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A B S T R A C T   

Although there have been many efforts in the literature to hindcast the patterns of longshore sediment transport 
(LST), they mainly disregarded uncertainty issues. Forcing datasets, wave transformation methods, and LST 
models are among the main sources of uncertainty in LST estimations. The combination of the aforementioned 
sources of uncertainty makes the estimation of LST patterns challenging for non-straight coastlines as the un
certainty ranges might vary from site to site. In this paper, a simple ensemble modeling framework was employed 
to investigate LST rate uncertainty at seven sites along a non-straight coastline (Gold Coast, Australia). The 
ensemble was formed by two different forcing datasets (i.e., integral parameters of total wave energy from two 
hindcast datasets of ERA5 and CAWCR), two different wave transformation methods (i.e., inclusion and exclu
sion of local wind effects), and eight LST models (i.e., bulk formulae and process-based models). Moreover, the 
relative importance of each source of uncertainty was ranked using the ANOVA-variance-based model. Finally, 
the weighted ensemble mean was used to investigate intra- and inter-annual variability of LST rates. The results 
showed that the range of uncertainty of LST rates for open coasts of Gold Coast is much higher than that of semi- 
sheltered coasts. On annual scale, for open coasts, 40% to 50% of total uncertainty was due to the choice of wave 
transformation methods, while for semi-sheltered coasts, it was 20%–30%. Moreover, almost for all sites, 30% to 
50% of total uncertainty was controlled by the choice of LST models and the interaction of wave transformation 
methods and LST models. Although the weighted ensemble mean could provide an estimate of LST patterns along 
the coast, addressing the residual uncertainties (arising from other sources, discussed at the end of this paper), in 
future works, would help increase the certainty of the estimations.   

1. Introduction 

Coastal systems such as sandy coasts evolve under different coastal 
processes acting in different temporal and spatial scales (Masselink and 
Hughes, 2003). On the decadal time-scales, gradients in wave-driven 
longshore sediment transport (LST) and sea-level rise (SLR)-induced 
erosion are the key processes contributing to long-term coastal evolution 
(Hallin et al., 2019). While SLR-driven erosion tends to be approxi
mately uniform along uninterrupted coastlines, LST-driven erosion/ac
cretion varies along the coasts due to the variability of nearshore wave 

patterns (Antolínez et al., 2018). Given the wave forcing as the main 
driver of coastal sediment transport in coastal areas, understanding 
variations in wave patterns (e.g., wave height and direction, severity 
and number of storms) and the time scale of these changes is crucial to 
cover both short-term (e.g., 5–10 years) and long-term (e.g., 30–50 
years) horizons of coastal planning. 

Although hindcasting long-term patterns and magnitude of LST can 
provide valuable information for shoreline management plans (Mangor 
et al., 2017), reliable estimation of LST is still a challenging task. In this 
regard, different types of uncertainty need to be considered and 
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quantified in LST estimations (e.g., Kroon et al., 2020). Forcing condi
tions and LST models are the main sources of uncertainty in LST esti
mations (Murray and Antolínez et al., 2019; Zarifsanayei et al., 2020). In 
recent years, different hindcast datasets of offshore waves and wind 
forcing have become available on a global scale (e.g., ERA5, Hersbach 
et al., 2020; CAWCR, Smith et al., 2020). As the datasets are generated 
with different wave modelling frameworks forced by different wind 
fields, each dataset might present a different pattern of offshore waves. 
Offshore waves should be translated to nearshore forcing using spectral 
wave models. The effect of local wind on wave transformation can also 
be considered in the same manner. However, the high computational 
costs of spectral models are generally prohibitive for simulation of full 
time series of waves and local winds. To overcome this issue, different 
approaches such as traditional binary look-up tables (e.g., Vieira Da 
Silva et al., 2018), energy flux method (e.g., Benedet et al., 2016) and 
machine-learning-based techniques (e.g., Antolínez et al., 2016) have 
been developed for calculating wave transformation with reasonable 
computational costs (see de Queiroz et al., 2019 for more details). The 
obtained nearshore wave forcing could be introduced to different classes 
of LST models, including bulk formulae (e.g., Shaeri et al., 2020) and 
process-based models (e.g., Tonnon et al., 2018), to estimate variations 
of littoral drift in time and space. It should be noted that addressing all 
the main sources of uncertainty in sediment transport studies is normally 
overlooked, and as a result the level of confidence of the estimations is 
not presented. Scrutinizing the uncertainty is also important for climate 
change-driven coastal erosion studies, where uncertainties from 
different sources accumulate and eventually can question the reliability 
of any management decisions made accordingly (Le Cozannet et al., 
2019; Morim et al., 2019; Ranji et al., 2022; Toimil et al., 2020). 

This paper aims to quantify main sources of uncertainty when esti
mating the annual and seasonal patterns of LST rates, at the Gold Coast, 
southeast Queensland, Australia. An ensemble of LST estimations is 
developed to account for the uncertainty associated with the choice of 
hindcast forcing datasets (FD), nearshore wave transformation methods 
(WT) and LST models (LSTM). Evolution of uncertainty across time and 
associated with each source is quantified using a variance-based method 
for seven sites along the GC. A weighted ensemble mean is also 

developed to investigate temporal and spatial variability of LST 
patterns. 

2. Study area 

The Gold Coast (GC) is a coastal city located in southeast Queens
land, Australia (Fig. 1a). The city’s unique beaches are also a major 
reason for the rapid development of tourism industry which is one of the 
main sources of local revenue. The GC has 35 kms of predominantly 
sandy coast stretching north from Tweed River entrance to GC Seaway 
(Fig. 1b). The beaches are characterised by medium to fine sand which is 
uniformly distributed along the coast (Mathews et al., 1998). The littoral 
system is interrupted by three natural headlands and four river/creek 
inlets. Periodic beach nourishment has been adopted as a plausible so
lution for coastal erosion for this area (DHL, 1992). The required sand 
volume for beach nourishment is usually supplied from offshore de
posits, river inlet dredging, and sand bypassing/back passing. A sand 
bypassing system located in the proximity of the Tweed River inlet 
pumps sediment to several downdrift sites to decrease the risk of not 
only the inlet closure but also to avoid sediment deficit for the southern 
beaches. Another Sand bypassing system, located at the northern end of 
GC close to the GC Seaway, is under operation for the same reasons. The 
city’s shoreline experiences unidirectional northward littoral drift due 
to the predominance of wave energy from south easterly direction. The 
average long-term net northward littoral drift of 635,000 m3/year has 
been estimated for the northern GC by extensive sediment budget 
analysis supported by comparison of hydrographic surveys, rate of sand 
bypassing system operations, and numerical modelling (e.g., GCCM, 
2017). 

The deep-water wave climate of southeast Queensland is influenced 
by swell-wave mechanisms, normally generated in the Southern Ocean, 
Tasman Sea and Coral Sea; and also, sea waves generated by local winds. 
Long term patterns of net wave energy reaching the coast, clearly shows 
the predominance of southeasterly waves (Fig. 2a). The swell window is 
quite large and extends to the eastern Pacific Ocean. However, only very 
low energy from there propagates to the study area without any sig
nificant contribution to LST. Wave climate systems of this region can be 

Fig. 1. a) Study area (highlighted); b) location of sites selected for LST estimations.  
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decomposed into three distinct seasons (CGC, 2015); summer (Dec to 
May), winter (June to Aug), and spring (Sep to Nov). The summer wave 
climate is characterized by consistent trade-wind swell and tropical 
cyclones. Moreover, swell wave energy from east to southeasterly di
rection exists (see Fig. 2b). During the winter season, eastern Australia is 
influenced by the eastward passage of intense low-pressure systems to 
the south, which generate moderate to high energy south to southeast 
swell (see Fig. 2c). Intense low-pressure systems known as East Coast 
Lows (ECL’s) also develop in the Tasman Sea and rather than tropical 

cyclones, ECL’s are responsible for most of high wave energy events of 
southeast Queensland. The spring season wave climate is calmer 
compared to the other seasons. This is due to a reduction in swell wave 
energy (reduction in frequency of ECL’s) from south to southeasterly 
directions. Rotation of wave energy toward a more easterly direction is 
also conceivable (see Fig. 2d). Local wind seas are generated in different 
seasons (particularly during summer) and can combine with swell waves 
and may also approach the coast from a different direction to swell. 

The exposure of GC beaches to the wave climate varies from south to 

Fig. 2. Long-term footprints of net wave energy reaching offshore region of the GC at different timescales; a) Annual; b) Summer; C) Winter; d) Spring; Positive 
values of the color bar refer to the generation areas of wave energy while negative values refer to the dissipation areas of wave energy; Isolines show the average 
traveling time of the waves (following Pérez et al., 2014). 
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north mainly due to coastal curvature along the shoreline. The northern 
GC has open beaches which are generally east facing. The southern GC 
beaches are semi embayed beaches (zeta-shaped coastline) which curve 
strongly to face northeast to north. All parts of GC beaches are vulner
able to swells from the east to northeast direction. Contrary to the 
northern GC beaches, the southern GC beaches are less exposed to the 
dominant southeasterly swell direction (due to sheltering effects). 
Additionally, the relatively narrow width of the continental shelf can 
refract the dominant southeasterly swell waves significantly. Broadly 
speaking, refraction and sheltering effects can also result in an 
increasing wave height from south to north of the GC. 

The focus of this paper is seven sites covering south to north of GC 
shoreline. The sites were selected to investigate uncertainty in LST 
estimation (Fig. 1b). All sites are relatively located far from the coastal 
structures and headlands. One site is located in updrift of the Tweed 
River sand bypassing system (site A), two sites are located in the semi- 
embayed coasts (sites B and C), one site is located at the middle of GC 
(site D), and three sites are located in open coasts of northern GC (sites E, 
F, and G). 

3. Methodology 

3.1. Overview of the modeling framework 

In this study, an ensemble modeling framework consisting of two 

different forcing conditions, two wave transformation methods, and 
eight LST models were employed to estimate LST rates at seven sites 
along the GC shoreline. The modeling framework is outlined in Fig. 3. 

3.2. Datasets of forcing conditions 

Generally, data from different sources such as hindcast projections, 
wave rider buoys, and satellite can be used as offshore wind and wave 
forcing conditions. Although it is preferable to use the measurements to 
estimate LST patterns, the data are limited to specific sites, specific 
parameters (e.g., significant wave height, Hs) and they usually do not 
present long-term continuous time history. Due to the aforementioned 
limitations in the measurements, usually, wave information from wave 
hindcast projects can be of interest to coastal engineers. Several global 
wave hindcasts have been developed in the last decade using different 
wind forcing and wave models’ settings. Prime examples of such data 
sources are CAWCR (Center for Australian Weather and Climate 
Research; Smith et al., 2020) and ERA5 (the fifth generation of ECMWF 
-European Centre for Medium-Range Weather Forecast- atmospheric 
reanalyses of the global climate; Hersbach et al., 2020). 

The CAWCR hindcast dataset has been developed by CSIRO 
(Commonwealth Scientific and Industrial Research Organisation) with 
the primary objective of generating global data on a coarse resolution 
spatial grid of 0.4 deg, and higher resolutions of 4 arc minutes and 10 arc 
minutes for the Australian and central and south west Pacific region 
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Fig. 3. Modelling framework.  
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(Durrant et al., 2014; Smith et al., 2020). Wind forcing data for the 
CAWCR hindcast were extracted from CFSR (Climate Forecast System 
Reanalysis, Coverage 1979–2011, with a spatial resolution of 0.3◦) and 
CFSv2 reanalysis (coverage 2011-present, with a spatial resolution of 
0.2◦) which have an hourly temporal resolution. In the CAWCR project, 
the third-generation wave model WAVEWATCH III (Tolman, 1991) was 
driven with the surface wind fields (obtained from the sources 
mentioned before). The main outputs of CAWCR at the global resolution 
are integral wave parameters of total wave energy (e.g., Hs, peak wave 
period Tp, mean wave direction Dm), wave parameters for four partitions 
(three partitions for swell and one partition for sea waves), and also 
wind parameters. 

ERA5 is a climate reanalysis dataset developed by ECMWF, covering 
the time slice 1979 to present, whose outputs are re-gridded with a 
spatial resolution of 0.25◦ and 0.5◦ for atmosphere and ocean waves, 
respectively. ERA5 reproduces wind fields, particularly during stormy 
conditions, more precisely than the dataset of ERA-Interim (e.g., Bel
monte Rivas and Stoffelen, 2019). As a result, more reliable wind fields 
are used for the ocean wave simulations carried out using the WAM 
model (Hasselmann et al., 1988). Similarly, to CAWCR, integral pa
rameters of total wave energy, as well as wave parameters of three swell 
partitions and one wind sea partition, and wind parameters are the main 
output data. 

In this study, wind and wave parameters from ERA5 and CAWCR 
(with spatial resolution of 24 min for waves) datasets for the time slice 
1979–2020 were extracted. This way, different datasets from different 
modelling frameworks with more or less the same resolution were uti
lized. Wave data of a grid point close to the study area located in deep 
water, were used as the boundary condition of a wave model (Fig. 1a and 
Table 2). Wind data for the nearest grid points to GC (wet grids) were 
extracted and averaged (see part A of the supplementary). 

The nearest co-located grid points of ERA5 and CAWCR datasets, and 
Brisbane buoy (located at the depth of 70 m) were chosen to calculate 
the accuracy metrics for onshore directed waves (180 > θ > 0) for the 
period 2000–2020 (Table 1). More details about comparison of the 
hindcast datasets with the Brisbane buoy data through drawing long- 
term pattern of mean energy flux on a polar coordinate system, and 
also QQ-plots are available in part A of the supplementary. Moreover, 
wind roses of ERA5 and CFSR were qualitatively compared with that of 
GC Seaway automatic station, and they were in reasonable agreement 
(not shown). 

From monthly averaged wave parameters of ERA5 and CAWCR 
datasets, some valuable information was obtained (Fig. 4a and b). First, 
three distinct seasons (i.e., summer, winter, and spring) for wave climate 
do exist. During the summer season, monthly mean wave height is 
higher, and monthly averaged wave direction varies from east to south 
easterly direction. From the beginning of the winter season, wave height 
decreases slightly, while monthly averaged wave direction tends to 
remain within the south-easterly direction. When spring starts, there is a 
reduction of wave height, and rotation of monthly averaged wave di
rection from south-easterly to east is evident. Although, general patterns 
of waves on a monthly scale -observed in both datasets of ERA5 and 
CAWCR- are consistent, different magnitudes for wave parameters 
(particularly for wave direction) are reported. Such differences at the 
offshore boundary condition of a wave model might lead to a more 

significant difference in estimation of nearshore waves. 
Monthly averaged wind parameters show that the wind speed of 

CAWCR is at least 5% more than that of ERA5 (Fig. 4c and d). Moreover, 
hindcast monthly averaged wind direction from both datasets are 
somewhat different. Both datasets show that during summer, wind and 
offshore wave directions are nearly in line. But during spring, most of 
the time, the angle between monthly averaged wind and wave is large 
(>40 deg). Seasonal wave and wind roses are also available in part A of 
the supplementary. 

3.3. Wave transformation 

3.3.1. Wave model set-up and calibration 
In this study a hybrid method for downscaling of offshore waves to 

the nearshore area was employed. The method first requires a calibrated 
wave model (Mike 21 SW) for transformation of some samples (and/or 
the centroid of clusters) of offshore waves to the nearshore. Mike 21 SW 
is a third-generation spectral wave model, it is capable of simulating the 
generation of waves by winds, dissipation by white capping, depth 
induced wave breaking, bottom friction and wave-wave interaction in 
both deep and shallow water (DHI, 2017). The model was previously 
used successfully for the GC region to simulate wave and sediment 
transport (e.g., Splinter et al., 2012). 

Fig. 5 indicates the computational domain of the model with the 
main open boundary located at east extended to north and south, two 
lateral boundaries located at north and south, and a closed (land) 
boundary located at west. To minimize the effect of inaccurate lateral 
boundary conditions, the domain was created with sufficient distance on 
either side. 

To ensure the mesh size does not impact the patterns of LST, the 
following steps were taken. Different wave models were set up by 
changing the mesh size. Each wave model was forced with a subset of 
350 characteristic wave boundary conditions extracted from the joint 
ERA5 and CAWCR wave datasets (Hs, Tp, Dm).The subset was extracted 
from the datasets by first applying the Maximum Dissimilarity Algo
rithm (MDA), and then K-mean Algorithm (MKA) (Camus et al., 2011b). 
The MDA reduced the size of the original dataset to 1/10 while 
distributing wave conditions more uniformly. Then, the KMA was more 
capable of capturing both extreme and modal wave climate to cluster 
wave data. For each setting of the wave model (different mesh size), the 
centroids of clusters were transformed to nearshore regions at 15 m 
water depth (depth of closure) for the seven sites mentioned in the 
previous section. Waves from that water depth were transferred to the 
breaking point using Larson et al. (2010) formula. Then LST rate was 
calculated using the most recent bulk formula of Shaeri et al. (2020). 
Knowing the probability of occurrence of each cluster, long-term 
average annual net LST rate for each site along the coast, associated 
with each wave model setup, was then estimated. When a new model 
setup (with new mesh size) had a marginal influence on the LST rate for 
each site, the analysis was stopped. At the final step of mesh size 
sensitivity analysis, the number of required grids was 8500 to generate 
varying mesh sizes (i.e., 12 km2 at offshore region reaching 0.0045 km2 

in nearshore). The same steps were taken to find the required number of 
bins for directional discretization of wave energy equation in Mike 21 
SW. It was found that 50 bins covering 0–360◦ suffices for accurate wave 
simulations. 

The wave model was calibrated in two steps. At the first stage of the 
model calibration, eight months wave data from offshore buoys 

Table 1 
Accuracy metrics of ERA5 and CWCAR waves with respect to Brisbane Buoy.  

Parameter Datasets Correlation Coefficient (R) RMSE BIAS 

Hs (m) ERA5 0.89 0.32 m − 0.04 m 
CAWCR 0.88 0.37 m 0.14 m 

Tp (sec) ERA5 0.57 1.89 s − 0.3 s 
CAWCR 0.55 1.94 s − 0.12 s 

D (deg) ERA5 0.67 31 deg − 7.5 deg 
CAWCR 0.71 29 deg − 5.5 deg  

Table 2 
Comparison of significant wave height distribution from two datasets of ERA5 
and CAWCR (1979–2020) at offshore boundary of the wave model.  

Datasets Hs100 Hs99 Hs95 Hs50 

ERA5 7.40 m 3.95 m 2.96 m 1.65 m 
CAWCR 8.08 m 4.18 m 3.09 m 1.68 m  

A.R. Zarifsanayei et al.                                                                                                                                                                                                                        
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(Brisbane (BB) and Tweed offshore (TOB) wave buoys data for the time 
slice Feb 2020 to Sep 2020) were used as the boundary condition of the 
wave model. At this stage, no wind forcing was considered as the 
boundary condition of the wave model was obtained from the buoys that 
have been already influenced by local wind energy. The results of wave 
simulations were compared with two nearshore wave buoys data (Gold 
Coast (GCB) and Pam beach (PBB) wave buoys) to tune directional 
standard deviation and bed friction parameter. Fig. 1a indicates the 
location of the buoys used in this study. At the next stage of the model 
calibration white capping parameters were tuned. To do so, wind and 

wave forcing conditions obtained from CAWCR datasets (with a reso
lution of 4 min), were used. The model was run for two periods Jan–Feb 
2013 and May–June 2009 when significant wave forcing from the 
offshore region along with local wind resulted in two extreme conditions 
accompanied with waves higher than modal conditions (i.e., Hs > 1.7 
m). The results of the simulations were compared with the GC Buoy 
data. More details about wave model calibration can be found in part B 
of the supplementary. 

Fig. 4. Monthly mean of wind and wave parameters; a) monthly averaged significant wave height; b) monthly averaged mean wave direction; c) monthly averaged 
surface wind speed; d) monthly averaged surface wind direction; The whole time series of the forcing conditions, summarised in this figure, were employed for wave 
simulations. 

Fig. 5. Left: Computational domain; Right: the area of interest.  
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3.3.2. Reconstruction of nearshore waves of CAWCR and ERA5 datasets 
Different approaches such as the energy flux method, K-mean algo

rithm (KMA), and traditional look-up tables have been used for this case 
study to transform offshore waves to nearshore ones (Faivre et al., 2017; 
Splinter et al., 2011; Vieira Da Silva et al., 2018). In all of the methods 
some samples/centroids of clusters are selected and used as the 
boundary condition of a spectral wave model. The energy flux method 
cannot properly capture the patterns of storms conditions as the 
approach provides the average of each group as a function of wave en
ergy distribution. However, due to its simplicity, it is popular. Clustering 
approaches like K-mean are capable of condensing large data in a 
multidimensional space (e.g., Hs, Tp, Dm). However, they suffer from 
missing the data located at the edges of the cloud of data (e.g., extreme 
conditions). Hence, this strategy usually underestimates extreme con
ditions and overestimates calm conditions. To overcome this issue, the 
forcing parameters can be weighted (see de Queiroz et al., 2019) to push 
the algorithm to a side of the cloud of data (e.g., towards extreme 
conditions) with the risk of missing data located at the other side of 
cloud of data (e.g., calm conditions). The performance of traditional 
look-up tables is usually dependent on the samples selected as the 
boundary condition of a wave model. In this method nearshore wave 
time series are reconstructed using multi linear interpolations. Although 
increasing the number of bins could improve the skill of traditional 
look-up tables, this leads to unmanageable/infeasible computational 
costs particularly if both wave and wind parameters are being consid
ered. For instance, the number of required wave simulations assuming 
10 bins for wave height, 8 bins for wave period, 15 bins for wave di
rection, 5 bins for wind speed, 5 bins for wind direction is 30,000. Also, 
it should be noted that in previous studies the effect of local wind on 
nearshore waves was overlooked. Since the relation between sediment 
transport and wave forcing is nonlinear, errors in wave transformation 
can develop uncertainty of estimated LST patterns remarkably. 

To reconstruct the whole time series of nearshore waves with a more 
reliable approach, two promising alternatives were tested. The first one 
aims to create a look-up table of characteristic wave conditions, as 
described in 3.3.1. The second one consists of training a surrogate model 
for wave transformations (Camus et al., 2011a). The surrogate model is 
built on three steps. First, a subset of characteristic wave boundary 
conditions is selected. Second, stationary wave transformations using a 
spectral wave model are carried out on this subset. And third, non-linear 
interpolation techniques are used to reconstruct nearshore wave time 
series. In this regard, sampling with the MDA algorithm and interpo
lating with Radial Basis Functions (RBF) has been shown successful to 
investigate wave-induced sediment transport (Antolínez et al., 2018, 
2019). 

After checking the accuracy of each alternative, it was decided to 
follow the second approach (i.e., wave transformation through a sur
rogate model). Then, nearshore waves associated with the following 
forcing conditions were reconstructed:  

a. Wave conditions at offshore boundary without local wind effects 
(hereafter WT1), and  

b. Wave conditions at offshore boundary plus wind forcing (hereafter 
WT2). 

In this way, inclusion/exclusion of local wind impacts on wave 
growth was treated as the uncertainty of the wave transformation 
process. 

Generally, an issue for reconstruction of nearshore waves and esti
mation of the corresponding LST patterns is the way by which the 
boundary conditions are defined. Usually, integral parameters (i.e., Hs, 
Tp, Dm) associated with total wave energy are chosen and then converted 
to a single peak wave density spectrum format. However, mixed sea 
states (multi-modal conditions) can change the shape pf spectrum from 
single peak to multiple peaks. It should be pointed out that addressing 
uncertainty arising from working with integral parameters versus sea- 

swell partitions is beyond the scope of this paper. Hence, in this 
paper, the assumption of having a single peak spectrum at the boundary 
condition of the wave model was adopted. More details about mixed sea 
states of GC can be found in part C of the supplementary. 

Given the abovementioned assumptions, the steps of Fig 6 were 
taken to convert time series of offshore wave parameters of Hs, Tp, Dm, 
and wind speed Ws and wind direction Wd to nearshore waves time 
series at each site along the GC shoreline. The reconstructed nearshore 
waves were validated against the calibrated wave model (Mike 21 SW) 
for all sites (in part C of the supplementary the performance of the wave 
reconstruction method at site D was presented). 

3.4. LST models: set-up and calibration, and LST estimates 

Two classes of LST models (i.e., bulk formulae and process-based 
models) were employed to provide an ensemble of outputs. Four bulk 
transport formulae, including modified CERC (Mil-Homens et al., 2013; 
hereafter MC), modified Kamphuis (Mil-Homens et al., 2013; hereafter 
MK), van Rijn (van Rijn, 2013; hereafter V) and Shaeri et al. (2020) 
(hereafter S) were selected. Each formula presents a different level of 
sensitivity to different parameters (see also part D of the supplemen
tary). Hence, it is worth using all of them to capture a wide range of 
uncertainty in LST estimations. 

Apart from the bulk formulae, the process-based model DHI- 
LITPACK (hereafter DHI) which accounts for the shape of coastal pro
files (i.e., nearshore bathymetry), was used. The model has a number of 
factors to control the estimate of LST rate. Hence, an extensive sensi
tivity analysis was conducted in advance. To do so, a short stretch of 
coastline close to the GC seaway (site G) was chosen. Coastal profiles 
measured since 1966 (not measured on a regular basis) for this region 
was analyzed to choose three coastal profiles that could be representa
tive of a no-sand bar profile, a significantly eroded one, and a profile in 
transition between severe erosion and recovery (see part D of the sup
plementary). Forcing conditions for the model were obtained from the 
GC buoy for the period 2008–2020, when directional wave parameters 
were available. The sensitivity of the model to the most important set
tings can be found in the supplementary part D. 

Since the focus of this paper is on long-term patterns of LST, choosing 
a representative bathymetry to set up the process-based model, was a 
challenge. Although in the literature, it is common to take one of the 
hydrographic surveys (i.e., measured profiles) as the bathymetry of 
model (e.g., Bonaldo et al., 2015), the applicability of such a strategy for 
study of long-term patterns of coastal sediment transport is debatable. 
To address this issue, a synthetic equilibrium barred beach profile 
following Holman et al. (2014) was developed. To do so, available hy
drographic surveys were analyzed to find the mean position of the main 
bar crest and seaward limit of main bar for each location along the coast. 
All coastal profiles (except the ones measured after extreme conditions), 
were used for fitting the equilibrium barred profiles. The developed 
synthetic bathymetry preserves the main features of coastal profiles 
along the GC shoreline, including the existence of an outer sand bar with 
the mean position of 150–200 m measured from shoreline, seaward limit 
of sandbars located in water depth 5–6 m, and an average beach slope of 
0.025. As for this case study, almost in all seasons, stormy conditions 
occur (see part A of the supplementary), no clear/significant seasonality 
effect on the position of main bar was observed in the available hy
drographic surveys. Although during spring season the wave climate is 
relatively calmer than the other seasons, the occasional occurrence of 
storms, rotation of waves toward more easterly direction, and the 
limited time for recovery (about three months) restrict the occurrence of 
recovered profiles. Hence, for each site along the coast, only one equi
librium barred profile was fitted to the measured profiles (e.g., see Fig. 7 
for site G). 

Regarding the shoreline orientation, mean sea level was adopted as 
shoreline proxy, and average of long-term coastline orientation obtained 
from hydrographic surveys and satellite images (post processed by 
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Bishop-taylor et al., 2021), were used in this study (see supplementary 
part D). 

The GC buoy data, covering the time span 2008–2020 was used as 
the forcing condition for each LST model to reproduce the estimated 
average long-term annual net LST rate of 635,000 m3/year (GCCM, 
2017) for the northern Gold Coast (site G). For calibration of the bulk 
transport formulae, simple adjustment factors were applied; while for 

calibration of the process-based model, its free parameters were tuned 
(see part D of the supplementary). To transform GCB wave data to the 
breaking zone, depth-induced breaking wave height was estimated 
using the breaker index (γb) of Kamphuis (2010): 

γb = Hsb/db
= 0.56 e3.5m (1)  

where Hsb is breaker height, db is the water depth at breaking point, and 

Fig. 6. Flow chart of nearshore wave reconstruction.  

Fig. 7. Equilibrium barred beach profile fitted to the measured coastal profiles at site G.  
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m is the average surf zone bed slope. Moreover, for the DHI model, the 
wave motion outside boundary layers was estimated using the non- 
linear wave theory of Doering and Bowen (1995). This semi empirical 
theory is valid for both breaking and non-breaking waves. The DHI 
model calculates bedload through the empirical approach of Zyserman 
and Fredsøe (1994) or the deterministic approach of Engelund and 
Fredsøe (1976). Both approaches were used as the model was sensitive 
to the choice of bedload description. Moreover, according to Ostrowski 
(2016) suggestions, each bedload description was combined with 
non-graded and size-graded sediment transport modeling. Finally, four 
different set-ups of the DHI model were used (see part D of the supple
mentary). In this way, process-based models (one model with different 
set-ups) along with four bulk formulae were used to avoid bias against 
the results of any class of models for ensemble modeling. 

The calibrated LST models were then forced with the reconstructed 
nearshore waves of CAWCR and ERA5 datasets (transferred with WT1 
and WT2) to estimate LST patterns at each of seven sites along the coast. 
Among the sites, site A is more vulnerable to changes in shoreline 
orientation due to interaction of management scenarios and natural 
processes. Hence, for this site, relationship between shoreline orienta
tion and annual mean LST rate under different forcing conditions (i.e., S- 
Phi curve) was also calculated (see supplementary part E). 

3.5. Contribution of each source of uncertainty to total uncertainty 

The ensemble modelling yields a set of results showing LST rate 
variations in time and along the coast. Here, it was aimed to decompose 
total ensemble uncertainty into the main sources of uncertainty and 
their interactions. To do so, following Morim et al. (2019), the 
variance-based method of ANOVA was used. To improve the reliability 
of ANOVA method and decrease the bias in estimates of variance sour
ces, following Bosshard et al. (2013) a subsampling scheme was adopted 
beforehand. In each subsampling iteration n, two FDs, two WTs, and two 
LST models were considered and introduced to ANOVA model. Given 
three predefined factors of uncertainty in LST estimations, the following 
three-factor ANOVA model without replication was employed for each 
subsample: 

LSTn
ijk = μn + FDn

i + WTn
j + LSTMn

k + int (FD,WT )
n
ij + int(FD, LSTM)

n
ik 

+int(WT,LSTM)
n
jk + int(FD,WT,LSTM)

n
ijk (2)  

where LSTijkn is an observation of the response variable (here LST rates) 
in subsample n. μn is the overall mean of the LST rate in subsample n. FDi 
, WTj, and LSTMk are the variance arising solely from the individual 
factors FD, WT, and LSTM, with i, j, and k denoting samples of different 
factors (i = 1,2, j = 1,2, k = 1,2) for each subset of simulations by a 
combination of two FDs, WTs, and LSTMs. Terms ‘int’ shows interactions 
between the specified factors. Note that the inputs of ANOVA method 
can be introduced with different time formats (e.g., monthly, seasonally, 
yearly) to investigate the contribution of each source of uncertainty in 
total variance that varies in time. The results extracted from each sub
sample n (i.e., variance of each source divided by total variance) are 
summed and averaged to present the mean unbiased estimates of frac
tion of the total uncertainty attributable to each source. 

3.6. Weighting the members of the ensemble 

The ensemble of results was presented by 32 members (e.g., CAWCR 
(as the forcing dataset)+WT1 (as the wave transformation)+S (as the 
LST model) = LST estimations associated with member #1) that might 
have different performance. Hence, finding a weight for each member of 
the ensemble was required. A weighted average estimation of LST rate 
was obtained by using the accuracy of each member relative to the 
reference LST data. Following Marsooli et al. (2019), a weighting factor 
was assigned to each member of the ensemble, based on quantitative 
model skill of Willmott (1981): 

MSEi =
〈
(mi − r)2 〉 (3)  

Si = 1 − MSEi

/〈
(|mi − 〈r〉| + |r − 〈r〉| )2

〉
(4)  

Wi = Si

/∑
Si (5)  

where mi represents LST rates associated with the member i of the 
ensemble, r is the reference LST data, MSEi is mean square error, <>

denotes a mean, Si is the Wilmott skill score (0 < Si < 1), Wi is the weight 
assigned to the member i. Note that the annual LST rates at site G 
(2008–2020), obtained from each calibrated LST model under forcing 
conditions of GC, were used as the reference LST data for weighting each 
member of the ensemble. 

4. Results and discussion 

All LST models used in this study, could only work with integral 
parameters of total wave energy (not the shape of spectrum nor integral 
parameters from different partitions). Hence the representative wave 
parameters (i.e., Hs, Tp, and Dm associated with total wave energy), were 
employed to build a single-peak spectrum to be used as the boundary 
condition of the wave model. Following de Swart et al. (2020), within 
the wave parameters of hindcast datasets, Dm can be a decent repre
sentative of wave direction for the reconstruction of a single peak wave 
spectrum, as Dm is influenced by both sea and swell partitions of wave 
energy. Dm in combination with DSD parameter can control the direc
tional pattern of total wave energy approaching the coast. Hence, to 
choose more reasonable parameter for wave spectrum, the DSD 
parameter was also tuned. A DSD value of 35 deg was finally adopted, 
implying that a narrow-banded spectrum (e.g., a swell dominated 
spectrum) cannot be considered for this study area. In this way, the ef
fect of both partitions of the sea and swell on the representative offshore 
waves, wave transformation, and the resulting LST were considered 
implicitly through parameters Dm and DSD of total wave energy. 

The results of nearshore wave reconstruction were employed to es
timate the patterns of wave attenuation (i.e., relationship between Hs- 

offshore, Tp, Dm-offshore and Hs-nearshore) when offshore waves approach the 
coastal sites. Fig. 8 shows wave attenuation patterns for site D associated 
with two cases of CAWCR + WT1 and CAWCR + WT2. As shown, for 
case CAWCR + WT2, most often lower magnitude of wave attenuation is 
observed, compared to the case CAWCR + WT1. The negative values of 
Fig. 8c and 8d belongs to the waves captured wind energy remarkably 
that resulted in Hs-nearshore/Hs-offshore>1 (in part C of the supplementary 
the relation of Hs-offshore, Tp, Dm-offshore and Hs-nearshore is shown for sites 
A, B, and G). 

Fig. 9a indicates the average of wave attenuation patterns along the 
coast (for case CAWCR + WT1). It implies that the existence of an 
embayed beach at south GC connecting to an open coast at north has 
caused nearshore wave conditions varying along the coast. Offshore 
waves from N to NE directions experience the same attenuation nearly at 
all nearshore sites; the percentage of wave height reduction varies from 
50% to 20% when offshore waves change from N to NE direction. With 
the rotation of offshore waves from NE to E direction, less wave atten
uation was observed in northern GC compared to the southern GC, as 
normal to the coastline (nearshore contours) is toward east direction and 
waves do not experience much refraction. However, almost at all sites, 
the amount of attenuation did not change much in response to the 
rotation of offshore waves from NE to E direction. For offshore waves 
approaching the coast from SE swell direction, strong refraction and 
sheltering of southern GC sites (particularly B, and C located at down
coast of a large headland), has resulted in a significant decrease in wave 
height; the percentage of wave height reduction varies from 35% to 55% 
when offshore waves deviate from E to SE direction. But for northern GC 
sites (e.g., sites E, F, and G), the observed wave height reduction was 
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much less than the southern sites’; the percentage of attenuation varies 
from 20% to 45%. 

The patterns of average wave attenuation in Fig. 9a were also qual
itatively in good agreement with Vieira Da Silva et al. (2018) estima
tions, where they used Brisbane Buoy data as the boundary condition of 
a SWAN model, without considering the local wind forcing, to investi
gate wave climate variability along the GC shoreline. 

When offshore waves were transferred to the nearshore zone through 
WT2, the wave attenuation patterns along the coast has changed 
(Fig. 8c, d, and 9b). On average, there was an estimation of 25% 
decrease of wave attenuation along the coast, compared to case WT1. 
This implies that by the inclusion of local wind forcing, positive net 
energy was supplied to the coastal system that could remarkably in
crease wave height along the coast and alleviate the wave dissipation 
due to other processes (e.g., refraction). 

To examine the impacts of local wind on the temporal patterns of 
reconstructed nearshore waves, monthly mean wave parameters Hs and 
Dm were calculated for each site along the coast. Additionally, the 
alongshore component of energy flux was calculated to provide first 
impression about the potential impacts of local wind on LST patterns at 
all sites (see Fig. 10 for sites A, B, D, and G). Overall, at all sites along the 
coast, considering local wind for wave transformation resulted in a net 
shift (increase) of monthly mean wave height of about 10% compared to 
monthly mean wave height obtained from exclusion of local wind. For 
south GC sites (e.g., sites A, B), during January to May (summer season) 
the patterns of mean wave direction did not vary remarkably by 

including local wind. But during winter and spring seasons (July to 
December), the inclusion of local wind in the wave transformation, 
compared to the exclusion of local wind effects, caused significant 
changes in mean wave direction patterns (see Fig. 10, left panel). As 
during the spring season lower swell wave energy from southeasterly 
direction reaches GC beaches, given the existence of strong local wind 
prevailing from northeast direction during this period (see monthly 
averaged wind direction, Fig. 4) inclusion of local wind for wave 
transformation can result in the overestimation of wave height and 
significant rotation of waves toward a more easterly direction. Inclusion 
of local wind also caused an increase in the magnitude of the longshore 
component of energy flux at sites A, B, and C (site C not shown) during 
the summer season, while during spring it led to having a meagre energy 
flux (about zero) at these sites (Fig. 10, right panel). Zero energy flux 
during spring season means probably no LST. But it does not seem 
reasonable for site A, as this site is close to the Tweed River sand 
bypassing system and the system is under operation during all months of 
the year; however, with less pumping during the spring season. For 
southern GC sites, the impact of local wind on energy flux was much 
higher during spring, compared to northern GC. Nonetheless, energy 
flux at northern GC sites was mainly impacted more by local wind 
during summer and winter, compared to southern GC. When WT2 was 
employed, a larger energy flux was seen for the CAWCR dataset 
compared to that of ERA5. But during the spring season, using both 
datasets led to a similar magnitude of energy flux. Such discrepancies 
are due to the differences between wind field and offshore waves of 

Fig. 8. Wave attenuation patterns at site D observed in whole time series of nearshore waves; a, b) case CAWCR + WT1; c, d) case CAWCR + WT2.  

Fig. 9. Average of wave attenuation for all sites; a) case CAWCR + WT1; b) case CAWCR + WT2.  
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ERA5 and CAWCR, particularly during the winter season. 
Although in this study, a rough criterion was employed for calibra

tion of LST models (i.e., reproducing a target rate of 635,000 m3/year as 
long-term average net annual LST rate), use of an accurate source of 
nearshore wave forcing (i.e., Gold Coast wave buoy data) was beneficial 
to assure that the calibration was not impacted by biases of the forcing 

conditions. When the calibrated models were forced by nearshore waves 
calculated by WT1, their long-term estimations were close to each other. 
But forcing LST models with nearshore waves obtained from WT2 
resulted in the estimations with large variance. Among the LST models, 
model V and DHI model (with four different set-ups) were very sensitive 
to changes in magnitude of wave height. Since WT2 produced larger 

Fig. 10. Monthly mean wave parameters (left panel) and alongshore component of energy flux (right panel) variations at different sites at water depth 15 m under 
different forcing conditions (different datasets and wave transformation methods); At site G, monthly mean of wave parameters, obtained from GCB data, were 
also presented. 
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wave heights compared to WT1, particularly during stormy conditions, 
forcing the aforementioned models with nearshore waves of WT2 yield 
over-estimation of LST rate, compared to the rest of the models 
(Fig. 11b). Normally, an increasing trend in the variance of LST esti
mations from southern to northern GC sites was observed, implying that 
there is a larger uncertainty in estimation of LST rate for open coasts of 
the GC which should be addressed (Fig. 11a). 

Judgment about the overall effect of inclusion/exclusion of local 
wind (i.e., WT1/WT2) on LST estimations for the GC coastal region can 
be challenging as the range of uncertainty in LST estimations varies from 
site to site and choosing one site arbitrarily to investigate the inclusion 
of wind/no wind effects on LST rate cannot necessarily yield reliable 
conclusions. Although for northern GC sites (open coasts), using WT2 
together with any LST model led to an overestimating trend in mean 
annual LST rate, for the sheltered site B, the inclusion of local wind 
showed an underestimating trend. Apart from the choice of site, the LST 
model selection has a great impact on making the judgment. For 
instance, if site D was selected for judgment about the overall effect of 
wind inclusion/exclusion on LST estimations, by using the LST model 
MK/S, one might conclude that local wind inclusion leads to an over
estimation of the mean annual LST rate by 10% while using LST model V 
and DHI-S1shows a 30% and 50% increase, respectively. Fig. 11b il
lustrates that at site D, for the case WT2, the variations of estimated 
annual LST rate obtained from all set-ups of DHI and V models were 
higher than those of the other models. It implies that the interaction of 
wave transformation method and LST models can also be a significant 
issue in estimations. For case WT2, the most significant overestimation 
of LST rate was seen at site G, where application of LST models S, MK, V, 
MC, DHI-S1, DHI-S2, DHI-S3, and DHI-S4 showed 30%, 33%, 75%, 45%, 
240%, 290%, 270%, 230% increase in long-term annual LST rate, 
respectively. It should be noted that all models, for the case WT1, had 
presented more or less the same LST rate, but in response to the forcing 
obtained from WT2 their estimations became very different from each 
other. The magnitude and sometimes the direction of the monthly LST 
rates were also impacted by the choice of wave transformation methods 
(see part E of the supplementary). These findings are different from the 
previous studies where wave transformation uncertainty and its inter
action with the choice of LST models were overlooked for the GC region 
(e.g., Sedigh et al., 2016; Splinter et al., 2011; Strauss et al., 2007). 

To get more insight into the relative importance of each source of 
uncertainty, the variance-based model ANOVA with a sub-sampling 
technique was utilized for each site individually on seasonal and 
annual scales (see Fig. 12 and also the supplementary part F). The 
ANOVA model ranked the three sources of FD, WT, and LSTM, and also 

attributed uncertainty to the non-linear interactions of the sources, 
including FD-WT, FD-LSTM, WT-LSTM, and FD-WT-LSTM. On the 
annual scale, moving from site B to G, the relative contribution of WT to 
total uncertainty became significant, i.e., ~20%, 40% and 50% of total 
uncertainty at sites B, D, and G, respectively (Fig. 12). The increasing 
trend in WT uncertainty from south to north is consistent with the 
findings illustrated in Fig. 11a, where variations of LST estimations in 
response to inclusion/exclusion of local wind was presented. Almost at 
all sites, 30% to 50% of total uncertainty was controlled by the choice of 
LSTM and the interaction of WT and LSTM. At all sites, the share of other 
interaction sources (all interactions minus WT-LSTM) in the total vari
ance of LST rates was meagre. The relative importance of FD in the total 
variance of LST estimations decreased from south to north GC. 

On a seasonal scale, during summer, at all sites (except site B) the 
effect of wave transformation uncertainty was about 50% of total un
certainty. Almost at all sites (except site G) during winter season the 
uncertainty associated with the FD was more significant than those of 
the other sources. This can be due to the differences between ERA5 and 
CAWCR datasets for the parameters of wind and wave direction during 
winter season (see also Fig. 4). Generally, the relative importance of FD, 
during the winter season, from south to north decreases as WT uncer
tainty grows. During the spring season for southern GC sites, much un
certainty is associated with WT. As mentioned before, during this 
season, inclusion of local wind for southern GC sites (sites A and B) led to 
meagre alongshore energy flux, while exclusion of local wind resulted in 
a positive magnitude for energy flux (see also the supplementary part E). 
During the spring season, the relative importance of WT decreases for 
northern GC sites. This issue is also consistent with the slight differences 
between the patterns of alongshore energy flux associated with WT1, 
and WT2 (see also Fig. 10). 

At the last step of ensemble modeling, a simple weight was assigned 
to each member of the ensemble (Fig. 13a). The smallest weights were 
given to the members overestimating the LST rate significantly, showing 
the adopted weighting scheme is working reasonably (e.g., all set-ups of 
DHI model and V under forcing CAWCR + WT2). Comparison of annual 
net LST rate obtained from the ensemble mean with the reference LST 
rate at site G implies that the ensemble modeling framework could 
generate reasonable patterns for LST (Fig. 13b). 

An estimate of the monthly and annual mean LST rates, and the LST 
rates during non-modal conditions can be found using the weighted 
ensemble mean. Moreover, intra- and inter-annual variability of the LST 
rates (i.e., intra-annual variability: standard deviation of the monthly 
means/time slice mean, inter-annual variability: standard deviation of 
the annual means/time slice mean) can be determined with the same 

Fig. 11. a) Long-term average net annual LST rate at different sites estimated by different forcing and LST models (yellow boxes represent LST rate variations 
estimated by all LST models under forcing ERA5 and CAWCR datasets and WT1; blue boxes represents LST rate variations estimated by all LST models under forcing 
ERA5 and CAWCR datasets and WT2; red boxes represents LST rate estimated by all combination of forcing datasets, wave transformation methods and LST models); 
b) Annual LST rate variations at site D associated with each LST model. 
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way (Table 3). The ensemble mean indicated that annual and monthly 
mean LST rate from site A to site B decreases, and then from site B to 
northern GC sites, the rate increases to its maximum at site G (~690,000 
m3/year, ~63000 m3/month). The pattern of increasing LST rate along 
the coast is qualitatively consistent with previous studies (e.g., Splinter 
et al., 2011). The long-term annual LST rate at site G is about 10% more 
than the target rate used for calibration of LST models. The percentage of 
LST rate during non-modal conditions (Hs-offshore > 1.7 m) to total LST 
rate varies between 76% and 84% along the coast, acknowledging that 
GC can be classified as a storm-dominated coast. It should be noted that 
the estimations presented in Table 3 were obtained from an ensemble 
modeling which addresses the predefined sources of uncertainty (i.e., 
FD,WT, LSTM and their interactions). Addressing the residual un
certainties (the ones not addressed in this study, see the next section 
regarding the limitations of this work) would help increase the certainty 
of the estimations presented here. 

Although the preliminary implication of this study is to consider 
some of the main sources of uncertainty for hindcasting wave-driven 
sediment transport patterns, this research has important implications 
for the study of climate change impacts on coastal sediment transport as 
well. For instance, given different offshore wave forcing datasets 
(probably obtained from wave simulations forced with global circula
tion models output) and coarse resolution of the forcing datasets (nor
mally like the resolution used in this study or coarser), uncertainty 
arising from the inclusion/exclusion of local wind, different responses of 
LST models to new forcing conditions, it could be very challenging to 
provide reliable projections for the future patterns of wave-driven 
sediment transport. 

5. Limitations and the way forward 

This paper aimed to rank the uncertainty of the three predefined 
sources; the hindcast datasets (as the forcing of modeling framework) 
were used without any bias correction. Although the bias correction 
issue was not addressed, each member of the ensemble was weighted 
according to its skill to reproduce the reference LST data. This way the 
accuracy of forcing datasets was also considered implicitly (not explic
itly). Applying one (or more) bias correction method (e.g., Lemos et al., 
2020) to the forcing datasets to narrow uncertainty (arising from the 
choice of forcing datasets) is a part of future works. 

Following Splinter et al. (2012), BMT WBM (2013), Sedigh et al. 
(2016), Vieira Da Silva et al. (2018), and Shaeri et al. (2019) the shape of 
the spectrum at the open boundary of the wave model was reconstructed 
using a JONSWAP spectrum (with a peak enhancement factor/Gamma 
of 3.3) for frequency distribution and Cosn spectrum for directional 
distribution of wave energy. However, working with different types of 
spectrums- as a source of uncertainty- to reconstruct the wave energy at 

the wave model boundary and its impact on wave transformation as well 
as LST estimates requires more investigations. Moreover, integral pa
rameters of total wave energy (Hs, Tp, Dm) were used to reconstruct the 
shape of spectrum for the boundary condition of wave model. This issue 
implies that a single peak spectrum was used. Although it was found that 
the aforementioned assumption is relatively reasonable (particularly for 
stormy conditions), having multi-modal spectrum rather than single 
peak spectrum still can be a source of uncertainty. More effort is 
required to develop reliable methods that can reproduce the shape of 
spectrum by knowing the integral parameters obtained from different 
partitions of wave energy (i.e., sea and swell). Additionally, the wave 
model was run under stationary mode to calculate the nearshore wave 
forcing samples (the MDA samples), and then the nearshore wave 
samples were introduced to RBF to reconstruct the whole time series of 
nearshore waves. This means that the energy field at each time step does 
not have any relation to the previous time steps and so, no time lag 
between sea states (wave energy conditions) of offshore and nearshore 
regions, is considered. Currently in the literature, there is a lack of a 
method that could reconstruct the whole times series of nearshore waves 
in a non-stationary mode with reasonable computational costs. 

Apart from the uncertainty associated with wave forcing, wind 
forcing uncertainty also needs more investigations. Wind field obtained 
from the nearest sea-located grids of ERA5 and CAWCR datasets to GC, 
were extracted and averaged. The averaged wind forcing for each time 
step was applied uniformely to the computational domain. For wave 
transformation in local studies, this assumption can be made as the wind 
field usually might not vary significantly within small compactional 
domains (e.g., Ly and Hoan, 2018). Another issue is that the study area 
might have been influenced by the land/sea breeze effect extending an 
uncertain distance offshore. Due to the coarse resolution of CAWCR and 
EAR5, such an effect on wind forcing datasets (used in this study), 
probably could not be identified properly. Having a varying 2D wind 
field in the computational domain, waves at open boundary, and 
training a complex transfer function requires more investigations and 
could be the way forward. Additionally, in spectral wave models, wind 
sea interaction (both energy gain and dissipation) is estimated through 
formulation/parametrization. Hence, using different wave models using 
different formulations (e.g., Mike 21 vs SWAN) can yield different pat
terns of nearshore waves (e.g., Hoque et al., 2017). Understanding the 
relative importance of the parametrization to get a wider range of wave 
transformation uncertainty, could be another step of the current 
research. 

Although for each site along the coast, an equilibrium barred profile 
was fitted with available hydrographic surveys, still, lack of high-quality 
data (the ones collected for a long-term period on a regular basis like 
monthly/seasonally) was prohibitive of assigning an equilibrium barred 
profile for each month/season. Addressing uncertainty arising from the 

Fig. 12. Relative contribution of different sources of uncertainty in total variance of LST estimations on seasonal and annual scales at different sites.  
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choice of bathymetry requires more investigations. 

6. Summary and conclusion 

In this paper, a simple ensemble modeling framework was employed 

to address a wide range of uncertainty in LST estimations at seven sites 
along the GC shoreline. Using different forcing datasets (CAWCR and 
ERA5), two wave transformation methods (WT1 and WT2), and eight 
LST models (four process-based models and four bulk formulae) led to 
the formation of an ensemble of 32 members by which uncertainty of 

Fig. 13. a) Skill and weight of each ensemble member; b) Comparison of the annual net LST rate presented by the ensemble modelling with the reference LST data at 
site G; the expected pattern was obtained from the response of the calibrated LST models to GCB forcing (Gold Coast Buoy data) and used as the reference LST data. 

Table 3 
LST patterns obtained from the weighted ensemble mean.  

Site A B C D E F G 

Inter-annul variability 0.31 0.31 0.27 0.25 0.24 0.24 0.24 
Intra-annul variability 0.71 0.68 0.61 0.56 0.54 0.51 0.50 
Long-term average net annual LST rate (m3/year) 550,000 410,000 450,000 500,000 570,000 630,000 690,000 
Long-term average net monthly LST rate (m3/month) 46000 34000 38000 43000 49000 57000 63000 
Net LST rate non-modal conditions/Net LSTall conditions 84% 76% 78% 79% 80% 82% 84%  
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LST estimates was attributed to the main sources and their interactions. 
In the case of WT1, using ERA5 and CAWCR led to a more or less the 
same patterns of nearshore waves. But for the case WT2, it was found 
that the inclusion of local wind changed the patterns of wave attenua
tion (compared to the case WT1). As a result, for the case WT2, the 
patterens of alongshore energy flux was also impacted. Although for the 
case WT1, using one of the forcing datasets CAWCR/ERA5 and any of 
LST models led to more or less the same LST estimates, for the case WT2 
by using the same forcing datasets and LST models, a significant range of 
uncertainty was observed. The process-based models (four set-ups of the 
DHI model) along with the model V were very sensitive to choice of 
wave transformation, compared to the rest of models. This issue implies 
that the interaction of wave transformation and LST models uncertainty 
are significant, and using a single LST model arbitrarily cannot provide a 
reliable estimate. Additionally, sites located on open coasts (sites D to G) 
are more vulnerable to uncertainty growth arising from the combination 
of WT and LST models. In general, for all sites (except site B), on the 
annual scale, ~50% of total uncertainty can be attributed to wave 
transformation uncertainty. Hence, in future works, much effort should 
be put into narrowing uncertainty associated with the wave trans
formation methods (here inclusion/exclusion of local wind). Uncer
tainty associated solely with the choice of LST models represents a 
10–20% contribution to total uncertainty. The same goes for the choice 
of forcing datasets. But, the interaction of LST model and WT uncer
tainty is significant (>20% of total uncertainty), implying that in the 
case of using WT2, the choice of LST models plays another key role in the 
estimations. It seems that the relative importance of other non-linear 
interactions (e.g., FD-LSTM) on total uncertainty is negligible 
compared to the aforementioned uncertainty sources. It should be noted 
that the ranges of uncertainty for open coasts of GC (sites D to G) were 
much higher than those of semi-sheltered coasts (sites A, B, and C). The 
weighted ensemble mean was employed to investigate monthly and 
annual LST patterns along the coast, showing a decreasing trend in 
annual and monthly LST rates from site A to B, and an increasing trend 
from site B to G. The ranges of average monthly and annual LST rates 

vary from 410,000 m3/year to 690,000 m3/year, and from 34000 m3/ 
month to 63000 m3/month, respectively. It should be pointed out that 
the presented estimates in this study were conditional to the predefined 
sources of uncertainty (i.e., FD, WT, LSTM and their interactions). 
Addressing the residual uncertainties (discussed in the previous section), 
in future works, would help increase the certainty of the estimations. 
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List of acronyms  

Acronym Explanation 

BB Brisbane wave Buoy 
CAWCR Center for Australian Weather and Climate Research 
CSIRO Commonwealth Scientific and Industrial Research Organisation 
Dm Mean Wave Direction (associated with total wave energy) 
DSD Directional Standard Deviation 
DHI-S1 DHI-LITPACK setup#1 
DHI-S2 DHI-LITPACK setup#2 
DHI-S3 DHI-LITPACK setup#3 
DHI-S4 DHI-LITPACK setup#4 
EAR5 The fifth generation of ECMWF -European Centre for Medium-Range Weather Forecast- atmospheric reanalyses of the global climate 
FD Forcing Dataset 
Gamma Peak enhancement factor 
GC Gold Coast 
GCB Gold Coast wave Buoy 
Hs Significant Wave Height (associated with total wave energy) 
KMA K-mean Algorithm 
LST Longshore Sediment Transport 
LSTM Longshore Sediment Transport Model 
MC Modified CERC bulk formula 
MDA Maximum Dissimilarity Algorithm 
MK Modified Kamphuis bulk formula 
PBB Palm Beach wave Buoy 
RBF Radial Basis Function 
S Shaeri bulk formula 
TOB Tweed Offshore wave Buoy 
Tp Peak wave period (associated with total wave energy) 
V Van Rijn bulk formula 
Wd Wind Direction 
Ws Wind Speed 

(continued on next page) 
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(continued ) 

Acronym Explanation 

WT Wave Transformation 
WT1 Wave Transformation #1: Wave conditions at offshore boundary without local wind effects 
WT2 Wave Transformation #2: Wave conditions at offshore boundary plus local wind effects  

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.coastaleng.2022.104080. 
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