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Abstract
Survival analysis predicts survival functions that
give the probability of survival until a given
time. Many applications of survival analysis
involve health care, which requires interpretability
of the models used to predict the survival function.
Provably optimal decision trees have shown to
be an interpretable alternative to so-called black
box models. However, these algorithms often
choose estimators that are fast, yet not necessarily
most accurate. Moreover, the objective functions
of optimal decision tree algorithms tend to make
(possibly incorrect) assumptions about the survival
function.
In this paper, we tackle both problems. We
implement the iterative Breslow estimator in an
already existing optimal survival tree algorithm
in order to iteratively improve the Nelson-Aalen
estimator. This approach has great potential, as
we show by using it on artificial datasets, but we
do not see an improvement in accuracy on real
world data. To eliminate the assumptions made by
the objective function, we implement the Integrated
Brier Score objective, which causes a significant
improvement on training accuracy. However, we
see no improvement on out-of-sample accuracy.

1 Introduction
Survival analysis analyzes the expected time of ‘death’ for a
given subject, where death refers to the occurrence of a one-
time event. Medical problems intuitively fit such descriptions
of death very well; one could think of biological death, but
also recovery from a disease, as a one-time event. Although
survival analysis is often used in medical fields, this is not
its only application. For example, the failure of a machine
and recidivism are also one-time events that can be analyzed.
In contrast to regression, survival analysis does not try to
predict labels for instances, but survival functions that give
the probability of surviving past a time t.

Machine learning can be used to create high accuracy
survival models [7], but the problem of many machine
learning approaches is that they produce uninterpretable
black box models [6], while interpretability is crucial for
many fields, especially health care [21]. For this reason,
decision trees are often the preferred option for survival
analysis. An example of a survival tree, a decision tree
adapted to survival analysis, is shown in figure 1.

The interpretability of decision trees decreases as the
number of nodes in the tree grows, so the trees used in
survival analysis are generally sparse trees. It has been shown
that sparse survival trees can be as accurate as black box
models for tabular datasets [22]. Greedy heuristics have also
been used to create decision trees [4], [16], but they do not
guarantee optimality: any decision in a current node does not
take into account the decision that its children will make.

Optimal decision trees have optimal accuracy on the
training data, given a maximum depth or a maximum number

of nodes. It has been shown that optimal decision trees
outperform regular decision trees not only on training data,
but also on out-of-sample data [9]. By exploiting the structure
of the tree, dynamic programming can be used to create
optimal decision trees within seconds [21], [18].

Huisman et al. present SurTree [12], an adaptation of
MurTree [9] for survival analysis. SurTree is optimal with
regard to its objective function. The objective function used
in SurTree depends on the proportional hazards model. This
model assumes that the hazard functions of all instances are
proportional to each other. The hazard function gives the rate
of death for any time. Its integral is the cumulative hazard
function (CHF). Consequently, CHFs are also assumed to be
proportional. As we show in this paper, this assumption of
proportionality does not suit all types of datasets.

The CHF is used to calculate the survival function, so it
is important to estimate it well. SurTree uses the Nelson-
Aalen estimator to do this. This is an estimator that weighs
every instance in the dataset equally. Although this makes
the Nelson-Aalen estimator relatively fast, it may be less
accurate than an estimator that gives a (unique) weight to each
instance.

We propose two changes to the SurTree algorithm: 1) we
replace the objective function by the Integrated Brier Score,
which does not depend on the proportional hazards model,
and 2) we replace the Nelson-Aalen estimator by the iterative
Breslow estimator.

The Integrated Brier Score (IBS) is the integration of
the Brier Score. The Brier Score is similar to the mean
squared error. In contrast to the objective function used by
SurTree, the IBS does not use the proportional hazards model,
and therefore does not make assumptions about the hazard
functions. This is advantageous for datasets that do not follow
the assumption of proportionality [2].

The Breslow estimator can be used in an iterative process to
incrementally improve the Nelson-Aalen estimate [16], but,
to the best of our knowledge, it has not been used for optimal
survival trees yet.

In this paper, we compare the accuracy of the iterative
Breslow estimator to the Nelson-Aalen estimator. We
show that the iterative Breslow estimator creates more
accurate trees than the Nelson-Aalen estimator on artificially
constructed datasets, but leads to no significant improvement
on real data. We also analyze the difference in accuracy
between the IBS and the partial likelihood loss function used
by SurTree, and conclude that using the IBS as the objective
function can lead to significant improvements on artificial
datasets, but does not increase the out-of-sample accuracy,
and comes at the cost of higher runtimes.

Our contributions are:

1. An explanation of the type of dataset for which the
iterative Breslow estimator would give a better estimate
of the cumulative hazard function than the Nelson-Aalen
estimator.

2. An implementation of the iterative Breslow estimator in
the SurTree algorithm.

3. Experiments on this implementation with real and
artificial data.



4. An explanation of the type of dataset for which the
Integrated Brier Score objective gives significantly
different scores than the partial likelihood objective.

5. An implementation of the Integrated Brier Score
objective in the SurTree algorithm.

6. Experiments on this implementation with real and
artificial data.

First, we discuss related work in section 2. In section 3,
we introduce the terminology and mathematics upon which
this research was based. In sections 4 and 5, we explain the
main contributions of this paper. In section 6, we show how
different configurations of our new estimator and objective
function compare to each other and to the original SurTree
algorithm. In section 7, we discuss the reproducibility and
ethical implication of our research. Finally, in section 8, we
interpret the results, and in section 9 we conclude this paper
and propose areas for further research.

Figure 1: Example of a survival tree

2 Related Work
Survival Analysis The goal of survival analysis is to
find a good survival function for a dataset. In the
process of gathering data, it may occur that a subject
leaves the observation group before the one-time event has
happened. Such cases are called right-censored. The time
at which their observation started is known, but the time-
of-event is unknown. The Kaplan-Meier method is an
early estimator of the survival function that takes censored
data into account [15]. Nelson and Aalen developed an
indirect estimator of the survival function that estimates the
cumulative hazard function first. Their method of estimating
the cumulative hazard function is similar to the Kaplan-Meier
method.

Meanwhile, Cox proposed a proportional hazards model
and a regression algorithm based on this model [8]. Inspired
by Cox’s proportional hazards model, Breslow created a new
estimator of the cumulative hazard function [5] which can be
seen as a proportional hazards version of the Nelson-Aalen
estimator. More recently, many machine learning techniques
have been used for survival analysis, such as random forests
and decision trees [13], [12].
Decision Trees Decision trees have often been created
using greedy heuristics [4]. In order to limit the size of the
tree to avoid having small sets of instances in each node,
a cost-complexity metric was introduced that penalizes tree

growth [4]. LeBlanc and Crowley adapt this greedy approach
by introducing Cox’s proportional hazards model into their
survival tree algorithm and estimating the risk coefficients
of the model with a maximum likelihood estimator [16].
Recently, Bertsimas et al. proposed Optimal Survival Trees, a
coordinate descent algorithm to find locally optimal trees [2].
By repeating the algorithm, they increase the probability
of finding a good tree, but there is no guarantee of global
optimality.

Optimal Decision Trees Many approaches towards finding
optimal decision trees have been tried, such as constraint
programming [20], (maximum) satisfiability [14], [11], and
Mixed Integer Programming [3]. However, these methods
struggle with large datasets and medium-sized trees. On
the other hand, dynamic programming algorithms have
undergone big runtime improvements. A major focus of these
dynamic programming approaches is to branch and bound in
order to speed up the search [21], [9].

Zhang et al. created an algorithm to compute optimal
sparse regression trees, and used equivalent points to
calculate a tighter lower bound [22]. They extend this
algorithm for survival analysis and call it Optimal Sparse
Survival Trees (OSST) [21]. OSST has the option of using
reference models that are believed to make similar mistakes
as the optimal survival tree. However, using these reference
models means that the resulting tree is no longer guaranteed
to be optimal.

Demirović et al. contributed the similarity-based lower
bounding approach, which uses solutions to previously
computed subproblems with similar data, while guaranteeing
optimality [18]. This algorithm was adapted for survival
analysis by Huisman et al. [12], and it was named SurTree.
SurTree uses the proportional hazards model and the Nelson-
Aalen estimator to estimate a survival function in each leaf
node.

3 Preliminaries
In this section, we define terms and notation used throughout
this paper, and we explain fundamental concepts upon which
our research builds.

Instances (i) in datasets (D) have a label, and a feature
vector with features. We only consider binary features and
binary decision trees. The labels consist of two values:
the time-of-event (ti) and the censoring indicator (δi). The
censoring indicator is a binary value stating whether time ti
signifies censoring (δi = 0) or the time-of-event (δi = 1).
Events can be left-censored or right-censored. Left-censored
means that the starting time is unknown. Right-censored
means that the time-of-event is unknown. In this study, we
only consider right-censored events.

The goal of survival analysis is to find the survival function
S(t) that gives the probability for a subject to survive past a
given time: P (T > t), where T is the true time-of-event.
We can estimate the survival function with the Kaplan-Meier
estimator [15]:

Ŝ(t) =
∏
t′≤t

(1− d(t′)

n(t′)
) (1)
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Figure 2: The effect of θ on the
survival function
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Figure 3: Intuition of area of
loss for IBS

Where:
d(t) =

∑
i∈D,ti=t

δi (2)

n(t) =
∑

i∈D,ti≥t

1 (3)

The opposite of the survival function is the death
distribution: F (t) = 1 − S(t). The derivative of the death
distribution is the death density function: f(t) = d

dtF (t).
Using the death density function and the survival function,
we can calculate the hazard function, which gives the rate
of an event happening at a given time, provided that it has
not occurred before: λ(t) = f(t)

S(t) . Since the death density
function can be written as f(t) = − d

dtS(t), the hazard
function can be rewritten as follows:

λ(t) =
f(t)

S(t)

= −
d
dtS(t)

S(t)

= − d

dt
ln(S(t))

(4)

When we integrate this hazard function, we get

Λ(t) = −ln(S(t)) (5)

which is the cumulative hazard function (CHF). Now we
can write S(t) = e−Λ(t). Following the assumption of
proportionality [8], we can also write this as

Si(t) = e−θiΛ0(t) (6)

for any instance i, where Λ0 is the baseline CHF, shared by
all instances. The assumption of proportionality says that the
CHF of every instance is proportional to the baseline CHF:
Λi(t) = θiΛ0(t). The effect of the risk coefficient (θi) on the
survival function is shown in figure 2.

Following SurTree [12], we want to estimate the risk
coefficient for each leaf, and the baseline CHF for the whole
tree. The baseline CHF can be estimated by the Nelson-Aalen
estimator [17], [1]:

Λ̂0(t) =
∑
t′≤t

d(t′)

n(t′)
(7)

There is also a more general estimator similar to the
Nelson-Aalen, which builds on the proportional hazards

model and takes the risk coefficient of each instance into
account. We call it the iterative Breslow estimator and the
formula is as follows [5]:

Λ̂j
0(t) =

∑
t′≤t

d(t′)∑
ti≥t θ

j
i

(8)

If θji = 1 for all i, this turns into the Nelson-Aalen estimator.
We do this for j = 0 to get an initial estimate. Most
useful about the Breslow estimator is that we can estimate
the baseline CHF in multiple iterations j. To do this, we also
need θji .

LeBlanc and Crowley show that we can derive the
maximum likelihood estimator of the risk coefficient using
the likelihood of a dataset, given the CHF and making the
assumption of proportionality [16]. This likelihood is:

L =
∏
i∈D

(λ0(ti)θi)
δie−Λ0(ti)θi (9)

This likelihood function has been derived from the
likelihood function that does not make the assumption of
proportionality:

L =
∏
i∈D

λi(ti)
δiSi(ti) (10)

The maximum likelihood estimator of θi, as was shown by
LeBlanc and Crowley, is as follows.

θ̂h =

∑
i∈h δi∑

i∈h Λ̂0(ti)
(11)

Where h is the set of instances in a leaf node. We can use this
to calculate θji :

θ̂j+1
i =

∑
i∈h δi∑

i∈h Λ̂
j
0(ti)

(12)

The risk coefficient calculated over a dataset with only one
instance is called the saturated risk coefficient. Following the
formula above, the saturated risk coefficient for any instance
i is:

θsati =
δi

Λ̂0(ti)
(13)

We can calculate the loss for any given instance by
taking the difference between the log-likelihoods of the
saturated risk coefficient and the estimated risk coefficient
(θ̂i). Huisman et al. show that the loss over a dataset D can
be written in the following form:

L(D, θ̂) =
∑
i∈D

Λ̂0(ti)θ̂ − δi log Λ̂0(ti)− δi log θ̂ − δi (14)

This loss is used as the objective function in SurTree.
Other metrics can be used to calculate the loss of a tree.

The Integrated Brier Score is of particular interest to us in
this paper. As the name suggests, it is the integral of the Brier
Score:

BS =
1

|D|
∑
i∈D

(1− Ŝi(ti))
2 (15)



IBS =
1

tmax

1

|D|
∑
i∈D

∫ ti

0

(1− Ŝi(t))
2

Ĝ(t)
dt+

δi

∫ tmax

ti

(Ŝi(t))
2

Ĝ(ti)
dt

(16)

Where Ĝ(t) is the censoring distribution estimated by the
Kaplan-Meier estimator (equation 1). The Brier Score can
be compared to the mean squared error. The Integrated Brier
Score weighs the terms with Ĝ(t) or Ĝ(ti) and takes censored
data into account. Excluding the weights, figure 3 shows an
intuition of the area of the integral. A perfect score would
be achieved by a survival function that has a probability of 1
before the time of death ti and a probability of 0 afterward:

S(t) =

{
1 if t < ti
0 if t ≥ ti

The Concordance Index (CI) is an accuracy metric that
takes all comparable pairs and calculates how many of them
are concordant. A pair is comparable if it is certain that one
of the subjects died before the other. This means that neither
of them is censored, or one died before the censoring event of
the other. Concordance means that the subject that died first
of the pair is also the subject with the lower predicted risk
(ρ). We can define discordance as the opposite. Pairs that
are comparable, yet have the same risk, are counted among
the tied risk pairs. The number of concordant, discordant and
tied risk pairs are given by

CC =
∑
i,j

I(ti>tj)I(ρi<ρj)δj (17)

DC =
∑
i,j

I(ti>tj)I(ρi>ρj)δj (18)

TR =
∑
i,j

I(ti>tj)I(ρi=ρj)δj (19)

and the Concordance Index is given by

CI =
CC + TR

2

CC +DC + TR
(20)

4 Iterative Breslow estimator
In this section, we explain the theoretical advantages of the
iterative Breslow estimator (equation 8) over the Nelson-
Aalen estimator (equation 7).

Since the survival function is estimated according to
Ŝi(t) = e−θiΛ̂0(ti), it is crucial to get a good estimate of the
baseline CHF (Λ̂0). The SurTree algorithm uses the Nelson-
Aalen estimator, where every risk coefficient is implicitly set
to 1 while estimating the baseline CHF. However, we can
use equations 8 and 12 to iterate on the cumulative hazard
function. This weighs every instance by the respective risk
coefficient. The effect of these weights is shown in figure 5.
Only the instance with ti on the vertical line has a different
risk coefficients, and all others are the same. We can see that
the baseline CHF for t ≤ ti is reduced, while it is not affected
for t > ti.

The value of the risk coefficient, as we see in equation 12,
is determined by the cumulative hazard of instances in the leaf
node (h). When all instances in the leaf node have a relatively
low cumulative hazard at their time of death, their shared
risk coefficient will be relatively high. Since low cumulative
hazards are the consequence of early times of death, we can
likewise say that leaf nodes with relatively early deaths have a
relatively high risk coefficient. However, as we saw in figure
5, the risk coefficient of an instance with a low time of death
has only a small effect on the baseline CHF, because the space
t ≤ ti is small.

Following these observations, we can conclude that the
instance that has the most weight in the Breslow estimator is
an instance with two properties: 1) it has a late time of death,
and 2) the other instances in the same leaf node have an early
time of death. Such an instance can be thought of as a subject
that is expected to have an early death based on its features,
yet still survives for a long time. In other words, this instance
is an outlier. Although the Nelson-Aalen estimator treats
these outliers the same as every other instance, the iterative
Breslow estimator gives them a higher weight.

We have implemented the iterative Breslow estimator in
SurTree. We start the algorithm with θi = 1 for all i ∈ D. A
baseline CHF is estimated using these initial risk coefficients,
and an optimal survival tree is built. After the algorithm has
found the optimal survival tree, it uses the risk coefficients
calculated in the leaf nodes (the predicted labels) as input for
equation 8. This generates a new baseline CHF that is used
to build a new tree. The process is repeated for a variable
amount of times.

5 Integrated Brier Score objective

In this section, we discuss the advantages of the Integrated
Brier Score (equation 16) compared to the partial likelihood
loss function (equation 14), and we explain how we have
implemented the Integrated Brier Score as the objective
function in SurTree.

Comparison with partial likelihood loss

The partial likelihood loss function is based on the
proportional hazards model and the assumption of
proportionality, which assumes that the CHFs of all instances
are proportional. Proportionality of hazard functions is
also assumed when we calculate the CHF in each leaf
node. As we explain in section 3, we calculate the survival
function according to Ŝi(t) = e−θiΛ0(t). The saturated
risk coefficient is taken as the optimal risk coefficient in
the partial likelihood loss function, but it is only optimal
if the assumption of proportionality holds. Whenever the
assumption of proportionality does not hold, a perfect score
is achieved with a suboptimal estimate of the risk coefficient.

Figure 4 shows two survival functions for a dataset with
copies of one instance with the same time of death. We
can see that the survival probability of both functions is 1

e ,
which shows that the estimated risk coefficient is equal to the
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Figure 4: Two survival functions with perfect loss according to the
partial likelihood loss function on a dataset with only instances at
one time of death

saturated risk coefficient:

Ssat
i (ti) = e−θsat

i Λ̂0(ti)

= e
− δi

Λ̂0(ti)
Λ̂0(ti)

= e−δi

Since both functions have the same optimal risk coefficient,
the only difference between the survival functions is the
baseline CHF. It is clear from the dataset that the true
probability of survival is high before the time of death, and
then makes a sudden drop, but the partial likelihood loss does
not distinguish between these two functions.

In contrast to the partial likelihood loss, the IBS looks
at the survival probability before and after the instance in
consideration. It gives a higher (worse) score for survival
functions that have a low probability of surviving before the
actual time of death. Consequently, the IBS has a clear
preference for the high survival function with a sudden drop
in figure 4.

Implementation in SurTree
A great contributor to the speed of SurTree and the underlying
MurTree algorithm is the depth-two solver [9], which solves
trees of depth two by splitting the loss function into multiple
components and calculating the contribution of each instance
to these components. In other words: ”the cost of a leaf
node can be expressed as a function over the contributions
of individual instances.” [18] We define the following terms
as sums over the contributions of single instances:

ES =
∑
i∈h

δi (21)

HS =
∑
i∈h

Λ0(ti) (22)

Now we can write the survival function as follows:
Si(t) = e−

ES
HSΛ0(t) (23)

The loss can be calculated as follows:

IBS =
1

tmax

1

|D|
∑
i∈h

∫ ti

0

(1− e−
ES
HSΛ0(t))2

Ĝ(t)
dt+

δi

∫ tmax

ti

e−2 ES
HSΛ0(t)

Ĝ(ti)
dt

(24)
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In order to use this function in the depth-two solver, it has
to be additive: the loss of the full tree has to be equal to the
sum of the losses of the leaf nodes. When calculating the
loss over the entire tree at once, without summing over the
leaf node losses, |D|, tmax and Ĝ(t) are calculated over the
whole dataset, D, and not just over h, the subset in the leaf
node. Therefore, when calculating the loss of each leaf node,
we have to make sure that these terms are still calculated over
the entire dataset. We can pre-compute these values and reuse
them in each leaf node.

The time complexity of this function is O(|h| ∗ |D|). We
go over very element of h in the sum, and use every unique
time in D to compute the integral. Since we can pre-compute
all values for Ĝ(t) and Λ0(t), the worst case time complexity
is O(|h| ∗ |D|).

6 Experimental Setup and Results
The results are divided into two parts, one for each of the
two topics: the iterative Breslow estimator and the Integrated
Brier Score objective. For both of these contributions, we
show how its accuracy relates to the SurTree algorithm,
and for the IBS objective experiments, we also compare to
OSST [21], a survival tree algorithm that also uses the IBS
as the objective function. The focus of our experiments is
on accuracy, since more time can be spent optimizing the
runtime of our contributions in future research.

Survival trees return a survival function as the classification
result, and there are many ways to calculate the accuracy of
such a function [2]. In order to give a good picture of the
accuracy of a model, different kinds of metrics have to be
used [19]. Following the metrics by Huisman et al. [12], we
have decided to use the Concordance Index and the Integrated
Brier Score to measure our accuracy. For both metrics, the
accuracy for the resulting model is calculated for a list of
datasets and the results are averaged. Unless stated otherwise,
we use a maximum depth of 3 and a maximum number of
nodes of 7.

Data We use real data from SurvSet [10] to perform our
experiments. We binarize all feature data, because both
SurTree and OSST work with binarized data. For categorical
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Figure 7: Accuracy of SurTree with 1 and 3 Breslow iterations

variables, we use one-hot encoding. Categorical variables are
divided into ten categories. The nine most frequent variables
are each one category, and all the others are put in the
tenth category. We remove identical variables and variables
that identify less than 1% of the data. For testing out-
of-sample accuracy, we perform five-fold cross-validation.
Unless stated otherwise, the IBS and Concordance Index are
calculated for all datasets in SurvSet, and the average of these
results is presented.

6.1 Iterative Breslow Estimator Results
Since the Nelson-Aalen estimator is the same as the iterative
Breslow estimator with one iteration, we run our algorithm
with one iteration to simulate the original SurTree algorithm.
We run the algorithm with multiple iterations to see the results
of the iterative Breslow estimator. In order to know how many
iterations are enough for the iterative Breslow estimator, we
test for convergence. Figure 6 shows the average IBS on trees
of a maximum depth of 3 per Breslow iteration. We conclude
that three iterations of the iterative Breslow estimator are
enough to achieve convergence, since we no longer see real
change in the IBS after more iterations. Henceforth, we will
use three iterations in our experiments.

In figure 7, we see the average IBS and CI for one and
three iterations. Neither on testing nor on training data, do
we see that the algorithm with three iterations outperforms
the algorithm with one in terms of the IBS. Concerning the
Concordance Index, three iterations achieve slightly lower
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Figure 8: IBS of SurTree with varying Breslow Iterations on
artificially constructed train set and test set

accuracy than one iteration. The p-value of the Wilcoxon
signed rank test for the IBS results on depth 3 is 0.58.

In section 4, we theorized that the iterative Breslow
estimator would be better for outliers within leaf nodes.
Although we do not see this improvement reflected in the
accuracy of our model on real data, our hypothesis is
confirmed when we run the algorithm on a dataset particularly
constructed to show the strength of the iterative Breslow
estimator.

We create a training set with copies of two different
instances, i1 and i2. i1 has a low time of death, and i2 has a
high time of death. We add a new instance i3, whose feature
vector is identical to the feature vector of i1 to make sure it
ends in the same leaf node, but the time of death is much
higher, yet lower than the time of death of i2. This represents
an extreme version of the scenario sketched in section 4. We
run our algorithm on the training set with a maximum depth
of 1, so the resulting tree has two leaves, one for i3 and the
copies of i1, and one for the copies of i2. We also create two
test sets. One test set has instances similar to i1 and the other
has instances similar to i3. Figure 8 shows the results. We
see that increasing Breslow iterations results in a better IBS
on the test set with instances similar to the outlier, while it
achieves worse results on the test set without outliers.

6.2 Integrated Brier Score Objective Results
We see in figure 9 that the IBS objective helps to achieve
a better score on training data, as is expected. However,
the test scores show that there is no clear improvement on
out-of-sample data. In terms of the IBS metric, using the
IBS as objective function produces worse trees than the
partial likelihood objective for a maximum depth of three.
The Concordance Index shows similar results. For every
maximum depth that was used in the experiment, the original
SurTree algorithm scored better than the SurTree with IBS
objective algorithm.

Table 1 shows the runtime of SurTree with the IBS
objective compared to the partial likelihood objective and
OSST. It is clear from the runtimes that the IBS is much
slower. Because of the slow runtime of IBS Objective
SurTree, some datasets (flchain, hdfail, and Framingham)
time out when the maximum depth is greater than 3. These
datasets were consequently not used while calculating the



1 2 3 4
0.10

0.12

0.14

0.16

0.18

In
te

gr
at

ed
 B

rie
r S

co
re Training data

IBSO SurTree
OSST
SurTree

1 2 3 4

Testing data

Max. depth

(a) IBS, lower is better

1 2 3 4

0.60

0.65

0.70

Co
nc

or
da

nc
e 

In
de

x

Training data
IBSO SurTree
SurTree

1 2 3 4

Testing data

Max. depth

(b) Concordance Index, higher is better

Figure 9: Accuracy of SurTree with and without the IBS objective

results in figure 9. The table also shows a clear difference
in runtime between OSST and IBS Objective SurTree.

In order to confirm the theoretical advantage of the IBS
over the proportional likelihood loss as described in section
5, we test both methods on an artificial dataset. We set the
maximum depth of the tree to 1, and use two features in the
dataset. Our goal is to create a scenario where splitting on
one feature seems best when considering the shape of the
survival function as the IBS does, while splitting on the other
feature seems best when assuming proportional hazards. In
practice, this means that the first split results in a tree with
two differently shaped survival functions in the two leaf
nodes, while the second split results in survival functions with
proportional hazards.

Since we assume proportionality while estimating the
survival function, the only way to create a survival function
in a leaf node that differs in shape from the others in the way
described in section 5 is to add a set of censored instances
with the same features and a similar time of censoring. When
creating a dataset with this set of censored instances and
two other sets of non-censored instances, we can construct a
scenario where the IBS objective leads the algorithm to split
the censored instances off into a separate node, while the
proportional likelihood loss prefers to split the uncensored
instances into two groups. On datasets like these, the IBS
makes decisions that the proportional likelihood function
would not have made, and achieves a lower IBS. However,
the Concordance Index is also lower for the IBS objective
algorithm.

7 Responsible Research
In this section, we reflect on the reproducibility and the
ethical implications of our research.

7.1 Reproducibility
Our experiments were run as described in this paper.
Wherever randomization was used during the experiment, we
used a seed that can be found in our codebase. Anyone with
access to the latest SurTree code will be able to reproduce all
results found in this paper. All experiments were run on an
AMD Ryzen 5 2600 processor. Although runtimes will differ
for each subsequent run of the experiments, we believe that
they will paint the same picture about the algorithms that we
compared: OSST, SurTree, and IBSO SurTree.

We use the SurvSet dataset, as this was also used by
Huisman et al. who created SurTree. When testing the IBSO
SurTree algorithm, we did not experiment with maximum
depths beyond 4, for the mentioned reason that the algorithm
would time out. It is possible that results for depth 5 and
higher would lead to new insights, but we do not think that
it would affect the conclusion. We care most about the
trees with lower depths, because these are more interpretable
and attain better out-of-sample accuracy. We do not expect
maximum depths above 5 to achieve higher out-of-sample
accuracy than depths below 5.

While testing the IBS for different maximum depths for
SurTree, OSST and IBSO SurTree, we left out the three
datasets that timed out at a maximum depth of 4. We did
include the results on these datasets in table 1. There we see
that the datasets that were left out in the other experiment
follow the same pattern as the other datasets. Therefore, we
do not think that leaving them out significantly changed the
final results.

Code availability The code to run our experiments, and
a script to download the necessary datasets are available on
GitHub1. Although we do not yet have permission to make
the SurTree code public at the time of writing, it will be made
public once we get permission. All code used to run the
experiments set out in this paper, and the code to generate
the plots, are already available.

7.2 Ethical implications
Survival trees can be used for unethical purposes, for example
by insurance companies to make money from predicting
someone’s death. Improvement in the accuracy and runtime
of optimal survival trees would likely increase the frequency
of such unethical behavior. Despite its potential utility for
unethical behavior, survival trees are most common in health
care, where they are used to help patients. It is important
in these scenarios that no life-altering decisions are made
solely based on the results of machine learning algorithms
that are not understood by the person taking the decision.
Our survival trees achieve best out-of-sample accuracy with
depths lower than 5, so they are relatively easy to interpret.
This mitigates the risk of irresponsible use.

1https://github.com/IzzyVanDerGiessen/evalsurtree



Runtime (seconds) Integrated Brier Score
OSST SurTree IBSO SurTree OSST SurTree IBSO SurTree

UnempDur 1 <1 72 0.17 0.18 0.18
flchain <1 <1 8205 0.05 0.05 0.05
aids2 <1 <1 140 0.16 0.16 0.16
acath <1 <1 21 0.11 0.11 0.11
rott2 1 <1 2169 0.19 0.17 0.18
nwtco <1 <1 77 0.11 0.11 0.11

Framingham 3 <1 4934 0.13 0.12 0.12
dataDIVAT3 <1 <1 210 0.07 0.07 0.07
dataDIVAT1 <1 <1 151 0.16 0.16 0.16

Dialysis 1 <1 69 0.19 0.18 0.18
csl 1 <1 244 0.18 0.23 0.25

divorce <1 <1 4 0.22 0.21 0.21
prostateSurvival <1 <1 4 0.08 0.07 0.07

oldmort 1 0 1953 0.18 0.18 0.17
hdfail 2 0 9179 0.12 0.11 0.11

Table 1: IBS scores and runtime of SurTree, IBS Objective SurTree and OSST with maximum depth 3

8 Discussion
In figure 7a and figure 7b we saw that the IBS of our trees with
three Breslow iterations is not better than the trees produced
by the Nelson-Aalen estimator. Similarly, the Concordance
Index does not show any improvement. The scenario where
the iterative Breslow estimator stands out is one where the test
set has many outliers while the training set does not. Since
the training data used in our experiments was representative
of the test data, we were not able to see an improvement in
our results.

The IBS objective is significantly slower than the original
partial likelihood objective of SurTree. This was expected,
since the partial likelihood has a constant time function to
compute the loss, while we use equation 24, which is O(|h| ∗
|D|) in the worst case. Compared to OSST, the difference
in runtime is also significant. Since OSST was specifically
created with the IBS objective in mind, it has many runtime
improvements in its implementation. However, the OSST
code is poorly documented, and redesigning SurTree to fit
the OSST implementation of the IBS objective would not be
worthwhile for the scope of our experiments, which focused
on accuracy.

In section 5, we discussed the advantage of the IBS
over the partial likelihood objective when the assumption of
proportionality is not appropriate for a dataset. However,
this advantage is hard to notice when this assumption is still
made while estimating the survival functions. On artificially
constructed data, the IBS objective achieves a higher IBS, but
also a lower Concordance Index. This mirrors the results we
saw on real data.

9 Conclusions and Future Work
We have extended the SurTree optimal survival tree algorithm
with an option to use multiple iterations in estimating the
cumulative hazard function. This is done by using the
iterative Breslow estimator, which incrementally improves
the estimate of the cumulative hazard function with each
iteration. We have shown that this has theoretical advantages

over the Nelson-Aalen estimator by creating artificial datasets
that exaggerate the difference between the two estimators.
On these datasets, SurTree with the iterative Breslow
estimator has proven to achieve higher accuracy than SurTree
with the Nelson-Aalen estimator. On real data, we see
no improvement in training accuracy and out-of-sample
accuracy resulting from three iterations of the Breslow
estimator.

Furthermore, we have experimented with the Integrated
Brier Score as objective function. This score has an advantage
over the partial likelihood objective used by SurTree, since
it does not make the assumption of proportionality. We
think that the Integrated Brier Score would be useful as an
objective function when working with datasets for which the
assumption of proportionality is not appropriate. However,
with these datasets, it would be best to use a different method
of estimating the survival function, because the method
used in SurTree assumes proportional hazards. In general,
the Integrated Brier Score objective in SurTree does not
achieve a higher out-of-sample accuracy than the proportional
likelihood objective.

We suggest further research into pre-processing and
manipulating datasets in order to get closer to the exaggerated
theoretical datasets that we have created, as we would expect
SurTree with the iterative Breslow estimator to achieve higher
accuracy on real data if this can be achieved. In general,
it would be worthwhile to research the real world use cases
of the iterative Breslow estimator in optimal decision tree
algorithms.

The Integrated Brier Score objective does not achieve
higher out-of-sample accuracy than the partial likelihood
objective, but we think that it can still be useful in
combination with a survival function estimator that does not
assume proportionality of hazard functions. We think it
would be helpful to experiment with an algorithm that takes
the best scoring estimate of two estimates per leaf node: one
that uses the proportional hazards model, and one that does
not. Moreover, there is a lot of room for improving the



runtime of the IBS objective implementation. We suggest
ordering the datasets on the time-of-event to allow faster
computations of the IBS.

References
[1] Odd Aalen. Nonparametric Inference for a Family of

Counting Processes. The Annals of Statistics, 6(4):701–
726, 1978.

[2] Dimitris Bertsimas, Jack Dunn, Emma Gibson, and
Agni Orfanoudaki. Optimal survival trees. Machine
Learning, 111(8):2951–3032, 2017.

[3] Matheus Guedes Vilas Boas, Haroldo Gambini
Santos, Luiz Henrique de Campos Merschmann, and
Greet Vanden Berghe. Optimal decision trees for the
algorithm selection problem: integer programming
based approaches. International Transactions in
Operational Research, 28(5):2759–2781, 2021.

[4] L. Breiman, J. Friedman, R.A. Olshen, and C.J. Stone.
Classification and Regression Trees. Chapman and
Hall/CRC, 1984.

[5] N. Breslow. Contribution to the discussion of paper
by D. R. Cox. Journal of the Royal Statistical Society,
Series, 34:216–217, 1972.

[6] Diogo V. Carvalho, Eduardo M. Pereira, and Jaime S.
Cardoso. Machine Learning Interpretability: A Survey
on Methods and Metrics. Electronics, 8(8), 2019.

[7] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho,
David Sontag, and Yan Liu. Recurrent Neural Networks
for Multivariate Time Series with Missing Values.
Scientific reports, 2018.

[8] D. R. Cox. Regression Models and Life-Tables.
Journal of the Royal Statistical Society: Series B
(Methodological), 34(2):187–202, 1972.
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