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PREFACE

When I first started researching LISA I had never been formally introduced to the concept of gravitational
waves, or the subject of relativistic physics for that matter – except for some applications in GNSS clock tuning
and modeling of perturbations on the orbit of Mercury, as a Master of Science student in Space Engineering.
Nevertheless, the breakthrough of LIGO observations made outstanding news in recent years: first, the an-
nouncement of the detection of a black hole merger signature in early 2016, followed by the awarding of the
Nobel Prize in physics in 2017 to a collaboration of scientists among whom I could just make out the name of
Kip Thorne (not for anything else but his involvement in Hollywood back in 2014).

The likeness of fuzzy hair, mustached Albert Einstein – the Father of Relativistic Physics – has been en-
graved in pop-culture for decades. All over the media, his famous equation E = MC 2 is spotted more than
often, although, usually, out of the context in which it was conceived. Never an equation has been referenced
as much (maybe with the exception of the Pythagorean theorem and the solution of quadratic equations that
we are taught in school), and yet, there is an intrinsic unfamiliarity with the work that made the scientist
popular as such, while his eccentric personality and philosophical stance made him famous to the World.

Indeed, understanding of his genius requires way more than high school level teachings or basic com-
mon sense (which, let’s be honest, not everybody possesses either). So, at the dawn of my Master studies I
decided to dip my toes in relativistic physics just to get a taste of what it is all about. Without a warning I
was overwhelmed by a world of abstractions and foreign mathematics that transcends all I knew: differential
geometry, multi-dimensional tensorial calculus, metrics, connections, space-time, field equations and black
holes. No wonder why Einstein and the late Stephen Hawking could not just charm the masses with their
papers and theories.

The researchers at the Max Planck Institute for Gravitational Physics in Potsdam, where I briefly educated
myself on these subjects, could easily be able to put me to shame with their alienating knowledge. Yet, I was
welcomed with a warming sense of excitement for LISA! It was then that I realized how important what I
was studying was: a whole world of people out there cheer for LISA and have been waiting for its debut with
growing anticipation, some even for decades!

In fairness, this thesis has nothing to do with relativistic physics. But every good story must have a begin-
ning somewhere, and this one about LISA might as well start with Einstein and his Field Equations. Besides,
it should become clear, after reading this report, what a true fit of engineering we are dealing with. LISA is,
after all, a one of a kind space mission, a technological achievement thirty years in the making and bugged by
a plethora of obstacles along the way and the technological limitations of our times.

Many thanks to my supervisor, Prof. Pieter N.A.M. Visser for introducing me to the topic of this thesis and
guiding me through its implementation, to Dr. Ernst J.O. Schrama for presiding the graduation committee
and to Dr. Jian Guo for participating in the process. I would also like to thank the TNO optics team for
their interest, especially Dr. Ernst-Jan Buis for attending my graduation. A huge applause goes also to all the
people involved – or that have been involved – in LISA and LISA Pathfinder and the physicists that believe in
the system: your data will soon come.

A big shout out goes to my friends around – and from all over – the World, especially my fellow peers
in Delft, Bremen and Turin for the gift of comradery that greatly relieved the struggles of studying. And, of
course, most (but not all) of the numerous flatmates with whom I shared the ever sacred cooking ground and
the dining table.

Last, but not least, I need to acknowledge the support both financial and psychological of my relatives
back home, with special regards to my parents, grandparents and siblings.

Francesco Lupi
Delft, February 2019
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ABSTRACT

The Laser Interferometer Space Antenna (LISA) is a European mission for the detection of gravitational waves
in space set to be launched in 2034. The mission will see the deployment of 3 spacecraft in heliocentric orbit
keeping a triangular formation with side length of 2.5 million km. Laser beams are exchanged between the
spacecraft by means of suitably mounted telescopes (2 per spacecraft), with the objective of synthesizing a
very-large baseline interferometer. The interferometric measurements are taken between free-floating test-
masses placed inside the spacecraft.

Due to the nature of the scientific objectives, the mission requirements on spacecraft-spacecraft point-
ing precision are exceptionally strict. Moreover, the formation needs to operate in almost perfect free-fall,
therefore the solar radiation pressure needs to be continuously compensated for by the on-board thrusters.
Gravitational wave signals are measured in the frequency bandwidth of 20 µHz to 1 Hz, requiring the vi-
brations in that domain to also be eliminated both for the attitude and the displacement. The task is made
possible by the gravitational reference system, a complex device that keeps the test-masses from touching
the walls of the spacecraft by applying on the latter an external force through µNewton thrusters. This mode
of operation is called Drag-Free and Attitude Control System (DFACS).

In this thesis we attempt to study and design a DFACS for LISA using a technique called Quantitative
Feedback Theory (QFT). The design process starts from the definition of the orbits, the goal orientation of the
spacecraft, the sizing of the solar radiation pressure induced disturbances and the derivation of the dynamics
of the 19 degrees of freedom to be controlled. Using QFT, the design process is carried out on the DFACS using
separation of the dynamics.

As a result, analytical equations for the calculation of the LISA commands are derived and the methods to
design a control system compliant to the scientific requirements imposed on the sensitivity are shown.
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MATH SYMBOLS

~0 Adimensional physical vector
0 Array of zeros

1n×n = diag(1,1, ...,1) 1 unit n ×n matrix
1n×1

i Unit n ×1 array where 1 j 6=i = 0 and 1 j=i = 1 for i , j ≤ n
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x ∈Rn×1 column vector, array, n ×1 matrix
R Set of real numbers

Rn×m Set of real n ×m matrices
x~2 Vector as seen in reference frame "x"
2τ Transpose operation
2̇ Time derivative
2̈ Double time derivative

CONVERSIONS

1 rad (radian) = (180/π)◦ (degrees) f- (femto-) ×10−12
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1 day = 86400 s µ- (micro-) ×10−6
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...
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xiv 0. NOMENCLATURE

CONSTANTS

Moon gravitational parameter (in simulation) µmoon 4902.800238 km3/s2 [2]
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Earth surface acceleration g0 9.81 m/s2

Dry mass mdr y 1493.3 kg
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VARIABLES
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δθ (δθ1,δθ2,δθ3)τ Euler angle error in control loop
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δ~lt random torque jitter
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∆x used to represent the bin size
ε εi , i = 1,2, ...,12, jitter factor, random gaussian value with standard deviation 3σ= 0.01
θ in Chapter 2: true anomaly (orbital element) / in Chapters 5 – 8: θi , i = 1,2,3, Euler angle, compo-

nent of θ
θ Euler angles (θ1,θ2,θ3), θc commands on the E.a. (ideal E.a.), θm measured E.a.
Θ Lagrange transform of θ
λ ∈R18×1 Lagrange multipliers
µ mass-ratio parameter in circular restricted 3-body problem / gravitational parameter: µs Sun g.p.,

µe Earth g.p. / mean, or mathematical expectancy (also E []) µ(Sxx ) a. of Sxx

σ standard deviation (square root of variance) σasd s.d. of zero-mean ASD, σx s.d. of random vari-
able x, σd1 s.d. of random dynamics disturbance, σd2 s.d. of random readout disturbance

τ̂ τ̂i , i = 1,2, ...,12 direction of thrust of single thruster
ϕ placeholder value for attitude kinematics and dynamics of S/C, (ϕi , i = 1,2, of TMi ) ∈R3×1

φ Inclination of formation plane w.r.t. Ecliptic
φ complementary angle of φ
ω in Chapter 2: argument of perigee (orbital element) / in Chapters 6–8 angular frequency [rad/s]

i.e. ω = 2π f / ωo numerical fundamental harmonic of low-frequency disturbances / ωe sidereal
motion

~ω angular velocity vector (~̇ω = a. acceleration vector) / without subscript: S/C body a.v.v. w.r.t. iner-
tial reference frame in body-fixed reference frame / ~ωi in Chapter 4: a.v.v. of S/Ci i = 1,2,3 / ~ωi /p

a.v.v. of S/Ci i = 1,2,3 w.r.t. formation reference frame / ~ωi in Chapters 5–8: a.v.v. of TMi , i = 1,2 /
~ω0i a.v.v. of GRS reference frame of TMi , i = 1,2, w.r.t. S/C body-fixed reference frame.

Ω longitude of ascending node (orbital element)
a in Chapter 2: semi-major axis (orbital element) / in Chapter 3: short side of trapezoid base, a1 s.s.

of large base, a2 s.s. of small base, a(z) s.s. of constant z section of trapezoid
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~a accelerations [m/s2],~ag gravitational accelerations,~at ideal thrust acceleration for drag-free op-
erations

A ∈ R6×12 thruster configuration matrix, A− ∈ R12×6 pseudoinverse of A with all positive com-
ponents and A A− = −16×6, A+ ∈ R12×6 pseudoinverse of A with all positive components and
A A+ = 16×6

ASD2 imposed ASD limit on the DFACS DoF errors in measurement bandwidth: ASDθ limit on the
attitude errors, ASDx limit on the displacement along the interferometric directions, ASDr limit
on the drag-free displacement in bandwidth, ASDz limit on the z-direction, ASDacc limit on the
accelerations along the interferometric directions

b long side of trapezoid base, b1 l.s. of large base, b2 l.s. of small base, b(z) l.s. of constant z section
of trapezoid

c (constant) speed of light in vacuum
cn nth harmonic magnitude in Fourier series
C (without subscript) used to represent any number C ∈C
C2 (with subscript) direction cosine matrix ∈R3×3: Cn/i d.c.m. from inertial to body-fixed reference

frame of S/Ci , i = 1,2,3, (Ci /n = Cτ
n/i ), Cn/p d.c.m. from inertial to formation plane reference

frame, Cp/i d.c.m. from formation plane to S/Ci , i = 1,2,3, body reference frame, Ci (θi ), i =
1,2,3, intermediate d.c.m. associated to the relative fundamental axis of rotation, Cn/s d.c.m.
from inertial to S/C reference frame, Cs/i d.c.m. from S/C body to TMi , i = 1,2 GRS reference
frame / Cd f selection and transformation matrix from S/C body to drag-free DoF components

d̂ generic directive (x̂, ŷ , ẑ)
~d acceleration disturbance: ~d0 acceleration disturbance on S/C in S/C body reference frame, ~di

acceleration disturbance on TMi i = 1,2 in GRS reference frame
d ∈ R3×1 time-domain dynamics disturbance in control loop: dθ dynamics disturbance on Euler

angles, d d f dynamics disturbance on drag-free DoF
D ∈C frequency-domain disturbance in control loop: D1 dynamics (control) disturbance, D2 mea-

surement disturbance
D frequency-domain representation of d
e eccentricity (orbital element)
E eccentric anomaly (orbital element)
f frequency [Hz], fsamp sampling frequency (usually fsamp = 2 Hz)
f (x) target optimization function to minimize
~f force ~ft thrust force, ~fd0 disturbance force, ~fsr p SRP force, ~fspec force component due to specu-

larly reflected sun-light, ~fbl ocked force component due to blocked sun-light, ~fdi f f force compo-

nent due to diffusely reflected sun-light ~fi electrostatic suspension force acting on TMi , i = 1,2
f ∈ R6×1 force-torque vector f = (~f τt ,~lτt )τ, f − array containing all the negative components of f

and zeros, f + array containing all the positive components of f and zeros
F in Chapters 5-8: upper bandwidth frequency F = 1 Hz.
F (x ,λ) in Chapter 3: augmented function
g0 gravitational acceleration at Earth’s surface
g ∈R18×1 optimization constraints
G ∈C frequency domain control transfer function
Gr o ∈ C frequency domain control transfer function of the drag-free control system for z1 with roll-

off in parallel
h in Chapter 2: magnitude of orbital momentum per unit mass / in Chapter 3: S/C height
hcm distance of S/C CoM from solar panel (lower base)
H in Chapter 3: system of equations for the solution of the optimization problem, H∗ reduced form

of H
H2 in Chapters 7–8: linearizing matrix, Hθ l.m. of attitude dynamics system, Hd f l.m. of drag-free

DoF dynamics system, Hi d f , i = 1,2 selection matrix of drag-free DoF from TMi relative DoF
i (unless found as subscript) in Chapter 2: inclination (orbital element) / in the Appendices: imag-

inary unit
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î = (1,0,0)τ fundamental x-direction
I ∈ R3×3 inertia matrix: Isc S/C body i.m. w.r.t. CoM, Idr y i.m. of the dry mass w.r.t. S/C CoM, Ipr op

i.m. of propellant mass w.r.t. S/C CoM, Ii i.m. of TMi , i = 1,2
Isp specific impulse
j (unless found as subscript) imaginary unit
ĵ = (0,1,0)τ fundamental y-direction
k (unless found as subscript) gain of the transfer function
k̂ = (0,0,1)τ fundamental z-direction
K ∈R3×3 stiffness matrix of the virtual spring-mass system used to model the interaction between the

S/C and the TMs: Ki stiffness matrix of the displacement dynamics of TMi , i = 1,2, Kϕi stiffness
matrix of the rotational dynamics of the TMi , i = 1,2

l nominal arm-length
~l external torque: ~lt thruster torque (in S/C reference frame),~ld0 torque noise acting on S/C,~lsr p

SRP induced torque,~li electrostatic suspension torque acting on TMi , i = 1,2,~ldi excess distur-
bance torque acting on the TMi , i = 1,2, in its enclosure

L ∈C open loop transfer function of the linear feedback control loop
m mass: msc S/C mass, mdr y dry-mass, mpr op propellant mass (ṁpr op mass-rate), mi , mass of TMi ,

i = 1,2 (= 1.9 kg in simulation)
M in Chapter 2: mean anomaly (orbital element) / in Chapter 8: Mi matrix used to evaluate the

dynamics disturbances on TMi , i = 1,2
n (unless otherwise specified) natural number n ∈N
n̂ in Chapter 5: normal direction (ni of surface component i ∈N)
n̂i j (for i , j = 1,2,3, i 6= j ) direction of S/C j from S/Ci in inertial reference frame
N (unless otherwise specified) natural number N ∈N
N (θ) Euler angles kinematics transformation matrix, N (θ)∗ inverse of N (θ)
p semi-latum rectum
pi i = 1,2, ... pole of transfer function
~p generic vector used in examples
P ∈C frequency domain system plant (transfer function)
P¯ solar radiation pressure at 1 AU from Sun
Psr solar radiation pressure
~r2 displacement vector: ~rcm position of formation reference point (incenter) in inertial reference

frame, ~ri j , i , j = 1,2,3, i 6= j displacement of S/C j w.r.t. S/Ci in inertial reference frame / ~rcp

position of CoP w.r.t. S/C CoM,~rti position of CoT of thruster cluster i = 1,2,3,4,~ri , displacement
of TMi , i = 1,2 in GRS reference frame from rest position,~r0i rest position of TMi , i = 1,2 in S/C
body reference frame,~rhi fixed rotation point of telescope i = 1,2 in S/C body reference frame

r a = (r23,r31,r12)τ concatenation of inter-S/C distances for the calculation of the incenter Cartesian
position

~̈rig r s TMi , i = 1,2, acceleration that need to be controlled by the electrostatic suspension system
ri j (for i , j = 1,2,3, i 6= j ) distance between S/Ci and S/C j (ṙi j drift speed, r̈i j drift acceleration)
R (without subscript) in Chapter 4: matrix obtained by concatenating the inertial Cartesian positions

of the S/C = (
~R1,~R2,~R3

)
~R S/C displacement in inertial reference frame w.r.t. SSB (~Ri relative to S/Ci in Chapter 4, ~̇R velocity

of S/C, ~̈R acceleration of S/C)
R2 in Chapter 2: Ri0 initial radial distance of S/Ci from Sun / in Chapter 5: reflection coefficients ∈R:

Rspec specular reflectivity, Rdi f f diffusive reflectivity, Rabs absorptivity
s = jω complex frequency (Laplace transform parameter)
ŝ direction of Sun from S/C CoM
S2 (chapter 5) Si i th surface component area, S−z surface of solar panels
S sensitivity function S = 1/(1+L). In Chapter 6: Sx sensitivity of output to dynamics disturbances,

Su sensitivity of control to dynamics disturbances / in Chapter 7: |Sθ| upper limit on magnitude of
output sensitivity for the attitude / in Chapter 8: |Sx | upper limit on the output sensitivity for the
x-directions, |Su | upper limit on the acceleration sensitivity for the x-directions, |Sz | upper limit
on the output sensitivity for z1
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t time parameter
T sensitivity function T = L/(1+L). In Chapter 6: Tr the closed loop transfer function of a feedback

control system, Tx sensitivity of output to readout noise, Tu sensitivity of control to readout noise
/ in Chapter 7: |Tθ| upper limit on the output sensitivity to readout noise in the attitude control
system / in Chapter 8: |Tx | upper limit on the output sensitivity to readout noise along the x-
directions, |Tu | upper limit on the acceleration sensitivity to readout noise along the x-directions,
|Tz | upper limit on the output sensitivity to readout noise for z1

T ∈R12×1 array of thrust force magnitudes
u time-domain control variable in the linear feedback control system
u time-domain control variable in the linear feedback control system, uθ c.v. of the attitude (~lt ), ud f

control variable of the drag-free DoF (~ft )
U frequency domain representation of u
v time-domain virtual control variable: vθ v.c.v. of the attitude (θ̈), v d f v.c.v. of the drag-free DoF

(ẍd f )
V frequency-domain representation of v : V θ Laplace transform of vθ, V d f Laplace transform of v d f

W¯ solar constant
x used to identify the first direction component on a 3-dimensional reference frame / random vari-

able (depending on context)
x̂ x-directive of the S/C reference frame (in Chapter 4 x̂i refers to S/Ci )
x in Chapter 3: ∈R12×1 optimization variable, column of A+ or A−
xd f = (x1, x2, z1)τ drag-free DoF
¨̃xd f accelerations to be eliminated by the thrusters in the drag-free control
x̂e x-directive of the Sun-Earth Hill’s reference frame
ẍ g r s accelerations to be eliminated by the electrostatic suspension system in the drag-free DoF
x̂h x-directive of the Sun-formation Hill’s reference frame
xi i = 1,2 x-direction displacement of TMi

x̂i in Chapter 4: x-directive of S/Ci , i = 1,2,3 body-fixed reference frame w.r.t. inertial reference frame
/ in Chapter 8: x-directive of TMi , i = 1,2, reference frame w.r.t. S/C body

xp x-position of S/C on formation planar reference frame
x̂p x-directive of the formation planar reference frame
x si m ∈Rn×1 simulation values (observations) of xp (n is the number of observations)
X x-component of ~R or ~R2 / in Chapter 6: the output state of the control system
X̃ d f frequency domain representation of linearized drag-free DoF dynamics
y used to identify the second direction component on a 3-dimensional reference frame
ŷ y-directive of the S/C reference frame (in Chapter 4 ŷi refers to S/Ci )
ŷh y-directive of the Sun-formation Hill’s reference frame
yi i = 1,2 y-direction displacement of TMi

ŷi y-directive of S/Ci , i = 1,2,3, body-fixed reference frame w.r.t. inertial reference frame
ŷp y-directive of the formation planar reference frame
z used to identify the third direction component on a 3-dimensional reference frame
ẑ z-directive of the S/C reference frame (in Chapter 4 ẑi refers to S/Ci )
ẑe z-directive of the Sun-Earth Hill’s reference frame
ẑh z-directive of the Sun-formation Hill’s reference frame
zi i = 1,2 z-direction displacement of TMi

ẑi in Chapter 4: z-directive of S/Ci , i = 1,2,3, body-fixed reference frame w.r.t. inertial reference
frame / in Chapter 8: z-directive of TMi , i = 1,2, reference frame w.r.t. S/C body

zp z-position of S/C on formation planar reference frame
ẑp z-directive of the formation planar reference frame
z si m ∈Rn×1 simulation values (observations) of zp (n is the number of observations)
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REFERENCE FRAME SUPERSCRIPTS
a~2 in Chapter 5 it represents the reference frame associated to rotation via θ2
b~2 in Chapter 5 it represents the reference frame associated to rotation via θ3
h~2 relative to Hill’s reference frame (in Chapter 2 it also signifies the initial orientation of the Hill’s ref-

erence frame, but inertial)
n~2 relative to inertial reference frame ("n" is for Newtonian)
p~2 relative to formation planar reference frame
s~2 relative to S/C body-fixed reference frame



1
INTRODUCTION

1.1. SCIENTIFIC AND HISTORICAL MOTIVATIONS
Gravitational Waves (GW) were introduced for the first time in 1917 by A. Einstein as a solution in vacuum of
his field equations [4, 5]. In their most grounded definition, GW are space-time curvature propagating at the
speed of light. Although any distribution of mass possessing momentum can be a source, notable emissions
spawn from rapidly moving stellar masses, such as binary systems of closely co-orbiting neutron stars and
black-holes. Such systems are predicted to exist in large quantities at extremely long distances from our Solar
System [6].

In 1975, R. A. Hulse and J. H. Taylor proposed GW as a mechanism for the evolution of binary systems
during the investigation of pulsars through radio signals [7]. Direct observation of GW would not occur until
2016, almost a century after their theoretical inception, when the Laser Interferometer Gravitational wave
Observatory (LIGO) detected the signature due to the merging of two black-holes more than a billion light-
years away [8]. The challenge of detecting GW lies in the extremely weak power they carry when reaching
Earth. Their signature is space-time strain affecting the time a light beam takes to travel the distance between
two Test-Masses (TMs) [9].

The two LIGO observatories and the other Earth based gravitational wave detectors still in phase of com-
missioning, such as Virgo, Kamioka Gravitational Wave Detector (KAGRA) and GEO600, are based on long
range laser interferometry, with arm lengths of 300 m to 4000 m. This range limits the sensitivity to high fre-
quencies (≥50 Hz). Moreover, human and natural activities on Earth add drastically to the background noise
[10]. As measure of the required sensitivity, consider that the detection of the first GW signal was based on the
measurement of a space-time strain smaller than 10−21 [8]. By comparison this was as large as the diameter
of a proton over the 4 km interferometric range. Figure 1.1 shows how the signal appeared in time.

The limit on the detection bandwidth excludes most of the GW sources in existence. At LIGO’s range, the
most prominent, if not the only, detectable event is the last few seconds of a merger. At this stage, neutron
stars and black holes co-orbit each other several times per second up until they collide due to dissipating
energy through emission of gravitational radiation. It has been predicted, however, that the largest portion of
binary systems have orbital frequencies at mHz ranges [6]. In order to detect such events, the interferometric
range must be increased to millions of km, much larger than anything that could be built on Earth, whose
average radius is 6376 km [10].

Space-based GW observatories have been proposed to provide such ranges. In addition, space offers a
suitably undisturbed environment in which TMs (i.e. bodies with small enough mass not to generate signif-
icant curvature), may be able to experience gravitational-only accelerations. This condition, referred to as
free-falling or drag-free motion, is an imposed constraint for the mathematical derivation of linear GW [9].
In practice, drag-free motion of the TMs is beneficial in order to eliminate spurious accelerations that might
contaminate the GW signature [10].

The concept of a space-based GW observatory is more than 30 years old, starting back in 1981 at the Joint
Institute for Laboratory Astrophysics (JILA) in Colorado. The following years saw the conceptual design of the
Laser Antenna for Gravitational-radiation Observation in Space (LAGOS), a mission comprising three Space-
craft (S/C) in heliocentric orbit and having many elements similar to the titular Laser Interferometer Space
Antenna (LISA) of this report. The LISA and the Spaceborne Astronomical Gravitational-wave Interferometer
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2 1. INTRODUCTION

Figure 1.1: The chirp signal detected by LIGO observatories in Hanford (left) and Livingston (right) within ∼10 ms of each other, signaling
the first ever direct observation of gravitational waves from the merger of two black holes. At its peak, the space-time strain was ∼10−21.
The event becomes visible on the periodogram for only about 0.1 s, starting at ∼50 Hz. (Credits: Abbott B. P. [8])

To Test Aspects of Relativity and Investigate Unknown Sources (SAGITTARIUS) missions were proposed at
ESA together in 1993 by two separate international teams backed respectively by the historical coordinator of
the LISA project K. Danzmann, Max- Planck-Institut für Quantenoptik, and R. W. Hellings, Jet Propulsion Lab-
oratories (JPL). Back then, LISA was a four-S/C heliocentric concept with a baseline of 5·106 km, while SAGIT-
TARIUS was a six-S/C geocentric mission with a baseline of 106 km [11]. The operation of such observatories
is based on long-range laser interferometric measurements among pairs of S/C. Similarly to ground-based
detectors, the exchanged lasers over the baselines allow to synthesize a Michelson’s-like interferometer. The
modern, long-lasting configuration of LISA, adopted back in 1996, calls for 3 S/C in heliocentric orbits in an
equilateral triangle formation [12].

Formerly a joint NASA-ESA effort, development was supported by both administrations up until the re-
tirement of the LISA Pathfinder S/C, a precursor mission launched in 2015 to test many of the enabling low
technology readiness level aspects [13]. NASA formally withdrew from the project in 2011, and, since then,
LISA underwent several redesigns, such as downsizing the arm-length from 5·106 to km 2.5·106 km [14].

LISA Pathfinder was fitted with much of the unprecedented technology set to be used on LISA, most no-
tably, the LISA Test Package (LTP) included two TMs, a laser interferometer to precisely measure their relative
displacement, a contactless suspension mechanism that allows the TM to float within the S/C, and µNewton
thrusters capable of high-performance, low energy thrust forces to enable drag-free motion [15].

LISA was announced once again in early 2017 following a call for proposals by ESA for the L3 (third Large-
class mission) slot of 2034 [14]. The success of LISA Pathfinder and the first confirmed detection of GW by
LIGO in the previous year granted LISA approval and secured the L-class mission 1 billion Euro funding in
June 2017 [16].
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1.2. OVERVIEW OF THE LISA MISSION
LISA is the first mission of its kind. It will deploy three S/C in Earth-trailing heliocentric orbits, keeping an
almost constant relative orientation at the vertexes of an equilateral triangle with side length of 2.5·106 km
[14]. Each S/C is fitted with two telescopes aiming at the respective companions, sending to and receiving
from them a laser beam (Figure 1.2). Each S/C contains two TMs, each paired to a companion on the next S/C.

S/C1

S/C3
S/C2

Figure 1.2: The basic functioning principle of LISA. The three S/C exchange lasers through properly fitted telescopes over 2.5 million
km to measure the differential displacement of TMs (grey squares) belonging to two different S/C through interferometry. Credits: O.
Jennrich [17]

The sent and received laser beam is bounced off the TM to obtain a reading of their differential displacements
at the ends of an interferometric arm. The TMs are gold-platinum alloy cubes weighting about 1.9 kg. The
combined interferometric measurements of the six links (two sent and two received on each arm) are later
processed to identify the GW signatures [12, 17–19]. The reader is referred to the bibliography for the full
description of the LISA system.

The triangular geometry is achieved through a cartwheel orbit: the formation plane is constantly inclined
by 60◦ w.r.t. the ecliptic while the S/C perform an apparent circular motion with constant angular velocity
around a fictional reference point. The reference point orbits the Sun at a nominal trailing distance from
Earth of 20◦. Figure 1.3 shows how the conceptual design of such a formation is achieved. The formation

Earth

Sun

1 AU (150 million km)

19 – 23°
60°

2.5 million km

1 AU
Sun

Figure 1.3: Depiction of LISA orbital design. The trailing angle of 19◦-23◦ shown here takes into consideration the drifting effect due to
the presence of Earth. Credits: K. Danzmann et. al. [14]

performs a revolution every year, with the S/C orbiting the reference point at the same rate [14, 20].
The characteristic frequency-sensitivity curve, shown in Figure 1.4 must be attained by removing non-

gravitational perturbations along the interferometric arms. This is performed through a Drag-Free and Atti-
tude Control System (DFACS). The DFACS is aided by the Gravitational Reference System (GRS), a mechanism
that reads the displacement of the TMs w.r.t. the S/C and performs other operations such as keeping the TM
from touching the walls. The TMs, shielded by the outside forces, abide only the gravitational accelerations.
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Figure 1.4: The LISA strain sensitivity curve and the encompassed detectable GW sources. This curve drives the control requirements in
LISA. GW150914 is the first gravitational wave event observed by LIGO. Credits: K. Danzmann et. al. [14]

By adjusting the position of the S/C w.r.t. the TMs the DFACS is able to eliminate the non-gravitational accel-
erations, keeping the S/C in free-fall during the science operations [14, 17].

Actuation of the DFACS is provided through a set ofµNewton thrusters, i.e., high-performance, low-thrust
actuators working in the range ∼0.1÷100 µN. These values are consistent with the size of the external pertur-
bations, mainly the solar-radiation pressure and the thruster noise. Meanwhile, the GRS needs to shelter the
TM from unwanted interaction with the S/C environment, mainly the thermal noise, the electrostatic and
self-gravity forces, and centripetal and Coriolis’ accelerations [14, 17].

Both the required attitude and the TMs displacement must be achieved under extremely precise levels of
accuracy inside the measurement bandwidth, which lies between 0.1 mHz and 0.1 Hz (with a goal of 20 µHz
to 1 Hz). The refresh frequency of the control hardware is limited to 10 Hz [14]. As such, the DFACS gain must
be designed carefully against the perturbations.

1.3. THESIS OBJECTIVES
LISA sensitivity requirements are extremely demanding: the laser beam cone width is just 200 µrad in di-
ameter [21], requiring precise pointing capabilities in the spectral range of 10 nrad per frequency bin [14].
Spurious accelerations of the TMs along the interferometer arms need not to exceed spectral densities of 3
fm/s2 per frequency bin in the bandwidth, while displacement must not exceed 1 pm per frequency bin. Out-
side the bandwidth, limits are also imposed on the low frequency amplitudes, respectively to 10 nrad and 5
nm [14].

In total, 19 Degrees of Freedom (DoF) per S/C are to be controlled [22]: the six displacement and six
orientation DoF of the two TMs, the six displacements and attitude DoF of the S/C and the breath angle
between the two telescopes [22]. While the free-floating TMs need to be kept from hitting the walls of the GRS
by an electrostatic suspension system, some DoF must be allowed to follow their gravitational paths in order
to keep the S/C on a drag-free trajectory, using the on-board thrusters. The thrusters are also employed to
generate attitude control torque [22]. Assuming that the necessary hardware is fully developed and up to the
task, i.e. no improvements are necessary on the technology readiness level of all the involved components,
the control algorithm is left to be designed.

Ultimately, this thesis deals with the design of the feedback control loop, thus begging the research ques-
tion:

What is a suitable algorithm for the drag-free and attitude control system that allows the LISA S/C to perform
within all requirements during science operations?

The word suitable refers to the capability of the algorithm to, alone, reduce the noise of the DoF to levels
that satisfy the mission requirements.

Before the design process we need to understand the size of the perturbations acting on the S/C. This
requires a focused analysis of the LISA system. In particular, the following subquestions are to be answered:
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1. What is the nominal state of the formation and how does it relate to the state of each individual S/C?

• What are the orbits of the LISA formation?

• How is the S/C orientation defined?

• What is the expected behavior of the S/C in relation to the other two?

2. What are the perturbations acting on each degree of freedom and what are their components?

• What is the size and orientation of the solar radiation pressure force and torque?

• What are other spurious accelerations?

• What are the dynamics of each degree of freedom?

• What is the sensitivity of each degree of freedom to the perturbations?

3. What are the limitations of the control system?

Question 1 encompasses the need to understand the formation dynamics, e.g. LISA’s orbital behavior,
the nominal orientation of the S/C in order to keep the telescopes aligned to the next two, and the associated
dynamical parameters (angular velocities and accelerations).

Question 2 covers the sizing of the perturbing forces, from the constant to low-frequency solar radiation
pressure, to the spurious accelerations acting in the measurement band. This step requires the dynamics of
each DoF to be known.

Question 3 is about the control system itself, the limitations on the performance imposed by the mission
requirements and the implications from controlling the degrees of freedom. For example, the limit on the on-
board frequency of 10 Hz is expected to influence the overall performance at high frequencies as experienced
on LISA Pathfinder [23].

1.4. METHODOLOGY
This thesis is an individual study on a mission in current status of development. The lack of empirical data
and the evolution of the project poses some limits on the extent of this research. Here is the methodology
used to tackle the problems.

Working up from the basic informations: The inherent qualities of the mission are the starting point of
this study. These are:

• The mission objectives;

• The shape of the orbit;

• The description of the payload;

• The model of known disturbances (i.e. Solar Radiation Pressure (SRP));

• The control objectives, dictated by the science requirements.

The core function of each S/C as floating laboratories at the corners of a triangular interferometer, and
whose motion in space is well defined by the formation design can tell us a great deal about its expected
behavior, both in its translational and in its rotational state. We start by obtaining information about the
motion, i.e. by implementing an orbital simulation, and then try to determine the orientation and the an-
gular velocities and accelerations associated to a well controlled system. These can be used as references for
attitude control and dynamics.

The properties of the payload, namely the optical assemblies and the GRS, are used to derive the dynamics
of all the DoF included in the system.

The model of the SRP force can be applied to determine the ideal forces required by the drag-free control
of the S/C. Finally, the control objectives tell us what is expected of the control system.

Filling up the unknowns: More than seldom we are faced with a lack of values that are necessary for a
complete definition of the system. In particular we can only infer about the following:

• Mass and inertias of the S/C;
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• The specific impulse of the thrusters;

• The thruster configuration;

• The vibrational noise;

• The precision of the measurement system.

An extrapolation of the above from literature and rationalized guesswork is necessary, therefore, to finalize
the model.

Validation and verification: publicly available literature provide data and equations that can be used
as benchmarks to validate the model. When these are not available, we need to get creative and make tests
from independent calculations. We need to make sure, in particular, that the derived equations are physically
sound and provide proof of their veracity.

The verification process is more straightforward, as it needs to ensure that the already validated models
are integrated accordingly in the code/simulation, and the results are mutually compatible.

Expected results: conceptually, this thesis can be divided into two parts: the first part is about the def-
inition of the model, its expected behavior, and the derivation of the dynamics; the second part deals with
the design of the control system, culminating with a set of simulations aimed at confirming its feasibility.
The simulations are performed in Matlab and Simulinkr [24], being the tool of choice for many engineering
applications.



2
ORBITAL MODEL

2.1. INTRODUCTION TO THE ORBITAL SIMULATION
Nominally, the three LISA S/C are placed at the vertices of an equilateral triangle with a side length of l =
2.5·106 km as introduced in Section 1.2 (see Figure 1.3). The formation is bound to what is commonly referred
to as a cartwheel orbit (Figure 2.1): the S/C (slave) follows an apparent circular motion about a fictional point

Figure 2.1: Apparent motion of a slave satellite in a cartwheel orbit around a master satellite in the latter’s Hill’s reference frame. φ is the
"complementary angle" of the plane inclination φ= 60◦, h~ω is the apparent angular motion of the slave satellite (superscript h is for the
Hill’s reference frame coordinate system) and h~̇r is its velocity.

(master) orbiting the Sun, on a plane inclined by 60◦ w.r.t. the ecliptic from the local Sun direction. This fic-
tional point is the center of the formation, or, in the case of LISA, the geometrical barycenter of the equilateral
triangle. The formation orbits alongside Earth with a ∼20◦ delay [14].

This motion necessarily rules some aspects of the LISA dynamics: the three S/C, locked onto each-other
along the lines-of-sight of the telescopes, need to be oriented accordingly, while the breath-angles between
the telescopes need to be tuned to match the angular drift between two consecutive lines-of-sight, thus im-
posing a few formation-attitude relations. Moreover, the solar radiation pressure is dependent on the position
of the S/C w.r.t. the Sun [25].

In this chapter we focus on the modeling of the orbital behavior of the three LISA S/C. Although some
first-order approximative models of the orbit exist [26], it is more interesting for the purposes of this thesis,
to achieve an exact, inertial definition.

2.2. THE EXACT ORBITS
The cartwheel orbit is a solution of the Clohessy-Whiltshire equations in the Hill’s reference frame. On first
order approximation, the slave satellite orbits the master with a circular orbit on a plane inclined by 60◦
about the y-axis (direction of motion). The co-orbital and orbital periods are equivalent [20].

For LISA, the master satellite is replaced by a fictitious reference point in circular orbit around the Sun
at the same semi-major axis as Earth. The initial Kepler parameters for the exact LISA orbits were derived

7
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by S.V. Dhurandhar et. al. [27]. The equations are provided in the following paragraphs. Let us define the
nominal arm-length l , the semi-major axis a, the orbital inclination i , the eccentricity e and the angle of the
formation-plane w.r.t. the ecliptic φ as shown in Figure 2.2.

ll

ll

ll

i

γ

�ϕ

aa

aa

EarthEarth

S/C1

S/C2

S/C3

Figure 2.2: Orbit of the LISA S/C around the Sun and the shape-related orbital parameters. a ' 1 AU is the semi-major axis, l ' 2.5 ·106

km is the arm-length, γ' 20◦ is the Earth-trailing angle, φ' 60◦ is the inclination of the formation plane w.r.t. the Ecliptic.

According to Dhurandhar, the eccentricity of the Sun centered orbit, e, is calculated as

e =
√

1+ l 2

3a2 + 2lp
3a

cosφ−1 (2.1)

and the inclination is calculated as

sin i = l sinφp
3a(1+e)

. (2.2)

As per formation requirements, we set the arm-length to l = 2.5 ·106 km, the orbital period of 1 sidereal
year, in order to trail Earth, which corresponds to a semi-major axis of a = 1 AU, and the cartwheel nominal
co-orbital plane inclination of φ= 60◦. The obtained values are shown in table 2.1.

Table 2.1: Eccentricity and inclination of the LISA orbits

Eccentricity e 0.004858926162390
Inclination i 0.476438823626267◦

For what concerns the orientation of the three orbits let us consider the coordinate system oriented as the
initial Hill’s reference frame of the formation barycenter. We need to define the arguments of perihelion ωi

and the longitudes of the ascending node Ωi for each S/Ci , i = 1,2,3. In order to keep the co-orbital plane
inclined in the direction of the Sun, with the orientation shown in Figure 2.2, the perihelion must occur at
the lowest Cartesian z-coordinate. This means that the orbital plane is inclined about the perpendicular to
the semi-major axis, setting the argument of perihelion atωi = 270◦ for all the S/C. The z-axis motion is peri-
odical, with a phase difference between S/C of 120◦, therefore, the threeΩi must also be phased accordingly.
The actual values depend on the initial true anomalies θi . Figure 2.3 displays the initial configuration used in
the context of this thesis.

According to Figure 2.2, we start with S/C1 at perihelion, laying directly beneath the geometrical barycen-
ter, therefore, with a longitude of ascending nodeΩ1 = 90◦. The other two S/C are assigned ascending nodes
atΩ2 = 330◦ andΩ2 = 210◦. The choice of labeling reflects the co-orbital direction of motion, which seems to
rotate with an apparent clock-wise direction from the perspective of the inertial z-axis [26].

Finally, according to Durhandhar, the initial mean anomalies Mi0 must satisfy the following relation [27]:

Ωi +ωi +Mi0 = 2kπ, k ∈N (2.3)

with M10 = 0 since S/C1 starts at perihelion.
The initial true anomalies θi0 , i = 1,2,3, are calculated from Mi0 using Relations (2.4)-(2.5) [28]:

M = E −e sinE (2.4)
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Figure 2.3: The orientation-related orbital parameters and initial true anomalies of the three LISA S/C.Ω1 = 90◦,Ω2 = 330◦ andΩ3 = 210◦
are the longitudes of the ascending nodes of the respective S/C. θ1 = 0 (not shown), θ2 ' 120.4807◦ and θ3 ' 239.5193◦ are the initial true
anomalies of the respective S/C. The elements are defined w.r.t. the initial Hill’s reference frame of the formation’s reference point, with
the x-axis xh laying on the Ecliptic, with origin at the Sun and pointing γ= 20◦ from the initial Earth’s position.

tan
θi0

2
=

√
1+e

1−e
tan

Ei0

2
(2.5)

where E is the eccentric anomaly. Equation (2.4) must be resolved in closed form using a numerical method.
Table 2.2 summarizes the values of the longitudes of ascending nodes and the respective anomalies.

Table 2.2: Values of initial longitude of ascending nodes, mean and true anomalies of the LISA S/C

S/C1 S/C2 S/C3

Argument of perihelion ω 270◦ 270◦ 270◦
Longitude of Ascending Node Ω 90◦ 330◦ 210◦
Initial Mean anomaly M0 0◦ 120◦ 240◦
Initial true anomaly θ0 0◦ 120.4807302235256◦ 239.5192697764743◦

2.3. INERTIAL CARTESIAN COORDINATES
The derived orbits in the previous section are Sun-centered. In order to simulate the precise Newtonian
motion, we need to translate the orbits to an inertial reference frame. The Cartesian orbital elements are
derived in the current reference frame using the following procedure [28]. First, we calculate the semilatum-
rectum p, common to all the S/C, as:

p = a
(
1−e2) (2.6)

next, we calculate the initial distance from the Sun Ri0 of each S/Ci , using:

Ri0 =
p

1+e cosθi0

(2.7)

The angular momentum per unit mass w.r.t. the Sun is calculated using p and the gravitational parameter of
the Sun µs and it is the same for all S/C:

h =p
µs p; (2.8)

finally, the initial Cartesian displacements h~Ri0 and velocities h ~̇Ri0 are calculated using, respectively Equa-
tions (2.9) and (2.10) [28]:
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h~Ri0 = Ri0

cosΩi cos
(
ω+θi0

)− sinΩi sin
(
ω+θi0 cos i

)
sinΩi cos

(
ω+θi0

)+cosΩi sin
(
ω+θi0 cos i

)
sin i sin

(
ω+θi0

)
 (2.9)

h ~̇Ri0 =
he

r p
sinθi0

h~Ri0 +
h

Ri0

−cosΩi sin
(
ω+θi0

)− sinΩi cos
(
ω+θi0

)
cos i

−sinΩi sin
(
ω+θi0

)+cosΩi cos
(
ω+θi0

)
cos i

sin i cos
(
ω+θi0

)
 . (2.10)

The values are shown in Table 2.3.

Table 2.3: Initial Cartesian orbital elements in the original reference frame (h~Ri0 and h ~̇Ri0 )

S/C1 S/C2 S/C3

h x0 [m] 148865838782.051 149957358979.316 149957358979.316
h y0 [m] 0.000 1255953982.388 -1255953982.388
h z0 [m] -1237911422.101 632538841.627 632538841.627

h ẋ0 [m/s] 0.000 -125.013 125.013
h ẏ0 [m/s] 29929.767 29710.865 29710.865
h ż0 [m/s] 0.000 213.444 -213.444

The h superscript refers to the current reference frame. In order to get rid of it and translate to the inertial
Cartesian elements, we need the positions and velocities of Earth and Sun at the starting epoch, respectively
~Re0 , ~Rs0 , ~̇Re0 and ~̇Rs0 . Let us identify a Sun-centered reference frame whose x-axis points towards the initial
position of Earth and the z-axis is parallel to its orbital angular momentum. The x- and z-directives of such
reference frame are, respectively,

x̂e =
~Re0 −~Rs0

‖~Re0 −~Rs0‖
(2.11)

and

ẑe =
x̂e ×

(
~̇Re0 − ~̇Rs0

)
‖x̂e ×

(
~̇Re0 − ~̇Rs0

)
‖

(2.12)

In the Ecliptic J2000 reference frame, Earth’s orbital plane is almost congruent to the Ecliptic [28, 29],
hence the z-directive can be approximated as ẑe ' [0,0,1]τ.

Next, mission profile requires the formation to trail Earth at γ = 20◦. In order to satisfy this condition
we need to perform a change of reference frame through a rotation, first about the z-axis by γ and then
transforming from the Earth’s Hill’s-like reference frame to the inertial orientation. The total direction-cosine
matrix from the original reference frame to the inertial reference frame Ch/n is derived as:

Ch/n = (
x̂e , ẑe × x̂e , ẑe

) cos(γ) sin(γ) 0
−sin(γ) cos(γ) 0

0 0 1

 . (2.13)

Section 4.3 will discourse more in depth about the method used here. Multiplication by Ch/n and addition
of the Sun’s Cartesian components results in the initial state of each S/Ci in Solar System Barycenter (SSB)

centered inertial reference frame, respectively position ~Ri0 and velocity ~̇Ri0 :

~Ri0 =Ch/n
h~Ri0 +~Rs0 ; (2.14)

~̇Ri0 =Ch/n
h ~̇Ri0 + ~̇Rs0 . (2.15)

Figure 2.4 shows the initial osculating orbits in Sun-centered Ecliptic J2000 orientation, when the initial

epoch is set to January 01, 2035, 00:00:00.0h. The initial Earth and Sun states, ~Re0 , ~Rs0 , ~̇Re0 and ~̇Rs0 , shown in
Table 2.4, are retrieved from the SPICE ephemeris database [30].
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Figure 2.4: The three LISA S/C orbits visualized in Sun-centered Ecliptic J2000 orientation. (The z-axis aspect-ratio is 20 times larger
than the other two). Initial epoch is January 01, 2035, 00:00:00.0h.

Table 2.4: Earth and Sun ephemeris at epoch January 01, 2035, 00:00:00.0 (Solar System Barycenter centered Ecliptic J2000 ~Re0 , ~̇Re0 , ~Rs0

and ~̇Rs0 ).

Earth Sun
X0 [m] -25944943557.455 -675579147.265
Y0 [m] 144176545713.140 -741669709.405
Z0 [m] 8075690.480 19849850.823

Ẋ0 [m/s] -29823.527 6.804
Ẏ0 [m/s] -5230.438 -11.237
Ż0 [m/s] -0.545 -0.160

2.4. SIMULATION RESULTS
The simulation was performed using a Cowell’s propagator [28], starting at epoch January 01, 2035, 00:00:00.0h.
The gravities of Sun, Earth and Moon are included, with the planetary ephemerides extracted using the
CSPICE toolkit embedded in TUDAT (TU Delft Astrodynamics Toolbox) and based on the SPICE kernel DE
421. [2, 30, 31]. A 4th order Runge-Kutta integrator with a constant step size of 1000 s is used. Table 2.5 sum-
marizes the simulation properties. On first iteration, TUDAT was employed for the orbit propagation. Later
on, the whole simulation was transferred to Simulink.

Table 2.5: Orbit simulation properties.

Name Value

Reference frame Ecliptic J2000
Origin Solar System Barycenter
Initial epoch (t0) 1104494400.0 [s] (J2000)
Propagator Cowell’s
Massive bodies Sun, Earth, Moon
Planetary ephemerides DE 421
Integrator 4th order Runge-Kutta
Step-size 1000 [s]

Two simulations have been performed:

• Sun-centered, i.e. setting ~Rs0 = ~̇Rs0 =~0 in Equations (2.14) and (2.15), without third body gravitational
accelerations for the validation of the model;

• SSB-centered, with third body action of Earth and Moon.
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Figure 2.5 shows the resulting LISA orbits in the Hill’s reference frame of the geometrical barycenter for the
unperturbed case. The nominal circular motion with an inclination of 60◦ degrees on the Hill’s reference
frame is satisfied.
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Figure 2.5: LISA orbits in the Sun-geometrical barycenter Hill’s reference frame. The red dot identifies the starting position of the respec-
tive S/C. Left to right S/C1, S/C2 and S/C3. The simulation is performed without third body gravitational influence.

However, using a rotational transformation of the reference frame around the y-axis by -120◦ 1, similarly
to Bik et. al. [26], and plotting the z-axis displacement of the three S/C about this new reference system
(Figure 2.6) we are able to visualize the second and higher order discrepancies from a nominal cartwheel
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Figure 2.6: Displacement zp of the unperturbed orbits on the z-axis of a reference frame obtained by rotating the Hill’s reference frame
around the y-axis by −120◦. The peaks are about ∼−6770 km and ∼8400 km about the x y−plane.

orbit: the S/C cross the reference formation plane periodically with overshoots on the planar z-axis of∼−6770
km and ∼8400 km. Since the periodicity of these overshoots is equivalent to the orbit’s, the formation plane’s
tilt is different than the design φ 6= 60◦.

Since the formation plane is rotated about the y-axis, the error on the tilt δφ satisfies a linear relation
between the planar xp and zp component:

zp = tan(δφ)xp . (2.16)

Let us call the simulated observations for xp and zp , respectively, x si m and z si m , with x si m , z si m ∈Rn×1, where
n is the number of observations. The solution for δφ, using a linear least squares algorithm is [32]:

tan(δφ) = (
xτsi m x si m

)−1 xτsi m z si m (2.17)

1The rotation matrix used is Ch/p (−120◦) =
 cos(−120◦) 0 sin(−120◦)

0 1 0
−sin(−120◦) 0 cos(−120◦)

.
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which results in δφ'−0.301988653◦, suggesting that the actual tilt is

φ= 60+δφ' 59.698346358◦.

Performing the transformation again, this time using a rotation about the y-axis of −120+δφ, and plotting
the z-axis displacement, Figure 2.7 is obtained.
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Figure 2.7: z-axis displacement of the unperturbed orbits on a reference frame obtained rotating the Hill’s reference frame by
∼−120.30199 around the y-axis. The amplitudes are about ∼±817.3 km for a period of 1/2 year.

The resulting displacement on the z-axis has an overshoot of amplitude ∼±817.3 km, and periodicity of
a half orbit. This kind of behavior is inferred the appropriate name of "wobble", as it results in the formation
plane to slightly precess at the same rate as the orbital motion in the Hill’s reference frame of the geometrical
barycenter.

Another second order effect is the variation in time of the orbital motion. Due to the asymmetry of this
variation, the arm lengths, or distances between S/C, see a periodical difference from the nominal value of
l = 2.5 ·106 km. The values of the difference for one orbital period are plotted in figure 2.8.
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Figure 2.8: Arm length excursion from the nominal value l = 2.5·106 km for the unperturbed orbits. The value ri j = ‖~R j −~Ri ‖, i , j = 1,2,3,
i 6= j is the distance between S/Ci and S/C j , also referred to as arm-length. They vary about ∼23920 km and ∼−4779 km from l .

During one orbit the S/C drift from one another between ∼23920 km and ∼−4779 km equivalent to a total
percentage variation of 1.1480%. These values can be minimized by optimizing the initial orbital parameters
[33].

The inclusion of Earth and Moon gravity in the model results in "wobble" and arm-length variations as in
Figures 2.9 and 2.10.

The data, plotted for 10 years, show how the errors accumulate over time. The wobble is almost non
existent from t ' 5.5 years, leaving place to a much more prominent gradual tilting of the formation plane,
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Figure 2.9: 10 years z-axis displacement of the orbits on a reference frame obtained rotating the Hill’s reference frame by ∼−120.30199
around the y-axis. Earth and Moon third body gravities are included.
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characterized by a yearly period of z-axis displacement. The arm-length variations start growing dramatically
after about ∼ 5 years with an increasingly asymmetrical trend and a maximum percentage drift of ∼8.7096%
for the S/C1-S/C2 arm during the first 10 years.

2.5. ORBITAL DRIFT
Plotting the position of the formation’s geometrical barycenter in the Hill’s reference frame of Earth for the
unperturbed and perturbed cases, respectively, Figures 2.11 and 2.12 are obtained.

In the unperturbed simulation, the geometrical barycenter follows a constant circular orbit around the
Sun, which appears as a planar cartwheel orbit from an Earth-centered point of view [20]. This orbit is char-
acterized by an elliptical motion with a negative rotation (Figure 2.11). This motion arises when one of the
two co-orbiting bodies has non-zero eccentricity (Earth, in this case).

When Earth and Moon gravities are applied, the formation starts drifting away (Figure 2.12). This is due
to Earth-Moon system’s pull in the direction of motion, causing the semi-major axes of the S/C to rise and,
therefore, lengthen their orbital period.

The magnitude of this effect can be verified using the Circular Restricted 3-Body Problem (CR3BP) [34].
Using a mass ratio parameter of

µ= µe

µs +µe
' 3.003480642 ·10−6 (2.18)



2.5. ORBITAL DRIFT 15

-4
0

-4
2

-4
4

-4
6

-4
8

-5
0

-5
2

-5
4

-5
6

-5
8

-6
0

-6
2

-6
4

-6
6

-6
8

-7
0

-7
2

-7
4

-7
6

-7
8

-8
0

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

start
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Figure 2.12: Perturbed orbit (Earth and Moon third body gravities included) of the formation’s geometrical barycenter in the Earth-Sun
Hill’s reference frame (x y-plane projection) for 10 years. The grid shows the distance in million km (Gm) and the phase from the Sun-
Earth line of sight (x-axis). The underlying reference orbit is a 1 AU circle centered at Sun. The simulation starts at 01/01/2035 00:00:00.0.

where µe and µs are, respectively, the Earth’s and Sun’s gravitational parameters; and an initial displacement
of

X0 =cos(−20◦)−µ;

Y0 =sin(−20◦)
(2.19)

with initial zero velocity, the resulting orbit in the Sun-Earth co-rotating reference frame is a horseshoe orbit
with a period of ∼470 years. Figure 2.13 shows the CR3BP solution with the parametrized units of distance
and time scaled respectively by 1 AU and 1/(2π) years: during the first 10 years the formation will drift from
Earth from a distance of ∼52 ·106 km to ∼70 ·106 km, which is consistent with the true orbit of Figure 2.12.

The additional loops due to the eccentricity of Earth’s orbit and the nominal circular cartwheel orbit of
the formation about its barycenter add to the total distance from Earth. Figure 2.14 shows the magnitude of
drift for each individual satellite: S/C3 is the first to cross the recommended communication range limit of
65·106 km [14] at about t ' 6.15 years.
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2.6. VALIDATION OF ORBITAL MODEL
G. Li et. al. [33] provide a benchmark for the simulator: Figure 2.15 shows the arm-length variations obtained
by setting the nominal arm-length and the formation plane tilt, respectively, to

l = 5 ·106 km;
φ= 60.4776◦

in Equations (2.1) and (2.2). The model does not include third-body gravitational perturbations. The simula-
tion uses different labeling and displacement than the one used in this thesis, with S/C1 at aphelion and S/C2

and S/C3 inverted. Table 2.6 shows the parameters used for orbital orientation and initial position.
Figure 2.16 shows the simulation results using these values: the shape and magnitude of the plot, on visual

inspection, bears no difference from the one in Figure 2.15, therefore proving the validity of the model.
The magnitude of the variation does not change if the values in Table 2.2 are used, instead. As shown in

Figure 2.17 the shape of the plot is just phase-shifted w.r.t. Figure 2.16.
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Figure 2.15: Validation data: arm-length variations from the nominal value of r0 = l = 5 ·106 km [33]

Table 2.6: Values of initial longitude of ascending nodes and mean anomalies of the LISA S/C used in G. Li et. al. [33]

S/C1 S/C2 S/C3

Argument of perihelion ω 270◦ 270◦ 270◦
Longitude of Ascending Node Ω 270◦ 30◦ 150◦
Initial Mean anomaly M0 180◦ 60◦ 300◦
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Figure 2.16: Reproduction of G. Li et. al. plot of figure 2.15 (r0 = l = 5 ·106 km).
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Figure 2.17: Results using the conditions of Table 2.2, r0 = l = 5 ·106 km and φ= 60.4776◦.
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2.7. RECOMMENDATIONS ON THE ORBITAL MODEL
The choice of initial orbital parameters and epoch are not optimized for best formation performance. Re-
quirements, for example, call for a maximum distance from Earth of 65·106 km, and a cap on the inter-S/C
drift speed of <15 m/s in order to relax the Doppler shift on the interferometric measurements [14]. Efforts
to minimize these quantities yielded success in the past [33, 35], although application of the same parame-
ters is no longer possible after the arm-lengths were redefined from 5 to 2.5 million km, thus requiring a new
optimization process (which is beyond the scope of this thesis). The CR3BP can be invoked in order to opti-
mize the formation drift from Earth by twitching the initial semi-major axis: with a smaller semi-major axis,
the formation would initially drift towards Earth and later start drifting away as the gravitational interaction
of Earth builds up. This conclusively comes at the cost of inter-S/C drift rate and arm-length variations as
shown by Y. Xian et al.[35]. Arm-length, in particular, is also responsible for breath angle variations, required
to be kept below 1.5◦, due to the triangular geometry of the formation.

Some purposes might benefit from adding additional gravitational perturbations, such as Jupiter and
Venus. These where deliberately left out of the simulation to avoid computational complexity.

We notice that the formation retains most of its original shape during the first 4 years of operation, as
shown in Figure 2.10. This period coincides with the nominal mission lifetime (although the goal is 10 years)
[14]. In the next chapters we are going to study the formation during the initial 4 years. We assume that
repositioning is performed after this first period.

2.8. CONCLUSIONS ON THE ORBITAL MODEL
In this chapter the motion of the LISA formation has been modeled. The initial orbital parameters have
been calculated according to Durandhar et al. [33], by plugging in the required parameter of arm-length
l = 2.5 · 106 km and semi-major axis of a = 1 AU. The initial epoch and configuration were freely chosen
to begin at January 1, 2035, 00:00:00h with S/C1 at perihelion. The center of the formation is positioned at
20◦ clockwise from the polar angular coordinate of Earth on the Ecliptic. The initial orbital parameters are
expressed in SSB-centered Cartesian inertial Ecliptic J2000 coordinates.

The simulation uses a classical Cowell’s propagator with Sun, Earth and Moon point-mass gravity in-
cluded. The integrator used is a 4th order Runge-Kutta.

Preliminary runs including only Sun’s gravity confirm that the three S/C revolve around the geometrical
barycenter of the formation on nearly-circular relative orbits, inclined by 60◦ w.r.t. the ecliptic. Closer in-
spection reveal an actual mean plane inclination of ∼59.59834635757◦ and a periodical tri-phase distance
from this plane of the three S/C with an amplitude of ±817.3 km and a frequency twice as large as the orbital
motion, thus defining a small wobble.

With the inclusion of third-body gravity, the formation drifts away from Earth. The drift is consistent with
the CR3BP analysis of similar initial conditions, reaching an average distance of ∼70 ·106 km after 10 years.
Validation is performed by confronting the results of inter-S/C distance with the ones obtained by G. Li et al
[33]. In the next chapters the first 4 years of simulation are studied.



3
THE LISA SPACECRAFT

3.1. INTRODUCTION TO THE LISA SPACECRAFT
In this chapter, the physical parameters of the S/C are quantified. The need for these figures is justified by
their presence in the dynamics equations, presented in the following chapters.

All the publications on LISA before 2017 assume a cylindrical S/C design with a maximum diameter of 4.2
m. Just two years before the redaction of this thesis, a new configuration for the LISA S/C was proposed by the
Concurrent Design Facility (CDF) Team at the European Space Research and Technology Centre (ESTEC) [21],
wildly departing from the original cylindrical geometry, considered a standard for almost 20 years [11, 14, 17].

Originally, each S/C needed to be fitted with a transfer module that would detach at orbit achieved. The
satellites, planned to be lifted on an Ariane 64 rocket (still in development during the writing of this thesis),
were planned to be stuck on top of each other inside the payload bay in launch configuration. The new design
is derived from the Swarm mission S/C: similarly to LISA, Swarm [36], launched in 2013, required also the
launch of three satellites so the S/C were designed to fit on a single launch. The adoption of the same concept
in LISA allows the three S/C to share a single, chemical propulsion transfer module. Final orbit insertion is
performed using on-board thrusters [21].

This new geometry and the figures presented by the CDF Team are used for the estimation of mass, inertia
and thruster configuration, the latter used to estimate the efforts necessary to operate the DFACS.

3.2. GEOMETRY
The proposed geometry of the LISA S/C is shown in Figure 3.1. This is a relatively new concept based on the
Swarm launch configuration that allows the three satellites to share a single orbital transfer stage [21].

Notably, the two telescopes are used to send and receive the laser beams to and from the other two S/C.
They are, therefore, slanted by an angle α ' 60◦ to satisfy the almost equilateral triangular shape of the for-
mation. An actuation system is also integrated to allow a margin of ∆α=±1.5◦ [14].

The body-fixed reference system chosen for such a configuration is depicted in Figure 3.2: the x-axis
bisects the angle subtended by the telescope’s lines-of-sight, and the z-axis points in the opposite direction
as the solar panel. This convention implies that both the telescopes are articulated, in order to facilitate the
modeling of the dynamics. This is not necessarily the case, since early system definitions call for just one of
the telescopes to be capable of steering [37].

The orientation of the z-axis is related to the co-orbital motion of the formation. A similar reference frame
was adopted by Bik et. al. [26]. The positive rotation direction around the z-axis (counter-clockwise) was also
used to label the S/C in an orderly fashion from 1 to 3 in Chapter 2.

19
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Figure 3.1: The new LISA spacecraft model proposed by the CDF Team in 2017 allows the three S/C o share one launch on the Ariane 64
and one chemical propulsion tranfer stage [21]. The shape resembles a trapezoid on a 4.75×3 m2 solar panel.
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3.3. THRUSTER CONFIGURATION
The thrusters on a LISA S/C are primarily used as a reaction control system: they provide both the force
and the torque for the control of the DFACS [14, 17, 22, 37]. Recently, two concepts have been proposed:
one that would use electric propulsion for reaction control and chemical propulsion from a separate stage
for orbit insertion, called EP (Electric Propulsion) and one that would use electric propulsion only for both
control and orbit insertion, called EP+. The two configurations are very dissimilar, and require different study
approaches. Since the EP+ configuration is a relatively new concept based on low technology readiness level
components [21], we decide to concentrate on the EP configuration. Figure 3.3 shows the estimated thruster
configuration [21]. The arrows represent the orientations of the nozzles w.r.t. the body-fixed reference frame.
The 12 thrusters are clustered at about the four positive z-axis corners. Each cluster i = 1,2,3,4 shares one
Center of Thrust (CoT)~rti . Their displacements w.r.t. the Center of Mass (CoM) are estimated as:
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Figure 3.3: Direction of plumes and CoT positions of the 12 reaction control thrusters on LISA in the S/C body-fixed reference frame [21].
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The directions of thrust τ̂ j for each thruster j = 1,2, ...,12, are opposite to the respective directions of
plumes shown in Figure 3.3. They are estimated as:

τ̂1 =
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0
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It is important to mention that the values for ~rti and τ̂i are not found in literature. Instead, they were
estimated by closely matching the configuration of Figure 3.3, the only publicly available piece of information
about the LISA thruster configuration.

3.4. CALCULATION OF THE THRUSTER COMMANDS
The thrust configuration matrix A is defined such that

f =
(~ft
~lt

)
= AT (3.1)

where f ∈R6×1 is the thrust-torque vector, obtained by concatenating the thrust force vector ~ft and the torque
vector~lt applied to the S/C body, and T ∈ Rn×1 is an array containing the thrust provided by each of the n
thrusters available on board (n = 12) [38].

Using the definition of thrust and torque provided by the thrusters, respectively as

~ft =
12∑

i=1
τ̂i Ti (3.2)
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and

~lt =
3∑

i=1
~rt1 × τ̂i Ti +

6∑
i=4
~rt2 × τ̂i Ti +

9∑
i=7
~rt3 × τ̂i Ti +

12∑
i=10

~rt4 × τ̂i Ti (3.3)

where Ti , i = 1,2, ...,12, are the components of T , the thruster configuration matrix A of (3.1) is derived as:

A =
( [

τ̂1 τ̂2 τ̂3
] [

τ̂4 τ̂5 τ̂6
] [

τ̂7 τ̂8 τ̂9
] [

τ̂10 τ̂11 τ̂12
]

~r×
t1

[
τ̂1 τ̂2 τ̂3

]
~r×

t2

[
τ̂4 τ̂5 τ̂6

]
~r×

t3

[
τ̂7 τ̂8 τ̂9

]
~r×

t4

[
τ̂10 τ̂11 τ̂12

]) (3.4)

where~r×
t j

, j = 1,2,3,4, is a skew symmetric matrix such that~rt j ×~p ≡~r×
t j
~p (~p is any vector).

In practical applications, T is the unknown. The problem is now finding a proper inverse relation for
Equation (3.1) since A is not a square matrix for most applications such as LISA, where A ∈R6×12. One could
attempt solving for T via a Moore-Penrose pseudoinverse, i.e. [38]

T = (
AτA

)−1 Aτ f . (3.5)

The problem with the above solution is that T is not guaranteed to have all positive terms, which is nec-
essary as modern reaction control thrusters such as the ones employed on LISA are single-nozzled and only
capable of mono-directional thrust-force.

Although there are many methods to solve the problem, the so called Least square thruster dispatching
method proposed by D. Ferting and S. Wu was selected [38].

In this method, two inverse matrices for A, respectively A− and A+ are defined, such that,

A A+ = 16×6 (3.6)

and

A A− =−16×6 (3.7)

where 16×6 is the 6-dimensional unit matrix, and

A+i , j ≥ 0 and A−i , j ≥ 0, ∀i ∈ {1,2, ...,n},∀ j ∈ {1,2, ...,6}. (3.8)

where n = 12 is the number of thrusters or the number of columns of A. Basically A+ is a positive right-inverse
of A and A− is a positive right-inverse of −A.

The thrust-torque vector f is separated into positive and negative terms, thus defining two complemen-
tary vectors f + and f − such that{

f+i = fi , and f−i = 0 if fi ≥ 0

f−i = fi , and f+i = 0 if fi < 0
∀i ∈ {1,2, ...,6} (3.9)

The thruster force vector T is calculated as

T = A+ f +− A− f − (3.10)

This forces Ti ≥ 0, ∀i ∈ 1,2, ...,n, where n is the size of T , since A− is positive and f − is negative.
In order to minimize T for a given f , A+ and A− must be minimized as well. A least square algorithm is

employed. For what concerns A+, each i th column, represented by the vector x , is calculated according to
the following constrained minimization pattern:

minimize f (x) = xτx

subject to Ax = 16×1
i

x j ≥ 0 for j = 1,2, ...,n

(3.11)

where 16×1
i is a unit column 6-dimensional vector whose components 1k = 0 ∀k 6= i and 1i = 1.

The paper [38] does not dive into the minimization algorithm. The one used in this thesis is an analytical
Khun-Tucker optimization method [39], described in the following paragraphs.

The case study is the LISA configuration, with n = 12 thrusters. This means that x ∈R12×1. Following from
Equation (3.11) a set of 18 constraints g (x) are defined:
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g (x) :



g1,...,6 = Ax = 16×1
i

g7 = x1 ≥ 0

g8 = x2 ≥ 0
...

g18 = x12 ≥ 0

. (3.12)

An augmented function F (x ,λ) is defined as

F (x ,λ) = f (x)+λτg (x) (3.13)

whereλ ∈R18×1 are the Lagrange multipliers. Together x andλ are the unknowns of the problem.
The necessary condition for a minimum is to find x such that

∂ j F = ∂F (x ,λ)

∂x j
= 2x j +

6∑
k=1

Ak, jλk +λ j+6 = 0 ∀ j = 1,2, ...,12. (3.14)

The sufficient condition must also hold:

∂2F (x ,λ)

∂x2
j

= 2 > 0 (3.15)

which is always true, since f (x) is a sum of squares.
The catch of the Kuhn-Tucker method is that we need to evaluate all the g (x) and all the ∂F (x ,λ) for

both g7,...,18 = x1,2,...,12 > 0 or g7,...,18 = x1,2,...,12 = 0, i.e., by looking whether the x j fits within boundaries or by
setting directly g j+6 = x j = 0 for j being any of 1,2, ...,12. Since there are 2 conditions, we have to look into
N = 212 = 4096 cases (actually N = 212 −1 = 4095, since x = 0 cannot be a solution of g1,2,...,6(x)). This calls for
a direct and efficient algorithm so that a machine could perform the calculations automatically.

First of all, one should notice how g7,8,...,18(x) do not need to be solved for, since they are either inequalities
or force the solution x j = 0, for j ∈ {1,2, ...,12}. Combining g1,2,...,6(x) from Equation (3.12) and the necessary
condition ∂F (x ,λ) from Equation (3.14) the following system is obtained:(

g1,2,...,6(x)
∂F (x ,λ)

)
=

(
A 06×6 06×12

2112×12 Aτ 112×12

)(
x
λ

)
= H

(
x
λ

)
=

(
16×1

i
012×1

)
. (3.16)

Now, for each of the N = 4095 cases in which either xk = 0, i.e., lying on the boundaries of the inequality
constraints g7,8,...,18, or xk is an unknown to be localized at xk > 0, we need to set x accordingly. It is advisable
to follow a binary pattern, such as described in Table 3.1.

Table 3.1: Binary pattern to evaluate all the boundaries of the inequality constraints. The xk are set to either 0 or unknown.

CASE x1 x2 ... x11 x12

1 0 0 ... 0 unkn.
2 0 0 ... unkn. 0
3 0 0 ... unkn. unkn.
...

...
...

. . .
...

...
4092 unkn. unkn. ... 0 0
4093 unkn. unkn. ... 0 unkn.
4094 unkn. unkn. ... unkn. 0
4095 unkn. unkn. ... unkn. unkn.

The Lagrange multipliers have the property that λk = 0 if gk > 0. Therefore, for each j such that x j is an
unknown, λ j+6 = 0 and vice-versa. Because of that, balance arises between the number of unknown xk and
λk such that their sum is always equal to 18. Hence, we can reduce the vector (xτ,λτ)τ and the matrix H in
Equation (3.16) with the following method:

• eliminate all the columns j , such that x j = 0 from H , by shifting all the l > j columns to the left by 1
position;
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• eliminate all the columns k > 18, k 6= ( j +18), from H by shifting all the l > k columns to the left by 1
position;

• eliminate all the x j elements from x by shifting all the xl> j elements up by 1 position;

• eliminate all the λk elements from λ for k > 6, k 6= ( j + 6), by shifting all the λl>k elements up by 1
position.

From H , the square H∗ ∈R18×18 matrix is obtained, and from (xτ,λτ)τ, a properly sized vector (x∗τ,λ∗τ)τ ∈
R18×1 remains, such that (

x∗
λ∗

)
= H∗−1

(
16×1

i
012×1

)
(3.17)

If H∗ is full rank, the inverse matrix operation is straightforward. We obtain, after N = 4095 operations, N
solutions for x . Only the few of these solutions that satisfy g7...18 ≥ 0 are evaluated, and the xm that satisfy

f (xm) = min f (x) (3.18)

is selected as the i th column of A+.
It is worth to mention that the Kuhn-Tucker optimization algorithm requires that λ j < 0 for g j = 0, but

this condition has been relaxed, and, instead, the minimum is found by means of comparison [39].
For A− the method is the same, except, the optimization constraints are modified to:

minimize f (x) = xτx

subject to Ax =−16×1
i

x j ≥ 0 for j = 1,2, ...,12

(3.19)

The evaluated matrices have been calculated to be, respectively,

A+ '



0 0 0 0 0.41025641026 0.105575187830
0 0.1875 0.25 0.240384615385 0.153846153846 0.306617300824

0.4 0 0.25 0.0721153846154 0 0
0.488675134595 0 0 0 0 0.105575187830
0.577350269190 0.1875 0.25 0.240384615385 0.153846153846 0

0 0 0.25 0.0721153846154 0.512820512821 0.115683450494
0.488675134595 0.382425134595 0 0.192307692308 0 0.105575187830
0.577350269190 0 0.25 0 0.153846153846 0.306617300824

0 0.577350269190 0.25 0.0721153846154 0.512820512821 0
0 0.382425134595 0 0.192307692308 0.410256410256 0.105575187830
0 0 0.25 0 0.153846153846 0

0.4 0.577350269190 0.25 0.0721153846154 0 0.115683450494


and

A− '



0.488675134595 0.382425134595 0.25 0.192307692308 0 0.105575187830
0.577350269190 0 0 0 0.153846153846 0

0 0.577350269190 0 0.0721153846154 0.512820512821 0.115683450494
0 0.382425134595 0.25 0.192307692308 0.410256410256 0.105575187830
0 0 0 0 0.153846153846 0.306617300824

0.4 0.577350269190 0 0.0721153846154 0 0
0 0 0.25 0 0.410256410256 0.105575187830
0 0.1875 0 0.240384615385 0.153846153846 0

0.4 0 0 0.0721153846154 0 0.115683450494
0.488675134595 0 0.25 0 0 0.105575187830
0.577350269190 0.1875 0 0.240384615385 0.153846153846 0.306617300824

0 0 0 0.0721153846154 0.512820512821 0


Columns 1, 2 and 3 are unitless, while columns 4, 5 and 6 have units of [m−1].

Some solutions of Equation (3.10) for notable cases in which single components of f are set to 1 or -1 (N
or Nm) and the all the others to 0, are reported in Figure 3.4. Four other cases are shown:
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• Case 1: ft1 = 1 N, lt2 = 1 Nm and all the other components set to 0;

• Case 2: ft3 =−1 N, lt1 = 1 Nm and all the other components set to 0;

• Case 3: all components of f set to 1;

• Case 4: all components of f set to -1.

1 2 3 4 5 6 7 8 9 10 11 12

Thruster

+1 N x-thrust

-1 N x-thrust

+1 N y-thrust

-1 N y-thrust

+1 N z-thrust

-1 N z-thrust

+1 Nm x-torque

-1 Nm x-torque

+1 Nm y-torque

-1 Nm y-torque

+1 Nm z-torque

-1 Nm z-torque

Case 1

Case 2

Case 3

Case 4

0.49
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0.41
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0.11

0.41
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0.07
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0.58
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Figure 3.4: Characteristic throttle for single direction thrust and torques and 4 other cases. The values are in [N]. Case 1: ft1 = 1 N, lt2 = 1
Nm; Case 2: ft3 = −1 N, lt1 = 1 Nm; Case 3: all thrust components set to 1 N and all torque components set to 1 Nm; Case 4: all thrust
components set to -1 N and all torque components set to -1 Nm.

.

Notice how the least expensive maneuver is a thrust in the -z-direction, thanks to the alignments of
thrusters 1, 4, 7 and 10. A thrust in the +z-direction, on the other hand, will require a double effort due to
the other thrusters being misaligned by 30◦ w.r.t. the z-axis. Another interesting fact is that a combination
of maneuvers will have a total effort as their sum if they were performed independently: the line of Case 1 is
obtained by adding lines 1 and 9; Case 2 is the sum of lines 6 and 7; Case 3 is obtained by summing all the
positive thrust and torque maneuvers and Case 4 all the negative ones.

3.5. VERIFICATION OF THRUSTER COMMANDS
Equations (3.6) and (3.7) are easily verified for the calculated values of A+ and A−. One can further verify that
the calculated T is consistent by means of residual check, for example, by randomly generating values for f
with −1 ≤ fi ≤ 1 and calculating the errors δ~ft and δ~lt as:(

δ~ft

δ~lt

)
= f − AT = f − A

(
A+ f +− A− f −

)
(3.20)

Figure 3.5 shows the probability distributions for a sample size of n = 10000 generated using the command
rand() in Matlab (equally distributed random variable). The error spread, mostly within |δ fi | < 1 ·10−15, is
consistent with 0 and the floating point precision in Matlab.
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Figure 3.5: Probability distributions for δ~ft and δ~lt with equally distributed randomly generated | fti | ≤ 1 N, |lti | ≤ 1 Nm. Sample size

n = 10000, bin size ∆x = 10−16 Nm. σ is the standard deviation.

3.6. ESTIMATION OF MASS AND INERTIA
The mass budget for LISA, as estimated by the CDF team, is reported in Table 3.2 [21].

Table 3.2: Mass budget for LISA estimated by the CDF team [21]

Mass budget

Dry mass 1244.4 kg
+ system margin (20%) mdr y 1493.3 kg
Control propellant mass mpr op 239.6 kg

TOTAL msc 1732.9 kg

The derivation of the inertia matrix Isc and position of the CoM within the geometry is explained hereon.
Two volumes, Vdr y and Vpr op are assigned, respectively, to the dry mass mdr y and the propellant mass mpr op .
These are shown in Figure 3.6. The dry mass is considered uniformly distributed within a trapezoidal shape

a
1  = 3 m

a
2  = 1.6 m

a
2  = 1.6 m

b 1
 = 4.75 m

b 2
 = 3 m

h

1
.1

 m x

y

z

hcm

~0.4134 m

x

y

z

1.5 m

0.8 m

r 0
.3

66
5 

m

Figure 3.6: Modelling of the LISA S/C. Left: The dry mass is equally distributed in a trapezoidal solid enveloping the S/C shape presented
in figure 3.1. Right: the fuel (mp r op = 239.6 kg) is contained in four spherical canisters of radius 0.3665 m [21].

spanning the two bases of the S/C: the largest base, of sides a1 = 3 m and b1 = 4.75 m is the solar panel, while
the smallest base, of sides a2 = 1.6 m and b2 = 3 m is the opposite side of the S/C. The height h = 1.1 m is
retained from the S/C blueprint of Figure 3.1. The payload is considered part of the dry mass. The propellant
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mass is distributed within four canisters of spherical shape, of radius 0.3665 m at an estimated distance (at
center) of x = 0.8 m, y = 1.5 m and z = 0 from the S/C CoM. The shape of the canisters was chosen among
three possibilities presented by the CDF Team [21], the spherical option being the simplest to model (the
other two are orientable capsule shaped canisters, but the nominal orientation is not provided). Propellant
slushing is not modeled, instead it is assumed, very roughly, that the propellant fills up the whole volume,
changing density as it is depleted.

The main assumption is that the x- y- and z-axes are oriented in the directions of the main inertial axes
and centered at the CoM of the S/C, therefore canceling the non-diagonal components of the inertia matrix
[40]. Since the cutout surface of the trapezoid is a rectangle at each z, the x- and y-axes are the perpendicular
bisectors of, respectively, the local long base b(z) and the local short base a(z). The x y-plane must necessarily
bisect the volume into two equivalent parts for the CoM to be included. The distance hcm of the CoM from
the largest base is found by solving the following equation:∫ hcm

0
a(z ′)b(z ′)d z ′ = Vdr y

2
(3.21)

where z ′ is the distance from the largest base, parametrized as z ′ = z +hcm . a and b can be calculated as:

a(z ′) = a1 − (a1 −a2)
z ′

h
; (3.22)

b(z ′) = b1 − (b1 −b2)
z ′

h
. (3.23)

For what concerns the volume Vdr y , it can be calculated by means of integration:

Vdr y =
∫ h

0
a(z ′)b(z ′)d z ′ = a1b1h − [(a1 −a2)b1 + (b1 −b2)a1]

h

2
+ (a1 −a2)(b1 −b2)

h

3
(3.24)

and the values obtained are

Vdr y = 10.028333333333333 [m3],
hcm = 0.413394480446386 [m].

Wolfram Mathematicar was used to verify the results (see Appendix A).
The knowledge of hcm allows now to calculate the inertia matrix of the dry-mass volume. The formula for

the inertia of a volume V of uniformly distributed mass m is calculated as [25]:

I = m

V


∫

V (y2 + z2)d xd yd z −∫
V (x y)d xd yd z −∫

V (xz)d xd yd z
−∫

V (x y)d xd yd z
∫

V (x2 + z2)d xd yd z −∫
V (y z)d xd yd z

−∫
V (xz)d xd yd z −∫

V (y z)d xd yd z
∫

V (x2 + y2)d xd yd z

 . (3.25)

Using Wolfram Mathematica, the dry inertia is calculated numerically as:

Idr y =
mdr y

Vdr y

14.7007247086586 0 0
0 5.98076341435653 0
0 0 18.7692679166667

 [kg· m2] (3.26)

where the non-diagonal terms result as 0 because of the choice of aligning the body-fixed axed with the main
axes of inertia (see Appendix A).

The same operation is performed for the inertia due to the propellant. Remembering Figure 3.6-right, the
propellant is stored in four spherical canisters of radius 0.3655 m placed symmetrically w.r.t. all the axes, with
centers lying on the x y-plane. The inertia matrix is solved, numerically, as

Ipr op = mpr op

Vpr op

1.9002113473697346 0 0
0 0.572216430204282 0
0 0 2.42810994527123

 [kg· m2] (3.27)

where

Vpr op = 4 · 4

3
π ·0.36653 [m3]
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is the total volume of the four canisters (spheres) (see Appendix A).
Finally, the total inertia of the S/C is calculated by summation

Isc = Idr y + Ipr op . (3.28)

While Idr y is always constant, Ipr op varies in time as the thrusters are in use, as modeled in the next
section. The two extreme cases, identified in Table 3.3 can be asserted: the initial mass and inertia (full tank,
mpr op = 239.6 kg) and the end-of-life mass and inertia (empty tank, mpr op = 0).

Table 3.3: Associated minimum (empty tanks and lowest possible mass) and maximum (full tanks and largest possible mass) total mass
and inertia matrices

Parameter Symbol Empty tank Full tank

Mass msc [kg] 1493.3 1732.9
Inertia Isc [kg m2] diag

(
2189.057, 890.584, 2794.896

)
diag

(
2741.030, 1056.802, 3500.213

)

3.7. THRUST AND MASS DEPLETION
One would expect the propellant mass mpr op to be depleted by the on-board thrusters with the following
relation [28]:

ṁpr op =− 1

g0Isp

12∑
i=1

Ti (3.29)

where Isp is the specific impulse of the thrusters and g0 is Earth’s gravitational acceleration at surface. We
need therefore to find a suitable value for Isp .

The Field Emission Electric Propulsion (FEEP)µNewton thrusters studied by ESA and the ColloidµNewton
thrusters studied by NASA both have specific impulses in the extremely efficient ranges of Isp = 10000 s
[41, 42].

This number is too high, and we explain why: in Section 5.6 we will show that the average total thrust
required by all thrusters is T tot ' 2.0050 · 10−4 N. Setting the value of the specific impulse to Isp = 340 s,

which is much lower than the efficiency offered by the market, we obtain an average mass rate of ṁpr op '
−6.0112 ·10−8 kg/s. For an initial 4 years of science operations this would amount to a consumption of just

∆mpr op = ṁpr op ·4 years '−7.5828 kg

which, considering a total capacity of 239.6 kg, it is not enough to significantly affect the dynamics of the S/C
to study its sensitivity to mass changes.

Figure 3.7 shows the mpr op trend for the first 4 years of operation (starting at full tank).
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Figure 3.7: Propagated propellant mass over time.

For consistency, and in order to avoid trivial solutions, we stick to a conservative value of



3.8. RECOMMENDATIONS ON LISA SPACECRAFT MODELING 29

Isp = 340 s

and consider the tank full at start of science operations. These values are purely arbitrary. The estimation
of stored propellant performed by the CDF team takes into consideration the use of the same for orbital
injection and control [21], hence the high value w.r.t. the required mass calculated here.

3.8. RECOMMENDATIONS ON LISA SPACECRAFT MODELING
The least square thruster dispatching method presented in Section 3.4 is not optimized. D. Bindel et al. [38]
present a few methods to minimize the overall thruster efforts. These methods require either linear pro-
gramming or numerical optimization to be performed at each simulation step, while the method presented
here has the advantage of requiring the computation of matrices A+ and A− only once, as their value is not
dependent on time.

The calculation of Idr y does not take into consideration time-variability of the telescope pointing direc-
tion: the bulk of the instruments rotate as the breath angle changes size, thus changing the inertia due to
shifting of mass. An analysis of this model has not been performed due to time constraints, despite some
preliminary information about the size and mass of the system is available [14]. Besides, we assume that the
limited mobility of the device, with a maximum breath angle divergence of ∆α = ±1.5◦, will not affect the
overall model performance.

3.9. CONCLUSIONS ON LISA SPACECRAFT MODELING
In summary, the body-fixed reference frame, the thruster configuration matrix, mass and inertia of the space-
craft were defined in this chapter. Most of the information was derived from a model presented by the CDF
team [21].

The x-axis is defined so that it bisects the angle between the telescopes, assuming that both the telescopes
are articulated. The z-axis points away and orthogonally from the solar panels.

12 thrusters clustered at 4 corners of the S/C define the thruster configuration matrix. A linear relationship
between thruster efforts and their total force and torque was presented, using a Kuhn-Tucker optimization
algorithm in order to find a least-squares solution for constant coefficient matrices. The method is not op-
timized, but it does not require any active algorithm to perform during simulation. A check of conformity
between the relation and its inverse has been performed successfully.

Spacecraft inertia has been estimated by modeling the dry mass volume as a trapezoid and the separated
propellant volume as four spheres.

An arbitrary value of specific impulse of Isp = 340 s is used as a parameter in this thesis.





4
ATTITUDE-FORMATION DEPENDENCIES

4.1. INTRODUCTION TO FORMATION DEPENDENCIES
The motion of the formation in inertial coordinates was described in Chapter 2. The three LISA S/C need to
be oriented with respect to each other as shown in Section 3.2. Their attitude is, therefore, strictly dependent
on the formation.

In this chapter, a mathematical relation of the attitude requirements w.r.t. the formation is defined. In or-
der to provide preliminary information about the control requirements, an analytical solution of the angular
velocities and accelerations experienced by the S/C, while locked onto the moving formation, is derived.

The data provided in this chapter is necessary in order to calculate the attitude commands and to quantify
the minimum control input provided by the thrusters.

4.2. FORMATION DEPENDENCIES ON THE BODY-FIXED REFERENCE FRAMES
In Section 3.2 we introduced the body-fixed reference frame (Figure 3.2). The x-axis is the bisector of the
angles α subtended between the lines-of-sight of the telescopes, while the z-axis is orthogonal to the solar
panels. In Figure 4.1 we represent the same concept in the inertial reference frame.

R3

→

X

Z

Y

z1

z2

z3

x1

x3

x2 y2

y3

y1

α1α1

α2α2

α3α3

R1

→

R2

→

Figure 4.1: The required orientations of the three body-fixed reference frames (xi ,yi ,zi ) in the inertial reference frame (X,Y,Z).

For a perfectly controlled S/C w.r.t. the formation, a few properties can be derived

• the lines-of-sight of the telescopes are also the displacement vectors, w.r.t. to S/C, of the other two;

• due to the properties of the triangle, all the lines-of-sight lie on the same plane: the formation plane, or
x-y-plane of the body-fixed reference frames;

31
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• the z-axes are orthogonal to the formation plane;

• the x-axes all point towards the incenter of the formation, i.e., the intersection of the three angle bisec-
tors.

In Euclidean geometry, the incenter~rcm is the center of the inscribed circle in a triangle (Figure 4.2). In

CIN

A

B

C

a

b

c

Figure 4.2: The incenter CI N of a triangle is the center of the circle inscribed in it. It is obtained by intersecting the three angle bisectors.
The latter property makes it interesting in the framework of this thesis.

the framework of this paper we are mainly interested in the fact that it is the intersection point of the three
angle bisectors. Its Cartesian position can be calculated as

~rcm = r23~R1 + r31~R2 + r12~R3

r12 + r23 + r31
(4.1)

where ~Ri , i ∈ {1,2,3} is the displacement, in the inertial reference frame, of S/Ci , and ri j , i , j ∈ {1,2,3}, i 6= j , is
the arm length, or distance, between S/Ci and S/C j , defined as

ri j = ‖~ri j ‖ = ‖~R j −~Ri‖ (4.2)

The x̂i directive is then defined as the direction of~rcm w.r.t. S/Ci , i ∈ {1,2,3}, as

x̂i =
~rcm −~Ri

‖~rcm −~Ri‖
. (4.3)

Since the telescopes lie on the S/C body-fixed x y-plane and their lines-of-sight need to lie on the formation-
plane, the body-fixed z-axis must be orthogonal to the formation plane, therefore it is unique and shared
among the S/C. There are many ways to define its directive ẑi , the most convenient being the following:

• First, we define the unit direction from S/Ci to S/C j , i , j ∈ {1,2,3}, i 6= j , as

n̂i j =
~ri j

‖~ri j ‖
(4.4)

where ~ri j = ~R j − ~Ri is defined as the displacement of S/C j from S/Ci , i.e. one of the interferometer
arms;

• then, we obtain ẑi as

ẑ1 ≡ ẑ2 ≡ ẑ3 =
n̂i j × n̂i k

sinαi
(4.5)

whereαi , i.e. the angle subtended by the lines of sight of the telescopes in S/Ci , can be obtained via the
relation

cosαi = n̂i j · n̂i k . (4.6)

The sequence {i , j ,k} used here must be any even permutation of {1,2,3} (Table 4.1). Any other permuta-
tion would lead to the z-axis to be oriented in the opposite direction as the intended one.

In this framework, the S/C are labeled in a rotation-wise sequence according the cartwheel formation
apparent motion. This sets the z-axis oriented about −30◦ w.r.t. the ecliptic, towards the opposite direction
as the Sun.
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Table 4.1: Even permutations of {1,2,3}

i j k

1 2 3
2 3 1
3 1 2

The ŷi directives follow the right-hand rule of thumb:

ŷi = ẑi × x̂i . (4.7)

A rendition of the motion of the three axes in the Ecliptic J2000 full-sky geometry is depicted in Figure 4.3.
The plot is derived from the simulation data of the first year obtained in Chapter 2. The z-axes are almost
constantly pointing towards a -30◦ latitude, as it would be expected from a cartwheel formation plane tilted
by 60◦ w.r.t. the Hill’s reference frame. The x- and y-axes draw yearly analemmas, symmetrical w.r.t. the
equator with an amplitude of ∼±60◦ and a maximum width of ∼40◦ in longitude. The three S/C x- and y-
directions have a 120◦ longitudinal phase between each others.

Figure 4.3: Required path of the three body axes (in order from left to right) on the celestial sphere, in Ecliptic J2000 coordinates (The
inertial X-axis points towards the Vernal Equinox (�), and the X-Y plane lies on the ecliptic). x- and y-body axes draw analemmas in the
sky phased about 120◦ from one another. The z-axes follow the same path at a constant −30◦ latitude.

We can verify whether the x-directives of Equation (4.3) pointed towards the incenter ~rcm of Equation
(4.1) actually bisect the angles by confronting the dot-products x̂i · n̂i j and x̂i · n̂i k for any permutation of
{i , j ,k} in Table 4.1: these dot products result in the cosines of the angles between the x-directives and the
S/C-S/C lines-of-sight on either sides. By definition, these two angles, and therefore their cosines, should be
equal. Figure 4.4 shows the differences between the three couples of dot-products for LISA during the first
4 years of operations, as simulated in Chapter 2. The results are small, < 2 ·10−14 (compared to the nominal
cos(30◦) = 0.5) and consistent with floating precision error.
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Figure 4.4: Verification of x̂i , i = 1,2,3, as bisectors of the breath angles subtended by the S/C-S/C laser-beams. The plot shows the
differences between the cosines of the two angles at either sides of the x̂i directives (in the legend −n̂i j = n̂ j i ).

4.3. DIRECTION-COSINE MATRIX
Once the directives have been obtained, the required attitude of S/Ci in the inertial reference frame is fully
defined. The direction-cosine matrix Cn/i which allows to transform the vectorial quantities from inertial to
body-fixed reference frame, is defined as [25]

Cn/i =
x̂τi

ŷτi
ẑτi

 (4.8)

where the superscript τ represents the transpose operation.
This definition reflects the claim according to which a vector n~p in inertial reference frame, (superscript

n is for Newtonian) can be decomposed in the body-fixed Cartesian coordinates as a sum of the products
between the directives and their respective projection of ~p, i.e.

n~p = n~p · x̂i x̂i +n~p · ŷi ŷi +n~p · ẑi ẑi . (4.9)

In body-fixed reference frame, the directives are the fundamental Euler directions, i.e.

~p = n~p · x̂i î +n~p · ŷi ĵ +n~p · ẑi k̂ =
n~p · x̂i

n~p · ŷi
n~p · ẑi

 . (4.10)

In matrix operation ~a ·~b =~aτ~b =~bτ~a, hence

~p =
x̂τi

ŷτi
ẑτi

n~p =Cn/i
n~p. (4.11)

One can also demonstrate how x̂i , ŷi and ẑi become the fundamental Euler directions î , ĵ and k̂ via the
direction-cosine matrix transformation. For example, for what concerns x̂i , the following happens

Cn/i x̂i =
x̂τi x̂i

ŷτi x̂i

ẑτi x̂i

 (4.12)

and since, by definition, x̂i , ŷi and ẑi are mutually orthogonal, Equation (4.12) results in

Cn/i x̂i =
1

0
0

= î . (4.13)
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The analogous results can be obtained for ŷi and ẑi . By means of Equations (4.12) and (4.13), the or-
thonormality of Cn/i can be demonstrated. In fact, the transpose of Cn/i is

Cτ
n/i =

(
x̂i ŷi ẑi

)
(4.14)

and multiplying, one obtains

Cn/i Cτ
n/i =

x̂τi
ŷτi
ẑτi

(
x̂i ŷi ẑi

)=
x̂τi x̂i x̂τi ŷi x̂τi ẑi

ŷτi x̂i ŷτi ŷi ŷτi ẑi

ẑτi x̂i ẑτi ŷi ẑτi ẑi

=
1 0 0

0 1 0
0 0 1

= 13×3 (4.15)

which demonstrates Ci /n =C−1
n/i =Cτ

n/i and vice-versa.

4.4. THE NOMINAL ANGULAR VELOCITY VECTOR
It is relevant, in order to study and verify the attitude evolution of each S/C, to also obtain the value of the
nominal angular velocity vector, i.e., the one required to maintain the nominal attitude at each instant.

By definition, the angular velocity vector ~ωi of the body-fixed reference frame in the inertial reference
frame, is the one that satisfies, in the inertial reference frame [40]

˙̂di = n~ωi × d̂i (4.16)

for d̂i ∈ {x̂i , ŷi , ẑi } being either of the three body-fixed directives as defined in the inertial reference frame.
Poisson’s kinematics allow for an inverse relation of Equation (4.16) [40]. The relation reads as

ω×
i =

 0 −ωi z ωi y

ωi z 0 −ωi x

−ωi y ωi x 0

=Cn/i ˙Cn/i
τ =

x̂τi
ŷτi
ẑτi

(
˙̂xi ˙̂yi ˙̂zi

)
(4.17)

which implies that the angular velocity vector in body-fixed reference frame can be written as

~ωi =

ω
×
i (3,2)

ω×
i (1,3)

ω×
i (2,1)

= ẑi · ˙̂yi î + x̂i · ˙̂zi ĵ + ŷi · ˙̂xi k̂. (4.18)

where

î =
1

0
0

 ; ĵ =
0

1
0

 ; k̂ =
0

0
1


are the three fundamental Cartesian directives.

We are now supposed to retrieve an analytical solution for the time derivatives ˙̂xi , ˙̂yi and ˙̂zi . In simulation,
and, up to some extent, practice, the velocities of each S/C in their orbits are known at each instant. These

are ~̇R1, ~̇R2 and ~̇R3, therefore it would be logical to find equations that relate the latter to the time derivatives
of the directives.

The following method is used to determine ~ωi . Let us start by defining the drift rate of S/Ci from S/C j ,

defined as the time derivative of the norm of~ri j = ~R j −~Ri :

ṙi j =~̇ri j · n̂i j (4.19)

where ~̇ri j is the time derivative of~ri j , retrieved as

~̇ri j = ~̇R j − ~̇Ri (4.20)

by assuming that ~̇R1, ~̇R2 and ~̇R3 are known at each instant. n̂i j is defined in Equation (4.4). Its time derivative
is obtained as following:

˙̂ni j =
~̇ri j − ṙi j n̂i j

‖~ri j ‖
. (4.21)
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We are now capable of deriving the time derivative of breath angle αi , defined in Equation (4.6):

α̇i =−
˙̂ni j · n̂i k + n̂i j · ˙̂ni k

sinαi
. (4.22)

We now need to define a convenient reference frame which lies on the formation plane, but rather than
being associated to a single S/C, it is instead dependent on the formation itself and somehow related to the
inertial reference frame. In this way we are defining a new system of coordinates in which the motion of the
S/C lies on a constant plane, ideally, such as in this case, on the shared x-y-plane of the body-fixed reference
frames. We call this new reference frame planar and use the subscript p to label the quantities associated
with it and the left superscript p to define the quantities measured in its coordinates.

Such a reference frame has the z-axis orthogonal to the formation plane, and we have already defined z1,
z2 and z3 as such, therefore we have the respective directive defined as

ẑp ≡ ẑ1 ≡ ẑ2 ≡ ẑ3 (4.23)

calculated as in Equation (4.5).
Its time derivative can be obtained by differentiation of Equation (4.5) w.r.t. time, thus obtaining:

˙̂zp ≡ ˙̂z1 ≡ ˙̂z2 ≡ ˙̂z3 =
˙̂ni j × n̂i k + n̂i j × ˙̂ni k − α̇i cosαi ẑp

sinαi
. (4.24)

It is imperative that the triplet {i , j ,k} be an even permutation of {1,2,3} as already mentioned. See Table 4.1
to check the allowable permutations.

Since we want the new reference frame to be dependent on the inertial reference frame, we arbitrarily
define the x-axis parallel to the projection of the inertial negative z-axis – which has directive −k̂ in inertial
coordinates – onto the formation plane. The relation obtained is therefore the following for the x̂p directive:

x̂p = cosβẑp − k̂

sinβ
(4.25)

where β is the angle between the two z-axes (inertial and planar), calculated as

cosβ= k̂ · ẑp . (4.26)

We now proceed to calculate first the time-derivative of β, by differentiation of Equation (4.26):

β̇=− k̂ · ˙̂zp

sinβ
(4.27)

and then the time derivative of x̂p :

˙̂xp = cosβ ˙̂zp − β̇(
cosβx̂p + sinβẑp

)
sinβ

. (4.28)

The remaining directive is calculated, as usual, with the right-hand rule of thumb, i.e.

ŷp = ẑp × x̂p (4.29)

whose time derivative is, therefore:

˙̂yp = ẑp × ˙̂xp + ˙̂zp × x̂p . (4.30)

Now that the directives of the planar reference frame and their respective time-derivatives have been cal-
culated we have the tools to define a direction-cosine matrix Cn/p for the transformation of vectorial quanti-
ties from inertial to planar reference frame, calculated, analogously to Equation (4.8) as:

Cn/p =
x̂τp

ŷτp
ẑτp

 (4.31)

and the angular velocity vector of the planar reference frame in the inertial reference frame, calculated, anal-
ogously to Equation (4.18) as:
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~ωp = ẑp · ˙̂yp î + x̂p · ˙̂zp ĵ + ŷp · ˙̂xp k̂. (4.32)

These quantities allow to relegate the orbits of the three S/C on the formation plane. For convenience we
center the planar reference frame at the incenter of the formation whose coordinates in the inertial reference
frame~rcm were calculated in Equation (4.1). It is important to specify that~rcm can be any point on the plane
of the formation. For example we could use the geometrical barycenter and the results for this derivation
would not change, except that you would need to calculate its time derivative accordingly. Transformation
from inertial to planar reference frame of the displacement of S/Ci ~Ri is calculated by means of shifting and
rotation, using Cn/p defined in Equation (4.31), as:

p~Ri =Cn/p
(
~Ri −~rcm

)
(4.33)

and the velocity ~̇Ri is transformed as:

p ~̇Ri =Cn/p

(
~̇Ri −~̇rcm

)
−~ωp × p~Ri (4.34)

where the ~̇rcm is obtained by time differentiation of Equation (4.1).
It is convenient to reduce Equation (4.1) in matrix terms for sake of compactness. For this purpose let us

introduce the matrix R, defined as the horizontal concatenation of the three ~Ri , i ∈ {1,2,3},

R = (
~R1 ~R2 ~R3

)
. (4.35)

and the arm-length vector r a , defined as the vertical concatenation of the three ri j = ‖~ri j ‖, i , j ∈ {1,2,3}, i 6= j ,

defined in Equation (4.2) and representing the respective opposite sides of the triangle as the three ~Ri ,

r a =
r23

r31

r12

 . (4.36)

Equation (4.1) can be rewritten in these terms as:

~rcm = Rr a∑
j ra j

(4.37)

and its time derivative as:

~̇rcm =
Ṙr a +R ṙ a −∑

j ṙa j~rcm∑
j ra j

(4.38)

where you can use Equation (4.19) to calculate ṙ a . Notice how r a does not represent a 3-dimensional physical
quantity but rather the matrix obtained by arranging three scalars, therefore the bold notation is used rather
than the arrow.

In summary, we have now obtained a convenient reference frame for which the motion of all the S/C is

relegated to the x-y-plane, i.e. the formation plane. p~Ri and p ~̇Ri should, therefore, have zero z component
at each instant. Moreover, this new planar reference frame is centered at the geometrical barycenter of the
formation, i.e.,

p~rcm = p~̇rcm =~0. (4.39)

Following from Equation (4.3) the directive of the body fixed reference frame in planar reference frame
coordinates p x̂i is calculated as

p x̂i =−
p~Ri

‖p~Ri‖
. (4.40)

The z-axis is shared between the planar and the three S/C body-fixed reference frames. This is p ẑp = k̂ in
planar coordinates, therefore, it follows that also for each body-fixed reference frame the same applies:

p ẑi = p ẑp k̂ (4.41)
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for i ∈ {1,2,3}.
Finally, the y directive is calculated with the right-hand rule of thumb:

p ŷi = k̂ × p x̂i . (4.42)

As for Equation (4.8), transformation from planar to body-fixed reference frame of S/Ci is defined by the
direction-cosine matrix Cp/i :

Cp/i =
p x̂τi

p ŷτi
k̂τ

 . (4.43)

The body-fixed reference frame of each S/Ci is, by all accounts, a Hill’s reference frame: the z-axis is par-
allel to the apparent angular momentum vector w.r.t. ~rcm since all the motion in the z-direction is canceled
out, therefore the rotation of the x-axis must coincide with the angular motion of the S/C in the planar refer-
ence frame, in order to keep the x-direction fixed on the origin (which physically represents incenter of the
formation).

As such, the angular velocity of the body-fixed reference frame is calculated as

p~ωi /p =
p ~̇Ri × p x̂i

‖p~Ri‖
(4.44)

and, since p~Riz = p ~̇R iz = 0, it should only have a z-component at each instant.
The nominal angular velocity vector of the body-fixed w.r.t. the inertial reference frame is obtained via

addition of ~ωp and p~ωi /p and subsequent transformation into body-fixed coordinates:

~ωi =Cp/i
(
~ωp + p~ωi /p

)
(4.45)

Let us emphasize that this vector does not represent the actual S/C rotation, instead it identifies the angu-
lar rate that a S/C should have, based on the motion of the formation, in order to keep the correct orientation
w.r.t. the other two at any given instant.

Using the data from the simulation of Chapter 2 for the first 4 years, the values of ~ωi calculated through
Equation (4.45) are shown in Figure 4.5.

The x- and y-components have a yearly trend with amplitudes of |ω1|, |ω2| ≤ 1.716 ·10−7 rad/s, while the
z-component has a small fluctuation around a non-zero value, ω3 ' 9.851 · 10−8 ± 0.144 · 10−8 rad/s, with a
periodicity of half a year, consistent with the arm-length variations in Chapter 2.
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Figure 4.5: "Natural" angular velocity vector ~ωi , i = 1,2,3, of the three S/C w.r.t. inertial reference frame in body fixed coordinates for
4 years, calculated from Equation (4.45). From top to bottom, respectively, the angular velocities of S/C1, S/C2 and S/C3 are shown in
order. The components (ω1, ω2, ω3) refer, respectively, to the rotation about x, y and z in the body-fixed reference frame.

4.5. THE NOMINAL ANGULAR ACCELERATION VECTOR
Analogously to and following the previous section, it is possible to calculate the angular acceleration vector

~̇ωi of S/Ci , i ∈ {1,2,3}, if, additionally, the accelerations of the three S/C, ~̈R1, ~̈R2 and ~̈R3 are known at any
instant. The process unfolds in a similar fashion as for ~ωi , calculated in the previous section. The following
calculations must be performed in sequence:

• time derivative of Equation (4.19), or drift acceleration between S/Ci and S/C j , i , j ∈ {1,2,3}:

r̈i j =~̈ri j · n̂i j +~̇ri j · ˙̂ni j (4.46)

where ~̈ri j , i , j ∈ {1,2,3}, i 6= j is the time derivative of Equation (4.20) or,

~̈ri j = ~̈R j − ~̈Ri ; (4.47)
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• time-derivative of Equation (4.21):

¨̂ni j =
~̈ri j − r̈i j n̂i j −2ṙi j ˙̂ni j

ri j
(4.48)

• time-derivative of Equation (4.22):

α̈i =−
¨̂ni j · n̂i k + n̂i j · ¨̂ni k +2 ˙̂ni j · ˙̂ni k + α̇2

i cosαi

sinαi
; (4.49)

• time-derivative of Equation (4.24):

¨̂zp =
¨̂ni j × n̂i k + n̂i j × ¨̂ni k +2 ˙̂ni j × ˙̂ni k +

(−α̈i cosαi + α̇2
i sinαi

)
ẑp −2α̇i cosαi ˙̂zp

sinαi
; (4.50)

• time-derivative of Equation (4.27):

β̈=− k̂ · ¨̂zp + β̇2 cosβ

sinβ
, (4.51)

• time-derivative of Equation (4.28):

¨̂xp = cosβ ¨̂zp − β̈(
cosβx̂p + sinβẑp

)− β̇2
(
cosβẑp − sinβx̂p

)−2β̇
(
cosβ ˙̂xp + sinβ ˙̂zp

)
sinβ

; (4.52)

• time-derivative of Equation (4.30):

¨̂yp = ¨̂zp × x̂p + ẑp × ¨̂xp +2 ˙̂zp × ˙̂xp ; (4.53)

• time-derivative of Equation (4.32):

~̇ωp = (
˙̂zp · ˙̂yp + ẑp · ¨̂yp

)
î + (

˙̂xp · ˙̂zp + x̂p · ¨̂zp
)

ĵ + (
˙̂yp · ˙̂xp + ŷp · ¨̂xp

)
k̂; (4.54)

• time-derivative of Equation (4.34):

p ~̈Ri =Cn/p

(
~̈Ri −~̈rcm

)
−~ωp ×~ωp × p~Ri −2~ωp × p ~̇Ri − ~̇ωp × p~Ri ; (4.55)

• time-derivative of Equation (4.38):

~̈rcm =
R̈r a +R r̈ a +2Ṙ ṙ a −∑

j

(
r̈a j~rcm +2ṙa j~̇rcm

)
∑

j ra j

; (4.56)

• time-derivative of Equation (4.44):

p~̇ωi /p =
2
(

p x̂i · p ~̇Ri

)
~ωi /p − p x̂i × p ~̈Ri

‖p~Ri‖
; (4.57)

• time-derivative of Equation (4.43):

Ċp/i =
p ˙̂xτi

p ˙̂yτi
~0τ

=

(

p~ωi /p × p x̂i
)τ(

p~ωi /p × p ŷi
)τ

~0τ;

 . (4.58)
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Finally we obtain the angular acceleration vector of body-fixed reference frame w.r.t. inertial reference
frame in body-fixed coordinates with a time-differentiation of Equation (4.16):

~̇ωi =Cp/i
(p~̇ωi /p + ~̇ωp

)+ Ċi /p
(p~ωi /p +~ωp

)
. (4.59)

In practice it is almost impossible to measure the acceleration of a body in a gravity field using inertial
sensors. Figure 4.6 shows the angular acceleration vector obtained from Equation (4.59) and the simulation
data of Chapter 2.
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Figure 4.6: "Natural" angular acceleration vector ~ωi , i = 1,2,3, of the three S/C w.r.t. inertial reference frame in body fixed coordinates
for 4 years, calculated from Equation (4.59). From top to bottom, respectively, the angular velocities of S/C1, S/C2 and S/C3 are shown
in order. The components (ω̇1, ω̇2, ω̇3) refer, respectively, to the angular acceleration about x, y and z in the body-fixed reference frame.
This graph can be considered as the time-derivative of Figure 4.5.

For the three S/C, the x- and y-components have an amplitude about 0 of ω̇1,ω̇2 ' ±3.413 ·10−14 rad/s2

and the z-component has a much smaller amplitude of ω̇3 '±5.772 ·10−16 rad/s2 with double the frequency.
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4.6. VALIDATION OF EQUATIONS
A validation scenario is presented in Appendix B: for 3 particles, whose motion is described by finely tuned

analytical equations, the values for ~ωi ~̇ωi , as well as ~Ri , ~̇Ri and ~̈Ri have been derived independently of each
other. The shapes of the orbits are presented in Figure 4.7. The values are retrieved on n = 10001 points along

S/C1

S/C3

S/C2

t = π/2

t = 3π/4

t = π

t = π/4

t = 5π/4

t = 3π/2

t = 7π/4

t = 0

Figure 4.7: The shape of the validation orbits. Time 0 ≤ t < 2π is the only parameter of the analytical equations presented in Appendix B
that govern the motion of the three particles (S/C1, S/C2, S/C3).

the periodical path of the particles.

The values ~ω′
i and ~̇ω′

i are calculated, respectively, with Equations (4.45) and (4.59) as a function of ~Ri , ~̇Ri

and ~̈Ri . The probability density distribution of the residuals

δ~ωi = |~ωi −~ω′
i | (4.60)

and

δ~̇ωi = |~̇ωi − ~̇ω′
i | (4.61)

are shown,respectively, in Figures 4.8 and 4.9.
The results show a small discrepancy with a standard deviation of 4÷7·10−16 rad/s for~ωi and 11÷23·10−16

rad/s2 for ~̇ωi which is consistent with 0, considering an order of magnitude 100 for both (See Table B.1).
For more information about the validation process, see Appendix B.
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Figure 4.8: Validation results of Equation (4.45). Top to bottom: the three body-fixed angular velocity vectors of the respective S/C. Left
to right: the three components of each vector. σ is the standard deviation. The bin resolution is ∆x = 2 ·10−16 rad/s. Results are shown
for a population size n = 10001.
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Figure 4.9: Validation results of Equation (4.59). Top to bottom: the three body-fixed angular acceleration vectors of the respective S/C.
Left to right: the three components of each vector. σ is the standard deviation. The bin resolution is ∆x = 4 ·10−16 rad/s2. Results are
shown for a population size n = 10001.
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4.7. RESULTS AND VERIFICATION
The natural orientation of the body axes and the associated angular velocities and accelerations, based on
the orbital simulation of Chapter 2 for a 4 years period have been respectively shown in Figures 4.3, 4.5 and
4.6. These values are representative of a perfect attitude control.

Verification of ~̇ωi can be performed by numerically integrating ~̇ωi over time and confront the results with

~ωi . Verification of ~ωi can be performed by numerically integrating over time ˙̂di , calculated as

˙̂di =Cτ
n/i~ωi × d̂i (4.62)

where d̂i is any of x̂i , ŷi and ẑi and confronting the results with the respective d̂i . Cn/i is the transformation
matrix from body-fixed reference frame of S/Ci to inertial reference frame from Equation (4.8).

You can find the verifications in Appendix C, respectively Section C.1 and C.2. After 4 years, and using a
Runge-Kutta 4th order integrator with a step size of 1000 s, the difference in d̂i keeps at orders of magnitudes
of 10−13, while ~ωi is precise to the 10−19 power, or about 7 orders of magnitudes smaller than its value, thus
verifying the results.

The results obtained in this chapter, although in part crucial for the advancement of this thesis, can be
considered stand-alone, since they build up the current model of the LISA behavior found precedent publi-
cations. Although more complicated than others, these equations are the most precise (possibly achievable)
method for retrieving the expected rotational velocities and accelerations. Compared to e.g. the orientation
model used by Bik et al. [26], we were able to overcome the limits imposed by the first-order approximations
and apply purely analytical solutions to an actual orbital model, hence relegating all the uncertainties to the
orbital propagator. The significance of this cannot be overstated when considering a system as LISA, where
high-end precision is one of the top requirements, and we can justify the core principle of this chapter by
referring to the three-phase "wobble" of the plane found in Chapter 2: although very small (∼800 km over an
arm of 2.5 million km), the precision on the orientation of the LISA S/C of 5 nrad per axis [14] can be largely
affected.

Moreover, these equations can be used for any 3-S/C formation where mutual orientation is a mission
requirement.

4.8. CONCLUSIONS ON FORMATION DEPENDENCIES
In this chapter we have derived an analytical solution for the attitude commands, i.e. the expected orienta-
tions of the body-fixed axes based on the S/C displacements in the inertial reference frames. We assumed that
the x-axes are pointed towards a common point, represented by the displacement vector~rcm in the inertial
reference frame. Although these equations work for any~rcm placed on the formation plane, in this analysis
we used the incenter of the triangular formation, which satisfies the assumption that the x-axes bisect the
respective breath angles αi at the corners of the triangle.

We have further derived the analytical relations of the associated angular velocities ~ωi and angular accel-

erations ~̇ωi as function of inertial velocities ~̇Ri and accelerations ~̈Ri , based on Poisson’s kinematics.
The results show periodical rotations about the axes with components in the range of 10−7 rad/s and

associated accelerations in the range of 10−14 rad/s2 for the x and y components and 10−16 rad/s2 for the
z-axis, overall very small.

The relations have been validated using a complementary model (Appendix B) and verified for mutual
compatibility.





5
SYSTEM DYNAMICS

5.1. INTRODUCTION TO SYSTEM DYNAMICS
In Chapters 2 and 4 we have studied the S/C as point masses abiding the laws of gravitation. This is just
the ideal model, assuming that the S/C follows a perfectly controlled drag-free path, as by requirements. In
summary, the orbits and the orientations calculated so far are merely the solution of the control problem.

The system of a single S/C is characterized by 19 DoF [22, 37]. So far we have introduced the S/C displace-
ment in the inertial reference frame ~R, the S/C attitude θ ∈ R3, introduced as the body-axes orientations,
and the breath angle α between the lines-of-sight of the telescopes, briefly defined in Equation (4.6). Drag-
free control and fine pointing is achieved indirectly by the GRSs, containing the TMs (two per S/C), whose
displacements~ri (i = 1,2) and orientation θi ∈R3, add up to the other 12 DoF.

Control is provided by an equal number of forces and torques: the thrusters provide, respectively, thrust-
force ~ft and thrust-torque~lt , while an electrostatic suspension system in the GRS provide a force ~fi and a
torque~li to the respective TMi , i = 1,2, to keep the TM from getting in contact with the S/C. The steering
mechanism of the telescopes provides an additional torque to control α.

In the meanwhile, the SRP and the thruster induced vibrations act as disturbances [14] that need to be
compensated.

In this chapter, the dynamics of the various DoF are modeled. These are the equations that are later im-
plemented in the system simulation. Due to the embryonic state of the LISA mission, very little information
is provided in the publicly available literature, hence, most of the equations need to be derived.

5.2. SPACECRAFT TRANSLATIONAL DYNAMICS
The first DoF that we are going to analyze is the displacement, in the inertial reference frame, of the S/C CoM
~R.

In Chapter 2 we have basically defined the path of such point based solely on Newtonian gravitational
dynamics. In reality, the S/C is subject to other forces, namely, the thrust force provided by the reaction
control system ~ft and an external disturbance, that we call ~fd0. Using the placeholder ~ag for the gravitational
accelerations, the dynamics of the CoM are derived as:

~̈R =~ag + 1

msc

~ft + 1

msc

~fd0 (5.1)

where msc is the spacecraft mass, calculated in Chapter 3. Note that, since we are considering a single S/C, we
drop the 1, 2 and 3 subscripts used in Chapters 2 and 4 to identify one of the three satellites in the formation.

5.3. SPACECRAFT ROTATIONAL DYNAMICS
In Chapter 4 we derived the angular velocities and accelerations that a LISA S/C should have in order to keep
a perfect orientation w.r.t. the other two. LISA uses the on-board thrusters to adjust its orientation, providing
a torque~lt , against an external disturbance~ld0.

The S/C angular accelerations dynamics ~̇ω are given, according to Euler’s formula as [25]:

47
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~̇ω= I−1
sc

(
~lt −~ω× (Isc~ω)+~ld0

)
(5.2)

where Isc is the inertia matrix of the S/C calculated in Chapter 3.
The results obtained in Chapter 4 are to be interpreted as the solution of Equation (5.2), taking into ac-

count~ω calculated in the same chapter. Note that we also drop the 1, 2 and 3 subscripts as we are considering
a single S/C.

5.4. PERTURBATION DUE TO SOLAR RADIATION PRESSURE
The SRP is the most prominent environmental non-gravitational disturbance acting on the LISA S/C [17].
The resulting force ~fsr p can be modeled as following [25].

The S/C exterior can be broken down into n surface components. Each i ∈ 1,2, ...,n component is charac-
terized by a normal direction n̂i pointing away from the enclosed volume, a surface area Si , and three coef-
ficients: absorptivity Rabsi , specular reflectivity Rspeci and diffuse reflectivity Rdi f fi , such that Rabsi +Rspeci +
Rdi f fi = 1. Considering the direction to the Sun ŝ of the S/C, and the S/C at S/C position Psr , each surface

component receives a net force ~fsr pi of:

~fsr pi =−Psr Si

[
2

(
Rdi f fi

3
+Rspeci n̂i · ŝ

)
n̂i +

(
1−Rspeci

)
ŝ

]
max(n̂i · ŝ,0) (5.3)

where max(n̂i · ŝ,0) allows to discriminate between the exposed surfaces n̂i · ŝ > 0 and the shadowed ones
n̂i · ŝ ≤ 0.

For the modeling of the LISA exposed surface we are going to refer to the LISA Pathfinder properties. The
requirements for LISA Pathfinder [43] on the solar panels specify an absorptivity of

Rabs = 0.14

and consider the reflected light to be completely diffusive, i.e.

Rspec = 0

and
Rdi f f = 1−Rabs . (5.4)

According to the model presented in Chapter 3, the exposed surface is the rectangular solar array on the −z
surface, with normal n̂ =−ẑ. By defining the Sun direction w.r.t. S/C as:

ŝ =
~Rs −~R

‖~Rs −~R‖ (5.5)

we can rewrite Equation (5.3) as

~fsr p = P¯
(

1 [AU]

‖~R −~Rs‖

)2

S−z

[
2

3
(1−Rabs ) ẑ − ŝ

]
max(−ẑ · ŝ,0) (5.6)

where

P¯ = W¯
c

(5.7)

is the solar radiation pressure at 1 AU [3] calculated by means of the standard solar constant

W¯ = 1361 W/m2

and the speed of light in vacuum

c = 299792458 m/s.

In order to understand the implications of Equations (5.3) and (5.6), let us take a look at Figure 5.1. The
component ~fbl ocked is always present, and it is proportional to the surface facing the Sun. With Rspec > 0

the component ~fspec appears. The direction of ~fspec is symmetrical to ~fbl ocked w.r.t. ẑ, but due to Rspec ≤ 1,

‖~fspec‖ ≤ ‖~fblocked‖. Therefore, part ~fbl ocked combines with ~fspec in the direction of ẑ. When Rspec = 1 we

have the extreme case in which ‖~fspec‖ = ‖~fbl ocked‖. This is what happens to a perfect solar sail. The force
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Figure 5.1: Decomposition of the solar radiation pressure force ~fsr p into the three components ~fspec ,~fdi f f and ~fbl ocked acting on a
surface element.

~fsr p is then completely directed in the direction of ẑ. With α=−ẑ · ŝ, the force at 1 AU acting on a surface of 1
m2 is [3]:

fsr p (1 AU) = 2P¯ cos2α= 9.126cos2α [µN]. (5.8)

This is the case for an absorptivity of Rabs = 0. If instead of being specular, the reflectivity is diffuse, the
component ~fdi f f acts automatically in the direction of ẑ with 2/3 of the efficiency: to demonstrate it let us
take into consideration the extreme case for ẑ = −n̂i = −ŝ, or cosα = 1. The term inside the square brackets
of Equation (5.3) has a magnitude of:2 for Rspec = 1 and Rdi f f = 0;

2

3
+1 = 5

3
< 2 for Rdi f f = 1 and Rspec = 0.

showing the difference in efficiency between the two reflectivities.
Since LISA does not have a specular reflectivity and we are working with the absorptivity defined, Equa-

tion (5.6) is used in the simulation. Let us validate it by setting

ŝ =
−1

0
0


and

ẑ =
cosα

sinα
0


or, alternatively,

ẑ =
cosα

0
sinα


in order to obtain α=−ẑ · ŝ. Let us then set S−z = 1 m2 and the distance from the Sun, ‖~R −~Rs‖ = 1 AU. If we
set Rabs = 1, no reflectivity is provided, hence, the magnitude of the SRP induced force should only be

P¯ cosα= 9.126

2
cosα [µN] (5.9)

and directed in the direction of −ŝ.
Figure 5.2 shows the results for varying values of α. The maximum at 1 AU, 9.126/2 µN [3] is indicated

by the dotted line. At α < 90◦ and α > 90◦ the force is fsr p = 0, because of the term max(−ẑ · ŝ,0) used in
Equation (5.6), which tells us when the surface is pointing away from the Sun. The curve is calculated also for
the position of the S/C at nominal aphelion and perihelion. Due to the very small eccentricity of the orbits
(See Chapter 2) the curves do not bear much difference.

By setting the exposed surface to the nominal value
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Figure 5.2: Results of 5.6 for Rabs = 1, S−z = 1 m2 and for ‖~R − ~Rs‖ = 1 AU and at nominal perihelion and aphelion of a LISA S/C. At
1 AU, because of the total lack of reflectivity imposed by the value of Rabs we would expect the maximum fsr p value for an exposure

α= cos−1(−ẑ · ŝ) = 90◦ as half the one obtained by a perfect 1 m2 solar sail of 9.123 µN [3].
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Figure 5.3: Results of 5.6 for Rabs = 0.14, S−z = 3 ·4.75 m2 and for ‖~R −~Rs‖ = 1 AU and at nominal perihelion and aphelion of a LISA S/C.
At an exposure ofα=−30◦ (nominal for a LISA S/C) the SRP force is fsr p ' 85.367 µN, with small fluctuation at aphelion and perihelion.

S−z = a1 ·b1 = 3.00 ·4.75 [m2]

where a1 and b1 are the short and long bases of the rectangular solar panel (See section 3.2), and the absorp-
tivity Rabs = 0.14 as for LISA Pathfinder, the obtained curve is shown in Figure 5.3.With a nominal angle of
30◦ between ẑ and −ŝ, the nominal solar radiation pressure would exert about ‖~fsr p‖ ' 85.367 µN on the S/C
at 1 AU with small fluctuations due to varying orientation and radial distance from Sun due to the formation
dynamics.

In the simulation, ~R and ~Rs are, respectively, the displacements of the S/C CoM and the Sun w.r.t. SSB
in the inertial reference frame. Using the simulation data from Chapter 2 and a transformation to body-fixed
reference frame through Cn/i (Equation (4.8)), the SRP force on the three S/C for a period of 4 years is reported
in Figure 5.4.

If we analyze the trend for S/C1, the x-component has an average amplitude of ∼28.170522141 µN and
the y-component has an average amplitude of ∼28.181685265 µN over the 4 years period.
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Figure 5.4: SRP force in body-fixed reference frame of (top to bottom respectively) S/C1, S/C2 and S/C3 for 4 years. The components
( fsr p1, fsr p2 and fsr p3) refer respectively to x, y and z in body-fixed reference frame. The series was determined using the orbital and
orientation data calculated in Chapters 2 and 4.

The z-component has an average value of ∼80.162226950 µN over the 4 years, with an harmonic compo-
nent with average amplitude of ±1.531167180 µN.

While all the components show an annual periodical trend, we can assert that for the z-axis this is due
to the slight orbital eccentricity, while for the other two this is due mostly to the S/C formation rotation,
although a small harmonic due to the eccentricity is also present. Since the harmonics are also phased to the
respective orientation the small difference between x and y are expected.

The average magnitude over the 4 years is ‖~fsr p‖ ' 84.915657959 µN, or just a bit smaller than the one
estimated for a Sun distance of 1 AU, due to the drifting effect of the Earth/Moon third body gravity influence
(which raises the semi-major axis over the 4 years) and it oscillates with an additive max/min difference of
+1.495618381 µN and −1.412570332 µN.
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5.5. SOLAR RADIATION PRESSURE INDUCED TORQUE
In Chapter 3 we defined a model for the S/C which places the CoM at a distance of about 41.3 cm from the
−z surface. Meanwhile, the rectangular surface is considered symmetrical in the x- and y-direction w.r.t. the
CoM. Hence we can consider the Center of Pressure (CoP) at a position of

~rcp =
 0

0
−0.413394480

 m

in the body-fixed reference frame. With the SRP force applied at~rcp , a SRP induced torque~lsr p acts on the
S/C, as [25]:

~lsr p =~rcp ×~fsr p . (5.10)

Figure 5.5 shows the values obtained from the results of the previous section. In S/C1 the torque is 0 for the
z-component because the x and y arms are non-existent due to the CoP lying directly underneath the CoM,
and it oscillates roughly with amplitude of ∼11.65015314 µNm for the x-component and ∼11.64553836 µNm
for the y-component. You can obtain the same results by taking the amplitudes of the x and y components
of the SRP force ~fsr p and multiplying them by the z component of ~rcp . The z-component of ~fsr p has no
influence on the torque.



5.6. ESTIMATION OF THRUST EFFORTS 53

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

-15

-10

-5

0

5

10

15

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

-15

-10

-5

0

5

10

15

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

-15

-10

-5

0

5

10

15

Figure 5.5: SRP torque in body-fixed reference frame of (top to bottom respectively) S/C1, S/C2 and S/C3 for 4 years. The components
(lsr p1, lsr p2, lsr p3) refer respectively to x, y and z in body-fixed reference frame. The series was calculated using the results from Section
5.4.

5.6. ESTIMATION OF THRUST EFFORTS
Operating the S/C in drag-free means that Equation (5.1) should result in

~̈R =~ag (5.11)

i.e. the motion of the S/C should be governed only by the gravitational accelerations ~ag . We saw this in
Chapter 2, where the ideal S/C orbits were calculated using only the gravity of the celestial bodies in the Solar
System. In order to satisfy Equation (5.11) the thrust force ~ft and the disturbances ~fd0 in Equation (5.1) need
to cancel out, or

~ft =−~fd0. (5.12)

Moreover, the ideal orientation presented in Chapter 4 requires the angular accelerations ~̇ω of Equation
(4.59) to always be satisfied. The solution for the control torque~lt can be derived from Equation (5.2) as
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~lt = Isc~̇ω+~ω× (Isc~ω)−~ld0. (5.13)

The ideal control torque is obtained by substituting the values of ~ω and ~̇ω calculated in Chapter 4, with the
time-dependent S/C inertia matrix Isc calculated in Chapter 3.

If we consider the SRP as the only disturbance acting on the S/C we can substitute

~fd0 = ~fsr p (5.14)

and
~ld0 =~lsr p (5.15)

into Equations (5.12) and (5.13) and obtain the necessary values of the thrust and torque to attain the desir-
able control. Since ‖~ω‖¿ 1 and ‖~̇ω‖¿ 1 we expect~lt ' −~lsr p ,. nevertheless, it is important to clarify that a
small torque necessary to modify the S/C attitude is also present.

In Chapter 3 we derived the thruster configuration of the reaction control system and we presented the
relation (3.10) to calculate the throttle of each of the 12 thrusters T given an applied net thrust ~ft and torque
~lt . The solutions are shown in Figure 5.6, for a 4 year operation.

Notice how thrusters T1, T4, T7 and T10, i.e. the thrusters oriented in the z-direction, need to provide the
most thrust, up to ∼42.9264 µN, due to the SRP force being more active in that direction.

In general, the thrust requirements calculated here are larger than predicted: the colloidal µNewton
thrusters tested on board of LISA Pathfinder have a maximum thrust capability of 35 µN [44], while the FEEP
µNewton thrusters studied at ESA have a range of 0-100 µN [41].

There are several ways to improve the performance of the thrusters, thus obtaining lower thrust require-
ments. Three are readily identifiable:

• Use a larger absorptivity coefficient Rabs , so to lower the SRP force acting on the S/C solar panel.

• Optimize the thruster configuration: the fact that thrusters T1, T4, T7 and T10 provide an effort much
greater than the other eight means that the configuration is not optimized to distribute equally the
work.

• Use an active thrust effort estimation algorithm, as opposed to the one used here, which is based on a
linear relation with constant coefficient through the whole simulation [38].
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Figure 5.6: Thrust provided by each thruster Ti , i = 1,2,3...,12, required to generate net thrust force ~ft =−~fsr p and torque~lt =−~lsr p +
~ω× Isc~ω+ Isc ~̇ω, with ~ω and ~̇ω being the angular velocities and accelerations for nominal orientation. From top to bottom the respective
time series for S/C1, S/C2 and S/C3 are shown, for a simulation period of 4 years. These values are the minimum requirement

5.7. ATTITUDE USING EULER ANGLES

The S/C attitude is defined here by means of Euler angles. Although quaternions would be a safer choice for
their lack of singularities, we want to minimize the number of DoF.

The Euler angles θ = (θ1,θ2,θ3)τ are defined here with a 3-2-1 rotation sequence, as shown in Figure 5.7.
Each angle is associated to a positive rotation around its respective axis, i.e., x-axis for θ1, y-axis for θ2 and
z-axis for θ3, which are determined by the respective direction-cosine matrices, defined as following [40]:

C1(θ1) =
1 0 0

0 cosθ1 sinθ1

0 −sinθ1 cosθ1

 ; (5.16)
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Figure 5.7: Definition of the Tait-Bryton Euler angles as 3-2-1 rotation of a body-fixed (x,y,z) reference frame in inertial (X,Y,Z) reference
frame. In sequence: rotation about inertial z-directive (ẑn ≡ ẑb ) by θ3; rotation about intermediate y-directive (ŷb ≡ ŷa ) by θ2; rotation
about body-fixed x-directive (x̂a ≡ x̂) by θ1.

C2(θ2) =
cosθ2 0 −sinθ2

0 1 0
sinθ2 0 cosθ2

 ; (5.17)

C3(θ3) =
 cosθ3 sinθ3 0
−sinθ3 cosθ3 0

0 0 1

 . (5.18)

The above can be demonstrated by recalling Equation (4.8), in which we define a direction cosine matrix
as C = (x̂, ŷ , ẑ)τ.

As shown in figure 5.7, the passage from the inertial reference frame, denoted here with the left superscript
n , to the body-fixed reference frame, is obtained by a set of sequential rotations: a vector n~p in the inertial ref-
erence frame becomes b~p in the first intermediate reference frame, obtained by rotating the inertial reference
frame around the z-axis by θ3:

b~p =C3(θ3)n~p; (5.19)

subsequently, b~p becomes a~p in the second intermediate reference obtained by rotating the first around the
y-axis by θ2:

a~p =C2(θ2)b~p =C2(θ2)C3(θ3)n~p; (5.20)

finally a~p becomes ~p in the body-fixed reference frame, which is the second intermediate reference frame
rotated around the x-axis by θ1

~p =C1(θ1)a~p =C1(θ1)C2(θ2)b~p =C1(θ1)C2(θ2)C3(θ3)n~p =Cn/s (θ)n~p. (5.21)

Direct rotation is achieved via Cn/s (θ) which is a product of the three direction-cosine matrices defined
for each angle. This Cn/s ≡Cn/i is the same defined in Equation (4.8).

One can write Cn/s (θ) in explicit form, by expanding Equation (5.21) in terms of θ1, θ2 and θ3:

Cn/s (θ) =
 cosθ2 cosθ3 cosθ2 sinθ3 −sinθ2

sinθ1 sinθ2 cosθ3 −cosθ1 sinθ3 sinθ1 sinθ2 sinθ3 +cosθ1 cosθ3 sinθ1 cosθ2

cosθ1 sinθ2 cosθ3 + sinθ1 sinθ3 cosθ1 sinθ2 sinθ3 − sinθ1 cosθ3 cosθ1 cosθ2

 . (5.22)

From Equation (5.22) the inverse relation to calculate θ is readily derived:

θ =
θ1

θ2

θ3

=

 atan2
(
Cn/s2,3,Cn/s3,3

)
atan2

(
−Cn/s1,3,

√
C 2

n/s1,1 +C 2
n/s1,2

)
atan2

(
Cn/s1,2,Cn/s1,1

)
=

 atan2
(
y3, z3

)
atan2

(
−x3,

√
x2

1 +x2
2

)
atan2(x2, x1)

 . (5.23)

where xi , i = 1,2,3, are the components of the x-directive x̂ and y3 and z3 are the inertial z-components of
the y- and z- directives ŷ and ẑ. The mutual relations between Equations (5.21), (5.22) and (5.23) are easily
verifiable for any random value of θ.

Notice how each rotation axis is unchanged between two consecutive frames, hence x̂ ≡ x̂a , ŷb ≡ ŷa and
ẑa ≡ ẑn , where the subscript n refers to the inertial reference frame ("n" is for Newtonian).
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Recalling the S/C body orientation calculated in Chapter 4, specifically Equations (4.3), (4.5), (4.7) and the
ideal direction-cosine matrix Cn/s calculated with Equation (4.8) and using Equation (5.23) we can calculate
the Euler angles θ associated with the ideal orientation of the S/C. The values, for 4 years, are shown in figure
5.8.

For the three S/C the three Euler angles have non-sinusoidal yearly periodical motions. θ1 and θ2 have
both amplitudes ±π/3 rad, respectively around ±π rad and 0 rad. The period of θ3 is twice as short, with
smaller amplitudes and continuous components de-phased by 120◦ between the three S/C.

The results have been verified by confronting Cn/s calculated with Equation (5.22) and Cn/i from Equation
(4.8) for the three S/C [25].

We need to point out that in the framework of this thesis we are going to define θi , i = 1,2,3, in the interval
−π < θi ≤ π. You can see, for θ1 in Figure 5.8, when crossing the boundaries a discontinuity happens. This
drawback of the Euler angles needs to be fixed by an active algorithm when integrated in the simulation.
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Figure 5.8: "Natural" Euler angles θ = (θ1,θ2,θ3)τ calculated with Equation (5.23) equivalent to the nominal orientation calculated in
Chapter 4. From top to bottom, the Euler angles of, respectively, S/C1, S/C2 and S/C3 are shown.
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Since the three θ define a positive rotation around their respective directives, their time-derivatives charac-
terize three angular velocity vectors: ~ωa = θ̇1x̂, ~ωa/b = θ̇2 ŷa and ~ωb/n = θ̇2 ẑb . The rotation of the body-fixed
reference frame w.r.t. the inertial reference frame can be obtained by adding the three angular velocity vectors
together:

~ω= θ̇1x̂ + θ̇2 ŷa + θ̇3 ẑb . (5.24)

Let us recall that, in their respective reference frame, the directives are the three fundamental unit vectors,
i.e., x̂ = î , a ŷa = ĵ and b ẑb = k̂, which can all be transformed to body-fixed reference frame by means of
Equations (5.21)–(5.20), i.e.

~ω= θ̇1 î + θ̇2C1(θ1) ĵ + θ̇3C1(θ1)C2(θ2)k̂. (5.25)

The above can be rewritten as:

~ω= N∗(θ)θ̇ (5.26)

where N∗(θ) can be deduced mathematically as the horizontal concatenation of î , the 2nd column of C1(θ1)
and the 3r d column of C1(θ1)C2(θ1):

N∗(θ) =
1 0 −sinθ2

0 cosθ1 sinθ1 cosθ2

0 −sinθ1 cosθ1 cosθ2

 . (5.27)

Usually the inverse relation is more useful, i.e., being able to calculate θ̇ from ~ω, therefore, matrix N (θ) =
N∗(θ)−1is used instead:

N (θ) = 1

cosθ2

cosθ2 sinθ1 sinθ2 cosθ1 sinθ2

0 cosθ1 cosθ2 −sinθ1 cosθ2

0 sinθ1 cosθ1

 ; (5.28)

θ̇ = N (θ)~ω. (5.29)

Again, using the values for ~ω obtained in Chapter 4 and the results of the previous section for θ, we are
able to calculate analytically θ̇, whose solutions are shown in Figure 5.9.

Moreover we can derive a sort of acceleration for the Euler angles, as

θ̈ = Ṅ (θ)~ω+N (θ)~̇ω (5.30)

where

Ṅ (θ) = 1

cosθ2

θ̇2 sinθ2N (θ)+
0 θ̇1 cosθ1 sinθ2 + θ̇2 sinθ1 cosθ2 −θ̇1 sinθ1 sinθ2 + θ̇2 cosθ1 cosθ2

0 −θ̇1 sinθ1 cosθ2 − θ̇2 cosθ1 sinθ2 −θ̇1 cosθ1 cosθ2 + θ̇2 sinθ1 sinθ2

0 θ̇1 cosθ1 −θ̇1 sinθ1

 .

(5.31)
Using the solution for ~̇ω derived in Chapter 4, the results are shown in Figure 5.10.

The verification of Equations (5.29) and (5.30), through the consistency of θ, θ̇ and θ̈ via numerical inte-
gration (Runge-Kutta 4th order with time step of 1000 s) can be found in Appendix C, Section C.3.
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Figure 5.9: "Natural" time derivative of the Euler angles θ̇ = (θ̇1, θ̇2, θ̇3) calculated through Equation (5.29), according to the nominal
angular velocities ~ω from Chapter 4. From top to bottom, the Euler angle speeds of, respectively, S/C1, S/C2 and S/C3 are shown.
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Figure 5.10: "Natural" double time derivative ("acceleration") of the Euler angles θ̈ = (θ̈1, θ̈2, θ̈3) calculated through Equation (5.29),
according to the nominal angular velocities ~ω and accelerations ~̇ω from Chapter 4. From top to bottom, the Euler angle speeds of,
respectively, S/C1, S/C2 and S/C3 are shown.
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5.9. THE GRAVITATIONAL REFERENCE SYSTEM DYNAMICS
Let us now discuss the mechanism that allows the drag-free operation of the S/C, as well as the readout of
GW signals: the GRS [14, 17].

The received laser beams at each telescope are sent via an optical bench to a TM, located within a vacuum
assembly referred to, here, as cage. The TM and the walls of its enclosure are separated by just ∼2 mm of
empty space. Interferometric sensors measure precisely the displacement of the TM within the assembly.

The TM is shielded from external disturbances within the cage, hence abiding only the gravitational ac-
celerations. They are, therefore, used as reference points that the S/C is required to follow in order to keep a
drag-free trajectory.

This concept is simple enough, but in reality there are a few limitations. Figure 5.11 presents the strawman
concept of the GRS-Optical bench-telescope assembly envisioned on LISA [14]. The telescope and the GRS
are rigidly connected. The whole assembly is allowed to rotate about a pivot point in order to satisfy the
breath angle α requirements dictated by the evolution of the formation in time (see Equations (4.6), (4.22)
and (4.49)).

Hinge

32 cm
aperture

Optical
bench

Telescope

GRS

TM

Figure 5.11: The strawman design of the optical assembly [14]. The telescope has an aperture of 32 cm. The optical assembly defined
by the telescope, the GRS and the optical bench rotate around a common pivot (hinge). We assume the both the optical assemblies are
articulated.

Two optical assemblies and two TMs are present in one S/C. Due to their number, not all the DoF can be
controlled in drag-free, for the rest, the GRS employs an electrostatic suspension system to keep the TM from
touching the walls and control its orientation [14, 17].

Using Figure 5.11 and the definitions on the body-fixed reference frames determined in Chapter 3 a model
for the dynamics of the GRS is derived. Figure 5.12 shows how the various DoF interact.

As always, the S/C reference frame is defined so that the x-axis bisects the breath angle α. Two new
reference frames are then defined, with their x-axis pointing in the directions of the lines-of-sight of the
telescopes. The z-axes are co-directional with the body-fixed z-axis. Their origins~r01 and~r02 define the rest
positions of the TMs, whose displacements w.r.t. these points are, respectively~r1 and~r2. By convention TM1

is placed in the -y quadrant and TM2 is on the respective symmetrical spot w.r.t. the S/C body-fixed x-axis.
The reference frame rotates with the telescope around the z-axis about the respective pivot points ~rh1 and
~rh2. We call these new reference frames optical reference frames.

We now derive the dynamics of the TM in their respective optical orientation. These equations are not
provided anywhere in literature. Let us begin by defining the motion of TMi in the inertial reference frame. As
we said, TMi experiences gravitational accelerations ~ag of the same magnitude as the ones acting on the S/C

(see Equation (5.1)), plus a small difference ~di but they are completely shielded by the external environmental
disturbance. ~di is made to include all the possible alternative disturbances that a TM may experience in its
enclosure. The electrostatic suspension system acts with a force ~fi on TMi . Moreover, the S/C self-gravity
and electrostatic interactions create a virtual spring-mass system with stiffness matrix Ki [22, 23, 45]. The
total acceleration experienced by TMi in the inertial reference frame is, therefore:

n~̈ri = n~ag +n ~di + 1

mi

n~fi −n
(

Ki

mi
~ri

)
(5.32)

where mi is the TM mass, whose nominal value is [45]

mi ' 1.9 kg.

In the S/C reference frame, defined by the superscript s , we need to account for the S/C angular velocity~ω
and acceleration ~̇ω, plus reference frame transformation from inertial to body-fixed, defined by the direction-
cosine matrix Cn/s :
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→
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telescope line-of-sight

telescope line-of-sight

Figure 5.12: Schematics used to derive the dynamics of the TM relative DoF. left: In S/C body frame (x,y,z), assuming both optical
assemblies to be articulated, the pivot points are positioned at~rhi (fixed) and the rest-positions of the TM are positioned at~r0i (rotating
around~rhi ) from the S/C center of mass. right: the x-axes of the GRS reference frames are collinear to the respective telescope lines-of-
sight (interferometric arms), the displacements of TMi w.r.t. their rest positions are defined by~ri . The geometry is symmetrical w.r.t. the
S/C body x-axis, and the rotations around the hinges are equal and opposite and proportional to α̇/2. It is assumed that the x y-planes
of all the reference frames are co-planar.

s~̈ri =Cn/s

(
n~̈ri −n ~̈R

)
−~ω×~ω× s~ri −2~ω× s~̇ri − ~̇ω× s~ri . (5.33)

Finally, we need to shift to the optical assembly reference frame of TMi , whose origin is at~r0i . A trans-
formation matrix Cs/i is defined, such that~ri = Cs/i

s~ri . For both TM1 and TM2, this can be calculated, from
Figure 5.12 as, respectively,

Cs/1 =
cosα/2 −sinα/2 0

sinα/2 cosα/2 0
0 0 1

 (5.34)

and

Cs/2 =
 cosα/2 sinα/2 0
−sinα/2 cosα/2 0

0 0 1

 . (5.35)

Moreover, the rotation due to the telescope steering mechanism ~ω0i , i = 1,2, is accounted for, as, respec-
tively

~ω01 =− α̇
2

k̂

~ω02 = α̇

2
k̂.

(5.36)

where k̂ = [0,0,1]τ. We can write the acceleration of TMi in the optical assembly reference frame as:

~̈ri =Cs/i
(s~̈ri −~̈r0i

)−~ω0i ×~ω0i ×~ri −2~ω0i ×~̇ri − ~̇ω0i ×~ri . (5.37)

We assume that S/C and the optical reference frames share the same z-axis and, since ~ω0i does only have z-
components, as for Equation (5.36), s~ω0i =~ω0i . The s superscript is not necessary for ~ω and~r0i in Equations
(5.33) and (5.37), as we intend to observe these quantities in the S/C reference frame and nowhere else.

For the values of displacement and velocity in the S/C reference frame, we can determine the following
relations to substitute into Equation (5.33):
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s~ri =C−1
s/i~ri +~r0i ; (5.38)

and
s~̇ri =C−1

s/i

(
~̇ri +~ω0i ×~ri

)+~̇r0i . (5.39)

Let us recall Equations (5.1) and (5.32): the term n~̈ri −n ~̈R in Equation (5.33) can be expanded as:

n~̈ri −n ~̈R = 1

mi

n~fi +n ~di −n
(

Ki

mi
~ri

)
− 1

msc

n~ft −n ~d0 (5.40)

where ~d0 = ~fd0/msc is the disturbance acting on the S/C in acceleration form. Performing the transformation
in S/C body-fixed reference frame, the first term of Equation (5.33) becomes

Cn/s

(
n~̈ri −n ~̈R

)
= 1

mi

s~fi + s ~di − s
(

Ki

mi
~ri

)
− 1

msc

~ft − ~d0. (5.41)

The s superscript disappears for ~ft and ~d0, as these are observables in the S/C body-fixed reference frame.
Transformation into optical reference frame bears

Cs/i Cn/s

(
n~̈ri −n ~̈R

)
= 1

mi

~fi + ~di − Ki

mi
~ri +Cs/i

(
− 1

msc

~ft − ~d0

)
, (5.42)

which appears when expanding the first term of Equation (5.37), specifically Cs/i
s~ri .

Combining Equations (5.33), (5.37) and (5.42), the following relation is obtained.

~̈ri = 1

mi

~fi + ~di − Ki

mi
~ri +Cs/i

(
− 1

msc

~ft − ~d0

)
+Cs/i

[−~̈r0i −~ω×~ω× (
C−1

s/i~ri +~r0i
)−

−2~ω×{
C−1

s/i

(
~̇ri +~ω0i ×~ri

)+~̇r0i
}− ~̇ω× (

C−1
s/i~ri +~r0i

)]−~ω0i ×~ω0i ×~ri−
−2~ω0i ×~̇ri − ~̇ω0i ×~ri .

(5.43)

Further derivation can be performed by expanding ~̇r0i and ~̈r0i , i.e., the velocity and acceleration of the
optical reference frames origins in the S/C reference frame, dictated by their motion around the hinges:

~̇r0i =~ω0i × (~r0i −~rhi ) ;

~̈r0i =~̇ω0i × (~r0i −~rhi )+~ω0i ×~ω0i × (~r0i −~rhi ) .
(5.44)

where~ω0i is given by Equation (5.36) for i = 1,2. Substitution into Equation (5.43) results in the final form for
TMi dynamics:

~̈ri = 1

mi

~fi + ~di − Ki

mi
~ri +Cs/i

(
− 1

msc

~ft − ~d0

)
+Cs/i

[−~̇ω0i × (~r0i −~rhi )−~ω0i ×~ω0i × (~r0i −~rhi )−

−~ω×~ω× (
C−1

s/i~ri +~r0i
)−2~ω×{

C−1
s/i

(
~̇ri +~ω0i ×~ri

)+~ω0i × (~r0i −~rhi )
}− ~̇ω× (

C−1
s/i~ri +~r0i

)]−
−~ω0i ×~ω0i ×~ri −2~ω0i ×~̇ri − ~̇ω0i ×~ri .

(5.45)

The positions of the hinges in the S/C reference frame have been loosely estimated by graphical evaluation
of the CAD model presented by the CDF team [21] as:

~rh1 =
 0.1074
−0.3216

0

 m; ~rh2 =
0.1074

0.3216
0

 m

while the origins of the optical reference frames have been arbitrarily placed at 25 cm from the hinges along
the lines-of-sight of the telescope, as suggested in Figure 5.11, or:

~r0i =~rhi +C−1
s/i

−0.25
0
0

 m. (5.46)

The values for~r0i , i = 1,2, are not constant, as the direction-cosine-matrices Cs/i depend on the orientation
of the telescopes.
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The angular acceleration vector of TMi , considered as a rigid body, is derived from the Euler formula and the
sum of angular acceleration vectors as:

~̇ωi = I−1
i
~li − I−1

i Kϕiϕi − I−1
i

[
(Cs/i~ω+~ω0i +~ωi )×{

Ii × (Cs/i~ω+~ω0i +~ωi )
}]− ~̇ω0i −Cs/i ~̇ω+ I−1

i
~ldi . (5.47)

In this equation ~ωi is the angular velocity of the TMi , Ii is its inertia matrix,~li is the torque provided by elec-
trostatic suspension system, Kϕi , as for Equation (5.32), is a stiffness matrix factor that models the interaction
between the S/C and TM rotation, creating a torque linearly dependent on the TMi attitude ϕi . In this case
ϕi represent neither the Euler angles nor quaternions, but simply a placeholder value such that [23]

ϕ̇i =~ωi . (5.48)

This linear relation is only suitable for |ϕi j
| ¿ 1, j = 1,2,3. For such case ϕi can be considered Euler angles.

Naturally, a disturbance torque~ldi is present as well.

5.11. TELESCOPE STEERING MECHANISM
At last, we are going to talk about the dynamics of the breath angle α. In Chapter 4 we have derived the
formation dependent nominal breath angles αi , i = 1,2,3, and their divergence speed α̇i and accelerations
α̈i , respectively in Equations (4.6), (4.22) and (4.49), as intermediary steps. In this chapter we drop the i , and
concentrate on the S/C-specific breath angle.

A case-point should be drawn on the breath angle dynamics, as we have not defined a model for the
telescope-GRS mass-inertia, therefore we cannot draw any conclusions on the torque required for its control.

We decide, therefore, to leave out the telescope steering mechanism from the control loop and use the
quantities α, α̇ and α̈ as derived for the perfectly controlled case, when required. Figures 5.13, 5.14 and 5.15
show, respectively, the three quantities for a 4 year operation.
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Figure 5.13: "Natural" breath angles, required to keep the telescopes locked onto the next S/C calculated using Equation (4.6) for 4 years
of simulation.

During the first 4 years of operation the requirement to keep α between 60±1.5◦ is satisfied. In fact, the
maximum divergence from 60◦ is at most ∼0.807◦ for α3 and the maximum divergence range is ∼1.411◦ for
α2. Table 5.1 shows the divergence values for all the breath angles.

The divergence speeds are in the order of 10−9 rad/s, with maximum value of |α̇1|, |α̇2| and |α̇3| of, respec-
tively, 4.149560197 ·10−9 rad/s, 4.446549403 ·10−9 rad/s and 4.205625000 ·10−9 rad/s.

Table 5.1: The maximum divergence from the nominal α= 60◦ and the total range of the breath angles.

α1 α2 α3

Divergence |α−60◦| 0.751141245◦ 0.769313356◦ 0.807311659◦
Range αmax −αmi n 1.367473566◦ 1.411040215◦ 1.375361938◦
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Figure 5.14: "Natural" breath angle divergence speeds (time-derivative of αi ), required to keep the telescopes locked onto the next S/C
calculated using Equation (4.22) for 4 years of simulation.
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Figure 5.15: "Natural" breath angle divergence accelerations (double time-derivative of αi ), required to keep the telescopes locked onto
the next S/C calculated using Equation (4.22) for 4 years of simulation.

The divergence accelerations are in the order of 10−15 rad/s2, with maximum value of |α̇1|, |α̈2| and |α̈3|
of, respectively, 1.507598135 ·10−15 rad/s2, 1.634145201 ·10−15 rad/s2 and 1.527447759 ·10−15 rad/s2

The values of the three αi , i = 1,2,3 are verified for

α1 +α2 +α3 = 180◦

because of the nature of the triangle. The values of the three α̇i and the three α̈i are also verified for

α̇1 + α̇2 + α̇3 = 0

and

α̈1 + α̈2 + α̈3 = 0.

Another verification is performed on the consistency of α, α̇ and α̈ by means of numerical integration
(Runge-Kutta 4th order with 1000 s step size). The results are reported in Appendix C, Section C.4.

5.12. NOISE FILTERS
The SRP is not the only disturbance acting on the S/C: several other factors contribute to the deterioration of
the dynamics at higher frequencies, including thermal noise, electrostatic and magnetic interactions, atmo-
spheric disturbances due to outgassing inside the GRS and, most prominently, thrust jitter [14, 17, 23]. In this
thesis we decide to focus on the latter.

In Chapter 3 we have derived a suitable model for the thrust configuration matrix A. In Section 5.6 we
derived the nominal thrust provided by each of the 12 on-board µNewton thrusters in order to counteract the
SRP induced thrust-torque on the S/C. The study case is S/C1.
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Not much information is provided in literature about the shaping of the noise filters for the thrust jit-
ter, except that it should take into consideration the thrust configuration matrix A [23]. Public studies on
the characterization of FEEP µNewton thruster stability struggle on the resolution of the measurement in-
struments during experimental testing (>1.1 µN) [41]. The Colloid µNewton thrusters have been shown to
achieve a noise of <0.1 µN/

p
Hz at 30 µN [42]. Figure 5.16, extrapolated by J. K. Ziemer and S. M. Merkowitz

Figure 5.16: Characterization of Thrust-Voltage VN curve of Colloid µNewton thruster for various values of feed current I . From [42]

(2004) [42] shows how the spurious thrust jitters rise in amplitude with the feed current and subsequently
with the thrust, but no model is provided by the authors. J. Bik et al. (2007) [26] used a frequency-related
noise shape to obtain values of thrust-noise with standard deviation σ= 2 µN at sampling steps of 1 s.

As a preliminary approach, we decide to confer each thruster command a confidence level of ±1% at 3σ
(standard deviation). In later iterations this value can be augmented to expand the range of uncertainties.

The noise is simply created by multiplying 12 independent randomly generated factors εi , i = 1,2, ...,12,
with

µε = 0 (mean), 3σε = 0.01 (three standard deviations),

to each thruster effort and calculate the thrust and torque jitter δ~ft and δ~lt by means of the thruster configu-
ration matrix A (Section 3.4),

(
δ~ft

δ~lt

)
= A


ε1T1

ε2T2
...

ε12T12

 . (5.49)

Figure 5.17 shows a sample of εi generated using the normrand() function in Matlab. Figure 5.18 shows
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Figure 5.17: left: a randomly generated εi sample (jitter factor) over 4 years (1000 s step size) and right: the probability density distribu-
tion of the sample with a bin size of ∆x = 0.001. σ is the standard deviation.
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Figure 5.18: left: the associated thrust noise for a 1% confidence (3σ) in the thruster actuation and right: the associated torque noise.
The z-direction thrust (green) and the torque about te x-axis (blue) are more than twice as prominent as the other two respective com-
ponents. Their zero-mean standard deviation is reported in Table 5.2.

the thrust and torque noise calculated with Equation (5.49) using the values for T estimated in Section 5.6.
The standard deviations are shown in Table 5.2.

Table 5.2: Standard deviation of thrust noise δ~ft and torque noise δ~lt due to a 1% confidence level (3σ) in thruster force.

x y z

σ
[
δ~ft

]
[µN] 0.06421080894 0.08093653289 0.2159621796

σ
[
δ~lt

]
[µN m] 0.3591978114 0.1728324518 0.1193266428

Needing to rely on Equation (5.49) during the simulation is time-consuming. Moreover, we run into the
risk of creating an algebraic loop, i.e., having an unknown in the loop that Simulink is not able to resolve
algebraically [46]. As such, the jitters are simulated independently using the zero-mean standard deviation
values of table 5.2. The reconstructed signal used in the dynamics simulator is shown in Figure 5.19.
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Figure 5.19: Reproduction of Figure 5.18 by assuming a white noise with the same standard deviations (Table 5.2). left: thrust jitter δ~ft ,
right: torque jitter δ~lt . The period is changed to 10 hours with sampling time of 0.5 s.

Since the requirements in bandwidth are expressed in terms of Amplitude Spectral Density (ASD) (See
Appendix E), let us perform a spectral analysis of the noise.

The goal bandwidth is 20 µHz< f < 1 Hz, meaning that, by Nyquist’s law, the minimum sampling fre-
quency is fsample = 2 Hz, which is compatible with the on-board computer frequency of fr e f = 10 Hz [14],
while for the characterization of an entire period the sampling time should be

T = 1

20 ·10−6 Hz
= 50000 s = 13 h 53 m 20 s.
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Since, on the other hand, the required bandwidth is 0.1 mHz < f < 0.1 Hz, we can relax the last requirement
and assume a measurement period of T = 10 h. This is also the recommended span, in order to keep the
experiment on hold for 14 h every day for reorientation and data upload to Earth [21].

In Appendix E, information about the spectral analysis of a random noise and the definition of its Power
Spectral Density (PSD) is exposed. In summary, since the measurement bandwidth has a maximum fre-
quency F = 1 Hz, the one-sided PSD Sxx of a zero-mean random signal with standard deviation σx is 1

µ(Sxx ) = σ2
x

F
(5.50)

orµ(Sxx ) =σ2
x ·1/Hz for F = 1 Hz. We assume, therefore that the resulting white noise is band-limited between

0 and F (or that the power of the noise is 0 for f ≥ F ), as long as we agree, for the rest of the thesis, that the
sampling frequency is fsamp = 2F = 2 Hz [47].

We can expect, therefore, that the ASD, or S1/2
xx , will have a zero-mean standard deviation of

σasd =√
µ(Sxx ) =σx .

Using the periodogram() function in Matlab, the single-sided ASD of the thrust and torque jitters ob-
tained is shown in Figure 5.20. Information about the periodogram() function can be found in Appendix
F.
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Figure 5.20: Sample amplitude spectral density of Figure 5.19 for 10 hours observations at upper frequency F = 1 Hz. left: thrust noise
δ~ft , right: torque noise δ~lt .

The on-bandwidth frequency domain control gains designed in Chapters 7 and 8 (introduced in Chapter
6) are based on the ASD of the thruster jitter chosen at 3σ levels and band-limited at 1 Hz.

5.13. LINEARIZATION AND VALIDATION OF THE DYNAMICS
Let us consider all the vectorial quantities in the same reference frame so that no transformation matrices are
required (or Cs/i = 13×3) and let us make the following assumptions:

• the required S/C angular velocities and accelerations are small: ~ω¿ 1, ~̇ω¿ 1, as calculated in Chapter
4;

• the required angular velocities and accelerations of the telescopes, which are proportional to the breath
angle rates (See Equations (5.36)), are also small ~ω0i ∝ α̇/2 ¿ 1, ~̇ω0i ∝ α̈/2 ¿ 1 as shown in Section
5.11;

• the TM displacements and velocities within their assemblies are kept by requirement at~ri ' 0, ~̇ri ' 0;

• the angular velocities of the TM are also kept by requirement at ~ωi ' 0.

1µ(Sxx ) is the symbol used for the mean of Sxx . It is calculated through the mathematical expectation E [Sxx ].
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The dynamics equations can be linearized by removing the terms where a multiplication of the above men-
tioned small values occur.

The translational dynamics of the S/C of Equation (5.1) are already linear. Substituting a placeholder
variableϕ in Equation (5.2) such that

ϕ̇=~ω, (5.51)

the attitude dynamics can be linearized as:

ϕ̈= ~̇ω' I−1
sc

(
~lt +~ld0

)
(5.52)

or simply getting rid of the gyroscopic momentum term.
The linearization of the TM dynamics removes all of the centripetal and Coriolis effects. By substituting

Equation (5.52) to ~̇ω, Equation (5.45) becomes:

~̈ri ' 1

mi

~fi + ~di − Ki

mi
~ri − 1

msc

~ft − ~d0 − ~̇ω×~r0i − ~̇ω0i × (~r0i −~rhi )

' 1

mi

~fi + ~di − Ki

mi
~ri − 1

msc

~ft − ~d0 − I−1
sc

(
~lt +~ld0

)
×~r0i − ~̇ω0i × (~r0i −~rhi ).

(5.53)

Linearization of the TM rotational dynamics Equation (5.47) is also performed by substituting the place-
holderϕi and applying Equation (5.52):

ϕ̈= ~̇ωi ' I−1
i

(
~li +~ldi

)
− I−1

i Kϕiϕi − I−1
sc

(
~lt +~ld0

)
− ~̇ω0i . (5.54)

While Equation (5.1) is an application of Newtonian dynamics in an inertial reference frame that needs
no validation, the linearized dynamics of Equations (5.2), (5.45) and (5.47) can provide a benchmark against
all the dynamics equations found in literature:

• Equation (5.52) is used by S.-F. Wu and D. Fertin 2 [23] to describe the attitude dynamics of LISA Pathfinder.

• Equations (5.53) and (5.54) are also described in the same paper. Since LISA Pathfinder does not have
a steering telescope, the ~ω0i term does not appear there. The disturbance terms do not appear in the
time-dependent version but they can be found in the frequency-domain transformation of the same
equation. The matrix terms Ki /mi and I−1

i Kϕi are substituted by the terms ω2
ji

(stiffness) of a diagonal

matrix, with j = {x, y, z,θ,η,γ} (representing the matrix components 1,1, 2,2, and 3,3) and i = 1,2 as
used in this thesis. M. Armano et al. (2016) [45] uses the same notation.

• A version of Equations (5.53) and (5.54) applied to LISA are provided by P. F. Gath [22]. In this version,
Ki /mi and I−1

i Kϕi do also appear in the frequency-domain dynamics in the form of matrix Ω 3. In
the paper the equations are bound together, with the masses msc , mi and inertias Isc , Ii collected in a
mass-inertia matrix (called M in the paper). The term ~̇ω0i appears in its scalar form: just the z-term is
shown (since ~̇ω0i = α̈k̂).

The non-linear dynamics equations are not provided in publicly available literature. The work of S.-F. Wu
and D. Fertin on LISA Pathfinder provides a clearer version than P. F. Gath et al. (or even G. Maghami and T.
T. Hyde [37]) and an important starting point in order to retrieve the dynamics of LISA (and understand the
process used in P. F. Gath et al.).

A side note should be dedicated to the S/C-TM interaction modeling using the stiffness. As we said, we use
the termω2 in lieu of K /m or I−1K , where K are stiffness matrices of either spring-mass or torsion pendulum
models. As predicted and then demonstrated on LISA Pathfinder, ω2 < 0 is negative for all the DoF where it is
applied, meaning that the spring-mass system is Lyapunov unstable [37]. This comes as no surprise, as S/C
self-gravity and electrostatic attractions are pull-forces and therefore the TM tends to be knocked off their
equilibrium positions for~r ,ϕ 6= 0.

Ki and Kϕi need to be experimentally estimated after launch, therefore no assumptions can be made on
their values. For LISA Pathfinder, ω2 = −525± 30× 10−9 rad2/s2 was measured in the interferometric mea-
surement direction for both the TM [37].
2This paper inspired to use the notations~l for the torque and~r0i for the origin of the GRS axes.

3Both P. F. Gath and S.-F. Wu and D. Fertin show the term as R = F

s2 +ω2
, which is the Laplace transform of r̈ =−ω2r + f , representing a

mass-spring system with an applied force per unit mass f and stiffnessω2. The matrixΩ= diag
(
1/(s2 +ω2

x ),1/(s2 +ω2
y ), ...,1/(s2 +ω2

γ)
)

is applied to a vector containing force and torque.
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5.14. CONCLUSIONS ON SYSTEM DYNAMICS
In this long chapter we have introduced the dynamics equations of the 19 DoF involved in the LISA system.
Spacecraft translational and rotational dynamics have been derived through classical Newtonian and Eule-
rian physics, with the involvement of thrust and disturbance forces and torques.

The disturbances due to SRP have been modeled by assuming a diffuse reflectivity of the solar panels with
an absorptivity coefficient of Rabs = 0.14 based on LISA Pathfinder specifications. For LISA, with an exposure
of −30◦, the force shows a magnitude of fsr p ' 85.367 µN.

The force equation has been validated by showing that an absorptivity set to Rabs = 1 would exert exactly
half of the estimated force than a perfectly reflective solar sail with the same area and facing the Sun with an
exposure of 0◦ [3].

The force and torque due to SRP has been estimated for the S/C shape provided in Chapter 3 and data on
orientation and position calculated in Chapter 4. Using the thrust configuration matrix A and the relations
of Chapter 3, a preliminary study of the thrust efforts has been performed, showing a required capability of
∼43 µN for thrusters 1, 4, 7 and 10, to counteract both force and torque, suggesting that the model can be
improved.

The attitude representation through Euler angles has been exposed and handy equations to calculate their
speed and accelerations have been derived and verified for the current model.

The non-linear dynamics of the TM coupled with the S/C and the rotation of the telescopes has been
derived. The angular rotations and accelerations α̇ and α̈ associated with the steering mechanism of the
telescope are used, as the telescope system has not been modeled.

The noise filters associated to the thruster jitters have been preliminarily identified as white gaussian
noise associated to a thrust confidence of 1% at 3σ, resulting in thrust force noises with standard deviations
of σ = (0.0642,0.0809,0.2160) µN and thrust torque noise with standard deviations of σ = (0.3592, 0.1728,
0.1193) µNm. At a bandwidth of 20 ·10−6 ÷1 Hz, (max frequency F = 1 Hz) the ASD has the same standard
deviation of σasd =σ/

p
F =σ Hz−1/2.

Finally, the derived dynamics equations have been linearized, showing a correspondence to the ones
provided in literature for both LISA and LISA Pathfinder, thus validating in part the results.





6
ABOUT THE CONTROL SYSTEM

6.1. INTRODUCTION TO THE CONTROL SYSTEM
In the previous chapters we have derived the 19 non-linear DoF dynamics. In this chapter we overview the
general strategy to effectively control them so that the science requirements are met during the mission life-
time. To this end, a classic linear feedback control loop is introduced, whose purpose is to generate the actu-
ation efforts u(t ) given the current state x(t ) of a certain degree of freedom and its goal value r (t ).

The problem faced in the framework of this thesis is the design of the control block, identified as the
frequency dependent gain G(s) (a transfer function). The technique involved in the process must offer a
certain degree of advantages as well as being capable of meeting the tight LISA sensitivity requirements.

Dynamic inversion aided by a looping process such as H∞ has been already demonstrated to achieve
control goals on the linearized version of the LISA dynamics [22]

Quantitative Feedback Theory (QFT) offers a very promising alternative to H∞ and it is introduced here
as the design technique of choice. It was already applied to the linearized LISA Pathfinder dynamics [23].

6.2. THE LINEAR FEEDBACK CONTROL LOOP
Let us introduce some basic concepts about the control model used in this thesis. The single-input-single-
output linear feedback control loop schematics are shown in Figure 6.1: the frequency domain reference
input R(s) (s = jω [rad/s] being the complex frequency) are compared to the frequency domain state variable
X (s) and their difference is multiplied by a transfer function G to obtain the control variable U (s) [48].

G

D1(s)

P

D2(s)

R(s) U (s)

−
X (s)

Figure 6.1: A simple closed-loop control system with reference input R, commands U , state or degree of freedom X , measured state,
dynamics disturbances D1 and measurement disturbance D2. P is the physical system (plant), G is the control transfer function (gain).

P is a transfer function representing the frequency domain behavior of the dynamics such that

X (s) =U (s)P (s). (6.1)

Since the frequency domain representation of the dynamics, in many cases, is not linear, this kind of
control loop can only be applied to linearizable problems within a certain degree of accuracy.

Two sources of noise are introduced in the system: the control noise D1 and the measurement noise D2.

73
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6.3. THE SENSITIVITY FUNCTIONS
Let us recall a few definitions about the frequency domain transfer functions [48]: the product L of G and P

L(s) =G(s)P (s) (6.2)

is called open-loop transfer function, and it represents the relation between the error X (s)−R(s) and the state
variable X (s) when no noise is introduced (D1 = 0, D2 = 0).

The closed loop transfer function Tr :

Tr = X

R
= L

L+1
(6.3)

is the relation between X (s) and R(s) when no noise is introduced. The inverse of Equation (6.3) is

L = Tr

Tr −1
. (6.4)

The sensitivity functions allow to quantify the influence of the disturbances on the control loop. These are
[22]:

• Influence of control noise on output:

Sx = X

D1P
= 1

L+1
(6.5)

• Influence of control noise on dynamics:

Su = U

D1
= 1

L+1
(6.6)

• Influence of measurement noise on output:

Tx =− X

D2
= L

L+1
(6.7)

• Influence of measurement noise on dynamics:

Tu =−U P

D2
= L

L+1
(6.8)

and they are calculated by setting the reference commands to R = 0. The output X and commands U are the
errors w.r.t. their ideal values.

By setting a maximum allowable value for their magnitudes |X |max and |U |max in Equations (6.5÷6.8)
the L function needs to satisfy |T | ≤ |Tx |, |T | ≤ |Tu |, |S| ≤ |Sx |, |S| ≤ |Su | for different values of the complex
frequency s = jω to also satisfy |X | ≤ |Xmax | and |T | ≤ |Tmax |, due to their proportionality.

6.4. S AND T RELATIONS ON THE PHASE-MAGNITUDE PLOT
It is clear now that two types of transfer functions are determined: the closed loop transfer functions T of
Equations (6.3),(6.7) and (6.8) and the sensitivity functions S of Equations (6.5) and (6.6).

Inverting the relations we obtain, respectively [48],

L = T

1−T
⇐⇒ 1

L
= 1

T
−1 (6.9)

and

L = 1

S
−1. (6.10)

L, T and S are complex values. On the real-imaginary plane, a complex value C ∈ C is defined as a set of
2-dimensional Cartesian coordinates x and i y , or, typically when dealing with harmonical phasors, the po-
lar coordinates magnitude |C | and phase C . Transcribing relations (6.9) and (6.10) onto the real-imaginary
plane, Figure 6.2 is obtained. Note that the magnitude of an inverse complex value |1/C | can be written as
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Figure 6.2: Graphical relation between the complex function L = |L| L and the complex values of constant magnitude (left) T = |T | T =
L/(1+L) and (right) S = |S| S = 1/(1+L)

1/|C | as demonstrated by the following:∣∣∣∣ 1

C

∣∣∣∣= ∣∣∣∣ C∗

CC∗

∣∣∣∣= 1

CC∗
p

CC∗ = 1p
CC∗ = 1

|C | . (6.11)

The ∗ sign represents the complex conjugate operation. Remember also, that [48]

1

C
=− C . (6.12)

From Figure 6.2 the polar coordinates of the open-loop transfer function L can be derived. For the case of
Equation (6.9), let us consider a phase variable α such that

α=− T . (6.13)

The Cartesian coordinates of 1/T are calculated as

xt = 1

|T | cosα, (6.14)

yt = 1

|T | sinα; (6.15)

and the polar coordinates of L can be derived accordingly as:

|L| = 1√
(xt −1)2 + y2

t

(6.16)

and
L =−atan2

(
yt , xt −1

)
. (6.17)

The same can be done for Equation (6.10) by setting α as:

α=− S. (6.18)

Analogously to T , the Cartesian coordinates of 1/S are calculated as

xs = 1

|S| cosα (6.19)

and

ys = 1

|S| sinα (6.20)
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and, using Figure 6.2 as reference, the polar coordinates of Magnitude-phase coordinates of L are derived,
respectively, as

|L| =
√

(xs −1)2 + y2
s (6.21)

and
L = atan2

(
ys , xs −1

)
. (6.22)

One extremely important result from this derivation is the Nichols chart of Figure 6.4: it is obtained by
evaluating Equations (6.16) and (6.17) (solid line) for constant values of |T | and Equations (6.21) and (6.22)
(dashed line) for constant values of |S| using α as a parameter, for

0 ≤α< 2π

and by plotting the curves on a phase-magnitude plane ( L on the x-axis and |L| on the y-axis).
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Figure 6.3: Phase-magnitude plot of L for constant values of |T | (solid line) and |S| (dashed line). The solid lines are the contours of a
Nichols Chart.

The Nichols plot is repeated modularly every 360◦, or |L|( L) = |L|( L+2π). Note that, in this context

|C | [dB] = 20log10(|C |). (6.23)

6.5. DESIGN USING QUANTITATIVE FEEDBACK THEORY
The goal is to design G . This can be done indirectly, when P is known, by designing L. QFT is a design tech-
nique for L that exploits the Nichols plot relations (6.13-6.22) to tune the response of L at various frequency
values [48, 49].

In summary, taking into account the contours in Figure 6.4, at each frequency ωi (angular frequency in
rad/s), the complex value L( jωi ) needs to be located on the phase-magnitude plane

• Below or outside the constant-|Ti | contour (where Ti = T ( jωi ))

• Above or outside the constant-|Si | contour (where Si = S( jωi )).

where |Ti | and |Si | are the thresholds of a desired output.
The ideal open-loop function is located exactly on one of the two contours at each ω [48]. On the phase-

magnitude plane, L is a parameter curve as function of ω.
QFT is mostly suitable when the plant P is uncertain. The uncertainty extends to L, that can assume a

whole span of values within a contained area (called template) on the phase-magnitude plot. Each point on
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the area, on the other hand, must satisfy the above conditions, and that is easily resolvable by graphically
identifying the position of the confined area that lies as close as possible to the boundaries (ideally tangen-
tially) while keeping all the points outside (below or above) the respective contours [48].

QFT is too large of a topic to be summarized in just this chapter (it can take the whole size of a book to
explain in details all the characteristics and strengths). In the next chapters we are going to explore the use
of the technique for the design of the LISA DoF control gains, providing practical examples. The reader is
encouraged to get acquainted on external literature [48, 49].

6.6. STABILITY ON THE NICHOLS PLOT
The open loop transfer function (or any transfer function in general) is a ratio between binomial products:

L(s) = k
(s − z1)(s − z2)(s − z...)(s − zn)

(s −p1)(s −p2)(s −p...)(s −pm)
. (6.24)

k ∈ R, k > 0 is the gain; zi and p j , for i = 1,2, ...,n and j = 1,2, ...,m are called, respectively, zeros and
poles. They can be either complex or real, as long as for each complex zi , a complex zl 6=i , where zl = z∗

i exists
(complex conjugate).

A few stability issues ensue when defining an open-loop transfer function [48]:

• The real poles of the associated closed loop transfer function T have to be negative for the time-domain
solution of the control loop to converge.

• For the system to be proper, m ≥ n must hold, otherwise the total order of L, would be n −m > 0,
resulting in the time-domain solution to exponentially raise to infinity.

• The singularities for T are located at L = −1, or, in polar coordinates |L| = 1 = 0 dB and L = (2q +1)π,
q ∈N, therefore it is imperative that L never assumes this value at any frequency.

The first point in particular is not readily satisfiable by simply looking at the open-loop function: even if
all the zeros and poles were negative in L, the closed-loop transfer function T may still have positive poles.
The solution is provided by the shape of L on the Nichols-plot: on the phase-magnitude plot L appears as
a parametric curve of s. Depending on weather the function has 0, 1 or two poles at the origin (pi = 0), the
s = jω = 0 point is located at phase L = 0, L = −90◦ or L = −180◦. The curve then tends asymptotically to
the l ·90◦ vertical line, between each pole and zero, where l is the local order of L.

Stability is obtained, for an all negative poles and zeros function, when the vertical line at L = −180◦,
above |L| = 0 dB is crossed by L an even number of times [50].

The second point simply requires L to tend to |L|→ r , where r ∈R for ω→∞. And for the third point, it is
simply sufficient to keep the L function away from the (−180◦,0 dB) point, by, e.g. adding a stability margin
(generally |T | = 3 dB) that L must never cross.

Figure 6.4 shows three examples of stable L functions with all negative zeros and poles, respectively, L1,
L2 and L3, where

L1 = 58
s +1.65

s2(s +9.7)
; L2 = 22

(s +0.51)2

s2(s +0.05)(s +5.9)
; L3 = 20

(s +0.54)2

(s +0.05)3(s +5.6)
. (6.25)

A stability margin of |T | = 3 dB is added as an example. L1 and L2 start at a phase of L = −180◦ (for
|L| →∞), meaning that they have two poles at the origin. L3 starts at L = 0◦, meaning that is has no poles at
the origin. All the functions have an order of -2, as suggested by the asymptotical behavior at ω→∞ with the
phase reaching −180◦.

L1 has only got a stability pole at 1.65 rad/s and a stability zero at 9.7 rad/s to sway away from the |T | = 3
dB margin. Atω→ 0 the function is already on the right of the (-180◦) line (dotted red line), therefore it crosses
it 0 times, which is an even number.

L2 has a pole added at 0.05 rad/s, which at ω→ 0 translates to a crossing. A double zero at 0.51 rad/s
ensures both a second crossing of the red dotted line and the comply to the stability margin. A pole at 5.9
rad/s returns the function to a -2 order.

L3 has a triple pole at 0.05 rad/s, therefore a double zero at 0.54 rad/s must be added to meet the stability
boundary requirement and to obtain 2 crosses of the red dotted line. A final pole a 5.6 rad/s confers an order
-2.

Another thing to keep in mind is that the magnitude |L| increases or decreases with a trend of 20l /log10(ω)
dB/decade (power of ten) where l is the local order of L [48].
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Figure 6.4: Example of the three stable open-loop transfer functions from Equation (6.25) on the Nichols chart.

6.7. LIMITATIONS OF DESIGN
You can notice that, in their general form, the closed loop functions T and the sensitivity functions S are not
independent of each other [48]:

T +S = L

1+L
+ 1

1+L
= 1. (6.26)

When defining the boundaries |T | ≤ |Tx |, |Tu | and |S| ≤ |Sx |, |Su | one must, therefore, be careful to design
them so that they always allow a solution for L: on the phase-magnitude plot this means that for a certain
frequency, the boundaries must allow a point to be outside and below the |T | bound and outside and above
the |S| bound. If the two areas do not overlap anywhere, only one of the two boundaries can be satisfied at
once.

Apart from the closed-loop transfer function Tr (Equation (6.3)) the T functions are dependent on the
readout noise D2 and the S functions are dependent on the dynamics noise D1. Following from the above
reasoning, for a certain value of D1, there is a maximum value of D2 allowable and vice-versa.

Philosophically speaking, one can assert that a control system can only be as good as the measurements, or
that the precision of the actuations is very much related to the precision of the observations.

6.8. CONTROL OF THE LISA SYSTEM
The LISA system is comprised of 19 DoF [22]:

• Three DoF ~R = (X ,Y , Z ) of the S/C displacement in the inertial reference frame;

• Six DoF ~r1 = (x1, y1, z1)τ and ~r2 = (x2, y2, z2)τ of the respective TM displacements within their assem-
blies;

• Three DoF θ = (θ1,θ2,θ3)τ of the S/C attitude (Euler angles);

• Six DoF,ϕ1 ∈R3×1 andϕ2 ∈R3×1 for the TM orientations;

• The angle between the telescopes α also referred to as breath angle.

In the dynamics equations of Chapter 5 we have defined the actuation variables used to control the DoF:

• The thruster force ~ft acts on ~R,~r1 and~r2 and its purpose is to compensate the non gravitational distur-
bances and keep the S/C in drag-free;
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• The thruster torque~lt acts on θ and as a disturbance on~r1, ~r2, ϕ1 and ϕ2, and its purpose is to steer
the S/C and keep its nominal orientation w.r.t. the formation.

• The electrostatic suspension forces ~f1 and ~f2 acting, respectively and separately, on~r1 and~r2, needed
to keep the TM from touching the walls of the GRS and to compensate for internal disturbances, such
as the S/C self-gravity.

• The electrostatic suspension torques~l1 and~l2, acting, respectively and separately, onϕ1 andϕ2, whose
purpose is to keep the faces of the TMs aligned to the GRS reference frame.

• Some sort of torque (ignored in this thesis) to steer the telescopes and maintain the breath angle α
according to the formation geometry and acting as a disturbance on~r1,~r2,ϕ1 andϕ2.

The evolution of the Euler angles θ provides information about the disturbance acting on the S/C rota-
tional dynamics, by measuring the difference between the nominal Euler angles θc (c is for command) and
the current θ.

The deviation from drag-free behavior of the S/C is provided by the displacement of the TM along the
lines-of-sight, i.e., the value of x1 and x2 w.r.t. their rest position, and z1 for the vertical axis [22].

Internal measurements of y1, y2, z2 and the TM orientations ϕ1 and ϕ2 drive the actuation of the GRS
electrostatic suspension (~f1, ~f2,~l1 and~l2).

The breath angle α drives the actuation of the telescope steering mechanism.
We are not discussing the complex mechanics involved in the observation of the variables and their trans-

lation into DoF measurements, which generally involve a combination of precise interferometry, electrostatic
force sensors and classical accelerometers [14, 17, 37]. We assume, on the other hand, that the technology is
fully developed to allow the precision associated to the science requirements.

According to the above mentioned sets of variables, four subsystems can be defined:

• The S/C attitude control system, whose state variables (X ) are the Euler angles θ and the control vari-
ables (U ) are the thruster torque~lt ;

• The drag-free control system, whose state variables are xd f = (x1, x2, z1)τ and whose control variable is

the thruster force ~ft ;

• The GRS electrostatic suspension system, whose state variables are all the other TM related DoF and
the control variables are the electrostatic suspension forces and torques;

• The telescope steering mechanism that control α.

Apart from the telescope steering mechanism, that is only peculiar of LISA, the whole of the other three
system comprise what is generally referred to as DFACS.

Recalling Equations (5.52), (5.53) and (5.54), due to the torque~lt appearing both as control variable and
disturbance, and the electrostatic suspension force ~fi , i = 1,2, acting on the drag-free DoF as well, we must
face the fact that these three systems cannot be separated from each other [23]. We can, on the other hand,
study these systems separately by applying a separation of dynamics [22]. This method assumes that all the
systems that are not the one being studied, act nominally.

6.9. ABOUT THE DESIGN AND SIMULATION
Due to time constraints we are only able to study the attitude control and the drag-free control. The design
process is described in the next chapters. The study is specifically targeted at S/C1 (but it can be extended to
the other two S/C due to their similarities).

The system is simulated in Simulinkr [24]. In order to obtain the most from the software while minimiz-
ing the computation time, the simulation is run in rapid accelerator mode [51]. The ability of Simulink to solve
recursive algebraic loops [46] is not available in this mode. Separation of the dynamics solves the problems
relative to recursion. Specifically, the thruster noise δ~ft and δ~lt defined in Section 5.12 cannot be calculated
on the spot from the thrust itself: this would generate a loop in which the value of the actuation variable (~lt ,
~ft ) is used to calculate the disturbance, which is then fed into the control loop to calculate the value of the
actuation variable. As a solution, the thruster noise is introduced as a white noise with the mean standard
deviation estimated in Table 5.2.
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Since the on-board computer works at 10 Hz [14], the simulation is performed with a time-step of 0.1 s.
The data is retrieved every 0.5 s to downsize the output variable while still being able to analyze the frequency
domain response with a maximum bandwidth of F = 1 Hz.

6.10. CONCLUSIONS ON THE CONTROL SYSTEM
In this Chapter we introduced the basic concepts for the design of a linear control system.

In particular we showed how to calculate the sensitivity functions in frequency domain based on the
requirements and the disturbance levels and how to generate boundaries on the Phase-Magnitude plane of
the open-loop transfer function in which the sensitivity functions are satisfied.

We then showed how to ensure stability of the system by simply looking at the shape of the open-loop
transfer function on the Phase-Magnitude plane.

The control on LISA S/C was explained. The system can be divided into four subsystems: the attitude
control, using the thrust torque to control the Euler angles, the drag-free control, using the thrust force to
control the displacements of the TM about x1, x2, and z1, the GRS, using the electrostatic suspension sys-
tem to control displacement along the remaining DoF and orientation of the TM and the telescope steering
mechanism, controlling the breath angle.

The simulation of the control is planned only on S/C1. Limitations of the simulation process have been
exposed, particularly the necessity to separate the dynamics and avoid algebraic loops in Simulink.
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ATTITUDE CONTROL SYSTEM

7.1. INTRODUCTION TO THE ATTITUDE CONTROL SYSTEM
The S/C attitude, measured with the Euler angles, as reported in Section 5.7, is controlled by the on-board
thrusters against the SRP torque (Section 5.5) and the thruster induced torque jitter (Section 5.12). The re-
quirements are specified as [14]:

• Direct Component (DC) error:
δθi ≤ 10−8rad (7.1)

for i = 1,2,3;

• Bandwidth noise spectrum on all the Euler angles:

ASDθ ≤ 10−8 radp
Hz

√
1+

(
3 mHz

f

)4

. (7.2)

In this chapter we are going to design and test the control loop for the attitude θ of S/C1. The sensitivity
functions need to be derived and the open-loop transfer functions are to be determined through the QFT
design technique.

We consider DC the disturbance acting outside the measurement band with period T > 10 hours (the
measurement time span specified in Section 5.12). This is the SRP torque for the attitude. The noise acting in
the bandwidth 20 µHz< f < 1 Hz, is the torque due to thrust jitter. Separation of the dynamics is performed.

7.2. LINEARIZED DYNAMICS INVERSION
Let us recall, from Sections 5.3 and 5.8, Euler’s equation for the S/C rotational dynamics and the dynamics of
the Euler angles, respectively given by Equations (5.2)

~̇ω= I−1
sc

(
~lt +~ld0 −~ω× Isc~ω

)
(5.2)

where Isc is the inertia matrix,~lt is the thruster torque,~ld0 is the disturbance, and Equation (5.30)

θ̈ = Ṅ (θ)~ω+N (θ)~̇ω (5.30)

where N (θ) is provided in Equation (5.28) and Ṅ (θ) is expanded in Equation (5.31). Combining Equations
(5.2) and (5.30) the following relation is obtained:

θ̈ = Ṅ (θ)~ω+N (θ)I−1
sc

(
~lt +~ld0 −~ω× Isc~ω

)
. (7.3)

The analytical solutions from Sections 4.4 and 5.8 show that |ω|, |θ̇| ¿ 1, which, according to Equation
(5.31), translate to Ṅ (θ) ∝ θ̇1, θ̇2, θ̇3 ¿ 1. Hence Equation (7.3) can be linearized by eliminating the second
order terms, obtaining the simplified form,

81
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θ̈ ' N (θ)I−1
sc

(
~lt +~ld0

)
. (7.4)

Notice that Equation (7.4) contains a linearizing matrix,

Hθ = N (θ)I−1
sc , (7.5)

a control term
uθ =~lt (7.6)

and a disturbance term
dθ = Hθ

~ld0. (7.7)

By means of Non-linear Dynamics Inversion (NDI), we can treat the term

vθ = Hθuθ (7.8)

as a virtual command, thus releasing the linearized system from uncertainties[48]:

θ̈ = vθ+dθ . (7.9)

Let us now perform the Laplace transform of Equation (7.9), obtaining (for θ̇(t = 0) = 0):

s2Θ=V θ+Dθ ⇐⇒Θ= 1

s2 (V θ+Dθ) . (7.10)

Here Θ, V θ and Dθ are the frequency domain Laplace transforms of, respectively θ, vθ and dθ . s is the
imaginary frequency variable, defined as

s = jω (7.11)

where ω is the angular frequency in [ω] = rad/s.
Recalling the linear feedback control loop of section 6.2, it becomes clear, after determining that Θ is the

state variable of the attitude in frequency domain, that V θ is the control variable U (s), Dθ is the dynamics
disturbance D1 and, therefore, the linearized plant is

P = 1

s2 . (7.12)

Moreover, the system can be treated and a Single-Input-Single-Output (SISO) control problem, since the
plant is a scalar.

7.3. LOW FREQUENCY DISTURBANCE

In Section 5.5 we have calculated the SRP induced torque~lsr p on the three S/C with Equation (5.10). This
torque acts on the attitude dynamics as a disturbance at low frequency. Using Equation (7.7) and setting
~lsr p =~ld0, i.e. assuming that the only disturbance is the SRP induced torque on the ideally oriented S/C, we
obtain the induced acceleration on the Euler angles due to the SRP torque:

dθ = Hθ
~lsr p = N (θ)I−1

sc
~lsr p . (7.13)

The values of dθ for the 4 year period are shown in Figure 7.1.
By analyzing the 4 years sample for S/C1, we find that the fundamental harmonic has frequency

ωo = 1.992384991 ·10−7 rad/s

(subscript o is for orbit) which is just slightly different from the nominal sidereal motion of [25]

ωe = 1.990983675 ·10−7 rad/s

due to the second order orbital behavior of the formation.
We can analyze the sinusoidal components by performing a discrete Fourier analysis. See Appendix D for

more information. The discrete Fourier series of dθ (SRP disturbance on θ̈) is shown in Figure 7.2. This is the
magnitude of the dynamics disturbance (called D1 in chapter 6) in low frequency ( f < 20 µHz).
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Figure 7.1: SRP induced accelerations on the Euler angles dθ on S/C1 for the 4 years period, calculated by means of Equation (7.13) and
the values for~lsr p calculated in Section 5.5.
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Figure 7.2: Fourier series of dθ for fundamental frequencyωo ' 1.9924·10−7. Calculated numerically through the Matlab fft() function
[52] (See Appendix D). The magnitude of the harmonic components is shown here.

For our SISO problem we have that Θi , i = 1,2,3 is the state variable in frequency domain (called X in
Chapter 6). Let us call the sensitivity function of Equation (6.5) Sθl f

in low frequency and notice that the
linearized plant of Equation (7.12) holds a magnitude of

|P | = 1

ω2 . (7.14)

The low-frequency, in this thesis, represents the concept of DC w.r.t. the bandwidth. Therefore, in low
frequency, we would like to keep the error below 10−8 rad as specified by Equation (7.1). Since, as shown in
Figure 7.2, more than one component is important to the disturbance, we tentatively impose a margin factor
of 4 and combine Equations (6.5), (7.1) and (7.14) to obtain the requirement on the sensitivity function S in
low-bandwidth:

|Θi | ≤ δθi

4
⇐⇒|S| =

∣∣∣∣ 1

1+L

∣∣∣∣≤ |Sθl f
| = δθi ·ω2

4|D1|(ω)
= 10−8 rad ·ω2

4|D1|(ω)
. (7.15)

The values of |Sθl f
| are used later to calculate the boundaries on phase-magnitude plot for various values

of ω< 2π ·20 ·10−6 rad/s (because f = 20 µHz is the minimum goal frequency).
The |D1| component at each frequency is chosen as the maximum among the three θ̈i , i = 1,2,3 at each

evaluated frequency. As shown in Figure 7.2, θ̈2 is chosen atωo and θ̈3 is chosen at all the other 2kωo frequen-
cies, k = 1,2,3, ... (every octave).

7.4. MEASUREMENT BANDWIDTH REQUIREMENTS

In Section 5.12 a noise model for the torque δ~lt was tentatively identified, with the values of the standard
deviation reported in table 5.2.
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In order to add a margin to the design, we consider the disturbance on the torque at 3 standard deviations
(3σ) of the ASD of δ~lt . The dynamics disturbance on the Euler angles Dθ is calculated by picking the largest
value obtained by means of dynamics inversion. In order to save time we want to design a SISO control loop
that is suitable for the three Euler angles, therefore, a single value D1 will serve as the design limit of each
component of Dθ:

|D1| = max |3Hθσ[δ~lt ]| (7.16)

where Hθ is the linearizing dynamic inversion matrix calculated from Equation (7.5). The maximum is chosen
among the three components and the time-series due to the time dependence of Hθ shown in Figure 7.3. D1
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Figure 7.3: The temporal variability of 3Hθσ[δ~lt ] for a 4 years period. The red dot represents the value chosen for |D1| which is the
maximum value for the θ1 noise in bandwidth.

is evaluated at:

|D1| = 8.649762966 ·10−10 rad s−2/
p

Hz at all frequencies.

Let us recall the limit imposed on the attitude jitter ASDθ :

ASDθ = 10−8 radp
Hz

√
1+

(
3 mHz

f

)4

. (7.2)

Again, Θi , i = 1,2,3 is the state variable in frequency domain (called X in Chapter 6). Let us call the
sensitivity function of Equation (6.5) as Sθ. Equations (6.5), (7.2) and (7.14) can then be combined to obtain
the requirement limit on sensitivity function Sx :

|Θi | ≤ ASDθ ⇐⇒|S| =
∣∣∣∣ 1

1+L

∣∣∣∣≤ |Sθ| =
ASDθ ·ω2

|D1|
. (7.17)

The readout noise D2 determines the requirements on the closed loop function for Tx , once again, sub-
stituting |Θi | = ASDθ = |X | in Equation (6.7) as:

|T | =
∣∣∣∣ L

L+1

∣∣∣∣≤ |Tθ| =
ASDθ

|D2|
. (7.18)

We have not defined D2, yet, but, since S and T are related by Equation (6.26) the relation

Sθ+Tθ = 1 (7.19)

must hold true. Using the variable Θi in lieu of X in Equations (6.5) and (6.7), and substituting Tx and Sx in
Equation (7.19) we obtain the relation

Θi

D2
= Θi s2 −D1

D1
⇐⇒ D2 = Θi D1

Θi s2 −D1
(7.20)

which, in a bandwidth that reaches F = 1 Hz, hence
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smax = 2π j rad/s

and a goal to keep the disturbances at bay, i.e. making sure that

|Θi s2|¿ |D1| (7.21)

results in a cap for the readout noise of

|D2|max ' |Θi | ≤ ASDθ. (7.22)

This requirement for the read-out noise is applied so that the inequalities |T | < |Tθ| and |S| < |Sθ| can be both
satisfied. On the Nichols chart this means that we can always find a point in the phase-magnitude plane that
lies outside and above |Tθ| and outside and below |Sθ| (Section 6.7).

For convenience we simulate a white noise, i.e. with a constant amplitude at each frequency with a value
of:

|D2| = ASDθ( f = 1 Hz) = 10−8 rad/
p

Hz at 3σ

which is simulated, accordingly to a maximum frequency bandwidth of F = 1 Hz, as a zero-mean random
Gaussian variable with standard deviation

σd2θ =
10−8 rad/

p
Hz

3

p
F = 10−8

3
rad. (7.23)

Figure 7.4 depicts the noise and sensitivity function magnitudes used in the context of this analysis.
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Figure 7.4: left: the ASDs of the dynamics and readout noise, respectively D1 and D2 and the limit ASDθ on the output. |D1| is divided
by the squared angular frequency ω2 to match the dimension. right: the maximum magnitudes of sensitivity function Sθ and closed
loop function Tθ associated with the noise levels.

From Figure 7.4, we see that |Sθ| ' −47.72804 dB at f → 0 Hz, and it raises by 40 dB/decade from f = 3
mHz on. |Tθ|, on the other hand, lowers by -40 dB/decade until f = 3 mHz, and it settles to |Tθ| ' 0 dB.

7.5. SHAPING THE OPEN-LOOP FUNCTION
With the limit on |S| and |T | defined we can now use QFT to generate an optimal open-loop function.

For the SRP control, Equation (7.15) is used to calculate the values for |Sθl f
| for a few values of ω, starting

from ω=ωo and then at each octave. The values for the first few frequencies are reported in Table 7.1.
Using Equations (6.21) and (6.22), the boundaries on the phase-magnitude plot of the open-loop function

are calculated (Figure 7.5). For |S|À 1, the value of the magnitude of Equation (6.10) can be approximated to
|L| ' 1/|S|, therefore the boundaries appear as almost constant horizontal lines on the Nichols plot.

For the boundaries in the measurement bandwidth we start at f = 1 µHz and sample |Sθ| and |Tθ| at each
octave. Figure 7.6 shows the calculated levels. The 3 mHz double-zero on the Sθ function (and double-pole
on the Tθ|) happens between the 211 and 212 µHz bounds. On the left graph L is therefore almost constant
until 211 µHz, where it has a magnitude of |L| = 46.913739 dB at -180◦, and from 212 µHz on it starts to lower by
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Table 7.1: Values of |Sθl f
| for different octaves of ωo ' 1.9924 ·10−7 rad/s (fundamental frequency of LISA orbital motion)

ω |Sθl f
| [dB]

ωo -279.00895428
2ωo -266.50714653

22ωo -249.66762597
23ωo -228.12371726
24ωo -197.54088397
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Figure 7.5: The low-frequency S-boundaries on the phase-magnitude plane of L, calculated through Equations (6.21) and (6.22) for |Sθl f
|

of Table 7.1. The plot is symmetrical w.r.t. the -180◦ vertical line.

about 40 dB/decade until the boundaries wind at f = 0.05036 Hz or between 215 µHz and from 216 µHz. On
the right graph L is contained within the |T | = 0 dB curve (see Figure 6.3 for reference). A |T | = 3 dB boundary
is also added for stability (thick dotted curve).

The open-loop function L needs to satisfy these boundaries on the phase-magnitude plot. Let us recall
that the approximative plant P = 1/s2 as derived in Section 7.2, therefore,

L = 1

s2 G (7.24)

where G is the control transfer function. Since G must have a total order of 0 or lower, in order to start L(0)
at L = 0, we would need to add a second-order zero at the origin and an additional two poles at other fre-
quencies, risking to increase the complexity of the function. Moreover, according to Table 7.1, the optimal
|L| magnitude needs to fall by >60 dB/decade up to 8ωo and then >100 dB/decade at 16ωo . At 211 µHz, then,
it should fall by only 40 dB/decade needing 2 additional zeros to raise the order before then. Since, by this
point, it should not cross the −180◦ phase (for all negative poles and zeros and keep away from the |T | = 3
dB boundary, another zero and another pole must be added. At f →∞ it should at least have an order of -2.
Keeping in mind these considerations and the actual boundaries, G is designed, with the resulting L shown
in Figure 7.7.

The control transfer function has been evaluated as:

G = k
(s − z1)2(s − z2)(s − z3)(s − z4)

(s −p1)2(s −p2)(s −p3)(s −p4)
(7.25)

with
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Figure 7.6: left: the Sθ boundaries calculated from the values of |Sθ | from Equation (7.17) and Equations (6.21) and (6.22) for each octave

f = 2k µHz. The boundaries between 20 µHz < f < 211 µHz are not shown because |Sθ | is almost constant in the interval. right: the
Tθ boundaries calculated from the values of |Tθ | from Equation (7.18) and Equations (6.16) and (6.17) until f = 221 µHz (>1 Hz). The
boundaries approach closer and closer the |T | = 0 dB curve. For both, the stability boundary |T | = 3 dB is shown as a thick dotted line.
The plots are symmetric w.r.t. the −180◦ vertical line.
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Figure 7.7: The graphically evaluated L function (solid black line) of Equations (7.24) and (7.25). The bubbles ◦ represent the evaluated
low-frequency harmonics and the bullets • represent the bandwidth frequencies starting at 211 µHz. The markers need to stay close to
the respective boundaries, above and outside the |S| boundaries and below and outside the |T | boundaries. The latter intentionally not
satisfied, because the looping is inside the blue U curve (|T | = 0 dB).

k = 0.5745913347

and the values of the zeros and poles shown in Table 7.2.
In the Figure 7.7, the bubbles (◦) show the L function coordinates at the relative evaluation frequencies of

|Sθl f
|, and the bullets (•) show the coordinates starting at 211 µHz in order to visualize their position w.r.t. the
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Table 7.2: Zeros and poles of the G function of Equation (7.25).

Zeros [rad/s] Poles [rad/s]

z1= -7.969539963·10−6 (2nd order)
z2= -1.255891789·10−4

z3= -1.657159151·10−4

z4= -0.2206646689

p1= -8.766493960·10−7 (2nd order)
p2= -1.653679542·10−6

p3= -0.02758308361
p4= -1.125001995

|Sθ| bounds.
One can notice that the L function is forced close to the |Sθ| boundaries without satisfying the |Tθ| bound-

ary of 0 dB. The reason is that we prefer to keep the gain k low, as it affects the time-step required to run the
simulation. The obtained value is low enough to satisfy the minimum 0.1 s required by the on-board com-
puter without lowering it any further (k = 0.5745913347 is much less than actually needed). On the other
hand, the overshoot is theoretically ≤ 3 dB (actually |T |max ' 2.961175 dB at f ' 0.06025596 Hz). We have
also decided to simulate the read-out noise with a 3σ margin, therefore the final evaluation is left to the nu-
merical simulation.

Figure 7.8 shows the expected behavior of the error output in bandwidth frequency, with the reaction
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Figure 7.8: Theoretical limit behavior of linear feedback control output |Θ| (for reference value set to R = 0) in bandwidth due to the
influence of |D1| (green dash-dot line) and |D2| (blue solid line), calculated, respectively, through the inverse of Equations (6.5) and
(6.7). The red-dashed line represents the design upper limit ASDθ .

to measurement noise overshooting the noise limit ASDθ at f ' 0.06025596 Hz by 0.4062377 ·10−8 rad/
p

Hz.
The combined jitter and read-out noise should result in an error following the higher curve at each frequency.

For verification, a preliminary simulation is performed using an actual linear plant P = 1/s2, introducing
zero-mean random Gaussian disturbances d1 and d2 and keeping the reference commands r (t ) = 0. d1 is the
dynamics noise, with a standard deviation of

σd1 = 2.883254322 ·10−10 rad/s2

as by design. d2 is the readout noise, with a standard deviation of

σd2 = 10−8

3 rad.

The simulation is run in Simulink, with a 0.1 s time-step, Runge-Kutta 4th order integrator for 100 intervals
of T = 10 hours, and evaluated with a sampling frequency of fsamp = 2 Hz, obtaining a maximum spectrum
frequency of F = 1 Hz, as assumed in the control design process. Figure 7.9 shows a sample and the average
over the 100 intervals of the ASD, calculated with the periodogram() function (see Appendix F). The theo-
retical 3σ level is determined by the 3µ (3 times the average ASD of the error) plot. The simulation shows that
the design of G is slightly overcompensated, but, overall, it fits the shape of the expected behavior.
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Figure 7.9: Results for G in bandwidth with a linear feedback control system (P = 1/s2) and design random noises at 3σ levels (Gaussian).
left: ASD of a 10 h sample with maximum frequency F = 1 Hz. right: averageµover 100 samples and 3µ level (representing approximately
a zero-mean 3σ of ASD). The theoretical shape of Figure 7.8 is retained, with an unexpected scaling factor for a better result.

7.6. SIMULATION OF THE ATTITUDE CONTROL
The simulation is carried out in Simulink according to the scheme proposed in Figure 7.10. The attitude
dynamics are isolated, and the reference commands θc are calculated using Equations (4.8) and (5.23) in the
block labeled Orbit-Attitude dependency. ~R1, ~R2 and ~R3 are the instantaneous positions of the respective three
S/C, simulated based on the model of Chapter 2. Since we are only commanding S/C1, the other two S/C are
propagated just as point-masses.

Figure 7.10: Schema of the Simulink simulation and control of the Euler angles: the block Orbit-attitude dependency uses Equations (4.8)
and (5.23) to calculate the reference θc commands for the Euler angles, based on the three propagated S/C positions ~Ri . The block P
propagates the dynamics of the attitude of S/C1, where Euler dynamics and Euler kinematics refer, respectively, to Equations (5.2) and
(5.29). The control subsystem block simulate the control transfer function G and the non-linear dynamics inversion.

In the Control subsystem block, the control transfer function G and the linear dynamics inversion Hθ,
calculated by Equation (7.5) provide the command torque~lt . The inertia Isc is calculated based on the pro-
pellant mass left due to thrust consumption. The Euler angles used in the dynamics inversion, θm , are the
measured one, i.e. θ+dθ2, where dθ2 are the measurement errors. The torque noise~ld0 is calculated as

~ld0 =~lsr p +δ~lt (7.26)

where~lsr p is the SRP induced torque, calculated by Equation (5.10) and based on the SRP model of Section

5.4, and δ~lt is the thruster torque noise, defined in Section 5.12.
The non-linear plant P is the combination of Euler dynamics of Equation (5.2) and Euler kinematics of

Equation (5.29). The real θ are used for the evaluation of N (θ) in this case. dθ2 is a Gaussian random variable
with standard deviation σd2θ as in Equation (7.23).
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For what concerns the initial conditions, in order to keep the transient to a minimum we start right-on
with the ideal attitude value,

θ(t = 0) = θc (t = 0) (7.27)

and the ideal initial spin, i.e. ~ω(t = 0) calculated from Equation (4.45). Only the initial torque is left as an
unknown, starting with

~lt (t = 0) =~0.

The transient will be determined, therefore, only by the response to the disturbances.
The validation of the Simulink model is performed by eliminating all the random variables, i.e. by setting

d 2θ = 0 and~ld0 =~lsr p . Reference ~ω′ and ~̇ω′ are calculated through, respectively, Equations (4.45) and (4.59),

and fed into Equation (5.13) to obtain the ideal value of~lt . A step-size of 1000 s is used. The propagated θ and
the analytically determined, orbit-dependent θc are then confronted, with their difference for 4 years shown
in Figure 7.11. The difference between the two processes to calculate the current θ (analytical vs propagated)
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Figure 7.11: Validation. Difference between the analytically determined θc and θ, propagated through the plant block P dynamics, based
on ideal values of~lt , for 4 years and with step size 1000 s.

bears a maximum of 8.489431380 ·10−12 rad for θ3 over the 4 years period.

7.7. ATTITUDE CONTROL RESULTS IN LOW FREQUENCY
Until now we had no means to verify the validity of the low-frequency boundaries |Sθl f

| of Table 7.1. Let us

recall that we need the errors due to SRP torque to lie below |δθi | < 10−8 rad (10 nrad). The strategy required
to limit the components cn of the Fourier series, whose fundamental harmonic is ωo , to:

cn < 10−8

4
rad = 2.5 nrad.

as specified in Equation (7.15).
The pay-off is visible when we simulate the system without thruster torque jitter δ~lt =~0. Since we are not

interested in the bandwidth results and taking advantage of the low gain k, we simulate the control system
with a step size of 1 s for 2 years, obtaining the error δθ = θc −θ shown in Figure 7.12.

θ2 overshoots, initially, by δθ2 '−6.440873 µrad after ∼ 1 h 45 min of operation and it is also the last DoF
to reach the goal of δθ2 = 10 nrad after about t ' 7 days 21 h 56 min 40 s, defined as our settling time.

After that, the three quantities keep below

|δθ1| ≤ 4.569352896 nrad,
|δθ2| ≤ 3.159098649 nrad,
|δθ3| ≤ 4.660129393 nrad.

with an annual trend for θ1 and θ2 and a six month period for θ3.
The 2 years data availability allows to analyze the entire period using the discrete Fourier series (See Ap-

pendix D). Figure 7.13 shows the components. It is evident that, by design, these are kept below the cn < 2.5
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Figure 7.12: Low frequency attitude control loop response δθ = θc −θ. top: Transient response for 5 days. bottom: 2 years response at
nrad level. The requirements are δθi < 10 nrad (i = 1,2,3).

nrad level at all frequencies, with the best L function fit at 2ωo , for θ3 (δθ3(2ωo) ' 2.4449937 nrad). For θ2

and θ3 the L function does not fit optimally the Sθl f
bounds at all the other frequencies but the limit is still

satisfied.
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Figure 7.13: Fourier series of Figure 7.12 showing the harmonic components forced below 2.5 nrad at multiples of the fundamental
frequency ωo ' 1.9924 ·10−7 rad/s.

In general it is difficult to achieve perfect control at all the frequencies. Knowing this we opted for the
factor 4 margin (in fact, this factor would be much larger if all the frequencies between ωo and 210ωo were to
be perfectly controlled).
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The most important result, of course, is the time-domain series: it shows that DC control is achieved as
specified by the constraints using the same controller for all the Euler angles.

7.8. ATTITUDE CONTROL RESULTS IN BANDWIDTH
The full simulation is performed with a time-step of 0.1 s for 35 days. Leaving the settling period of 7 days 21
h 56 min 40 s, we can analyze up to 65 periods of 10 h each. The results are shown in Figures 7.14 and 7.15.
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Figure 7.14: ASD of the error δθ = θc −θ calculated with periodogram() on a random 10 h sample (maximum frequency F = 1 Hz) after
the settling time. top-left: θ1, top-right: θ2, bottom: θ3.

The Figures show, respectively, a sample ASD of the error δθ and the average for 98 periods. The results are a
close match to the ones obtained in Section 7.5 (Figure 7.9), and all the DoF have almost the same behavior.

According to Figure 7.3 one would expect θ1 to be the most affected by the torque, but the evaluation
might not be completely representative of the action of the torque on the DoF, since it does not take into
consideration negative components.
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Figure 7.15: Average ASD between 65 consecutive samples of 10 h periods of the error δθ = θc −θ calculated with periodogram()
(maximum frequency F = 1 Hz) after the settling time. top-left: θ1, top-right: θ2, bottom: θ3.

7.9. RECOMMENDATIONS ON THE CONTROL SYSTEM
Overall the system performs as desired. The main issue is, of course, the slow settling time t > 7 days even
when the initial error is set to 0 and the initial S/C angular velocity ~ω is set to match the nominal one. The
solution to this inconvenience is to use intermediary controllers with faster roll-offs and coarser precision
during what is referred to as an acquisition phase [21], and then switch to the slower science mode controller
keeping the initial value of~lt .

We must make a point about the sensitivity of the measurement device: the precision of < 10−8 rad as-
sumed here is nothing achievable by the classic star trackers. Instead, it is assumed that the attitude is mea-
sured by means of laser interferometry by an instrument called point ahead mechanism [17, 37]. At the time
of writing this thesis, the point ahead mechanism has not yet been fully developed.

7.10. CONCLUSIONS ON THE ATTITUDE CONTROL SYSTEM
In this chapter we designed a control system for the attitude control both in low-frequency (compensation of
SRP torque) and in bandwidth, based on the linearized dynamics of the Euler angles. Dynamic inversion was
used to eliminate plant uncertainties. A single controller is used for the three Euler angles.

The DC margin of 10 nrad was used as a drive requirement for the low frequency control, based on the
influence of the SRP torque on the Euler angle dynamics, whose fundamental harmonic is estimated at ωo

(average sidereal motion of the formation for the first 4 years). The boundaries on the S function are calcu-
lated by allowing a maximum error of 2.5 nrad at each harmonic.

The ASD of the dynamics noise in bandwidth was estimated from the torque noise of Section 5.12 at 3σ
for the worst value over the studied 4 year period and assuming a white noise. The readout noise is estimated
as the maximum allowable noise ASDθ at 1 Hz. The boundaries for S and T on the phase-magnitude plane
are calculated at every octave from 1 µHz. A stability margin of |T | = 3 dB is added.

A control transfer function with 5 zeros and 5 poles has been shaped ignoring the T boundaries due to the
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readout noise. The readout noise is simulated as a random variable with standard deviation 3 times smaller
than the design noise.

The expected behavior of the system in bandwidth has been verified with dummy linear dynamics. The
system seems to perform better than the design.

A simulation using only SRP torque as noise reveals that the design level was correctly estimated, and the
low frequency error stays below the 10 nrad requirement. The attitude control system with real dynamics
behave as in the verification step, achieving control under the sensitivity curve.

The only drawback of this system is the very slow settling time of >7 days, meaning that this controller
cannot be used for the initial acquisition of the attitude.



8
DRAG-FREE CONTROL SYSTEM

8.1. INTRODUCTION TO THE DRAG-FREE CONTROL SYSTEM
The displacement of the TM along the interferometric paths x1 and x2 and the z-direction of TM1 displace-
ment z1 drive the drag-free control, actuated by the on-board thrust ~ft against the SRP force ~fsr p modeled in

Section 5.4, and the thruster jitter δ~ft , modeled in Section 5.12.
The maximum DC displacement for all the DoF is [14]:

δx,δz ≤ 5 ·10−9 m (8.1)

In bandwidth, the displacement noise for the x-axes must keep an ASD below

ASDx ( f ) ≤ 10 ·10−12 mp
Hz

·
√

1+
(

2 mHz

f

)4

(8.2)

and the accelerations are to be kept under

ASDacc ( f ) ≤ 3 ·10−15 m s−2

p
Hz

·
√

1+
(

0.4 mHz

f

)2

·
√

1+
(

f

8 mHz

)4

. (8.3)

Moreover, the displacements on both the x-axes and z1 need to stay below

ASDr ( f ) ≤ 5 ·10−9 mp
Hz

(8.4)

at every frequency.
In this chapter, the drag-free control transfer function is designed with QFT. As for the attitude, we con-

sider DC all the disturbances with period T > 10 h and separation of the dynamics is performed.

8.2. DRAG-FREE DYNAMIC INVERSION
Let us define the array of drag-free controlled DoF xd f as [22]

xd f =
x1

x2

z1

 (8.5)

where x1 and x2 are the displacements of the TM from their rest positions along the lines-of-sight of the
telescopes, while z1, is the vertical displacement of TM1. Selection of the three acceleration components is
performed through a set of selection matrices:

ẍd f = H1d f ~̈r1 +H2d f ~̈r2 (8.6)

where one can derive H1d f and H2d f from Equation (8.5) respectively as

95
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H1d f =
1 0 0

0 0 0
0 0 1

 and H2d f =
0 0 0

1 0 0
0 0 0


Let us recall the dynamics Equation (5.43) for ~̈ri , i = 1,2, derived in Section 5.9. The system is dependent

on a large number of variables:

• the thrust and external disturbances ~ft /msc and ~fd0/msc = ~d0 acting on the S/C (msc is the S/C mass);

• the virtual spring-mass term −Ki~ri /mi due to the spurious S/C-TM interactions, with Ki being a stiff-
ness matrix and mi being the TM mass;

• the S/C angular velocity and rotational acceleration ~ω and ~̇ω, responsible for Coriolis, centrifugal and
Euler’s acceleration, together with TM displacement~ri and velocity ~̇ri ;

• the telescope steering velocity and acceleration ~ω0i and ~̇ω0i , both dependent on the breath angle α
kinematics and dynamics, and also responsible for rotational accelerations;

• the electrostatic suspension control force ~fi and the rest of the spurious accelerations ~di .

By definition, the drag-free control system employs the on-board thrusters ~ft to compensate for the external
forces ~fd0, to which the TM are sensible [17].

For analysis purposes, let us assume that the electrostatic suspension system eliminates all the internal
disturbances and the non Newtonian accelerations, thus leaving the complementary drag-free acceleration
¨̃xd f , which is defined as:

¨̃xd f = H1d f Cs/1

(
− 1

msc

~ft − ~d0

)
+H2d f Cs/2

(
− 1

msc

~ft − ~d0

)
= (

H1d f Cs/1 +H2d f Cs/2
)(− 1

msc

~ft − ~d0

)
(8.7)

where ~d0 = ~fd0/msc . From Equation (8.7) we can derive a transformation matrix Cd f that allows to retrieve

the control efforts ~ft to manage the three drag-free DoF xd f ,

Cd f =
(
H1d f Cs/1 +H2d f Cs/2

)−1 =
cosα/2 −sinα/2 0

cosα/2 sinα/2 0
0 0 1

−1

=


1

2cosα/2

1

2cosα/2
0

− 1

2sinα/2

1

2sinα/2
0

0 0 1

 , (8.8)

recalling the definition of Cs/1 and Cs/2, respectively Equations (5.34) and (5.35) from Section 5.9.
Conceptually, Cd f can be derived graphically by taking into consideration Figure 8.1 explained in the

following paragraphs. The basic objective of the drag-free control is to accelerate the S/C-fixed frame together
with the inertial x-direction accelerations of the two TM and the z-direction acceleration of TM1. Let us call
the three accelerations ẍd f 1, ẍd f 2 and z̈d f 1. Their vectors, in the body-fixed reference frame of the S/C are
oriented according to the respective axes orientations of their GRS reference frames, with the x-directions
slanted by an angle α/2 symmetrically to the body-fixed x-axis. The compensating acceleration~at imprinted
on the S/C is a vector that can be decomposed into ẍd f 1, ẍd f 2 and z̈d f 1 along their respective orientations:ẍd f 1

ẍd f 2

z̈d f 1

=
x̂1 ·~at

x̂2 ·~at

ẑ1 ·~at

=
x̂τ1~at

x̂τ2~at

ẑτ1~at

=
cosα/2 −sinα/2 0

cosα/2 sinα/2 0
0 0 1

~at . (8.9)

Defining Cd f as the transformation matrix that allows to derive ~at from the three drag-free accelerations, i.e.
the inverse relation of Equation (8.9),

~at =Cd f

ẍd f 1

ẍd f 2

z̈d f 1

 (8.10)

it can be calculated as

Cd f =
cosα/2 −sinα/2 0

cosα/2 sinα/2 0
0 0 1

−1

=


1

2cosα/2

1

2cosα/2
0

− 1

2sinα/2

1

2sinα/2
0

0 0 1

 . (8.11)
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Figure 8.1: Vectorial identification. ẍd f 1 and ẍd f 2 are, respectively, the x-accelerations of TM1 and TM2 in their respective reference
frames. z̈d f 1 is the z-acceleration of TM1, chosen as third drag-free controlled DoF. ~at is the resulting acceleration actuated by the S/C
thrusters needed to overcome the TM displacements.

which bears the same result as Equation (8.8).
Going back to Equation (8.7), we can rewrite it as:

¨̃xd f =−
C−1

d f

msc

(
~ft +~fd0

)
= Hd f

(
~ft +~fd0

)
. (8.12)

Similarly to the linearized attitude dynamics of Equation (7.4) (Section 7.2), Equation (8.12) contains a dy-
namics inversion matrix

Hd f =−
C−1

d f

msc
, (8.13)

a command variable
ud f = ~ft (8.14)

which can be transformed into a virtual command v d f by

v d f = Hd f
~ft , (8.15)

and a dynamics disturbance term:
d d f = Hd f

~fd0. (8.16)

Let us then rewrite Equation (8.12) by substituting these terms:

¨̃xd f = v d f +d d f (8.17)

By applying the Laplace transform, the above equation, in frequency domain, becomes

s2 X̃ d f =V d f +Dd f ⇐⇒ X̃ d f =
1

s2

(
V d f +Dd f

)
(8.18)

where X̃ d f , V d f and Dd f are, respectively, the Laplace transforms of x̃d f , v d f and d d f . The linearized feed-
back control loop plant P , described in Section 6.2, is, once again, a double integrator

P = 1

s2 , (8.19)

similarly to the attitude linearized dynamics of Section 7.2.

8.3. DRAG-FREE DISTURBANCES IN LOW FREQUENCIES
As for the Euler angles in Chapter 7, the low frequencies disturbances on the drag-free DoF are the accel-
erations due to the SRP force ~fsr p , modeled in Section 5.4. Let us set ~ft =~0 and ~fd0 = ~fsr p in Equation
(8.12): the disturbance obtained on the drag-free DoF is shown in Figure 8.2: the behavior is consistent
with the SRP force. The Fourier analysis for the 4 years period results in Figure 8.3. Only the component
at ωo = 1.99234991 ·10−7 rad/s is present for x1 and x2, whose average is

ẍ1,2(ωo) ' 1.622644577 ·10−8 m/s2
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Figure 8.2: SRP induced acceleration on the drag-free DoF (x1, x2, z1) for 4 years, based on ~fd0 = ~fsr p modeled in Section 5.4 and
calculated with Equation (8.12).
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Figure 8.3: Fourier series (magnitude) of SRP induced accelerations ¨̃xd f on the drag-free DoF, with fundamental harmonicωo = 1.9923 ·
10−7 rad/s.

while z1 has a strong continuous component

z̈1(ω= 0) ' 4.633356186 ·10−8 m/s2

and a small component at the fundamental harmonic of

z̈1(ωo) = 8.224090528 ·10−10 m/s2.

The science requirements call for a maximum DC displacement of δx = δz ≤ 5 ·10−9 m (Equation (8.1)).
A safety margin factor of 2 is implemented and, according to Equation (6.5), with |P | = 1/ω2 like for the Euler
angles, the sensitivity functions Sxl f and Szl f at ω=ωo are calculated respectively as:

|Sxl f | =
ω2

oδx

2|D1|
= ω2

o ·5 ·10−9 m

2|D1|
= ω2

o

ẍ1,2(ωo)
·2.5 ·10−9 (8.20)

and

|Szl f | =
ω2

oδz

2|D1z |
= ω2

o ·5 ·10−9 m

2|D1z |
= ω2

o

z̈1(ωo)
·2.5 ·10−9 (8.21)

obtaining the following values:

|Sxl f |(ωo) '−284.270737385 dB;
|Szl f |(ωo) '−258.368027014 dB.

Other harmonic components are not calculated as we assume that the SRP force acts, on visual inspection,
with an almost sinusoidal behavior.
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8.4. DISTURBANCES IN BANDWIDTH ALONG x-AXES

In Section 5.12 the thrust noise δ~ft has been defined as a zero-mean random variable with standard deviation

σ
[
δ~ft

]
reported in Table 5.2. The acceleration noise δẍd f acting on the drag-free DoF can be estimated using

the dynamics inversion matrix Hd f of Equation (8.13) by a process described by the following equation:

σ[δẍd f ] = max
(∣∣∣Hd f M1σ

[
δ~ft

]∣∣∣ ,
∣∣∣Hd f M2σ

[
δ~ft

]∣∣∣) (8.22)

where

M1 =
1 0 0

0 1 0
0 0 1

 ; M2 =
1 0 0

0 −1 0
0 0 1

 . (8.23)

Basically we need to check the influence that the direction of the y-axis noise in S/C-fixed reference frame
has on the TMs x-accelerations, as the TM x-axes are oriented symmetrically w.r.t. the S/C x-axis, and pick
the maximum value obtained. M1 favors TM2, as the direction of the x2-axis is in the upper half of the S/C
body-reference frame, while M2 favors TM1 as the direction of the x1-axis lies in the lower half.

For sake of brevity we can set α = 60◦ (nominal breath angle) in Equation (8.8) and use the value of the
mass at the end of the 4 years period to calculate Equation (8.13), with the propellant mass being

mpr op (t = 4 years) ' 232.0165 kg.

We define the dynamics noise |D1| at a level of 3σ, i.e. |D1| = 3σ
[
δẍd f

]
, and calculate the sensitivity

functions |Sx |, |Sz | and |Su | based on Equations (6.5) and (6.6) and values for the limits at:

ASDx ( f ) ≤ 10 ·10−12 mp
Hz

·
√

1+
(

2 mHz

f

)4

(8.2)

ASDacc ( f ) ≤ 3 ·10−15 m s−2

p
Hz

·
√

1+
(

0.4 mHz

f

)2

·
√

1+
(

f

8 mHz

)4

(8.3)

while also keeping

ASDx ( f ) ≤ ASDr ≤ 5 ·10−9 mp
Hz

(8.4)

at all frequencies [14].
For the x1,x2-axes we estimate that

|D1| = 1.670588439×10−10 m s−2/
p

Hz

and the |Sx | and |Su | upper limits are calculated using:

|Sx |( f ) = ASDx ( f )ω2

|D1|
(8.24)

and

|Su |( f ) = ASDacc ( f )

|D1|
. (8.25)

The readout noise |D2| is calculated as the maximum white noise allowable at f = 1 Hz, i.e. the upper
measurement frequency:

|D2| = ASDacc (1 Hz)

(2π rad/s)2 = 1.187357718 ·10−12 m/
p

Hz (8.26)

and the sensitivity functions |Tx | and |Tu | are calculated accordingly to Equations (6.7) and (6.8) (setting
|X | = ASDx and |U | = ASDacc ).

Figure 8.4 shows the values of the various noise and sensitivity levels. The top-right picture shows the
motive behind Equation (8.26): the chosen value of |D2| allows the double integration trend of the error
to follow ASDacc at infinity, while finally crossing at f = 1 Hz, where the value of |Tu |(1H z) = 0 dB is the
minimum allowable for Equation (6.26) to inherently hold true at every frequency in the bandwidth, as shown
in the bottom-left picture. The crossing between requirements of Equations (8.2) and (8.4) happens at about
f = 8.94 ·10−5 Hz, where the trends of |Sx | and |Tx | change abruptly.
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Figure 8.4: top-left: Noises and limits on the displacements in frequency domain. |D1| is divided by the squared angular frequencyω2 to
match the dimensions. The limit ASDx is shown for both Equations (8.4) and (8.2). top-right: Noises and limits on the accelerations in
frequency domain. |D2| is multiplied by the squared angular frequency ω2 to match the dimensions. bottom-left: the limits on the |T |
sensitivities calculated with Equations (6.7) and (6.8) (setting |X | = ASDx and |U | = ASDacc . bottom-right: the limits on the S sensitivity
functions calculated with Equations (8.24) and (8.25).

8.5. DISTURBANCES IN BANDWIDTH ALONG z-AXIS
The control of z1 does not have requirements on the acceleration, therefore only requirement

ASDz ≤ ASDr ≤ 5 ·10−9 mp
Hz

(8.4)

needs to be satisfied. From Equation (8.22) and the 3σ margin imposed on all the DoF, we obtain that the
dynamics noise is

|D1| = 3.755175069 ·10−10 m s−2/
p

Hz.

The sensitivity function |Sz |( f ) is calculated, similarly for |Sx |( f ) as:

|Sz |( f ) = ASDzω
2

|D1|
. (8.27)

In order to obtain a minimum sensitivity of |Tz | = 0 dB, with |Tz | being calculated with Equation (6.7), the
readout noise is set to:

|D2| = ASDz . (8.28)

Since ASDz and |D2| are constant over f , |Tz | = 0 dB is also constant.
Figure 8.5 shows the various levels for the noises and the sensitivity functions in the bandwidth frequen-

cies.
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Figure 8.5: left: the noises and limit on the displacement of z1. |D1| is divided by the squared angular frequency ω2 to match the
dimensions. right: the limits on the sensitivity functions |Sz | and |Tz |. |Tz | = 0 dB is constant because of the choice of |D2| = ASDz .
Required bandwidth and goal bandwidth bounds are shown.

8.6. SHAPING OF x-AXES OPEN LOOP TRANSFER FUNCTION
Figure 8.6 shows the boundaries of |Sx |, |Su | and |Tx | on the phase-magnitude plane, for f starting at 1 µHz
and then at each octave. The boundary for Tx is not shown, as its minimum value is |Tx |( f →∞) ' 18.508368
dB, which is much larger than 3 dB at each frequency.

The |Sx | bounds (top-left) show a steady 40 dB/decade decline from ∼178.55079 dB at 1 µHz until the
switch at f ' 8.94 ·10−5 Hz (between 26 and 27 µHz), where |L| stays constant until f = 2 mHz ('211 µHz),
and start falling again with the same trend.

For |Su | (top-right), the maximum magnitude |L| happens at octave f = 211 µHz, where it stays ap-
proximativaly constant |L| = 94.733922 dB until about 213 µHz, where the trend becomes declining at 40
dB/decade.The |Tu | bounds (bottom) are meant to match |T | ' 0 dB, by design, from f = 8 mHz on ( f ' 213

Hz).
The open-loop transfer function

L = PG = G

s2

like for the Euler angles, needs to satisfy |L| < |Sxl f | at ωo and |L| < |Sx |, |Su |, |Tu | and the |T | < 3 dB stability
margin shown in Figure 8.6. G , as a transfer function, also needs to have a total order ≤ 0, meaning that the
order of L needs to be ≤ 2 due to the presence of P as a double integrator.

After some design, we find an appropriate control transfer function in:

G = k
(s − z1)(s − z2)2(s − z3)

(s −p1)2(s −p2)(s −p3)
(8.29)

with

k = 512.331124704

and the values of the zeros and poles shown in Table 8.1.

Table 8.1: Zeros and poles of the G function of Equation (8.29).

Zeros [rad/s] Poles [rad/s]

z1= -2.869034387·10−6

z2= -5.026548246·10−6 (2nd order)
z3= -9.4247779607

p1= -4.9809625·10−8 (2nd order)
p2= -0.03900837094
p3= -28.2743339

The shape of L on the phase-magnitude plane is shown in figure 8.7. The following steps were followed
for the definition of G :
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Figure 8.6: top-left: the Sx boundaries calculated from the values of |Sx | from Equation (8.24) and Equations (6.21) and (6.22) for each
octave f = 2k µHz. The boundaries between 27 µHz < f < 211 µHz are not shown because |Sx | is almost constant in the interval. top-
right: the Su boundaries calculated from the values of |Su | from Equation (8.25) and Equations (6.21) and (6.22) until f = 220 µHz (≥ 1
Hz). The boundaries for f < 211 µHz are not shown because their magnitude is raising until that point. bottom: The Tu boundaries
calculated with Equation (6.8). The boundaries approach closer and closer the |T | = 0 dB curve getting to |T | > 0 dB at f = 220 µHz > 1
Hz. For all the pictures, the stability boundary |T | = 3 dB is shown as a thick dotted line. The plots are symmetric w.r.t. the −180◦ vertical
line. The Tx boundary is not shown, because |Tx | > 18 dB is a series of ellipses within the |T | = 3 dB boundary.

• The initial gain to satisfy the ωo boundary is calculated as k 'ω2
o/|Sxl f | and it is then updated for every

pole and zero added.

• In order to rush to a minimum separation from the boundary at f = 1 µHz, the function crosses the ωo

boundary at 80 dB/decade thanks to the double pole p1.

• Between 1 µHz and 26 µHz L is supposed to decrease by 40 dB/decade, but the boundaries between 26

and 213 µHz require, instead, a shallower decline at 20 dB/decade in order to stay above the boundary
at f = 213 µHz, therefore 3 zeros (z1 and double zero z2) are added.
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Figure 8.7: The graphically evaluated L function (solid black line) of Equations (8.6) and (8.29). The bubble ◦ represents the evaluated
low-frequency harmonic at ωo , with the limit of |Sxl f | represented by the dark horizontal line. The bullets • represent the bandwidth

frequencies starting at 211 µHz. The markers need to stay close to the respective boundaries, above and outside the |S| boundaries and
below and outside the |T | boundaries. The latter is intentionally not satisfied, because the looping is inside the blue U-shaped curve
(|T | = 0 dB). The boundaries in bandwidth are a combination of the Sx , Su and Tu boundaries: below f < 212 µHz the Sx boundaries are
used, above the Su boundaries are used. Tu and Su overlap at f = 216 µHz. The stability requirement is raised from |T | ≤ 3 dB to |T | ≤ 6
dB to lower the value of the gain k.

• The |Su | boundaries replace the |Sx | boundaries at 212 µHz for |Su | < |Sx | at every phase.

• from 213 µHz L is required to lower at 40 dB/decade, therefore another pole p2 is added.

• at f = 216 µHz the |Tx | boundaries start overlapping with the |Su | boundaries (now shown as dotted
lines in the prohibited area). Nevertheless we decide to violate these boundaries to avoid too large of a
gain k.

• Since L has a −2 order we need to add a zero and a pole to sway from the singularity out of the stability
|T | = 3 dB bound. We find that at f = 1 Hz the closed-loop gain is still |T | < 3 dB and that k > 1000,
therefore we raise the stability bound to |T | = 6 dB, obtaining k ' 512.3311 for zero and pole z3 and p3.

Moreover, by choosing all negative poles and zeros and allowing the function to only cross the L =−180◦
line twice (the first being at the origin), the stability conditions for T are also satisfied.

In Figure 8.8 the expected behavior of the errors due to the combination of jitter noise and read-out noise
is shown, both for the displacement and the accelerations along the x-axes: we notice that, by design, ASDacc

is perfectly satisfied by the acceleration noises and a small overshoot due to the read-out noise happens
around 1 Hz (we know that the limit is violated at around 217 µHz = 0.065536 Hz). We also notice that ASDx

is actually 10 times larger than the same limit ASDacc double integrated on the same frequency, therefore all
the displacements are expected to be 10 times lower than the limit.

For verification we can simulate the linear control loop with P = 1/s2 and the dynamics and readout
noises d1 and d2 with a standard deviation

σd1 =
|D1|

3

σd2 =
|D2|

3
.
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Figure 8.8: Expected output of the errors for design L |D1| and |D2|. left: displacement errors due to dynamics noise, calculated with ma-
nipulation of Equation (6.5), and due to measurement noise, calculated with Equation (6.7). right: acceleration errors due to dynamics
noise, calculated with manipulation of Equation (6.6), and due to measurement noise, calculated with Equation (6.8).

The simulation is performed in Simulink with a step size of 0.1 s and evaluated with a sampling frequency
of fsamp = 2 Hz using the periodogram() function (see Appendix F). 100 periods of T = 10 hours are simu-
lated. The results for both the displacement and the accelerations are reported in Figure 8.9. The displace-
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Figure 8.9: Results for designed L in bandwidth with a linear feedback control system (P = 1/s2) and design random noises at 3σ levels
(Gaussian) of a random 10 h sample sampled every 0.5 s. left: ASD of displacement error F = 1 Hz. right: ASD of the acceleration error
(averaged over 0.5 s steps).

ment x(ti ) at epoch ti is measured directly, but the acceleration ẍ(ti ) needs to be averaged over the sampling
time: because the sampling frequency fsamp is 5 times smaller than the simulation frequency fsi m = 10 Hz,
and the acceleration is proportional to the square of the frequency, the standard deviation of the simulation
accelerations σacc ( fsi m) is 25 times larger than the sample accelerations:

σacc ( fsi m) = f 2
si m

f 2
samp

σacc ( fsamp ) = 25σacc ( fsamp ); (8.30)

you may find more information about the reasons of Equation (8.30) and the extrapolation procedure in
Appendix F, Section F.3. Figure 8.9 shows the results of the verification linear feedback control for a random
sample, while Figure 8.10 shows the average over 100 samples.

We notice that the numerical simulation fits almost perfectly the expected behavior. The largest discrep-
ancy happening at f < 0.3 mHz, where the acceleration is above the expected levels, yet below the accepted
limits of ASDacc .
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Figure 8.10: Average of 100 periods of 10 h of the results for L in bandwidth with a linear feedback control system (P = 1/s2) and design
random noises at 3σ levels (Gaussian). left: average ASD of the displacement noise, right: average ASD of the acceleration noise.The
theoretical shape of Figure 7.8 is retained, except for the smoother form around the overshoot frequency. The 3µ level is shown as a
reference to the 3σ design level of the noises.

8.7. SHAPING OF z1 OPEN-LOOP TRANSFER FUNCTION
The design of the open-loop transfer function for z1 is easier, as only the |Sz | and |Tz |boundaries are specified.
Figure 8.11 shows the bounds on the phase-magnitude plane of the open-loop transfer function. At f = 1µHz,

-210 -180 -150 -120 -90 -60 -30 0

-20

0

20

40

60

80

100

120

140

160

180

200

-300 -240 -180 -120 -60

-20

0

20

40

60

80

100

120

140

160

180

200

Figure 8.11: left: the Sz boundaries calculated from the values of |Sz | from Equation (8.27) and Equations (6.21) and (6.22) for each
octave f = 2k µHz: the bounds are dependent on the square of the frequency, therefore they lower in magnitude at a -40 dB/decade
trend until lower magnitudes. right: the Tz boundaries, i.e. |Tz | = 0 dB at each frequency. In both the graphs, the stability boundary
|T | = 3 dB is shown as a thick dotted line.

|Sz | ' −185.586008958 dB and it raises by 40 dB/decade (hence, |L| declines roughly at the same rate). The
boundary for Tz is unique, as |Tz | = 0 dB at every frequency.

Moreover the low-frequency boundary forω=ωo is located at |Szl f |(ωo) '−258.368027014 dB, or roughly
|L| ' 1/|Szl f | = 258.368027014 dB.

As for the x-axes control and the Euler angles control the open-loop function is defined as

L = PG = G

s2 . (8.31)

G is designed as
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G = k
(s − z1)(s − z2)

(s −p1)(s −p2)
(8.32)

where

k = 0.6509071933

and the values of the zeros and poles shown in Table 8.2.

Table 8.2: Zeros and poles of the G function of Equation (8.32).

Zeros [rad/s] Poles [rad/s]

z1= -8.726646260·10−7

z2= -0.2058874161
p1= -2.490481200·10−8

p2= -1.536798014

Figure 8.12 shows the shape of L on the phase-magnitude plot. As for the Euler angles and the x-axis
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Figure 8.12: Shape of the L function for the z1 DoF control on the phase-magnitude graph. The bubble ◦ represents the evaluated
low-frequency harmonic at ωo , with the limit of |Szl f | represented by the dark horizontal line. The bullets • represent the bandwidth

frequencies starting at 1µHz and for each octave in the bandwidth. The function is shaped so that the markers lie just above the dark line
and the relative Sz bounds. The U-shaped blue line represents the Tz bound, which is intentionally not satisfied, although a maximum
|T | = 3 dB is imposed (thick dotted line).

control the Tz boundaries are ignored, with just a swaying zero-pole to avoid the singularity at −180◦ phase
and 0 dB magnitude.

The first pole p1 lowers the order of L from -2 to -3, in order to rush the 1 µHz marker close to the first |Sz |
bound, z1 re-sets the system to an order of -2 to closely follow the -40 dB/decade trend of the |Sz | boundaries.
z2 and p2 are then roughly placed to asymptotically touch the |T | = 3 dB stability boundary.

Figure 8.13 shows how the errors are expected to behave on a theoretical linear feedback control loop. We
see that with the QFT technique we were able to estimate |L| w.r.t. |Sz | with a factor of 1.1611 (1.2974 dB above
the ideal value), due to the expected error associated to the jitter noise (green dot-dashed line in Figure 8.13)
being limited to ∼4.30626 nm rather than 5 nm. The maximum overshoot for |T |, and the measurement noise
influence on the error, happens at f ' 0.04677351413 Hz.

We can verify this, again, by simulating the linearized control loop by using P = 1/S and randomly gener-
ated noises at 3 standard deviations:
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Figure 8.13: Theoretical limit behavior of linear feedback control output for z1 in bandwidth due to the influence of |D1| (green dash-dot
line) and |D2| (blue solid line), calculated, respectively, through the inverse of Equations (6.5) and (6.7). The red-dashed line represents
the design upper limit ASDz .

σd1 =
|D1|

3
;

σd2 =
|D2|

3
.

Figure 8.14 shows the ASD results of the noise for a 10 hour period sample and the average for 100 samples.
The expected overshoot at f ' 0.0468 Hz does not seem to appear, instead, the simulated behavior is more
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Figure 8.14: Results for G in bandwidth with a linear feedback control system (P = 1/s2) and design random noises at 3σ levels (Gaus-
sian). left: ASD of a 10 h sample with maximum frequency F = 1 Hz. right: average µ over 100 samples and 3µ level (representing
approximately a zero-mean 3σ of ASD). The theoretical shape of Figure 8.13 is retained without the ∼ 3 dB overshoot.

similar to the jitter noise response, probably due to the 3σ margin imposed on the readout noise.

8.8. SIMULATION SETUP
The next step is the simulation of the S/C and GRS dynamics with the inclusion of the drag-free control
system.

For this part, the attitude dynamics of the S/C are provided by the equations of Chapter 4 and the control
of the Euler angles is not simulated.

Since no control is provided on the attitude, the torque noises are switched off ld0 = 0. Moreover, we as-
sume that the S/C follows a perfectly gravitationally bound motion by switching off ~ft and ~fd0 in Equation
(5.1) describing the dynamics of the S/C. This is to avoid the algebraic loop that would ensue from retrieving
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the attitude from the S/C displacement: since the SRP depends on the attitude and the controller that gener-
ates the accelerations from which the displacement is integrated depends on the SRP, the system cannot be
expressed in closed form (moreover Simulink returns an error addressing this issue when trying to simulate
the full loop). We also assume that by controlling the TM with the accuracy determined by the requirements
the difference between the actual path of the S/C and drag-free orbit would differ by an order of 10−8 m (while
the inertial positions of the S/C are in the order of 1011 m).

For the calculation of the electrostatic suspension forces ~fi , in the absence of a controller, in Equation
(5.43) all the terms, excluding the first

~fi /mi

and the fourth

Cs/i (−~ft −~fd0)/msc

are grouped into an acceleration component ~̈rig r s which can be basically defined as

~̈rig r s =~̈ri −
[
~fi

mi
+Cs/i

−~ft −~fd0

msc

]
, (8.33)

with~̈ri referring to Equation (5.43). In the y-direction the whole~̈ri as well as the z-component of~̈r2, need both
to be controlled by ~fi . The force is simply calculated by retrieving the in-simulation accelerations. Obviously
this step needs to be replaced by a proper control system in later iterations, but for the moment we are largely
interested in the control of the drag-free DoF.

Figure 8.15 shows the schematic operation of selection of the electrostatic suspension controlled compo-

Figure 8.15: Simplified simulation model of the GRS control system. The "GRS dynamics" block refers to Equations (5.43) and (8.33).



8.8. SIMULATION SETUP 109

nents and calculation of ~f1 and ~f2. Random spurious accelerations ~fdi in Equation (5.37) are also absent. The
TM masses are set to m1 = m2 = 1.9 kg, as for the ones used on LISA Pathfinder [45].

In order to verify the action of the dummy electrostatic suspension control system, we perform a simu-
lation without external disturbance, ~fd0 =~0, and no drag-free control (the net thrust force results in ~ft =~0).
The stiffness matrix is simply set to Ki =−diag[10−7,10−7,10−7] N/m, which is of the same order as the ones
measured on LISA Pathfinder [45]. The only forces acting on the TMs are, therefore, the rotational forces and
the elastic force due to Ki (which should be 0 for~ri =~0). The simulation is performed with a step-size of 100
s for 4 years. The displacement of the TM~ri is shown in Figure 8.16: after 4 years the displacement is in the
order of 10−17 m for all the components (that is, de facto, 0).
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Figure 8.16: Verification results for the dummy feedback electrostatic suspension control system. The divergence on the TM displace-
ments shown here is too small to be attributed to the remaining ~̈rig r s accelerations due to reference frame rotational accelerations. It is

however possible that the small accelerations are due to reference frame conversion operation in Matlab.

On the other hand, the accelerations calculated from the dynamics, r̈1 and r̈2 are non-zero, as shown
in Figure 8.17. These are the rotational accelerations acting on the TM due to ~ω and ~̇ω (angular velocity
and acceleration of the S/C), as provided in Chapter 4, and, in minor part, to α̈. A decomposition of the
forces verifies that the accelerations in the x- and y-directions are due almost completely to the centrifugal
accelerations, with minor influence from the Euler forces due to the telescope steering mechanism. The
forces along the z-axis, instead are due to Euler accelerations only for about ∼33.12% and the rest are due to
centrifugal accelerations.

On a side note, these results do not account for the coupling with the torques~lt and~ld0 (See Equation
(5.53)), which are controlled by the attitude control system. Moreover, due to the segregation of ~̈rig r s , i = 1,2
the system becomes completely linear.



110 8. DRAG-FREE CONTROL SYSTEM

0 200 400 600 800 1000 1200 1400

-1.5

-1

-0.5

0

0.5

1

1.5
10

-14

0 200 400 600 800 1000 1200 1400

-1.5

-1

-0.5

0

0.5

1

1.5
10

-14

Figure 8.17: The accelerations due to non-inertial reference frame rotation (i.e. ~̈rig r s from Equation (8.33) for no thruster jitter and no

SRP force included) acting on the two TM for a 4 years period.

8.9. RESULTS IN LOW FREQUENCY

In this section, the simulation is performed by setting ~fd0 = ~fsr p . Figure 8.18 shows the results of a preliminary
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Figure 8.18: Initial results for the control of z1 against the SRP force induced accelerations. The DC component of the displacement is
stuck at ∼ 3.544 ·10−9 m due to the presence of a strong DC component in the disturbance accelerations.

simulation on the z1 DoF: the displacement error, −z1 does not fall below 5 ·10−9 m. This is due to the DC
component of the SRP force acting in the z-direction (Figure 8.2). The annual trend, on the other hand,
follows the design 2.5 ·10−9 m amplitude imposed by |Szl f | (Equation (8.21)).

The control transfer function G for z1 must be modified to add a roll-off filter, i.e. an integrator, in parallel.
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The gain of such filter is tentatively chosen as ωo , as we are looking for a low value:

Gr o =G + ωo

s
(8.34)

Following the modification, the system is simulated again, including x1 and x2 in the loop, at a time-step
of 0.1 s for 1 year: when trying to use a higher step size, the simulation fails after a few seconds due to state
derivative of x1 and x2 approaching infinity. This is due to the large k > 512 gain factor associated with the
control transfer function G of Equation (8.29) and the resonant frequency being located at fr ' 2.5 Hz (see
Figure 8.8) with a ∼6 dB overshoot (by design). Simulation frequency is required to stay at fsi m À fr and the
sampling is performed at fsamp = 2 Hz, requiring, therefore fsi m to be a multiple of fsamp in Simulink in order
to avoid an interpolation step.

The initial conditions are set to 0, both for displacement and velocity. Figure 8.19 shows the results of the
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Figure 8.19: Results in low frequency for both the x-directions and z1. top: the transient for the first 26 days; bottom: the simulated
behavior for 1 year at nm scale. The improved version of the control transfer function for z1 allows its displacement to lower below the
required level of δz ≤ 5 nm. The imposed limit ≤ 2.5 nm (due to the margin factor of 2) on x1 and x2 is satisfied. (showed here are the
errors −x1, −x2 and −z1).

simulation (the output is retrieved every 1000 s). The 5·10−9 m displacement mark is reached at about t ' 25 d
23 h 3 min 20 s on the x2-axis while the displacement on the z-axis reaches the mark at t ' 18 d 1 h 20 min 00 s.
The transient shows a maximum peak, at x1 ' 1.766417510·10−7 m for the x-axes, and z1 = 5.389283204·10−7

m for the z-axis.
After the transient, an expected sinusoidal behavior ensues, with a final peak of |x1| = 2.131023790 nm

and |x2| = 2.254077908 nm at t = 365 days (the first peak reaches |x2| = 2.065391871 nm).
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z1 shows an improved behavior, although the DC components is still present around 1 nm and the peri-
odical oscillations appear to shrink. The maximum value after the transient is |z1| = 1.303460420 nm.

8.10. RESULTS IN BANDWIDTH
The final simulation is performed for 35 days with the inclusion of the jitter noise on the dynamics and the
readout noise on the control loop. This would correspond to little less than 10 days worth of observations
after the initial roll-off.

The sampling is initiated after all the DoF reach 5 · 10−9 m. In our case, it happens at t = 25 days 22 h
46 min 1.0 s. This value may change, depending on the randomly generated noises. This leaves us with 20
samples of 10 h each.

Figure 8.20 show the results obtained using the periodogram() function for the x-axes displacement
error in a random sample.
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Figure 8.20: ASD of the x-direction displacements calculated with periodogram() on a random 10 h sample (maximum frequency F = 1
Hz) after the settling time. left: x1, right: x2.

Figure 8.21 shows the ASD of the numerically extrapolated accelerations (see Section F.3) for the same
sample.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-17

10
-15

10
-13

10
-11

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-17

10
-15

10
-13

10
-11

Figure 8.21: ASD of the x-direction accelerations calculated with periodogram() on a random 10 h sample (maximum frequency F = 1
Hz) after the settling time. left: ẍ1, right: ẍ2.

Figure 8.22 shows the periodogram of the z1 DoF for a random sample. While the shapes obtained for x1

and x2 match the theoretical results obtained in 8.6, the z1 ASD is about 4 times smaller than theoretically
designed. Since the same behavior is attributed to the low frequency components we can assume that this is
because of the introduction of the roll-off filter for the compensation of the DC component of the SRP force.

The mean ASD for the 20 samples are shown, respectively, in Figures 8.23, 8.24 and 8.25.
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Figure 8.22: ASD of the z1 displacement calculated with periodogram() on a random 10 h sample (maximum frequency F = 1 Hz) after
the settling time.
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Figure 8.23: Average ASD between 20 consecutive samples of 10 h periods of the x-displacement errors calculated with periodogram()
(maximum frequency F = 1 Hz) after the settling time. left: x1, right: x2.
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Figure 8.24: Average ASD between 20 consecutive samples of 10 h periods of the x-direction acceleration errors calculated with
periodogram() (maximum frequency F = 1 Hz) after the settling time. left: ẍ1, right: ẍ2.
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Figure 8.25: Average ASD between 20 consecutive samples of 10 h periods of the z1 displacement error calculated with periodogram()
(maximum frequency F = 1 Hz) after the settling time.
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8.11. RECOMMENDATIONS ON THE DRAG-FREE CONTROL
There is much to be improved on the control system. With more time at disposal more observation can be
performed to discern a more accurate average behavior.

One goal is to achieve the simulation of the system without separation of the dynamics, with control on
attitude and electrostatic suspension system. This step requires large computational power.

A good inclusion would be to see how the S/C orbit, and therefore the formation, would change if the
rotational accelerations were also counteracted by the thruster force along the x-axes.

8.12. CONCLUSION ON THE DRAG-FREE CONTROL SYSTEM
In this Chapter a control system for the drag-free DoF xd f = (x1, x2, z1)τ has been defined using the separation
of dynamics and NDI. The linearized dynamics can be modeled as a simple multiple SISO problem with a
double integrator plant P = 1/s2. The DC requirements were used to derive the sensitivity functions in low
frequency, using the SRP induced accelerations on the TM as reference disturbances and adding a margin
factor of 2.

In bandwidth, the sensitivity requirements for the controller of x1 and x2 are defined separately from the
ones for z1. The noise is determined by the ASD of the thrust jitters defined in Section 5.12 at 3σ. While for z1

only the limits on the displacement needs to be evaluated, for the control on the x-direction the sensitivity re-
quirements on the accelerations add two more boundaries. The readout noise for the x-directions is defined
by the limit on the accelerations. The boundaries for S and T on the phase-magnitude plane are calculated
at every octave from 1 µHz. A stability margin of |T | = 3 dB is added. During the design process using QFT
the stability margin for the x-direction controller is raised to |T | = 6 dB to lower the gain factor k to ∼ 512.33.

Two controllers are defined: a four zero, four pole transfer function for the x-direction and a two zero, two
pole transfer function for z1.

A linear feedback control loop is simulated by adding the associated noises as white noises, simulated
with the design values at 3σ. The result of the ASD in bandwidth for both displacement and acceleration
requirements is compliant with the expectations and the requirements.

A simulation using only SRP force on the z1 control loop reveals that a strong DC component does not
allow the DoF to comply with the requirements. The problem is fixed by adding a small gain roll-off filter in
parallel. In the next simulation, all the DoF are controlled below the required displacement limits.

The only drawback of this system is the very slow settling time of >25 days, meaning that this controller
cannot be used for the initial acquisition of the attitude.

Finally, the whole system is simulated using the real dynamics. The results for x1 and x2 in bandwidth
satisfy the requirements for both displacement and accelerations. The control on z1 also satisfies the re-
quirements but the output is slightly overcompensated probably due to the added roll-off filter. Separation
of the dynamics is forced by simulating a dummy electrostatic suspension system directly feeding back the
unwanted accelerations. The dummy feedback system is verified.





9
CONCLUSIONS

9.1. SUMMARY
The objective of this thesis was to design a DFACS algorithm for LISA that would satisfy the strict science
requirements dictated by the mission specifications.

A generic orbital model for the three S/C was defined in Chapter 2. The task had the objective to simulate
the exact motion of the three S/C in a gravitationally perturbed environment. For sake of brevity the orbits
are not optimized, showing a compliance with the requirements during at least the first 4 years of operation.
As such, this period was selected for analysis in the later chapters. The model has been adapted in part
from S.V. Dhurandhar et al. [27] and validated against G. Li et al. [33]. Earth and Moon gravities have been
added to the model and propagation was compared to a simulated Earth-Sun CR3BP with the same initial
conditions, showing compliance for the first 10 years of simulation to the formation drift from Earth. As a
result, a simulator has been developed using a Runge-Kutta 4th order integrator and a Cowell propagator, thus
answering the subquestion "What are the orbits of the LISA formation?". The model is an improvement from
first-order approximations used in the past to simulate the Cartwheel orbit [20] behavior of the formation.

In Chapter 3 a physical model for the S/C has been derived using the guidelines provided by a presentation
by the CDF team at ESTEC [21]. The S/C mass and inertia have been estimated using a geometrical manip-
ulation and separating the volumes dedicated to dry-mass and propellant storage. The thrust configuration
matrix and the relation between necessary thrust-torque and effort of each thruster has been defined using a
Least square thruster dispatching method by D. Ferting and S. Wu [38]. The full solution, using a Kuhn-Tucker
optimization algorithm [39] has been shown. The solution was verified, although little can be said about
its validity due to a lack of independent observations, except that it complies with the physical definition of
thruster configuration matrix. Propellant mass depletion due to thruster usage has been modelled, using a
conservative value for the specific impulse of Isp = 340 s.

The orientation of the body-fixed reference frame has been defined with the x-axis oriented so to bisect
the angle subtended by the lines of sight of the telescopes and the z-axis orthogonal and pointing in the
opposite direction as the solar panel, thus providing an answer to the question: "How is the S/C orientation
defined?". We have assumed that both the telescopes are articulated and capable of symmetrical steering.

In Chapter 4 we tried to answer the subquestion: "What is the expected behavior of the S/C in relation to
the other two?". As a solution, an analytical model for the S/C orientation and rotational behavior dependent
on the formation state has been derived. First, the generic orientation of the S/C body-fixed directives has
been defined according to their position in the inertial reference frame. Then, using simulation data for their
Cartesian velocities and accelerations, an analytical relation for their expected rotational velocities and ac-
celerations have been derived. Poisson’s kinematics [40] have been exploited for the definition of the angular
velocity in body-fixed reference frame. The S/C are assumed to point the body x-axes towards a common
point, here defined as the "incenter" of the triangle whose vertexes are the S/C themselves. The z-axes, or-
thogonal to the plane swooped by the telescopes lines-of-sights have been assumed to also be perpendicular
to the formation plane, and therefore congruent.

In order to validate the equations, a different situation involving three particles in an analytically defined
motion in the 3D space has been modelled, allowing to determine positions, velocities, accelerations and
angular velocities and accelerations analytically and separately from each other. The derived equations have
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been applied successfully to retrieve the exact same angular states from the translational states. When applied
to LISA, the equations showed that the angular velocities and accelerations for a perfectly controlled LISA are
small, with components in the order of, respectively, ' 10−7 rad/s and ' 10−14 rad/s2, which are compatible
to the sidereal motion (' 2 ·10−7 rad/s).

In the process, the equations for the determination of the breath angles and their divergence speeds and
accelerations have also been derived as an intermediary step. Once again, the solution considers the tele-
scopes to be able to steer symmetrically w.r.t. the body-fixed x-axes.

In Chapter 5 the dynamics and the disturbances acting on the LISA DoF have been modeled. While the
S/C translational and rotational dynamics are trivially determined through the Newtonian and Eulerian equa-
tions of motion, aided by the estimation of mass and inertia in Chapter 3, the dynamics of the DoF pertaining
the TM are way more complicated due to the coupling of several factors, including S/C rotations and steering
of the optical assembly, S/C-TM interactions [23], reference frame transformations between S/C body and
GRS specific reference frames and the presence of the electrostatic suspension system, providing forces and
torques to the TM. Both the displacement and orientation related dynamics for the TM have been derived.
Validation of such equations in their natural form is not possible due to a gap of information in the publicly
available literature. The linearized equations, on the other hand, show compliance with the ones provided by
P.F. Gath [22] and S.-F. Wu and D. Fertin (for LISA Pathfinder) [23] in their expressions.

In the same chapter, the SRP force and torque is modeled according to the LISA Pathfinder specifications
(calling for an absorptivity coefficient of 0.14 and diffuse reflectivity of the solar panels [43]) and the S/C
geometry defined in Chapter 3. A preliminary study on the thruster efforts required to compensate both the
torques and the forces has been carried out by means of the thruster configuration results of Chapter 3. Using
the data on the required thruster efforts, the noise filters for the thrust and the torque jitters have been mod-
eled applying a random factor with standard deviation 3σ = 0.01 to the force of each thruster. These filters
allow to model the noise in the measurement bandwidth of 20 ·10−6 Hz< f < 1 Hz. According to this range,
we decided to analyze the periodogram of the noise and the results with a maximum bandwidth frequency of
F = 1 Hz, which requires to sample the simulation outputs with a frequency of fsamp = 2 Hz.

Finally, the attitude definition using the Euler angles and the associated kinematics have been presented.
The use of Euler angles has been justified in order to limit the number of DoF (3 for the Euler angles, 4 for the
quaternions, 12 for the axis orientations).

In summary, Chapter 5 was able to answer the subquestion "What are the perturbations acting on each
degree of freedom and what are their components?": size and orientation of the SRP force and torque have
been modeled and preliminary data for a perfectly controlled LISA S/C has been calculated, the other spuri-
ous accelerations considered are the thrust and torque jitters, preliminary defined by the ±1% confidence at
3σ applied to all the thrusters involved; other forces, in this iteration, are not considered; the full analytical
dynamics of each DoF have been derived, except that the telescope steering mechanism has been modeled
using only the accelerations of the breath angles for a perfect case due to a lack of investigation on its physical
properties; linearization of the dynamics provides in part information on the sensitivity of each DoF on the
perturbations. In total 19 DoF have been defined.

Chapter 6 was redacted to present the strategy used for the design of the control system using the QFT
technique [48]. The method exploits the phase-magnitude graph of the open-loop transfer function L of a
classic SISO linearized feedback control loop to determine its allowed response at each frequency. Methods
to calculate the sensitivity functions based on the disturbances (both on dynamics and due to the limitations
of the state readout) and to ensure theoretical stability [50] are presented. It was also determined, due to
the complementarity of the sensitivity functions, that the dynamics noise and the readout noise cannot be
mutually free. The dynamics noise D1 is associated to the S sensitivity functions, while the readout noise D2 is
associated to the T sensitivity functions (that have the same relationship as the closed-loop transfer function
with the open-loop transfer function L). Based on the sensitivity functions, the areas where L is allowed at
each frequency can be identified on the phase-magnitude plot.

Due to a lack of physical time only the attitude and drag-free control system is studied, using separation
of dynamics to avoid computational complexity and to allow the two systems to be studied separately. The
remaining subsystem, that is not studied here, is the GRS electrostatic suspension control. Finally we can
assert that the answer to the subquestion "What are the limitations of the control system?" has been provided
here.

The final two chapters deal with the design and simulation of the control systems. The control require-
ments have been defined in K. Danzmann et al. (2017) [14].

In Chapter 7 the attitude of S/C1 is controlled separately from any other DoF. The Euler angle dynamics
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have been linearized and treated through NDI to transform the frequency-domain plant to a simple SISO
double integrator P = 1/s2 (s being the Laplace transform parameter, or complex frequency). The linearized
disturbance at low frequency due to the SRP torque is modeled first in time-domain and then transformed
numerically to a frequency-domain Fourier series; the limits on the S function in low frequency are then
determined by forcing each component to fall below the DC requirements of δθ < 10 nrad (divided by a safety
margin factor of 4).

In bandwidth, the disturbance acting on the Euler angle accelerations have been modeled from the torque
jitter in frequency domain. Their estimated ASDs at 3σ are used as dynamics disturbance on the control loop.
The relative S function limits at various frequency levels have been determined in order to keep the ASD of
the error below the science requirements. The maximum readout noise allowable has also been calculated to
determine a T function limit compatible with the S functions (converging to |T | = 0 dB at high frequencies).
The limits have been translated to boundaries on the phase-magnitude plot and an open-loop transfer func-
tion L =GP , where G is a transfer function with 5 poles and 5 zeros, has been designed. The limits on the T
function are not satisfied, although the closed loop transfer function is limited to |T | = 3 dB for stability rea-
sons. The limits on the S functions are closely matched to avoid overdesign. The model has been verified on
a linear SISO control loop, showing that the results comply to the imposed limits due to the several margins
added (e.g. the readout noise is simulated considering the design level at 3 standard deviations 3σ).

The simulation is performed using a model on Simulink which integrates the true dynamics of the system.
The reference commands are generated as calculated in Chapter 4. The validation of the model is performed
by checking whether feeding the theoretical torques to the system and propagating the S/C attitude results
as analytically determined. A Runge-Kutta 4 integrator is used.

First, a large step size is used, without the jitters, to verify that the control of the SRP torque satisfy the
DC requirements. Then, a 35 days, 0.1 s step-size simulation, with jitters and readout noise included, is
performed. The ASD of the errors on the Euler angles has been numerically calculated to check the feasibility
of the control system. The simulation reveals satisfying results for both the DC and bandwidth requirements.

In Chapter 8 the same procedure is performed. First, the drag-free DoF have been determined. These
are the x-displacements of the two TM and the z-axis displacement of TM1 xd f = (x1, x2, z1)τ. The NDI is
performed, but due to the separation of the dynamics we consider only the concerning control thrust to
act on the drag-free control system while assuming that the electrostatic suspension control system of the
GRS and the attitude control take care of the rest of the accelerations with 0 error. As a result, the linearized
dynamics can be modeled as a simple multiple SISO problem with a double integrator plant P = 1/s2 as for
the Euler angles.

As for the Euler angles, the DC requirements on the drag-free DoF are associated to the SRP force. The
limits on the S sensitivity function are calculated by dividing the requirements δr ≤ 5 · 10−9 m by a safety
margin factor of 2 and evaluated for the amplitude of the signals at ∼ 2 ·10−7 rad/s. The bandwidth require-
ments are associated to the ASD of the accelerations due the spurious thrust jitters. Since x1, and x2 have
different requirements than z1, two separate control transfer functions need to be evaluated. Moreover, the
requirements on the x-directions include limits on the accelerations in bandwidth, therefore two S bound-
aries and two T boundaries need to be determined (one of both for the displacement requirements and the
others for the acceleration requirements). The readout noise along the x-directions has been sized to comply
with the acceleration requirements. For z1 only a flat cap at 5 · 10−9 m/

p
Hz for all frequencies is specified

in the requirements. The same value is attributed to the readout noise, hence the T boundary is evaluated
at |T | < 0 dB at every frequency. The boundaries are translated onto the phase-magnitude plot of the open-
loop transfer function and the L = GP function loop is defined obtaining a 4-zero, 4-pole G function for the
control of the x-directions and a simpler 2-zero, 2-pole G function for the z1 control. The stability bound for
the x-direction was raised from |T | ≤ 3 dB to 6 dB otherwise the required gain factor k ' 512.33 would be
much higher and not compatible with the step size of the controller of 0.1 s. A verification step with a linear
control loop and noises simulated as design at a 3σ level confirms that the control transfer function works as
expected in bandwidth.

The non-linear simulator is set up in Simulink. The unwanted accelerations are directly fed back to emu-
late the electrostatic suspension system, since we have not defined a control loop for it yet. Moreover, all the
S/C related and telescope steering mechanism rotations and angular accelerations are calculated analytically
using the relations derived in Chapter 4. The system is tested by verifying that the TM position stays to 0
when no external acceleration is added. The only accelerations are, therefore, Euler, centrifugal and Coriolis
accelerations due to the S/C orientation.

The control system for z1 fails in DC due to a continuous component of the SRP force in that direction,
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therefore the transfer function G needs to be modified by adding a roll-off filter. We also find that simulating
the system at a step size larger than 0.1 s is impossible due to the high gain of the x-direction control function.
On the other hand, the system performs exactly as expected both in low frequency and in bandwidth, except
for a small overcompensation in the z-direction, we assume, due to the roll off filter.

9.2. RESULTS
The very first batch of results comes from the analytical equations for the determination of orientation, angu-
lar velocity and angular acceleration and breath angle divergence speed and accelerations derived in Chapter
4. The equations offer a very interesting tool for the analysis of LISA-like formations composed of 3 S/C whose
orientations are strictly co-dependent. The equations can be easily adapted for the case in which only one
telescope is capable of steering [37] by redefining the body-fixed x-axis.

Information about the angular rotation and acceleration was used to calculate the required thruster ef-
forts (Figure 5.6). This result is very specific for the case presented here, where the thrusters are configured
as defined in Chapter 3 and the SRP acts in the way modeled in Section 5.4. We obtained that the minimum
capability for the µNewton thrusters is ∼ 43 µN. Darkening the exposed surface, i.e. raising its absorptivity,
would lower this constraint. It is also shown how the effort required by the thrusters is very asymmetrical,
mostly concentrated on the z-axis of the S/C.

A minor result is the definition of the free-floating TM dynamics inside the GRS. Its linearization (Equa-
tions (5.53)-(5.54)) clearly shows the first-order effects of the coupling between different DoF dynamics in the
GRS: the S/C torques and the telescope steering mechanism add an important contribution to the dynamics.

The second set of results comes from Chapters 7 and 8. To begin with, QFT is very interesting for the
design of an optimal control system while meeting various criteria at the same time: for the case of the drag-
free control along the telescope lines-of-sight we were able to define the open-loop function while satisfying
requirements for the displacement and accelerations, against dynamics and readout noise. Moreover using
the Nichols plot, we were able to predict with a certain degree of accuracy how the output would react by
adding and removing poles and zeros. The drawback is that QFT also relies on a learning curve (in fact,
it took a few months to master how to define boundaries and L accordingly). Moreover, as in the case of
the control of z1, I did not foresee the implications of the DC component in the SRP disturbance before
the numerical simulation, therefore adding the roll-off filter caused the system to be less optimal and more
overcompensated.

A danger from the determination of the control command using QFT coupled with NDI, as it was per-
formed here, is that information about the S/C mass and inertia are essential both during design and during
the control. It is not wise, for example, to use a generic value for the mass and inertia: instead of using the
mass propagated at the end of the first 4 years of operation (which is very close to the initial mass), as it was
done here, it would be more logical to use the value of the dry mass directly, i.e. at the lowest possible S/C
mass; this is because the accelerations are more prominent for lower values of mass and inertia, and therefore
the design disturbances much higher. The reason why this was not done in this thesis is that we are interested
in showing the behavior of the control system during the first part of the mission and without repositioning
in between (that would deplete the propellant mass stored on board). With more time at disposal the simula-
tions can be performed for various scenarios involving different values of mass, although the control transfer
function would have to be redesigned.

The most interesting results come from the simulation of the control loop under SRP forces and torques:
it is shown here that the minimum possible settling time for an ideal starting point is > 7 days for the atti-
tude control and > 25 days for the precise drag-free control. Obviously this means that this control system,
although suitable for the science operations, cannot be used alone during acquisition, considering the vari-
ous disruptions happening in between observations, such as antenna repositioning for downlink and micro-
meteoroid strikes [14, 21]. Ironically, while the roll-off is not fast enough for the acquisition phase, the control
on the bandwidth along the x-axes requires a somewhat high proportional gain k ' 512.33, at the expense of
simulation time and possible incompatibility with the on-board computer frequency of 10 Hz.

We can conclude by recalling the research question:

What is a suitable algorithm for the drag-free and attitude control system that allows the LISA S/C to perform
within all requirements during science operations?

While the system designed here is certainly suitable to control a LISA S/C during the science operations,
much more time and efforts are required to finalize a complete working system.
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9.3. RECOMMENDATIONS
Here are some steps to be taken from here on. First of all, it would be interesting to simulate both attitude
and drag-free control not separated from each other. As Equation (5.53) shows, the torque commands and the
torque disturbances are part of the TM dynamics. The non linearized dynamics in Equation (5.45) expand on
this by adding also the centrifugal and Coriolis accelerations arising from the coupling of the two systems. As
shown by S.-F. Wu and D. Fertin [23] for LISA Pathfinder, even the readout noise on one system is responsible
for the degradation of the output of the other (provided that the readout of the attitude on LISA Pathfinder is
not as precise as LISA).

An important aspect that we have not discussed here due to time constraints is that theµNewton thrusters
have a discrete resolution. This was also taken into consideration by S.-F. Wu and D. Fertin [23] while design-
ing a control system for LISA Pathfinder.

We should also address the fact that modeling of the bandwidth disturbances as a band-limited white
noise based on the 1% confidence level at 3σ of the thruster commands was an arbitrary choice. We have seen
in Chapter 8 that, at these levels, the gain required for the noise reduction for the TM accelerations forced the
simulation to run at a minimum step size of 0.1 s. Building up from this requires: 1) higher computing power
for larger confidence levels or 2) a more realistic noise model based on experimental data.

The control system for the GRS electrostatic suspension system has a very difficult challenge to overcome
that is the presence of the stiffness terms Ki and Kϕi : these terms, due to the nature of their presence, create
unstable positive poles in the frequency-domain representation of the dynamics [22, 23] and their values
need to be estimated during the mission [45].

Another problem that constrained the results for this thesis is the available computer power and the limits
imposed on the Simulink system. With more time at disposal more simulations can be performed without
needing to rely on the Rapid Accelerator mode [51], and therefore allowing algebraic loops in the system [46].
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SPACECRAFT MODELING WITH

MATHEMATICA

A.1. INERTIA OF THE DRY MASS
The definition of the trapezoidal shape, used to model the inertia of the dry mass can be defined as a subset
VT of the 3-dimensional Euclidean space:

VT =VA ∩VB ∩VC ∩VD ∩VE

where

VA ={
(x ′, y ′, z ′) ∈R|0 ≤ z ′ ≤ h

}
VB =

{
(x ′, y ′, z ′) ∈R|z ′ ≤ 2(a1 −x ′)h

a1 −a2

}
VC =

{
(x ′, y ′, z ′) ∈R|z ′ ≤ 2x ′h

a1 −a2

}
VD =

{
(x ′, y ′, z ′) ∈R|z ′ ≤ 2(b1 − y ′)h

b1 −b2

}
VE =

{
(x ′, y ′, z ′) ∈R|z ′ ≤ 2y ′h

b1 −b2

}

(A.1)

Operator ∩ represents the intersection between sets. Values a1 = 3 m, b1 = 4.5 m, a2 = 1.6 m, b2 = 3 m and
h = 1.1 m are the bases and the height of the trapezoid.

In Mathematica, the set can be defined using the ImplicitRegion[] function as demonstrated in the
following lines [53]:

In[1] := (*Upper and lower bases and height [m]*)
a1 = 3;
a2 = 1.6;
b1 = 4.75;
b2 = 3;
h = 1.1;
(*Create a 3d region for the trapezoid*)
VT = ImplicitRegion[0 <= z <= h &&

z <= 2 (a1 - x) h/(a1 - a2) &&
z <= 2 x h/(a1 - a2) && z <= 2 (b1 - y) h/(b1 - b2) &&
z <= 2 y h/(b1 - b2) , {x, y, z}];

RegionPlot3D[VT, PlotTheme -> "Detailed", PlotPoints -> 30,
PlotStyle -> Directive[RGBColor[1, 1, 0], Opacity[0.5‘]],
Mesh -> None]

Out[1]:=

123



124 A. SPACECRAFT MODELING WITH MATHEMATICA

Using the Volume[] function, the volume Vdr y of the trapezoid lying on the x y-plane VT is easily calcu-
lated:

In[2] := Vdry = Volume[VT](*Volume*)

Out[2]:= 10.0283
Alternatively, one can use the formula:

Vdr y = a1b1h − [(a1 −a2)b1 + (b1 −b2)a1]
h

2
+ (a1 −a2)(b1 −b2)

h

3
(A.2)

which in Mathematica results in:

In[2] := Vdry = a1*b1*h - ((a1 - a2) b1 + (b1 - b2) a1) h/2 + (a1 - a2) (b1 - b2) h/3

Out[2]:= 10.0283
The two values differ by 1.77635683940025×10−15 m3.
The position on the z-axis of the CoM is hcm . This is the point in which the volume of the trapezoid is

bisected by a z-orthogonal plane. Using the relation between the bases a and b of the sectioned rectangle
and the position of the plane z ′,

a(z ′) = a1 − (a1 −a2)
z ′

h
(A.3)

and

b(z ′) = b1 − (b1 −b2)
z ′

h
, (A.4)

hcm has solution: ∫ hcm

0
a(z ′)b(z ′)d z ′ = Vdr y

2
(A.5)

being Vdr y the volume of the trapezoid. This operation is performed in Mathematica using the Solve[] and
Integrate[] function as following:

In[3] := a[z_] := a1 - (a1 - a2) z/h; (*x-side width as function of z*)
b[z_] := b1 - (b1 - b2) z/h; (*y-side width as function of z*)
(*Calculate the position of barycenter on the z-axis as the z that divides

the volume into two*)
hcm = zcm /.Solve[Integrate[a[z]*b[z], {z, 0, zcm}] == Vdry/2, zcm,

Reals][[1]](*Position of barycenter from lower base*)
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Out[3]:= 0.413394
In order to center the CoM at the origin, it is sufficient to shift VT by hcm along the z-direction by setting

z = z ′−hcm . Mathematically, we define a new set, called Vl i sa as:

Vl i sa = {
(x, y, z) ∈R|(x, y, z +hcm) ∈VT

}
(A.6)

In Mathematica this is simply performed by repeating the ImplicitRegion[] function by substituting z
+ hcm to z:

In[4] := lisa = ImplicitRegion[ 0 <= z + hcm <= h &&
z + hcm <= 2 (a1/2 - x) h/(a1 - a2) &&
z + hcm <= 2 (x + a1/2) h/(a1 - a2) &&
z + hcm <= 2 (b1/2 - y) h/(b1 - b2) &&
z + hcm <= 2 (y + b1/2) h/(b1 - b2) , {x, y, z}];

RegionPlot3D[lisa, PlotTheme -> "Detailed", PlotPoints -> 30,
PlotStyle -> Directive[RGBColor[1, 1, 0], Opacity[0.5‘]], Mesh -> None]

Out[4]:=

We now proceed to calculate the inertial components (per unit density) of the Vl i sa three-dimensional
space. The diagonal components are calculated as:

In[5] := Ixx = Integrate[z^2 + y^2, {x, y, z} \[Element] lisa]

Out[5]:= 14.700725

In[6] := Iyy = Integrate[z^2 + x^2, {x, y, z} \[Element] lisa]

Out[6]:= 5.980763

In[7] := Izz = Integrate[x^2 + y^2, {x, y, z} \[Element] lisa]

Out[7]:= 18.769267
We can demonstrate that the origin of the axes andthe CoM coincide by verifying that the non-diagonal

components are zero:

In[8] := Ixy = -Integrate[x*y, {x, y, z} \[Element] lisa]

Out[8]:= 2.694242×10−17

In[9] := Ixz = -Integrate[x*z, {x, y, z} \[Element] lisa]

Out[9]:= −2.875846×10−17

In[10] := Iyz = -Integrate[y*z, {x, y, z} \[Element] lisa]

Out[10]:= −4.729832×10−17 The non-diagonal terms calculated by Mathematica have a magnitude in the
order of 10−17 m5 (17 to 18 orders of magnitude lower than the diagonal elements), consistent with 0.
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A.2. INERTIA OF THE PROPELLANT TANKS
The canisters containing the propellant are spheres of radius rs = 0.3665 m located at coordinates xt = 0.8 m
and yt = 1.5 m in all quadrants, symmetrically w.r.t. the origin of the axes and at z = 0.

Mathematically the 3-dimensional Euclidean space VS used to represent them is defined as:

VS =VS1 ∪VS2 ∪VS3 ∪VS4

where

VS1 =
{
(x, y, z) ∈R|(x −xt )2 + (y − yt )2 + z2 ≤ r 2

s

}
VS2 =

{
(x, y, z) ∈R|(x +xt )2 + (y − yt )2 + z2 ≤ r 2

s

}
VS3 =

{
(x, y, z) ∈R|(x −xt )2 + (y + yt )2 + z2 ≤ r 2

s

}
VS4 =

{
(x, y, z) ∈R|(x +xt )2 + (y + yt )2 + z2 ≤ r 2

s

}
(A.7)

The∪operator represents the union of sets. In Mathematica this can be accomplished by using the ImpliciRegion[]
function:

In[1] := xt = 0.8; (*X position of tank*)
yt = 1.5; (*Y position of tank*)
rs = 0.3665; (*Radius of spherical tank*)
VS = ImplicitRegion[((x - xt)^2 + (y - yt)^2 + z^2 <= rs^2) ||

((x + xt)^2 + (y - yt)^2 + z^2 <= rs^2) ||
((x - xt)^2 + (y + yt)^2 + z^2 <= rs^2) ||
((x + xt)^2 + (y + yt)^2 + z^2 <= rs^2), {x, y, z}];

RegionPlot3D[VT, PlotTheme -> "Detailed", PlotPoints -> 30,
PlotStyle -> Directive[RGBColor[1, 1, 0], Opacity[0.5‘]],
Mesh -> None]

Out[1]:=

The volume Vpr op of VS can be calculated using the function Volume[]

In[2] := Vprop = Volume[VS]

Out[2]:= 0.824842
Alternatively the equation for the volume of four spheres with the same radius can be used:

Vpr op = 4 · 4

3
πr 3

s (A.8)

which in Mathematica results in

In[2] := 4*4/3*Pi*rs^3 = Volume[VS]
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Out[2]:= 0.824842
The two results differ by 3.23188675821484×10−9 m3.
The diagonal elements of the inertia matrix (per unit density) are calculated accordingly:

In[3] := Ixx = Integrate[z^2 + y^2, {x, y, z} \[Element] VS]

Out[3]:= 1.900211

In[4] := Iyy = Integrate[z^2 + x^2, {x, y, z} \[Element] VS]

Out[4]:= 0.572216

In[5] := Izz = Integrate[x^2 + y^2, {x, y, z} \[Element] VS]

Out[5]:= 2.428110
And we can verify that the origin is congruent to the CoM by calculating the non-diagonal components:

In[6] := Ixy = -Integrate[x*y, {x, y, z} \[Element] VS]

Out[6]:= −2.873136×10−18 +3.231352×10−25i

In[7] := Ixz = -Integrate[x*z, {x, y, z} \[Element] VS]

Out[7]:= 0.

In[2] := Iyz = -Integrate[y*z, {x, y, z} \[Element] VS]

Out[8]:= 0.
While the latter two are 0 even to machine precision, the first has a real component in the order of magni-

tude of 10−18 and an imaginary component in the order of magnitude of 10−25. Although it might be recorded
as a strange result, the values are so small that they are consistent with 0. The complexity of the result might
be due to the method used by Mathematica to calculate the integral.





B
FORMATION DEPENDANCIES VALIDATION

For the validation of the equations (4.45) and (4.59) an analytical case scenario is defined so that, for a three-

point formation, ~ωi and ~̇ωi can be evaluated independently from ~Ri , ~̇Ri and ~̈Ri . The schema is presented in
Figure B.1.

xp yp

zp

λ1
λ2

λ3

xp
yb�p

zp
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xb
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θ3
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cm ya
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Figure B.1: The various orientation transformations used to derive the analytical orbits of three particles for validation.

The three S/C perform motions around a central point in time t with their respective longitudes being
defined as:

λ1 = 2t + π

12
sin(2t ); (B.1)

λ2 = 2t − π

12
sin(2t )+ 2π

3
; (B.2)

λ3 = 2t + 4π

3
. (B.3)

The time derivatives of the longitudes are:

λ̇1 = 2+ π

6
cos(2t ); (B.4)

λ̇2 = 2− π

6
cos(2t ); (B.5)

λ̇3 = 2 (B.6)

and

λ̈1 =−π
3

sin(2t ); (B.7)

λ̈2 = π

3
sin(2t ); (B.8)
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λ̈3 = 0. (B.9)

The points lie on the x-y-plane of the original reference frame, defined by the letter p (as in Planar). The
radial distances of S/C1 and S/C2 are chosen as constants of value 1. The radial distance of S/C3 is defined as:

p r3 = 1+2

[
cos

2π

3
−cos

(
2π

3
+ π

12
sin(2t )

)]
(B.10)

in order to keep the origin of reference frame p at the geometrical barycenter of the formation.
Its time derivatives are derived analytically as:

p ṙ3 = π

3
sin

(
2π

3
+ π

12
sin(2t )

)
cos(2t ) (B.11)

and
p r̈3 =−π

2

18
cos

(
2π

3
+ π

12
sin(2t )

)
cos2(2t )− 2π

3
sin

(
2π

3
+ π

12
sin(2t )

)
sin(2t ) (B.12)

Using the above equations we can define the orbits of the three S/C in p, respectively, as:

p~r1 =
cosλ1

sinλ1

0

 ; (B.13)

p~r2 =
cosλ2

sinλ2

0

 ; (B.14)

p~r3 = p r3

cosλ3

sinλ3

0

 ; (B.15)

Their velocities and accelerations in p are, therefore, derived analytically as:

p~̇r1 = λ̇1

−sinλ1

cosλ1

0

 ; (B.16)

p~̇r2 = λ̇2

−sinλ2

cosλ2

0

 ; (B.17)

p~̇r3 = p ṙ3

cosλ3

sinλ3

0

+ λ̇3
p r3

−sinλ3

cosλ3

0

= p ṙ3

cosλ3

sinλ3

0

+2p r3

−sinλ3

cosλ3

0

 (B.18)

and

p~̈r1 = λ̈1

−sinλ1

cosλ1

0

+ λ̇2
1

−cosλ1

−sinλ1

0

 ; (B.19)

p~̈r2 = λ̈2

−sinλ2

cosλ2

0

+ λ̇2
2

−cosλ2

−sinλ2

0

 ; (B.20)

p~̈r3 = p r̈3

cosλ3

sinλ3

0

+ λ̇3
p ṙ3

−sinλ3

cosλ3

0

+2p ṙ3

−sinλ3

cosλ3

0

+2λ̇3
p r3

−cosλ3

−sinλ3

0

=

= p r̈3

cosλ3

sinλ3

0

+4p ṙ3

−sinλ3

cosλ3

0

+4p r3

−cosλ3

−sinλ3

0

 .

(B.21)
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Next, in order to create a non-trivial solution, the p reference frame is given a tilt around the y-axis by an
angle θ2 defined as:

θ2 = 2π

3
+ π

12
sin t (B.22)

Its time derivatives are derived analytically as:

θ̇2 =− π

12
cos t (B.23)

and
θ̈2 =− π

12
sin t . (B.24)

The direction-cosine matrix for the rotation about the y-axis is

C2 =
 cosθ2 0 sinθ2

0 1 0
−sinθ2 0 cosθ2

 (B.25)

and its time derivatives are, respectively:

Ċ2 = θ̇2

−sinθ2 0 cosθ2

0 0 0
−cosθ2 0 −sinθ2

 (B.26)

and

C̈2 = θ̈2

−sinθ2 0 cosθ2

0 0 0
−cosθ2 0 −sinθ2

+ θ̇2
2

−cosθ2 0 −sinθ2

0 0 0
sinθ2 0 −cosθ2

 . (B.27)

Next another periodical rotation about the z-axis is performed, with an angle θ3 defined as:

θ3 = π

12
sin t . (B.28)

Its time derivatives are:
θ̇3 = π

12
cos t (B.29)

and
θ̈3 =− π

12
sin t . (B.30)

The direction-cosine matrix for the transformation about the z-axis is

C3 =
cosθ3 −sinθ3 0

sinθ3 cosθ3 0
0 0 1

 (B.31)

and its time derivatives are, respectively:

Ċ3 = θ̇3

−sinθ3 −cosθ3 0
cosθ3 −sinθ3 0

0 0 0

 (B.32)

and

C̈3 = θ̈3

−sinθ3 −cosθ3 0
cosθ3 −sinθ3 0

0 0 0

+ θ̇2
3

−cosθ3 sinθ3 0
−sinθ3 −cosθ3 0

0 0 0

 (B.33)

Furthermore, the whole frame is centered at a reference point~r0 which moves in a circular motion around
the inertial reference frame on the x-y-plane, with a time-dependent latitude of

λcm = t − π

12
sin(2t ) (B.34)
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The time-derivatives of the reference point latitude are:

λ̇cm = 1− π

6
cos(2t ) (B.35)

and
λ̈cm = π

3
sin(2t ) (B.36)

The reference point orbit is therefore defined as

~r0 = 3

cosλcm

sinλcm

0

 (B.37)

Its velocity and acceleration are derived, analytically, as:

~̇r0 = 3λ̇cm

−sinλcm

cosλcm

0

 (B.38)

and

~̈r0 = 3λ̈cm

−sinλcm

cosλcm

0

+3λ̇2
cm

−cosλcm

−sinλcm

0

 (B.39)

Apart from the translation, the formation orientation is defined in the Hill’s reference frame of the refer-
ence point. The last transformation matrix to the inertial reference frame is, therefore:

C0 =
cosλcm −sinλcm 0

sinλcm cosλcm 0
0 0 1

 (B.40)

and its time-derivatives are, respectively

Ċ0 = λ̇cm

−sinλcm −cosλcm 0
cosλcm −sinλcm 0

0 0 0

 (B.41)

and

C̈0 = λ̈cm

−sinλcm −cosλcm 0
cosλcm −sinλcm 0

0 0 0

+ λ̇2
cm

−cosλcm sinλcm 0
−sinλcm −cosλcm 0

0 0 0

 . (B.42)

Let us now calculate, analytically, the positions, velocities and accelerations of the three S/Ci in the iner-
tial reference frame according to the transformations made:

• rotation about the y-axis from reference frame p to reference frame b,

b~ri =C2
p~ri , (B.43)

and calculation of velocities and accelerations in b by time-differentiation:

b~̇ri = Ċ2
p~ri +C2

p~̇ri ; (B.44)

b~̈ri = C̈2
p~ri +2Ċ2

p~̇ri +C2
p~̈ri . (B.45)

• rotation about the z-axis from reference frame b to a,

a~ri =C3
b~ri (B.46)

and calculation of velocities and accelerations in a by time-differentiation:

a~̇ri = Ċ3
b~ri +C3

b~̇ri (B.47)

and
a~̈ri = C̈3

b~ri +2Ċ3
b~̇ri +C3

b~̈ri (B.48)
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• rotation from the Hill’s reference frame of, and translation to~r0:

~Ri =C0
a~ri +~r0 (B.49)

and calculation of velocities and accelerations in the inertial reference frame by time-differentiation:

~̇Ri = Ċ0
a~ri +C0

a~̇ri +~̇r0 (B.50)

and
~̈Ri = C̈0

a~ri +2Ċ0
a~̇ri +C0

a~̈ri +~̈r0. (B.51)

Let us now derive analytically the body-fixed reference frame angular velocities and accelerations. Let us
start by defining the rotation of p in the inertial reference frame as a sum of the rotations of, respectively, the
Hill’s reference frame of~r0, the reference frame a w.r.t. it, and the reference frame b w.r.t. a:

~ωp =Cτ
2

Cτ
3

Cτ
0

 0
0

λ̇cm

+
 0

0
θ̇3

+
 0
θ̇2

0

=Cτ
2

 0
θ̇2

λ̇cm + θ̇3

 . (B.52)

The rightmost simplification can be performed because C3 and C0 are rotations about the z-axis.
The angular velocity vector of p is derived by time-differentiation as:

~̇ωp = Ċτ
2

 0
θ̇2

λ̇cm + θ̇3

+Cτ
2

 0
θ̈2

λ̈cm + θ̈3

 . (B.53)

In Chapter 4 we defined the body-fixed reference points pointing towards the incenter of the formation.
This relation can only be derived for S/C3 in the context of this validation, as, by definition, the other two S/C
have a symmetrical motion w.r.t. the line passing through S/C3 and the origin of p.

Transformation from body-fixed reference frame to p for S/C3 is defined by the direction-cosine matrix
about the z-axis

C3/p =
−1 0 0

0 −1 0
0 0 1

cosλ3 −sinλ3 0
sinλ3 cosλ3 0

0 0 1

 (B.54)

whose time-derivative is

Ċ3/p = λ̇3

−1 0 0
0 −1 0
0 0 1

−sinλ3 −cosλ3 0
cosλ3 −sinλ3 0

0 0 0

 . (B.55)

The change of sign for x and y are needed to point the x-axis towards the barycenter, rather than away from
it.

The value of the angular velocity vector of S/C3 for the validation, is finally obtained as

~ω3 =Cτ
3/p

~ωp +
 0

0
λ̇3

=Cτ
3/p

~ωp +
0

0
2

 (B.56)

and the angular acceleration vector is

~̇ω3 = Ċτ
3/p

~ωp +
0

0
2

+Cτ
3/p~̇ωp . (B.57)

Let us recall, however, that the incenter is just a middlepoint that we can easily replace with any other co-
planar point and we still would be able to validate all the equations apart from Equations (4.38) and (4.56).
Therefore, let us substitute it with the barycenter, by replacing Equation (4.1) with

~rcm =
~R1 +~R2 +~R3

3
, (B.58)
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Equation (4.38) with

~̇rcm =
~̇R1 + ~̇R2 + ~̇R3

3
(B.59)

and Equation (4.56) with

~̈rcm =
~̈R1 + ~̈R2 + ~̈R3

3
. (B.60)

The transformation matrix from body-fixed reference frame of S/Ci to p and its time-derivative are un-
changed. They are calculated, respectively, as:

C∗
i /p =

−1 0 0
0 −1 0
0 0 1

cosλi −sinλi 0
sinλi cosλi 0

0 0 1

 (B.61)

and

Ċ∗
i /p = λ̇i

−1 0 0
0 −1 0
0 0 1

−sinλi −cosλi 0
cosλi −sinλi 0

0 0 0

 . (B.62)

Finally, the angular velocity vector of the geometrical barycenter-dependent body-fixed reference frame
w.r.t. the inertial reference frame is calculated by addition and transformation to body-fixed coordinates,

~ω∗
i =C∗τ

i /p

~ωp +
 0

0
λ̇i

 (B.63)

and the angular acceleration vector is the time-derivative:

~̇ω∗
i = Ċ∗τ

i /p

~ωp +
 0

0
λ̇i

+C∗τ
i /p

~̇ωp +
 0

0
λ̈i

 . (B.64)

You can easily verify that
~ω3 ≡~ω∗

3 (B.65)

since Equations (B.61)–(B.64) are equivalent to Equations (B.54)–(B.57) for i = 3.

The consistency of ~Ri , ~̇Ri and ~̈Ri can be verified by integrating the respective derivatives numerically using
the Matlab function trapz() and subtracting the results, i.e.

δ~Ri (t ) = ~Ri (t )−
∫ t

0

~̇Ri d t (B.66)

δ~̇Ri (t ) = ~̇Ri (t )−
∫ t

0

~̈Ri d t (B.67)

The same can be done with ~ωi and ~̇ωi , i.e.

δ~ωi (t ) =~ωi (t )−
∫ t

0
~̇ωi d t (B.68)

The consistency between ~Ri and ~ωi can be verified by calculating x̂i , ŷi and ẑi from Equations (4.3), (4.7)
and (4.5) and using relation (4.16) to calculate ˙̂xi , ˙̂yi , ˙̂zi for the numerical integration, i.e.

δd̂i (t ) = d̂i (t )−
∫ t

0
Cτ

n/iωi × d̂i d t (B.69)

where Cn/i is the transformation matrix from inertial to body-fixed reference frame of S/Ci , calculated using
Equation (4.8) and d̂i is any of x̂i , ŷi or ẑi calculated via Equations (4.3) to (4.7).

Figure B.2 shows the result for all the above, calculated between t0 = 0 and tend = 2π for a sample size of
201 and 2001. If the respective derivatives are consistent, then the error should scale down with increasing
sample size, which is demonstrated in the figure.

Some validation samples are reported in Table B.1.
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Table B.1: Validation values for Equations (4.45) and (4.59).
*~ω1, ~ω2, ~̇ω1 and ~̇ω2 are derived for~rcm = (~R1 + ~R2 + ~R3)/3. Use Equations (B.58), (B.59) and (B.60) instead of (4.1), (4.38) and (4.56) for
the calculations of~rcm , ~̇rcm , ~̈rcm .

t 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4
2.50000 2.09728 -0.18301 -2.43624 -2.50000 -2.35840 -0.06699 2.03464

~R1 0.00000 2.34297 3.68301 2.46706 0.00000 -2.43966 -3.25000 -2.28926
-0.86603 0.19649 0.70711 0.19649 -0.86603 0.24413 0.96593 0.24413
3.25000 3.24383 0.92802 -2.39876 -3.25000 -2.98656 -0.80302 2.88005

~R2 0.86603 1.71269 2.88264 0.68019 -0.86603 -1.36237 -2.65086 -0.81035
0.43301 0.73333 -0.35355 -0.53683 0.43301 0.91112 -0.48296 -0.66699
3.25000 2.45312 -0.74501 -2.95924 -3.25000 -2.44927 0.87001 2.87954

~R3 -0.86603 0.44434 2.43435 1.35275 0.86603 -0.69797 -3.09914 -1.40039
0.43301 -0.92982 -0.35355 0.34034 0.43301 -1.15525 -0.48296 0.42285

-0.22672 -1.17990 -4.18534 -0.89581 -0.22672 1.53138 3.52560 1.64577
~̇R1 3.58370 2.45363 0.10328 -2.40752 -3.84550 -2.11250 0.28006 1.92544

0.13090 1.43547 0.00000 -1.43547 -0.13090 1.83815 0.00000 -1.83815
0.11336 -0.64742 -5.21081 -2.26352 -0.34009 1.06760 5.40405 1.86591

~̇R2 0.87555 1.76579 -0.40537 -3.43099 -0.74465 -0.97932 -1.00369 3.78064
1.04185 -0.50937 -1.54538 0.98847 1.17275 -0.42889 -2.11103 1.37744
0.11336 -2.67268 -4.31624 -1.34067 0.56681 1.90103 4.78274 0.98832

~̇R3 -0.17164 3.57481 0.30209 -1.95572 0.30254 -4.70241 0.72363 2.08815
-1.17275 -0.92610 1.54538 0.44700 -1.04185 -1.40926 2.11103 0.46071
-0.91570 -3.54938 -0.11391 4.74869 -1.47756 4.73927 -0.86288 -2.70411

~̈R1 -0.33474 -0.53697 -5.82369 -1.01677 -0.09731 2.32632 3.48195 2.08351
5.57468 -1.99499 -1.35620 -1.99499 5.57468 -1.71743 -2.17325 -1.71743
0.29048 -3.76100 -2.57534 4.81796 1.51741 2.08681 6.24974 -7.49044

~̈R2 -1.24843 2.16634 -8.59288 2.91024 1.70188 -1.99166 8.00198 -3.03494
-1.30828 -2.92309 2.15906 1.85915 -0.63881 -4.05437 3.10965 1.86194
-1.41740 -5.19624 2.68925 2.93997 2.00278 5.68054 -5.38686 -2.31207

~̈R3 1.58316 2.03272 -6.47561 1.76863 -1.60457 -3.99677 9.40825 -2.71067
-4.26640 4.91808 -0.80286 0.13584 -4.93588 5.77181 -0.93641 -0.14451
0.63930 -0.41168 -1.07735 -0.33893 0.18585 -0.02013 -1.47168 -0.11052

~ω∗
1 -0.26180 -0.82117 -0.00000 0.54966 0.26180 -0.79037 -0.00000 1.12770

2.15450 1.22865 0.39905 1.46963 2.41630 1.72942 1.08206 1.60648
-0.54638 -0.82117 0.53867 0.56835 0.13380 -0.79037 0.73584 0.65956

~ω∗
2 -0.42275 0.41168 0.93301 -0.30655 -0.29185 0.02013 1.27452 -0.92136

1.10730 1.22865 1.44625 1.46963 1.36910 1.72942 2.12926 1.60648
-0.09293 0.87176 0.53867 -0.44321 -0.31965 0.57311 0.73584 -1.06067

~ω3 0.68455 0.28955 -0.93301 -0.46965 0.03005 0.54464 -1.27452 -0.39862
1.63090 1.22865 0.92265 1.46963 1.89270 1.72942 1.60566 1.60648

-0.75731 -1.59596 0.18512 1.13724 0.68877 -2.07336 -0.25288 2.66353
~̇ω∗

1 -1.61334 0.28119 1.32880 -0.17890 -0.46901 -1.08301 2.43459 -0.58688
-0.16737 -1.77485 0.18512 1.96379 0.04866 -1.31410 -0.06776 1.12651
-0.57583 0.28119 2.03526 -1.07433 -0.44493 -1.08301 3.56953 -2.60012

~̇ω∗
2 0.89035 1.59596 -1.38881 -0.41369 -0.22187 2.07336 -1.76887 -0.82351

-0.16737 0.31954 0.18512 -0.13060 0.04866 0.78029 -0.06776 -0.96788
1.41742 0.92968 -1.73185 -0.12153 0.04606 2.23189 -2.64932 -0.12249

~̇ω3 0.10217 -1.32735 -0.78613 1.14480 0.66363 -0.70029 -1.82158 2.72467
-0.16737 -0.72765 0.18512 0.91659 0.04866 -0.26690 -0.06776 0.07931
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Figure B.2: The difference of various validation values and the numerical integration of their derivatives calculated with Matlab function
trapz. It shows that the residuals scale down of a factor of 100 for sample size increasing by 10.



C
VERIFICATION OF DERIVATIVE FUNCTIONS

C.1. ANGULAR VELOCITY VS. BODY FIXED DIRECTIVES

Simulated body-fixed reference frame directives d̂i , where d̂ is any of x̂, ŷ , ẑ and angular velocity vector ~ωi ,
relative to S/Ci , i = 1,2,3 (Chapter 4) are verified for consistency by showing that the numerical integration

of ˙̂di =C−1
n/i~ωi × d̂i does not diverge over time:

δd̂i (t j ) = d̂i (t j )−
∫ t j

t0

C−1
n/i~ωi (t )× d̂i (t )d t − d̂i (t0) '~0 (C.1)

Results are shown in Figures C.1, C.2 and C.3
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Figure C.1: Verification of results of angular velocities vs. directive consistency for S/C1.
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Figure C.2: Verification of results of angular velocities vs. directive consistency for S/C2.
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Figure C.3: Verification of results of angular velocities vs. directive consistency for S/C3.
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C.2. ANGULAR ACCELERATION VS. VELOCITY VECTORS

In order to verify whether the analytically obtained angular acceleration vectors ~̇ωi are the actual time-derivatives
of the angular velocity vectors~ωi (relative to S/Ci , i = 1,2,3, in Chapter 4), ~̇ωi are integrated numerically over
time and compared to ~ωi according to the following:

δ~ωi (t j ) =~ωi (t j )−
∫ t j

t0

~̇ωi (t )d t −~ωi (t0) (C.2)

Results are shown in Figure C.4.
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Figure C.4: Verification of results of angular accelerations vs. angular velocities for S/C1, S/C2 and S/C3.

C.3. EULER ANGLES
In order to verify whether the Euler angle time-rates θ̇ are the actual time-derivatives of θ the former are
numerically integrated over time and compared to the latter as following:

δθ(t j ) = θ(t j )−
∫ t j

t0

θ̇(t )d t −θ(t0) (C.3)

The results are shown in Figure C.5.
In order to verify whether the Euler angle accelerations θ̈ are the actual time-derivatives of θ̇ the former

are numerically integrated over time and compared to the latter as following:

δθ̇(t j ) = θ̇(t j )−
∫ t j

t0

θ̈(t )d t − θ̇(t0) (C.4)

The results are shown in Figure C.6.
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Figure C.5: Verification of results of Euler angles time-rates vs Euler angles for S/C1, S/C2 and S/C3.
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Figure C.6: Verification of results of Euler angle accelerations vs Euler angle time-rates for S/C1, S/C2 and S/C3.
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C.4. BREATH ANGLES
In order to verify whether the analytically evaluated breath angle time-rates α̇i are the actual time-derivatives
of αi for S/Ci , i = 1,2,3 the former are numerically integrated and compared to the latter as following:

δαi (t j ) =αi (t j )−
∫ t j

t0

α̇i (t )d t −αi (t0). (C.5)

To verify that the analytically evaluated breath angle divergence accelerations α̈i are the actual time-
derivative of the speeds α̇i , the the former are numerically integrated and compared to the latter as following:

δα̇i (t j ) = α̇i (t j )−
∫ t j

t0

α̈i (t )d t − α̇i (t0). (C.6)

The results are shown in Figure C.7
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Figure C.7: Verification results of αi vs. α̇i vs. α̈i for S/Ci , i = 1,2,3.





D
DISCRETE FOURIER ANALYSIS WITH fft

The Fourier series of a periodical signal x(t ) with period T = 1/ f0 is:

x(t ) = a0 +
N∑

n=1

[
an cos(2πn f0t )+bn sin(2πn f0t )

]= a0 +
N∑

n=1
cn cos(2πn f0t +ϕn) (D.1)

f0 is the fundamental harmonic. The coefficients an , bn and cn can be evaluated for a time-series using the
Matlab function fft() [52].

We present here an example on how the procedure to extract cn = c( fn) from a time series x pans out.
First of all let us create a time series as a combination of sinusoids of different frequencies:

%Time epochs
t = 0:0.001:2;

% Signal made up of 4 sinusoidal components
x = sin (4*2* pi*t) +...

3* cos (7*2* pi*t) +...
0.5* sin (13*2* pi*t) +...
2* cos (17*2* pi*t);

the frequencies in the example are fk = 4,7,13,17, whose common denominator is f0 = 1. Since the time-
period is tend = 2, the fft() function will resolve the coefficients at a frequency rate of f0out = 1/tend = 0.5,
up to fmax = 1/∆t , where ∆t = 0.001 in the example.

Moreover fft() returns a double sided spectrum which is mirrored about fmax , or Xc ( f ) = Xc ( f + fmax ),
whose components are

Xc ( f ) = 1

2
(a( f )+b( f )i ) (D.2)

therefore, in order to calculate c( f ) one must take into account the factor of 2 and use:

c( f ) = 2
√

a( f )2 +b( f )2 = 2
√

Xc ( f )Xc ( f )∗ (D.3)

as shown in the example.

%Use the fft () function and normalize
c = 2* abs(fft(x))/( length (t) -1);

% Calculate the frequencies . The fundamental harmonic is
%f_0 = 1/t(end) = 0.5, f(0) = 0 and f(1) = f_0
f = (0: length (c) -1)/t(end);

Figure D.1 shows the results by plotting c (y-axis) vs. f (x-axis):
Table D.1 show how close the numerically evaluated coefficients are to the expected ones.
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Figure D.1: left: the time-domain x series. right: the Fourier series magnitude coefficients plotted for each frequency.

Table D.1: Comparison between the expected Fourier harmonic components c at frequency f and the ones calculated numerically
through fft().

f [1/time u] c [sign. u] c numerical [sign. u]

4 1 1.000414897079195
7 3 3.004416133747166

13 0.5 0.499658499264590
17 2 1.999937124110733



E
SPECTRAL DENSITY OF A RANDOM NOISE

E.1. ABOUT THE POWER SPECTRAL DENSITY
The PSD of a time-continuous function is the distribution of signal power over frequency [47]. Power, used in
this context, refers to the squared norm of the signal, which might not always correspond to physical power.
The term was born in the context of electronics, where the power dissipated by a voltage signal on a resistor
would correspond to an actual physical power with units in watts.

Given a signal x(t ), whose Fourier transform X ( f ) is

X ( f ) = lim
T→∞

∫ T

0
x(t )e−2π f i t d t (E.1)

as a function of frequency f , its PSD Sxx is defined as the squared norm of X ( f ) averaged over an infinite
interval of time T →∞:

Sxx ( f ) = lim
T→∞

1

T
E [X ( f )X ∗( f )] (E.2)

where E [] is the statistical average (or weighted average, or expected value) and X ∗( f ) is the complex conju-

gate of X ( f ). The product X ( f )X ∗( f ) can also be expressed as
∣∣X ( f )

∣∣2 or squared norm.
In order to understand why the PSD is calculated as such, let us work out Equation (E.2) from the auto-

correlation function of x(t ), Rxx (τ), defined as

Rxx (τ) = E [x(t )x(t +τ)] = lim
T→∞

1

T

∫ T

0
x(t )x(t +τ)d t . (E.3)

First of all, if we set τ= 0, the above becomes a zero-lag autocorrelation:

Rxx (0) = E [x(t )2] = lim
T→∞

1

T

∫ T

0
x(t )2d t (E.4)

which represents the total average power carried by the signal for an infinite averaging time (If you remove
the 1/T term, then the integral returns the total energy). Again, the term power used here does not necessarily
mean physical power (with units in watts).

The squared norm of the Fourier transform X ( f ) is calculated as:

X ( f )X ∗( f ) =
(∫ T

0
x(t )e−2π f i t d t

)(∫ T

0
x(s)e2π f i s d s

)
=

=
∫ T

0

∫ T

0
x(t )x(s)e−2π f i (t−s)d td s

(E.5)

and, by applying E [] to both terms one obtains:

E [X ( f )X ∗( f )] =
∫ T

0

∫ T

0
E [x(t )x(s)]e−2π f i (t−s)d td s (E.6)
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Now, the following procedure is used to calculate this double integral: let us use a change of variable:
s = t +τ and substitute into E [x(t )x(s)] = E [x(t )x(t +τ)] = Rxx (τ) and Equation (E.6), to obtain

E [X ( f )X ∗( f )] =
∫ T

0

∫ T

0
Rxx (τ)e2π f iτd td s (E.7)

Now, in order to evaluate the above integral let us use another set of variables

τ=s − t

η=s + t
(E.8)

and calculate the Jacobian J (for the change of variable theorem in the integration):

J =
∣∣∣∣∣ ∂τ∂t

∂τ
∂s

∂η
∂t

∂η
∂s

∣∣∣∣∣=
∣∣∣∣−1 1

1 1

∣∣∣∣=−2 (E.9)

Let us refer to figure E.1 for the change of integration interval: assuming to integrate first by η, we have

A B

CDT

T T­T

T

2T

A

B

C

D

t

s

τ

η

Figure E.1: Change of variable domains in Equation (E.8)

that τ belongs in the interval −T ≤ τ ≤ T , and the area inside the ABC D square in E.1-right is defined by
|τ| ≤ η≤ 2T −|τ|. Equation (E.7) is therefore evaluated as [47]:

E [X ( f )X ∗( f )] =
∫ T

−T

∫ 2T−|τ|

|τ|
Rxx (τ)e−2π f iτ|J |−1dηdτ=

=1

2

∫ T

−T

∫ 2T−|τ|

|τ|
Rxx (τ)e−2π f iτdηdτ=

=T
∫ T

−T

(
1− |τ|

T

)
Rxx (τ)e−2π f iτdτ

(E.10)

By dividing the above by T →∞ one obtains, finally:

Sxx ( f ) = lim
T→∞

1

T
E [X ( f )X ∗( f )] =

∫ ∞

−∞
Rxx (τ)e−2π f iτdτ (E.11)

This relationship shows that the PSD is none other than the Fourier transform of the autocorrelation func-
tion of x(t ).

Using the Wiener–Khinchin theorem the double relationship

Rxx (τ) =
∫ ∞

−∞
dSxx ( f )e2π f iτ =

∫ ∞

−∞
Sxx ( f )e2π f iτd f (E.12)

also holds from Equation (E.11). Setting τ = 0 in Equation (E.12) and recalling Equation (E.4), the so-called
Parseval’s identity is obtained:

lim
T→∞

1

T

∫ T

0
x(t )2d t =

∫ ∞

−∞
Sxx ( f )d f (E.13)



E.1. ABOUT THE POWER SPECTRAL DENSITY 147

showing that Sxx ( f )d f is the infinitesimal power carried by the signal at frequency f , or that∫ f2

f1

Sxx ( f )d f (E.14)

is the average power contained between two frequencies f1 and f2.
Another important aspect worth noting is that S( f ) = S(− f ), therefore the PSD is symmetrical w.r.t. to

f = 0, and ∫ ∞

−∞
Sxx ( f )d f = 2

∫ ∞

0
Sxx ( f )d f = a2

2
. (E.15)

Take into consideration that Sxx ( f ) can be defined both ways as a double-sided spectrum for f = (−∞,∞) or
single-sided, for f = [0,∞). Keep in mind that, according to their definition, factor of 2 is applied.

Looking into an example, the average power of a process (Figure E.2)

0 T
a
/4 T

a
/2 3T

a
/4 T

a

-a

0

a

Figure E.2: The signal x(t ) fog Equation (E.16). The period showed is Ta = 1/ fa .

x(t ) = a sin(2π fa t ) (E.16)

is

E [a2 sin2(2π fa t )] = lim
T→∞

1

T

∫ T

0
a2 sin2(2π fa t )d t = a2

2
(E.17)

The PSD of x(t ) is, without much of a surprise (Figure E.3),

-f
a

0 f
a

0

Figure E.3: The vertical arrows represent the Dirac-delta function at frequencies − fa and fa

Sxx ( f ) = a2

4

(
δ( f − fa)+δ( f + fa)

)
(E.18)



148 E. SPECTRAL DENSITY OF A RANDOM NOISE

meaning that the average signal power is concentrated at frequencies fa and− fa over an infinitesimal interval
(δ( f − f ′) being the Dirac delta function) and both the frequencies carry half the total average power, or∫ ∞

−∞
Sxx ( f )d f = 2

∫ ∞

0
Sxx ( f )d f = a2

2
(E.19)

E.2. POWER AND AMPLITUDE SPECTRAL DENSITY OF A RANDOM NOISE
For a random noise x(t ) with an average value µx = E [x(t )] = 0, the expected value of its square is actually its
variance [47]:

E [x(t )2] = E [(x(t )−E [x(t )])2] =σ2
x (E.20)

which means that the net power of a zero-mean random signal is its variance. Observing, therefore, that same
average power in a finite frequency bandwidth [0,F ], the relation with the expected value of the PSD can be
deducted, from equations Equations (E.4) and (E.13), as:

σ2
x = 2

∫ F

0
Sxx ( f )d f = 2F · 1

F

∫ F

0
Sxx ( f )d f = 2F ·E [Sxx ( f )]. (E.21)

If Sxx ( f ) is already representative of a single-sided PSD, the 2 can be dropped in Equation (E.21) and assume
thatσ2

x = F ·E [Sxx ( f )]. The same result is obtained when integrating to f →∞ when the PSD is zero for f > F .
In that case we talk about a band-limited white noise.

The bottom line is that, the larger the observation bandwidth of a given random noise, the smaller the
average PSD, as the information about the signal power is contained solely in its variance.

Sometimes the Amplitude Spectral Density (ASD) of a random noise is defined. This is non other than the
square root of the PSD or S1/2

xx ( f ). The implication of using this notation is that, instead of defining E [Sxx ( f )]
as an actual average, we are assuming it as the variance of a zero-mean quantity whose absolute value at each
frequency is the ASD. This is convenient, as we can define a random noise at different density intervals, such
as σ=√

E [Sxx ( f )] (∼68.27% of all the amplitudes for a white noise), 2σ (∼95.45%) or 3σ (∼99.73%).
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THE PERIODOGRAM FUNCTION

F.1. HOW TO USE THE PERIODOGRAM FUNCTION
The Matlab built-in periodogram() function is used to calculate the PSD of a signal [54].

As an example, let us define a sinusoidal

xs = sin(2πt ) (F.1)

with frequency fs = 1 Hz over a period T = 1000 s and let us discretize the observation with a sampling fre-
quency fsamp = 200 Hz (or every 0.005 s). The periodogram() function calculates the one-sided PSD of the
signal with a resolution of ∆ f = 1/T and a range of frequencies 0 ≤ f ≤ fsamp /2, where the 2 factor is due to
Nyquist’s law.

In Matlab this is performed using the following lines:

T = 1000; % Observation period

f_samp = 200; % Sampling frequency

t = 0:1/ f_samp :T; %Time - series

x_s = sin (2* pi*t);

[Sxx_s , f] = periodogram (x_s ,[], length (t) -1,f_samp ,'psd ','onesided ');

The second input "[]" requires a discrete window function (that here is left empty). The output is a fre-
quency series such that the integral in Equation (E.14) can be solved numerically using the trapz() function
(trapezoidal integration). In this case, by using trapz(f,Sxx_s) the output is expected to be 0.5, i.e. the
average power of a sinusoid of amplitude 1.

Because this is a Matlab convention, it is more opportune to transform the output into an histogram,
i.e., by transferring the areas under the trapeziums into rectangles with base ∆ f . This is done by adding the
following lines:

Sxx_hist = zeros(size(Sxx_s));

%At the edges
Sxx_hist (1) = (3* Sxx_s (1) + Sxx_s (2))/8;
Sxx_hist (end) = (3* Sxx_s(end -1) + Sxx_s(end))/8;

%In the middle
Sxx_hist (2: end -1) = (3* Sxx_s (2: end -1) + Sxx_s (1: end -2) /2 +...

Sxx_s (3: end)/2) /4;

The integral is then resolved using sum(Sxx_hist)/T, which also returns 0.5. Figure F.1 shows the output
around the frequency f = 1 Hz for both the trapezium and the histogram solutions.
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Figure F.1: Periodogram of single-harmonic sinusoid of frequency 1 Hz and amplitude 1 calculated with periodogram(). For a contin-
uous f the PSD SxxS would be a Dirac-delta at 1 Hz with value 0.5. The blue line "trapz" represents the discrete PSD curve enveloping
the 0.5 area which can be solved numerically using the trapz() function in Matlab. The stems "hist" represent the same PSD as an
histogram with bin size 0.001 Hz.

F.2. PERIODOGRAM OF RANDOM SIGNALS
Let us now study a uniformly distributed random signal. Two signals x1 and x2 are generated using the
normrnd() function in Matlab, both with a mean µ = 0 and standard deviation σ = 1. x1 is sampled at
fsamp1 = 200 Hz and x2 is sampled at fsamp2 = 20 Hz, on a period T = 1000 s. The periodogram() func-
tion is then used to calculate the PSD of the signals, respectively Sxx1 and Sxx2.

T = 1000; % Measurement period [s]

f_samp_1 = 200; %Hz
f_samp_2 = 20; %Hz

t_1 = 0:1/ f_samp_1 :T; %s
t_2 = 0:1/ f_samp_2 :T; %s

% Normally distributed random variables with sigma = 1
x_1 = normrnd (0,1,[1, length (t_1)]);
x_2 = normrnd (0,1,[1, length (t_2)]);

% Periodograms
[Sxx_1 , f_1] = periodogram (x_1 ,[], length (t_1) -1,f_samp_1 ,'psd ',...

'onesided ');
[Sxx_2 , f_2] = periodogram (x_2 ,[], length (t_2) -1,f_samp_2 ,'psd ',...

'onesided ');

The PSDs are shown in Figure F.2. The two periodograms are evaluated with the same frequency step
∆ f = 1/T , but the upper frequency, due to Nyquist’s law, is F1 = 100 Hz for x1 and F2 = 10 Hz for x2. Recalling
Equation (E.21) (single sided, i.e. no factor of 2 is applied), we expect the average PSDs to be Sxx1 =σ2/100 =
0.01 Hz−1 and Sxx2 = σ2/10 = 0.1 Hz−1. In fact it is readily visible that Sxx1 is about 10 times smaller than
Sxx2. Using the mean() function we obtain values of 0.0100 and 0.1014 respectively for this specific case, the
latter being less accurate, since the sample is 10 times smaller.
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Figure F.2: left: the periodogram estimate Sxx1 of random signal x1, whose maximum analyzable frequency is F1 = 100 Hz. right: the
periodogram estimate Sxx2 of random signal x2, whose maximum analyzable frequency is F2 = 10 Hz. Sxx1 is on average 10 times larger
than Sxx2.

F.3. PERIODOGRAM OF ACCELERATION
We can extrapolate numerically the accelerations in a signal by double integration. The acceleration of a
signal x(t ) at ti , ẍ(ti ), can be estimated as:

ẋ(ti ) = fsamp (x(ti+1)−x(ti )) (F.2)

ẍ(ti ) = fsamp (ẋ(ti+1)− ẋ(ti )) (F.3)

The value of ẍ(ti ) is actually the average acceleration between two bins ti ≤ t ≤ ti+1. Since the double deriva-
tive of a harmonic is proportional to the square of the angular frequency ω = 2π f , and the PSD of x, Sxx , is
proportional to the square of its frequency domain harmonics, we expect the PSD of ẍ to be roughly

Sacc ( f ) = (2π f )4 ·Sxx ( f ) (F.4)

Because of the averaging process in Equations (F.2) and (F.3), the signal is affected by overlapping low
frequency components, causing spectral leakage at low frequencies. In order to resolve the components, a
window function h(t ) must be multiplied to x(t ). In Matlab there are predefined discrete window functions.
We show here the results with the Von Hann function hann(N) [54], where N is the size of the discrete sample
ẍ(t ).

Taking the random signal x1 in Section C.4 this is implemented with the following lines in Matlab:

%Time derivatives
dx_1 = [ f_samp_1 *( x_1 (2: end) - x_1 (1: end -1)) ,0];
ddx_1 =[ f_samp_1 *( dx_1 (2: end) - dx_1 (1: end -1)) ,0];

% Periodogram without window function
[S_acc , f] = periodogram (ddx_1 ,[], length (t_1) -1,f_samp_1 ,'psd ',...

'onesided ');

% Periodogram with window function
[S_acc_win , f] = periodogram (ddx_1 ,hann( length (t_1)),length (t_1) -1,...

f_samp_1 ,'psd ','onesided ');

Figure F.3 shows the results for both the unwindowed and windowed periodograms of ẍ. The modified
periodogram actually follows the expected trend:

Sacc ' 0.01(2π f )4 (F.5)

for the average PSD of x1 being Sxx1 = 0.01 1/Hz.
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Figure F.3: The periodogram estimate Sacc of the average accelerations ẍ of the random signal x1. The blue line is calculated without
window function ([]), the red line is calculated using a Von Hann window function (hann(length(t_1))). The dotted line shows the
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