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Heuristic Coarsening for Generating Multiscale
Transport Networks

Panchamy Krishnakumari , Oded Cats, and Hans van Lint

Abstract— Graphs at different scales are essential tools for
many transportation applications. Notwithstanding their rele-
vance, these graphs are created and maintained manually for
most applications, in both research and practice. In this paper,
we develop a heuristic method for automatically generating mul-
tiscale graph representations without significantly compromising
their topological properties. This makes the resulting graphs
widely applicable. The method is demonstrated on the open street
map network of Amsterdam with four different application cases.
Various graph metrics are used for evaluating the performance
of coarsening on the topological characteristics of the network.
Our results show that the method is able to successfully reduce
the Amsterdam network by up to 96% of its original size at a
computation time of no more than 15 min with a limited loss
of information, indicated by the preservation of key network
characteristics. For example, the method maintains trip length
distributions and limits the maximum shortest path deterioration
between any major origin and destination nodes to no more
than 0.025% for the coarsest graph. Moreover, by setting its
parameters it can cater for preservation of important network
elements or entire sub-networks, which is of special importance
in multiscale traffic modeling and simulation. The versatility of
the algorithm—in contrast to algorithms dedicated to for example
traffic assignment applications—makes it useful for a wide range
of applications within the transportation domain and beyond.
To support further research an open-source implementation of
the algorithm is made available.

Index Terms— Multiscale graph, heuristic, coarsening,
geographic data, opensource, transport networks.

I. INTRODUCTION

D IRECTED graphs are vital tools in many areas of
transportation science and practice. Particularly for the

design and study of ITS; accurate graph representations at the
appropriate level of detail are of quintessential importance.
There are many readily available detailed directed graph
representations. These representations are based on structured,
reusable and standardized geographic and dynamic data such
as open street map (OSM), and dedicated maps maintained by
public administrations and road and rail operators. However,
multiscale representations of these networks are more difficult
to come by, despite their relevance.
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Multiscale graph decomposition has been studied exten-
sively in different fields such as scientific computing, gaming,
Very Large Scale Integration (VLSI) system design, to name
a few, using methods based on random walks, diffusion maps,
spectral graph theory and various coarsening schemes [1]–[3].
In transportation, studies involving graph decompositioning
focus mainly on graph partitioning problems for speeding
up shortest path routing [3]–[6], and applications in the
context of traffic assignment and/or equilibrium sensitivity
analysis [7]–[11]. However, there are many other transport
applications that may benefit from consistent network rep-
resentations at different levels of scale, obtained from either
detailed graph data (e.g. OSM) or coarse schematics. Exam-
ples include multiscale modeling and simulation [12], [13];
traffic estimation and prediction [14]–[18]; and even public
transport service network analysis [19] to name but a few.
In fact, there are very few areas within transportation science,
where no schematic graph representation of either the physical
or service network is needed. In practice today, such simplified
schematic representations are often created and maintained
manually, which is time consuming and error prone.

Given the wide range of applications for transportation
network analysis, automation of the process of generating such
coarser graphs from whatever data available offers scientists
and practitioners large benefits in terms of effort spent. This
calls for the development of a generic simple solution for
generating and maintaining a set of mutually consistent and
accurate directed graphs on the basis of the available geo-
graphic data.

Definition 1: A multiscale graph is a set of increasingly
coarser graphs Gi , Gi+k ,..., k = 1,2,3; representing the same
transport infrastructure (or service network).

We propose that a consistently coarsened graph Gi+1 with
respect to some finer base graph Gi should match the follow-
ing criteria:
• Gi+1 has considerably fewer links and nodes than Gi

• Gi+1 preserves important global topological characteris-
tics of Gi (connectivity, shortest path distribution, diam-
eter, total network length, centrality)

• Gi+1 preserves important domain specific link and node
attributes encoded in (or defined on) Gi

• Gi+1 preserves consistent and accurate local (dynamic)
topological attributes of Gi such as the shortest paths
between origins and destinations (at approximately the
same locations)

Note that where we use the words “preserve” (certain prop-
erties), one may also read “gracefully degrades”, in the sense
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that in some cases, some degradation of information density
is inevitable when cutting out nodes and/or links. We return
to this point in more detail in the validation experiments we
provide.

To this end, we propose a heuristic coarsening technique
based on topological and/or data-driven information of the
directed graphs. A constrained version of this coarsening
approach using data-driven parameter is briefly noted in [17].
Here, we present a more detailed and generic framework
that supports more widespread application. What makes our
approach different from existing coarsening techniques tai-
lored for specific transport applications—e.g. routing and
assignment, which we discuss below—is that it provides a
generic and flexible tool to simplify large transport networks
into consistent coarser ones for many applications, ranging
from topological analysis, modeling, simulation or visualisa-
tion, to name just a few. In our research lab this method has
significantly reduced the effort in generating graphs for these
common research tasks, and to the best of our knowledge no
such generic method has been reported in the transportation
literature and/or made available in code. We demonstrate
the framework for four such applications on the large scale
network of Amsterdam city. We use readily available topology
information like the length, type, node-density, or other phys-
ical attributes of the graph to assign the weights and define
the coarsening rules. The detailed graph representation and
the physical attributes are obtained from Open Street Map
(OSM), an open-source geographic data source. To support the
research community in using and further developing efficient
tools for graph coarsening we offer an open-source version of
the code that implements our framework.1

The paper is organized as follows: Section II first
overviews the basics of network coarsening, using related work
in (mostly) disciplines other than transportation. In section III
we then discuss the proposed coarsening framework and the
algorithms that will be applied to transportation networks.
In section IV we discuss the (Amsterdam) data; and the
methods and performance indicators to assess how well our
approach succeeds in generating consistent coarsened graph
representations of the Amsterdam, the Netherlands. We quan-
titatively and qualitatively discuss the results in section V and
conclude the paper in section VI.

II. RELATED WORKS

Within transportation, a limited number of studies report
explicit algorithmic work on graph coarsening. In [8] and [10]
a bush-based approach is proposed for replacing a regional
network with a smaller one, containing all of the sub-network,
and zones. Artificial arcs are created to represent “all paths”
between each origin and sub-network boundary node, under
the assumption that the set of equilibrium routes does not
change. Similarly, [9] and [11] present method(s) for network
aggregation under Stochastic User Equilibrium (SUE), using
sensitivity analysis, in which the measure for assessing the
resulting coarse network representation is based on how
well perturbations in either demand or supply characteristics

1https://github.com/Panchamy/Heuristic-Coarsening/wiki

(i.e. changes in the OD matrix and/or changes in the link
cost functions respectively) affect the result of the assignment.
These methods are insightful, but based on a huge set of
assumptions specific (and relevant) to the assignment problem,
but not to other transportation problems. This hinders their
relevance and transferability to other application domains.
A second and related class of transportation problems for
which graph coarsening plays an important role is speeding up
shortest path routing algorithms [3]–[6], [20]. Bast et al. [21]
gives an extensive overview of the multilevel methods for rout-
ing in transport networks. They conclude out that there are not
many studies available within the transportation domain that
discuss how—for a much broader range of applications other
than assignment and speeding up routing problems—the topo-
logical characteristics of multiscale graphs differ with respect
to the original fine-scaled graph. There is, however, a rich
body of work available in other domains. Here, we present
an abridged overview on coarsening research that is directly
relevant for this work.

Multilevel methods were introduced during the 1990’s to
improve efficiency and quality of combinatorial optimisation
problems [2]. Multilevel based algorithms try to solve complex
problems by creating a hierarchy of problems that represent the
original problem with fewer degrees of freedom. This process
is coined coarsening. These hierarchies at different scales
can be sequentially projected back to reconstruct the original
problem space, known as uncoarsening. The coarsening and
uncoarsening stages together constitute the multilevel frame-
work. There are a couple of papers that provide an overview
of multilevel techniques [22], [23]. In this work, we are only
interested in the coarsening phase of the framework. Coars-
ening can be broadly classified into two types - strict and
weighted coarsening. In strict coarsening, nodes are aggregated
together to form a single node in the “coarsened space”.
The nodes in the coarsened space are called aggregates [2].
In weighted coarsening, each node is divided into fractions
and these fractions can belong to different aggregates in the
coarsened space [24]. More details on the principal differences
between these two methods in graph terms can be found
in [23].

Multilevel algorithms have been used in many disciplines
including games [25], [26], mechanical engineering [27],
infectious disease spread studies [28] and graph opti-
misation problems [23]. The graph partitioning problems
and graph optimisation applications within transporta-
tion that focus on speeding up shortest path routing
algorithms [3]–[5], [20], [21], [29]–[31] typically use strict
coarsening for generating the hierarchies. That most multilevel
methods for transport networks use hierarchical techniques
makes sense, since road networks are inherently hierarchical.
This was first fully exploited in the highway hierarchies
(HHs) [4] method. The highway hierarchies contains two main
building blocks - edge reduction and node reduction. Edge
reduction preserves the edges in the middle of long distance
paths and node reduction contracts nodes of degree one and
two (i.e. nodes that only connect one or two adjacent links).

A simpler version of HHs are so-called contraction hierar-
chies (CHs), introduced by Geisberger et al. [3], [32], which
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are among the most effective (shortest route) speedup tech-
niques. In general, coarsening techniques work by replacing
edges in the graph with so-called shortcuts. In CHs, the short-
cuts are added iteratively by contracting nodes following a
given order of importance. The node ordering eliminates one
of the major drawbacks of classical methods - the unpre-
dictability of the contraction results. The main reason for this
can be attributed to the random choice of nodes for the coarse
level graph in classic methods [2]. Edge reduction is used in
HHs to minimise the explosion of average node degree in the
coarsened network but in CHs, this shortcoming is eliminated
using a more sophisticated node contraction. Node contraction
in CHs adds shortcuts only if shortest paths are preserved
in the coarse scale after each node contraction. However,
checking if the shortest path is preserved is time consuming.
There are various solutions to speed up this process including
limiting the space for shortest path search [3], using GPU [33]
and customizable contraction hierarchies [26].

All these studies are based on graph methods that have
not (yet) been explored in the traffic domain other than
for routing applications. In this paper, we seek a (heuristic)
approach for network coarsening that can be used (insofar
possible) in most transportation applications where graph
coarsening might be useful. This method should offer a generic
mechanism to assess the quality of the procedure based on
topological information and/or data available in the application
at hand. Based on the simplicity and success of CHs, we pro-
pose a heuristic approach with some of the building blocks of
CHs—node ordering and node contraction. In [17], we briefly
show how a constrained version of CHs can be easily used
for network complexity reduction for traffic predictions. In the
current contribution we further develop, formalize, apply and
test the proposed approach to provide a more generic heuristic
framework based on CHs that can be deployed in various
applications.

III. HEURISTIC COARSENING FRAMEWORK FOR

MULTISCALE GRAPH GENERATION

The general idea of coarsening is that, given graph G with n
nodes, a more compact graph with a smaller number of nodes
can be found which yields a good representation of the original
graph. The multiscale graph Gi+1 is constructed from the
previous finer scale graph Gi by collapsing together the nodes
and edges that have similar matching criteria. The matching
can be computed in different ways, for example, by using
aggregates [2]; by considering dominant route flows [34]; or
based on node density [35]. In this work, the matching is based
on the edge difference or variance of the edge weights. On top
of the building blocks of CHs, we also use pruning to further
reduce the network. This section will detail the steps required
to derive these multiscale graphs. The coarsened graph can
be constructed using the following four steps [2]. Note that
each step may be detailed according to application-specific
requirements or constraints.

1) Assign weights to the links in the directed graph;
2) Prioritize the nodes so that they can be removed in a

strict order for generating the next coarsened level;

TABLE I

GRAPH NOTATIONS. EXAMPLES ARE BASED ON FIGURE 1

Fig. 1. Example network.

3) Determine contraction and pruning decision rules based
on the edges weights, and;

4) Determine the new weights of the links for the coarse
graph(for potentially a next iteration).

Notation: We use the standard notations used in graph
theory as detailed in Table I, illustrated using the example
network shown in Figure 1. Here, the graph G = (V , E) is a
weighted directed graph where V is the set of nodes and E is
the set of ordered pairs of edges or links. The edge (u, v) ∈ E ,
in Figure 1, is an incoming link with respect to node v where
v is the target node and u is the source node. (v,w) and (v, x)
are the outgoing links of node v where v is the source node
and w and x are the target nodes. Arbitrary edge weights of
the example network are also indicated in Figure 1.

A. Step 1 - Assigning Edge Weights

Edge weights are an essential element in solving graph
problems such as coarsening, partitioning, etc. The weight can
correspond to link length, width, type characteristics such as
the link flow, inductance (for electric applications) or speed
(for transport applications). We propose a generic weight
measure, wuv for the link (u, v) in the form of a weighted
average over the application-relevant edge weights:

wuv =
n∑

i=1

βiw
i
uv (1)
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where n is the number of attributes, β varies typically between
0 and 1 and reflects the influence of these attributes on
the generic edge weight, and wi

uv is the i th attribute of the
link (u, v). Clearly, the value of β may differ based on the
application.

B. Step 2 - Ranking the Nodes

The order in which the nodes are removed is important
for graph coarsening for computational reasons (only) [2].
In general, the seed nodes (nodes in the original graph
considered for collapsing) are chosen randomly. In this work,
we use a deterministic approach based on node ordering
such that the nodes from the priority queue are contracted
across the network in a uniform way, rather than contracting
nodes randomly. For example, nodes can be ordered based on
geographical scale (e.g. metropolitan areas; cities; neighbour-
hoods); traffic hierarchy function (freeways; motorways; main
arterials; etc); spatial subdivision types such as grid-based [36]
and polygon-based (e.g. clustering based on postal codes).

To illustrate this process, we use node degree (i.e. the
number of edges connected to a node) as the decision rule
for prioritising the nodes. The more neighbours the node has,
the higher the rank, and the node will be contracted later.
The underlying assumption is that a node that connects a lot
of edges is likely to be more important for the transportation
network and flow distribution—at least locally. Thus, the nodes
are contracted by increasing order of node degree. Suppose,
(u, v) ∈ E where u, v ∈ V then the rank of the nodes u and
v will satisfy the following condition:

r(u) > r(v), i f δ(u) > δ(v) (2)

where δ(u) and δ(v) are the degree of node u and v respec-
tively. Thus, based on the contraction rule, v will be contracted
before u. Node contraction affects the priorities of other
nodes. Therefore, the priority queue is rebuilt after each
node collapse. Since this process can become computationally
expensive, we have implemented an iterative approach instead
of re-evaluating the priorities, which is more efficient and pro-
vides robust results. In the iterative approach, we evaluate the
priority once at the beginning of the iteration and collapse the
nodes according to this queue. The neighbours of the nodes are
updated at the end of the iteration. The iteration ends when all
the nodes are visited at least once for collapsing consideration.
The method converges when the iteration provides the same
result as the previous iteration.

C. Step 3 - Defining the Contraction and Pruning Rules

Once the nodes are sorted in increasing order, the con-
traction rules based on edge weights for collapsing them are
defined. When a node is collapsed, its neighbouring links are
joined together to form new links. Figure 2 presents some
examples of different cases of node contraction. If the node
collapse results in the same or even a larger number of links
than before its collapse as shown in case (6) in Figure 2,
there is no reason to collapse that node. Collapsing nodes
without any regulation can lead to explosion of average node
degree in the coarse level graph [3]. Therefore, a criterion

Fig. 2. Examples of node collapse.

TABLE II

DECISION RULES

c1(v) (Table II) is set to decide if the contraction of a given
node will contribute to a reduction in network complexity.
Note that in case the application requires a coarse graph with
fewer nodes but the number of links is not a priority, this
constraint can easily be adjusted accordingly.

The edge difference is used to define the next rule c2(v) for
inclusion or exclusion of that node for contraction (Table II).
This rule is checked for each of the incoming-outgoing link
pairs of the given node v. A lower threshold, ρ, implies a
tighter constraint on the node collapse. The edge difference or
variance of the edge weights wiv and wv j of node v, defined
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Fig. 3. Example cases of pruning (a) Dead-ends (b) Self-loops.

in equation (3), is used as the matching criterion.

σ 2(wiv , wv j ) = |wiv − μ|2 + |wv j − μ|2, where

μ = wiv +wv j

2
, (3)

This is based on the idea that nodes should not be collapsed if
they serve as the connection between two inherently different
links. For example, a node that is connecting a highway and a
city road is topologically important and results in small edge
difference. If the ρ is set to 0 then this node would not be
collapsed. If the ρ is set higher then the nodes that connect
links with a smaller weight difference will be collapsed. For
example, a node that connects a highway and a service road is
hierarchically and topologically informative and hence should
not be collapsed. Setting a proper ρ can prevent this. In the
case (5) in Figure 2, if the ρ is set to 0, the node will not
be collapsed as the edge difference is not 0. (i.e. there is a
change in hierarchical level)

The most expensive computation for most of the methods
mentioned in the literature, including CHs, relates to check-
ing whether the shortest path is preserved after each node
collapse [3]. This condition is not included in our heuristic
approach under the premise that if the node collapse is per-
formed according to the proposed method, there will only be
minimal deterioration in the shortest path, which is acceptable
for most applications. In section V, we will explicitly examine
the validity of this assumption.

Collapsing nodes can only reduce the complexity of the
network to the highest edge difference threshold. To fur-
ther reduce the network, pruning can be performed. Pruning
refers to removing unimportant (in an application-specific
sense) nodes or links from the network, instead of collapsing
them. Depending on the application, pruning can be allowed
or disabled. In this work, pruning is used for removing
dead-ends (nodes without either incoming or outgoing links)
and self-loops in the graph. Examples of these two cases are
illustrated in Figure 3. Given that pruning is allowed, two
conditions are defined to identify the dead ends and self-loops
- c3(v) and c4(u, v), respectively.

D. Step 4 - Assigning Weights to New Links

Assigning weights to the new links of the coarsened graph
is the final step in the multiscale graph generation algorithm.
The new edge weight is a function of the weights of the edges
that are joined to make the new edge. Suppose the node v
in Figure 1 satisfies both criteria c1(v) and c2(v), then the
incoming-outgoing link pair (u, v,w) is joined to form a new
directed link (u, w) and the weight of this link is determined

Fig. 4. Node collapse results in the example network with ρ 0. (a) Nodes
are marked based on their rank. (b) A node with degree 2 is collapsed.
(c) A node with degree 3 is collapsed.

as follows:
wuw = f (wuv , wvw) (4)

Depending on the edge weight, this function may represent
any mathematical (e.g. logical or statistical) operation on the
original weights. For example, if the edge weights represent
the link length, the logical choice is a summation function.
The same holds true if the edge weights represents costs or
travel time. A common edge weight in different application
domains is link capacity. To combine different link capacities,
a minimum function is employed as illustrated in the examples
in Figure 2. However, for traffic assignment applications,
a minimum function might cause a reduction in overall
network capacity. For this application, a stricter constraint
with respect to pruning and edge difference combined with
a maximum function might be more appropriate.

The pseudo-code for the heuristic coarsening is given in
Algorithm 1. A step-by-step node collapse for the example
network with pruning disabled is illustrated in Figure 4. The
nodes are ranked based on their node degree. The new weights
are computed using a minimum function. Figure 4(a) shows
the graph with the ranked nodes. Since pruning is disabled,
the node with degree 1 cannot be collapsed because of the
initial stopping criterion c1(v). Figure 4(b) shows the result
of the collapse of degree 2 nodes with the ρ set at 0. Lastly,
the higher degree nodes that satisfy both the conditions are
collapsed as shown in Figure 4(c).

IV. EXPERIMENTAL SETUP

In this study, we present four application cases of the
coarsening scheme. The applications illustrate various aspects
of the algorithm and how restrictions can be added for different
purposes. We study in detail whether the coarsening results
satisfy the requirements of multiscale graphs proposed in
Section I using several verification measures. Note that we do
not claim these four cases provide conclusive evidence that
under all application constraints the requirements in Section I
are met. In this section, we explain the application cases;
describe the data used; how the weights are assigned for the
case study networks; and the verification measures.

A. Application Cases

Before describing the four cases, let us briefly mention
that for each of these we need to set two general parameters
associated with our method: ρ (threshold) and pruning. For
pruning, there are only two possible values; either enabled
(1) or disabled (0). The ρ value corresponds to the restriction
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Algorithm 1 Heuristic Coarsening Approach

1 Function
Input : Node list V , edge set E ,iterations M ,

weights w, pruning and ρ
Output: Coarsened edge set E �

2 E � ← E, i ← 0, i ter ← 0, f lag← 1
3 while flag = 1 and iter < M do

/* Step 2 - Node ordering */
4 E ← E �, V � ← sorted V
5 while i �= |V �| do
6 v ← V �[i ]

/* Step 3 - Contraction rules */
7 if c1(v) = 1 then
8 Find N−(v) and N+(v). Eg:

(u, v), (v,w), (v, x)
9 Pair up {N−(v), N+(v)}. Eg:

(u, v,w), (u, v, x)
10 if c2(v) = 1 then
11 E � ← E � − [(u, v), (v,w), (v, x)]
12 E � ← E � + [(u, w), (u, x)]

/* Step 4 - Assign weights to
new links */

13 wuw = f (wuv , wvw), wux = f (wuv , wvx )

14 i ← i + 1

/* Step 3 - Pruning rules */
15 if pruning is T rue then
16 foreach v ∈ V � do
17 if c3(v) = 1 then
18 E � ← E � − N(v)

19 foreach (u, v) ∈ E � do
20 if c4(u, v) = 1 then
21 E � ← E � − (u, v)

22 V � ← update neighbors of V �
23 i ter ← i ter + 1
24 if |E| = |E �| then
25 f lag← 0

on the edge weight difference and in most applications, the ρ
values are bounded as the edge weights are bounded. In this
work, we demonstrate the coarsening for two instances of ρ
values - minimum and maximum ρ for all the applications.
This will define the upper bound and lower bound of the
coarsening results for a particular application case. So, for
each application there are four scenarios - pruning [0, 1] and
ρ [minimum, maximum].

1) Application I - Maximum Network Reduction Possible
Without Any Restrictions: For the first application, we coarsen
a large scale network with the simple aim of reducing the
network complexity as much as possible. This objective may,
for example, arise when visualizing properties of the net-
work in time-critical applications (websites, mobile apps, etc).
Clearly, the trivial maximum possible reduction of a network

is to reduce it to a single node. However, the aim of our
coarsening is to reduce the number of nodes as much as
possible while reducing the number of links according to
the constraint c1(v). Further reduction of coarsened graph by
relaxing this constraint will lead to an explosion of links.
Therefore, the maximum possible reduction of a network,
in our case, corresponds to the maximum reduction of links
and this is bounded by two parameters - pruning and ρ.

2) Application II - Network Reduction Restricted Based on
Node Type: The second application is a constrained version of
the first where we try to coarsen the network while preserving
all of the intersections. This case may, for example, arise when
constructing a network model for traffic simulation with a
focus on developing or ex ante evaluation of (coordinated)
intersection control algorithms, or conversely, on driving
behavioural models for conflict negotiation. An intersection
is a node representing any kind of discontinuity such as a
crossing, converging or diverging links, etc. In graph terms,
we consider an intersection as any node with more than
1 outgoing link and 1 incoming link and also with ρ = 0
as edge difference is a form of discontinuity. The c1(v) is
adjusted to represent this constraint as:

c1(v) =
{

1, if δ(v �) < 2 where v ∈ V & v � ∈ V �

0, otherwise
(5)

This aims at maximum network reduction while preserving
the information of all discontinuous nodes.

3) Application III - Network Reduction Restricted Based on
Area: The third application case pertains to having different
scales within the same network, for example in case the
study area is in fine detail whereas the area outside the study
boundary is less detailed, which is particularly useful for
hybrid modeling. By using an additional constraint for the
nodes c5(v), we can create a subset of nodes as the exception
node list to achieve this. This subset of nodes can be created
manually or by defining a polygon boundary for the study area.
In our case, we use a rectangular boundary for the study area
defined as [xmin , ymin, xmax , ymax ], thus the constraint c5(v)
is defined as:

c5(v) =
{

0, if xmin < xv < xmax & ymin < yv < ymax

1, otherwise

(6)

where xv and yv are the co-ordinates of the node v. Thus,
we can create an exception list of nodes that are prohibited
from being collapsed or deleted in that rectangular area. This is
also useful for Dynamic Traffic Assignment applications such
that certain origin-destinations can be added to the exception
list so that they are not removed.

4) Application IV - Network Reduction Based on Data
Driven Parameters: The fourth and the final application is
data driven coarsening. The difference between this and the
first application is that now the edge weights used for the
coarsening are aggregates of dynamic quantities. This can
be useful for real time predictions for large scale networks
where the complexity increases with the size of the network,
as time-dependent networks are used for this purpose [17].
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Fig. 5. Amsterdam network with 30 757 links and 34 935 nodes.

We used speed per link as the weights for coarsening the
network for this application. The new weights of the links after
node collapse are found using a mean function instead of a
minimum function used as is done for the other applications.

B. Data

The real-world large-scale network of Amsterdam is used
in the experiments (Figure 5). The Amsterdam network was
extracted from the open-source open-street map(OSM) and
contains 30 757 links and 34 935 nodes. Assigning weights to
the links of the directed graph of Amsterdam is the first step of
the heuristic graph coarsening. Given the limited availability
of (open-source) data for all these links, we define the weight
of an edge (u,v) with nodes u and v simply as:

wuv = 1/tuv

where tuv corresponds to a value that depicts the type of the
road network, which is readily available. Here, we use β = 1
in (1) because of the lack of additional meta information about
the relative importance of these road types. In OSM, the type
of the link refers to the standardized classification of the roads
defined in OSM data source such as primary-link, secondary-
link, access-ramp, etc, which is often used as a proxy for
free-flow speed. There are 36 tags in OSM to define the type
of the road segment. Each of the ordinal road classification
tags is transformed into a numerical scale ranging from 1 to
36 based on the link importance of each tag described in [37]
and this is assigned to tuv .

For the Amsterdam network, there are 22 links which
are tagged as ‘road’. Since only 22 links are not properly
tagged, the performance of the method is not significantly
hampered. Another drawback of OSM network is that not all
the nodes in the graph representation are correctly-noded [38].
This might lead to the graph being weakly connected with
multiple connected components. For the Amsterdam network,
there are 6759 such components with 90% of them having no
more than four links. For most of the applications, these small
“islands” are not that important for the study and pruning can
be enabled to remove them.

Fig. 6. Application III - Study area (in blue) in relation to the Amsterdam
network.

Fig. 7. Application IV - (a) Sub-network of Amsterdam (in blue) (b) Speed
per link at time 16:00 for a particular day for the sub-network.

For the first application, we use the Amsterdam network
given in Figure 5. The edge weight is the numerically
mapped road type, thus the minimum ρ is 0 and maximum
is σ 2(wmin , wmax), where wmin is 1 and wmax is 1

36 edge
weights respectively. The same network is used for the second
application case related to preserving the intersections. The
rectangular study area (center of Amsterdam) boundary in
relation to the larger Amsterdam network is shown in Figure 6
which is used for the third application.

In the fourth application case, we use travel time data
from a license plate recognition system in Amsterdam to
derive the speed per link. There were 314 pairs of start
and end camera observations for the whole of Amsterdam
network so the whole network is not completely utilized. The
sub-network within the recognition system coverage is shown
in Figure 7(a). The sub-network has 7512 links and 6528 nodes
and it is a single connected component. The data preparation
and conversion of travel time to speed per link is described in
detail in [17]. The traffic state of Amsterdam at time 16:00 for
one particular day is shown in Figure 7(b). The speed per link
is used as the link weights of the sub-network.

All the applications have four scenarios as explained before
with pruning [0, 1] and ρ [minimum, maximum]. The ρ for
applications I to III corresponds to the change in functional
road class of links and the change in speeds for application IV.
To preserve the change in speed or road class, the minimum
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ρ is set to 0. The maximum ρ was set at 10000 (an arbitrarily
high value) for applications I, III and IV whereas for applica-
tion II the maximum ρ is also set at 0. This is because of our
definition of intersection which prohibits coarsening nodes that
have discontinuities in edge difference. The maximum number
of iterations for all the applications was set at 10000, although
the process stopped in all cases well before that.

C. Evaluation Metrics

The multiscale graphs generated using our node collapse
and pruning for the four applications are evaluated based on
the five criteria proposed in Section I, we use several graph
measures and the computational performance for creating
these graphs is also considered. All runs were done on a
64-bit computer with Intel Xeon CPU E5-1620 v3 processor
of 3.5GHz, 16.0GB RAM and no GPU. In this section,
we revisit the criteria for multiscale graphs and detail the four
graph aspects used to quantify these.

1) Network Reduction: The reduction in the network com-
plexity is computed based on the reduction in the number of
links. The network reduction, r Gi+1 , for a coarsened graph
Gi+1 in relation to the original graph Gi is defined as:

r Gi+1 = |E | − |E
�|

|E �| ∗ 100 % (7)

where |E | and |E �| are the number of links in the original
graph and coarsened graph, respectively.

2) Global Topological Characteristics: The desirable prop-
erty of collapsing nodes and edges is that the topological
characteristics of the graph are preserved, except when prun-
ing is enabled which alters the topology of the network.
For evaluating the global topological characteristics of the
coarsened graph, we use five metrics: connectivity, trip length
distribution, diameter, total network length and centrality.

Graph connectivity is measured using the number of con-
nected components in a network. The connected components
are found using depth first search based algorithm [39].

Trip length distribution is equal to the shortest path
distribution (in distance) given that only the shortest path is
considered between origins and destinations. The influence of
coarsening on the shortest path between two arbitrary nodes is
important since large shifts in shortest paths between origins
and destinations imply fundamental changes in network topol-
ogy relevant for many applications in transportation, ranging
from simulation, to planning and to applied ITS tailored
at providing information of the network state to travelers,
operators and service providers. Checking this requirement is
particularly interesting as this check is not built in the method
itself. Assuming that there are N number of nodes in the coarse
network, there are N × N OD (origin-destination) pairs in
that graph and hence, N × N shortest paths. By comparing
the distribution of these N × N shortest path cost of these
ODs in the coarse and fine scale, we can observe the effect of
coarsening on these shortest paths. The shortest path is found
using Dijkstra’s algorithm for weighted directed graphs [40]
and the weights can be distance or travel time based on the
application.

Diameter is the shortest path between the two most distant
nodes in the network and is measured for a given network
as maximum of all calculated trip length between all the
origin-destination pairs in that network.

Total network length is the total length of the transport
network (in km) and measured by summation of the length of
all links in the network.

Centrality characterizes the (global) importance of a node
in a network. In this work, we use betweenness centrality g(v)
as defined in [41] and [42]:

g(v) =
∑

s �=t

σst (v)

σst
(8)

where σst is the number of shortest paths going from s to
t and σst (v) is the number of shortest paths from s to t
through node v. Betweenness centrality can be considered as
a proxy for flow throughput as a node is said to have high
centrality if a large number of the shortest paths in the network
go through that node. Thus, a similar betweenness centrality
distribution needs to be maintained for the different scales as
this implies similar hierarchy among nodes at different scales.
This distribution is known to follow a power law for most
transport networks, defined as:

g(v) ∼ v−η (9)

where η is the power law exponent [41]. The value of power
law exponent is typically in the range 2 < η < 3 for scale-free
networks, although not in all cases [43]. Our assumption is that
the exponent value should not degrade significantly between
different scales, at least for coarsening without pruning. So,
if a network is originally scale-free, it is desired to maintain
this property also for the coarsened network. Other than the
power law exponent, it is also important to maintain the quality
of the power law fit. In this work, we use the R2 value as the
goodness-of-fit measure for the regression model which varies
between 0 and 1. A value of 1 implies a perfect fit to the data.

3) Domain Specific Characteristics: Depending on the
application, the domain specific attributes of the network
are either static link attributes such as functional road class,
speed limits, capacities, geo-information or accurate aggre-
gates/averages of dynamic quantities such as average flows,
average speeds, travel times at a particular time for the net-
work. These attributes define the link weights of the network
which is then used for coarsening. In the algorithm, we have a
hard constraint c2(v) (see Table II), in which the ρ determines
to what degree the attributes are preserved while coarsening.
If ρ is 0 in c2(v),

|wiv − μ|2 + |wv j − μ|2 = 0 �⇒ wiv = wv j (10)

Thus, for links (i, v) and (v, j), the links are coarsened only
if the link weights are the same and hence the link weights
are fully preserved for ρ = 0 and by mathematical induction,
it holds for all links in the network and for different ρ values.

4) Local Topological Characteristics: While the trip length
distribution shows the global trend of shortest paths in that
network, it does not show if the same shortest path is main-
tained in the coarsened graph as the original graph. To observe
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Fig. 8. Evolution of the Amsterdam network during 12 iterations for scenario
2 of application I (without pruning), with network reduction ranging from 21%
to 47%.

this, we use the shortest path deterioration of each OD pair
st of N × N OD pairs for a given coarse scale graph Gi+1
defined as:

DGi+1
st = cGi+1

st − cGi
st

cGi
st

∗ 100 % (11)

where cGi+1
st and cGi

st is the shortest path cost between nodes
s and t in the coarsened graph Gi+1 and the original graph
Gi respectively.

V. RESULTS AND DISCUSSION

In this section, we present the results of the four applications
and their corresponding scenarios. We evaluate application I in
depth in relation to the evaluation metrics since this application
aims at the maximum possible reduction of network size with-
out any restrictions using our coarsening framework. Hence,
it is expected to manifest the maximum deterioration of the
topological properties and thus offers the most conservative
performance assessment. We discuss the other applications
more briefly. Table III shows the coarsening results for the
four applications and their scenarios.

For application I, the node coarsening leads to a network
edge reduction of 21− 47% without pruning giving the same
number of connected components as in the original net-
work (6759 components). Thus, the connectivity is preserved
without pruning. Since the approach is iterative, the 47%
reduction is achieved after 12 iterations. This implies there
are 12 multiscale graphs available with a reduction within the
range of 21 − 47% respectively compared to the complete
Amsterdam network as shown in Figure 8. With pruning,
the edge reduction ranges between 59 − 96%, resulting in a
more compact network of 1103 components for the minimum
ρ and a single component for the maximum ρ after 15 iter-
ations as shown in Figure 9. (Note that only pruning has an
effect on the number of components, node collapsing has no
influence on the network connectivity.) The computation time
for coarsening is 10 to 15 minutes with and without pruning
respectively. We return to the results of the other applications
listed in Table III further below.

Fig. 9. Evolution of the Amsterdam network during 15 iterations for scenario
4 of application I (with pruning), with network reduction ranging from 59%
to 96%.

Fig. 10. Trip length distribution of the OD pairs in the Amsterdam network
for application I.

We first examine some global topological characteristics
of the multiscale graphs resulting from application I. First,
the trip length distribution of the network. There are 427 nodes
remaining in the final coarsened graph (application I, scenario
4). Therefore, there are 427×427 origin-destination (OD) pairs
leading to 182 329 shortest paths. The link length is used
to estimate the shortest path cost for application I. The trip
length distribution of these shortest paths in the original and
coarsened network are shown in Figure 10. As can be seen,
the trip length distribution of the original and coarsened graph
is quite similar, even for the maximum network reduction.
We have also investigated the complete trip length distribution
of the original and coarsened graph and found that while
the shape of the distribution remains similar, some of the
ODs have deflated shortest path lengths, especially due to
node removal. This is also evident from the network diameter
reported in Table III for all applications.

The diameter of the original network is 38.92km. From
Table III, it can be seen that the diameter of the network
decreases for all scenarios. The slight decrease in diameter
when pruning is disabled is unexpected as we expect it to be
unchanged. But, this is because of shortcuts which are created
due to node coarsening that are duplicates of links already
existing in the network. Consequently, there are two separate
links connecting the same nodes with different link length.
Since the minimum of these length will be used for computing
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TABLE III

COARSENING RESULTS OF THE FOUR APPLICATIONS

the shortest paths that traverse this link, there is a decrease in
the diameter.

The other global characteristics considered is the total net-
work length. The total network length of the original network

is 3622km. From Table III, it can be seen that the network
length increases significantly for coarsening without pruning
while decreases for coarsening with pruning. The decrease
in network length is expected as links are removed due to
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Fig. 11. (a) Influence of coarsening on node centrality distribution;
(b) Log-log plot of node centrality with the data as dots and the corresponding
line showing the power law fit.

pruning. However, the increase in network length is due
to the shortcuts created during coarsening leading to direct
connections between nodes as shown in example cases (2)
and (6) in Figure 2.

We also consider node centrality characteristics of the mul-
tiscale graphs, which exhibit similar distribution as compared
to the original graph as illustrated in Figure 11(a). This
distribution of the multiscale graphs follows a power law
and the corresponding power law parameters that define the
relationship between centrality and the number of nodes as
g(v) ∼ v−η. Estimated power law parameters for the relation
of the betweenness centrality versus the number of nodes
are shown in Figure 11(b). The original Amsterdam network
has a power-law with exponent η ≈ 3.25 with R2 = 1.00
whereas for coarsening without pruning has η ≈ 3.29− 3.08
with approximately the same R2 as shown in Table III.
The power-law exponents for coarsening with pruning is
η ≈ 2.98− 2.13.

Thus, these multiscale graphs have similar exponent as
that of a scale-free network by employing pruning which
is significantly different than that of the original network.
However, the exponents without pruning are similar to those of
the original network and this is also evident from Figure 11(b).

Fig. 12. Boxplot of shortest path deterioration versus the share of nodes
removed (OD reduction) for all iterations in all scenarios for application I.
(1), (2) and (3) represent the multiscale graphs at 16%, 34% and 93% OD
reduction respectively. Same three shortest paths with the largest deterioration
are shown in (1), (2) and (3) for illustration.

The degradation of the exponent in case of pruning is probably
because of the high number of disconnected components in the
network. This assumption is confirmed in application IV which
have a single component. For application IV, the original
network has a power-law exponent of 2.43 with R2 = 0.80
whereas the coarsened networks have exponents less than
2.00 while the R2 remains similar. Thus, all the multiscale
networks seem to follow a power law with similar goodness-
of-fit as the original network, however the scale-free property
of these networks are inconclusive using just the power law
exponent. The exponent degradation between all scenarios in
all applications is approximately 1, which seems marginal.

Figure 12 shows the influence of coarsening on the length
of the shortest paths in the graphs for application I. The trip
length distribution of the multiscale graphs were shown to be
similar; however the actual shortest path has to be studied
in detail to check if it is maintained within the different
multiscale graphs. We used relative shortest path deterioration
to check this local characteristics for application I. As can be
seen from the figure, the effect of coarsening on the shortest
path is minimal. With more than 95% of the nodes removed,
there is only a maximum deterioration of 0.025% in the
shortest path cost. Thus, even extreme pruning only has a
marginal influence on the shortest path, which is an important
finding for the application scope. For most of the traffic
applications, a 0.025% deterioration in distance is negligible.

Table III summarizes the results for all the applications. The
node coarsening for the preservation of intersection application
provides a network reduction of 17 − 26% without pruning
after 7 iterations and 57−88% with pruning after 17 iterations.
The node coarsening for the study area application provides
the least network reduction of 14−32% without pruning after
8 iterations and 43 − 68% with pruning after 13 iterations.
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Fig. 13. Shortest path deterioration based on distance and travel time for
application IV.

The higher number of components (see Table III) and lower
network reduction compared to the previous applications are
because of the unaltered study area which corresponds to 30%
of the network size and comprises of 1500 components. This
also corresponds to the low degradation of the values for the
characteristics such as the diameter, network length, power
law exponent and fit compared to application I as reported
in Table III. All the centrality distribution of multiscale graphs
follows the power law with similar R2 value as those of
the original network. The node coarsening results for the
data driven application case provides a network reduction of
38 − 74% without pruning after 10 iterations. With pruning,
it provides a reduction of 40− 85% after 86 iterations.

For application IV, travel time is used to compute the
shortest path. The travel time deterioration for the coarsened
graph and the original graph for application IV for different
scenarios are shown in Figure 13(b). There are 538×538 OD
pairs for this application resulting in 289 444 shortest paths.
There is a maximum deterioration of 22% in travel time.
However, the shortest path distribution based on distance as
the cost, shown in Figure 13(a), has an approximately zero
deterioration, i.e. very minimal undesired alterations. This is
because the distance of the link is preserved when coarsening
whereas the link weights (average speed) are skewed because
of averaging when ρ > 0. The travel time is preserved

better for smaller ρ (scenarios 1 and 3) with a maximum
deterioration of 0.1%.

VI. CONCLUSION

In this paper, we propose a generic heuristic coarsening
technique for generating multiscale graphs. Compared to
existing graph based methods popularized in Experimental
Algorithms, we presented a heuristic method that is directly
applicable and versatile for many transport applications. The
method comprises of two main building blocks: node order-
ing and node contraction. Importantly, the explosion of the
average node degree in the coarse network is eliminated by
a simple decision rule, which can also be easily relaxed.
By setting an edge difference variance threshold ρ, the graph
can be generated at the required coarsened level. The method
is demonstrated on the Amsterdam city network for four
applications. The method was able to successfully reduce the
Amsterdam network by up to 96% of its original size at a
computation time of no more than 15 minutes with a limited
loss of information as indicated by the preservation of key
network characteristics. For offline use (e.g. transportation
planning, simulation model generation), this performance is
considered satisfactory.

An initial verification study analysing some of the topo-
logical measures provide some important observations. For
global and local topology preservation applications, pruning
must be disabled as it might remove a node or link that is
necessary for the shortest path and connectivity. However, for
applications that require a more compact network, pruning is
useful. With more than 95% of the nodes removed, we found
a maximum deterioration of just 0.025% in the shortest path
of the ODs. This confirms the assumption that it is not
necessary to check if the shortest path is preserved after
each node collapse. We also showed that all the multiscale
Amsterdam networks fit the power law with similar goodness-
of-fit as the original network with a maximum deterioration
of approximately 1 for the power law exponent. One of the
key finding from the four application cases was that there is
at least a minimum reduction of 14 − 38% in the network
complexity with the strictest constraints. This decrease can
have significant impact on computational efficiency especially
when dealing with time-dependent networks.

From the results we conclude that the algorithm offers an
effective coarsening solution for many transport applications.
The method can be used as a preprocessing step for many
network-wide applications - either to reduce the network
complexity or to generate multiscale representations of these
networks. Application include a range of ITS applications
from design to control such as hybrid modeling, traffic assign-
ment, real time predictions, visualisations, etc. Most of the
operations on large-scale networks require hardware capabil-
ities or high-level optimisations to be viable for real-time or
even exploratory studies. This simple open-source algorithm
is an initial step to remove some of these complexities at
network-level before adding high dimensional information on
the graph. This is especially important in the age of big data,
where data availability may no longer be the problem, but
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rather the efficient capabilities to use the data may prove a
new bottleneck for modelers and analysts.
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