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Abstract

In this thesis we research arithmetic progressions in random colourings of the integers. We
ask ourselves how many arithmetic progressions are contained in zero density subsets of the
integers? And what is the asymptotic distribution of the number of arithmetic progressions?
Key motivation for this research are the famous results of Van der Waerden, Szemerédi and
Green-Tao.

In chapter 1 we introduce the necessary mathematical background in the form of Ergodic
theory. Some key concepts from Ergodic theory are studied and connected to random colourings
of the integers. We spent a great deal of time defining various concepts such as zero density sets
and the arithmetic progression counting summation. We are able to derive a law of rare events
for zero density sets, with the use of moment generating functions.

Secondly, we look at different modes of convergence. Various modes of convergence like
convergence in probability, distribution, almost sure convergence and total variation are properly
defined. This is done to look at the occurrence of arithmetic progressions in zero density sets.
We proof that almost surely, zero density sets, generated by independent colourings, contain
infinitely many arithmetic progressions of any finite length. A fun application to a stochastic
analogue of the prime numbers is presented.

In chapter 3 we introduce the Chen-Stein method for Poisson approximation. First we build
the basic theory behind the method and show it’s application for proving Poisson convergence
of the length 1 arithmetic progression counting summation. We show that, by utilizing a very
general theorem of Arratia, Goldstein & Gordon, that the number of finite length arithmetic
progressions is Poisson distributed. This is the main result of this thesis. We end by giving
another application of this theorem to obtain a similar result for the occurrence of very large
progressions.

Lastly, we try to apply the transfer matrix method as an alternative method for showing
Poisson convergence. These transfer matrices are introduced, because they provide explicit
expressions and convenient ways of computation for the moment generating function of the
arithmetic progression counting summation. We obtain a rigours result for arithmetic progres-
sions of length 1, and a partial result for progressions of length 2. We emphasize that more
research is needed on this topic.
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Chapter 1

Introduction

Problems in number theory have always been a very fruitful branch of mathematics. Usually
a lot of new mathematics arises when a previously unresolved theorem is proven. Very often
proofs in number theory branch into different areas of mathematics. Problems involving subsets
of integers frequently involve techniques from probability theory. In this thesis we are concerned
with patterns in large subsets of the integers. Large integer subsets do contain many patterns.
Most commonly studied patterns are those concerning arithmetical progressions in large integer
subsets. Examples of this kind are the Van der Waerden theorem, Szemerédi and more recently
Green-Tao.

An arithmetical progression (AP) starting at a with common difference b is a collection
{a+ bi : i = 1, 2, . . . , k} ⊂ N, for k ∈ N. In this thesis we only consider progressions starting at
a = 0. We will for look these progressions in so called random subsets of the integers. Random
integer subsets are identified with random colourings of the integers. A random colouring, of
k + 1 different colours, is the realization of a sequence of random variables {ωi : i ∈ N}, such
that ωi takes on values (or colours) in {0, 1, . . . , k}. This type of random colouring partitions
the integers into k + 1 random disjoint subsets. Each of these disjoint subsets corresponds to a
random integer subset {i : ωi = α}, where α is one of the colours in {0, 1, . . . , k}. As such is the
identification of random integer subsets with random colourings.

We will mostly focus on random 2-colourings that are identically and independently dis-
tributed. Meaning that we will look at sequences {ωi : i ∈ N} with positive density, i.e with
random variables ωi such that P(ωi = 1) = p ∈ (0, 1]. The Szemerédi theorem states that
positive density subsets of the integers contain arbitrarily long arithmetic progressions.

Far less is known for integer subsets of zero density. Zero density sets, that are generated by
independent colourings, correspond to sequences {ωi : i ∈ N} such that P(ωi = 1) = pi −→ 0.
Zero density sets are of particular interest to us, because it is still unknown if they in general all
contain infinitely many arbitrary length arithmetic progressions. And even less is know about
the distribution of the number of progressions. Probably the most remarkable zero density
set containing infinitely many arbitrary length arithmetic progressions are the prime numbers
(Green-Tao).

In this thesis we will try to answer this question for zero density sets that are generated
independently by random 2-colourings. The choice to restrict ourselves to these kinds of zero
density sets is, because this creates a lot of additional structure by which we can obtain more
precise results.

We will be interested in the number of arithmetic progressions, of a fixed length, far away
from 0. Since the probability of observing arithmetic progressions converges to 0 (rare event) we
intuitively expect the number of progressions to be approximately Poisson distributed, by the
law of rare events. We will count the number of arithmetic progressions far away from 0 with
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CHAPTER 1. INTRODUCTION 2

the length k arithmetic progression counting summation.

X(k,λ)
n =

rn(λ)∑
i=n

ωiω2i · · ·ωki

Here rn(λ) is a natural number that ensures that
∑rn

i=n pi · · · pki −→ λ > 0. Most of the

results that we obtain will concern the asymptotic distribution of X
(k,λ)
n . A straightforward

approach utilizing moment generating functions will yield us a first result for arithmetic pro-
gressions of length 1. Secondly an application of the very general theorem of Arratia, Goldstein

& Gordon will ensure us that the limiting distribution of X
(k,λ)
n is that of a Poisson random

variable. This theorem will also be used to obtain a similar result for the occurrence of very long
arithmetic progressions in the interval [1, N ]. In the last chapter we introduce a more direct

method for computing the moment generating function of X
(k,λ)
n , for k = 1, 2. This method

has the advantage that it produces the exact form of the moment generating function. It is in-
spired from the transfer matrix method that is often used in statistical mechanics and dynamical
systems theory to compute partition functions.

All of these concepts and results have their mathematical basis in a branch of probability
theory called Ergodic theory. This a very broad field and thus we will only limit to some elemen-
tary concepts relevant to the subject at hand. A firm understanding of arithmetic progressions,
in random subsets of the integers, is rooted in the study of Ergodic theory.
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1.1 Ergodic theory

Ergodic theory is a field of study that studies the long term average behaviour of dynamical sys-
tems with an invariant measure. The behaviour of these dynamical systems is accounted for by
a measurable map T : X −→ X, where X is the collection of all states of the dynamical system.
Various important Ergodic theorems include the Poincaré recurrence theorem, Furstenberg &
Weiss topological multiple recurrence and Furstenberg multiple recurrence. All these theorems
assert something about the long time average behaviour of orbits of T . To give this all a firm
mathematical backbone we start with some of the basic definitions. Basic objects of Ergodic
theory are dynamical systems, thus we will make this precise.

Definition 1.1.1. A dynamical system is given by a probability space (X,Σ, µ) and a measure
preserving transformation T : X −→ X with respect to µ, i.e. µ(T−1A) = µ(A) ∀A ∈ Σ.
Moreover T is called Ergodic, if ∀E ∈ Σ : T−1(E) = E, then either µ(E) = 0 or µ(E) = 1.
This measure preserving dynamical system is denoted by the quadruple χ = (X,Σ, µ, T ).

Remark. Note that if X is taken to be any finite set and Σ a σ-algebra generated by some
subsets ofX. Also letting µ be the normalised counting measure onX and taking T : X −→ X to
be a bijection. Then the quadruple χ = (X,Σ, µ, T ) is a measure preserving dynamical system.

T is clearly a measurable map and ∀A ∈ Σ we have that µ(T−1A) =
|T−1A|
|X| = |A|

|X| = µ(A).

At first glance it is not obvious why these dynamical systems are relevant to the subject at
hand. The following example illustrates a connection between random colourings and Ergodic
theory. In particular it shows how to perform this ’game’ of colouring the integers.

Example 1.1.1 (Bernoulli shifts). We begin by defining a measure preserving system χ =
(X,Σ, µ, T ). Let X := {0, 1}N, the space of all infinite sequences consisting of only zeros and
ones. And let Σ = B be the Borel σ-algebra. Here we have that every cylinder subset of X
is open. We note that this Borel σ-algebra is generated by the cylinder sets. To the define
the probability measure we first restrict it for the cylinder sets. Let Ci1...ik be a some arbitrary
cylinder set. Then Ci1...ik := {ω ∈ X : ωi1 = αi1 , . . . , ωik = αik} for fixed i ∈ N. And let the

measure of µ∼(Ci1...ik) =
∏k
j=1 p

αi(1 − p)1−αi for all i ∈ N. By the Dynkin π − λ theorem we
can find an unique extension µ of µ∼ on the whole Borel σ-algebra. As a consequence of this
the random variables Ωi : X −→ {0, 1} ω 7−→ ωi are independent. Now that we have defined
the probability space we are just left with finding a measurable and measure preserving map.
The (left) shift, T : X −→ X defined as (ωl)l∈N 7−→ (ωl+1)l∈N suffices as such a map. Hence
χ = (X,Σ, µ, T ) is a measure preserving system. This system will turn out to be handy for
proving the Van der Waerden theorem. [1]

The long term behaviour of a measure preserving systems is described by its orbits. It is
important to know these orbits, because they give us the properties of the system. Essentially
the orbits describe what the measure preserving map T : X −→ X does to the points of X.

Definition 1.1.2. Let χ = (X,Σ, µ, T ) be a measure preserving system and let x ∈ X. Then
the orbit of x is the set {Tn(x) : n ∈ N}.

An interesting property of measure preserving systems is that for most points x ∈ X, the
points in it’s orbit happen infinitely often. This behaviour is known as recurrence. This recur-
rence behaviour leads to the question; do orbits return back to the same point? Formally, if
x ∈ A ⊂ X is a neighbourhood of x, can we find a n ∈ N such that Tn(x) ∈ A?
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1.2 Recurrence theorems

The first result on recurrence was obtained by Poincaré. His recurrence states that if T : X −→
X is a measure preserving transformation on probability space (X,Σ, µ) and ifA ⊂ X : µ(A) > 0,
then for µ-almost every x ∈ A we can find a n ≥ 1 such that Tn(x)(x) ∈ A. This theorem was
originally applied by Poincaré to Hamiltonian systems [2].

For us a generalization, due to Furstenberg and Weiss, for topological probability spaces, is
more useful.

Theorem 1.2.1 (Topological Multiple Recurrence, Furstenberg & Weiss). Let (X,µ) be compact
metric space and T : X −→ X be a continuous dynamical system on X with µ being T -invariant.
Then for every k ∈ N and ε > 0 there exists a x ∈ X and n ∈ N such that d

(
T in(x), x

)
< ε for

all i ∈ {1, · · · , k}. Moreover, if there is a Z ⊂ X that is dense in X, then we can take x ∈ Z.
[1]

We will use this theorem to give a proof of the Van der Waerden theorem. We call x recurrent
if x is in the closure of its orbit, i.e if x ∈ {Tn(x) : n ∈ N}. Topologically reformulated this means
that there exists a sequence nk →∞ such that Tnkx −→ x. x ∈ X is multiple recurrent if there
exist multiple measure preserving transformations Ti : X −→ X, i = 1, 2, · · · , k such that x is
recurrent for each of these maps. Van der Waerden is essentially a statement on the existence
of a multiple recurrent point [6]. Too clarify, this theorem states,

Theorem 1.2.2 (Van der Waerden). If we colour the integers with m different colours, then we
can always find arbitrarily long arithmetic progressions of at least one colour.

Van der Waerden proved this theorem by using a combinatorial approach. Here we will
present a dynamical proof using Furstenbergs theorem.

Proof. [Van der Waerden]. LetA = {a1, a2, · · · , ak} be a collection of colours and let (z1, z2, · · · ) ∈
AN be a given colouring of the natural numbers. Here zi denotes the colour of number i.
Now let the (left) shift map T : AN −→ AN be given as (z1, z2, z3, · · · ) 7−→ (z2, z3, z4, · · · ).
We also define a metric d on AN as, d(x, y) = 1

w , where w := inf {n ∈ N|xn 6= yn}. Note
that for all x, y ∈ AN : d(x, y) < 1 iff x1 = y1. This implies that for every x, y ∈ AN and
m, l ∈ N : d

(
Tm(x), T l(y)

)
iff xm+1 = ym+1.

In particular we have that the arithmetic progression m,m+n, · · · ,m+kn is of the same colour
iff xm = xm+n = · · · = xm+kn, when x ∈ AN is colouring of N. By definition of d:

d
(
Tm−1(x), Tm−1+in(x)

)
= d

(
Tm−1(x), T in

(
Tm−1(x)

))
< 1, i = 1, 2, · · · , k

If we now take X = {Tm(x)}∞m=0, then X is a compact metric space and T is a continuous
dynamical system on X. Also Z = {Tm(x)}∞m=0 is dense in X. Furstenberg & Weiss theorem
now gives, with ε = 1, that ∃m ∈ N such that d

(
Tm(x), T in (Tm(x))

)
< 1, for i = 1, 2, · · · , k.

This implies that xm+1 = xm+1+n = · · · = xm+1+kn is a k-length arithmetic progression of the
same colour. [4]

The Van der Waerden theorem gives us the existence of arbitrarily long arithmetic progres-
sions in at least one of the m partitions, that is large enough to contain them. But Van der
Waerden does not specify those partitions which are large enough. For this we need to first
define what we mean for a set to be large enough.

Definition 1.2.1. For any subset A of N the (upper) density, d(A), of A is defined as:

d(A) := lim sup
N→∞

|[1, N ] ∩A|
N
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Szemerédi’s theorem gives us a sufficient condition, in contrast to Van der Waerden, as to
which subsets of N that contain arithmetic progressions of arbitrary length.

Theorem 1.2.3 (Szemerédi). Let A ⊂ N such that d(A) > 0. Then A contains arbitrarily long
arithmetical progressions.

Just as for Van der Waerden’s theorem we will use a result from Ergodic theory to prove
Szemerédi’s theorem. The proof will make use of the Bernoulli shifts as in Example 1.1.1. For
clarity we defined X = {0, 1}N along with the (left) shift transform T : X −→ X. The following
result from Furstenberg is used.

Theorem 1.2.4 (Furstenberg’s Multiple Recurrence Theorem). Let T : X −→ X be a measure
preserving transformation with µ being T -invariant and µ(A) > 0. Then, if k ≥ 3, there exists
a N ∈ N such that,

µ
(
A ∩ T−1(A) ∩ · · · ∩ T−(k−1)N (A)

)
> 0

Remark. Note that the case k = 2 reduces to Poincaré’s recurrence theorem.

With this theorem Furstenberg proved Szemerédi’s theorem. A complete proof of this theo-
rem would stray away too much from the topic. For a rigorous proof we refer to [1]. Here we
will suffice with a proof for the Bernoulli shifts (Example 1.1.1).

Proof. [Example 1.1.1] Recall that the cylinders Ci = {ω ∈ X : ωi = 1}, with measure µ(Ci) =
p ∀i ∈ N, generate the Borel σ-algebra. This means it is sufficient to show Furstenberg’s Multiple
Recurrence on all cylinder subsets. Let C0, C1, · · · , Ck be cylinder sets, then for a sufficiently
large n ∈ N, we have that the fixed coordinates of the cylinder T−nl(Cl) are distinct. Thus,

µ
(
C0 ∩ T−n(C1) ∩ · · · ∩ T−kn(Ck)

)
= µ(C0)µ(C1) · · ·µ(Ck) > 0

Hence Furstenberg’s Multiple Recurrence Theorem holds for the Bernoulli shifts.

Now we are ready to tackle Szemerédi’s theorem with the help of Furstenberg’s multiple
recurrence.

Proof. [Szemerédi] Let X = {0, 1}N and define T : X −→ X to be the left shift map. Let (ωn) =

(1A(n)), with 1A(n) being the indicator function of subset A ⊂ {0, 1}. Define µk = 1
k

k−1∑
j=0

δT j(ω),

with δ(ω) being the Dirac measure. Note that µ = lim
k
µk is a T -invariant probability measure.

As to why this holds true we refer to [3]. Next define Y = {(δn) : δ1 = 1}. Y is compact in
X, thus µ(Y ) = lim

k
µk(Y ) = 1

k |A ∩ [1, k]| > 0. Hence, with Furstenberg’s multiple recurrence

we can find a N such that µ
(
Y ∩ T−N (Y ) ∩ · · · ∩ T−(k−1)N (Y )

)
> 0. Specifically, there is a

z ∈ Y ∩T−N (Y )∩· · ·∩T−(k−1)N (Y ). This means ∃x ∈ N such that x, x+N, · · · , x+(k−1)N ∈ A.
k is chosen arbitrary, thus A contains arbitrarily long arithmetical progressions. [1]

Szemerédi gives us a ’class’ of subsets that contain arbitrary long arithmetical progressions,
namely those with positive density. But these are not all subsets of N containing arbitrary length
arithmetical progressions. What can be said for the number of progressions in zero density sets?
A famous conjecture of Erdös and Turán gives a sufficient condition.
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Conjecture 1.2.1. [Erdös-Turán] Let A ⊂ N such that∑
N∈A

1

N
=∞.

Then A contains infinitely many arithmetical progressions.

This conjecture remains unproven. Even for arithmetical progressions of length 3 we still
don’t know if this conjecture holds true.

1.3 Poisson convergence in zero density sets

Let {ωi : i ∈ N} be a sequence of independent random variables such that ωi ∼Ber(p), for p > 0.
Then the set {i : ωi = 1} satisfies the conditions of Szemerédi. And thus it contains infinitely
many arithmetic progressions of any finite length. Now we want p to be dependent on i in such
a way that the density of the set {i : ωi = 1} is zero, but nevertheless do have infinitely many
arithmetic progressions. Meaning that the black sites (ωi = 1) become increasingly more rare
as we go further. By letting pi −→ 0 as i → ∞ we make {i : ωi = 1} a zero density set. The
question now becomes if it still contains arbitrary length arithmetical progressions and what is
the asymptotic distribution of these progressions?

To obtain an answer for these questions we will first look at arithmetic progressions of length
1. Showing convergence in distribution will require the use of moment generating functions.

Definition 1.3.1. Let X be a random variable, then the moment generating function of X is
defined as,

MX(t) := E
[
etx
]

=

∫
R
etxdFX(x)

for t ∈ R.

Also will be used the following theorem,

Theorem 1.3.1. Let X and Y be two random variables. If for all t ∈ R : MX(t) = MY (t), then

X
d
= Y .

With this theorem we are ready too find the limiting distribution.

Theorem 1.3.2. Let {ωi : i ∈ N} be a sequence of independent random variables such that ωi ∼
Bernoulli(p), where p > 0. Set

∑N
i=1 p = λ⇒ p = λ

N . If XN :=
∑N

i=1 ωi, then XN
d−→ Po(λ).

Proof. Theorem 1.3.1 implies that we only have too show convergence of moment generating
functions. Hence we start by calculating the moment generating function of XN .

MXN (t) = E
[
et

∑N
i=1 ωi

]
=

N∏
i=1

E
[
etωi
]

=
(
E
[
etω1

])N
The last two equality’s hold, because the ωi are identically and independently distributed.

By definition of the expectation we get,

MXN (t) =
(
P (ω1 = 0) + P (ω1 = 1) et

)N
=

(
(1− λ

N
) +

λ

N
et
)N

=

(
1 +

λ(et − 1)

N

)N
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Note that when N → ∞ we obtain
(

1 + λ(et−1)
N

)N
−→ eλ(et−1), by definition of the expo-

nential function. And this concludes the proof, because eλ(et−1) is indeed the moment generating
function of a random variable Y with L(Y ) = Po(λ).

This theorem is actually widely known as the law of rare events. It roughly states that when
considering a large number N of independent events with small success probabilities λ

N , then
the limiting distribution of the total number of successful events is Poisson distributed with
parameter λ = Np.
In this thesis we are only interested in zero density sets. We want to know if we can derive a
similar result, theorem 1.3.2, for zero density sets. The setup is as such. Consider a zero density
set A = {i : ωi = 1}. Then each ωi ∼ Ber(pi), with pi −→ 0 as i → ∞. Just as before we
suspect the asymptotic distribution to be that of a Poisson random variable with parameter
λ. But how to choose λ? For the law of rare events to hold λ needs to approximately be the
expected number of successful events, in a certain interval. Thus define λ > 0 and let

∑rn
i=n pi,

where rn = inf{k > n :
∑k

i=n pi ≥ λ}. This way we ensure that
∑rn

i=n pi −→ λ. It is not directly
obvious that this should be the case. Hence this deserves to be its own lemma.

Lemma 1.3.1. Assume pi −→ 0 as i → ∞. Let λ ∈ R≥0 and define rn(λ) = inf{k > n :∑k
i=n pip2i · · · pki ≥ λ}. Then, lim

n→∞

∑rn(λ)
i=n pip2i · · · pki = λ for all k ≥ 1.

Proof. By definition we have that
∑rn(λ)

i=n pip2i · · · pki ≥ λ and
∑rn(λ)−1

i=n pip2i · · · pki < λ. Hence,

0 ≤

∣∣∣∣∣∣
rn(λ)∑
i=n

pip2i · · · pki − λ

∣∣∣∣∣∣ ≤
rn(λ)∑
i=n

pip2i · · · pki −
rn(λ)−1∑
i=n

pip2i · · · pki = prn(λ) −→ 0 as n→∞

In conclusion, lim
n→∞

∑rn(λ)
i=n pip2i · · · pki = λ.

Another thing underlining theorem 1.3.2 is that arithmetical progressions, no matter how far
we go along, can always be observed. This is what we know from Szemerédi’s theorem. For the
zero density sets Szemerédi cannot be used, thus we cannot assume that

∑N
i=n ωiω2i · · ·ωki

a.s.−−→
∞ as N → ∞. In the next chapter we extensively focus on this problem, but for now we will
just assume this to be the case.

In order to obtain results we throughout assume the following.

Assumption 1.3.1.

∞∑
i=1

pip2i · · · pki =∞, for any k ∈ N.

This assumption is partly motivated from sets like the set of prime numbers. The prime
numbers are a zero density subset of the natural numbers. We can make a stochastic analogue
of the prime numbers by taking the same setup as with A. If we want to imitate the prime
numbers we choose pi = 1

log(i) . This choice is by analogy of the prime number theorem. Observe

that with this choice of pi, assumption 1.3.1 holds true, because
∑∞

i=1
1

log(i) =∞.

This assumption is also needed to show that
∑N

i=n ωiω2i · · ·ωki
a.s.−−→ ∞. Because if the

assumption 1.3.1 does not hold then,

∞∑
i=1

pi · · · pki <∞ =⇒ ∃M ∈ N such that P

( ∞∑
i=M

ωi · · ·ωki = 0

)
= 1.
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This means that assumption 1.3.1 is indeed for good reason. In the following chapter we actually
come to the conclusion that assumption 1.3.1 and

∑N
i=1 ωi · · ·ωki

a.s.−−→∞ are equivalent.

Now we are ready to propose a law of rare events for zero density sets. Unlike in theorem
1.3.2 we now have probabilities pi −→ 0 as i → ∞. This highlights the important difference
that pi is now only dependent on the place i and not on total number of progression N .

Theorem 1.3.3. Let {ωi : i ∈ N} be a sequence of independent random variables such that
ωi ∼ Bernoulli(pi). Assume that pi −→ 0 as i → ∞ and

∑∞
i=1 pi = ∞. Let λ > 0 and define

rn(λ) = inf{k > n :
∑k

i=n pi ≥ λ}. If X
(1)
n :=

∑rn
i=n ωi, then X

(1)
n

d−→ Po(λ) as n→∞.

Proof. We will show convergence in distribution of X
(1)
n to a Poisson distribution by calculating

the limit of the moment generating function of X
(1)
n . For convenience we calculate log(M

X
(1)
n

(t)).

This yields,

log
(
M
X

(1)
n

(t)
)

= log
(
E
[
et

∑rn
i=n ωi

])
= log

(
rn∏
i=n

E
[
etωi
])

=

rn∑
i=n

log
(
1 + pi(e

t − 1)
)

Equality holds here, because the ωi are independent from one another. To show that this
quantity converges to the desired result, we will find a suiting lower and upper bound. For this
first note that by Taylor’s theorem x− 1

2x
2 ≤ log(1 + x) ≤ x holds for all x ∈ [0,∞). Hence we

derive,

rn∑
i=n

pi(e
t − 1)− 1

2
p2
i (e

t − 1)2 ≤
rn∑
i=n

log
(
1 + pi(e

t − 1)
)
≤

rn∑
i=n

pi(e
t − 1)

=⇒ 0 ≤

∣∣∣∣∣
rn∑
i=n

log
(
1 + pi(e

t − 1)
)
−

rn∑
i=n

pi(e
t − 1)

∣∣∣∣∣ ≤ 1

2
(et − 1)2

rn∑
i=n

p2
i

Note that
∑rn

i=n p
2
i ≤

(
supn≤i≤rn pi

)∑rn
i=n pi −→ 0 ·λ = 0, because by assumption pi −→ 0 as

i→∞. Because the difference between log
(
M
X

(1)
n

(t)
)

and
∑rn

i=n pi(e
t − 1) becomes arbitrarily

small, we can derive the law of X
(1)
n from

∑rn
i=n pi(e

t − 1). Hence,

lim
n→∞

log
(
M
X

(1)
n

(t)
)

= lim
n→∞

rn∑
i=n

pi(e
t − 1) = λ(et − 1)

Thus we have shown convergence in distribution of X
(1)
n , because if M

X
(1)
n

(t)
n→∞−−−→ eλ(et−1),

then X
(1)
n

d−→ Po(λ).

Even for this relatively simple case of arithmetic progressions of length 1 we needed to do
a lot more work to get the desired result of convergence in distribution. Although this is to be
expected as now {ωi : i ∈ N} are not identically distributed. An essential step in this proof is

that each term of X
(1)
n is independent from all other terms. This allowed us to move the product

outside of the expectation. This step will fail if we start looking at longer progressions. Thus
we can not take the same approach to prove similar results for longer progressions. Even for
progressions of length 2 this step fails. The length 2 progression counting summation is defined

as X
(2)
n :=

∑rn
i=n ωiω2i. Then terms like ωnω2n and ω2nω4n are clearly not independent.
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Different methods of tackling these types of problems, will be studied in chapters 3 and 4.
Here we use more abstract techniques such as the Chen-Stein method and the Transfer matrix
method. The first one will give a us a very strong, but not very practical result. On the other
hand the Transfer matrices will turn out to be very tangible.



Chapter 2

Infinitely many progressions in zero
density sets

In this thesis we want to show weak convergence of the AP-k counting summation, X
(k,λ)
n . For

convenience we just write X
(k)
n . As we have seen in the previous chapter, this requires assuming

that zero density sets contain arbitrary length arithmetic progressions. To prove this assumption

and to obtain results for the asymptotic behaviour of X
(k)
n we need various concepts of limits of

random variables. Familiar modes of convergence of random variables include weak convergence,
convergence in probability and almost sure convergence. These will be discussed in this section.
Another less familiar convergence is the total variation distance. The total variation distance
measures the accuracy of a approximation. In our case we measure the total variation distance

between the law of X
(k)
n and a Poisson random variable with parameter λ←−

∑rn
i=n pi · · · pki.

2.1 Modes of convergence

Consider (XN )N∈N a sequence of random variables on a probability space (Ω,Σ,P). We want
to know the difference in probability between each XN and a certain random variable X. If this
difference in probabilities becomes negligible as N increases, we can speak of a limit.

Definition 2.1.1 (Convergence in probability). A sequence of random variables (XN )N∈N con-
verges to random variable X in probability iff for all ε > 0,

lim
N→∞

P (ω : |XN (ω)−X(ω)| > ε) = 0

The following example will illustrate this concept quite neatly.

Example 2.1.1. Let (XN )N∈N be a sequence of independent random variables such that XN ∼
Ber(pN ). Where pN is a real valued sequence such that pN −→ 0. We can show that XN

P−→ 0.
Let ε > 0. We note by Markov’s inequality that P (|XN − 0|) ≤ pN

ε −→ 0 as N → ∞. This

implies that limN→∞ P (|XN − 0|) = 0, and thus XN
P−→ 0.

A stronger notion of convergence is almost sure convergence. This type of convergence is the
same as pointwise convergence almost everywhere, as is know in analysis. We will use this mode
of convergence to prove that zero density sets contain arbitrary length arithmetic progressions.
But first a formal definition.

10
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Definition 2.1.2 (Almost sure convergence). A sequence of random variables (XN )N∈N con-
verges to a random variable X almost surely (or with probability 1) iff,

P
(
ω : lim

N→∞
XN (ω) = X(ω)

)
= 1

This definition is not always easy to work with. Luckily we can often use the following
lemmas.

Lemma 2.1.1 (Borel-Cantelli). Let (AN )N∈N be a sequence of events in some σ-algebra Σ.
Then if,

(1)
∞∑
N=1

P (AN ) <∞ =⇒ P
(

lim sup
N→∞

AN

)
= 0

(2)

∞∑
N=1

P (AN ) =∞ and if {AN : N ∈ N} are independent =⇒ P
(

lim sup
N→∞

AN

)
= 1

Lemma 2.1.2. Let (XN )N∈N be a sequence of random variables and let X be some other random

variable. If
∑∞

N=1 P (|XN −X| > ε) converges for every ε > 0, then XN
a.s.−−→ X.

Using Lemma 2.1.2 we can illustrate an example of almost sure convergence.

Example 2.1.2. Let (XN )N∈N be a sequence of independent random variables such that,

P (XN = k) =


1− 1

N2 k = 0
1
N2 k = 1

0 else

We will show that XN
a.s.−−→ 0. Let ε > 0. Observe that,

∞∑
N=1

P (|XN − 0| > ε) =

∞∑
N=1

1

N2
=
π2

6
<∞

From Lemma 2.1.2 we can now conclude that XN
a.s.−−→ 0.

Almost sure convergence is a stronger notion of convergence than convergence in probability.
Almost sure convergence implies convergence in probability, but the converse of this is not true.
We have seen in Example 2.1.1 that XN , defined as such, converges in probability. If we take
pN = 1

N2 , then, as we have shown in the previous example, XN also converges almost surely.
But setting pN = 1

N will not result almost sure convergence. Reason for this is that
∑∞

N=1
1
N

diverges. Implying that, by Borel-Cantelli, P (XN = 1 i.o) = 1. Thus XN cannot converge
almost surely to 0.

In the introduction we alluded to the fact that we will show that the asymptotic distri-

bution of the AP-k counting summation X
(k)
n =

∑rn
i=n ωi · · ·ωki, is that of a Poisson random

variable. This is yet another mode of convergence. In general if the distribution of some se-
quence of random variables converges we say that this sequence converges weakly or converges
in distribution.

Definition 2.1.3. (Convergence in distribution) Let (XN )N∈N be a sequence of random variables
with distribution functions FXN (x), and let X be some other random variable with distribution
function FX(x). Then (XN )N∈N converges in distribution to X if,

lim
N→∞

FXN (x) = FX(x) for all x where FX is continuous



CHAPTER 2. INFINITELY MANY PROGRESSIONS IN ZERO DENSITY SETS 12

It is important to note that convergence in distribution is equivalent to,

lim
N→∞

E [f (XN )] = E [f (X)]

for all bounded and continuous functions f : R −→ R. This usually is referred to as weak
convergence.

As the name suggest, weak convergence is an even weaker form of convergence. Convergence
in probability implies convergence in distribution, but the converse of this is generally not true.
This is best illustrated in the following example.

Example 2.1.3. Define random variables XN ,

XN =

{
−X N mod 2 ≡ 0

X N mod 2 ≡ 1

Where we let X to be a random variable with distribution function FX : [−1, 1] −→ R defined
as,

FX(x) =


x+ 1 x ∈ [−1, 0)

1− x x ∈ [0, 1]

0 else

Note that this distribution is a symmetric function about 0. We claim that XN
d−→ X.

For odd values of N this is clear. For even values of N note that FXN := P (−X ≤ x) =
P (X ≥ −x) = P (X ≤ x) := FX . The last step is justified, because FX is symmetric about

0. Hence XN
d−→ X. However we now claim that we do not have convergence in proba-

bility. For this first observe that for even N : |XN −X| = 2 |X|. And thus if we pick an

ε ∈ [0, 1]. We get that P (|XN −X| > ε) = P (2 |X| > ε) = P
(
|X| > ε

2

)
=
(
1− ε

2

)2 6= 0. And

thus P (|XN −X| > ε) 6−→ 0. We conclude that XN 6
P−→ X.

The last mode convergence we need is the so called total variation distance. The total
variation distance is a metric for how close two probability measures are. Formally we define
this as such,

Definition 2.1.4 (Total variation distance). The total variation distance between two probability
measures, P and Q, on some σ-algebra Σ, we define as,

dTV (P,Q) := sup
A∈Σ
|P(A)−Q(A)|

This definition can be used to show that a sequence of random variables (XN )N∈N converges
to a random variable variableX, in total variation. When, supA∈Σ |P(XN ∈ A)−Q(X ∈ A)| −→
0 as N → ∞, we precisely have convergence in total variation. This convergence mode is very
useful, because it lets us know the difference between probability measures. The total variation
distance is a convergence mode that is probabilistic in nature. Essentially it gives us the maximal
distance between two probability measures.

Do note that convergence in total variation is a stronger notion of convergence than weak
convergence. Meaning that if the total variation distance tends to 0 as N → ∞, then we have
also have convergence in distribution. This is of course very useful, and thus we will make
extensively use of this fact in following chapters. The converse of this is not true. Example 2.1.4
illustrates this fact quite neatly. In chapter 3 we will discuss the Chen-Stein method and here
we will come back to the total variation distance.
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Example 2.1.4. Define independent and identically distributed random variables XN taking on
values -1 and +1. By the central limit theorem we know that,

SN =
1√
N

N∑
i=1

Xi
d−→ N(0, 1)

However, dTV (SN , Z) = 1 for every N ∈ N. Hence we do not have convergence in total
variation distance. [8]

2.2 Zero density sets with infinitely many progressions

With these different modes of convergence we have all the right tools to show that zero-density
sets contain infinitely many arbitrary long arithmetic progressions. We remind the reader of the
setup. Consider a sequence {ωi : i ∈ N} of independent random variables with P (ωi = 1) = pi
and P (ωi = 0) = 1 − pi. We require that pi −→ 0 as i → ∞. With these random variables we
can count the number of k length arithmetic progressions. Note that an arithmetic progression
of length k precisely occurs when the numbers i, 2i, . . . , ki are all black sites, i.e precisely when
ωi = ω2i = · · · = ωki = 1. This event co insides with the event ωiω2i · · ·ωki = 1. Because if the
numbers i, 2i, . . . , ki would contain white sites than at least one of the ωi equates to 0. Using
this handy product we count the number of arithmetic progressions, in the interval [n,N ], by
simply summing over this interval. The number of arithmetic progression of length k is thus
given by

∑N
i=n ωiω2i · · ·ωki. To say that a set of zero density contains infinitely many k length

arithmetic progressions means that
∑N

i=n ωiω2i · · ·ωki
a.s.−−→∞. In order to obtain this result we

need assumption 1.3.1 to hold.

Theorem 2.2.1. Let {ωi : i ∈ N} be a sequence of independent random variables such that
ωi ∼ Bernoulli(pi). Assume that pi −→ 0 as i → ∞ and

∑∞
i=1 pip2i · · · pki = ∞, then ∀n ∈ N :∑N

i=n ωiω2i · · ·ωki
a.s.−−→∞ as N →∞.

Proof. Under these assumptions we can indeed show that
∑N

i=n ωiω2i · · ·ωki
a.s.−→∞ as N →∞.

For this we show that WN :=
∑N

i=1 ωiω2i · · ·ωki
a.s.−→∞ as N →∞. To see that this is sufficient

note that,
∑N

i=n ωiω2i · · ·ωki ≥WN − n, because for each i ∈ N : ωiω2i · · ·ωki ∈ {0, 1}.
Almost sure convergence of WN to infinity means that the product ωiω2i · · ·ωki is equal to 1
infinitely often. Formally this means that P (∀n ∈ N ∃i ≥ n : ωiω2i · · ·ωki = 1) = 1. Or equiv-
alently P (WN > N) −→ 1 as N → ∞. We will prove the theorem with the so-called second
moment bound.

Lemma 2.2.1 (Payley-Zygmund inequality). Let Z be a positive random variable such that
V ar(Z) <∞. If θ ∈ [0,∞], then

P (Z > θE [Z]) ≥ (1− θ)2 E [Z]2

E [Z2]

Proof. Note that we can write, E [Z] = E
[
Z1{Z≤θE[Z]}

]
+ E

[
Z1{Z>θE[Z]}

]
. The first term is at

most θE [Z] and for the second term we can use the Cauchy-Schwarz inequality. Hence,

E [Z] ≤ θE [Z] +

√
E [Z2]E

[
1

2
{Z>θE[Z]}

]
= θE [Z] +

√
E [Z2]P (Z > θE [Z])

By squaring and rearranging the terms in this inequality we get the Payley-Zygmund inequality.
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To conclude almost sure convergence of WN from Payley-Zygmund we need the following to
hold,

(1) (δN )N :=

(
E [WN ]2

E
[
W 2
N

] )
N

−→ 1 as N →∞

(2) (σN )N := (E [WN ])N −→∞ as N →∞

Indeed, if (1) and (2) are satisfied, then for all θ ∈ [0, 1] : P (WN > θσN ) ≥ (1− θ)2 δN . Now
let ε ∈ (0, 1) arbitrary. Then ∃N0 ∈ N such that ∀N ≥ N0 : P (WN > θσN ) ≥ (1− θ)2 (1− ε).
This in turn implies that P (lim supK→∞WK > θσN ) ≥ (1− θ)2 (1− ε). This holds because WN

is increasing and thus for all N ∈ N : lim supK→∞WK ≥ WN . Note that σN −→ ∞ when
N →∞. Hence we can conclude that, P (lim supK→∞WK =∞) ≥ (1− θ)2 (1− ε) for all θ and
ε in (0, 1). Now if we let (θ, ε) −→ (0, 0), it follows that P (lim supK→∞WK =∞) = 1. This
means that P (WN > N) −→ 1 as N →∞ and thus we can infer almost sure convergence of WN

to ∞.

It remains to show that (1) and (2) are indeed satisfied. The easiest way too prove this is by
straightforward calculation. We will begin with (2) as this is quickly proven. Linearity of the
expectation yields,

(σN )N =

N∑
i=1

pip2i · · · pki −→∞ as N →∞

For (2) we have to do a bit more work. Direct calculation gives,

(δN )N =
E [WN ]2

E
[
W 2
N

] =

N∑
j=1

N∑
i=1

pi · · · pkipj · · · pkj

N∑
j=1

N∑
i=1

E [ωi · · ·ωkiωj · · ·ωkj ]

We want to find a lower bound for δN , this means we need to find an upper bound for the de-
nominator. We start by noticing that if {i, . . . , ki}∩{j, . . . , kj} = ∅, then E [ωi · · ·ωkiωj · · ·ωkj ] =
pi · · · pkipj · · · pkj . And if {i, . . . , ki} ∩ {j, . . . , kj} 6= ∅, then E [ωi · · ·ωkiωj · · ·ωkj ] ≤ pi · · · pki.

Secondly observe that when {i, . . . , ki}∩{j, . . . , kj} 6= ∅ that this occurs when j =
((

ai
b

)k
a=1

)k
b=1

, with b fixed for each 1 ≤ a ≤ k. This gives a number of k2 overlaps, but we counted too many.
As for fixed b and 1 ≤ a ≤ k we get the overlap associated with j = i. Also for each overlapping
j = ai

b , the overlap i = bj
a should also be counted. This doubles the number of overlaps. Hence

there are 2(k2 − k + 1) overlaps. This yields,

E
[
W 2
N

]
≤
∑∑
i,j∈D

pi · · · pkipj · · · pkj + 2(k2 − k + 1)

N∑
i=1

pi · · · pki

with D = {i, j = 1, . . . , N : {i, . . . , ki} ∩ {j, . . . , kj} = ∅}. Removing the restrictions on the
first summation will only make it larger. Hence

E
[
W 2
N

]
≤

N∑
j=1

N∑
i=1

pi · · · pkipj · · · pkj + C(k)

N∑
i=1

pi · · · pki
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By dividing the numerator and denominator, of δN , by
∑N

j=1

∑N
i=1 pi · · · pkipj · · · pkj , we get,

(δN )N ≥
1

1 + C(k)

N∑
i=1

pi···pki
N∑
j=1

N∑
i=1

pi···pkipj ···pkj

=
1

1 + C(k) 1
N∑
i=1

pi···pki

Assumption 1.3.1 implies that (δN )N converges to 1 as N → ∞. Hence (2) is satisfied and

thus we have proven that
N∑
i=n

ωiω2i · · ·ωki
a.s.−→∞ as N →∞.

A fun application of theorem 2.2.1 is for the stochastic caricature of the prime numbers. We
can obtain a stochastic analogue of Green-Tao theorem. This incredibly deep theorem states
that the prime numbers contain infinitely many arbitrary finite length arithmetic progressions.
With the following example we illustrate that Green-Tao’s theorem also holds for the stochastic
prime numbers. This example is inspired by an older thesis of Rik Versendaal [4].

Example 2.2.1 (Stochastic analogue of Green-Tao). Let {ωi : i ∈ N} be a sequence of indepen-
dent Bernoulli random variables such that P (ω1 = 1) = 0,P (ω2 = 1) = 1 and P (ωi = 1) = 1

log(i) .

We will show that the collection P = {i : ωi = 1} of randomly generated primes contain infinitely
many k length arithmetic progressions. Theorem 2.2.1 holds true, thus we can simply apply this
theorem. To get the desired result we need to check if the assumptions of theorem 2.2.1 hold in
this case. Clearly pi = 1

log(i) −→ 0 as i→∞. It remains to prove that assumption 1.3.1 checks
out. We need to show that

∞∑
i=3

1

log(i)

1

log(2i)
· · · 1

log(ki)
=∞

Begin by noticing that log(i) ≤ log(2i) ≤ . . . ≤ log(ki), and thus

∞∑
i=3

1

log(i)

1

log(2i)
· · · 1

log(ki)
≥
∞∑
i=3

1

log(ki)k

We know that a logarithm of n grows slower that any positive power of n, i.e log(n) ≤ nr

for all r > 0. Hence, log(ki) ≤ (ki)
1
k . Implying that

∞∑
i=3

1

log(ki)k
≥
∞∑
i=3

1

(ki)
1
k

k =

∞∑
i=3

1

ki
=∞

We conclude that
∑∞

i=3
1

log(i)
1

log(2i) · · ·
1

log(ki) = ∞. The requirements of theorem 2.2.1 check

out. We get that
∑N

i=1 ωiω2i · · ·ωki
a.s.−−→ ∞. Meaning that with probability 1 the collection P

contains infinitely many arithmetic progressions of any finite length. This is the desired result.



Chapter 3

Poisson convergence: Chen-Stein
method

In the following section we examine the Chen-Stein method. The Chen-Stein method is a
mathematical tool used for Poisson approximation. The main focus of the method is to bound
the total variation distance between the law of some sum W =

∑N
i=1Xi, of (usually dependent)

Bernoulli random variables, and a Poisson distribution with mean λ = E [W ].
This method is very effective for finding bounds on the total variation distance. We try to

apply this our AP-k counting summation, as the approach we took for theorem 1.3.3 seems to

fail for arithmetic progressions of length 2 or greater. The terms of X
(k)
n are dependent, even

though it is generated by independent Bernoulli random variables ωi, with ωi ∼ Ber(pi). We
wanted pi −→ 0 as i → ∞, because this way we generate a zero density set A = {i : ωi = 1}.
pi −→ 0 means that the random variables ωi are becoming increasingly more rare events. From
experience we know that when rare events are observed, they distribute themselves along a

Poisson distribution. We suggest the same must hold true for X
(k)
n .

3.1 Chen-Stein method

The Chen-Stein method is a modification of Stein’s method for normal approximation. Chen
modified his method for Poisson approximation. The method is described as such [3]. Let W
and Z be a random variables where we try to approximate L(W ) with the target distribution
of Z. Let C and D be classes of real valued functions defined on some space Ω. In this process
of approximation we write Eh(W ) − Eh(Z) = ELfh(W ), where h ∈ C is a test function, L is a
linear operator from C to D and fh ∈ C is a solution to,

Lf = h− Eh(Z). (3.1)

L is usually referred to as the Stein operator and equation (3.1) as the Stein equation. The
error bound we are trying to find is given by ELfh. We can bound ELfh by finding the solution
fh. This solution clearly depends on the operator L. The Stein operator L is such that,
L(W ) = L(Z) iff the Stein identity ELf(W ) = 0, holds for a sufficiently large class of functions
f . L completely depends on L(Z). For normal approximation Stein used,

Lf(w) = f
′
(w)− wf(w) , w ∈ R.

16
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Chen modified the method to be used for Poisson approximation and defined,

Lf(w) = λf(w + 1)− wf(w) , w ∈ Z+.

Where λ > 0 is the expectation of the Poisson random variable Z. The operator L, that
Chen defined, is made by showing that E [λf(Z)− Zf(Z)] = 0, for every bounded, real valued
functions f .

Lemma 3.1.1. If Z ∼ Po(λ), then E [Lf(Z)] = 0 for all bounded, real valued functions f .

Proof. Let Z ∼ Po(λ) and let f be bounded and real valued, then

E [λf(Z + 1)] =

∞∑
w=0

λf(w + 1)e−λ
λw

w!

=
∞∑
w=0

e−λ
λw+1

(w + 1)!
(w + 1)f(w + 1)

= E [Zf(Z)]

We conclude that E [Lf(Z)] = E [λf(Z + 1)− Zf(Z)] = 0.

In the case of our AP-k counting summation finding error bounds for the total variation
distance is of interest. To get some acquaintance with the Chen-Stein method we apply it to

the AP-1 counting summation X
(1)
n . Again we give a proof of theorem 1.3.3, but this time we

make use of Chen-Stein. In fact we can even show that dTV

(
L(X

(1)
n ), Po(λ)

)
−→ 0 as n→∞.

Which implies X
(1)
n

d−→ Z, where Z ∼ Po(λ).

Theorem 3.1.1. Let {ωi : i ∈ N} be a sequence of independent random variables such that
ωi ∼ Bernoulli(pi). Assume that pi −→ 0 as i → ∞ and

∑∞
i=1 pi = ∞. Let λ > 0 and define

rn(λ) = inf{k > n :
∑k

i=n pi ≥ λ}. If X
(1)
n :=

∑rn
i=n ωi, then dTV

(
L(X

(1)
n ), Po(λ)

)
−→ 0 as

n→∞.

Before we attempt to give a proof we look at following lemma.

Lemma 3.1.2. If fh is a solution of

Lf(w) = λf(w + 1)− wf(w) = h− Eh(Z), (3.2)

with |h| = 1 and Z ∼Po(λ). Then,

‖∆fh‖∞ ≤
1− e−λ

λ
≤
(

1 ∧ 1

λ

)
,

where ∆f(w) = f(w + 1)− f(w).

The proof of this lemma is a bit technical and thus we refer to [3] for the full details. We
will just use this result to prove theorem 3.1.1.
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Proof. [Theorem 3.1.1.] Define W (i) = X
(1)
n − ωi. Then for any bounded real valued f ,

E
[
λf(X(1)

n + 1)−X(1)
n f(X(1)

n )
]

=

rn∑
i=n

E
[
pif(X(1)

n + 1)− ωif(X(1)
n )
]

=

rn∑
i=n

piE
[
λf(X(1)

n + 1)− f(W (i) + 1)
]

=

rn∑
i=n

piE
[
ωi∆f(W (i) + 1)

]
=

rn∑
i=n

p2
iE
[
∆f(W (i) + 1)

]
Let f = fh be a bounded solution of (3.2) with h = 1A , A ⊂ Z+. We get that,

dTV

(
L(X(1)

n ), Po(λ)
)

= sup
A⊂Z+

∣∣∣P(X(1)
n ∈ A)− P(Z ∈ A)

∣∣∣
≤ ‖∆fh‖∞

rn∑
i=n

p2
i

≤
(

1 ∧ 1

λ

)
sup

n≤i≤rn
(pi) ·

rn∑
i=n

pi −→
(

1 ∧ 1

λ

)
· 0 · λ = 0

Hence, X
(1)
n

d−→ Po(λ).



CHAPTER 3. POISSON CONVERGENCE: CHEN-STEIN METHOD 19

3.2 Poisson convergence

If we start looking at the limiting behaviour of X
(k)
n =

∑rn
i=n ωiω2i · · ·ωki for k ≥ 2, it becomes

a lot harder to calculate the moment generating function. The sequence of random variables

Ω
(k)
i := (ωiω2i · · ·ωki)rni=n are not independent, thus it is difficult to show what the asymptotic

distribution is. Luckily there is an important theorem, due to the Chen-Stein method, which
bounds the total variation [3].

Theorem 3.2.1 (Arratia, Goldstein & Gordon). Let {Xα : α ∈ J} be Bernoulli random vari-
ables with success probabilities pα, α ∈ J . Let W =

∑
α∈J Xα and λ = EW =

∑
α∈J pα. Then,

for any collection of sets Bα ⊂ J, α ∈ J ,

dTV (L(W ), Po(λ)) ≤
(

1 ∧ 1

λ

)
(b1 + b2) +

(
1 ∧ 1.4√

λ

)
b3

where

b1 =
∑
α∈J

∑
β∈Bα

pαpβ, b2 =
∑
α∈J

∑
β∈Bα\{α}

E (XαXβ) ,

b3 =
∑
α∈J
|E (Xα|Xβ, β /∈ Bα)− pα| .

Note that if we choose Xα independent of {Xβ : β /∈ Bα} for every α ∈ J , then b3 = 0.

Let us now look at the case of arithmetic progressions of length 2, i.e. Ω
(2)
i = (ωiω2i)

rn
i=n. By

first considering this relatively simpler case, as opposed to the general case Ω
(k)
i , we get some

valuable insights and ideas for the general case. Theorem 3.2.1 gives us enough tools to prove
the following theorem.

Theorem 3.2.2. Let {ωi : i ∈ N} be a sequence of independent random variables such that ωi ∼
Bernoulli(pi). Assume that pi −→ 0 as i → ∞ and

∑∞
i=1 pip2i = ∞. Let λ > 0 and define

rn(λ) = inf{k > n :
∑k

i=n pip2i ≥ λ}. If X
(2)
n :=

∑rn
i=n ωiω2i, then dTV (L(X

(2)
n ), Po(λ)) −→ 0

as n→∞.

Proof. In order too apply theorem 3.2.1 we start by defining {Xα : α ∈ J} and the collection

of sets Bα ⊂ J . Clearly the Xα are the Bernoulli random variables Ω
(2)
i . Thus let {Xα : α ∈

J} = {ωiω2i : i = n, n + 1, . . . , rn}, where J is taken to be {{i, 2i} : i = n, n+ 1, . . . , rn}. For
Bα we have to think a bit more. It is best to choose Bα such that b3 = 0. Then we must have
for every α ∈ J and for every β /∈ Bα that Xα is independent of Xβ. Meaning that for every
α ∈ J : Xα ⊥ {Xβ : β /∈ Bα}.

An arbitrary Bernoulli random variable in the sum W =
∑

α∈J Xα is of the form ωiω2i. This
term is dependent on the terms ω i

2
ωi and ω2iω4i. Hence we take

Bα = {{i/2, i}, {i, 2i}, {2i, 4i} : i = n, n+ 1, . . . , rn} .

With this choice forBα we get that b3 =
∑

α∈J |E (Xα|Xβ, β /∈ Bα)− pα| =
∑

α∈J |E (Xα)− pα| =
0.
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Now it remains to prove that b1 and b2 go to zero for large values of n. We show this by
direct calculation.

b1 =
∑
α∈J

∑
β∈Bα

pαpβ =

rn∑
i=n

pip2ip i
2
pi + pip2ipip2i + pip2ip2ip4i

≤
rn∑
i=n

pip2ip i
2

+ pip2ipi + pip2ip2i

≤ λ sup
n≤i≤rn

(
p i

2
+ pi + p2i

)
−→ 0 as n→∞

For b2 we get,

b2 =
∑
α∈J

∑
β∈Bα\{α}

E [XαXβ] =

rn∑
i=n

E[ωiω2iω i
2
ωi] + E[ωiω2iω2iω4i]

=

rn∑
i=n

E[ωiω2iω i
2
] + E[ωiω2iω4i]

=

rn∑
i=n

pip2ip i
2

+ pip2ip4i

≤ λ sup
n≤i≤rn

(
p i

2
+ p4i

)
−→ 0 as n→∞

We see that b2 also goes to 0. Putting these results together gives,

dTV (L(W ), Po(λ)) ≤
(

1 ∧ 1

λ

)
(b1 + b2) +

(
1 ∧ 1.4√

λ

)
b3

=

(
1 ∧ 1

λ

)
(b1 + b2)

≤
(

1 ∧ 1

λ

)
λ sup
n≤i≤rn

(
2p i

2
+ pi + p2i + p4i

)
−→ 0 as n→∞

Hence we conclude d(L(X
(2)
n ), Po(λ)) −→ 0 as n→∞. And thus X

(2)
n

d−→ Po(λ).
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Now consider the general case of arithmetic progressions of length k, i.e. Ω
(k)
i = (ωiω2i · · ·ωki)rni=n.

Just as in the case of Ω
(2)
i , we want to show that the limiting distribution is a Poisson distribu-

tion with parameter λ = lim
n→∞

∑rn
i=n pip2i · · · pki. We can essentially follow the line of the proof

of theorem 3.2.2. Again we use theorem 3.2.1 to show that X
(k)
n

d−→ Po(λ) as n→∞.

Theorem 3.2.3. Let {ωi : i ∈ N} be a sequence of independent random variables such that
ωi ∼ Bernoulli(pi). Assume that pi −→ 0 as i → ∞ and

∑∞
i=1 pip2i · · · pki = ∞. Let λ > 0

and define rn(λ) = inf{k > n :
∑k

i=n pip2i · · · pki ≥ λ}. If X
(k)
n :=

∑rn
i=n ωiω2i · · ·ωki, then

dTV (L(X
(k)
n ), Po(λ)) −→ 0 as n→∞.

Proof. Just as before we want too apply theorem 3.2.1. Again we need to define {Xα : α ∈ J} and

the collection of sets Bα ⊂ J . Let Xα be the Bernoulli random variables Ω
(k)
i . Thus {Xα : α ∈

J} = {ωiω2i · · ·ωki : i = n, n+ 1, . . . , rn}, where J is taken to be {{i, 2i, . . . , ki} : i = n, . . . , rn}.
In order to find the right definition for Bα we have to consider all terms that are dependent

on an arbitrary term inside the sum W =
∑

α∈J Xα =
∑rn

i=n ωiω2i · · ·ωki. A random term in W

is of the form ωiω2i · · ·ωki. This term is dependent on ωjω2j · · ·ωkj for j =
((

ai
b

)k
a=1

)k
b=1

, with

b fixed for each 1 ≤ a ≤ k. Thus define,

Bα =

{j, 2j, · · · , kj}| j =

((
ai

b

)k
a=1

)k
b=1

: i = n, . . . , rn


With this choice ofBα it follows that b3 =

∑
α∈J |E (Xα|Xβ, β /∈ Bα)− pα| =

∑
α∈J |E (Xα)− pα| =

0.
Now it remains to prove that b1 and b2 go to zero for large values of n. Direct calculation

yields,

b1 =
∑
α∈J

∑
β∈Bα

pαpβ =

rn∑
i=n

pip2i · · · pki

(
k∑
b=1

k∑
a=1

pjp2j · · · pkj
∣∣
j=ai

b

)

≤
rn∑
i=n

pip2i · · · pki

(
k∑
b=1

k∑
a=1

pai
b

)

≤ λ sup
n≤i≤rn

(
k∑
b=1

k∑
a=1

pai
b

)
−→ 0 as n→∞

Thus b1 converges to 0 as n→∞. For b2 we get,

b2 =
∑
α∈J

∑
β∈Bα\{α}

E [XαXβ] =

rn∑
i=n

 k∑
b=1

k∑
a=1

|{a,b}|=2

E[ωi · · ·ωkiωj · · ·ωkj ]
∣∣
j=ai

b


Note that, if |{a, b}| = 2, for each fixed b and 1 ≤ a ≤ k there is at least one j ∈

{
ai
b ,

2ai
b , . . . ,

kai
b

}
such that ωiω2i · · ·ωki 6= ωiω2i · · ·ωkiωj . The first such j were this holds we denote by ∆i. To
emphasize that this j depends on a and b, we write ∆i(a, b). Hence we can now bound b2,
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b2 ≤
rn∑
i=n

 k∑
b=1

k∑
a=1

|{a,b}|=2

E[ωiω2i · · ·ωkiωj ]
∣∣
j=∆i(a,b)

 ≤ rn∑
i=n

pip2i · · · pki

 k∑
b=1

k∑
a=1

|{a,b}|=2

p∆i(a,b)



≤ λ sup
n≤i≤rn

 k∑
b=1

k∑
a=1

|{a,b}|=2

p∆i(a,b)

 −→ 0 as n→∞

Now that we have derived that both b1 and b2 goes to 0 as n→∞, we can see that,

dTV (L(W ), Po(λ)) ≤
(

1 ∧ 1

λ

)
(b1 + b2) +

(
1 ∧ 1.4√

λ

)
b3

=

(
1 ∧ 1

λ

)
(b1 + b2)

≤
(

1 ∧ 1

λ

)
λ sup
n≤i≤rn

 k∑
b=1

k∑
a=1

pai
b

+

k∑
b=1

k∑
a=1

|{a,b}|=2

p∆i(a,b)

 −→ 0 as n→∞

Hence we conclude dTV (L(X
(k)
n ), Po(λ)) −→ 0 as n→∞. And thus X

(k)
n

d−→ Po(λ).

3.3 Large arithmetic progressions

Theorem 3.2.1 is a very general theorem and applicable to a broad number of problems. In this
section we want to show that this theorem can be used to prove that the occurrence of very
long arithmetic progressions is approximately Poisson distributed. A similar result is obtained
by Kifer in [5].

The setup is as such. Consider a sequence of independent and identically distributed
Bernoulli random variables {ωi : i ∈ N}. We let P (ωi = 1) = p ∈ (0, 1]. From Szemerédi’s
theorem we already know that the subset A = {i : ωi = 1} ⊂ N contains infinitely many
arithmetic progressions of any finite length.

We would like to know the distribution of the number of ’large’ arithmetic progressions in
A. By ’large’ we refer to arithmetic progressions ωiω2i · · ·ωϕ(N)i, where ϕ(N) is an increasing
function that diverges as N → ∞. The occurrence of large progressions are rare events. This
leads us to think that the law of rare events might be at play here.

Counting the number of large arithmetic progressions is done withXN =
∑N

i=1 ωiω2i · · ·ωϕ(N)i.

We want to show Poisson convergence for XN , i.e show that XN
d−→ Po(λ). First we need to

define what the parameter λ should be. The law of rare events tells us that this is approximately
the expected number of successful events. Hence we define,

E [XN ] = E

[
N∑
i=1

ωi · · ·ωϕ(N)i

]
=

N∑
i=1

E
[
ωi · · ·ωϕ(N)i

]
= Npϕ(N) −→ λ as N →∞.

From this we can derive that ϕ(N) ↑ logp
(
λ
N

)
as N →∞. Note that this means that ϕ(N)

diverges as N →∞, because p ∈ (0, 1).

We will now prove that XN
d−→ Po(λ).
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Theorem 3.3.1. Let {ωi : i ∈ N} be a sequence of independent random variables such that
ωi ∼ Bernoulli(p). Define λ > 0 and let

∑N
i=1 E

[
ωi · · ·ωϕ(N)i

]
−→ λ as N → ∞. If XN :=∑N

i=1 ωi · · ·ωϕ(N)i, then dTV (L(XN ), Po(λ)) −→ 0 as N →∞

Proof. We take the same approach as in the previous section, and try too apply the powerful
theorem of Arratia, Goldstein & Gordon.

Just as before we need to know how to correctly define {Xα : α ∈ J} and the collection of
sets Bα ∈ J . Logically is to define {Xα : α ∈ J} := {ωiω2i · · ·ωϕ(N)i : i = 1, 2, . . . , N}, where
we let J = {{i, 2i, . . . , ϕ(N)i} : i = 1, 2, . . . , N}, as such. For Bα we use the same logic as in the
previous sections. Thus let ,

Bα :=

{j, 2j, . . . , ϕ(N)j}| j =

((
ai

b

)ϕ(N)

a=1

)ϕ(N)

b=1

: i = 1, . . . , N


Note that by defining Bα like this Xα is completely independent of {Xβ : β /∈ Bα} for every
α ∈ J . Hence, b3 = 0.

We are left to prove that b1 and b2 become arbitrarily small with increasing N . For b1 we
get,

b1 =
∑
α∈J

∑
β∈Bα

pαpβ ≤
N∑
i=1

pi · · · pϕ(N)i

ϕ(N)∑
b=1

ϕ(N)∑
a=1

pj · · · pϕ(N)j

∣∣
j=ai

b


Each of the ωi are identically distributed implying that pi = p2i = · · · = pϕ(N)i = p ∈ (0, 1).

This gives,

b1 = Npϕ(N)

ϕ(N)∑
b=1

ϕ(N)∑
a=1

pϕ(N)

 = Npϕ(N)ϕ2(N)pϕ(N)

We know that Npϕ(N) converges to λ. In fact, Npϕ(N) increases ,with increasing N , to λ.
Thus, Npϕ(N) ≤ λ, pϕ(N) ≤ λ

N and ϕ2(N) ≤ log2
p

(
λ
N

)
for N ≥ 1. Hence,

b1 ≤ λ log2
p

(
λ

N

)
λ

N

Both log2
p

(
λ
N

)
, note p ∈ (0, 1), and N converges (or diverges) to ∞. But N is of higher

order, thus

λ2 lim
N→∞

log2
p

(
λ
N

)
N

= 0

Hence b1 converges to 0 as N →∞.
For b2 we get,

b2 =
∑
α∈J

∑
β∈Bα\{α}

E [XαXβ] =

N∑
i=1

ϕ(N)∑
b=1

ϕ(N)∑
a=1

|{a,b}|=2

E[ωi · · ·ωkiωj · · ·ωϕ(N)j ]
∣∣
j=ai

b


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Observe that this expression is symmetric in i and j. Meaning that we can assume without
loss of generality, that i < j. Implying that a > b.

Note that for j = 2i we have a minimum amount of non overlapping ωj . When j = 2i the

total number of non overlapping ωj is ϕ(N)
2 − 1. Hence,

b2 = 2
N∑
i=1

ϕ(N)∑
b=1

ϕ(N)∑
a=1

a>b

E[ωi · · ·ωkiωj · · ·ωϕ(N)j ]
∣∣
j=ai

b

 ≤ 2Nϕ2(N)pϕ(N)p
ϕ(N)

2
−1

Remember that Npϕ(N) ≤ λ and ϕ2(N) ≤ log2
p

(
λ
N

)
for N ≥ 1. We derive,

b2 ≤
2λ

p
log2

p

(
λ

N

)√
λ

N
=

2λ
3
2

p

log2
p

(
λ
N

)
√
N

Both log2
p

(
λ
N

)
, note p ∈ (0, 1), and

√
N converges (or diverges) to ∞. But

√
N is of higher

order, thus

2λ
3
2

p
lim
N→∞

log2
p

(
λ
N

)
√
N

= 0

Now that we have derived that both b1 and b2 goes to 0 as N →∞, we can see that,

dTV (L(W ), Po(λ)) ≤
(

1 ∧ 1

λ

)
(b1 + b2) +

(
1 ∧ 1.4√

λ

)
b3

=

(
1 ∧ 1

λ

)
(b1 + b2)

≤
(

1 ∧ 1

λ

)(
λ2

log2
p

(
λ
N

)
N

+
2λ

3
2

p

log2
p

(
λ
N

)
√
N

)
−→ 0 as N →∞

Hence we conclude dTV (L(XN ), Po(λ)) −→ 0 as N →∞. And thus XN
d−→ Po(λ).



Chapter 4

Poisson convergence: Transfer
matrix method

This chapter we will introduce a more direct approach for showing Poisson convergence, by

explicitly calculating the moment generating function of X
(k)
n , for k = 1, 2.

For arithmetic progressions of length 2 this will be carried out with a transfer matrix tech-
nique. This method is inspired from statistical mechanics. In statistical mechanics the transfer
matrix method is used to derive a more simple form of the partition function. The partition func-
tion is defined as Z(s) =

∑
si

exp(−βH(s1, s2, . . .)), where si are certain states of a (physical)
system that are accessible and H is the Hamiltonian [10].

The precise meaning of this partition function is not of importance to us. The method of
rewriting the partition function into a simple vector matrix vector multiplication, is what is of

importance for us. This is done by writing, Z(s) = v ·
(∏N

i=1Mi

)
· w. Here v, w are vectors of

dimension d and Mi are transfer matrices of dimension d x d. This rewriting will turn out to be

a very useful tool for computing the moment generating function of X
(2)
n .

The advantage of the transfer matrix method over the Chen-Stein method, is that this is a
direct approach. It gives us an exact expression for the moment generating function, which is
convenient for computation and controlled approximations.

4.1 Direct approach for length 1 progressions

The goal is to show that X
(k)
n

d−→ Po(λ), by direct calculation of the moment generating function.
We start by looking at arithmetic progressions of length 1. By first looking at length 1 arithmetic
progressions we can draw some inspiration and ideas to generalize for length k length arithmetic
progressions.

Theorem 4.1.1. Let (ωi)i∈N be a sequence of independent random variables such that ωi ∼
Bernoulli(pi). Assume that pi −→ 0 as i→∞ and ∀n ∈ N :

∑∞
i=n pi =∞. Let λ > 0 and define

rn(λ) = inf{k > n :
∑k

i=n pi ≥ λ}. If X
(1)
n :=

∑rn
i=n ωi, then X

(1)
n

d−→ Po(λ) as n→∞.

Proof. This time we will take a different approach too proving this. Direct calculation of the

moment generating function of X
(1)
n gives,

M
X

(1)
n

(t) = E
[
et

∑rn
i=n ωi

]
=

rn∏
i=n

E
[
etωi
]

=

rn∏
i=n

(
1 + pi(e

t − 1)
)

25
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We want to take a general approach to evaluate this product, because we want to generalize
this for k-length arithmetical progressions. Carefully arranging the different terms yields,

rn∏
i=n

(
1 + pi(e

t − 1)
)

= 1 +

rn∑
i=n

pi(e
t − 1) +

1

2!

rn∑
i=n

rn∑
j=n

|{i,j}|=2

pipj(e
t − 1)2 +

1

3!

rn∑
i=n

rn∑
j=n

rn∑
k=n

|{i,j,k}|=3

pipjpk(e
t − 1)3

+ · · ·+ 1

M !

rn∑
i1=n

rn∑
i2=n

· · ·
rn∑

iM=n

|{i1,i2,··· ,iM}|=M

pi1pi2 · · · piM (et − 1)M + · · ·+ pnpn+1 · · · prn(et − 1)rn−n+1

If the restrictions on the summations were to be removed, this would result the power series
of e

∑rn
i=n pi(e

t−1). Note that an arbitrary term,

1

M !

rn∑
i1=n

rn∑
i2=n

· · ·
rn∑

iM=n

|{i1,i2,··· ,iM}|=M

pi1pi2 · · · piM (et − 1)M =
1

M !

(
rn∑
i=n

pi(e
t − 1)

)M
− (et − 1)M

M !

M∑
i=2

(
M

i

)
o

(M−i)
M (n)

Where o
(M−i)
M (n) is a sum consisting of products of an i number of pi. At first glance this

might not be obvious. In order too get a better understanding of these o
(M−i)
M (n) terms we

calculate a few terms of this sum, up to the n + 2 factor. Note that the upcoming part of this
proof is not essential and can be skipped. The purpose of this is just to demonstrate how to

find the o
(M−i)
M (n) terms.

n+2∏
i=n

(
1 + pi(e

t − 1)
)

= 1 +
n+2∑
i=n

pi(e
t − 1) +

1

2!

n+2∑
i=n

n+2∑
j=n

|{i,j}|=2

pipj(e
t − 1)2 +

1

3!

n+2∑
i=n

n+2∑
j=n

n+2∑
k=n

|{i,j,k}|=3

pipjpk(e
t − 1)3

(*)

Now we set this equal to the same terms without restrictions. This will obviously give to

many terms. Thus we also subtract some correction terms and denote these as the o
(M−i)
M (n).

We get,

n+2∏
i=n

(
1 + pi(e

t − 1)
) set

==1 +
n+2∑
i=n

pi(e
t − 1) +

1

2!

(
n+2∑
i=n

pi(e
t − 1)

)2

− (et − 1)2

2!
o2(n)

+
1

3!

(
n+2∑
i=n

pi(e
t − 1)

)3

− (et − 1)3

3!

((
3

2

)
o
′
3(n) +

(
3

3

)
o3(n)

)
Now we want to write this in terms of (*). Expanding every summation yields,
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= 1 +
n+2∑
i=n

pi(e
t − 1) +

1

2!

n+2∑
i=n

n+2∑
j=n

|{i,j}|=2

pipj(e
t − 1)2 +

(et − 1)2

2!

(
p2
n + p2

n+1 + p2
n+2

)
− (et − 1)2

2!
o2(n)

+
1

3!

n+2∑
i=n

n+2∑
j=n

n+2∑
k=n

|{i,j,k}|=3

pipjpk(e
t − 1)3 +

(et − 1)3

3!

((
3

2

)
(p2
npn+1 + p2

npn+2 + p2
n+1pn + p2

n+1pn+2

+ p2
n+2pn + p2

n+2pn+1) +

(
3

3

)
(p3
n + p3

n+1 + p3
n+2)

)
− (et − 1)3

3!

((
3

2

)
o
′
3(n) +

(
3

3

)
o3(n)

)
By comparing this expression to (*) we can now find explicitly what the correction terms

are. Thus,

o2(n) = p2
n + p2

n+1 + p2
n+2

o
′
3(n) = p2

npn+1 + p2
npn+2 + p2

n+1pn + p2
n+1pn+2 + p2

n+2pn + p2
n+2pn+1

o3(n) = p3
n + p3

n+1 + p3
n+2

From this we can conclude that every o
(M−i)
M (n) is bounded by o2(n), because every pi ∈ [0, 1].

Now that this part is concluded, we continue with the proof. From now on we will use some
more dense notation. Note that,

I :=

rn∏
i=n

(
1 + pi(e

t − 1)
)

=

rn−n+1∑
M=0

1

M !
AM (n)

with, AM (n) =

rn∑
i1=n

rn∑
i2=n

· · ·
rn∑

iM=n

|{i1,i2,··· ,iM}|=M

pi1pi2 · · · piM (et − 1)M

It also holds that,

rn∏
i=n

(
1 + pi(e

t − 1)
)

=

rn−n+1∑
M=0

1

M !

(
A
′
M (n)−BM (n)

)

with, A
′
M (n) =

(
rn∑
i=n

pi(e
t − 1)

)M

BM (n) = A
′
M (n)−AM (n) ≤ o2(n)

M∑
i=0

(
M

i

)
(et − 1)M = o2(n)2M (et − 1)M

Now define II :=
rn−n+1∑
M=0

A
′
M (n). Note that,

|I − II| =
rn−n+1∑
M=0

1

M !
BM (n) ≤

rn−n+1∑
M=0

1

M !
2M (et − 1)Mo2(n) =

rn−n+1∑
M=0

(2(et − 1))M

M !

rn∑
i=n

p2
i

≤
∞∑

M=0

(2(et − 1))M

M !
sup

n≤i≤rn
(pi)

rn∑
i=n

pi
n→∞−−−→ e2(et−1) · 0 · λ = 0
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This means that I and II have the same asymptotic behaviour. Hence we can deduce the

limiting distribution of X
(1)
n from II. Thus,

lim
n→∞

II = lim
n→∞

rn−n+1∑
M=0

1

M !

(
rn∑
i=n

pi(e
t − 1)

)M
= exp lim

n→∞

rn∑
i=n

pi(e
t − 1) = eλ(et−1)

We can conclude that X
(1)
n

d−→ Po(λ) as n→∞.

4.2 Transfer matrix application for length 2 arithmetic progres-
sions

In this section we introduce the transfer matrix method to be used for the length 2 arithmetic

progressions counting summation X
(2)
n . We emphasize that we only present this method as a

way of computation, and do not provide a rigorous proof. Further research is needed for this.
The most clear manner of explaining the transfer matrix method is by direct calculation, as

this approach is explicit in nature. Before we start calculating the moment generating function

of X
(2)
n , we look more closely at X

(2)
n . X

(2)
n =

∑rn
i=n ωiω2i contains terms that have long range

dependencies. For example take terms like ωnω2n and ω2nω4n. The distance between these
progressions will only increase as n → ∞. Hence we say that these terms are long range
dependent.

A consequence of these dependencies is that we can not write,

E
[
et

∑rn
i=n ωiω2i

]
=

rn∏
i=n

E
[
etωiω2i

]
What we can do is the following. Observe that X

(2)
n admits a decomposition into mutually

independent layers as such

ω1ω2 + ω2ω4 + ω4ω8 + · · ·
ω3ω6 + ω6ω12 + ω12ω24 + · · ·
...

ω2k+1ω2(2k+1) + ω2(2k+1)ω22(2k+1) + ω22(2k+1)ω23(2k+1) + · · ·
...

Now define the collection O = {m ∈ {n, . . . , rn} : m mod 2 = 1}. Note that by this decom-
position we can write,

X(2)
n =

rn∑
i=n

ωiω2i =
∑
k∈O

N∑
j=0

σ(k, j)σ(k, j + 1).

Where σ(k, i) = ωk2j , with 0 ≤ j ≤
⌊
log2

(
rn
k

)⌋
. For convenience we denote N = N(k) =⌊

log2

(
rn
k

)⌋
.
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Utilizing this alternate form of X
(2)
n we derive,

E
[
et

∑rn
i=n ωiω2i

]
= E

[
et

∑
k∈O

∑N
j=0 σ(k,j)σ(k,j+1)

]
=
∏
k∈O

E
[
et

∑N
j=0 σ(k,j)σ(k,j+1)

]
.

By mutual independence of the layers the first summation over k is factored outside the

expectation. What remains to be calculated is the expectation E
[
et

∑N
j=0 σ(k,j)σ(k,j+1)

]
. Direct

calculation yields,

E
[
et

∑N
j=0 σ(k,j)σ(k,j+1)

]
=

∑
σ0···σN+1

N∏
j=0

etσ(k,j)σ(k,j+1)
N+1∏
j=0

p(k, j)σ(k,j)(1− p(k, j))1−σ(k,j).

Here p(k, j) = E [σ(k, j)].
The next and most important step is the introduction of transfer matrices. We write this

complicated expression into a more simple form. Note that,

E
[
et

∑N
j=0 σ(k,j)σ(k,j+1)

]
=
(
1 1

) N∏
j=0

M (k,j)
σ(k,j)σ(k,j+1)

(1− pN+1

pN+1

)

Where transfer matrix M
(k,j)
σ(k,j)σ(k,j+1)

= p(k, j)σ(k,j) (1− p(k, j))1−σ(k,j) etσ(k,j)σ(k,j+1). The ma-
trix looks like,

M (k,j)
σ(k,j)σ(k,j+1)

=

(
1− p(k, j) 1− p(k, j)
p(k, j) p(k, j)et

)
This method of rewriting is called the transfer matrix method.

We see that we are left with the immense task of calculating this matrix product. Unfortu-
nately this is about the extend of the research. After this point no concrete results were obtained.
Although we are quite convinced that this approach should give the desired Poisson convergence.

We conjecture that
∑N

j=0 σ(k, j)σ(k, j + 1)
d−→ Po(µ), with µ ←− E

[∑N
j=0 σ(k, j)σ(k, j + 1)

]
.

Implying that X
(2)
n =

∑
k∈O

∑N
j=0 σ(k, j)σ(k, j+ 1)

d−→ Po(λ). We think this implication should
hold true, because the distribution of a sum of independent Poisson random variables is also
Poisson.

We would like to leave the reader with some key observations for further research. An

important observation is that the matrix M
(k,j)
σ(k,j)σ(k,j+1)

can be written as the sum of 2 matrices
A and B.

M (k,j)
σ(k,j)σ(k,j+1)

= A+ p(k, j)B =

(
1 1
0 0

)
+ p(k, j)

(
−1 −1
1 et

)
Note that Ak = A for every k ≥ 1. The matrices A and B unfortunately do not commute.

Meaning that we need to take the order of operation into consideration. Carefully arranging of
terms gives,
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N∏
j=0

M (k,j)
σ(k,j)σ(k,j+1)

= AN +
N−1∑
j=0

p(k, j)ABA+ p(k,N)AB +
N−2∑
j=1

p(k, j)p(k, j + 1)AB2A

+ p(k, 0)p(k, 1)B2AN−1 + p(k,N − 1)p(k,N)AB2 + o(p(k, j)3)

Where o(p(k, j)3) are the higher order terms.
Observe that the first order terms

∑N−1
j=0 p(k, j)ABA equate to 0, because ABA = 0. Also

note that AB2A =

(
et − 1 et − 1

0 0

)
, which will give the important factor of,

(
1 1

)
AB2A

(
1− pN+1

pN+1

)
= (et − 1)

What remains to be proven is that the remaining terms become arbitrary small as n→∞.
Important insight could be taken from the direct approach for length 1 progressions. Unfortu-
nately a rigorous proof of this is not obtained. More research on this topic is needed.
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