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SUMMARY

The work presented in this thesis aims to gain a better understanding of the me-
chanical behavior of two metal bodies in contact that can both deform by dislo-
cation plasticity. The analysis extends from previous contact studies that treated
only a single plastically deformable body in contact with a rigid platen. Here,
contact between a body with a sinusoidal surface having micrometer scale wave-
length, a scale at which plasticity is known to be size dependent, and a platen is
considered.

Simulations are performed using discrete dislocation plasticity, a method ca-
pable of describing micro-scale plasticity accurately, and predicting size effects.
Plasticity is described as the collective motion of discrete dislocations, the fun-
damental carriers of plasticity. The dislocations are modeled as line singulari-
ties in an otherwise isotropic linear elastic medium. By that, the model contains
the characteristic length scale of plasticity, the Burgers vector, which allows the
model to capture plasticity size effects.

The novel formulation is described in Chapter 2. Contact between the bodies
containing edge dislocations is treated as a constrained problem, and the solu-
tion for the image fields is obtained by minimizing the potential energy of both
crystals while satisfying the contact constraints at the interface.

Despite the model is general, we focus first on contact between a plastically
deformable body with a sinusoidal surface and a rigid or an elastic platen in
Chapter 3. The difference with previous discrete dislocation plasticity contact
studies is that before the effect of the rigid platen is prescribed by a set of bound-
ary conditions, whereas both bodies in contact are explicitly modeled in this
work. Two limit conditions, i.e. frictionless and full stick, are considered. Con-
trary to the result from previous studies we find that the true contact area, hence
the true contact pressure are strongly affected by the contact conditions. How-
ever, the apparent contact area, apparent contact pressure and plastic deforma-
tion in the crystal are found to be unaffected. The exact morphology of the true
contact area affects the local pressure but not its mean, or the overall plastic be-
havior.

In the same chapter, a size dependent plastic response is demonstrated, with
smaller asperities being harder to deform than larger asperities. This is in agree-
ment with previous discrete dislocation plasticity studies of contact. As expected,
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the size effect is found to be less pronounced when the compliance of the platen
is increased.

The analysis is then extended in Chapter 4 to a contact problem of two bodies
that can both deform by discrete dislocation plasticity. We find that when both
bodies in contact deform plastically, the plastic response is also size dependent.
Surprisingly however, the effect is quantitatively the same for different metals in
contact. This is because a pure metal single crystal with a larger elastic modulus
generally has, on average, larger dislocation nucleation strength. Larger stresses
are therefore required to deform the crystal plastically.

Next we investigate if the plastic properties of two bodies in contact can be
mapped to that of a single plastically deformable body. This allows us to deter-
mine whether the problem of two plastically deformable bodies in contact can
be represented by a simplified equivalent problem composed of a single plasti-
cally deformable body in contact with a rigid platen. Elastically both problems
are identical as long as the gap geometry and effective elastic modulus of both
bodies are the same. Results show that the problem of two plastically deformable
bodies in contact can be simplified by treating an equivalent problem. The map-
ping is possible provided that 1) the source strength in the equivalent problem is
that of the softest material in the original problem, and 2) the source density is
equal to the sum of the source densities contained in the two deformable crys-
tals.

The static friction behavior of micrometer sized asperities is examined in
Chapter 5. Previous discrete dislocation plasticity studies of friction have focused
only on contact with a single asperity on top of a large body, and flattened at a
constant depth. The behavior of multi-asperity contact is different from single
asperity contact since it is easier to shear closely spaced asperities. Here, we an-
alyze the static friction of a body with a sinusoidal surface in contact with a platen
pre-loaded with a constant normal force, and investigate how the friction force
and the friction coefficient vary with the applied normal force.

The friction force is found to be independent of whether the platen is rigid,
or elastic. This holds even for a plastic platen, as long as the plastic properties
of both bodies in contact are the same. Both the friction force and friction co-
efficient decrease when the applied normal force is increased. The local friction
coefficient is also highly non-uniform, and it can be a few times larger than the
average friction coefficient. When the asperity size is decreased, the friction force
and the friction coefficient increase, due to the size dependence of plasticity dur-
ing flattening.

Finally some concluding remarks and recommendations are given in Chap-
ter 6.



SAMENVATTING

Het werk dat gepresenteerd wordt in dit proefschrift heeft tot doel een beter be-
grip te verkrijgen van het mechanisch gedrag van twee metalen objecten (licha-
men) in contact, die beiden plastisch kunnen deformeren door beweging van
dislocaties. De analyse is een uitbreiding van eerdere contact-studies, die één
plastisch deformeerbaar lichaam in contact met een starre plaat beschouwden.
In deze studie wordt het contact tussen een lichaam met een sinusoïdaal op-
pervlak met golflengte op micrometer-schaal en een plaat beschouwd. Dit is de
schaal waarop bekend is dat plasticiteit grootte-afhankelijk is.

De simulaties zijn uitgevoerd met de discrete dislocatie plasticiteit-methode
(DDP-methode), die micronschaal-plasticiteit accuraat beschrijft en grootte-effecten
kan voorspellen. Plasticiteit wordt beschreven als de collectieve beweging van
discrete dislocaties, de dragers van plasticiteit. De dislocaties worden gemo-
delleerd als lijnsingulariteiten in een verder isotroop lineair elastisch medium.
Hierdoor bevat het model de karakteristieke lengteschaal van plasticiteit, de Bur-
gersvector, waardoor het model grootte-effecten in de plasticiteit in rekening kan
brengen.

De nieuwe formulering wordt beschreven in hoofdstuk 2. Het contact tussen
twee lichamen met randdislocaties wordt behandeld als een probleem met rand-
voorwaarden, en de oplossing voor de image-velden wordt verkregen door de
potentiële energie van beide kristallen te minimaliseren, terwijl voldaan wordt
aan de contactcondities aan het interface.

Alhoewel dit een algemeen toepasbaar model betreft, richten we onze aan-
dacht eerst, in hoofdstuk 3, op het contact tussen een plastisch deformeerbaar
lichaam met een sinusoïdaal oppervlak en een starre of elastische plaat. Het
verschil met eerdere DDP-contactstudies is dat daarin het effect van een starre
plaat is beschreven door een set randvoorwaarden, terwijl in dit werk beide li-
chamen expliciet gemodelleerd zijn. Twee limietgevallen worden bekeken, te
weten wrijvingsloos contact en contact met volledige hechting. In tegenstelling
tot resultaten uit eerdere studies vinden we dat het daadwerkelijke contactop-
pervlak en daardoor de daadwerkelijke contactdruk sterk beïnvloed worden door
de contactconditie. Het schijnbare contactoppervlak, de schijnbare contactdruk
en de plastische deformatie in het kristal worden daarentegen niet beïnvloed. De
exacte vorm van het daadwerkelijke contactoppervlak beïnvloedt de lokale druk,
maar niet het gemiddelde hiervan of het totale plastische gedrag.
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In hetzelfde hoofdstuk wordt een grootte-afhankelijke plastische respons aan-
getoond, waarbij kleine oneffenheden moeilijker te deformeren blijken te zijn
dan grotere oneffenheden. Dit is in overeenstemming met eerdere DDP-studies
van contacten. Zoals verwacht, vinden we dat het grootte-effect minder uitge-
sproken is naarmate de compliantie van de plaat hoger is.

De analyse wordt daarna in hoofdstuk 4 uitgebreid met een contact tussen
twee lichamen die beide kunnen deformeren. We vinden dat wanneer beide
lichamen in contact plastisch deformeren, de plastische respons ook grootte-
afhankelijk is. Het is verrassend om te vinden dat dit effect kwantitatief hetzelfde
is voor verschillende metalen in contact. Dit komt doordat een enkel metaal-
kristal met een grotere elastische modulus gemiddeld genomen ook een grotere
dislocatie-nucleatiesterkte heeft. Daardoor zijn er ook grotere spanningen nodig
om het kristal plastisch te deformeren.

Vervolgens onderzoeken we of de plastische eigenschappen van twee licha-
men in contact vertaald kunnen worden naar die van één plastisch deformeer-
baar lichaam. Hierdoor zouden we kunnen we nagaan of het probleem van twee
plastisch deformeerbare lichamen gerepresenteerd kan worden door één plas-
tisch deformeerbaar lichaam en een starre plaat. Elastisch zijn beide problemen
identiek zolang de geometrie van de ruimte tussen de lichamen en de effectieve
elastische modulus van beide lichamen hetzelfde zijn. Onze resultaten laten zien
dat het probleem van twee plastisch deformeerbare lichamen in contact inder-
daad vereenvoudigd kan worden tot een enkelzijdig equivalent probleem. Deze
vertaalslag is mogelijk zolang 1) de bronsterkte in het equivalente probleem ge-
lijk is aan die van het zachtste materiaal in het originele probleem en 2) de bron-
dichtheid gelijk is aan de som van brondichtheden in de twee deformeerbare
kristallen.

Het statische wrijvingsgedrag van micrometer-grote oneffenheden is onder-
zocht in hoofdstuk 5. Eerdere DDP-studies van wrijving hebben alleen gekeken
naar contact met een enkele oneffenheid bovenop een groot lichaam, afgeplat op
een constante niveau. Het gedrag van een contact met veel oneffenheden is an-
ders dan dat van een contact met slechts een enkele oneffenheid, aangezien het
makkelijker is om dicht bijelkaar gelegen oneffenheden af te schuiven. We ana-
lyseren hier de statische wrijving van een lichaam met een sinusoïdaal oppervlak
in contact met een plaat,die voorbelast is met een constante normaalkracht, en
onderzoeken hoe de wrijvingskracht en de wrijvingscoëfficiënt variëren met de
aangebrachte normale belasting.

De wrijvingskracht is onafhankelijk van de eigenschap of de plaat star of elas-
tisch is. Dit geldt zelfs voor een plastische plaat, zoang de plastische eigenschap-
pen van beide lichamen in contact hetzelfde zijn. Zowel de wrijvingskracht als
de wrijvingsconstante nemen af als de aangebrachte normale belasting wordt
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verhoogd. De lokale wrijvingscoëfficiënt is in hoge mate niet-uniform en kan
enkele malen groter zijn dan de gemiddelde wrijvingscoëfficiënt. Wanneer de
grootte van de oneffenheid afneemt, nemen de wrijvingskracht en de wrijvings-
coëfficiënt toe, door de grootte-afhankelijkheid van de plasticiteit gedurende het
afvlakken.

Tot slot worden in hoofdstuk 6 een aantal conclusies en aanbevelingen gege-
ven.
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INTRODUCTION

Kelvin NG WEI SIANG

The increase of scientific knowledge lies
not only in the milestones of science,

but in the efforts of the very large body of men,
who with love and devotion,

observe and study nature.

Polykarp Kusch

Science never solves a problem without creating ten more.

George Bernard Shaw
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2 1. INTRODUCTION

1.1. GENERAL INTRODUCTION

T HE drive to develop compact machines with high performance and function-
ality has reduced the dimensions of the machines and their internal compo-

nents down to the micrometer or the nanometer scale [1, 2]. However, as the
surface to volume ratio increases with decreasing size, the performance of the
machines become increasingly dominated by interfacial forces [3, 4].

One of the direct consequences of contact between the surfaces is friction,
defined as the resistance to relative motion between the surfaces. In miniatur-
ized devices, friction and adhesion pose a serious problem as they can com-
pletely hamper the device functionality. As a result, many of these devices have
low reliability, and they cannot be commercialized [5]. Overcoming friction re-
mains therefore one of the central challenges in the design of reliable micro/nano
electromechanical systems (MEMS/NEMS) [6, 7].

Numerous studies (e.g. [8–20]) have been carried out to understand the con-
tact and friction behavior of surfaces in contact. Friction is often quantified by
the friction coefficientµ, defined by the ratio of the friction force Ff to the normal
force Fy compressing the surfaces together. The coefficient µ is experimentally
found to be in the range of 0.1 to 1.4 (see e.g. [21, 22]), but different relationships
between Ff, Fy and µ have been obtained. Several experiments demonstrate that
the friction force is proportional to the applied normal force, and hence the fric-
tion coefficient µ is independent of Fy [8–12]. However, other studies report that
the friction coefficient decreases with increasing applied normal force [13–20],
similarly to a Hertzian contact. It is not yet completely understood what causes

Asperities

Figure 1.1: Asperities, or protrusions of a surface, of various sizes. Some are in contact.

the different contact behavior, since the results are strongly dependent on the
specific testing condition. What is certain is that for highly adhesive surfaces
in contact [23], the contact behavior and friction are dependent on the material
plastic properties. This is because the contact pressure is usually large enough to
induce plastic deformation in the asperities [24–26], or protrusions of a surface
(Fig. 1.1).

To investigate the effect of plastic deformation on the contact behavior, mod-
els using continuum mechanics theories have been developed, which consider
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3

the deformation of individual asperities of a rough surface (e.g. [27–30]). One
of the earliest rough surface contact model is introduced by Greenwood and
Williamson [27]. They assume all asperities to be identical and spherical, and the
asperity heights are exponentially distributed (Fig. 1.2). The elastic deformation

r

Figure 1.2: An idealized surface by Greenwood and Williamson, composed of identical hemispher-
ical asperities of radius r , but with different heights.

of each asperity is treated as a non-interacting Hertzian spherical contact, which
gives A ∝ F 2/3

y [31]. Plastic yield is based on the Von-Mises criterion [32, 33], and
the yield strength is assumed a material property. Several rough surface con-
tact models (e.g. [30, 34, 35]) also used the same approach for constructing the
surface, but with different statistical distributions of asperity geometries, e.g. as-
perity heights and curvatures. However, later experimental studies show that the
curvature of the asperities measured depends strongly on the resolution of the
surface measuring instrument [36–38]. To describe the surfaces more accurately

L w
η = L/w

pc = f (η)

Figure 1.3: Right: complete contact at length scale L, and left: contact at a smaller length scale w
when the surface is magnified.

Persson [39] developed a contact theory which considers the contact pressure as
a function of a parameter η = L/w , where L is the length scale of the complete
contact and w is the length scale of contact of the surface when magnified (see
Fig. 1.3). No contact length scales are therefore excluded in the analysis. In all
these continuum studies, the normal force Fy is found to vary linearly with the
true contact area Ac, although the proportionality constant differs [40].

To investigate directly how the friction force varies with the applied normal
force, Chang et al. [41] presented a static friction model which treats the static
friction force as the shear force corresponding to the onset of plasticity of the as-
perities. Contact is assumed full stick. Later works [42–45] modify the contact



1

4 1. INTRODUCTION

model to include the transition from the onset of plasticity to full plastic defor-
mation [42, 46], so to account for the fact that the asperities support additional
shear load after plasticity sets in. These studies found that when dissipation oc-
curs by plasticity the friction coefficient µ decreases when the applied normal
force is increased. The reason is that the stresses induced by the normal force
facilitate plastic shearing.

The relationship between the friction force, hence friction coefficient with
the normal load differs however between the different local continuum plastic-
ity contact studies (compare e.g. [42] and [44]). Local continuum models lack
also a characteristic length scale to capture size effects [47]. Micro compression
tests on pillars reveal a plasticity size effect at the (sub)-micron scale [48–51], i.e.
the contact pressure required to deform smaller pillars is larger. This is because
plasticity sets in at larger strains for smaller sized asperities. A larger normal force
and tangential force are thus required to deform the asperities then what would
be predicted by a continuum model, indicating that the contact pressure, fric-
tion force, and the friction coefficient could be underestimated. To predict how
much these quantities would be under-estimated, plasticity size effects must be
accounted for when modeling the contact behavior of micrometer sized asperi-
ties.

Although molecular dynamics simulations have been used to analyze contact
between surfaces [47, 52–54], they are computationally expensive when the con-
tact size is larger than the nanometer scale. To address too the contact problem
at the micron scale, studies of flattening [55–58] and shearing [59–62] of micron-
sized contacts have been already carried out using discrete dislocation plasticity
[63]. This method fills the gap between the atomistic and the macroscopic mod-
els, since it averages over the atoms, but accounts for the nucleation and glide
of dislocations. Plasticity in the body is described by the collective motion of
discrete edge dislocations, and by that the model contains the intrinsic length
scale of plasticity: the Burgers vector b. Although non-local continuum plastic-
ity models [64–67] have also been developed in recent years to include the effect
of dislocations by mean fields, the discrete effects of plastic flow, e.g. source lim-
itation [48, 51], and high local contact pressure peaks are unaccounted for [68].

Results obtained from discrete dislocation plasticity contact studies differ in-
deed from local continuum plasticity contact studies. For instance size [55, 69]
and spacing effects [55, 56] are observed during flattening. A plastically flattened
asperity is more compliant, if subsequently sheared [60].
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1.2. MOTIVATION

A LTHOUGH the contact behavior of the asperities has been investigated exten-
sively using discrete dislocation plasticity, the analysis have so far focused

only on contact between a plastically deformable asperity and a rigid body, for
which the effects of the rigid body are mimicked through a set of boundary con-
ditions. To preserve compatibility dislocations are prevented from escaping the
contact, causing them to pile up beneath the contact. The question arises on
how the contact pressure profiles are affected by this constraint. Also, plasticity
size effect and the highly non-uniform contact profiles and pressure observed in
discrete dislocation plasticity studies of contact with a rigid body are expected to
be different when both bodies in contact are deformable. To understand this a
contact model that describes both bodies in contact that can deform by disloca-
tion plasticity is developed in this thesis.

Continuum studies of contact between two deformable bodies has been rou-
tinely simplified by treating an equivalent problem where only one body is de-
formable and the other is rigid [28, 39, 46, 70–73], since the elastic responses are
identical provided that the gap geometry and the effective elastic modulus of the
bodies remains unchanged [39, 74]. The question arises on whether, and to what
extend, the simplification is still valid even when plasticity, size dependent at the
(sub)-micron scale, occurs. Here, this question is addressed using the developed
two body discrete dislocation plasticity model.

Previous discrete dislocation plasticity studies have focused on analyzing the
static friction behavior of a single asperity on top of a large body, where the as-
perity is pre-loaded by a constant normal displacement [60, 61, 75]. However,
the behavior of multi-asperity contact is found to be different from a single as-
perity contact: in a study of shearing three asperities [60] the contact shear stress
is smaller than shearing only a single isolated asperity. In this thesis, we will in-
vestigate the static friction response of a multi-asperity contact, when the only
dissipation process active is plasticity.

1.3. OBJECTIVES AND STRUCTURE OF THE THESIS

H ERE, we present the analysis of flattening and shearing of two bodies in con-
tact that can both deform by dislocation plasticity. The developed formula-

tion that describes both plastically deformable bodies is presented in Chapter 2.
Simulations of contact between a body with micrometer sized sinusoidal as-

perities and a body with a flat surface (platen) are performed, for which stresses
in the material are relaxed by the collective glide of dislocations. In Chapter 3, we
examine how the contact conditions affect the plastic response of a metal single
crystal with a sinusoidal surface flattened by a rigid body. How the size depen-
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dent plastic response is affected by the compliance of the platen is also explored.
Next, contact between two bodies that can both deform by dislocation plas-

ticity is investigated in Chapter 4. For two plastically deformable bodies a size
dependent plastic behavior is also observed. Surprisingly however, the effect is
quantitatively the same for different metals in contact. This is because a single
metal crystal with a larger elastic modulus has on average, larger dislocation nu-
cleation strength. The larger stresses in the crystal with a larger elastic modulus
therefore does not lead to more plasticity in the crystal.

The question of whether the problem of two metal crystals in contact can be
mapped to an equivalent system, made of a single plastically deformable body
in contact with a rigid body, is addressed in the same chapter.

The problem of shear of sinusoidal asperities is dealt with in Chapter 5. Here,
a normal force is first applied on the top surface of the platen in contact with
the asperities before applying a tangential (shear) displacement. We investigate
how the static friction force and the friction coefficient of micron sized sinusoidal
asperities vary with the applied normal force. The size dependent behavior of the
friction force and the friction coefficient is also explored.

Finally conclusions and recommendations for future research are presented
in Chapter 6.
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2
COMPUTATIONAL APPROACH

Your assumptions are your windows on the world.
Scrub them off every once in a while, or the light won’t come in.

Isaac Asimov

Parts of this chapter have been published in Model. Simul. Mater. Sci. 24, 045008 (2016) [1].
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The approach to determine the deformation of two bodies in contact with a given
dislocation distribution is described in this chapter. The model intends to im-
prove on previous dislocation dynamics models which consider contact between
a deformable body and a rigid body, and the effect of the rigid body is mimicked
through boundary conditions. The linear elastic deformation fields are given as
the sum of two linearly additive fields: the dislocation fields and the image fields.
The dislocation fields are analytical fields of the edge dislocations present in each
body as if each body containing them were infinite. The image fields enforce the
boundary and contact conditions of the bodies in contact. Given that the image
fields are non-singular they are obtained by solving the contact problem using the
Finite Element Method. The fields of the dislocations in both bodies are then veri-
fied for the two body contact model, by comparing with those obtained by the tra-
ditional single body discrete dislocation plasticity model. Finally, the constitutive
rules governing dislocation dynamics are briefly described.
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2.1. INTRODUCTION

I N this chapter the formulation used to describe the contact between two bod-
ies that can deform plastically is presented [1]. First it is described how at

each time increment the stress and displacement fields of both crystals in con-
tact containing dislocations are obtained. Next, a description of the constitutive
rules that govern the dynamics of the dislocations follows.

2.2. ELASTIC CONTACT PROBLEM

W E first consider two linear elastic bodies. Following Wriggers [2], contact
between the bodies is treated as a constrained minimization problem. Each

body i has domainΩ(i ) bounded by a boundary Γ(i ) where Γ(1) ∩Γ(2) = γc and γc

is the contact surface. The total potential energy functional ΠP for two elastic
bodies in contact, without frictional sliding and neglecting body forces, is given
as

ΠP(u) =
2∑

i=1

{1

2

∫
Ω(i )

[
ε(u)Tσ(u)

](i )
dΩ−

∫
Γ(i )
σ

u(i )Tt(i )dΓ
}
+ΠC(u), (2.1)

where ε and σ are the strain and stress tensors, u are the displacement vector
fields, and t(i ) are the tractions acting on the boundary Γ(i )

σ . Following the the
penalty method, the constraint energy term ΠC has the objective of minimizing
penetration between the contact surfaces. For two dimensional contact prob-
lems considered in this work,ΠC is expressed as

ΠC(u) = 1

2

∫
γc

[
εn g 2

n(u)+εt g 2
t (u)

]
dΓ, with εn,εt ≥ 0, (2.2)

where the normal gap function gn and the tangential gap function gt are as de-
scribed in the following subsection. The penalty parameters in the normal and
tangential directions of the surface of body 1 in Eq. (2.2) are εn and εt. For fric-
tionless contact, εn → ∞,εt = 0, whereas for full stick contact, εn,εt → ∞. The
potential energy functional minimum is obtained by equating the first variation
ofΠP to zero [2, 3],

2∑
i=1

{∫
Ω(i )

[
δε

(
u
)T
σ

(
u
)](i )

dΩ−
∫
Γ(i )
σ

δu(i )Tt(i ) dΓ
}

(2.3)

+
∫
γc

[
εnδgn

(
u
)

gn
(
u
)+εtδgt

(
u
)

gt
(
u
)]

dΓ︸ ︷︷ ︸
ΠC(u)

= 0.

2.2.1. CONTACT KINEMATICS

Following Wriggers [2], to determine contact, the distance between two points
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x(1)

x(2)

nt

n(g2n + g2t )

body 2

body 1

Figure 2.1: Distance between two points on opposite surfaces, described through gap functions
(see e.g. [2]).

x(1) and x(2) must be defined (Fig. 2.1), as

gn = (
x(2) −x(1)(ξ)

)T n(1), gt j =
(
x(2) −x(1)(ξ)

)T n(1)
t j

, j = 1,2. (2.4)

Here x(i ), where x(i ) = u(i )+x(i )
0 , is the coordinate of a point on the surface of body

i in the current configuration; u(i ) is the displacement and x(i )
0 is in the original

configuration; ξ= (ξt1 ,ξt2 ) are the curvilinear coordinates of the surface of body
1; and n(1) and n(1)

t j
are the normal and tangential unit vectors in the j direction

of the two dimensional surface of body 1. The normal unit vector n(1) is related
to n(1)

t j
via

n(1) =
n(1)

t1
×n(1)

t2

||n(1)
t1

×n(1)
t2
||

. (2.5)

Given that the contact boundary is locally convex, every point x(2) forms a con-
tact pair with point x(1)(ξ), determined via the minimum distance problem with
the necessary condition

d

dξtj

||g (ξt1 ,ξt2 )|| = x(2) −x(1)(ξt1 ,ξt2 )

||x(2) −x(1)(ξt1 ,ξt2 )|| ·x,(1)
t j

(ξt1 ,ξt2 ) = 0, j = 1,2. (2.6)

Once the contact pair is obtained, contact between the surfaces can be enforced
by subjecting the normal gap function gn to the inequality constraint:

gn = (
x(2) −x(1))T n(1) ≥ 0. (2.7)

2.3. DISCRETE DISLOCATION PLASTICITY OF TWO BODIES IN

CONTACT
To describe two bodies in contact that can deform by dislocation plasticity, the
linear elastic displacement fields u(i ) in each body i , without any loss of general-
ity, is decomposed into two additive linear elastic fields: ũ(i ) and û(i ) [1]. The dis-
location displacement fields ũ(i ) are the analytical fields of the edge dislocations
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present in body i as if the body containing them is infinite. The displacement
fields û(i ) = u(i ) − ũ(i ) become the new unknown in Eq. (2.3).

γc

u
(2)

u
(1)

body 2

t
(2)

on Γ
(2)

u

body 1
=

t
(1)

on Γ
(1)

σ

⊤ ⊥⊤⊥

⊤

⊥

⊥

û
(1)|γc = [u

(1) − ũ
(1)
]γc

+

∞

⊤ ⊥⊤⊥

ũ
(1)|γc

t̃
(1)

on Γ
(1)

σ

t̂
(1)

= t
(1) − t̃

(1)
on Γ

(1)

σ

Figure 2.2: Decomposition of a contact plasticity problem. For simplicity of representation, the
decomposition of the displacement fields is only presented for body 1. The same decomposition
method is used for the fields in body 2. Contact is full stick.

Figure 2.2 gives a schematic representation of the decomposition of displace-
ment and traction fields for body 1 containing dislocations in full stick contact
with body 2. The decomposition of the fields is analogous for body 2. Notice
that û(i ) fields are unique and represent the dislocation images field of the bod-
ies in contact. We have used here the same field decomposition as proposed by
Van der Giessen and Needleman for boundary value problems [4], and therefore
used the same notation for dislocation fields and image fields.

Replacing u with ũ(i ) + û(i ) in Eq. (2.3) we obtain

2∑
i=1

∫
Ω(i )

[
δε

(
ũ+ û

)T
σ

(
ũ+ û

)](i )
dΩ+ (2.8)

∫
γc

[
εnδgn

(
ũ+ û

)
gn

(
ũ+ û

)+εtδgt
(
ũ+ û

)
gt

(
ũ+ û

)]
dΓ=

2∑
i=1

∫
Γ(i )
σ

δ
(
ũ+ û

)(i )Tt(i ) dΓ.

Since the ũ(i ) fields are smooth we can express Eq. (2.8) in discretized form us-
ing the Finite Element Method. The discretization of the second integral term
is briefly shown here. The gap functions and their first variation are first dis-
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cretized, giving

g h
n =

nc∑
k

Nk (ζ) gnk , g h
t =

nc∑
k

Nk (ζ) gtk (2.9)

δg h
n =

nc∑
k
δNk (ζ) gnk , δg h

t =
nc∑
k
δNk (ζ) gtk .

Superscript h indicates an approximation of the quantity across the contact sur-
face discretized with nc nodes using finite elements, N are linear shape func-
tions, and ζ is the convective coordinate of the surface. Here, the same shape
functions are used for both the normal and tangential gap functions. Using Eq.
(2.9) together with Eq. (2.4), the second integral term of Eq. (2.8) becomes∫

γh
c

[
εnδg h

n

(
ũ+ û

)
g h

n

(
ũ+ û

)+εtδg h
t

(
ũ+ û

)
g h

t

(
ũ+ û

)]
dΓ= (2.10)

nc∑
k
δ
(
ũ+ û

)
k ·

∫
γh

c

(
C ·ε ·CT

)
k

dΓ · (ũ+ û+x0
)

k .

The matrix C contains the shape functions, and ε is a diagonal matrix compris-
ing the penalty parameters. Expressing the remaining terms of Eq. (2.8) in dis-
cretized form, and assembling the stiffness of all the elements, we obtain

K(ũ∗+ û∗)+KP(ũ∗+ û∗+x0
∗) = fext, (2.11)

where nodal vector quantities are indicated by an asterisk; K and KP are the body
stiffness matrix and penalty contact stiffness matrix, respectively; and fext is the
external nodal force vector. The contact stiffness matrix KP is non-zero only at
γc. Equation (2.11) is solved iteratively to obtain û(i ); while satisfying the contact
constraints; gn < 0 for frictionless contact, and gn < 0, gt → 0 for full stick contact,
and the boundary conditions:

t̂(i ) = t(i ) − t̃(i ) onΓ(i )
σ ; û(i ) = u(i ) − ũ(i ) onΓ(i )

u . (2.12)

The external displacements are applied on the boundary Γ(i )
u . At each time incre-

ment, u, ε and σ in the crystals are given as the sum of the dislocations fields ( .̃ )
and the image fields ( .̂ ),

u = û+ ũ, ε= ε̂+ ε̃, σ= σ̂+ σ̃. (2.13)

2.4. VERIFICATION OF STRESS AND DISPLACEMENT FIELDS

H ERE, it is verified that the newly proposed two body model correctly cap-
tures the dislocation stress fields through the contact. To this end, two rect-

angular bodies are brought into contact. Each body contains two dislocations



2.4. VERIFICATION OF STRESS AND DISPLACEMENT FIELDS

2

19

on different slip planes at a fixed location, and each dislocation forms a dipole
with the other dislocation in the other body. Contact is full stick. The resulting
stress fields are compared with those of an equivalent problem solved by clas-
sical discrete dislocation plasticity: normal loading of a single body containing
dislocations at the same location as the two body problem. The Burgers vector
is taken ten times larger than the Burgers vector b of Al to amplify the fields ex-
erted by the dipole. The stress σ22 and the vertical displacement uy are shown in
Fig. 2.3 for both cases.
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Figure 2.3: Stress σ22 distribution for dislocations at the same positions in (a) two bodies in full
contact, and (b) single body. The boundary of each body is traced with a black line. The corre-
sponding vertical displacement uy distribution for (c) two bodies, and (d) single body.

The stressesσ22 and the vertical displacements uy show very good agreement
between the two cases. This is also verified for the other stress components, i.e.
σ11 and σ12, and the horizontal displacements ux (not shown here).



2

20 2. COMPUTATIONAL APPROACH

2.5. DISLOCATION DYNAMICS

D ISLOCATION DYNAMICS are modeled by constitutive rules that govern dislo-
cation nucleation, pinning at/depinning from obstacles, annihilation and

glide along slip planes. These rules are briefly described here. The reader is re-
ferred to [4, 5] for more details.

Three potentially active sets of slip planes are considered based on the two
dimensional representation of the FCC crystal structure [6], for which the slip
planes are oriented at θk = θ1 + 60(k − 1); k ≤ 3, and θ1 = 0◦, unless otherwise
stated. Heterogeneous dislocation sources of Frank-Read character and obsta-
cles are randomly distributed along the slip planes throughout the initially dis-
location and stress free bodies. The spacing between slip planes with the same
orientation is 200b, where b is the Burgers vector.

A dislocation dipole nucleates when the resolved shear stress τ exerted on a
dislocation source exceeds its critical strength τnuc over a certain time interval
tnuc. The nucleation length Lnuc for each dipole is given by

Lnuc = µb

2π(1−ν)τnuc
, (2.14)

where µ and ν are the shear modulus and Poisson’s ratio of the material respec-
tively. If dislocations of opposite signs (dipole) approach each other too closely
on the same slip plane they will annihilate.

Glide of the dislocations in the crystal is governed by a simple constitutive
equation which relates the velocity v i of dislocation i to the resolved Peach Koehler
force f i

p :

v i = f i
p /D, f i

p = ( ∑
j 6=i

σ̃
j
lk + σ̂i

lk

)
bi

k ml , (2.15)

where σ̃ j
lk are the stresses due to dislocations j 6= i and σ̂i

lk are the image stresses
acting on dislocation i gliding along the slip plane with unit normal ml .

An obstacle present in the material pins approaching dislocations at its lo-
cation. However if the shear stress τ exerted by the dislocation on that obstacle
exceeds the obstacle strength τobs, or if the dislocation moves in the opposite di-
rection, the dislocation breaks free and regains its mobility. Obstacles are placed
on slip planes that contain at least one dislocation source.

If the path of a dislocation crosses the surface of the crystal at the contact
or elsewhere, the dislocation escapes, leaving behind a crystallographic step of
magnitude b at the surface. Since the step modifies the surface profile, it is added
to the surface displacement u term in the gap functions (Eq. 2.4). The process of
finding the contact solution remains unchanged.
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Dislocation plasticity is inherently stochastic due to the statistical nature of
the source and obstacle positions and the source strengths [1, 7–9]. For the anal-
ysis presented in this thesis, we perform six to eight realizations for each case
to obtain the average response. Each realization differ in the location of the
sources and obstacles in the body, and the source strengths, which are normally
distributed.

The procedure to obtain the solution for contact between two bodies that can
deform by dislocation plasticity is summarized in Fig. 2.4.

Apply boundary conditions

Calculate analytically the
fields (σ̃, ε̃, ũ) of dislo-
cations in each body

Solve the discretized Eq.
(2.11) using FEM to obtain
the image fields (σ̂, ε̂, û) [1]

σ = (σ̃)+ (σ̂)
ε = (ε̃)+ (ε̂)

u = (ũ)+ (û)

Update dislocation structure
incr.

Figure 2.4: Steps to obtain the solution for two plastic bodies in contact at each time increment of
the simulation.
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PLASTICITY ANALYSIS OF CONTACT

BETWEEN DEFORMABLE BODIES OF

SIMPLE GEOMETRIES

Every great and deep difficulty bears in itself its own solution.
It forces us to change our thinking in order to find it.

Niels Bohr

Parts of this chapter have been published in Model. Simul. Mater. Sci. 24, 045008 (2016) [1].
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Here, we will investigate the effect of contact conditions and size on the mechan-
ical response of two bodies in contact using the formulation described in Chap-
ter 2. While the formulation is general, the simulations presented in this chapter
are only performed for the contact between a plastically deforming body with si-
nusoidal surface and a flat body that is either elastic or rigid.

Results show that the contact conditions, i.e. frictionless and full stick, affect the
morphology of the contact as well as the contact pressure distribution. This is be-
cause dislocations can glide through the frictionless contact and fragment it, but
do not penetrate a sticking contact. Average quantities like mean apparent contact
pressure and total plastic slip are, instead, independent of contact conditions and
of the details of the contact area.

A size dependence is observed in relation to the onset of plastic deformation, where
surfaces with smaller wavelength and amplitude require a larger contact pressure
to yield than self similar surfaces with larger wavelength. The size dependence is
very pronounced when the flat body is rigid, but fades when the compliance of the
flat body is large.
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3.1. INTRODUCTION

U NDERSTANDING how surfaces deform upon contact is important in the pro-
cess to realize or optimize many engineering applications, especially when

the mechanism or the performance is altered by friction or wear [2–5]. Con-
tact between surfaces is usually non-conformal, since a surface–even nominally
flat–comprises many asperities, and only a fraction of the asperities support the
load [2].

Considerable attention has been given to developing contact models that de-
scribe elastic-plastic deformation of the asperities in contact [6–11]. These anal-
yses are based on continuum approaches, which assume the onset of plasticity
to be size independent. Recent experiments on crystalline solids have however
demonstrated that plasticity is size dependent at the (sub)-micron scale [12–17].
This implies that a micron sized asperity is harder to deform plastically than a
self-similar larger asperity. Since the macroscopic behavior of rough surfaces is
determined by the collective behavior of the asperities supporting the load, their
size-dependent plastic response cannot be neglected.

Molecular dynamic simulations have been used to study nanoscale contacts [18,
19], but the technique is computationally too expensive to be used in analyzing
contacts at a larger scale. At the micron scale, discrete dislocation plasticity [20]
has been used to investigate contact deformation of a single or multiple asperi-
ties [21–25]. This method bridges the gap between the atomic scale and the con-
tinuum scale. Plasticity in the body is described by the collective motion of dis-
crete edge dislocations, and by that the model contains the intrinsic length scale
of plasticity: the Burgers vector.

With this method it is found that the plastic response of the body is inde-
pendent of contact conditions [23]. However, the asperities in these studies are
flattened through boundary conditions that mimic the effect of a rigid body. Dis-
locations are prevented from escaping the contact to preserve compatibility, for
which they pile up beneath the contact. The question therefore arises on whether
the contact pressure profiles are affected by this constraint.

The purpose of this work is to investigate how the results would differ when
both bodies in contact are explicitly described. To this end a contact model is
developed, and the formulation is as described in Chapter 2. We investigate how
the contact conditions affect the plastic response of a metal single crystal with
sinusoidal surface flattened by a rigid body. Finally, we explore how the size de-
pendent plastic response of the sinusoidal surface [23] is affected by contact with
a compliant platen.
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3.2. CONTACT BETWEEN A PLATEN AND A BODY WITH SINU-
SOIDAL SURFACE

A two dimensional metal single crystal with a sinusoidal surface (body 1) is
flattened by a platen (body 2) under plane strain conditions (see Fig. 3.1).

Only body 1 can deform plastically by dislocations gliding along three sets of slip

θ1 θ2

λ

h(1)

h(2)

ϕ0

x

y
⊤⊥⊥

⊤

U̇

body 2

body 1

Figure 3.1: Two-dimensional model of a metal single crystal with sinusoidal surface (body 1) flat-
tened by a platen (body 2). Body 1 can deform plastically by dislocation motion.

planes oriented at angles θi with respect to the x direction (see Chapter 2). The
surface profile of body 1 is described by a sinusoid with wavelength λ and am-
plitude ϕ0. Each wave of the sinusoid represents a surface asperity. The heights
of body 1 and body 2 are h(1) −ϕ0 and h(2), respectively, where ϕ0 ¿ h(1). Taking
advantage of periodicity, the analysis is performed only on a representative unit
cell with wavelength λ.

3.2.1. BOUNDARY CONDITIONS

A uniform displacement is applied on the top surface of body 2,

uy(x,h(1) +h(2)) =
∫ t

0
U̇ dt , (3.1)

where U̇ is the displacement loading rate. Periodic boundary conditions are im-
posed on the lateral sides of the unit cell,

u
(
0, y

)= u
(
λ, y

)
. (3.2)

The base of body 1 is fixed in y direction uy
(
x,0

) = 0, and to prevent rigid body
motion,
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ux
(
0,h(1) +h(2))= ux

(
0,0

)= 0. (3.3)

The contact is either frictionless or sticking.

3.2.2. MATERIAL PROPERTIES

Body 1 is taken to have the elastic properties of Al with Young’s modulus E =
70MPa and Poisson’s ratio ν = 0.33. The FCC crystal structure is modeled in
two dimensions by considering three sets of parallel slip planes oriented at θ1 =
0◦,θ2 = 60◦ and θ3 = 120◦ [26]. The spacing between slip planes with the same
orientation is 200b, where b = 2.5Å.

Dislocation sources and obstacles are distributed on the slip planes through-
out the initially dislocation and stress free body 1. The dislocation source density
ρnuc and obstacle density ρobs are 60µm−2 and 30µm−2, respectively. The source
strength τnuc is distributed normally with a mean of 50MPa and a standard de-
viation of 20%, and the nucleation time tnuc has a value of 10ns. The obstacle
strength τobs is assumed to have the value of 150MPa. The drag coefficient D is
assigned a value of 10−10 MPas.

3.3. RESULTS

3.3.1. EFFECT OF CONTACT CONDITIONS

In this section we investigate the influence of different contact conditions, fric-
tionless and full stick, on the plastic response obtained from flattening body 1
with a rigid body 2. The rigid body has Young’s modulus E (2) = 106 E (1); which
is sufficiently small to prevent ill-conditioning of the finite element stiffness ma-
trix. The asperity has wavelength λ = 10µm and amplitude ϕ0 = 0.2µm. The
height of body 1 is h(1) = 15µm, sufficiently large that plasticity is confined to the
upper part of the crystal. Body 2 has height h(2) = 5µm. Results are found to be
independent of the height of body 2, as long as h(2)/λ> 0.2.

The mean true contact pressure pc is given as a function of the mean sep-
aration strain εg in Fig. 3.2a. The mean true contact pressure is calculated by
dividing the contact force Fc = (∫

γc
t ·ny dΓ

)
by the true contact area Ac. The

mean separation strain εg is defined as εg = (∆0 −∆)/∆0, where ∆ and ∆0 denote
the current and initial average separation distance, respectively (see Fig. 3.2b).

It is first verified that the elastic numerical solution (dashed line in Fig. 3.2a)
agrees with the analytical solution, obtained as follows. From [27], the mean
separation strain εg can be expressed as

εg = sin2
(πAc

2λ

)[
1− ln

{
sin2

(πAc

2λ

)}]
, (3.4)
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Figure 3.2: (a) Mean true contact pressure versus strain for both contact conditions. The dashed
line represents the numerical elastic pressure. (b) Schematic representation of the strained sur-
faces. The dashed lines are the average profiles of the deformed surfaces.

where the contact area Ac is related to the contact force Fc [28] as

Ac = 2λ

π
sin−1

(√ Fc

πE ′ϕ0

)
. (3.5)

Here E ′ is the effective elastic modulus, given by E ′ = [
(
1 − (ν(1))2

)
/E (1) + (

1 −
(ν(2))2

)
/E (2)]−1. The strain–pressure relation is obtained by substituting Eq. 3.5

into Eq. 3.4.

When plasticity is accounted for (solid lines in Fig. 3.2a), it is found that the
true contact pressure–strain response depends on contact conditions. The curve
for full stick contact shows practically no increase in pressure after yield, simi-
larly to what is observed in a continuum study of flattening a frictionless sinu-
soidal surface by Gao et al. [29], while the pressure for frictionless contact in-
creases with increasing strain. This is in contrast with the results for single body
simulations obtained by Sun et al. [23], where the true pressure–displacement
curves for frictionless and full stick contact overlapped with each other. In the
following we will investigate how the contact conditions affect the plastic re-
sponse of the body.

To estimate the amount of plastic activity in the crystal obtained with the dif-
ferent contact conditions, we present in Fig. 3.3a, b the plastic shear strain calcu-
lated at each point as the sum of the plastic shear strain along each slip direction.
Comparing the plastic strain distribution for different contact conditions shows
many local differences, but on average a similar response. A quantitative com-
parison is provided in Fig. 3.3c, where the ratio of the total slip for frictionless
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Figure 3.3: Plastic shear strain distribution for (a) frictionless and (b) full stick contacts for a par-
ticular realization. (c) Total slip in the bodies for the frictionless case compared to full stick.

contact γFrictionless to full stick contact γFullStick is presented. The ratio is close
to one, indicating that there is no sensible difference in the plastic activity. If
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Figure 3.4: (a) True contact area Ac, and (b) contact force Fc as a function of the mean separation
strain εg for both contact conditions.

this is the case, what causes the different contact pressure response? To reach a
better understanding, the true contact area Ac and the contact force Fc are in-
dependently presented in Fig. 3.4a and Fig. 3.4b. It becomes now clear that the
difference in true contact pressure is solely caused by a difference in true contact
area, while the force necessary to press the bodies into contact is the same for
frictionless and full stick contact.
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Figure 3.5: Surface profiles for (a) frictionless and (b) full stick conditions at εg = 0.16 of a particular
realization. Contact is indicated by thick line segments. (c) Number of escaped dislocations per
unit length ls of the top surface of body 1.

The contact profiles are presented in Fig. 3.5a and b. The frictionless con-
tact is made of many small patches, whereas the full stick contact has fewer and
larger contact patches. Patchiness of the contacts is a consequence of the dis-
creteness of dislocations and of dislocation slip planes. For a small flattening
depth there is only a central continuous contact area, but as plasticity develops,
new smaller contact areas form, in correspondence to dislocations gliding out of
the free surface and causing small protrusions of the material. Similar profiles
where observed also for single body simulations [23]. The difference with the
single body simulations is that dislocations were not allowed to penetrate the
contact, while in the two body problem they can, and they do when the contact
is frictionless. Interestingly, the fact that more dislocations can escape the con-
tact seems to have an impact only on the geometry of the contact area but not on
the mechanical response of the bodies. This is because the number of disloca-
tions that escape the contact is small (< 20%) when compared to the number of
dislocations that escape the rest of the top surface (traction free) of the sinusoidal
body (see Fig. 3.5c).

Moreover, the apparent contact area (Fig. 3.6a), defined as the distance be-
tween the outermost contact edges, is the same for both contact conditions, so
is the mean apparent contact pressure pa = Fc/Aa (Fig. 3.6b). This means that
details of the true contact area do not affect the mean apparent contact pres-
sure. Indeed loading the body through a continuous or a patchy contact, with
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little spacing in between contact segments (here 40nm on average) leads to a
very similar elastic and plastic response. Since the average spacing of the sources
(∼ 130nm) is much larger than the gaps between the patches, the likelihood of
finding a source near the gaps is small, and the resulting plastic slip is the same
as if the contact were continuous (Fig. 3.3c).
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Figure 3.6: (a) Apparent contact area Aa and (b) apparent contact pressure pa for frictionless and
full stick conditions.
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Figure 3.7: Contact pressure distribution, −py(x), at εg = 0.16

Nevertheless, the local contact pressure distribution py(x) = −t(x) ·ny, pre-
sented in Fig. 3.7 is highly dependent on the patchy nature of the contact area
and therefore on contact conditions. The pressure is characterized by high peaks
with values up to two orders of magnitudes larger than the macroscopic tensile
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yield strength of Al. Frictionless contact is the most patchy and has therefore the
highest peaks. The large pressure peaks across the contact of the asperity, which
are a result of the discreteness of dislocations and slip planes, are not observed
in continuum contact studies. For instance, a local continuum plasticity study
on the flattening of sinusoidal surfaces [29] shows that the contact pressure is
continuous, since the contact area is also continuous. The two studies do not
only differ in terms of pressure profiles. The mean contact pressure obtained at
small flattening depth using discrete dislocation plasticity is larger (almost dou-
ble) than what is found in the continuum model.

3.3.2. CONTACT BETWEEN AN ELASTIC AND A PLASTICALLY DEFORMING

BODY

In this section the platen, body 2, is taken to be elastic and to have the same elas-
tic properties as body 1. The results are compared with the results in Sec. 3.3.1,
where body 2 is rigid. The effective elastic modulus is E ′ = 39.3GPa when body
2 is rigid and E ′ = 78.5GPa when it is elastic. Given that in the previous section
the plastic response of the crystal was found to be independent of contact con-
ditions, we choose here to study only one of the two conditions, i.e. frictionless,
and present the response in terms of apparent contact pressure. As expected, the
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Figure 3.8: Normalized mean apparent contact pressure pa for contact with an elastic and a rigid
Body 2.

normalized mean apparent contact pressure pa/E ′ presented in Fig. 3.8 deviates
from the elastic solution at a larger strain εg when body 2 is elastic. However, at
strains εg > 0.04, the curves have approximately the same shape, independent
of the properties of body 2. Figure 3.9 shows the shear stress resolved in the di-
rection of the slip planes with φ = 60◦, τ60◦ , and the dislocation distribution for
both cases at strain εg = 0.04. A larger dislocation density is found when body 2
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Figure 3.9: The resolved shear stress τ60◦ for contact with (a) a rigid and (b) an elastic Body 2 at
strain εg = 0.04.

is rigid, given that the rigid body has induced a larger deformation on body 1.
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Figure 3.10: (a) Surface profile at strain εg = 0.16 for contact with an elastic and a rigid Body 2.
Contact is indicated by thick line segments. (b) The corresponding contact pressure.

The contact profile for both cases is shown in Fig. 3.10a. The surface of the
elastic body 2 conforms to the surface of body 1, and the contact height is larger.
The size of the contact patches are also, on average, larger when body 2 is elastic.
As a result, the pressure distribution at the contact, given in Fig. 3.10b when body
2 is elastic, is characterized by smaller peaks compared with the case in which
body 2 is rigid.
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3.3.3. SIZE DEPENDENT RESPONSE OF SCALED ASPERITIES

Previous discrete dislocation plasticity simulations [23] have demonstrated that
the plastic behavior of micron-sized asperities flattened by a rigid platen is size
dependent. Here we investigate if this size effect is still significant when the as-
perities are flattened by an elastic platen. To this end, asperities having constant
aspect ratio, λ/ϕ0 = 50, and amplitudes ϕ0 = 0.2,0.1, and 0.05µm are flattened
by an elastic and a rigid platen.
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Figure 3.11: The normalized apparent contact pressure pa/E ′ for scaled asperities.

Figure 3.11 shows the normalized contact pressure as a function of strain for
scaled asperities. In terms of the onset of plasticity, a size effect is found for
both cases: as the asperity size decreases, the normalized pressure pa/E ′ deviates
from the elastic solution at a larger strain. After the onset of plasticity differences
in the shape of the curves are no longer appreciable.

The reason for the size effect is that the size of the critical stress zone at a
given strain scales with asperity size, while the average source spacing is a con-
stant,

√
1/ρnuc = 0.130µm. Plasticity in the smaller asperities is therefore source

limited. For instance at strain εg = 0.03 when body 2 is elastic, dislocation nucle-
ation already occurs for the larger asperity (Fig. 3.12a), whereas the deformation
is still elastic for the smaller asperity (Fig. 3.12b). However, as the size of the
stress zone increases with load, deformation becomes no longer source limited
as more sources lie in the critical zone, leading to approximately the same rate of
plastic relaxation of the stresses for all asperity sizes.

To evaluate how the size effect depends on the elastic properties of the flat-
tening body, scaled asperities with aspect ratio λ/ϕ0 = 50 and volumes Vasp =
λϕ0 = 0.125, 0.245, 5.0, 1.0,2.0,4.0 and 8.0µm2 are here flattened by a rigid, and
by two elastic bodies with different compliance, giving E ′ = 39.3GPa and E ′ =
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Figure 3.12: Resolved shear stress τ60◦ for asperity amplitude (a) ϕ0 = 0.2µm (λ= 10µm), and (b)
ϕ0 = 0.05µm (λ= 2.5µm) at strain εg = 0.03. Body 2 is elastic.
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Figure 3.13: Relative offset pressure as function of asperity volume Vasp. Each vertical bar is the
standard deviation of six realizations.

9.82GPa. The apparent pressure required to reach a 2% offset strain poff is calcu-
lated for all asperities. We present in Fig. 3.13 all results in terms of the relative
offset pressure poff, defined as the offset pressure of each asperity with respect to
the largest asperity (Vasp = 8.0µm2). The contact response of the largest asper-
ity approaches the continuum limit. The relative offset pressure increases with
decreasing size and, as expected, the increase is smaller for a smaller elastic mod-
ulus E (2). This indicates that the size effect is smaller when body 1 is deformed
by a more compliant body 2. Obviously, in the limit E ′ → 0, no size effect will be
observed since deformation is elastic for both bodies.



3

36 REFERENCES

3.4. CONCLUSIONS

A contact model is developed to simulate the mechanical response of bodies
that can both deform by dislocation plasticity. Despite the model is general,

we here confine our attention to two dimensional simulations of the contact be-
tween a body with sinusoidal surface that can plastically deform and a platen
that can either deform elastically or behave rigidly.

Flattening by means of a rigid body is performed to understand the effect of
limiting contact conditions; the surface is either full stick or frictionless. Results
show that the geometry of the true contact area, hence the contact pressure pro-
files depend on contact conditions: frictionless contacts are more patchy than
full stick contacts and therefore are characterized by larger pressure peaks. The
difference in contact area profiles is caused by the fact that dislocations can glide
through the contact regions in the case of frictionless contacts. This was not pos-
sible in previously performed discrete dislocation plasticity simulations of con-
tact, where the effect of the rigid platen was modeled by prescribing boundary
conditions on the deformable body. However, the effect of contact conditions
on the apparent contact area, apparent contact pressure and plastic slip in the
crystal is found to be negligible. The exact morphology of the true contact area
affects the local pressure but not its mean, or the overall plastic behavior. This
is attributed to the fact that the spacing between contact segments is very small,
smaller than the average dislocation source spacing.

The simulations also show a size dependent plastic response with smaller
asperities being harder to deform than larger asperities. The size effect becomes
less pronounced when the compliance of the flattening body increases. The size
dependence involves only the onset of plasticity and is caused by source limita-
tion. For larger strains, with the increase of the loaded area, the source limita-
tion disappears and the mean contact pressure is approximately constant with
increasing strain.
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If we knew what it was we were doing,
it would not be called research, would it?

Albert Einstein

Parts of this chapter are in an article submitted to Philos. Mag. [1].
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It is customary to simplify the analysis of contact between two elastically deformable
bodies by treating an equivalent problem where only one body is deformable and
the other is rigid. This is possible provided that the gap geometry and the effective
elastic modulus of the bodies in the simplified problem are the same as in the orig-
inal problem. However, the question arises on whether – and to which extent – the
simplification is still valid even when (size-dependent) plasticity occurs.

Studies using discrete dislocation plasticity have also, so far, addressed simple con-
tact problems where only one body can deform plastically. Here, we extend the
analysis to two bodies in contact that can both deform by dislocation plasticity
and investigate under which conditions the response agrees with that of an equiv-
alent simplified problem.

The bodies in contact are metal single crystals with sinusoidal and flat surface.
The crystals are taken to have properties of Al or Cu. The size-dependent plastic
response of Al against Al is found to be qualitatively similar to that of Cu against
Cu. Also, it is found that the response of two plastically deformable bodies in con-
tact can be simplified to an equivalent problem where one body is rigid and the
other can deform plastically. Necessary conditions are that the source strength in
the simplified problem is that of the softest material in the original problem, and
that the source density is equal to the sum of the source densities contained in the
two deformable crystals.
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4.1. INTRODUCTION

F RICTION and wear of surfaces play a paramount role in the performance of
many engineering machines, especially of micron and smaller sized devices

in which surface effects become dominant [2–5]. These dissipative phenomena
generally reduce the reliability and robustness of micron-sized devices such as
actuators or motors as they result in wear of contact junctions [6, 7]. Clearly, to
control and enhance the reliability and performance of these miniaturized de-
vices, the behavior of the deforming bodies in contact must be understood.

Recently discrete dislocation plasticity simulations have been carried out to
analyze the contact behavior of micrometer sized metal crystals [8–11]. The choice
of this method is linked to the scale considered, which is too computationally
expensive to be studied using molecular dynamics [12, 13]. Local and nonlocal
continuum plasticity models [14–16] are also not suitable as they do not capture
the effects caused by the discreteness of plastic carriers [17], e.g. source limita-
tion effects [18–20], patchy contact areas and highly localized contact pressure
peaks [21]. Discrete dislocation plasticity accounts for these effects as it consid-
ers the nucleation and glide of individual dislocations [9, 11].

So far the mechanical behavior of contact between micrometer sized sinu-
soidal asperities, or protrusions of a surface, and a rigid [9] or an elastic platen [11]
has been investigated using discrete dislocation plasticity. A plasticity size effect
is observed, for which smaller asperities are harder to deform. The size effect
decreases with increasing compliance of the platen [11]. Here, we extend the
analysis to two bodies that can deform by dislocation plasticity. Simulations of
contact between a body with micron-sized sinusoidal asperities and a platen are
performed. The crystals have properties of Cu or Al. Rather unexpectedly the
plastic size dependence found is approximately the same.

To model the contact behavior of two deformable bodies, several local con-
tinuum contact studies simplify the problem to treat either a body having as-
perities in contact with a rigid flat body [22–27], or a rigid rough body in con-
tact with a flat body [28–30]. This is because the elastic mechanical response
of the two systems is the same, provided that the gap geometry and the effec-
tive elastic modulus of the bodies are the same (see e.g. [28]). The stresses in
the region directly above and below the contact are also approximately the same,
and they are a function of the effective elastic modulus, and not the elastic prop-
erties of each body. Thanks to this equivalence only the deformation of one
body has to be considered since contact with the rigid body can be mimicked
through boundary conditions. However in these studies, the deformable body
also undergoes plastic deformation, and the validity of this simplification has
been questioned [25, 27, 31, 32]. Can we use the simplified problem to predict
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the behavior of contact between two micrometer sized crystals?

To answer this question we need to find out if the plastic properties of two
crystals can be mapped to the plastic properties of one body in contact with a
rigid body. We begin first by understanding the effect of surface geometry on the
plastic response. To this end we investigate whether flattening of a sinusoidal
body by a rigid platen is equivalent to the indentation of a platen by a rigid si-
nusoidal body, even when plasticity occurs. Next, we study how the contact re-
sponse is affected when changing plastic properties of the bodies; i.e. dislocation
source density and their critical strength as well as obstacle density and strength.
Finally we determine which criteria should be met by an equivalent simplified
system, in order to represent contact deformation between two plastically de-
forming metal crystals.

4.2. CONTACT BETWEEN A PLATEN AND A BODY WITH A SINU-
SOIDAL SURFACE

θ1 θ2
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Figure 4.1: Two-dimensional model of a single crystal with sinusoidal surface in contact with a flat
single crystal. Sources (·) and obstacles (◦) are homogeneously distributed in the bodies.

F IGURE 4.1 illustrates the problem of contact between two metal crystals un-
der plane strain conditions. Both crystals deform plastically by edge dislo-

cations gliding along three sets of slip planes oriented at an angle θi with the
x direction. The surface profile of body 1, the bottom crystal, is described by a
sinusoid with wavelength λ and amplitude ϕ0. Each wave of the sinusoid repre-
sents an asperity. Body 2, the top crystal, has a flat surface profile. The heights of
body 1 and body 2 are h(1)−ϕ0 and h(2) respectively, whereϕ0 ¿ h(1). Heights h(1)

and h(2) are both 15µm, sufficiently large that dislocation activity in the crystal
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is confined to the region directly beneath the contact. This is to avoid that dis-
locations interact with the bottom of the crystal. The analysis is performed on a
unit cell with a periodicity λ, where periodic boundary conditions are imposed,
u
(
0, y

)= u
(
λ, y

)
.

To establish contact a uniform displacement is applied on the top surface of
body 2,

uy(x,h(1) +h(2)) =
∫ t

0
U̇ dt , (4.1)

where U̇ is the displacement loading rate. The base of body 1 is fixed in the y
direction uy

(
x,0

) = 0, and to prevent rigid body translation, ux
(
0,h(1) +h(2)

) =
ux

(
0,0

)= 0.

4.3. RESULTS

4.3.1. SIZE DEPENDENT RESPONSE OF TWO PLASTICALLY DEFORMING

BODIES

Discrete dislocation plasticity simulations demonstrate that the plastic behavior
of micron-sized scaled asperities flattened by a rigid [9] or an elastic platen [11]
is size dependent. Here, we investigate if the size dependent plastic response is
significant when both the asperity and platen can deform plastically. We simu-
late contact between crystals that have properties, both either resembling Al or
Cu, as given in Table 4.1.

Material Properties Al Cu

Poisson ratio ν 0.33 0.35
Elastic modulus E 70 GPa 140 GPa
Burgers vector b 0.25nm 0.23nm
Drag coefficient D 10−10 MPas 1.5×10−11 MPas
Source strength τnuc 50MPa±20% 140MPa±20%
Obstacle strength τobs 150MPa 150MPa
Source density ρnuc 30µm−2 30µm−2

Obstacle density ρobs 15µm−2 15µm−2

Nucleation time tnuc 10ns 10ns

Table 4.1: List of material properties used in the simulations to characterize single crystals Al and
Cu.

The Al crystals have an effective elastic modulus E ′ = [(1− (ν(1))2)/E (1) + (1−
(ν(2))2)/E (2)]−1 = 39.3 GPa, and the Cu crystals have E ′ = 79.8 GPa. The strength
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of the dislocation sources of each material are obtained by performing a uniform
compression simulation on each material and fitting the parameters to give the
experimental material yield strength, while the source density is kept constant.

The asperities have constant aspect ratio,ϕ0/λ= 0.05, andϕ0 = 0.5,0.25, and
0.125µm. The mean apparent pressure pa = ∫

Γ∈γc
(t · ny dΓ/Aa) is considered,

where Aa is the apparent area calculated as the distance between the outermost
contact edges, and ny is the unit y vector. The normalized pressure pa/E ′ is pre-
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Figure 4.2: (a) The normalized apparent pressure, pa/E ′, for scaled asperities in contact with a
platen, both bodies having properties resembling Al, or Cu. (b) Schematics to illustrate the defini-
tion of strain, εg.

sented in Fig. 4.2a as a function of strain εg, defined as (ḡ − ḡ0 )/ḡ0 . Here ḡ and ḡ0

are the current and initial average gap (Fig. 4.2b). Elastically, pa/E ′ for both cases
overlap [11].

For both Al crystals and Cu crystals in contact the normalized apparent pres-
sure at the onset of plasticity is larger for the smaller asperity, indicating a size ef-
fect. At larger strains, differences are no longer appreciable. This is because plas-
ticity is source limited only for very small contact sizes, when the critical stress
region (where τ> τ̄nuc) is small and therefore deprived of dislocation sources. A
similar size dependence is found when flattening scaled micron-sized asperities
using an elastic platen [11].

Comparing the normalized pressure for contact between Al crystals and be-
tween Cu crystals for a particular asperity size, we can observe that deviation
from the elastic solution occurs at approximately the same strain, even though
the effective elastic modulus of the Cu crystals is larger than for the Al crystals,
and therefore leads to larger elastic stress levels in the bodies at a given strain.
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Figure 4.3: (a) Stressσ22 and dislocation distributions for contact between bodies with (a) Cu, and
(b) Al properties at strain offset of 1% for ϕ0 = 0.25µm.

This is because the nucleation strength τnuc for Cu is also larger than for Al. For
instance at strain offset of 1% when ϕ0 = 0.25µm, the dislocation density for Cu
(Fig. 4.3a) is smaller than for Al (Fig. 4.3b), even if the stresses are larger. This
leads to the approximately same normalized pressure response for Al crystals in
contact and Cu crystals in contact. The normalized pressure for other FCC metal
single crystals in contact is expected not to deviate greatly from the response
observed here, since a pure FCC metal crystal with a larger E generally has on
average stronger sources.

4.3.2. EFFECT OF SURFACE GEOMETRY

Here, we investigate how the plastic behavior of the bodies in contact depends
on surface geometry. To this end we consider two limit cases: plasticity occurring
only in the body with a sinusoidal surface, and plasticity occurring only in the
platen. The other body in contact is rigid, and has a Young’s modulus E (2) =
106 E (1); E (2) is sufficiently small to prevent ill-conditioning of the finite element
stiffness matrix. The plastically deformable body in each case has the material
properties of Al. The asperity has ϕ0 = 0.4µm and λ= 5.0µm.

Figure 4.4a shows that the mean apparent pressure is larger when the platen
is plastic. This shows that the plastic contact response does not only depend on
the gap geometry and effective elastic modulus, but also on the surface geometry.
As to be expected, the difference in contact pressure increases with increasing
the amplitude of the sinusoid (Fig. 4.4b), but is however, given the large scatter
of the results, only appreciable for ϕ0 > 0.25µm.

Given that the elastic stress distribution in the platen is very similar to that in
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Figure 4.5: (a) Ratio of slip: slip obtained when the body with sinusoidal surface is plastic to slip
when the platen is plastic for differentϕ0, and (b) ratio of number of escaped dislocations from 0◦
slip planes to the total number of dislocations for the plastically deformed asperity for εg > 2%.

the sinusoidal body for all amplitudes considered, it is far from self-evident what
causes the different plastic response. The amount of slip caused by dislocations
gliding in the sinusoidal body is larger than that obtained by dislocations gliding
in the flat body, as testified by the slip ratio in Fig. 4.5a. The slip is obtained by
integrating the total plastic shear strain of the three slip plane systems over the
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volume of the body. As ϕ0 increases from 0.1µm to 0.6µm, the slip increases
when the body with a sinusoidal surface is plastic. What causes this increase?

We know that dislocations nucleated on the slip planes normal to the load-
ing direction, with θ1 = 0◦, can escape the sinusoidal surface. When this hap-
pens, more nucleations and dislocation glide can occur, which results in larger
slip. Increasing the amplitude of the sinusoid, ϕ0, increases the number of slip
planes with θ1 = 0◦, and hence the number of escaped dislocations from these
slip planes in the plastically deformable asperity (Fig. 4.5b). This hypothesis is
confirmed by performing simulations with only symmetric double slip (60◦ and
120◦ slip planes) for ϕ0 = 0.40µm and 0.60µm. Indeed as seen in Fig. 4.6a, pa

is statistically the same for both cases, when plasticity occurs in the body with a
sinusoidal surface and when plasticity occurs in the platen.
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Figure 4.6: (a) Mean apparent pressure forϕ0 = 0.4µm andϕ0 = 0.6µm for symmetric double slip.
(b) Percentage difference of the pressure between the cases (plastic platen or plastic sine) at strain
εg = 0.06 when ϕ0 = 0.4µm for different θ1. Each vertical bar is the standard deviation obtained
from eight simulations.

We also do not expect a difference between the cases (plastic platen or plastic
sine) when none of the three active slip planes is oriented at 0◦. Figure 4.6b shows
the percentage pressure difference between the cases for θ1 = 5◦,10◦,15◦ and 30◦

when ϕ0 = 0.4µm at εg = 0.06. Indeed as θ1 increases, ∆pa decreases until no
appreciable difference is observed at θ1 > 5◦.

Since the likelihood of slip planes being oriented at angles near 0◦ is small,
and that asperities have ϕ0 ≪ λ for most real surfaces [33], the number of slip
planes that begin and end in the asperity is small. This means that the plastic
response of flattening a body with sinusoidal surface with a rigid flat body can
be considered the same as indenting a flat body with a rigid body with sinusoidal
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surface.

4.3.3. EFFECT OF SOURCE DENSITY

Here, we investigate how the response is affected by changing the dislocation
source density. To this end we take the liberty to change the source density ρnuc

in each body while keeping the other material properties unchanged. The to-
tal source density ρ(1)

nuc + ρ(2)
nuc, is kept constant. Three different source densi-

ties in each body are considered: ρ(1)
nuc = ρ(2)

nuc = 30µm−2; ρ(1)
nuc = 45µm−2,ρ(2)

nuc =
15µm−2; and ρ(1)

nuc = 60µm−2,ρ(2)
nuc = 0µm−2. The asperity has ϕ0 = 0.25µm so

that the asperity is not too protruding, and the first set of slip planes is oriented
at θ1 = 15◦, to eliminate any difference in the plastic response resulting from the
orientation of the slip planes (see Sec. 4.3.2).
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Figure 4.7: The mean apparent pressure for different density of sources in the bodies. The total

source density is constant, ρ(1)
nuc +ρ(2)

nuc = 60µm−2.

Figure 4.7 shows that the mean apparent pressure is unaffected by varying
the source density in the bodies with the same ρ(1)

nuc +ρ(2)
nuc. The plastic response

τ ≥ τnuc

····
··

(a)

τ ≥ τnuc

··· ···
(b)

Figure 4.8: Schematics of sources (·) in the critical stress zone, τ> τ̄nuc, bounded by a dashed line

for (a) both bodies with ρ(1)
nuc = ρ(2)

nuc and (b) only the bottom body containing sources having a

source density equal to ρ(1)
nuc +ρ(2)

nuc of the bodies depicted in (a).



4.3. RESULTS

4

49

is similar because: (1) the critical elastic stress zone, where τ≥ τ̄nuc, has approx-
imately the same size in both bodies, and (2) the dislocation sources are homo-
geneously distributed in one or both crystals. It follows that the density of dislo-
cation sources in the critical stress zone depends on ρ(1)

nuc +ρ(2)
nuc and not on the

source density of each body (see Fig. 4.8). Those sources are the ones that sustain
plastic deformation, and it is not relevant whether slip occurs only in one body
or in both, only its total amount.
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Figure 4.9: The apparent pressure with increasing ρ(1)
nuc +ρ(2)

nuc.

Clearly, increasing the total source density, ρ(1)
nuc+ρ(2)

nuc, will decrease the mean
contact pressure, as can be seen in Fig. 4.9 where results are presented for ρ(1)

nuc+
ρ(2)

nuc= 60, 120, 480 and 960µm−2. Notice, however, that for the larger source den-
sity ρ(1)

nuc+ρ(2)
nuc= 960µm−2 the response is unaffected by increasing the number of

sources (see the tiny difference between ρ(1)
nuc+ρ(2)

nuc = 960µm−2 and ρ(1)
nuc+ρ(2)

nuc =
480µm−2). This is because the number of sources is so large that the continuum
limit is approached. At this limit, yield occurs in the material wherever the yield
strength is exceeded due to the large availability of sources. This shows that the
contact response is a function of the total source density only when the plastic
behavior is source limited, but not in the continuum limit.

4.3.4. EFFECT OF OBSTACLES

The effect of changing the obstacle density ρobs on the mechanical response
is next investigated. Only the obstacle density is varied, with ρobs = 0µm−2,
30µm−2, 60µm−2, 120µm−2 and 240µm−2. The obstacle strength is τobs = 150MPa.
All other body properties are the same as in the previous section.

Figure 4.10a shows that only for ρobs > 120µm−2 the apparent contact pres-
sure is larger. Although increasing ρobs decreases the average free path of dislo-
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Figure 4.10: (a) Mean apparent pressure for bodies having different obstacle densities ρobs. Plastic
shear strain and dislocation distributions for (b) ρobs = 0µm−2 and (c) ρobs = 240µm−2 at strain
εg = 7%.

cations (hence the slip provided by each dislocation), more dislocations are nu-
cleated in response to the larger stresses, accounting for the required total glide.
At larger obstacle densities however, the obstacle spacing d approaches the nu-
cleation length Lnuc (d < 3Lnuc) of the dipole, greatly decreasing the distance a
dislocation can glide right after it is nucleated, resulting in lesser slip and lesser
stress relaxation. For instance at εg = 7%, the magnitude and extent of plastic
slip are much larger when ρobs = 0µm−2 (Fig. 4.10b) than when ρobs = 240µm−2

(Fig. 4.10c), even if the dislocation density is larger when ρobs = 240µm−2.

A previous study of wedge indentation of a single crystal using discrete dis-
location plasticity [34] also shows that the contact pressure is only marginally
affected by the obstacle density. Therefore the obstacle density need not be con-
sidered when analyzing the mechanical response of contact between bodies that
can deform by dislocation plasticity, provided the average obstacle spacing d is
not too small compared with Lnuc: here d > 3Lnuc. The results are found also to
apply for τobs →∞.

4.3.5. EQUIVALENT SYSTEMS: MAPPING TWO PLASTIC BODIES IN CON-
TACT INTO A SINGLE PLASTIC BODY IN CONTACT WITH A RIGID BODY

CRYSTALS WITH THE SAME MATERIAL PROPERTIES

In this section, we explore the possibility of representing two plastically deformable
bodies in contact by an equivalent system made of a rigid body in contact with a
single plastically deformable body. The gap geometry and E ′ of the bodies in the
equivalent system are the same as the two crystals in contact.
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The contact pressure of two Al crystals is compared with the pressure ob-
tained from the equivalent system. The deformable body in the equivalent sys-
tem has E = 35GPa, to give E ′ = 39.3GPa, and a source density equal to the total
source density, ρ(1)

nuc +ρ(2)
nuc, of the two crystals. This is because results from pre-

vious sections showed that the sources can be apportioned among the bodies
without affecting the response, provided that the asperity is not too protruding
(Sec. 4.3.2), and ρ(1)

nuc +ρ(2)
nuc remains unchanged (Sec. 4.3.3). The obstacle den-

sity need not be considered (Sec. 4.3.4). All the other plastic properties are un-
changed.
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Figure 4.11: (a) Mean apparent pressure for two Al crystals in contact and contact between a rigid
body and the single body with the same E ′ and gap geometry. (b) Contact pressure distribution at
εg = 7.5% for a particular realization for both contact problems.

The mean apparent pressure in Fig. 4.11a shows a very good agreement be-
tween the response of the two bodies in contact and the equivalent system. The
agreement is, as expected, less good in terms of contact pressure profiles, shown
in Fig. 4.11b. Given the discrete nature of dislocations and slip planes the pres-
sure peaks have a statistical character and cannot correspond one-to-one [11].
We observe a similar difference also when comparing pressure profiles for the
same crystals in contact but different realizations.

Results show that two crystals of the same material in contact can be rep-
resented by an equivalent system of a rigid body in contact with a deformable
body, provided that the gap geometry, E ′, and the total source density remain
unchanged. This result also holds true in the continuum limit: the deformable
body in the equivalent system will be described by the same constitutive plastic
law as any of the bodies in the original problem.
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CRYSTALS WITH DIFFERENT MATERIAL PROPERTIES IN CONTACT

The problem becomes more complicated when the materials in contact are dif-
ferent. Here, we simulate contact between a sinusoidal body having Al proper-
ties and a platen having Cu properties. The total source density of ρ(1)

nuc +ρ(2)
nuc =

60µm−2.

Two equivalent systems are considered: (1) the deformable body has a source
density ρnuc = 60µm−2 and source strength of Al, τ̄nuc = 50MPa , and (2) the
deformable body has source density ρnuc = 60µm−2 and source strength of Cu,
τ̄nuc = 140MPa.
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Figure 4.12: (a) The mean apparent pressure for two crystals in contact and the corresponding
two equivalent systems identified by the average source strength τ̄nuc of the deformable body. (b)
Plastic shear strain and dislocation distributions for contact between two crystals at εg = 5% for a
particular realization.

The mean apparent pressure is given in Fig. 4.12a. The response obtained
from the two equivalent systems differs greatly, and the difference involves only
the onset of plasticity: at larger strains the slope of the pressure curves are ap-
proximately the same. The pressure difference is attributed to the much larger
source strength τnuc of Cu as compared with Al, demonstrating also that the con-
tact response is influenced mainly by the source strength τnuc, given the same
total source density. The pressure of the two crystals in contact is however statis-
tically the same as the single body having a source strength of Al in contact with
a rigid body. This is because for the two crystals in contact, plastic slip occurs
mainly in the Al crystal (see Fig. 4.12b).

Since for bodies with different material properties in contact the response is
dominated by plastic activity in the body with a smaller source strength, we can
simplify the two body problem into an equivalent problem of contact between
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a deformable body and a rigid body, provided that the strength of the sources in
the deformable body is that of the softer material. In continuum plasticity, this
means that the deformable body in the simplified equivalent system should have
the constitutive plastic law describing the softer material.

4.4. CONCLUSIONS

T WO dimensional discrete dislocation plasticity simulations of contact are per-
formed for bodies that can both deform plastically. Here, we focus only on

contact between a body with sinusoidal profile and a platen.

A size effect involving the onset of plasticity is present. This is attributed to
source limitation in both bodies at the onset of plasticity, similar to what is ob-
served in previous discrete dislocation plasticity simulations of contact where
only the sinusoidal body deforms plastically. The contact response observed for
two Al crystals in contact, and therefore also their size dependent response, is
quantitatively similar to the contact response of two Cu crystals.

For (sub)-micrometer sized contacts, the contact response depends on the
total sum of the source densities of both bodies, and not on how the disloca-
tion sources are apportioned in the bodies. This holds provided that the sources
are homogeneously distributed in each body, and that the asperities are not too
steep.

Following the above result, and the observation that real surfaces have gen-
erally asperities that are not too protruding, we found that the problem of non-
conformal contact between two metal crystals can be simplified into a problem
of a single plastically deformable body in contact with a rigid body, provided that

• the gap geometry and the effective elastic modulus are the same,

• the source density of the single plastically deformable body is the same as
the sum of the source densities of both bodies in the original problem,

• the strength of the sources in the single body is the source strength of the
softer material of the two metal crystals in contact.

This simplification also holds in the continuum limit, where the deformable
body in the equivalent problem should be modeled using the constitutive plastic
law that describes the softer crystal.

It is therefore possible to use an equivalent system made of a single body in
contact with a rigid platen to predict the plastic contact behavior of two metal
crystals, which is advantageous since only one body is to be considered in the
analysis, and the effects of the rigid body can be mimicked by a set of boundary
conditions at the contact.
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ASPERITIES

Intelligence is the ability to adapt to change.

Stephen Hawking

Parts of this chapter are in an article submitted to Acta Mater. [1].
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Discrete dislocation plasticity simulations are carried out to investigate the static
frictional response of sinusoidal asperities with (sub)-microscale wavelength. The
surfaces are first flattened and then sheared by a perfectly adhesive platen. Both
bodies are explicitly modeled, and the external loading is applied on the top sur-
face of the platen. Plastic deformation by dislocation glide is the only dissipation
mechanism active. The tangential force obtained at the contact when displacing
the platen horizontally first increases with applied displacement, then reaches a
constant value. This constant is here taken to be the friction force.

In agreement with several experiments and continuum simulation studies, the
friction coefficient is found to decrease with the applied normal load. However,
at odds with continuum simulations, the friction force is also found to decrease
with the normal load. The decrease is caused by an increased availability of dis-
locations to initiate and sustain plastic flow during shearing. Again in contrast to
continuum studies, the friction coefficient is found to vary stochastically across the
contact surface, and to reach locally values up to several times the average friction
coefficient. Moreover, the friction force and the friction coefficient are found to be
size dependent.
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5.1. INTRODUCTION

F RICTION, as encountered in our everyday lives, is the resistance to relative
motion between bodies in contact. Playing a major role in many applica-

tions, friction affects strongly the reliability and integrity of machines. This is
especially true at the micron and smaller scale where the surface to volume ratio
increases and surface effects become increasingly significant [2–4].

Several experiments show that the friction coefficient decreases with applied
normal loading [5–8]. However, the results are controversial as other studies re-
port a friction coefficient independent of applied loading [9–11]. It is not clearly
understood whatcauses the different observed behavior since the results are very
sensitive to the various experimental conditions. What is clear is that when inter-
facial cohesion is strong, friction is dependent on the material plastic properties,
since the contact pressure is usually large enough for the asperities of the surface
to deform plastically [12–14]. Several numerical models have been developed to
analyze the effect of plastic deformation on friction of metallic surfaces [15–17].
These models consider a transition from elastic to full plastic deformation of the
bodies in contact.

However, these local continuum static friction contact models lack a char-
acteristic length scale and hence, they do not capture plasticity size effects [18],
which are shown to be pronounced at the (sub)-micron scales [19–22]. Plasticity
sets in at larger strains for smaller sized asperities. A larger tangential force is
thus required to shear the micro-scale asperities then what would be predicted
by a continuum model. This means that the friction force, and hence the friction
coefficient could be underestimated by these local continuum friction models.

Although molecular dynamic simulations have been used to analyze contact
behavior [23, 24] this technique becomes computationally too expensive when
the dimensions of the bodies in contact are larger than a few nanometers. To
address the contact problem at the micron scale studies using discrete disloca-
tion plasticity (DDP) [25] have been carried out. This method bridges the gap
between the atomic and the continuum scales since it accounts for the glide of
individual dislocations, but neglects atomic vibrations. By that the model con-
tains the intrinsic length scale of plasticity: the Burgers vector.

So far discrete DDP studies of friction were confined to a single asperity on
top of a large body. However, the behavior of micro-scale multi-asperity contacts
studied by DDP was found to be different from that of a single asperity contact:
the mean contact pressure during flattening decreases with decreasing asperity
size and spacing [26–29]. Also, when three adjacent asperities are collectively
sheared the mean contact shear stress is smaller than when only a single isolated
asperity is sheared [30]. Here, we analyze for the first time, using DDP, the static
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frictional response of a sinusoidal surface. Loading is applied on the top sur-
face of the contacting platen. The bodies are pre-loaded with a constant normal
force applied on the platen before shearing. The friction coefficient can so be
directly determined. Notice that this is not possible when a constant normal dis-
placement is applied since the normal force will decrease during shearing [31],
making it hard to define a unique friction coefficient.

We here examine how the friction force and the friction coefficient vary with
the normal force applied, when plastic flow by discrete dislocations is the unique
dissipation process. The dependence of the friction force and the friction coeffi-
cient on the wavelength of the sinusoidal is also explored.

5.2. PROBLEM DESCRIPTION
The contact problem is schematically represented in Fig. 5.1. The bottom crystal
has a sinusoidal surface profile, with a wavelength λ and an amplitude ϕ0. Each
sinusoid represents a surface asperity. The top crystal has a flat surface profile.
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Figure 5.1: Two-dimensional model of a metal single crystal with sinusoidal surface sheared by a
platen that is subjected to a uniform distributed normal load Fy. Dislocations (>,⊥) are nucleated
from sources (·) homogeneously distributed in the bottom crystal, which contains also randomly
distributed obstacles (◦).

The bottom and top crystals have heights h(1) −ϕ0 and h(2) respectively, where
ϕ0 ≪ h(1). Given the periodicity of the surface, a representative unit cell with
wavelength λ is here considered. The bottom crystal undergoes plastic deforma-
tion by edge dislocations gliding along slip planes oriented at an angle θi to the x
direction. Based on the two dimensional representation of the FCC crystal struc-
ture [32], three sets of slip planes are considered, oriented at θ1 = 15◦,θ2 = 75◦

and θ3 = 135◦. These orientations are chosen to avoid alignment of the slip
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planes with the loading directions, which might lead to unrealistic softening of
the crystal. The slip planes with the same orientation θ are spaced 200b apart.

Dislocation sources and obstacles are homogeneously distributed through-
out the initially dislocation and stress free body, and they have a density of ρnuc =
60µm−2 and ρobs = 30µm−2, respectively, unless otherwise stated. The sources
have a strength τnuc normally distributed with a mean of 50MPa and a standard
deviation of 20%, and a nucleation time tnuc of 10ns. The obstacle strength τobs

is 150MPa. The dislocations have a Burgers vector of b = 2.5Å, and they glide in
the material with a velocity v directly related to the resolved Peach Koehler force
fp through the drag coefficient D = 10−10 MPas.

5.2.1. BOUNDARY CONDITIONS

An external normal force is first applied incrementally on the top surface of the
platen up to

Fy =
∫ tf

0
Ḟy dt = Ty(tf)λ, (5.1)

where Ḟy and Ty are the normal force rate and the uniformly distributed normal
traction, respectively. Next, a uniform horizontal displacement Ux is applied:

Ux =
∫ t

tf

U̇x dt , (5.2)

Periodic boundary conditions are imposed on the lateral sides of the unit cell,
u
(
0, y

)−u
(
λ, y

) = 0. At the base of the bottom crystal u
(
x,0

) = 0. For these two
dimensional plane strain simulations the quantities given are per unit depth of
the crystals, and here the unit of depth in our variables is omitted.

5.3. PRELIMINARY RESULTS: CHOICE OF THE SIMULATION CELL

DIMENSIONS

T HESE simulations aim at capturing plastic deformation in the subsurface re-
gion of a large metal crystal. First, we make sure that the periodic unit cell is

chosen with a sufficiently large width-to-height aspect ratio to not undergo un-
realistic plastic shearing from the top to the bottom. To this end, simulations are
here performed for a unit cell containing an asperity with wavelengthλ= 2.5µm.
The responses for two different heights of the cell, h = 15µm and 30µm are then
compared. The asperity amplitude is ϕ0 = 0.1µm. Here, we consider the de-
formable body to have elastic isotropic properties of Al, E = 70MPa and ν= 0.33.
The platen is rigid, and has a Young modulus E = 106 E (Al); the platen modulus
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is sufficiently small to prevent ill-conditioning of the finite element stiffness ma-
trix. The mean shear response is independent of the number of (periodic) unit
cells simulated (not shown here). A normal force is applied incrementally on the
top surface of the platen up to a value of Fy/λ= 30N/µm before applying a tan-
gential displacement.

x [µm]

y
[µ
m
]

0 2 4 6 8
10

12

14

16

18

(a)

x [µm]

y
[µ
m
]

0 5
11

13

15

17

12

10

8

6

4

2

0

Shear
Strain

x10
­3

(b)

Figure 5.2: (a) Deformed mesh plot for a body with height h = 15µm at Ux = 0.07µm. Two identical
unit cells are presented to show clearly the region where plasticity occurs. Displacements in the x
direction are magnified 30 times. (b) Corresponding plastic strain distribution at the same Ux.

Inspection of the deformed mesh (x displacements magnified 30 times) for
height h = 15µm in Fig. 5.2a shows that only a region of about 4µm underneath
the contact is greatly deformed. To examine where slip occurs in the material,
the corresponding plastic shear strain distribution of the bodies is presented in
Fig. 5.2b. The plastic shear strain at each material point is calculated as the sum
of the shear strains along each slip direction. Only the region 4µm underneath
the contact of the bottom body is shown, where more than 90% of the disloca-
tions are found. Indeed, a large amount of slip occurs near the contact, indicat-
ing that the tangential force applied only shears the asperities and a small region
(a couple of µm in depth) beneath the surface.

The tangential force Fx = ∫
Γ∈γc

T ·nx dΓ is next shown in Fig. 5.3 as a func-
tion of tangential displacement Ux for two different crystal heights, h = 15µm
and h = 30µm. The curves for both heights deviate from the elastic curves at
small Ux because dislocations are already nucleated during flattening, and they
are available to glide and assist in plastic shearing [30]. Initially the tangential
force Fx at each Ux is smaller for bodies with larger height but at larger displace-
ments (Ux > 0.04µm) the tangential force Fx levels off at approximately the same
value for both heights considered.
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Figure 5.3: Tangential force Fx against displacement Ux for bodies with two different heights.

Evidently, the plastic shear response at larger displacement is unaffected by
the height of the unit cell. Therefore, in subsequent sections only deformable
bodies with h = 15µm will be considered, to lower the computational cost.

5.4. SHEARING WITH AN ELASTIC OR A PLASTIC PLATEN

N EXT we investigate how the tangential force Fx depends on whether the platen
is rigid, or can deform elastically, or plastically. Sinusoidal asperities with a

wavelength λ= 5.0µm and an amplitude ϕ0 = 0.2µm are considered. When the
platen is elastically deformable it has Poisson ratio ν = 0.33 and elastic mod-
ulus either E = 70 GPa, or E = 35 GPa. When it can deform plastically, both
the platen and the body with sinusoidal surface have the same source density,
ρnuc = 30µm−2, and an elastic modulus of E = 70 GPa.

Figure 5.4 shows the tangential force Fx as a function of plastic displacement
Uxp after flattening the bodies to a normal force Fy = 150N. In the initial stages of
shearing, i.e. Uxp ≤ 0.025µm, the curves do not overlap because plasticity already
occurs during flattening. At larger Uxp, the tangential force Fx is found to be ap-
proximately the same when the platen is rigid, elastic, or plastic. Evidently, the
shear response does not depend on whether plasticity is confined to one body
or occurs in both. The plastic shear and dislocation distributions for the elastic
platen and plastic platen are shown in Fig. 5.5a and Fig. 5.5b.

As to be expected, increasing the source density of the bodies to ρ(1)
nuc = ρ(2)

nuc =
60µm−2 decreases the tangential force Fx . Further increasing the source density
should lead to the continuum limit, which is represented in Fig. 5.4 by the re-
sponse obtained using the crystal plasticity model proposed by Peirce et al. [33].
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Figure 5.4: Horizontal force Fx against plastic displacement Uxp for bodies with different proper-
ties. The force obtained from crystal plasticity is also included.
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Figure 5.5: Plastic strain distribution for shearing using an elastic platen with (a) E = 70GPa and
(b) shearing both bodies, each having a source density of 30µm−2, at plastic displacement Uxp =
0.06µm for a particular realization.

5.5. EFFECT OF NORMAL LOADING ON THE SHEAR RESPONSE

I N the following section we will investigate how the friction force is affected
by pre-loading the bodies with different normal force Fy. The friction force Ff

is defined as the constant tangential force resisting relative sliding between the
surfaces in contact. In this work however, there is no sliding at the contact, but
only plastic flow in the material underneath the contact. Given that here after a
certain Ux the tangential force approaches a constant value, the tangential force
at displacement Ux = 0.08µm is taken as the friction force.
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During normal loading, the contact area and the elastic stresses induced by
the normal force, as well as the plasticity generated during flattening affect the
tangential force required to shear the asperities. The effect of each of these fac-
tors on the friction force is separately analyzed in the following subsections.

5.5.1. CONTACT AREA

The effect of the contact area A on Fx is first investigated. To have a contact area
without applying a normal force before shearing, the sinusoidal asperity with
λ= 5.0µm and ϕ0 = 0.2µm is truncated at a depth from the apex. Three contact
areas A = 0.1µm,0.5µm and 1.0µm are considered. Given that the plastic shear
response is independent of the compliance of the platen, we take the platen to
be rigid.
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Figure 5.6: (a) Tangential force Fx of a truncated sinusoidal surface for different contact areas A.
Each vertical bar corresponds to the standard deviation of eight simulations. Plastic shear strain
and dislocation distributions for a particular realization for A = (b) 0.1µm and (c) 1.0µm at Ux =
0.08µm.

Figure 5.6a shows the tangential force Fx as a function of the tangential dis-
placement Ux. The elastic shear responses for the different areas are approxi-
mately the same. Apparently, the friction force Ff is unaffected by the size of the
contact area. This is because the contact areas considered are small and much
smaller than the plastic region underneath the contact. Inspection of the plastic
shear strain distribution in the crystals for both A = 0.1µm (Fig. 5.6b) and 1.0µm
(Fig. 5.6c) at Ux = 0.08µm shows indeed on average, similar distinct shear bands
whose dimensions are much larger than (and non related to) the contact area.
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5.5.2. EFFECT OF ELASTIC FLATTENING

To investigate the effect of elastic normal loading on the friction force three nor-
mal forces Fy = 50N,100N and 120N are first applied on the truncated asperity
surface with A = 1.0µm before the surface is tangentially displaced. The cho-
sen area is sufficiently large that no plasticity occurs during flattening. Figure 5.7
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Figure 5.7: Tangential force Fx for different normal loads Fy applied on an area of A = 1.0µm. Each
vertical bar corresponds to the standard deviation of eight simulations.

shows that the tangential force is approximately the same for the different values
of the applied normal force. Clearly, the elastic normal loading does not affect
the plastic shear response of the asperities.

5.5.3. EFFECT OF PLASTIC FLATTENING

We examine next the effect of plasticity induced during flattening on the tan-
gential force by first loading the sinusoidal asperities with λ = 5.0µm and ϕ0 =
0.2µm with a constant normal force before applying a tangential displacement.
Six values for the normal force, Fy = 25N,50N,100N,150N,200N and 250N, are
considered, indicated by dots in Fig. 5.8a, which gives the normal displacement
Uy against the normal force. The increase of the tangential force Fx during shear-
ing is presented in Fig. 5.8b for the various normal loads. For normal loads Fy ≤
50N, the curves overlap, since flattening is still elastic (see Fig. 5.8a). When
the asperities are pre-loaded with a larger normal force, dislocations are nucle-
ated during flattening, and Fx deviates from the elastic response at a smaller Ux:
the tangential force also levels off at a smaller value. However, the tangential
force does not further decrease when the normal force is increased from 200 N
to 250 N .

For normal force Fy > 50N dislocations generated during flattening assist in
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Figure 5.8: (a) Normal displacement Uy with normal force Fy. The dots represent the normal force
the asperities are pre-loaded with, before they are sheared. (b) Tangential force Fx as a function of
Ux.

plastic shearing. The tangential force required to shear the asperities is there-
fore decreased with increasing normal force. However, when the normal force is
further increased beyond Fy = 200N, plastic flow in the region underneath the
contact caused by flattening approaches an upper limit, and therefore does not
further facilitate plastic shearing of the sinusoidal asperities. This leads to ap-
proximately the same plastic slip during shear (not shown here) for Fy = 200 N
and 250 N .

5.5.4. FRICTION FORCE AND THE FRICTION COEFFICIENT

Results of the previous section are compiled in Fig. 5.9 to show the variation of
the friction force Ff and the friction coefficient µ = Ff/Fy with the normal force.
Both the friction force and the friction coefficient decrease when the normal
force is increased. When the applied normal force is small, for Fy ≤ 100N, the
friction coefficient µ obtained from our simulations is larger than typical exper-
imental values, which range from 0.3 to 1.4 for various materials and conditions
(see e.g. [34]). At larger applied normal force however, the friction force becomes
smaller as plastic shearing is assisted by dislocations generated during flattening.
This decreases the friction coefficient to within the experimental range.

The decrease of the friction coefficient with increasing normal load is also ob-
served in local continuum plasticity studies of static friction (e.g. [15–17]). How-
ever, the friction force there increases sub-linearly with the normal force, which
contrasts our results. The reason for this discrepancy is that in the continuum
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Figure 5.9: Friction force Ff and the corresponding friction coefficient µ = Ff/Fy for the results
shown in Fig. 5.8b.

study the contact area increases significantly with increasing normal load, deter-
mining an increase of the friction force. In the DDP simulations the contact area
increases only negligibly.

LOCAL FRICTION COEFFICIENT

Although a uniform distributed normal traction ty is applied on the top surface
of the platen the tangential traction t c

x and the normal traction t c
y at the contact

are highly non-uniform, as seen in Fig. 5.10a, which shows the tractions t c
x and

t c
y along the contact for Fy = 200N at displacement Ux = 0.08µm. This is because

the contact is patchy (Fig. 5.10b), a consequence of the discrete nature of dislo-
cations and slip planes [28]. The local tractions can be either positive or negative,
since the contact is full stick and dislocations have opposite orientation on dif-
ferent slip planes.

Although t c
x is, on average, smaller than t c

y , and the average friction coeffi-
cient µ is about 0.23, the local friction coefficient |t c

x /t c
y | can be as large as 1.0

(Fig. 5.10c). Other realizations show similar characteristics. The average friction
coefficient µ is not correlated to the local friction coefficient across the contact.

The discontinuous variation of the local friction coefficient across the con-
tact is not observed in local continuum static friction studies (see e.g. [16]), where
the contact area is continuous.
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Figure 5.10: (a) Contact traction distribution t c in the x and y directions for Fy = 200N at
Ux = 0.08µm for a particular realization. (b) Corresponding contact profile: the y axis is stretched
independently of the x axis, and (c) the ratio t c

x /t c
y . The average value of the friction coefficient is

shown using a dashed line.

5.6. FRICTION FORCE OF SCALED ASPERITIES

I N this section, we investigate how the friction force is affected by the size of
the sinusoidal asperities. Two scaled asperities having λ= 2.5µm and 5.0µm,

both with an aspect ratio λ/ϕ0 = 25 are considered. The bodies are pre-loaded
with different values of the normal force. The elastic response of the scaled as-
perities is identical, so that a direct comparison can be made when presenting
tangential force against normal force if they are both divided by the wavelength
λ as in Fig. 5.11a. The mean friction force per unit wavelength of the smaller as-
perities is larger, especially at large Fy/λ. Also, the decrease of friction force with
normal force for the smaller asperities is less than for the larger. The correspond-
ing friction coefficientµ in Fig. 5.11b, is therefore larger for the smaller asperities.
For instance, µ for asperities withλ= 2.5µm at Fy/λ= 40 N /µm is approximately
1.6 times larger than that of asperities with λ= 5.0µm.

The size effect of the friction force and the friction coefficient observed in the
simulations here is a result of a plasticity size effect in flattening. Deformation
becomes increasingly source limited when the asperity size decreases [26, 28,
29]. Plastic shear is less assisted given the smaller amount of plasticity generated
in the smaller asperity during flattening, resulting in a smaller decrease in Ff/λ
when Fy/λ is increased than for the larger asperity.
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Figure 5.11: (a) Friction force per unit wavelength Ff/λ, and (b) corresponding friction coefficient
as a function of normal force per unit wavelength Fy/λ for asperity wavelengths λ = 2.5µm and
5.0µm. Each vertical bar corresponds to the standard deviation of eight simulations.

5.7. CONCLUSIONS

T WO dimensional discrete dislocation plasticity simulations are performed to
investigate the static friction response of sinusoidal surfaces in full stick con-

tact with a platen. A normal force is first applied on the top surface of the platen
before shearing starts. After an initial increase the tangential force at the contact
reaches a constant value, which is here taken to be the static friction force.

Results show that the value of the friction force does not depend on whether
the platen is rigid, elastic, or even plastic, as long as the plastic properties of the
platen are the same as those of the sinusoidal body.

The friction force is also independent of the size of the contact area, which is
anyhow rather small in these simulations, below 1µm. An applied normal load
has an effect on the friction force only when it is sufficiently large to induce plas-
ticity. If this is the case the friction force decreases with the applied normal force.
This is because dislocations, generated during flattening, assist in plastic shear-
ing, which results in the decrease of the friction force when the applied normal
force is increased. When plastic flow caused by flattening reaches an upper limit,
increasing the normal load further no longer affects the friction force.

Given the decrease in the friction force, the friction coefficient decreases with
increasing normal load. The decrease in the friction coefficient is similarly ob-
served in experiments and local continuum plasticity studies of static friction.
However, the decrease of friction coefficient in the continuum plasticity studies
is caused by a sub-linear increase of the friction force with load. The increase is
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due to a significant increase in contact area.

The discrete dislocation plasticity simulations presented here display two
other differences with the local continuum plasticity studies: (1) a discontinu-
ous variation of the local friction coefficient along the contact, which can be up
to five times larger than the average friction coefficient, and (2) the size depen-
dence of the friction force and coefficient displayed by sinusoids with different
wavelength.
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CONCLUDING REMARKS

Without a belief that it is possible to embrace
the reality with our theoretical models,

there could be no science.
This belief is, and always will be,

the main motive of all scientific work.

Albert Einstein
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6.1. CONCLUSIONS

F ROM this thesis we gained a better understanding of the mechanical behavior
of two bodies with rough surfaces in contact that can both deform by dislo-

cation plasticity. A contact model is developed to simulate two plastically de-
formable bodies in contact. Plasticity is described as the collective glide of edge
dislocations. Although the model is general, we first confine our analysis to two
dimensional simulations of the contact between a plastically deformable body
with sinusoidal surface and a rigid platen (Chapter 3), to investigate the effect
of contact conditions, i.e. full stick or frictionless. We find that the true area of
contact, hence the local contact pressure distribution, are strongly dependent
on the contact conditions. Contact is more patchy for frictionless contacts com-
pared with full stick contacts, resulting also in larger pressure peaks for friction-
less contact. This is because dislocations can glide through the contact regions
only in the case of frictionless contacts.

Previous discrete dislocation plasticity studies of contact do not capture this
effect because dislocations do not escape the contact, even when the contact is
frictionless. This is so to preserve compatibility of the applied boundary condi-
tions at the contact.

However, despite the large differences in the true contact area observed for
frictionless and sticking contacts, the apparent contact area, apparent contact
pressure and plastic deformation in the crystal are unaffected by the contact con-
ditions. The exact morphology of the true contact area does not affect the plastic
slip in the body. This is attributed to the fact that the spacing between patches is
very small, smaller than the average dislocation source spacing.

We also demonstrate, in the same chapter, a size effect when the sinusoidal
body is flattened either by a rigid or an elastic platen, i.e. smaller asperities sup-
port a larger pressure than larger asperities. The size dependence involves only
the onset of plasticity and is attributed to source limitation: at larger strains, the
effect of source limitation disappears as more dislocations are generated, and the
mean contact pressure is approximately constant with increasing strain. The size
effect however, becomes less pronounced when the compliance of the platen in-
creases.

Next, we analyze the behavior of two bodies in contact that can both deform
by dislocation plasticity, as presented in Chapter 4. Given that the plastic be-
havior is unaffected by the contact conditions, contact is assumed frictionless. A
size effect is found for two metal crystals in contact with different material prop-
erties, and unexpectedly, the effect is quantitatively the same. This is because
a pure single metal crystal with a higher elastic modulus typically has, on aver-
age, a larger source strength. Larger stresses are hence required to induce plastic
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deformation in the crystal.

It is also found that the response of two plastically deformable bodies in con-
tact can be simplified to an equivalent contact problem where one body is rigid
and the other can deform plastically. This is provided that the source strength
in the equivalent problem is that of the softest material in the original problem,
and that the source density is equal to the sum of the source densities contained
in the two deformable crystals.

In Chapter 5 the shear behavior of sinusoidal asperities in contact with a
platen pre-loaded with a constant normal force is examined. The only dissipative
process is plasticity. The friction force, defined as the constant tangential force
attained during shearing, is found independent of whether the platen is rigid,
elastic, or even plastic. When the applied normal force is increased the friction
force and the friction coefficient decrease. The local friction coefficient along the
contact is highly non-uniform, and can be a few times larger than the average co-
efficient. The friction force and the friction coefficient are also found to be size
dependent: smaller asperities have larger friction coefficients. This is attributed
to a plasticity size effect in flattening.

6.2. DISCUSSION

F UNDAMENTAL understanding of plastic deformation on contact and friction
gained from this work refines our thinking and approach in determining and

analyzing the contact behavior of two crystals that can both plastically deform.
We showed in Chapter 3 that a surface, initially smooth, becomes rough by for-
mation of surface steps during loading. This is due to the discreteness of the
dislocations and slip planes. Contact becomes patchy after loading, resulting in
a contact pressure distribution characterized by high peaks.

Unfortunately there exist, up to date, no experiments that allow us to visu-
alize how the steps left behind by escaped dislocations affect the contact areas
at the (sub)-micron scale. It is a challenge to observe the influence of surface
steps on the areas in situ, since steps are very small, in the order of nanometers.
Visualization is also complicated by the fact that a surface is inherently rough [1–
3]. Moreover, it is difficult to determine the size of contact at this length scale,
since electrostatic interactions between atoms near the contact edges are signif-
icant and long ranged. However, we expect that in the near future experiments of
this kind will become available, thanks to recent advancements in experimental
techniques for visualizing contact in situ (see e.g. [2–5] ).

Size effect observed at the (sub)-micrometer scales is attributed to source
limitation (Chapter 3 and Chapter 4), which is well captured by the discrete dislo-
cation plasticity method. Given that in reality a surface is composed of asperities
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with sizes that can span over several scales, macroscale studies of rough surface
contact should account for the fact that smaller (sub)-micrometer sized asperi-
ties have a different plastic behavior than larger asperities, so to more accurately
predict the mechanical contact response of the surfaces.

Since the plastic properties of two crystals can be mapped into the plastic
properties of one crystal in contact with a rigid body (Chapter 4), conclusions
obtained from previous plasticity studies of contact with a rigid body apply to
two crystals in contact with equivalent plastic properties and the same contact
conditions.

Contact analysis of two crystals can be simplified to treat a single plastically
deformable body in contact with a rigid body. The effect of the rigid body can
also be mimicked by a set of boundary conditions at the contact, provided how-
ever, that the conditions are correctly prescribed. The rigid body effect will not
be accurately captured, for instance, when we analyze a problem in which both
bodies in contact are pre-loaded with a constant normal force. This is because
the contact area and the normal displacement are unknown a priori, and a pres-
sure distribution must be assumed at the interface. The distribution, as observed
in the simulations, is non-uniform and it changes with loading. As a result the
contact pressure will not be accurately described by boundary conditions. In
this case both bodies have to be explicitly modeled.

Here, we demonstrate that when glide of dislocations in the material is the
sole dissipation process the friction coefficient decreases with increasing applied
normal force (Chapter 5). This has been similarly observed in friction exper-
iments carried out on metals [6–8]. The friction coefficient also decreases to
within the range of coefficient values reported by experiments for metals. Dis-
sipation by plasticity is expected to be significant, and should not be excluded in
the analysis of friction between metals in contact.

6.3. RESEARCH RECOMMENDATIONS

E QUIPPED now with the knowledge of how plasticity affects the mechanical
behavior of bodies with sinusoidal surface in contact, the investigation can

be further extended to predict the contact behavior of surfaces with a more elab-
orate description of roughness, i.e. a surface comprising asperities having dif-
ferent geometry. This will bring us a step closer to understanding the contact
response between realistic rough surfaces. One promising way of describing
surfaces is by considering self affinity of the roughness at different scales. This
addresses the problem that the roughness parameters obtained from measure-
ments, such as root mean square height and slope, are dependent on the resolu-
tion limit of the measuring instruments.
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The contact model can be further modified to include frictional sliding be-
tween surfaces, by adding a kinetic energy term to the potential energy func-
tional presented in Chapter 2. This term accounts for the rate of change of the
tangential gap function gt. The purpose would be to understand how dissipa-
tion by sliding at the contact, in addition to dissipation by plasticity in the ma-
terial, would affect the response. For flattening we observe that the mechanical
response is unaffected by the contact conditions. However, it is expected that
the friction force is affected when frictional sliding occurs. The immediate chal-
lenge lies in determining the criteria for the onset of surface slip [9]. It is then
necessary to understand the mechanisms precipitating slip at the contacts, e.g.
relative motion between surfaces by dislocation glide or crack growth across the
interface, which are candidates for further analysis.

If one is interested to predict realistically the mechanical behavior of two
bodies deforming during contact, the model can be extended to include a third
spatial dimension. In our study the dislocation line is straight and infinitely long.
Dislocations in real solids have however, finite curvatures, and they can form
complex three dimensional structures by entanglements and connections (see
e.g. [10]). This will in turn affect the relaxation of the stresses in the body and
hence the results compared with that obtained in our study. However, it is not
obvious how, given the complexity of the dislocation interactions. Further anal-
ysis is therefore required.
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