3 are studied. The scope of the analysis is limited to precision positioning
systems, in which plants can be assumed to be LTI. Nevertheless, this framework may be
extended to other kinds of systems and possibly nonlinear plants. The reset low-pass filter
will be considered as an addition to a PID controller [61], to improve the performance of the
system.

Figure 4-1a shows a general configuration of a reset controller [62], where P denotes an LTI
plant, C1, C2 denote LTI components of the controller and R is a reset element. Since one
of the elements is nonlinear, the order of elements in the structure has an influence on the
behaviour of the system. If C1 is bounded and C2 is invertible, the considered control system
can be transformed into the feedback interconnection shown in Figure 4-1b. Here, the reset
control system is divided into the linear part LOL = C1PC2 and the reset element R. This
structure is suitable for the stability analysis using the proposed variant of the hybrid passivity
and small-gain theorem.
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Figure 4-1: Transformation of a reset control system to a feedback interconnection. (a)
Standard configuration, (b) Feedback interconnection suitable for hybrid passivity and small-gain

stability analysis.

To conclude the stability of the reset control system in Figure 4-1, it is necessary that the
linear subsystem LOL is hybrid passive and finite-gain. The first class of suitable systems are
plants with passivity violations due to high-frequency dynamics. Examples of such systems,
like flexible structures and manipulators, can be found in literature [56][35][36][57][37].

Another class of systems that satisfy the requirement are systems modelled with the second-
order LTI transfer function

G(s) = 1
s2 + 2ζωns+ ω2

n

, (4-1)

where ωn is the undamped natural frequency and ζ is the damping ratio. This transfer
function can be used as a simple model of a motion stage or of a complementary sensitivity
function of a closed-loop control system. We are interested in the overall loop-shape, and the
second-order transfer function is chosen only as a convenient example to analyse.

Figure 4-2 shows the Bode plot of the second-order system (4-1) with ωn = 10 rad s−1 and
different values of the damping ratio ζ. It can be seen that the system is hybrid passive and
finite-gain, with ωn separating the passive a finite-gain frequency regions.

The majority of reset control systems in the precision positioning applications have the struc-
ture presented in Figure 4-1 and the plants can be at least roughly approximated using the
transfer function (4-1). However, the stability of such systems can rarely be concluded using
the hybrid passivity and small-gain theorem. Typically, the bandwidth of the control system
ωc is significantly higher than the first natural frequency of the plant. In consequence, the
product of high-frequency gains with the border frequency ωH = ωn would be higher than 1.
If the bandwidth ωc ≈ ωn is chosen, the corner frequency of the reset low-pass ωR should be
significantly lower then ωn to compensate the magnitude peak of the subsystem LOL.

To achieve greater design freedom, consider the reset control system with the configuration
shown in Figure 4-3. In this case, the reset element is applied in parallel to the main control
line, and an additional LTI element CR is added. Similar to the previous configuration, if
C1CR is bounded and C2 is invertible, the control system can be transformed into structure
presented in Figure 4-3b. We have then a feedback interconnection of the reset element R
with a closed-loop LTI system, represented by the transfer function

LCL = C1PC2
1 + C1PC2CR

. (4-2)

Note, that LCL is identical to the complementary sensitivity function of the system with input
w and output v in Figure 4-3b.
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Figure 4-2: Bode plot of the second-order transfer function (4-1) with ωn = 10 rad s−1 and
different values of ζ.
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Figure 4-3: Transformation of a reset control system with a parallel configuration to a feedback
interconnection. (a) General structure (b) Feedback interconnection suitable for hybrid passivity

and small-gain stability analysis.

The dynamics of LCL, consisting of a positioning stage as a plant and a PID-style controller,
can be crudely approximated with the second-order transfer function (4-1), with ωn equal to
the bandwidth of the open-loop system C1PC2CR. This fact can be used to gain insight into
when the stability of reset control system with the structure presented in Figure 4-3 can be
concluded using the Theorem 3-3.3. Similar to the case of the structure presented in Figure
4-1, the stability may be concluded using the hybrid passivity and finite-gain theorem if the
corner frequency of the reset low-pass system is placed below ωn. The benefit of configuration
presented in Figure 4-3 is that the corner frequency ωn of the 2nd-order approximation of
the LCL depends not only on the dynamics of the plant P but also on the control elements
C1, CR and C2. This leads to greater freedom of design. An example of such a system is
analysed later in this chapter.

4-2 Illustrative example

To demonstrate the use of the hybrid passivity and finite-gain approach for the stability
analysis of reset control systems we consider first a simple feedback interconnection of a
second-order transfer function with a reset low-pass filter based on FORE. The structure
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40 Application of the hybrid passivity and finite gain to stability of reset control systems

presented in Figure 4-1 with

P = 10000
s2 + 200s+ 10000 , C1 = 1, C2 = kP , (4-3)

and R given in Equation (3-33) with ωr = 1 rad s−1 is used for simplicity. kP ∈ R denotes the
proportional gain which is set to achieve a selected bandwidth ωc of the open-loop system.

First, the bandwidth ωc = 20 rad s−1 is selected. The DF based open-loop Bode plot of the
system can be seen in Figure 4-4a. The resulting closed-loop system is quadratically stable,
what was confirmed with the Hβ condition presented in the Proposition 2-2.2 [41] [17].

To assess the stability of the system using the hybrid passivity and finite-gain approach, we
need to find finite-frequency parameters εL, δL, γL corresponding to the linear subsystem and
the high-frequency gain of the reset element γR.

Figure 4-5a presents the values of terms appearing in the stability conditions for a range
of frequencies ωH . For each frequency ωH , the parameters of the linear subsystems εL, δL
and γL are calculated as described in the Section 2-5-4. The value of γR is underestimated
by the value of the nonlinear FRF of the reset element at ωH , as described in the Section
3-4-3. The estimated values of the terms appearing in the stability conditions of the Theorem
3-3.3 are shown with the solid lines. It can be seen, that there is a range of ωH for which
the underestimated parameters satisfy all the stability conditions. To conclude the stability
ωH = 50 rad s−1 is chosen and the value of γR is calculated using the Theorem 3-2.4. At
ωH = 50 rad s−1 we have δL = 6.470, εL = 0.056, γL = 10.78 and γR = 0.046. All the
stability conditions are satisfied and the corresponding values are indicated with markers ∗
in the figure.

For the second example, the bandwidth ωc = 300 rad s−1 is selected. The DF based open-loop
Bode plot of the system can be seen in Figure 4-4b. The resulting closed-loop system is
unstable.

The procedure described for the previous example is repeated, and the values of terms ap-
pearing in the stability conditions are plotted for a range of ωH in Figure 4-5b. It can be
seen that there does not exist ωH for which the underestimated terms satisfy the stability
conditions. The stability of the system can not be concluded using the hybrid passivity and
small-gain theorem. The example illustrates that the proposed correctly does not indicate
stability for unstable reset systems.

4-3 Application of the hybrid passivity and finite-gain theorem to
the stability analysis of a reset control system for a precision
positioning stage

In this section, an example of a reset control system in the parallel configuration introduced
in Figure 4-3 is given. First, the overall design of the control system is presented. Next, the
stability of several controllers with different parameters is analysed using the hybrid passivity
and finite-gain method adjusted for reset systems.
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(a) (b)

Figure 4-4: DF-based open-loop Bode plot of the feedback interconnection of a second-order
LTI plant with a FORE low-pass filter. The proportional gain of the LTI system is set to achieve

a selected bandwidth ωc. (a) ωc = 20 rad s−1, (b) ωc = 300 rad s−1
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Figure 4-5: Hybrid passivity and small-gain stability analysis of (a) stable and (b) unstable
reset control systems. The lines represent the approximated values of terms. Exact values,
calculated for ωH = 50 rad s−1, are indicated with the symbol ∗. Note that the scale of the

y-axis is different in both figures.

R

C1 CR

Figure 4-6: Parallel configuration of reset and LTI elements

4-3-1 Phase compensating reset element in parallel configuration

A reset element in the parallel configuration, inspired by the CgLp, is introduced here to
demonstrate the use of the hybrid passivity and finite-gain approach for the stability analysis
of reset systems. The structure of the developed element resembles that of the PI + CI
controller introduced in [14].

Consider the parallel configuration of reset and LTI elements presented in Figure 4-6. R is
the first-order reset low-pass filter given by

R :


ẋr(t) = −ωRxr(t) + ωRe(t), if e 6= 0
xr(t+) = Aρxr(t), if e = 0
u = xr(t),

(4-4)

where e ∈ R, u ∈ R, x ∈ R are the input, output and state of the reset element, ωR ∈ R is
the corner frequency and Aρ ∈ (−1, 1] is the reset parameter of the element.
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Table 4-1: Values of the offset parameter α and the phase advantage ∆φωC
at ωc (estimated

using DF analysis) of the CgLpP element with ωd = ωc/10, ωt = 1000ωc and different values of
Aρ

Aρ α ∆φωc [◦]

0 1,28 25,62
0,2 1,14 19,43
0,4 1,06 13,64
0,6 1,02 8,42
0,8 1,00 3,86

C1 is a linear lead filter
C1(s) = s/ωd + 1

s/ωt + 1 , (4-5)

where ωd, ωt ∈ R are the corner frequencies and CR is a linear low-pass filter

CR(s) = 1
s/ωd + 1 . (4-6)

The DF analysis is used to design a phase compensating reset controller. First, focus on
the low-pass elements CR and R. The frequency response of the element is approximated by
adding the FRF of CR with the first-order DF of R and presented in Figure 4-7a. ωR = ωd/α
has been chosen, where α is a parameter to compensate for the shift of the corner frequency
due to the introduction of the reset [20] [62]. Combining the elements CR + R results in
doubling of the magnitude of a linear low-pass filter. The phase lag introduced by combined
elements is approximately equal to −64◦.

The combination of the lead filter C1 with the low-pass element CR+R is presented in Figure
4-7b. The lead filter is centred at frequency ωc = 100 rad s−1 by choosing ωd = ωc/10 and
ωt = 10ωc. The parameter α which shifts the corer frequency of the reset element has been
adjusted to minimize the variation of the magnitude of the element at frequencies lower than
ωt. The DF analysis indicates that the element provides a constant gain and phase advantage
over a wide range of frequencies. At high frequencies, the element has a low-pass behaviour.
The values of the offset parameter α and achieved phase advantage (estimated using the DF
analysis) for the introduced CgLp element with different values of Aρ are presented in Table
4-1.

It can be concluded that the obtained compound element closely resembles the CgLp element
[20]. In the remainder of this report, it will be referred to as the Constant in gain Lead in
phase element in a parallel configuration (CgLpP).

Note, that the series interconnection of C1 and CR is equivalent to a linear low-pass filter
with the corner frequency at ωt.

4-3-2 CgLpP in the PID framework

The phase advantage provided by the CgLpP element described in the previous section,
corresponding to nearly constant magnitude over a wide frequency range, can be used to

Master of Science Thesis Marcin Brunon Kaczmarek



44 Application of the hybrid passivity and finite gain to stability of reset control systems

(a)

Constant gain band

Wide-range 

phase compensation

(b)

Figure 4-7: Frequency response approximated using the DF analysis. (a) Reset and linear
low-pass filter in parallel configuration ωd = 10 rad s−1, ωR = ωd/1.62 (b) Lead filter in series
with the parallel combination of reset and linear low-pass filters. ωc = 100 rad s−1, ωd = ωc/10,

ωt = 10ωc, ωR = ωd/1.27, Aρ = 0.

relax the Bode’s gain-phase relationship inherent for linear controllers. In this section, the
CgLpP element is integrated with a PID controller to improve the performance of the system.

A typical PID controller used in the precision positioning industry consists of a proportional
gain Kp and integral, lead and low-pass elements

CI = s+ ωI
s

, CD = s/ωD + 1
s/ωT + 1 , CF = 1

s/ωF + 1 , (4-7)

where ωI is the frequency at which integrator is terminated, ωD and ωT are the beginning
and end frequencies of the lead filter and ωF is the corner frequency of the low-pass filter
with ωI < ωD < ωT < ωF . Additional elements like notch filters and higher-order low-pass
filters can be included in the structure. A procedure and rules of thumb for the design of
PID controllers for high-tech applications are given in [61]. Once the bandwidth ωc of the
control system is chosen, the following corner frequencies can be set as a starting point for
the design:

ωI = ωc/10, ωF = 10ωc, ωD = ωc/a, ωT = aωc, (4-8)

where a > 1 is a parameter introduced to adjust the amount of phase lead provided by the
element CD and to ensure that the maximum of added phase overlaps with ωc.

When reset and linear controllers are integrated into one control system, the arrangement of
elements in the structure has a significant influence on the performance. It is suggested in
[62], that the best results can be achieved when lead filters are placed before a reset element
and lag elements (like integrators and low-pass filters) after. Following this result, the lead

Marcin Brunon Kaczmarek Master of Science Thesis



4-3 Application of the hybrid passivity and finite-gain theorem to the stability analysis of a reset control
system for a precision positioning stage 45

filter CD is implemented as a part of C1 and elements CI , CF as part of C2 in the structure
presented in Figure 4-3.
The phase lead provided by the element CD influences not only the stability/robustness of
the control system but also its tracking and precision performance. This is a consequence
of the Bode magnitude-phase relationship. In [20], three different scenarios for overcoming
this fundamental problem by integrating a phase-compensating reset element with the PID
controller are given. In all three cases an LTI PID controller, satisfying certain requirements
regarding the systems bandwidth, phase margin, reference tracking and high-frequency dis-
turbance rejection, is considered as a reference for comparison. In each of the scenarios,
selected performance criteria can be improved without compromising the other. While the
scenarios have been developed for the standard CgLp element, they can be also realized with
the element in the parallel configuration.

S1. The values of ωD and ωT can be fixed to the values obtained for linear PID and CgLp
designed to add required additional phase and hence improve stability and robustness
without affecting precision, tracking or bandwidth.

S2. CgLp can be designed first to provide part of the phase resulting in a smaller scale a
for derivative action (to obtain same phase margin), which should result in improved
tracking and precision without affecting stability and bandwidth.

S3. CgLp can be designed to provide part of the phase again as in the second case, but
instead of improving precision, the closed-loop bandwidth of the system can be increased
which thereby increases tracking as well without affecting stability or precision.

Figure 4-8 presents the DF-based frequency responses of controllers consisting of an LTI PID
and a CgLpP element, designed following the scenarios mentioned above.
Intermediate options, where stability/robustness, precision and tracking are simultaneously
improved can be achieved. [20] presents design procedures, based on the DF analysis, for
controllers following the second and the third scenario. The performance of several control
systems with the CgLp element is validated experimentally and it is concluded that the DF
analysis can be used to predict the performance of the system.

4-3-3 Hybrid stability analysis

To explore the use of the hybrid passivity and finite-gain method for stability analysis, the
CgLpP element, introduced in Section 4-3-1, is applied in the three scenarios presented above.
A number of stable reset control systems are designed following the design procedures pre-
sented in [20]. Their stability is studied using the method introduced in Chapter 3. In this
way, it is shown that the proposed method is conservative. Comparison of the results provides
insights into the design of reset controllers, such that their stability can be concluded using
the hybrid approach. Since this thesis is focused on the stability of reset control systems, the
achieved performance is not studied.
One degree of freedom of the planar precision positioning stage presented in Figure 4-9 is
used as a plant. The dynamics of the system are modelled using the transfer function [20]:

P = 1.429e8
175.9s2 + 7738s+ 1.361e6 . (4-9)
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Increased 
bandwidth

Improved 
tracking

Improved 
precision

Figure 4-8: DF-based bode plot of reset controllers consisting of a PID and the CgLpP elements
designed for an increase of PM (S1), improvement of tracking and precision (S2) and increase
of the bandwidth (S3).
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Figure 4-9: Three-DOF planar precision positioning “Spider” stage. The voice-coil actuators
(1A,1B,1C) actuate the intermediated bodies (3) connected to the base and the main body (2)
with leaf springs. The displacement of bodies (3) is measured by linear encoders (4) and results
in a motion of the main body (2). Adapted from [20].

A time delay of τ = 0.53 ms can be added to the transfer function to match the phase of the
model at frequency 100 Hz with the phase of −195◦ reported in [20]. The model of the plant
with the time delay is given by Pe−τs.

Robustness against uncertainties is an important requirement for control systems. An overview
of results on the robustness of reset control systems can be found in [17]. In this project,
the phase margin at the cross-over frequency, estimated using the DF analysis, is used as a
measure of robustness [20] [46].

The plant model without and with the time delay was considered. When the time delay is
ignored, the reset control system can be described using the state-space model and its stability
can be assessed using the Hβ condition [41]. If the time delay is significant, it can be included
in the DF-based design procedure but not in the model used for a stability check. While this
is a common approach in the design of reset controllers for motion systems [20] [63] [62], it has
clear flaws since the influence of time delay on the stability of the system can be substantial
[14].

An overview of methods for assessment of the stability of reset systems in the presence of time
delay can be found in [14] and [17]. In this project, the stability of reset systems with the time
delay is confirmed by approximating the delay with a second-order rational transfer function
obtained with the Padé approximation [64] and checking if the Hβ condition is satisfied.

To demonstrate the stability analysis, consider the plant (4-9) without the time delay and a
reset controller with the CgLpP element, designed following the scenario S1. Stability of the
control system is confirmed using the Hβ condition [41]. An LTI controller ensures the PM of
25◦. A CgLpP element with Aρ = 0.2 is used to provide additional phase lead. A DF-based
Bode plot of the system can be seen in Figure 4-10. The open-loop of the complete control
system kpC1(RDF +CR)C2P has the same magnitude but a higher phase than a system with
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a PID and the same bandwidth. The open-loop of the linear subsystem kpC1CRC2P has the
same phase as the system with the PID but lower bandwidth. This is caused by the increase
of the gain due to adding of the reset element in parallel.

Although the stability of the system was confirmed with the Hβ condition, it is analysed with
the hybrid passivity and finite-gain approach to compare the methods. The control system is
divided into the linear and reset parts, as described in Section 4-1. The stability of the reset
control system can be concluded using the Theorem 3-3.3 if the conditions

εL − γR > 0, (4-10a)
δL > 0, (4-10b)

γLγR < 0 (4-10c)

are satisfied, with εL, δL, γL and γR denoting the hybrid passivity parameters and gains of
the LTI subsystem L and of the reset subsystem R.

In the first step of the analysis, the hybrid passivity and finite-gain parameters of the sub-
systems L and R are evaluated for a grid of frequencies ωH . The high-frequency gain of the
reset system is approximated using the RMS amplitude of the nonlinear bode plot at ωH .
The obtained results can be seen in Figure 4-11a. Since γrms(ωH) provides an underestimate
of γB,rms, it can be concluded that if the stability conditions are not satisfied by the approxi-
mated parameter, they are also not satisfied with the exact value. The value of ωH for further
analysis is chosen from a range of frequencies for which the stability conditions are satisfied
with the approximated high-frequency gain of R. In the second step, the exact gain γB,rms
is calculated. The stability can be concluded if the conditions of Theorem 3-3.3 are satisfied
with the exact value γB,rms.

Tables 4-2 and 4-3 show the hybrid passivity and finite gain parameter for systems with
controllers designed following the scenario S1, for a plant without and with the time delay
included. The results of the stability analysis of the controllers designed following the second
and the third scenario are presented in Tables 4-4 and 4-5. All the considered systems are
stable, what was confirmed with the Hβ condition [41]. In the cases in which the stability
could not be concluded using the Theorem 3-3.3 the values of hybrid passivity and finite-gain
parameters have been calculated for an arbitrary ωH for illustration.

The first observation is that the stability of the control system can be concluded using the
hybrid approach only if sufficient phase margin is provided by the linear lead filter, which is
not a part of the CgLpP. Figures 4-11b and 4-11c illustrate the frequency responses of the
subsystems L and R and provide insights into the design of control systems which stability
can be concluded with the hybrid passivity and small-gain method. It is desired to pick
ωF >> ωR such that the high-frequency gain γR is low. γR can be then used to compensate
the high-frequency gain of the linear subsystem γL. The finite-frequency passivity parameters
δL and εL should be possibly high to compensate for γR. This is related to the low magnitude
peak of L. The similarity between the PM of the open-loop characteristic of L and the
damping ratio of the second-order transfer function [61] indicates, that the high open-loop
PM of L facilitates concluding the stability.

Influence of the time delay can be seen by comparing the results obtained for the systems
without and with the time delay and with the controllers designed following the scenario S1,
presented in Tables 4-2 and 4-3. In many cases, the stability of the system with the time delay

Marcin Brunon Kaczmarek Master of Science Thesis



4-3 Application of the hybrid passivity and finite-gain theorem to the stability analysis of a reset control
system for a precision positioning stage 49

Figure 4-10: DF-based bode plot of a reset control system with a CgLpP element, designed for an
increase of the PM. Solid lines represent the open-loop of the complete system and its constituting
elements. The dashed line corresponds to an LTI PID controller designed as a reference.

H

(a) (b) (c)

Figure 4-11: Illustration of the hybrid passivity and small-gain stability analysis for a reset
control system. (a) Estimated and exact values of parameters for a range of ωH , (b) magnitudes
of the response of the linear and reset subsystems, (c) Nyquist plot of the linear subsystem.
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can not be concluded using the hybrid approach, even if it is possible for a system without
the time delay with the same initial PM and the same amount of phase added by the CgLpP
element. This indicates that not only the PM of the open-loop of the subsystem L, but also
the overall shape of the phase influence the hybrid passivity and finite-gain parameters of the
system.

All the analysed systems were stable, and their stability was assured using the Hβ condition.
In multiple cases, the stability of these systems could not be concluded using the hybrid pas-
sivity and finite-gain approach. This indicates that the proposed method is more conservative
than the well-known Hβ condition. Nevertheless, the approach introduced in this research
does not require the identification of parametric models which is in line with the industrial
practice.

4-4 Concluding remarks

The use of the proposed variant of the hybrid passivity and small-gain theorem for the anal-
ysis of the stability of reset control systems was demonstrated in this chapter. Two control
structures suitable for the analysis were introduced.

Analysis of simple feedback interconnection of a second-order plant and a reset low-pass
element was used as an initial example. It confirmed that the proposed method can be
successfully used to conclude the stability of a reset system. Moreover, it was demonstrated
that the method correctly does not indicate stability for unstable reset systems.

A novel Constant in gain Lead in phase element in a parallel configuration (CgLpP) was
introduced. The reset element can be used to relax the limitation resulting from the Bode’s
magnitude-phase relationship for LTI systems. It was demonstrated that the element can be
integrated with PID controllers in high-precision mechatronic systems, such that the stability
can be shown using the proposed hybrid passivity and small-gain theorem.

The examples presented in this chapter confirm that the proposed stability method can be
used for assessing the stability of reset controllers designed in line with the industrial practice.
Unlike the other methods for stability analysis of reset systems, this approach does not require
a parametric model of the system. In consequence, the condition can be evaluated based on
the measured FRF function of the linear elements in the system and effects like time delay
can be taken into account.

The proposed conditions are sufficient but not necessary for the stability of a reset control
system. Because of that, they are not satisfied by many stable control systems that could
be used in precision positioning applications. Analysis of several examples shown, that loop-
shape of the linear components of the control system which are not a part of the CgLpP, is
important for the fulfilment of the proposed stability conditions. Further research is required
to identify other control structures facilitating the use of Theorem 3-3.3 for the stability
analysis and to formulate exact design guidelines.

Marcin Brunon Kaczmarek Master of Science Thesis



4-4 Concluding remarks 51

Table 4-2: Hybrid passivity and finite-gain parameters of reset control systems designed for the
improvement of stability/robustness. The time delay was not included in the design procedure.
A small variance in the parameters of the linear subsystem is caused by adjustments of the
proportional gain, necessary to maintain the same bandwidth after including the CgLpP element
in the control structure. Terms satisfying and violating the stability conditions are indicated with
the green and red colour respectively.

Initial PM Aρ ωF [Hz] δL εL γL γR εL − γR γLγR

0 210 0,8729 0,0588 3,8539 0,0643 -0,0055 0,2477
0,2 210 0,8718 0,0588 3,8500 0,0550 0,0038 0,2118
0,4 210 0,8719 0,0588 3,8504 0,0508 0,0080 0,1955
0,6 210 0,8723 0,0588 3,8520 0,0481 0,0106 0,1855

25

0,8 210 0,8727 0,0588 3,8532 0,0469 0,0119 0,1805

0 210 1,0000 0,0718 4,0777 0,0643 0,0076 0,2621
0,2 210 1,0000 0,0719 4,0736 0,0550 0,0168 0,2241
0,4 210 1,0000 0,0718 4,0740 0,0508 0,0211 0,2069
0,6 210 1,0000 0,0718 4,0757 0,0481 0,0237 0,1962

30

0,8 210 1,0000 0,0718 4,0770 0,0469 0,0250 0,1910

Table 4-3: Hybrid passivity and finite-gain parameters of reset control systems designed for the
improvement of stability/robustness. The time delay τ = 0.53 ms was included in the design
procedure. A small variance in the parameters of the linear subsystem is caused by adjustments
of the proportional gain, necessary to maintain the same bandwidth after including the CgLpP
element in the control structure. Terms violating the stability conditions are underlined.

Initial PM Aρ ωF [Hz] δL εL γL γR εL − γR γLγR

0 120 0,9999 0,0779 7,3238 0,1048 -0,0269 0,7678
0,2 120 0,9999 0,0780 7,3146 0,0961 -0,0181 0,7031
0,4 120 0,9999 0,0780 7,3154 0,0895 -0,0115 0,6546
0,6 120 0,9999 0,0780 7,3192 0,0852 -0,0072 0,6236

30

0,8 120 0,9999 0,0779 7,3221 0,0830 -0,0051 0,6081

0 130 0,9987 0,0862 6,9127 0,0963 -0,0101 0,6656
0,2 120 0,9987 0,0941 7,1396 0,0961 -0,0020 0,6863
0,4 120 0,9987 0,0941 7,1404 0,0895 0,0046 0,6389
0,6 120 0,9987 0,0941 7,1439 0,0852 0,0089 0,6087

35

0,8 120 0,9987 0,0941 7,1466 0,0830 0,0110 0,5935

0 120 0,9948 0,1094 6,9365 0,1048 0,0045 0,7272
0,2 120 0,9948 0,1095 6,9286 0,0961 0,0133 0,6660
0,4 120 0,9948 0,1095 6,9293 0,0895 0,0200 0,6200
0,6 120 0,9948 0,1094 6,9325 0,0852 0,0242 0,5907

40

0,8 120 0,9948 0,1094 6,9350 0,0830 0,0264 0,5759
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Table 4-4: Hybrid passivity and finite-gain parameters of reset control systems designed for the
improvement of tracking and precision. The total PM of 45◦ is required at the bandwidth. PML

denotes the PM of the open-loop linear subsystems. The time delay τ = 0.53 ms was included in
the design procedure. Terms violating the stability conditions are underlined.

Aρ PML[◦] ωF [Hz] δL εL γL γR εL − γR γLγR

0 19,33 120 1,0000 0,0414 7,5230 0,1048 -0,0634 0,7887
0,2 25,51 120 1,0000 0,0631 7,4295 0,0961 -0,0330 0,7141
0,4 31,31 120 0,9997 0,0825 7,2719 0,0895 -0,0070 0,6507
0,6 36,52 120 0,9979 0,0990 7,0805 0,0852 0,0138 0,6033
0,8 41,08 120 0,9933 0,1128 6,8830 0,0830 0,0297 0,5716

Table 4-5: Hybrid passivity and finite-gain parameters of reset control systems designed for
the increase of bandwidth and improvement of tracking. Total PM of 45◦ is required at the new
bandwidth ωc,2. PML denotes the PM of the open-loop linear subsystems at ωc,2. The time delay
was included in the design procedure. Terms violating the stability conditions are underlined.

Aρ ωc,2[Hz] PML[◦] ωF [Hz] δL εL γL γR εL − γR γLγR

0 137 19,33 150 0,9993 0,0471 8,3767 0,1124 -0,0653 0,9418
0,2 129 25,52 150 0,9988 0,0617 7,7852 0,0974 -0,0357 0,7586
0,4 121 31,31 150 0,9978 0,0746 7,3133 0,0852 -0,0106 0,6228
0,6 113 36,52 150 0,9957 0,0854 6,9448 0,0759 0,0095 0,5275
0,8 106 41,08 150 0,9917 0,0944 6,6587 0,0694 0,0250 0,4622
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Chapter 5

Conclusion

In this final chapter, the answers to the initial research questions are summarized. Next, open
questions and recommendations for future work are presented.

5-1 The answers to the research questions

Reset controllers have been developed to alleviate the tradeoffs inherent to linear systems.
Although it has been proven that they can improve the performance of precision mechatronic
systems, they are not widely adopted by the industry. One of the reasons is a lack of tools for
guaranteeing the stability of rest control systems, that are in line with the current industrial
practice. To address this problem, a frequency-domain method for the stability analysis was
proposed in this work. The hybrid passivity and finite-gain approach was used as the basis
for the method.

The project consisted of two major steps. First, the hybrid passivity and finite-gain properties
of selected reset systems were analysed. Subsequently, design of reset controllers whose sta-
bility can be guaranteed using the hybrid passivity and finite-gain approach was considered.
The proposed method was applied to several examples of reset control systems for a precision
motion stage. The initial research questions, stated in the introductory chapter, could be
answered with the insights gained from the work.

How can the hybrid passivity and finite-gain framework be extended to reset
systems?
A way of extending the hybrid framework to reset systems was presented in Chapter 3. Al-
though a reset system may have the property described in [30], it is unclear how to find the
hybrid passivity and finite-gain parameters for a given reset system. A modified definition of
the property is required to simplify the finding of the parameters. With the new definition,
it is possible to consider the finite-frequency passivity and gain of a system separately, using
methods developed in this project. However, the modified definition leads to more strict sta-
bility conditions.
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How can a reset control system be designed such that its stability can be con-
cluded using the hybrid passivity and small-gain theorem?
In Chapter 4 stability of several examples of reset control systems was analysed using the hy-
brid passivity and small-gain theorem. From the analysis, it became clear that the structure
of a control system should be such that it can be converted into a feedback interconnection
of a reset and an LTI subsystem. It was shown that the stability can be concluded using the
hybrid approach when the open-loop of the LTI subsystem has a sufficient phase margin. It
would be beneficial if the part of the phase-providing reset element assigned to the linear sub-
system provided phase advantage even without the reset component. Moreover, the controller
is easier to design if the bandwidths of the complete control system and of the open-loop LTI
subsystem are similar.

5-2 Recommendations

This research showed that the hybrid passivity and finite-gain approach can be successfully
used for the stability analysis of reset control systems. Moreover, the developed methods for
the finding of the hybrid parameters of reset elements can be extended to other classes of
nonlinear systems. This, in combination with the earlier applications of the hybrid approach
for the robust controller design for linear systems, suggests that the hybrid passivity and finite-
gain method can be used to unify various tools for guaranteeing the stability of different classes
of control systems. Since the presented stability conditions can be evaluated in a way preferred
by the industry, i.e. using the measured FRFs of a system, this research may encourage wider
use of nonlinear control system.
The "merging" of the passivity and small-gain theorems should provide stability results for
feedback interconnections of a class of systems, broader than those dealt with by the small
gain and passivity theorems, respectively [29]. In this project, this objective was achieved
only partially, since the reset element is required to be passive.
The main point that deserves attention is finding the hybrid passivity and finite-gain pa-
rameters of reset systems. The method proposed in this research allows only to find the
high-frequency gain of a convergent system. Knowledge of the input and output passivity
parameters of a reset system would result in less conservative conditions for the stability of
a reset control system. Moreover, the ability to conclude finite-frequency passivity for reset
systems that are not passive would broaden the applicability of the hybrid approach.
Another closely related topic is concluding the hybrid passivity and finite-gain of a system
simultaneously, without resorting to the separate analysis of low-frequency passivity and high-
frequency gain. This could enable a direct use of the Definition 2-5.1 [30] and simplification
of the stability conditions.
It would be also beneficial to study if a reset system can be dissipative w.r.t. a specific supply
rate when its base linear system is not dissipative w.r.t the same supply rate. Results on
the reset passivation suggest that this is possible [65]. Possibility of concluding the hybrid
passivity and finite-gain for a reset system, without relying on the base dynamics, would
result in more freedom in design of reset comptrollers.
The proposed conditions are sufficient but not necessary for the stability of considered reset
control systems. Further research is required to characterize reset systems whose stability can
be concluded using the approach introduced in this thesis and to develop design guidelines.
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Future work could also focus on the development of new reset control structures, for which the
stability could be concluded using the hybrid passivity and finite-gain approach. Moreover,
the properties of the Constant in gain Lead in phase element in a parallel configuration
introduced in this project should be closely studied.
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Appendix A

Finite-frequency gain of FORE

1 function [ NLB , NLBa , NLBb ] = betaDF (sys , Ar , freqs , wc )
2 %betaDF Calculates the finite -frequency version of the nonlinear bode
3 % magnitude plot of a reset system
4 %
5 % SYS is the reset element described in state space
6 % AR is the amount of reset you want to achieve
7 % FREQS contains the frequencies the NL bode is calculated
8 % for, represented in rad/s
9 % wc is the corner frequency of the ideal low/high pass filters

10 %
11 % NLB is the standard nonlinear Bode plot
12 % NLBa is the low-frequency nonlinear Bode plot
13 % NLBb is the high-frequency nonlinear Bode plot
14 %
15 % M.B. Kaczmarek - TU Delft - 2020
16
17 if (~( nargin == 3 && nargout == 1) && ~(nargin == 4 && nargout == 3) )
18 warning (’Wrong number of input/output arguments’ )
19 return
20 end
21
22 A = sys . a ; B = sys . b ; C = sys . c ; D = sys . d ;
23
24 tlen = 1e4 ;
25 flen = numel ( freqs ) ;
26 yss = zeros (flen , tlen ) ; % Steady -state response in the time domain
27 ylow = zeros (flen , tlen ) ; % Low-pass filtered steady -state response in

the time domain
28 yhigh = zeros (flen , tlen ) ; % High-pass filtered steady -state response in

the time domain
29
30 NLB = zeros (1 , flen ) ;
31 NLBa = zeros (1 , flen ) ; % Low-pass filtred nonlinear Bode plot
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32 NLBb = zeros (1 , flen ) ; % High-pass filtered nonlinear Bode plot
33
34
35 for i=1:flen % For each frequency
36 w = freqs (i ) ;
37 t = linspace (0 ,2∗ pi/w , tlen ) ; % tlen time points per period
38
39 Lambda = w∗w∗eye ( size (A ) ) + A^2;
40 LambdaInv = inv ( Lambda ) ;
41
42 Delta = eye ( size (A ) ) + expm (A∗pi/w ) ;
43 DeltaR = eye ( size (A ) ) + Ar∗expm (A∗pi/w ) ;
44
45 GammaR = inv ( DeltaR ) ∗Ar∗Delta∗LambdaInv ;
46
47 Theta0 = −1∗eye ( size (A ) ) ∗ [ GammaR−LambdaInv ]∗ w∗B ; % tk = k*pi/w, expm

(-A*0) = I
48 Theta1 = 1∗expm(−A∗pi/w ) ∗ [ GammaR−LambdaInv ]∗ w∗B ;
49 ThetaD = (−2∗w∗w/pi ) ∗Delta ∗( GammaR−LambdaInv ) ;
50 % alpha is omitted , since the response in linear in alpha (Guo2009)
51 % Calculate the response in the time domain
52 for j = 1 : tlen/2
53 yss (i , j ) = C . ’∗ expm (A∗t (j ) ) ∗Theta0 − C . ’∗ LambdaInv ∗(w∗eye ( size (A )

) ∗cos (w∗t (j ) ) + A∗sin (w∗t (j ) ) ) ∗B + D∗sin (w∗t (j ) ) ;
54 end
55 for j = 1 : tlen/2
56 j2 = tlen/2+j ;
57 yss (i , j2 ) = C . ’∗ expm (A∗t (j2 ) ) ∗Theta1 − C . ’∗ LambdaInv ∗(w∗eye ( size (

A ) ) ∗cos (w∗t (j2 ) ) + A∗sin (w∗t (j2 ) ) ) ∗B+ D∗sin (w∗t (j ) ) ;
58 end
59 % Calculate harmoincs up to wc
60 if ( nargin == 4) && ( nargout == 3)
61 n = 1 ; % number of harmonics
62 while n∗w<wc
63 if (n==1)
64 G = C∗inv (1i∗w∗eye ( size (A ) ) − A ) ∗( eye ( size (A ) ) + 1i∗

ThetaD ) ∗B ;
65 else
66 G = C∗inv (1i∗w∗n∗eye ( size (A ) ) − A ) ∗1i∗ThetaD∗B ;
67 end
68 % add signals in the time domain
69 ylow (i , : )= ylow (i , : ) + abs (G ) ∗sin (n∗w∗t + angle (G ) ) ;
70 n = n+2;
71 end
72 nF = n−2;% correct for the last increase
73 % ABS value
74 % NLB(1,i) = max(abs(yss(i,:)));
75 % NLBa(1,i) = max(abs(ylow(i,:))); % low-pass filtered
76 % NLBb(1,i) = max(abs(yss(i,:)-ylow(i,:))); % high-pass filtered
77 %L2 simpsons
78 NLBa (1 , i ) = sqrt ( ( ( ylow (i , 1 ) ^2/2+sum ( ylow (i , 2 : end−1) .^2 )+ylow (i ,

end ) ^2/2)∗t (2 ) ) ∗w/pi ) ;
79 yhigh (i , : ) = yss (i , : )−ylow (i , : ) ;
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80 NLBb (1 , i ) = sqrt ( ( ( yhigh (i , 1 ) ^2/2+sum ( yhigh (i , 2 : end−1) .^2 )+yhigh (
i , end ) ^2/2)∗t (2 ) ) ∗w/pi ) ;

81 end
82 NLB (1 , i ) = sqrt ( ( ( yss (i , 1 ) ^2/2+sum ( yss (i , 2 : end−1) .^2 )+yss (i , end ) ^2/2)

∗t (2 ) ) ∗w/pi ) ;
83
84 end
85 end
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Glossary

List of Acronyms

CgLp Constant in gain Lead in phase

CgLpP Constant in gain Lead in phase element in a parallel configuration

BLS Base Linear System

FORE First Order Reset Element

RCS Reset Control System

SPR strictly positive real

LMI Linear Matrix Inequality

SISO single-input single-output

MIMO multiple-input multiple-output

DF Describing Functions

SIDF Sinusoidal Input Describing Functions

HOSIDF Higher-Order Sinusoidal Input Describing Functions

FRF Frequency Response Function

VSP Very Strictly Passive

ISP Input Strictly Passive

OSP Output Strictly Passive

LTI Linear and time invariant

PM phase margin

UBSS uniformly bounded steady-state

UGAS uniformly globally asymptotically stable
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