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Abstract. A particle-mesh strategy is presented for scalar transport problems which provides diffusion-
free advection, conserves mass locally (i.e. cellwise) and exhibits optimal convergence on arbitrary
polyhedral meshes. This is achieved by expressing the convective field naturally located on the La-
grangian particles as a mesh quantity by formulating a dedicated particle-mesh projection based via a
PDE-constrained optimization problem. Optimal convergence and local conservation are demonstrated
for a benchmark test, and the application of the scheme to mass conservative density tracking is illus-
trated for the Rayleigh-Taylor instability.

Keywords. Lagrangian-Eulerian, particle-mesh, advection equation, PDE-constraints, conservation,
hybridized discontinuous Galerkin

1 Introduction

Tracing back to the particle-in-cell (PIC) method developed by Harlow and coworkers [1], hybrid particle-
mesh methods attempt to combine a particle-based approach with a mesh-based approach, exploiting the
distinct advantages of each framework. Hence, Lagrangian particles are conveniently used in the convec-
tive part of the problem, whereas a mesh is particularly efficient to account for the dynamic interactions
between particles.

Despite many successful applications to model, e.g., dense particulate flows [2], history-dependent
materials [3], and free-surface flows [4–6], some fundamental issues remain pertaining to such a hybrid
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Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and
analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the
U.S. Department of Energy or the United States Government.

1



particle-mesh strategy. In particular, formulating an accurate and conservative coupling between the scat-
tered particle data and the mesh is a non-trivial issue. Existing approaches generally either compromise
conservation in favor of accuracy [3] or vice versa [7–9].

This contribution outlines a particle-mesh algorithm which fundamentally overcomes the aforemen-
tioned issue as it rigorously conserves the transported quantity both globally and locally (i.e. cellwise),
while preserving extensions to arbitrary order accuracy. Key to the approach is the formulation of the
particle-mesh projection in terms of a PDE-constrained minimization problem in such a way that, from
a mesh-perspective, the transported Lagrangian particle field weakly satisfies an advection equation.
The formulation for this optimization problem relies on the use of a hybridized discontinuous Galerkin
(HDG) method.

For brevity, we present our method for a scalar hyperbolic conservation law on closed (i.e. no inflow
or outflow through the boundaries) or periodic domains. Making combined use of particles and a mesh
for this problem has the distinct advantage in that it allows handling the advection term free of any arti-
ficial diffusion. Forthcoming work will present the method in a particle-mesh operator splitting context
for the advection-diffusion equation and the incompressible Navier-Stokes equations, also including in-
and outflow boundaries [10].

The remainder is organized as follows. Section 2 introduces the governing equations, some defi-
nitions, and states the problem. Presenting the PDE-constrained particle mesh interaction and proving
conservation constitute the main part of Section 3. In Section 4, we demonstrate the performance of
the scheme in terms of accuracy and conservation, and apply the scheme for mass conservative density
tracking in multiphase flows. Finally, Section 5 summarizes our findings.

2 Governing Equations and Problem Statement

2.1 Governing equations

We now define the hyperbolic conservation law on the space-time domain Ω× I for a scalar quantity ψh.
Under the simplifying assumption that the solenoidal advective field a : Ω × I → Rd has a vanishing
normal component at the boundary (i.e. a ·n = 0 on ∂Ω), this problem reads: given the initial condition
ψ0 : Ω→ R, find the scalar quantity ψ : Ω× I → R such that

∂ψ

∂t
+∇ · aψ = 0 in Ω× I, (1a)

(a · n)ψ = 0 on Γ 0
N × I, (1b)

ψ(x, t0) = ψ0 in Ω, (1c)

where the notation Γ 0
N reflects that in the scope of this paper we only consider boundaries with vanishing

normal velocity (i.e. a · n = 0) for the sake of brevity. Hence, note that Γ 0
N coincides with the domain

boundary ∂Ω. Once again, reference to upcoming work [10] is made for the more generic case, including
inflow and outflow boundaries.

Problem Eq. (1) is solved using a set of scattered, Lagrangian particles, and our aim is to express
fields as flux degrees of freedom on an Eulerian background mesh from this set of moving particles in
an accurate and physically correct manner. To state this problem mathematically in Section 2.3, we first
introduce some notation related to the Lagrangian particles and the Eulerian mesh.
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2.2 Definitions

Let Xt define the configuration of Lagrangian particles in the domain Ω at a time instant t

Xt := {xp(t) ∈ Ω}Np

p=1, (2)

in which xp denotes the spatial coordinates of particle p, and Np is the number of particles.
Furthermore, a Lagrangian scalar field on the particles is defined as

Ψt := {ψp(t) ∈ R}Np

p=1 , (3)

where ψp denotes the scalar quantity associated with particle p.
Next, we define an Eulerian mesh as the triangulation T := {K} of Ω into open, non-overlapping

cells K. A measure of the cell size is denoted by hK , and the outward pointing unit normal vector on
the boundary ∂K of a cell is denoted by n. Adjacent cells Ki and Kj (i 6= j) share a common facet
F = ∂Ki ∩ ∂Kj . The set of all facets (including the exterior boundary facets F = ∂K ∩ ∂Ω) is denoted
by F .

The following scalar finite element spaces are defined on T and F :

Wh :=
{
wh ∈ L2(T ), wh|K ∈ Pk(K) ∀ K ∈ T

}
, (4)

Th :=
{
τh ∈ L2(T ), τh|K ∈ Pl(K) ∀ K ∈ T

}
, (5)

W̄h :=
{
w̄h ∈ L2(F), w̄h|F ∈ Pk(F ) ∀ F ∈ F

}
, (6)

in which P (K) and P (F ) denote the spaces spanned by Lagrange polynomials onK and F , respectively,
and k ≥ 1 and l = 0 indicating the polynomial order. The latter is chosen to keep the discussion concise,
and reference is made to [10] for the more generic case l ≥ 0. Also, note that W̄h is continuous inside
cell facets and discontinuous at their borders.
Importantly, we henceforth distinguish between Lagrangian particle data and Eulerian mesh fields by
using the subscripts p and h, respectively.

2.3 Problem statement

We now formulate the two core components comprising our algorithm: solving Eq. (1) in a Lagrangian,
particle-based framework, and projecting the Lagrangian quantities to a locally conservative Eulerian
mesh field via a particle mesh-projection.

In a Lagrangian, particle-based frame of reference, the advection problem Eq. (1) is solved straight-
forwardly by decomposing the problem into two ordinary differential equations for the particle scalar
quantity and the particle position, given by

ψ̇p(t) = 0, (7a)

ẋp(t) = a(xp(t), t), (7b)

where ψ̇p(t) and ẋp(t) are the total derivatives at time t of the scalar quantity and the position of particle
p, respectively. From Eq. (7a) it readily follows that the scalar valued particle property remains constant
over time, i.e. ψp = ψp(0) = ψ0(xp). Furthermore, any appropriate time integration method can be
used to integrate Eq. (7b) in time, and will not be subject of further discussion. Finally, as a result of
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our simplifying assumption that a · n = 0 at the exterior boundary Γ 0
N , we do not consider the inflow

and outflow of particles through exterior boundaries, and we refer to [10] for a further discussion of this
topic.

Instead, we focus on the reconstruction of a locally conservative mesh field ψh ∈ Wh from the
scattered particle data ψp ∈ Ψt in a subsequent particle-mesh projection step. Abstractly, this projection
PE : Ψt →Wh can be denoted as

ψh(x, t) = PE (ψp(t)) . (8)

Our specific aim is to formulate the projection operator PE in such a way that local conservation is
guaranteed, in the sense that the integral of ψh over each element is invariant.

3 PDE-Constrained Particle-Mesh Interaction

3.1 Formulation

In order to define the projection operator PE , we take as our starting point a local least squares mini-
mization problem [9]

min
ψh∈Wh

J =
∑
p

1

2
(ψh(xp(t), t)− ψp)2 . (9)

With Wh a discontinuous function space, this approach allows for an efficient cellwise implementation,
and gives accurate results provided that the particle configuration satisfies unisolvency (Definition 2.6 in
[11]) with respect toWh. The latter requirement practically implies that the particle locations in a cell are
not collinear, and the number of particles in a cell is bounded from below by the number of local basis
functions. In the remainder of this work we assume that this criterion is met, so as to focus entirely on a
more important issue concerning Eq. (9) in that conservation of the quantity ψh cannot be guaranteed a
priori.

In order to achieve conservation, Eq. (9) is extended by imposing the additional constraint that the
projection has to satisfy a hyperbolic conservation law in a weak sense. To cast this into an optimization
problem, the functional in Eq. (9) is augmented with terms multiplying Eq. (1a) with a Lagrange multi-
plier λh ∈ Th. After integration by parts and exploiting that gradients of the Lagrange multiplier vanish
onK for l = 0, the minimization problem may be stated: given a particle field ψp ∈ Ψt, and a solenoidal
velocity field a, find the stationary points of the Lagrangian functional

L(ψh, ψ̄h, λh) =
∑
p

1

2
(ψh(xp(t), t)− ψp(t))2 +

∑
K

∮
∂K

1

2
β
(
ψ̄h − ψh

)2 dΓ

+

∫
Ω

∂ψh
∂t

λhdΩ +
∑
K

∮
∂K\Γ 0

N

a · nψ̄hλhdΓ +

∮
Γ 0
N

a · nψhλhdΓ, (10)

The first two terms at the right-hand side in this equation are recognized as a regularized least squares
projection, and the last three terms constitute a weak form of the advection problem Eq. (1), with the
Lagrange multiplier λh ∈ Th as the weight function. Furthermore, the unknown facet-based field ψ̄h ∈
W̄h, resulting from integration by parts, determines the interface flux, and is crucial in providing the
required optimality control. The additional term containing β > 0 penalizes the jumps between ψh and
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ψ̄h on cell interfaces, thereby avoiding the problem of becoming singular in cases with vanishing normal
velocity a · n.

Equating the variations of Eq. (10) with respect to the three unknowns (ψh, λh, ψ̄h) ∈ (Wh, Th, W̄h)
to zero yields the semi-discrete optimality system. An in-depth derivation can be found in [10]. Here
we suffice to present the resulting fully-discrete system, thus assuming that the particle field ψp ∈ Ψt,
the particle positions xn+1

p ∈ Xt after the Lagrangian advection, and the mesh field at the previous time
level ψnh ∈Wh are known.
Variation with respect to the scalar field ψn+1

h ∈Wh yields the co-state equation

∑
p

(
ψn+1
h (xn+1

p )− ψp
)
wh(xn+1

p )−
∑
K

∮
∂K

β
(
ψ̄n+1
h − ψn+1

h

)
whdΓ

+

∫
Ω

wh
∆t

λn+1
h dΩ +

∮
Γ 0
N

a · nλn+1
h whdΓ = 0 ∀wh ∈Wh. (11a)

Variation with respect to the Lagrange multiplier λn+1
h ∈ Th yields the discrete state equation∫

Ω

ψn+1
h − ψnh

∆t
τhdΩ +

∑
K

∮
∂K\Γ 0

N

a · nψ̄n+1
h τhdΓ +

∮
Γ 0
N

a · nψn+1
h τhdΓ = 0 ∀τh ∈ Th. (11b)

And variation with respect to the facet variable ψ̄n+1
h ∈Wh results in the optimality condition

∑
K

∮
∂K

a · nλn+1
h w̄hdΓ +

∑
K

∮
∂K

β
(
ψ̄n+1
h − ψn+1

h

)
w̄hdΓ = 0 ∀w̄h ∈ W̄h. (11c)

Solving Eq. (11) for (ψn+1
h , λn+1

h , ψ̄n+1
h ) ∈ (Wh, Th, W̄h) yields the reconstructed field ψn+1

h ∈Wh.

3.2 Conservation

Next, we will show that from the perspective of the Eulerian field the particle-mesh projection via
Eq. (11) indeed conserves mass, both in a global and a local sense. To this end, consider the discrete
state equations (Eq. (11b)) and set τh = 1. Exploiting the single-valuedness of the facet flux variable ψ̄
at the facets F ∈ F , we readily obtain∫

Ω

ψn+1
h − ψnh

∆t
dΩ = −

∑
K

∮
∂K\Γ 0

N

a · n ψ̄n+1
h dΓ −

∮
Γ 0
N

a · nψn+1
h dΓ = 0, (12)

where we made use of the fact that the flux term vanishes at opposing sides of interior facets, and the
flux at facets on the exterior boundary vanishes due to our earlier simplification that a · n = 0 on Γ 0

N .
Local mass conservation follows when setting τh = 1 on an interior cell K and τh = 0 on Ω \ K,
resulting in ∫

K

ψn+1
h − ψnh

∆t
dΩ = −

∮
∂K

a · nψ̄n+1
h dΓ. (13)
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Thus, the storage over an element balances the net ingoing advective flux through the cell boundary ∂K
which proves local conservation in terms of the numerical flux on F .

3.3 Numerical implementation

The optimality system Eq. (11) leads to a seemingly large global system. However, this system is
amenable to an efficient implementation via static condensation by eliminating the unknowns local to
a cell, i.e. (ψh, λh) ∈ (Wh, Th), in favor of the global control variable ψ̄n+1

h ∈ W̄h, leading to a much
smaller global system which is to be solved for ψ̄n+1

h only. The local unknowns ψn+1
h and λn+1

h can be
found in a subsequent backsubstitution step [9, 12].

We emphasize that our PDE-constrained particle-mesh projection hinges on the single-valued facet
flux variable ψ̄h, acting as the control variable to our optimization procedure. This imperative ingredient
is naturally provided by employing a HDG-framework (see, e.g., [12–14]).

4 Numerical Examples

In Section 4.1, the convergence and conservation of the scheme is studied for a benchmark test for which
an analytical solution is available. Section 4.2 illustrates how the scheme can be applied as a tool for
mass conservative density tracking in multiphase flows.

4.1 Convergence study: translation of periodic pulse

Following LeVeque [15], the translation of a sinusoidal profile ψ(x, 0) = sin 2πx sin 2πy on the bi-
periodic unit square is considered. The velocity field a = [1, 1]> is used, so that at t = 1 the initial data
should be recovered. The β-parameter is set to 1e-6, and a simple Euler scheme suffices for exact particle
advection. Using different polynomial orders k = 1, 2, 3, the accuracy of the method is assessed at t = 1
by refining the mesh and the time step. We assign approximately a safe number of 28 particles per cell
initially in order to comply with the unisolvency criterion. Furthermore, the time step corresponds to a
CFL-number of approximately 1. The errors as well as the convergence rates are tabulated in Table 1.
Optimal convergence rates of order k + 1 are observed, thus revealing the accuracy of our approach.

Table 1: Translating pulse: overview of model runs with the associated L2-error ‖ψ − ψh‖, the conver-
gence rate and the local mass conservation error ε∆φK at time t = 1.

(k, l) = (1, 0) (k, l) = (2, 0) (k, l) = (3, 0)
Cells ∆t Error Rate ε∆φK

Error Rate ε∆φK
Error Rate ε∆φK

128 0.1 6.0e-2 - 1.3e-15 4.3e-3 - 4.5e-15 3.3e-4 - 1.3e-15
512 0.05 1.6e-2 1.9 7.7e-16 5.5e-4 3.0 3.1e-16 2.1e-5 4.0 7.1e-16

2048 0.025 3.9e-3 2.0 4.3e-16 6.9e-5 3.0 2.5e-16 1.3e-6 4.0 4.4e-16
8192 0.0125 9.8e-4 2.0 2.7e-16 8.6e-6 3.0 2.3e-16 8.2e-8 4.0 3.5e-16

Table 1 also shows the local mass conservation error at t = 1, with this error for a time level n + 1
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being defined as

ε∆φK =

∑
K

∫
K

ψn+1
h − ψnh

∆t
dΩ +

∮
∂K

a · nψ̄n+1
h dΓ

21/2

. (14)

As expected, mass is conserved locally in terms of the facet flux. Global mass conservation is readily
verified by noting that the facet flux term cancels at opposing sides of the facets.

4.2 Application: mass conservative Rayleigh-Taylor instability

We next illustrate how the above presented scheme can be used for a mass conservative multiphase
scheme in which particles are used for the tracking of sharp interfaces. As an example, we take the
Rayleigh-Taylor instability test from [16] with an Atwood number of 0.5 and a Reynolds number of
256. In addition to a PDE-constrained particle-mesh strategy for tracking the density fields, we also
track specific momentum at the particle level and enforce incompressibility and viscous forces via a
Stokes step at the mesh. Details of such a particle-mesh operator splitting approach for the Navier-
Stokes equations can be found in [10]. A regular and symmetric mesh with 60 × 240 × 4 cells is used.
Initially, approximately 20 particles per cell are assigned, and we note that advecting the particles through
a pointwise divergence free velocity field obviates the need for a particle reseeding strategy [9, 10].
Furthermore, we use polynomial orders (k, l) = (1, 0) and use a timestep ∆t = 1e-3. Particles are
advected using an explicit, three-stage Runge-Kutta scheme [17]. The evolution of the initial perturbation
is visually assessed in Fig. 1. The sharp interface between the two phases is maintained and the interface
shape is qualitatively in good agreement with [16]. Most importantly, computations confirm that the total
mass remains constant to machine precision.
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Figure 1: Rayleigh-Taylor: time evolution of density field at particle level for Re=256.
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5 Conclusions

We outlined a particle-mesh projection which enables the reconstruction of high-order accurate and
diffusion-free mesh fields from a set of scattered Lagrangian particles. By casting the problem as a
PDE-constrained optimization problem rigorous discrete conservation principles can be derived. Impor-
tantly, in the presented optimization strategy the advective flux was expressed in terms of a flux variable
at the facet which provides the required optimality control. Such a facet function is typical to an HDG
approach, and comes with the additional benefit that the resulting scheme can be implemented efficiently
via static condensation. The scheme was assessed in terms of accuracy and conservation, and we high-
lighted a potential application to multiphase flows.
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