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Abstract

Automated Market Makers (AMMs) are a novel type of market makers that eliminate the need for a coun-
terparty in a trade. This thesis analyses the properties of several types of AMMs, and in particular the con-
centrated liquidity market maker. An axiomatic definition of AMMs is provided, and two types of constant
function market makers (CFMMs), called the constant sum market maker (CSMM) and constant product
market maker (CPMM), are explored. The concentrated liquidity market maker, which improves liquidity
provision compared to the CPMM, is thoroughly analyzed, and it is shown that it’s trading function can be
formulated as a composition of functions. This thesis also conjectures that the concentrated liquidity trading
function can be approximated by taking an infinite number of compositions. Additionally, a simulation study
is conducted using transaction mocking. The simulation study supports the conjecture, and brings several
other noteworthy properties of the concentrated liquidity market maker to light.
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1
Introduction

Markets have been around for millennia. Originally a gathering place for farmers to sell their goods to the
inhabitants of a town, markets have evolved massively over time. With the rise of financial markets, traded
goods have evolved into financial derivatives and securities, and the physical gathering place has been re-
placed by extremely low-latency digital markets. These developments have made financial markets incredi-
bly efficient, and the goods traded on them increasingly liquid. However, an element that hasn’t changed over
time is the need for a counterparty in every trade. The rise of blockchain technology has facilitated the cre-
ation of decentralised financial markets. These financial markets allow users to trade assets in a permission-
less manner, without the existence of a central authority. An innovation that has emerged with decentralised
finance is the concept of Automated Market Makers (AMMs). AMMs have transformed the way trading oc-
curs by eliminating the traditional need for a counterparty in a trade. Furthermore, previous research [9] has
demonstrated that the AMM outperforms markets utilizing limit order books in terms of market quality.

At the core of an AMM is an algorithm that determines the prices of assets based on their relative supply
and demand, called the trading function. Unlike tradition order book exchanges, where buyers and sellers
must match their orders to execute trades, AMMs utilize pools of funds that traders interact with. These
pools contain pairs of assets, and users can swap one asset for another by trading against the pool.

Although trading functions must satisfy certain market requirements for the market to function properly,
this can be accomplished in many different forms. Previous works have already compared different AMMs
[6],[7]. It is generally agreed upon that the most common form of AMM, called the constant product market
maker(CFMM), possesses many favourable economic and analytic properties. However, more recently a new
type of AMM, allowing liquidity providers to place range orders has emerged. This type of AMM, called the
concentrated liquidity AMM, allows liquidity to be used more efficiently than in a CFMM. This type of AMM
is most notably implemented in Uniswap V3 [23], and will from here on be mentioned by that name

In this thesis, the trading function of Uniswap V3 is analysed and compared to other types of AMMs.
Firstly, an axiomatic definition for AMMs is constructed in Chapter 2, which generalises previously given
definitions for AMMs to include Uniswap V3. Then, in Chapter 3, the trading function of several types of
market makers are introduced and analysed. The mechanics behind concentrated liquidity will be explained
and an expression for the trading function will be derived. Subsequently, in Chapter 4, a simulation study into
the properties of the Uniswap V3 trading function will be performed. Finally, the research will be concluded
and discussed in Chapters 5 and 6.
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2
Axioms for Automated Market Makers

In this chapter, an axiomatic definition for an automated market maker is constructed. This is done by gen-
eralising the works of Bartoletti et al. [6] and Bichuch and Feinstein [7] to incorporate more general types of
liquidity pools, characterised by a liquidity vector l⃗ . Furthermore, both the transitions between states of the
blockchain, and the properties of the input-output relation are axiomatised within the same framework.

Firstly, two types of tokens are distinguished. An atomic token represents a single crypto asset that can be
traded, e.g. Ethereum or Bitcoin. On the other hand, a minted token is an unordered pair of atomic tokens,
i.e. (t0, t1) for t0, t1 tokens of the atomic type. As will be seen further on in this section, converting atomic
tokens to minted tokens is one of the operations defined on an AMM, which is a process known as minting
[2].

We define an automated market maker (AMM) by it’s trading function:

Definition 2.1 (Trading function). A trading function is a function

G :Rn
+ →R+ (2.1)

that determines the output of a trade from an input vector v⃗ ∈Rn .

Remark. Where possible, the trading function will be denoted as G(x), making the reserves implicit

In order to reduce redundancy, only one direction of trading is considered, i.e swapping units of token t0

for token t1. However, trading units of t1 for t0 is a symmetric operation with a symmetric trading function.

Note that for AMMs with only two reserves, the trading function is defined as

G :

x
r
s

 ∈R3
+ →R+ (2.2)

Where r, s are the reserves of tokens t0 and t1 respectively, and x is the amount of token t0 inputted. How-
ever, there are some notable exceptions to this, which will be discussed in detail in Section 3.2

3



4 2. Axioms for Automated Market Makers

Definition 2.2 (liquidity pool). A liquidity pool is a set {⃗l ,G(x)}, containing a vector l⃗ ∈ Rn−1, together with a
trading function

G(x) :

[
x
l⃗

]
∈Rn

+ →R+

Note that a liquidity pool can be seen as an individual realization of an AMM. By using these definitions
for AMMs and liquidity pools, the construction that defines the relation between input and output is sepa-
rated from the definition of individual realizations of AMMs.

For the sake of completeness, the interaction between users and liquidity pools is also modelled. There-
fore, the notion of a wallet is introduced, which tracks the assets and the corresponding quantities a user
possesses:

Definition 2.3 (Wallet). Let T be a set of tokens, both atomic and minted. Let U be a set of unique identifiers,
also known as users. Then for every u ∈U , the Wallet of u on the token space T is defined as a mapping

Wu : T →R≥0 (2.3)

As shown by Bartoletti et al. [6], the interactions between users and liquidity pools can be modelled as a
so-called Labelled Transition System [15].

Definition 2.4 (Labelled Transition System). A labeled transition system is a tuple (S,L,T, p0), where

• S is a set of states

• L is a set of labels

• R is a transition relation, where R ⊆ S ×L×S

• p0 is a initial state

In our case, S represents a finite set containing wallets and liquidity pools:

{Wu1 ,Wu2 , ....,Wun , {l⃗1,G1(x)}, {l⃗2,G2(x)}, ..., {l⃗n ,Gn(x)}} (2.4)

Furthermore, L represent the transactions on the blockchain and p0 is the state where there are no liquid-
ity pools in the system and all wallets hold only tokens of the atomic type.

There are three types of transition relations, which are all triggered by transactions:

1. Deposit: A user can deposit units of atomic tokens t0 and t1 to a liquidity pool {l⃗i ,Gi (x)} in order to
receive some units of the minted token (t0, t1).

2. Redeem: A user can redeem units of the minted token (t0, t1) in order to receive some amounts of the
atomic tokens t0 and t1 from the liquidity pool {l⃗i ,Gi (x)}.

3. Swap: A user can deposit x units of the token t0 to the liquidity pool {l⃗i ,Gi (x)} in order to receive Gi (x)
units of the token t1.

A liquidity pool is created by depositing a positive amount of the atomic tokens t0 and t1 to a newly gen-
erated structure { ⃗ln+1,Gn+1(x)}. From that point on, only transactions involving the tokens t0 and t1 will be
accepted by the pool.

Note that depositing and redeeming atomic tokens are operations that respectively add and remove liq-
uidity from the liquidity pool. Since the process of swapping is the main topic of interest in this thesis, only
this operation will be elaborated upon in further chapters.



3
The trading function

In Chapter 2, it was established that an AMM is characterised by it’s trading function, which determines the
output of a trade given the input. In this chapter, several trading functions and their properties will be exam-
ined. A class of AMMs called constant function market makers (CFMMs) will be introduced, and the prop-
erties their trading functions satisfy will be proven. Subsequently, the definition for a concentrated liquidity
AMM is given and it’s trading function will be described. The chapter is concluded by giving a new expression
for the trading function of the concentrated liquidity AMM as a composition of explicit functions.

Let t0 and t1 be two atomic tokens, with reserves r0 and r1 respectively. In order to prevent redundancy,
only swapping x units of t0 for units of t1 will be considered from now on, as the other direction can be de-
duced by symmetry. For the sake of simplicity, trading fees are assumed to be zero.

Definition 3.1 (Properties of the trading function). A trading function G :Rn+ →R+ may satisfy any the follow-
ing properties

• Output-boundedness: : For all x,r0,r1 such that x ≥ 0 and r0,r1 > 0:

G (x,r0,r1) < r1 (3.1)

• monotonicity : For x1 ≥ x0,r0 ≥ r ′
0,r ′

1 ≥ r1:

G (x1,r0,r1) ≥G
(
x0,r ′

0,r1
)

(3.2)

• Strict monotonicity : For one of the above inequalities being strict:

G
(
y,r ′

0,r1
)>G (x1,r0,r1) (3.3)

• Additivity : For G (x,r0,r1) = a,G
(
y,r0 +x,r1 −ax

)= b

⇒G
(
x + y,r0,r1

)= ax +by

x + y
(3.4)

• Reversibility: For G (x,r0,r1) = a:
G (ax,r1 −ax,r0 +x) = x (3.5)

• Homogeneity: For all a, x,r0,r1 such that x ≥ 0 and a,r0,r1 > 0:

G (ax, ar0, ar1) = a ·G (x,r0,r1) (3.6)

• Continuity at x0: For all r0,r1 > 0, G(x,r0,r1) is continuous at x = x0

• differentiability at x0: For all r0,r1 > 0, the derivative G ′(x,r0,r1) is defined at x = x0

5



6 3. The trading function

• Analyticity at x0: For all r0,r1 > 0, G (n)(x0,r0,r1) exists for every n ∈N
• Concaveness: For all x,r0,r1 such that x ≥ 0 and r0,r1 > 0:

lim
x→x0

supG (x,r0,r1) ≤G (x0,r0,r1) (3.7)

Remark. Whenever a property is defined in Definition 3.1, it is given for G :R3+ →R+. Note that the definition
is analogous for higher dimensions.

Remark. Some of the properties in Definition 3.1 are stronger than others. For example,
(strict monotonicity) → (monotonicity), (analyticity) → ((continuity) and (differentiability))

Before introducing several trading functions, the price of a token must be defined. In particular, the dif-
ference between an external and an internal price oracle.

Definition 3.2 (External price oracle). An external price oracle for tokens t0, t1 is a function Pe : {t1} →Rwhich
determines the market price of t1 in terms of t0, based on external parameters. By definition, the external price
oracle cannot be determined by an AMM.

Definition 3.3 (Internal price oracle). An internal price oracle for tokens t0, t1 is a function P : Rn → R that
determines the price of an asset based on the parameters of the associated liquidity pool {⃗l ,G(x)}

Remark. When referring to the price of a token, the internal price oracle is meant. The external price oracle
will be explicitly named when used.

In order to analyse the properties of various trading functions, the notion of slippage must also be defined

Definition 3.4 (Slippage). The slippage of a trade measures the difference between the price of an asset before
a trade, and the actual price paid for the asset in a trade. I.e., for a trade (x, l⃗ ), the slippage S :Rn+ →R is

S = G(x)

xP (⃗l )
(3.8)

3.1. Constant Function Market Makers
In this section, a specific class of AMMs, called constant function market makers (CFMMs) will be introduced.
Subsequently, two types of CFMMs will be discussed, namely the constant sum market maker(CSMM) and
the constant product market maker (CPMM). The mathematical and economic properties of both of these
types of AMMs will be discussed. Furthermore, it will be shown which of the properties from Definition 3.1
hold.

Definition 3.5. A Constant Function Market Maker is an Automated Market Maker such that for some constant
function φ :R2 →R, any swap satisfies:

φ(r0 +x,r1 −G(x)) =φ(r0,r1) (3.9)

Intuitively, a CFMM ensures that a certain measure of value, defined by the constant function, is being
maintained regardless of the trades performed. Therefore, providing that the user agrees with the measure
of value, little value can be extracted from the AMM. It has been shown by Angeris and Chitra [4] that under
fairly general assumptions, the internal and external price oracles of a CFMM are equal.

3.1.1. Constant Sum Market Maker
Definition 3.6. A constant sum market maker has the constant function:

φ(r0,r1) = r0 + r1 (3.10)

Therefore, swapping x units of t0 for G(x) units of t1 is only valid if:

φ(r0 +x,r1 −G(x)) =φ(r0,r1) ⇐⇒ G(x) = x (3.11)

and the price of t1 in terms of t0 is given by

P (r0,r1) = 1
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It is trivial to verify that the trading function for a CSMM is strictly monotonic, additive, reversible, ho-
mogeneous, continuous, analytic and concave. However, it is not output bounded, since G(x) may exceed r1

whenever r0 > r1.

There are several significant drawbacks to a CSMM which limit it’s use. Due to the linear output function
G(x) = x, rational users will drain one of the assets from the AMM whenever Pe (t1) ̸= 1. Furthermore, due
to the lack of output-boundedness, the liquidity cannot grow unbounded. In fact, the bound is determined
by the first deposit. Despite these drawbacks, CSMMs are being used in liquidity pools of so-called stable-
coins. These are coins which are supposed to have an equal price, because the price is pegged to an external
currency. An example of a CSMM implementation is Mstable [18].

3.1.2. Constant Product Market Maker
Definition 3.7. A constant product market maker has the constant function:

φ(r0,r1) = r0 · r1 (3.12)

From the definition it follows that swapping x units of t0 for t1 is only valid if:

(r1 −G(x)) (r0 +x) = r0r1 (3.13)

Solving for G(x) gives the trading function as:

G(x,r0,r1) =
(

x
r1

r0 +x

)
(3.14)

The price function P :R2+ → (0,∞) is given by

P (r0,r1) = r0

r1
(3.15)

Therefore, the marginal price after a trade of size x is given by:

P (x,r0,r1) = r0 +x

r1 −G(x)
(3.16)

Figure 3.1: The swapping process for a Constant Product Market Maker
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In appendix A it is proven that the trading function of a Constant Product Market Maker satisfies all of the
proposed properties from Definition 3.1. Thus it is output-bounded, strictly monotonic, additive, reversible,
homogeneous, continuous, concave and analytic. The possession of these properties automatically implies
all the other properties.

Since the trading function is output-bounded, unlimited liquidity can be added. This allows for scalability
of the CPMM, which is a large benefit over the CSMM. Furthermore, since the price function P :R2+ → (0,∞) is
surjective, any price difference between the external and internal price oracle will be closed due to arbitrage.
A possible downside to this type of price function, is that slippage grows linearly with the input amount x.
Therefore, users are disincentivized to make large swaps. Due to the many favourable economic properties
of the CPMM, it is used in many decentralised financial markets, most notably in Uniswap V2. [3]

Research into mixing CPMMs and CSMMs, by Port and Tiruviluamala [21], has shown that combining
the properties of CPMMs and CSMMs can lead to lower slippage and higher stability of the AMM. Several
implementations that mix these two AMMs exist, most notably Curve [8].

3.2. Uniswap V3
3.2.1. Concentrated liquidity
A key concept in the definition of Uniswap V3 is that of concentrated liquidity. Recall that in a constant func-
tion market maker, all liquidity is deployed on the price interval (0,∞). This is a rather inefficient method of
allocating capital, since at any given price point only a fraction of the total liquidity is available. Uniswap V3
aims to reduce this inefficiency by introducing concentrated liquidity, allowing liquidity providers to provide
liquidity on any price interval (Pa ,Pb) for Pa ,Pb ∈ (0,∞). This results in the creation of many different liquid-
ity ranges, each with distinct liquidity amounts.

On a price interval (Pa ,Pb), only enough liquidity needs to be provided in order to facilitate trading on
that specific range. Therefore, the liquidity pool can act like a CPMM with much larger reserves. These larger
reserves are called ’virtual reserves’. This works under the condition that once the price falls outside of the
interval (Pa ,Pb), the liquidity inside that interval is defined to be composed of just a single asset. Therefore,
one of the assets has zero liquidity and the next price interval is entered. Figure 3.2 shows the difference be-
tween virtual reserves and the real reserves held.

Figure 3.2: Virtual and real reserves
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The Uniswap V3 trading function is defined by it’s real reserves [23]

Definition 3.8 (real reserves). The real reserves x, y on a liquidity range [Pa ,Pb] in Uniswap V3 must satisfy(
x + L√

Pb

)(
y +L

√
Pa

)
= L2 (3.17)

Remark. The real reserves are a translation of the concentrated liquidity reserves given by r0 ·r1 = c, such that
the liquidity is exactly solvent on it’s liquidity range, as can be seen in Figure 3.2.

Remark. In this chapter, calculations within liquidity ranges will be performed using the concentrated liq-
uidity.

3.2.2. Ticks
In Uniswap V3, the price of an asset cannot be any arbitrary value. Instead, the price moves in so-called ticks.
This means that at all times P = 1.0001i for some i ∈Z. This has the desirable property that the price always
moves in steps of %0.01 percent, also known as a basis point. However, due to reasons shown in Section 3.2.3,
the square root price of integer powers are tracked instead, so p(i ) =

p
1.0001i . Thus, the price moves in ticks

of approximately 0.5 basis points, since
p

1.0001 ≈ 1.00005. An implication of this is that liquidity can only be
provided between two, not necessarily adjacent, ticks. Therefore, the liquidity only has to be updated at ticks.

For the sake of simplicity, the price is assumed to be continuous in this section. Therefore the use of ticks
is disregarded.

3.2.3. Within-interval swaps
Firstly, swapping within a liquidity range will be considered. Let t0 and t1 be two atomic tokens with virtual
reserves of r and s respectively on some liquidity range [Pa ,Pb]. As before, only trading x units of t0 for G(x)
units of t1 will be considered.

Denote r0,r1 and s0,s1 as the reserves before and after a swap of size x respectively. Similarly, let
p

P0 andp
P1 be the square-root prices before and after a trade respectively. Within a liquidity range, the liquidity pool

acts identical to a CPMM [14]. Define the liquidity on the interval [Pa ,Pb] as

L :=p
r s (3.18)

As in a CPMM, r · s = c for some constant c. Therefore, the liquidity is constant within a liquidity range, and
only needs to be updated when entering a new liquidity range. Furthermore, define the square root price as

p
P :=

√
r

s
(3.19)

And the change in price from a trade of input size x as

∆
p

P :=
√

P1 −
√

P0 (3.20)

The square root of the price is tracked, since this allows us to take advantage of the relationships shown
in Theorems 3.1 and 3.2.

Remark. Note that the liquidity and the price must be balanced, i.e.
p

P =
√

r
s as stated. Also note that when

trading token t0 for token t1, the liquidity will be entirely composed of token t1, since this is the asset required.
Therefore, the liquidity can also be defined as

L := min(
p

P · s,

√
1

P
· r ) (3.21)

. This ensures that the liquidity and the price are balanced when the ratio of assets is not equal to the price.
Additionally, taking the minimum makes sure that when trading in either direction, there is enough liquidity
of the required asset.
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As will be shown, the entire swapping process can be characterised using only L and
p

P , instead of using
the reserves. The following two theorems show that the changes in input and output can be described in
terms of these two variables.

Theorem 3.1. x = L∆
p

P

Proof.
r1 − r0 = r1 − r0

⇒
√

r 2
1 −

√
r 2

0 = r1 − r0

⇒
√

s1r1r1
s1

−
√

s0r0r0
s0

= r1 − r0

Using the fact that L =p
s1r1 =p

s0r0 =
p

sr

⇒p
sr

(√
r1
s1
−

√
r0
s0

)
= r1 − r0

⇒p
sr

(p
P1 −

p
P0

)= r1 − r0

⇒p
sr = r1−r0p

P1−
p

P0

⇒ L = x
∆
p

P
⇒ x = L∆

p
P

Theorem 3.2. G(x) =−L∆( 1p
P

)

Proof. From Theorem 3.1, we have L = x
∆
p

P
=⇒ x = L∆

p
P

Using
p

P =
√

r
s ⇒G(x) =−psr

(√
s1
r1
−

√
s0
r0

)
=−L

(
1√
r1
s1

− 1√
r0
s0

)
=−L

(
1p
P1

− 1p
P0

)
=−L∆

(
1p
P

)

Similarly, G(x) can be calculated using the current price P0, the liquidity L, and the input x.

G(x) =−L∆
1p
P

=−L

(
1p
P1

− 1p
P0

)
=−L

(
1p

P0 +∆
p

P
− 1p

P0

)
=−L

(
1p

P0 + x
L

− 1p
P0

)

3.2.4. Cross-interval swaps
If a certain liquidity range does not contain enough liquidity to satisfy an order, the price will move into the
next liquidity range. Note that this will only happen if there is a liquidity range with a lower bound equal to
the upper bound of the current liquidity range. If there is an interval with L = 0 and positive length, the order
will only be partially executed.

Suppose liquidity is provided on the interval [
p

Pa ,
√

Pb] and assume P ≥ Pb . This means that there are
no reserves of t1 left in this price interval, i.e. s = 0 on [

p
Pa ,

√
Pb]. Thus the position is fully in t0.

Recall G(x) =−L∆ 1p
P

. Thus, if the position is fully in t0:

G(x) =−L∆
1p
P

=−L

(
1√
Pb

− 1p
P0

)
(3.22)



3.2. Uniswap V3 11

Similarly, when trading over the entire interval:

G(x) =−L∆
1p
P

=−L

(
1√
Pb

− 1p
Pa

)
(3.23)

In reality, often only L and
p

P are known. However, once a liquidity range is entered,
p

P = p
Pa by

definition. Therefore, √
Pb = L

p
Pa

L−p
Pa x

(3.24)

To conclude, if a liquidity range does not contain enough liquidity to satisfy an order, the virtual reserves
are added to the total amount swapped, and the next liquidity range is being entered at

√
Pb as shown above.

Subsequently, the liquidity, the input and the total output are updated, and the process is repeated

3.2.5. Explicit form of the Uniswap V3 trading function
Let’s consider the swapping process across multiple liquidity ranges as described. Let x1 be the amount of
input tokens. Assume there are n liquidity ranges denoted as [

p
P0,

p
P1], [

p
P1,

p
P2], ..., [

p
Pn−1,

p
Pn], with

corresponding liquidity vectors l⃗1, ..., l⃗n , where
p

P0 is the initial price. Let s1, ..., sn be the reserves of t1 in
each price interval, and assume

∑n
i=1 si ≥ G(x), i.e. there is enough liquidity in the liquidity ranges to fulfill

the order.

Firstly, the trading function will be described iteratively. For each liquidity range i s.t. 1 ≤ i ≤ n, perform
the following steps:

• Determine
√

P ′
i

– If xi ≥ si , set
√

P ′
i =

p
Pi

– Otherwise, set
√

P ′
i =

li
p

Pi

li−
p

Pi x
(3.24)

• Calculate ∆
√

P ′
i =

√
P ′

i −
√

P ′
i−1

• Calculate ∆ 1√
P ′

i

=
(

1√
P ′

i

− 1√
P ′

i−1

)

• Calculate the output for this iteration Gi (li , x, ) =−li∆
1√
P ′

i

(3.2)

• Update the total output Ti (x) = Ti−1(x)+Gi (li , x)

• Update the remaining input xi+1 = xi − li∆
p

Pi

• Terminate if xi+1 ≤ 0

Now assume that the final price is known and equal to Pn . The output of each iteration can be expressed
as the composition of functions

Gi (⃗l , x) =Gi (li , xi−1 −G−1
i−1(Gi−1(...G−1

2 (G2(li , x1 −G−1
1 (G1(li , x1))...)))))

And the total output of a trade of size x is:

Tn(x) =
n∑

i=1
Gi (⃗l , x)

Note that in this characterisation, the number of compositions, n, is dependent on the output of the
functions Gi (⃗l , x). An explicit form of the trading function can therefore only be found if this dependence is
eliminated. Therefore, the following conjecture is stated.
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Conjecture 3.1. Let [P0,P1] be a liquidity range, with liquidity l . Let G0(l , x) denote the output of a trade with
input x on the liquidity range. Furthermore, assume that

∑n
i=1 si ≥G0(l , x). Dividing [P0,P1] into n intervals

[P0 + j

n
(P1 −P0),P0 + j +1

n
(P1 −P0)]

for 0 ≤ j ≤ n, with corresponding liquidity l j = L
n . Then as n →∞ :

∞∑
i=1

Gi (⃗l , x) ≈G0(l , x) (3.25)

This conjecture states that the output from an infinite number of liquidity range is approximately equal
to the output from a single liquidity range on the same domain. Although proving this conjecture is beyond
the scope of this thesis, in Chapter 4 this conjecture will be supported using simulated trades.



4
Simulating the Uniswap V3 trading

function

As mentioned earlier, the primary objective of this thesis is to determine the shape and properties of the trad-
ing function of Uniswap V3. The previous chapter employed an analytic approach based on the Uniswap V3
whitepaper [23]. In this chapter, an alternative approach is employed, wherein the trading function is simu-
lated under various initial conditions.

A newly devised simulation method called transaction mocking will be introduced, which enables the
precise simulation of the trading function as implemented, with complete control over the initial conditions.
Using simulations, it will demonstrated that, to a great extent, the shape of the trading function can be char-
acterized by the number of liquidity ranges and their distribution. Finally, Monte Carlo simulations [22] will
be conducted to investigate the distribution of the trading function and observe the effects of increasing the
number of liquidity ranges.

4.1. Method of transaction mocking
In implementations, an Automated Market Maker consists of a collection of smart contracts [24] deployed on
a blockchain. Users interact with the AMM using transactions. Using a message call, a user can call one of
the functions in a smart contract in order to perform a desired operation. Alternatively, a contract creation
transaction deploys a smart contract that can interact with other smart contracts given a set of conditions.
In order to prevent ambiguity in smart contracts and perform calculations with maximum accuracy, a spe-
cialised programming language called Solidity [1] has been developed for smart contracts.

To analyze the properties of the Uniswap V3 trading function, it is crucial to have a reliable and accu-
rate method for simulating a large number of transactions. The method that has been devised will be called
transaction mocking. Essentially, the implementation of Uniswap V3 is replicated and deployed on a local
instance of a blockchain. Subsequently, liquidity pools and transactions are simulated to recreate the precise
trading conditions desired. The outputs of these transactions are then read from the blockchain. For the sim-
ulations, a lightweight version of Uniswap V3 containing the trading logic and functionality, was cloned [16].
Instead of deploying a local Ethereum blockchain, which is complex and computationally demanding, the
mocking process was conducted using the testing infrastructure of Uniswap V3. This testing infrastructure
allows the mocking of blockchain addresses, smart contracts, and transactions without the need to run an
actual blockchain instance.

For each simulated trade, a new smart contract is deployed. This smart contract generates two new to-
kens and proceeds to mock a liquidity pool with the exact parameters required for that particular simulation.
Subsequently, a function within the smart contract is executed, mocking a wallet and performing swap trans-
actions of a predetermined size on the liquidity pool. Throughout the execution of these transactions, the
transaction logs of the mocked blockchain are recorded. From these logs, the output of each swap is filtered

13
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and processed using Python. The relevant code can be found in Appendix A.

4.2. Reducing the parameter space
In order to perform simulations, the domain of inputs needs to be specified. In order to reduce redundancy
and increase the significance of the results, it is desirable to reduce the dimension of the parameter space as
much as possible. This allows the cause of observed effects to be determined more accurately, and makes
interpretation of results easier. Therefore, it will be shown that varying the input and initial price have a pre-
dominantly linear effect on the output. Subsequently, these variables can be held constant while performing
the simulations for liquidity ranges.

As shown in Section 3.2, the input parameters of a trade are:

• a sequence of price intervals [
p

Pi ,
p

Pi+1] with corresponding output reserves li for 1 ≤ 0 ≤ n −1

• The input amount x ≥ 0

• An initial price
√

Pi ni t i al

Firstly, the case where there is not enough liquidity in the price intervals combined to completely fulfill
the trade, i.e.

∑n
i=1 si < G(x), can be disregarded. In this scenario, only part of the trade will be executed,

meaning that this case is equivalent to having a lower input x.

4.2.1. Varying the input
The effect of varying the input amount x on the output is investigated. Note that the relationship between the
input and output of a trade is heavily dependent on other parameters, such as the liquidity ranges. Therefore,
only the output curve for a single liquidity range is considered in this simulation. The effect of altering the
distribution and number of liquidity ranges will be shown in further simulations.

In Figure 4.1a, it can be seen that varying the input in a single liquidity range result in a nearly linear rela-
tionship between input and output. Performing least-squares regression [20] shows that the deviation from
linearity is very minor, although interestingly it seems to be a perfectly quadratic curve. A natural response to
this is to fit a quadratic polynomial to the data. As shown in Figure 4.1c, this results in a residual in the form
of a third-order polynomial. Similarly, polynomial regression of order three results in a fourth order residual,
and in general nth order regression results in a residual of order n +1 for up to at least n = 8. Above n = 8,
limitations in tick spacing and the numerical stability of polynomial regression prevent any further analysis.

The observed curvature makes economic sense, since it shows that the trading function is concave, i.e.
G ′′(x) < 0. It is necessary for the trading function to be concave, since this means that the price increases as
the input x increases.

By comparing the polynomial fit for different orders, it can be seen that the coefficients of the lower order
terms stay nearly identical when performing higher order regressions. Thus, it is observed that the first seven
terms of the power series are approximately:

0.000198x −1.138 ·10−9x2 +6.517 ·10−15x3 −3.7331 ·10−20x4 +2.136 ·10−21x5 +1.223 ·10−30x6 (4.1)

Where the coefficients of the terms are denoted by a0, ..., a6. Note that the linear term a1 ≈ 0.0002, since
the initial price is 5000. Also note that the constant term oscillates seemingly randomly in the order of 10−15.
Since a constant term is not expected, this is treated as error an thus left out. Dividing each of the coefficients
an by an−1, a very constant common ratio of r ≈ 5.725 emerges, with the first five terms being separated by
less than 0.0001%. Therefore, the following input-output relation is proposed for Pi ni t i al = 5000:

G(x) = 0.0002
∞∑

n=0
(5.725 ·10−6)n · xn (4.2)
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(a) Varying the input for equidistant liquidity ranges (b) The residuals from linear regression, MSE ≈ 6 ·10−6

(c) Quadratic regression, MSE ≈ 1.2 ·10−8 (d) Sixth order regression, MSE ≈ 1.8 ·10−21

Figure 4.1: Varying the input on a single liquidity range, with residuals of first, second, fourth and sixth order polynomial regression
shown

Similar power series can be constructed for other initial prices. Since the non-linear terms are extremely
small, the input-output relation can be assumed to be linear on a single price interval for all practical pur-
poses. An implication of this is that when varying the initial price, any significant non-linear effects can be
attributed to other factors, such as the placement of liquidity ranges. Thus, when simulating over a discrete
input, such as the number of liquidity ranges, the initial price can be varied to investigate the differences
in the shape of the trading function. Furthermore, when simulating over a continuous input, such as a dis-
tribution of liquidity ranges, the input can be kept constant as it will not influence the shape of the output
distribution.

4.2.2. Varying the initial price
The effect of shifting the initial price

√
Pi ni t i al will be investigated. Equations 3.22 and 3.23 suggest that vary-

ing
√

Pi ni t i al , for
p

P1 ≤
√

Pi ni t i al ≤
p

P2 is equivalent to setting a shorter price interval [
√

Pi ni t i al ,
p

P2]. Fix
P1 = 5000, P2 = 7000 and the input x = 10000. Note that since the relative difference between outputs is of
interest, the exact price interval is irrelevant. In Figure 4.2, the output for various values of Pi ni t i al between
5000 and 6500 is plotted, for both price intervals [P1,P2] and [Pi ni t i al ,P2].

There are two surprising effects that can be observed from the output of this simulation. Firstly, as can be
seen on the smaller interval in Figure 4.2b, the output for P1 = Pi ni t i al deviates from the constant price in-
terval periodically. The period of each deviation is approximately 15 units of input, and the interval between
each oscillation is also around 15 units. Note that this effect is not due to the step size of Pi ni t i al , since the
step size is 1. Furthermore, since the trade is performed within a liquidity range, this effect is independent of
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(a) Pi ni t i al ∈ [5000,6500] (b) Pi ni t i al ∈ [5000,5200] (c) Pi ni t i al ∈ [5800,6000]

(d) The gradient of the fixed price interval for Pi ni t i al ∈ [5800,6000] (e) Output for several distances between P1 and Pi ni t i al

Figure 4.2: Varying the initial price

the distribution of liquidity ranges. Additionally, the magnitude of the effect stays equal for different prices
and liquidity ranges. This suggests that the effect is solely dependent on the relation between the bounds of
the liquidity ranges and the current price. In Figure 4.2b it can be seen that for P1 = 5000, the output stays
constant until approximately Pi ni t i al = 5011. This suggests that at certain values for P1, the output stays con-
stant for values of Pi ni t i al close to P1. In order to investigate this effect more closely, the output was plotted
for several price intervals depending on Pi ni t i al . In Figure 4.2e, it can be seen that the length and the intensity
of the shift is directly proportional to the distance between P1 and Pi ni t i al . The exact cause of the effect is
not yet known to the author.

The second effect that can be observed, is that the direction of the two output relations seem to diverge,
starting around P = 5850. This effect can be observed better when looking at the smaller interval in Figure
4.2c. From Figure 4.2d, it can be seen that this effect is caused by a sudden jump in the gradient of the output
curve for P1 = 5000, i.e. the marginal price. This jump is due to the ratio of the reserves shifting. This effect
has been described in more detail in Remark 3.2.3. At P = 5850, the liquidity calculated in terms of s will
suddenly be smaller than that in terms of r . Therefore, the gradient of the price curve will change. The reason
why this effect doesn’t occur for P1 = Pi ni t i al , is that the reserves are almost fully in terms of s at the start of a
liquidity range. Therefore, the liquidity will not be smaller in terms of s than r in the first part of the liquidity
range. Since, for Pi = Pi ni t i al , the current price is always near the start of the liquidity range, the effect doesn’t
occur.

4.2.3. Varying the length of all liquidity ranges
Firstly, varying both the length and position of a liquidity range is observed, i.e. multiplying Pi by a factor
c for all 1 ≤ i ≤ n. Let P1 = 5000, and P2 = 6000 at multiplication factor c = 1. Set Pi ni t i al = P1. In Figure
4.3a, the output can be seen for multiplication factor 0.5 ≤ c ≤ 2. Interestingly, Figure 4.3b shows that the
output greatly resembles the output of a CPMM with constant product r0r1 = 2. As before, this effect can be
explained by Remark 3.2.3. Since both Pa and Pb are being multiplied by a factor x, Theorem 3.2 states that
G(x) = L∆ 1p

P
should be multiplied by a factor 1p

x
. However, since the liquidity stays equal, the ratio of assets

in the pool does not change. Therefore, if before the trade the reserves were s and r =p
P1s, and the price is
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(a) The output for a range of multiplication factors (b) Comparison with the trading function of a CPMM with r0r1 = 2

Figure 4.3: Multiplying all liquidity ranges

multiplied by a factor x, the liquidity will be multiplied by another factor 1p
x

. Thus, the output will change

with a factor 1p
x
· 1p

x
= 1

x . In this particular case, the constant factor is approximately 2, since the initial price

is 5000 and the input is 10000.

(a) Output curve compared with the linear least-squaures approxima-
tion

(b) Difference between the output and the least-squares approxima-
tion

Figure 4.4: Multiplying the length of liquidity ranges

Subsequently, multiplying the length of a liquidity range Pi+1 −Pi , by a factor c, while keeping the start
of the liquidity range equal, is considered. As can be seen in Figure 4.4a, the relationship between the length
of liquidity ranges and the output is nearly linear, with a quadratic residual. When performing quadratic
least-squares regression, the residual seems to be in the form of a third order polynomial. At higher orders,
no pattern can be spotted anymore, although this is likely due to the high level of noise. This result is strik-
ingly similar to the input change shown in Figure 4.1a, although with significantly more noise in the data.
This makes sense, since varying the length of a liquidity range is essentially opposite to varying the input.
Increasing the length of a liquidity range increases the price, and thus decreases the output.

4.3. Varying the number of liquidity ranges
The effect of varying the number of liquidity ranges on the input-output curve is considered. Instead of vary-
ing the number of liquidity ranges for a fixed price, the effect will be observed for a price curve as in Figure
4.1a. This allows us to examine the nonlinear effects, and the possible convergence of the trading function
more closely.
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As before, simulations occur on the price interval [5000,6000]. On this interval, n evenly spaced liquidity
ranges are created for 1 ≤ n ≤ 16, with equal liquidity on each interval and equal total liquidity for each itera-
tion. Subsequently, trades take place over these liquidity ranges for 200 input values between 0 and 10000. In
Figure 4.5, the deviations of each output curve from n = 1 can be seen.

(a) n=1 to n=8 (b) n=9 to n=16

Figure 4.5: Deviations from n=1 for different numbers of liquidity ranges

From Figure 4.5, it can be seen that the simulations for n = 2,3,5,6,10 and 15 closely resemble each other,
and move in a predictable, monotonic manner. As of yet, no clear explanation has presented itself why this
is the case. Furthermore, it can be seen that the simulations for n = 4,8 and 16 have a very similar shape and
direction, where the deviations are more pronounced for the simulations with a higher number of liquidity
ranges. The same can be said for n = 7 and n = 12. However, this pattern of similarity for multiples of liquidity
ranges seems to break for n = 6 and n = 12, as these have a completely different shape. Due to the chaotic
structure of these output relations, no conclusions about convergence in output as n increases can be made.

4.4. Monte Carlo simulations over a uniform distribution of liquidity ranges
In this section, the distribution of outputs is examined by performing Monte Carlo simulations [22] over a
given input distribution. Previously, it was established that varying the total length of the liquidity ranges,
PN −P1 for N −1 liquidity ranges, has a predominantly linear impact on the output. Therefore, fix P1 = 5000
and PN = 6000. Subsequently, n independent samples of size N −2 over the distribution Uniform(5000,6000)
are generated. These points will become the values P2,P3, ...,PN−1, i.e. the boundaries between the price
intervals. Using these values, the output of the trading function is generated from a fixed input, and equal
liquidity on each interval.

In Figure 4.6a, the outputs for N = 5, i.e. 4 liquidity ranges, with sample size n = 500 are shown. Overlayed
is the best fitting normal distribution. Performing the Kolmogorov-Smirnov test [17], the output is normally
distributed with p = 0.94.

Note that in the case that there would be no slippage at all, the output of all simulations would be 2, as
the starting price is P1 = 5000, and the input is x = 10000. Therefore, all data points i can be transformed
to 2− i to obtain the absolute slippage, i.e. the reduction in output due to the price increase while trading.
Note also that the data seems to be somewhat left skewed. Therefore, a log-normal distribution is fitted to the
transformed data. In Figure 4.6b, it can be seen that the log-normal fits the data very well, with a p-value from
the Kolmogorov-Smirnov test of 0.99. Note that, because the output cannot exceed 2, the log-normal should
technically be truncated at that value. However, since this is approximately 5 standard deviations from the
mean, truncation makes no realistic difference.

In order to test for convergence in distribution as the number of liquidity ranges increases, 500 simula-
tions over a uniform distribution have been performed for n liquidity ranges, with 4 ≤ n ≤ 16. Assuming that
the data is log-normally distributed for all n, a logarithmic transformation is applied to make the observations
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(a) The normal distribution fitted to the output, p = 0.94 (b) The lognormal fitted to the slippage, p = 0.99

Figure 4.6: Monte Carlo simulations over a uniform distribution, with sample size n = 500

(a) Mean output (b) Standard deviation of output

Figure 4.7: Monte Carlo simulations over a uniform distribution, for 4 ≤ n ≤ 16

normally distributed. As can be seen in Figure 4.7, the standard deviation of the output steadily decreases as
the number of liquidity ranges increases. This is to be expected, as increasing the number of liquidity ranges
decreases the variance in the length of the liquidity ranges. On the other hand, there is no clear relationship
between the number of liquidity ranges and the mean output.

Therefore, One-way Analysis of Variance (ANOVA) [13] is used to test the null hypothesis:

H0 :µ1 =µ2 = .... =µ16 (4.3)

Against the alternative hypothesis

H1 :µ1 ̸=µ2 ̸= .... ̸=µ16 (4.4)

Where the usual assumptions for ANOVA of homoscedasticity and normality of residuals apply. Perform-
ing the one-way ANOVA test gives a p-value of 0.97 for the results under the null-hypothesis. This means that
with high likelihood, the means for different numbers of liquidity ranges are equal.

To conclude, in this section it has been shown that when trading over uniformly distributed liquidity
ranges, the output has a lognormal distribution. Additionally, the mean outputs for 4 ≤ n ≤ 16 are shown to
be equal with high likelihood. Since, logicallyσ→ 0 as n →∞, this result is a strong indication that the output
for n liquidity ranges converges in value as n →∞. Furthermore, a high p-value for the one-way ANOVA test
is also a strong indication that µ1 =µ2 = .... =µ∞.





5
Conclusion

In this thesis, the mathematical properties of Automated Market Makers, and in particular Uniswap V3, have
been investigated. An axiomatic definition for an AMM, that generalises the works of Bartoletti et al. [6] and
Bichuch and Feinstein [7] was constructed. These definitions allow Constant Function Market Makers to be
accurately described, as well as AMMs based on concentrated liquidity. Furthermore, both the trading func-
tion and the transition between states of the blockchain are described within the same framework.

Several Automated Marker Makers were investigated. Although the Constant Sum Market Maker has use-
ful properties for assets with a stable price, the existence of a bound on liquidity, and the constant price make
it unsuitable for most types of assets. The trading function of Constant Product Market Makers posseses many
desirable mathematical properties, such as output-boundedness, additivity and analyticity. Among others,
these properties allow for the unbounded growth of liquidity and minimise the difference between the in-
ternal and external price oracle due to arbitrage. However, a big limitation of the CPMM is that liquidity is
always deployed on the price interval (0,∞). This limitation is tackled by the trading function of Uniswap V3,
which utilises the concept of concentrated liquidity to allow users to deploy liquidity on an arbitrary interval.

Due to concentrated liquidity, the trading function of Uniswap V3 behaves similar to a CPMM within a
price interval. Whenever a new price interval is reached, the previous interval becomes completely com-
posed of a single asset, and the liquidity, input and output are updated. Therefore, the trading function is
determined iteratively, and can be described using a composition of function. However, the number of func-
tions composed is dependent on the functions itself. This thesis conjectures that the trading function can be
approximated by taking an infinite number of compositions, while letting the size of each liquidity interval
tend to zero.

Additionally, the Uniswap V3 trading function was also simulated using the devised method of transaction
mocking. it was shown that changing the input amount within a price interval has a predominantly linear ef-
fect on the output, and that the precise input-output relation can be represented as a power series. The effect
of varying the initial price was observed, for both fixed and dynamic price intervals. Although the output for
a fixed price interval was similar to varying the price, the dynamic price intervals produce jumps in output
that have yet to be fully explained. Furthermore, it was found that when moving the initial price past half of
the price interval, the gradient can jump due to liquidity calculations.

Simulations were also used to test the conjecture from Chapter 3. By varying the number of liquidity
ranges, no convergence of the input-output relation can be spotted directly. By performing Monte Carlo sim-
ulations over a uniform distribution of liquidity ranges, It was shown that the output of each simulation run
is log-normally distributed with a very high significance. Furthermore, it was shown that the true mean for
different numbers of liquidity ranges is very likely to be equal for at least up to 16 liquidity ranges. Combining
these results with the fact that the standard deviation naturally goes to zero as the number of liquidity ranges
increases, convergence in value as n →∞ is likely. This supports the statement of the conjecture.
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6
Discussion

During the writing of this thesis, some research questions could not be fully answered, and some assump-
tions were made. These shortcomings are discussed in this section. In the simulation study, several obtained
results could not be fully explained. Most significantly, the cause of the jumps in output observed when
Pi ni t i al is near P1 could not be identified. Although it could be established that the effect is directly linked
to the distance between the initial price and the start of the price interval, and that it occurs independent of
other factors such as input and price, the result contradicts the theoretical result that fixed and variable starts
of price intervals should give equal results. Another effect that could not be fully explained, is the shape of
the input-output relation for different numbers of liquidity ranges. Especially the very close grouping of the
outputs for n = 2,3,5,6,10 and 15 is notable, but no clear cause was established.

The simulation study was also slightly limited in it’s scope due to the simulation setup. Although the setup
was very accurate, since the programming language Solidity is designed to not allow any rounding errors, this
part of the design also limited the simulations. The absence of floating point numbers prevented the use of
very small liquidity intervals, which meant that simulations could not reliable be performed for more than
16 liquidity intervals. Although there is most likely a method to utilize smaller liquidity intervals, as this is
also done in practice, the author was unable to find it. This shortcoming in the simulation setup meant that
convergence for the number of liquidity intervals could not be tested for more than 16 liquidity intervals.

6.1. Recommendations
6.1.1. Analysing the trading function using dynamical systems theory
In this thesis, an expression for the Uniswap V3 trading function was found as a composition of functions.
Expressions of this form are well studied in the theory of iterated functions and discrete dynamical systems.
A useful continuation of this research would be to investigate this expression using the tools provided by
dynamical systems theory, and see which properties of the trading function can be deduced, given that the
number of iterations are known. Furthermore, simulations for different numbers of liquidity ranges have
made it plausible that the trading function converges as the number of liquidity ranges increases to infinity.
If convergence can be proven, the theory of infinite compositions of analytic functions [12] could be used to
approximate the trading function using an infinite number of trading functions acting on an infinitely small
price interval. This approximation would be independent of the number of iterations n.

6.1.2. Principal Component Analysis for simulations
The trading function of Uniswap V3 has multiple highly correlated input parameters, such as the initial price,
price intervals and the input amount. By varying these parameters independently, it was made plausible that
some of these parameters have equivalent effects, and thus can be disregarded. However, in order to find
the parameter space that has the largest, independent influence on the output, dimensionality reduction
can be applied. By performing Principal component analysis (PCA) [11] on a large dataset using all input
parameters, the principal components that contain the largest variance of data and are orthogonal can be
found. This would allow for better interpretation of the simulation results, using fewer figures.
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A
Proofs of CPMM properties

Output-Boundedness
Let x1r0,r1 > 0. Then

G (x,r0,r1) = x · r1

r0 +x
< xr1

x
= r1

Strict Monotonicity
let x1 > x0,r ′

1 > r1,r ′
0 < r0 Then

G
(
x1,r ′

1,r ′
0

)= x1 ·
r ′

1

r ′
0 +x1

> x0
r1

r0 +x0
=G (x0,r1,r0)

Additivity
Let x0, x1,r0,r1 > 0 and

G (x0,r0,r1) = x0 · r1

r0 +x0
= a

G (x1,r0 +x0,r1 −ax0) = x · r1 −ax0

r0 +x0 +x1
= b

Then

G (x0 +x1,r0,r1)

= r1
r0+x0+x1

= r1(r0+x0)(x0+x1)
(r0+x0+x1)(r0+x0)(x0+x1)

= 1
x0+x1

r0r1x0+r1x2
0+r1x0x1

(r0+x0)(r0+x0+x1)

= 1
x0+x1

(
r1x0

r0+x0
+ r0r1x1

(r0+x0)(r0+x0+x1)

)
= ax+by

x+y

Homogeneity
let a, x,r0,r1 > 0.
Then,

G (ax, ar0, ar1) = ax · ar1

ar0 +ax
= a ·G (x,r0,r1)
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Reversibility
let x,r0,r1 > 0 and G (x,r0,r1) = a.
Then,

G (ax,r1 −ax,r0 +x) = ax
r0 +x

(r1 −ax)+ax

= ax
r0 +x

r1

= ax

(
r1

r0 +x

)−1

= xG (x,r0,r1)G−1 (x,r0,r1) = x

Continuity
Clearly, G(x) = x · r1

r0+x for r0,r1 > 0 is continuous ∀x ∈ [0,∞)

Concaveness
let r0,r1 > 0, x ≥ 0. It needs to be shown that the second derivative of G is non-positive on the domain

G(x) = r1x

r0 +x

G ′(x) = (r0 +x)r1 − r1x

(r0 +x)2

= r0r1

(r0 +x)2

G ′′(x) =− 2r0r1

(r0 +x)3 ≤ 0 for all r0,r1 > 0, x ≥ 0

Therefore, G (x,r0,r1) is concave.

Analyticity
In order to show that G(x) is analytic, it needs to be demonstrated that it has derivatives of all orders, and
each derivative is continuous.

From proof A, it can easily be seen that

G (n)(x) = (−1)n+1n!r0r1

(r0 +x)n

is the nth derivative of G(x) with respect to x.
Clearly, each of these derivatives is continuous for x ≥ 0,r0,r1 > 0. Therefore, G(x) is analytic.



B
Solidity code

Note that this code cannot be run by itself. It needs to be added to the testing infrastructure of Kuznetsov [16]
and compiled using Foundry [10]

1 // SPDX -License -Identifier: UNLICENSED
2 pragma solidity ^0.8.14;
3
4 import "forge -std/Test.sol";
5 import "./ ERC20Mintable.sol";
6 import "./ UniswapV3Pool.Utils.t.sol";
7
8 import "../src/interfaces/IUniswapV3Pool.sol";
9 import "../src/lib/LiquidityMath.sol";

10 import "../src/lib/TickMath.sol";
11 import "../src/UniswapV3Factory.sol";
12 import "../src/UniswapV3Pool.sol";
13
14 contract UniswapV3PoolSwapsTest is Test , UniswapV3PoolUtils {
15 ERC20Mintable weth;
16 ERC20Mintable usdc;
17 UniswapV3Factory factory;
18 UniswapV3Pool pool;
19 event SwapCompleted(int256 amount0Delta , int256 amount1Delta);
20 bool transferInMintCallback = true;
21 bool transferInSwapCallback = true;
22 bytes extra;
23
24 function setUp() public {
25 usdc = new ERC20Mintable("USDC", "USDC", 18);
26 weth = new ERC20Mintable("Ether", "ETH", 18);
27 factory = new UniswapV3Factory ();
28
29 extra = encodeExtra(address(weth), address(usdc), address(this));
30 }
31
32 function testBuyETHConsecutivePriceRanges4 () public {
33 uint16 [][] memory lowerbounds = [% Liquidity intervals inserted here %];
34 uint16 [][] memory upperbounds = [% Liquidity intervals inserted here %];
35 uint256 amount0 = 0.6 ether;
36 uint256 amount1 = 3000 ether;
37 uint256 currentPrice = 5000;
38 for (uint256 i = 0; i < lowerbounds.length; i++) {
39 multiplePriceRanges(
40 lowerbounds[i],
41 upperbounds[i],
42 amount0 ,
43 amount1 ,
44 currentPrice ,
45 uint24(i)
46 );
47 }

27
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48 }
49
50 function multiplePriceRanges(
51 uint16 [4] memory lowerbounds ,
52 uint16 [4] memory upperbounds ,
53 uint256 amount0 ,
54 uint256 amount1 ,
55 uint256 currentPrice ,
56 uint24 i
57 ) public {
58 LiquidityRange [] memory liquidityRanges = new LiquidityRange [](4);
59 uint256 scaled_amount1;
60 liquidityRanges [0] = liquidityRange(
61 lowerbounds [0],
62 upperbounds [0],
63 amount0 ,
64 amount1 ,
65 currentPrice
66 );
67 for (uint24 j = 0; j < lowerbounds.length; j++) {
68 liquidityRanges[j] = liquidityRange(
69 lowerbounds[j],
70 upperbounds[j],
71 amount0 ,
72 amount1 ,
73 currentPrice
74 );
75 }
76
77 (
78 LiquidityRange [] memory liquidity ,
79 uint256 poolBalance0 ,
80 uint256 poolBalance1
81 ) = setupPool(
82 PoolParams ({
83 balances: [uint256 (2.4 ether), 120000 ether],
84 currentPrice: 5000,
85 liquidity: liquidityRanges ,
86 transferInMintCallback: true ,
87 transferInSwapCallback: true ,
88 mintLiqudity: true
89 }),
90 uint24 (3000 + i)
91 );
92
93 uint256 swapAmount = 10000 ether; // 10000 USDC
94 usdc.mint(address(this), swapAmount);
95 usdc.approve(address(this), swapAmount);
96
97 (int256 userBalance0Before , int256 userBalance1Before) = (
98 int256(weth.balanceOf(address(this))),
99 int256(usdc.balanceOf(address(this)))

100 );
101
102 (int256 amount0Delta , int256 amount1Delta) = pool.swap(
103 address(this),
104 false ,
105 swapAmount ,
106 sqrtP (61060) ,
107 extra
108 );
109 emit SwapCompleted(amount0Delta , amount1Delta);
110
111 // assertEq(
112 // amount0Delta ,
113 // -1.806151062659754714 ether ,
114 // "invalid ETH out"
115 // );
116 // assertEq(
117 // amount1Delta ,
118 // 9938.146841864722991247 ether ,
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119 // "invalid USDC in"
120 // );
121 }
122
123
124 function uniswapV3SwapCallback(
125 int256 amount0 ,
126 int256 amount1 ,
127 bytes calldata data
128 ) public {
129 if (transferInSwapCallback) {
130 IUniswapV3Pool.CallbackData memory cbData = abi.decode(
131 data ,
132 (IUniswapV3Pool.CallbackData)
133 );
134
135 if (amount0 > 0) {
136 IERC20(cbData.token0).transferFrom(
137 cbData.payer ,
138 msg.sender ,
139 uint256(amount0)
140 );
141 }
142
143 if (amount1 > 0) {
144 IERC20(cbData.token1).transferFrom(
145 cbData.payer ,
146 msg.sender ,
147 uint256(amount1)
148 );
149 }
150 }
151 }
152
153 function uniswapV3MintCallback(
154 uint256 amount0 ,
155 uint256 amount1 ,
156 bytes calldata data
157 ) public {
158 if (transferInMintCallback) {
159 IUniswapV3Pool.CallbackData memory cbData = abi.decode(
160 data ,
161 (IUniswapV3Pool.CallbackData)
162 );
163
164 IERC20(cbData.token0).transferFrom(
165 cbData.payer ,
166 msg.sender ,
167 amount0
168 );
169 IERC20(cbData.token1).transferFrom(
170 cbData.payer ,
171 msg.sender ,
172 amount1
173 );
174 }
175 }
176
177 // ////////////////////////////////////////////////////////////////////////
178
179 ///INTERNAL
180
181 // ////////////////////////////////////////////////////////////////////////
182 function setupPool(
183 PoolParams memory params ,
184 uint24 feeparam
185 )
186 internal
187 returns (
188 LiquidityRange [] memory liquidity ,
189 uint256 poolBalance0 ,
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190 uint256 poolBalance1
191 )
192 {
193 weth.mint(address(this), params.balances [0]);
194 usdc.mint(address(this), params.balances [1]);
195
196 pool = deployPool(
197 factory ,
198 address(weth),
199 address(usdc),
200 feeparam ,
201 params.currentPrice
202 );
203
204 if (params.mintLiqudity) {
205 weth.approve(address(this), params.balances [0]);
206 usdc.approve(address(this), params.balances [1]);
207
208 uint256 poolBalance0Tmp;
209 uint256 poolBalance1Tmp;
210 for (uint256 i = 0; i < params.liquidity.length; i++) {
211 (poolBalance0Tmp , poolBalance1Tmp) = pool.mint(
212 address(this),
213 params.liquidity[i].lowerTick ,
214 params.liquidity[i].upperTick ,
215 params.liquidity[i].amount ,
216 extra
217 );
218 poolBalance0 += poolBalance0Tmp;
219 poolBalance1 += poolBalance1Tmp;
220 }
221 }
222
223 transferInMintCallback = params.transferInMintCallback;
224 transferInSwapCallback = params.transferInSwapCallback;
225 liquidity = params.liquidity;
226 }
227 }



List of Terms and Acronyms

Glossary
arbitrage The process of taking advantage of price difference in different markets, by buying an asset from

the cheaper market and selling it in the more expensive market. 8

Bitcoin The first implementation of a blockchain, proposed by Nakamoto [19]. 3

blockchain A distributed, peer-2-peer, computer network. Often used for the trade of crytocurrencies. 1, 3,
4, 13, 21

Ethereum First and largest blockchain making use of smart contracts (as of 2023). 3, 13

smart contract A self executing computer program that runs based on a set of specified rules. Implemented
on a smart blockchain, e.g. Ethereum. Smart contracts are deployed and interacted with through
blockchain transactions. 13

Acronyms
AMM Automated Market Maker. 1, 5–7, 13, 21

CFMM Constant Function market Maker. 1, 5, 6

CPMM Constant Product Market Maker. 6, 8, 9, 21

CSMM Constant Sum Market Maker. 6–8
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