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Samenvatting 

 

Een van de grootste wetenschappelijke uitdagingen die deze eeuw onder handen zullen 

worden genomen is hoe eigenschappen van levende organismen hun oorsprong vinden in 

genen, de zogeheten genotype-fenotype kaart. Tevens kunnen eigenschappen op hun beurt 

genen beïnvloeden in een proces dat evolutie heet. De oplossing voor dit probleem zal grote 

maatschappelijke invloed hebben, met toepassingen in de voedselketen (bijv. het creëren van 

gewassen met een hoge droogte-tolerantie), industrie (bijv. materialen maken met micro-

organismen) en gezondheidszorg (gepersonaliseerde medicijnen). De complexiteit van de 

genotype-fenotype kaart wordt veroorzaakt doordat deze doorgaans vele, sterk verweven 

schalen omvat (bijv. in lengte). Dit proefschrift borduurt voort op de ambitie dat uiteindelijk 

de oplossing gevonden wordt door lessen van simpele systemen te veralgemeniseren. 

Daarom onderzoeken we hier een overzichtelijk voorbeeld, polarisatie in bakkersgist, en 

maken inzichtelijk hoe evolutie op de kaart terugkoppelt. 

Tijdens polarisatie in bakkersgist, een eencellig organisme, kiest de cel een richting waarin zij 

zal delen. Vele eiwitten, en in het bijzonder Cdc42p, organiseren zichzelf naar één plek op het 

celmembraan. Hoewel dit proces begint op een moleculair niveau, is dit uiteindelijk merkbaar 

op de populatie-schaal, in eigenschappen als dubbelingstijd. Om in detail te doorgronden hoe 

deze overgang in niveaus werkt, beginnen we van onderaf met experimentele tests van de 

moleculaire theorie achter succesvolle polarisatie in verschillende genetische achtergronden. 

Het theoretische model behandeld onder andere eiwitten die Cdc42 activeren en voor het 

eerst mechanistisch worden beschreven. Wij nemen hieruit voortvloeiende voorspellingen 

omtrent Cdc42p concentratie grenswaarden onder de loep in groeitesten met gistlijnen wiens 

Cdc42 productie we kunnen controleren. De experimenten hebben de theorie bevestigd 

waarmee moleculaire mechanismes die ten grondslag liggen aan polarisatie, zijn verklaard. 

Om de sprong naar populatie eigenschappen te maken, heb ik een overzichtelijk groeimodel 

gemaakt, gevoed door simpele regels vanuit de eerdergenoemde theorie (waardoor 

moleculaire informatie dus slechts indirect gebruikt hoeft te worden). In het kort beschreven 

wordt Cdc42 geproduceerd in een kansproces, verdund door simpele volumegroei en bepaalt 

een concentratie grenswaarde of deling plaatsvindt. Ondanks dat veel details ontbreken, zijn 

opmerkelijke, experimenteel gemeten eigenschappen uit de literatuur in overeenstemming te 

brengen met model simulaties. 

De eenvoud van de modelaannames gaf ook ruimte voor nieuwe inzichten op het gebied van 

evolutie. Ik behandel theoretisch hoe cellen die toevallig het geluk hebben meer eiwit dan 

gemiddeld te produceren, meer kans hebben te overleven en zo de populatie naar hun hand 

zetten. Op deze manier past de eiwitspiegel zich snel op een automatische en niet-genetische 

manier aan en kan het reageren op omgevingsveranderingen, maar dit blijft ook omkeerbaar. 

Gebaseerd op bestaande experimentele data verwacht ik dat dit op ruis gebaseerde 



mechanisme merkbaar het aanpassingsvermogen van essentiële genen vergemakkelijkt (in 

gist voor 25-60% van deze genen). Vanwege de simpele aard voorspel ik dat dit ook in veel 

andere organismen gevonden moet kunnen worden. 

Samengevat hebben we een succesvolle strategie gevonden om overzichtelijk de genotype-

fenotype kaart te analyseren voor polarisatie in gist. Deze kaart kan worden uitgebreid naar 

andere functies, zolang er genoeg bio-functionele informatie beschikbaar is. De analyse liet 

ook een nieuwe evolutionaire koppeling naar deze kaart zien. Op een niveau boven het 

genetische, kan ruis in eiwitproductie ongehinderd worden gebruikt voor korte-termijn 

aanpassingen. Het experimenteel bevestigen van dit evolutionaire mechanisme in andere 

modelsystemen, waar we ook de eerdergenoemde strategie op kunnen uittesten voor het 

voorspellen van eigenschappen, zal een completer beeld geven over hoe eigenschappen in 

levende systemen worden gevormd en bijgesteld door evolutie. 

  



Abstract 
 

One of the biggest scientific challenges to be tackled this century is how traits of living 

organisms originate from genes, the so-called genotype-phenotype map, and conversely how 

traits influence genes through a process called evolution. The solution will yield a large 

societal impact, with applications in food (e.g., engineering drought-resistant crops), industry 

(e.g., material production through microorganisms) and health care (e.g., personalized 

medicine). The complexity of the genotype-phenotype map lies in how it typically spans 

multiple, interwoven scales (e.g., in size). This dissertation builds on the ambition that 

ultimately, a solution is found by generalizations of simpler systems. Therefore, we unravel 

here the map for a tractable example, polarization in budding yeast, and make insightful how 

evolution can couple to the map. 

During polarization, the unicellular organism budding yeast chooses a direction in which it will 

divide. This involves self-organizing many proteins, in particular Cdc42p, to a single region on 

its cell membrane. While starting on the molecular scale, the process ultimately affects 

population traits such as doubling time. To understand the transition in scales in detail, we 

start bottom-up by experimentally verifying the molecular theory behind polarity success for 

different genetic backgrounds. The theoretical model treats, amongst others, proteins that 

activate Cdc42p, which are mechanistically included for the first time. Concretely, we test 

resulting predictions on sharp lower Cdc42p concentration bounds for viability using, inter 

alia, growth assays on strains variably producing fluorescent Cdc42p. The experiments 

confirmed the theory that allows reconstitution of molecular mechanisms underlying polarity 

establishment. 

To advance to population traits, I constructed a tractable growth model, fed by simple rules 

emerging from the aforementioned theory (only implicitly encompassing the molecular 

information). Essentially, Cdc42p is stochastically produced, diluted by basic volume 

expansion, and must exceed a concentration threshold to divide. Despite disregarding many 

details, quantitative agreement between unintuitive, experimentally validated traits 

documented in literature and those from model simulations is reached.  

The simplicity of the model assumptions also allows new insights in evolution. I elaborate 

theoretically how lucky cells that by chance produce above average amounts of protein, 

proliferate better to bias the observed population. Therefore, protein levels promptly adapt 

non-genetically, also in response to e.g., environmental changes, in a reversible and almost 

automatic manner. Based on existing experimental data, I predict this noise-based 

mechanism to notably expand the ease of evolution for essential genes (in yeast for 25%-60% 

of these). Due to its simple nature, I conjecture that it should be found in many organisms. 

 



In conclusion, we find a successful strategy to tractably analyze the genotype-phenotype map 

in yeast polarity. The map can be expanded to other functions than polarity, provided that 

sufficient bio-functional information is available. The analysis also elucidates a new 

evolutionary coupling to this map. At a step above genes, noisy protein production can freely 

be utilized for short-term adaptation. Experimentally confirming the presence of this 

evolutionary mechanism in other model systems, and applying to these the same strategy to 

predict traits, will generate a completer picture of how traits of living systems are formed and 

shaped by evolution. 
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1 Introduction 

 

Human kind has pondered for millennia on existential questions regarding inter alia the 

definition of life, our uniqueness, our relation to other organisms or objects, the fate of 

humanity and emergent properties such as free will. Initially, scientific attempts at resolving 

these matters were reserved for philosophers. For example, the ancient Greek philosopher 

Thales of Miletus believed ordinary matter was alive as well (hylozoism), while the ancient 

Roman philosopher Lucretius argued free will could originate from random swerves of atoms. 

Over the past few centuries, technological advancements allowed the ever-growing use of the 

scientific method to challenge hypotheses about life with empirical evidence. The efforts to 

answer the existential questions has transcended the realm of philosophy, and shaped the 

current state of the life sciences such as biology. 

The key to biology is the characterization of life. In absence of consensus on the precise 

definition of life as described in e.g., [1], we will focus on the most important recurring 

criteria, namely (self-)sustenance and evolution. These criteria are to some extend 

intertwined around the concept of ‘dynamical equilibrium’. Any useful definition of life must 

include relatively stable features, but any sensible definition must exclude fully static 

structures from being alive. This requires the system to incorporate a degree of flexibility, 

which can be exploited to evolve, while on the other hand, an equilibrium must be 

temporarily maintained. For the latter to occur, the arrow of time from the second law of 

thermodynamics is continuously countered. This loosely states that the maintenance of order 

consumes energy. A system accomplishing this transient equilibrium through dissipation of 

energy is also known to be self-organized [2]. 

In this dissertation I aim to shed light on the rules of evolution (section 1.1) and self-

organization (section 1.2), two ubiquitous properties of life. As there is extensive literature on 

the topic, I aim to make a summary appropriate for this dissertation. As will be apparent, the 

omnipresence of these properties is a double-edged sword; while any living system could 

theoretically be used for their study, is it possible to find suitable model systems from which 

lessons can be drawn that have any reasonable generality? In section 1.3, I present the 

polarization in S. cerevisiae as a model system for evolution and self-organization. 

The ample literature on this system required some tailoring for the need of this dissertation. 

By means of a Venn diagram, the knowledge is conveniently distributed in sub-categories, as 

done in section 1.4. Additionally, this allows discussing the experimental possibilities to dive 

deeper into the yeast polarity details (section 1.5), which will prove necessary for answers on 

evolution and self-organization. For this purpose, I advocate a novel view on the polarization 

network (section 1.6), which maximizes the generality of these answers, and ultimately, 

provides my research questions (section 1.7) with the necessary tractability. 
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1.1 Evolution 

 

Generally, evolution occurs when an agent can in a memorable way adapt its functionality to 

affect its proliferation. Acquired traits that are useful for survival will have an increased 

chance of selection (natural selection) and agents with these traits are ultimately the most 

likely to remain (often dubbed survival of the fittest). The selection phenomenon is extremely 

universal and therefore applicable in many fields. Computer program code fighting for CPU 

time exists as a form of in silico evolution [3], there are socio-economic generalizations [4] of 

evolution and one could even envision the current state of the universe as resulting from 

cosmological evolution [5]. In this vastness of implementations of this concept, we recognize 

its importance. 

If we constrain ourselves to biological examples, we can be more specific about what happens 

during evolution. Functionality is encoded in organisms in various ways, most notably 

genetically through its DNA, but also epigenetically (i.e. non-genetically) through e.g., histones 

curling the DNA, and is generally referred to as its (epi)genotype. Thus, when memorable 

changes are required, these need to be embedded into the (epi)genome, the whole of the 

stored information. This “database” cannot be a completely permanent record, and in nature 

replication or repair errors allow diversity that can be exploited for natural selection. This 

selection acts on the quality of the resulting trait, or generally called phenotype. As the 

phenotype results from the genotype, there is hence a reciprocal influence through natural 

selection, see also Figure 1. 

 

 
Figure 1 Conceptual representation of evolution. The information encoded in the genotype and 
epigenotype form components that, through the funnel of the environment, cause a particular trait or 
phenotype to occur. The success and ease of this process relies on its details/shape. Evolution in turn 
relays information of the phenotype back to the start of the funnel, where it acts (the lightning bolt) to 
alter the memorized information, which alters the shapes of the (epi)genotype. This again affects how 
the information flows through the funnel, and consequently the phenotype emergence, in a continuous 
process. 
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The topic of evolution is extensively covered in literature. Before diving deeper into this 

coverage, it is convenient to describe important terms and concepts, see Box 1. These will 

also be of use in the context of self-organization. 

Box 1 Terminology in evolution and self-organization 

 

Self-organization 

Interacting agents (genes, proteins, organisms, etc.) which automatically order 

themselves at the continuous expense of energy 

Streamlining 

Reduction of genomic size after a period of expansion and adaptation 

Neutral mutations 

Mutations that in a particular background have (almost) zero fitness effect and cannot 

be subject to selection. 

Mutational neighbourhoods 

Genetic backgrounds that can be reached within a few mutations 

Robustness 

Maintenance of function under genetic or environmental perturbations 

Neutral theory 

The idea that most mutations fix due to random drift, not selection 

Epistasis 

Deviation from the expected result of combining mutations, based on the individual 

effects  

Evolvability 

The potential for further adaptation given the current genetic state 

Pleiotropy 

Multiple phenotypes being influenced by mutations in a single gene 

Modularity 

Degree with which interacting agents (genes, proteins, organisms, etc.) can be grouped 

based on their interactions, due to the lack of connectedness between groups. 

Complexity 

Different formulations exist, such as ease of replacing components of a system, or its 

combinatorial likelihood. I advocate defining complexity as the reciprocal of modularity. 

Network motifs 

Parts of the network where outputs follow non-linearly from inputs, such as 

positive/negative feedback, feed forward loops or mutual inhibition 
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1.1.1 Currently known rules of evolution 

 

Despite the stochastic nature of the genotypical variation underlying evolution, rules that 

evolution tends to obey are described in literature. This section does not aim to give a 

complete overview of these rules, but states the most important ones for the context of this 

dissertation. Concretely, what is known regarding the interplay between epistasis and 

evolvability must be discussed, since Chapter 4 describes a mechanism which affects this 

interplay. The evolvability in Chapter 4 will be seen within the relevant range for genetic 

innovations, namely from deletions to duplications (a statement motivated below), and as 

how long environmental changes can be withstood. To arrive to the mechanism of Chapter 4, 

we first have to reconstruct the genotype-phenotype map from multiple intermediate levels 

(Chapter 3). The experimental validation (Chapter 2) of these level definitions relied on 

modularity of our biological system of interest, which is further elaborated upon in this 

chapter. Therefore, for the concepts in italic (see also Box 1 for definitions) the most relevant 

rules are highlighted below: 

 

- A mechanism for genetic innovation is starting out with a modification/refinement of an 

unspecialized piece of DNA, which has originated from a duplication or movement of an 

existing piece. For very large pieces, evolution streamlines after expanding. 

Such a process is described in [6], where authors propose the innovation, amplification and 

divergence model. This entails that the gene to evolve first duplicates (amplification), a 

process which does not particularly promote its original activity. Yet, it allows minor 

improvement in another function (innovation), a property acquired by chance. Having two 

copies for the original activity, there is room for adaptation of the second copy, which then 

specializes in the function which initially played a minor role (divergence). In the famous 

Lenski experiment, similar behavior was also observed [7], when a promoter duplicated and 

moved in front of a previously silent citrate transporter, allowing after some refinement a 

new function, namely firm growth on citrate. 

Such a behavior can even be forced by removing an important function and providing the cell 

with very rough working material. In [8], relatively generic sequences were added through a 

plasmid on auxotrophic E. coli cells in nutrient-poor conditions. Some of these sequences 

already yielded a small, but essential piece of functionality for survival. Following up on this, in 

[9] it was shown that these generic sequences can also form a basis for evolution. 

That this mechanism is not rare or with marginal effects over the course of evolution, is 

suggested in [10], where not a gene is duplicated, but the whole genome. There, tetraploid 

yeast, which predominantly occur as either a haploid or diploid organism, may have suffered 

from the many copies of genes in its genome, but remained viable. Gene regulation is 

typically not correcting the excess amount of protein [11]. Instead, the excess provided the 
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yeast with room for many beneficial mutations, and increased its evolvability compared to the 

standard yeast. The fitness benefit of polyploidy is not found in all environments and return to 

diploidy is also relatively rapid, yet emergence of polyploidy is recurring [12] because it may 

allow easier immediate adaptation in non-standard circumstances. 

Not only in the lab, but also historically, genome duplications are known to have a large 

impact. This ranges from yeast undergoing a genome duplication and then diversifying 

(leading to speciation, including S. cerevisiae) [13] to flowering plants [14]. Additionally, in 

silico experiments also show the feasibility of this evolutionary mechanism, as described in 

[15], where genomic expansion followed by the opposite, genomic streamlining, is a common 

route towards adaptation. 

 

- Epistasis and neutrality in conjunction generate genetic evolvability while energetic 

considerations are typically negligible. 

The existence of the genome duplication/refinement mechanism just discussed, teaches us 

two things. Firstly, apparently the maintenance cost of genes, even genomes, is not so large, 

which is supported by energetic calculations [16]. Secondly, perhaps many mutations are 

neutral. Authors in [17] provide an experimental exploration of neutral mutations, and 

illustrate how mutational neighbourhoods of genotypes can be far from random. How 

networks containing many neutral mutations can arise has also been investigated in silico 

[18]. The abundance of neutral mutations, which promotes the robustness of the system, has 

also been the foundation of neutral theory which states that most diversity is actually caused 

by random drift instead of selection [19]. This could mean that the danger of crippling 

mutations when duplicating a gene is generally not so large. 

However, the appearance of neutrality can be on occasion deceiving. Authors in [20] show 

that in yeast varying the dosage of 81 genes typically affects fitness when done one at a time. 

This would make it almost unimaginable that yeast could survive a genome duplication. A 

solution to this paradox may lie in the concept of epistasis. This entails that the phenotypic 

(e.g., fitness) outcome of changing multiple genes may be different from what would be 

expected based on the individual outcomes of every gene change. If the total outcome 

exceeds expectations, this is positive epistasis, if the expectation was superior this is negative 

epistasis. Moreover, if a mutation switches from deleterious to beneficial or vice versa 

conditional on another mutation, this is called sign epistasis. For reciprocal sign epistasis, the 

other mutation must also switch in influence (see example in Figure 2). 

Epistasis is widespread in yeast with multiple known molecular mechanisms, as described in  

[21]. In this paper, examples include mutations in two genes both essential to the function of 

a complex or pathway, and mutations that repress the destabilizing mutation of a gene 

product through targeting protein/mRNA degradation. Also, many statistical origins of 
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epistasis exist from gene regulation [22]. Despite the short duration compared to the 

historical evolution, it is also seen in experimental evolution (e.g., [23], [24]). 

Epistasis and neutrality have important general consequences on evolvability. This can be well 

envisioned by imagining the optimization of a function or fitness in general by genetic 

changes, as trying to reach the highest point in a landscape, a comparison dating back almost 

a century [25]. The horizontal movements represent genetic changes, the vertical movements 

those in fitness. The idea is that evolution favors the path that moves upward the fastest, 

although in a large population size other paths become available if the end point is higher 

[26]. Existence of epistasis is then represented by a rugged landscape (authors in [27] show it 

requires epistasis), while neutral mutations are flat paths. A conceptual, very simplified 

depiction can be found in Figure 2. 

Intuitively, a rugged landscape with pervasive (fitness) valleys would diminish the one-step 

evolvability, as the landscape becomes filled with local maxima from which an upward 

trajectory is not possible. However, neutral mutations allow drifting towards other locations 

on the map that are more favorable to changing a particular gene. In fact, ample sign epistasis 

would make it likely that somewhere in the genome, there exists an upward trajectory again. 

Previously deleterious mutations may become improvements after a “potentiating” near-

neutral mutation (akin to the emergence of the citrate usage phenotype in [7]). So, epistasis 

does not necessarily create local maxima which trap the system and negatively affect 

evolvability, at least not in conjunction with the availability of neutral networks. 

 

 

 
Figure 2 Hypothetical simplified view of a three-dimensional fitness landscape, where the height (z-
direction) shows the fitness, dependent on the variation in genotype space of gene X and gene Y, with 
alleles α, a and A for gene X and β and B for gene Y. The mutation from α to a can be considered 
neutral when gene Y has allele β. Mutations α→A and β→B exhibit reciprocal sign epistasis. Mutations 
α→a has positive epistasis with mutation β→B (yet negative with B→β). 
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The interplay of robustness and evolvability is not straightforward. As described in [28], the 

outcome of robust genetic networks can be beneficial or deleterious for adaptability, 

depending on selection parameters such as population size. Naively, one would imagine a 

large probability to remain stable (robust) in function as contradictory to the need for the 

ability to change and adapt (evolve). Yet, authors show how modest robustness to allow more 

variation can enhance evolvability compared to zero robustness. Furthermore, combining 

epistasis with neutral mutations in the right proportions may give fitness landscape plateaus, 

as well always an escape route off the plateau. Still, this mechanism suggests that a balance 

or trade-off is needed between robustness and adaptability. Analogously, authors in [29] find 

a trade-off between environmental noise and adaptability. In Chapter four of this dissertation, 

we will go further into this, and determine whether such a trade-off is always needed. 

 

- Epistasis, neutrality and pleiotropy cause the genotype-phenotype map to be non-

trivial. Modularity mitigates complexity to some degree, but shifts the problem to the 

best modular level choice. 

As explained previously, evolution forms a feedback loop from phenotype back to genotype. 

In order to understand evolution, we must determine how genotypes are connected to 

phenotypes. This would have been much more tractable if the effects of individual mutations 

simply add up, but as mentioned, epistasis is commonplace and prohibits such simplicity. 

Moreover, multiple genotypes can map to the same phenotypes because of neutral networks. 

But conversely, it is also possible for a single genetic mutation to alter multiple phenotypes, 

which is called pleiotropy. This may not always be very common [30], but shows that the 

genotype-phenotype map is highly complex. 

One way to at least isolate part of this map is to dismantle the map’s architecture into pieces. 

If this is possible, the map or network is said to be modular. For example, in yeast some 

functional modularity has been observed in the paper of [31], and in subfunctions [32]. It is 

important to realize that the classifications of genotypes or phenotypes into modules is 

always fuzzy rather than binary, and secondly that using functional classes may not 

necessarily be the optimal segregation method. How to appropriately define a module has 

been a long outstanding question, see e.g., [33]. 

Mathematically inclined approaches also exist, where a suitable level definition (trophic level) 

and the extent to which this segregates the network (trophic coherence) is shown to explain 

stable, robust system behavior [34]. Yet, there is no complete, sound bottom-up approach to 

biophysically understand how genotypes lead to phenotypes. The benefit would be an 

improved insight in how evolution couples back to the lower levels. This approach is further 

discussed and pursued in Chapter 3 of this dissertation. 
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Ultimately, different segmentation methods (level definitions) may elucidate different kinds 

of modularity, that may all have their own advantage for depicting particular features of the 

genotype-phenotype map. In this light, I see modularity as the reciprocal of another famous 

concept in evolutionary literature, namely complexity. Notably, no definition of the latter will 

satisfy everyone, since many definitions exist, see e.g., [35]. 

  

- Evolution can act on multiple levels simultaneously, also affecting evolvability. Levels 

exist in various ways, such as (length) scale and time. 

Analogous to the genotype-phenotype transition, the path back to genotype through 

evolution is also level-dependent. A multi-level approach is also suggested for example in 

[36], where levels are interpreted thermodynamically. Irrespective of level choice, it is clear 

that selection can act on multiple levels. In a simple case of defining levels through size, on 

the nanoscale a gene encoding for an essential protein will undergo positive selection. More 

extremely, on the astronomical scale orbital variation may have influenced mammalian 

evolution through climate changes [37]. When simultaneous selection on levels occurs, this 

can lead to interesting dynamics. In the cell to populations scales one can observe selfish cells 

ruining the population by only doing what is good for the cell [38]. Clearly, presence of 

multiple levels is important in describing evolution in general.  

Interestingly, one could also add a temporal level interpretation to evolution, in order to also 

take into account epigenetic changes. In [39], epigenetic modifications are viewed as an 

evolutionary precursor for genetic changes and an intermediate in the relay race of possible 

adaptations. One can envision many forms of epigenetic inheritance, see e.g., [40] for an 

extensive review on epigenetic mechanisms. For a generic mechanism, it has been 

mathematically studied how adaptation to environmental cues takes place through 

transgenerational feedback [41]. In Chapter 4, a concrete example of this feedback through 

protein copy number is described, although it is the “genetic environment” that is sensed. 

 

- Fluctuating environments can facilitate evolution, and can in itself even influence the 

probability of certain genetic variation to occur 

Generally, the environment has a profound effect on evolution, because systems are never in 

complete isolation. Systems aim to adapt to a certain environment, and its fluctuations may 

facilitate the speed of evolution. Such a process is described in [42] as a trade-off ratchet, 

where a dead-end in the fitness landscape becomes useful when the landscape changes 

through the environment. Fitness peaks and valleys get rearranged, promoting otherwise 

implausible evolutionary paths.  
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Surprisingly, the environment can also make its influence noticed by influencing the process 

at the core of evolution, namely causing genetic variation. These variations are not always 

random, but differ per environment [43], [44] and may even be of service for evolvability 

during particular stresses [45]. 

 

1.2 Self-organization 

 

Next to evolution, the second critical property of life is self-organization. This phenomenon is 

seen in length scales across many orders of magnitude. Intracellularly, these can be protein 

complexes such as microtubules, organelles such as the Golgi apparatus, while macroscopic 

examples include the schooling of fish (see Figure 3). Several rules emerge when observing 

the variety of these systems. 

 
Figure 3 A school of fish as an example of self-organization. Collectively, a (curved) shape is formed, but 
underlying interactions are local, making it an example of a self-organizing system. The inset shows 
how each fish only looks at its neighbour, changing direction concordantly and possibly moving inward 
when having no outside neighbour, to avoid being exposed to marine dangers at the edge of the 
school. 

 

1.2.1 Currently known rules of self-organization 

 

- Subunits interact locally (consuming energy) to form a global pattern 

Inherent to self-organization is that a global pattern forms from mere local interactions of the 

constituent units [46]; no fish has a notion of the shape of the school it is in, yet by only 

paying attention to its immediate surroundings the school as a whole exhibits complex 

collective motions. In the case of identical subunits (the school only contains one type of fish), 
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the description of the large-scale behavior seems like a small step once one understands the 

rules the single subunit obeys. However, once the global pattern is formed from different 

kinds of subunits, the behavior can appear more complex and varied, leading to the following 

rule. 

 

- Self-organization may be encoded in intricate networks that generate new, emergent 

properties, possibly levels higher. 

In order to maintain organization, living systems wield similar motifs as people use in 

electrical engineering, such as positive feedback, negative feedback and feed-forward loops. 

For example, a centrosome (an organelle arranging chromosomes) may use the self-

organization of microtubules (cables of the protein tubulin) alongside motor proteins to 

position itself stably and accurately within the bounds of the cell [47]. Here, stabilizing, 

negative feedback on the relative position of the centrosome emerges from self-organization 

of simpler, smaller parts from which such an effect is not obvious. Similarly, multiple positive 

feedbacks may lead to stable, robust pattern formation in yeast polarity [48], another 

example of self-organization of proteins. Moreover, neurons are suggested to be able to self-

organize into feed-forward loops [49]. Synthetic biologists also make convenient use of 

building self-organizing systems in terms of network motifs, as is done for artificial polarity in 

yeast [50]. 

Because of the leap in scales from subunits to the global structure, the emergent properties 

often seem unpredictable. Dissection into network motifs is one possible manner to deal with 

this. Regardless of whether such a mathematical/engineering approach is used or another, 

defining intermediate scales to predict behavior is necessary to get a grasp on the emergent 

properties and patterns. This chops the path to the emergent properties as depicted in Figure 

4. 

This level definition problem is the same as encountered in the previous section concerning 

evolution and predicting the genotype-phenotype leap. In section 3.1, a more detailed 

overview is given regarding existing level definitions, their benefits and shortcomings. 

Consequently, a novel definition, better suited to understand evolution in a self-organized 

system, is provided and put to the test for the model system of choice, yeast polarity. 

In short, the idea is that a mesotype can be introduced, which coarse-grains molecular 

information of the gene product interactions to simple rules, such as concentration 

thresholds to polarize. While it can be biophysically justified from the bottom-up why the 

mesotype exists, it also helps for understanding evolution. For example, evolution favors lucky 

cells, where luck is measured at the mesotype level, which has lasting effects on the 

population level resulting in e.g., higher expression than initially expected (see Chapter 4). 
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Figure 4 Conceptualization of level definitions (blue plateaus) within the genotype-phenotype map. 
Dark orange arrows indicate a function affecting a fitness-influencing phenotype encoded in the 
genome, which can also be subject to self-organization. Within the genotype space, the current gene 
set comprising the phenotype (starting point of the arrows in the genotype plateau) yields different 
trajectories, depending on the level definitions (a or b). For definition a, the trajectory spreads out more 
at level I yet converges at level II, the opposite of definition b, symbolizing non-modular (and more 
complex) interpretations at level Ia and IIb, and more modular (and less complex) interpretations are 
level IIa and Ib.  As an example, suppose definitions a are constructed from GO annotations, with gene 
CLA4 mapping in level Ia to polarization and cytokinesis, which both map onto cell division in level IIa, 
converging in that level. The modularity is different in set b, where different polarity mechanisms (level 
IIb) arise using the functional subunits concept [51] (see also 1.6), forming level Ib. Cla4 is a member of 
the transport subunit, but also involved in the polar activation unit. The role difference becomes more 
pronounced at the mechanistic level (WT/rescue), although with the same effect on cell growth. 
Ultimately, any level definition results in the same phenotype, which influences the next genotype 
through evolution (green arrows). Within the genotype space, there exist a neutral neighbourhood 
(green ellipse) within which the evolution arrows may land, and multiple endpoints within this area 
exist. The number of arrows indicate the evolvability of the previous genotype. The most southern 
landing arrow cannot immediately access its endpoint, it must bend by finding an appropriate neutral 
mutation first, denoting epistasis. The best (most modular) level choice for build-up of self-organization 
phenotype is not necessarily the same for evolutionary predictability; in definition a, evolution turns out 
to act on multiple levels, while in definition b effects are more predictable, skipping one level. 
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- Self-organization can be steered/overwritten/masked by the presence of more 

dominant spatio-temporal cues 

While self-organization may work autonomously from external signals, it can be redirected in 

the presence of external cue. An example of this is the formation in zebrafish of the posterior 

lateral line, a sensory organ, from primordial cells (see e.g., this review [52]). About 125 cells 

move along a line defined by external chemical signaling from other cells. This chemical cue 

affects the leading primordial cells during migration, but not the cells that follow. Even when 

inhibiting the external chemical cue and through laser ablation physically separating the 

leading cells from the bunch, the primordial cells can still rejoin [53]. The leading cells signal 

towards the trailing cells and reconstruct their original state through self-organization. While 

external cues may facilitate this, they are not essential. 

Similarly, the direction of division in budding yeast (polarization), which will be further 

discussed in the next section, can also depend on chemical signaling in the form of a mating 

cue. However, this cannot be the only source the cells rely on for determining directionality. 

Suppose surrounding, competing cells give out a false mating cue, causing other cells to 

prepare their mating machinery although no such mating attempt will be made. Affected cells 

should be able to overwrite this attempted deception and find their own direction to divide, 

which is indeed the case [54]. 

This suggests that self-organization can be interpreted in two ways. On the one hand, self-

organization may act as a back-up mechanism, in case external signaling remains absent, is 

deceptive or otherwise insufficient for correct function. Alternatively, it may serve as a quick 

basal manner of organization, after which evolution tailors it towards perfect functionality. 

 

 

1.3 Yeast polarization as model system for evolution and self-organization 

 

In order to add to the known patterns of evolution and self-organization as described in the 

previous sections, we will turn to a system that is exemplary, a model system. Technically, a 

model system is part of a model organism with desirable practical properties. These include 

easy growth conditions, fast generation times, and availability of tools for (genetic) 

manipulation. 

The latter is in line with the properties required for a good evolutionary study. Ideally, 

abundant knowledge of the underlying genes is available. The genotype-phenotype map is in 

general quite complex, as previously mentioned, even when it is clear to which function 

proteins connect. Thus, the genotype must be as well defined as possible. 
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Furthermore, it must be shown that evolutionary solutions to imposed perturbations, that are 

needed to probe the systems, are relatively reproducible. A problem in the interpretation of 

evolutionary trajectories during experimental or historical evolution commonly lies in the 

multitude of paths that can be taken. The same starting points in the same experiments 

hence yields different results, which can signal a level of complexity (or absence of 

modularity) not suited for a model system. 

Additionally, in terms of generalizability for self-organization, we ideally like to see multiple 

modes of transport (of the underlying subunits) that are commonly employed. These can be 

categorized as active and passive transport. A passive mode entails that net transport results 

from diffusion, while a series of reactions takes place in the process. Directed movement of 

cargo to a predefined spot is an example of active transport, such as movement along the 

cytoskeleton. 

Furthermore, a tractable number of components causing the local interactions is desired, 

which equates to at most about ten different subunits generating the global pattern. Thirdly, 

modularity is important, so ways to experimentally promote this in the model system must be 

known. Conversely, within the module we seek a rich interaction network for emergent 

properties (e.g., robustness and redundancy), Finally, the model system must allow exertion 

of controlled perturbations with measurable effects. 

What I will argue is that polarization in budding yeast qualifies a suitable model system for 

evolution and self-organization. After elaborating on the general idea behind yeast polarity, 

this section will show supporting arguments for this claim. 

 

1.3.1 What is yeast polarity? 

The unicellular, approximately spherical organism S. cerevisiae is well-known for its 

contribution to the food industry, yielding products such as beer, wine and bread. It must 

break its internal symmetry in order to generate a new daughter cell (bud) from itself, starting 

from one point in the plasma membrane (bud site). The process of directing cell growth, 

involving dozens of proteins that condense onto one point on the membrane loosely forming 

a modular protein network, into the direction of the bud site is called polarization (see Figure 

5 for an example). This occurs at the end of the G1 phase of isotropic growth.  

The first step in this process is choosing the bud site, which is the step where the internal, 

spherical symmetry is broken. External cues, such as pheromone gradients or ‘historical 

landmarks’ (proteins deposited at an earlier cell division), can impose the symmetry breaking, 

but in that case the global pattern is not formed by local interactions alone. However, 

symmetry breaking can also spontaneously occur by amplifying noise in the spatial 

distribution of the involved signaling proteins, leading to a random directionality in the 

accumulation of proteins. It is in this case that about a dozen proteins self-organize to form a 

spot on the membrane from which further signaling for cell division may take place. 
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1.3.2 Supporting evidence for yeast polarity as model system 

 

Generally, yeast has been a convenient object of study. It forms part of the main bundle of 

model organisms [55], and the consistent research efforts has yielded a wealth of 

information, accessible through online databases. It has been sequenced for more than 20 

years [56] and a myriad of gene, protein, function, interaction and sequence information can 

be found online [57], [58], where the knowledge is continuously updated. Strains with single 

gene knockouts are readily available for use in the lab [59] and protocols are abundantly 

available as well (e.g., [60], [61]). While beyond the need of this dissertation it is worth noting 

is that with the advent of Crispr-Cas in yeast, the speed of genetic manipulation has sharply 

increased (see e.g., [62] for six manipulations at a time). In conclusion, the majority of 

practical considerations has been addressed when working with yeast. 

 

 

  

 

 

  

 

Figure 5 Example of budding yeast at two time points, first forming a bud and 30 minutes later, during 
a microscopy experiment (Left and center top brightfield, left and center bottom widefield 
fluorescence). Inside the cell, a binding partner of the most important protein during polarization is 
fluorescently labelled to visualize the signal that the cell uses to mark the future bud site. Minutes later, 
the bud expands as the cue vanishes. Right: schematic overview of cell cycle phases, where black lines 
inside the cell indicates ploidy and the cue for polarization establishment (‘Start’) is indicated with a 
dashed line. 
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For our evolutionary needs, we can note that it has been used numerous times in evolution 

experiments, for example evolving against salt stress [63], multiple stresses [64] or even the 

stress of a severe genetic perturbation [24]. One reason for this may be the tractability of the 

genetic architecture, which makes it well suited for analysis. It is important to make some 

sense of the genotype-phenotype map and yeast offers this to a certain degree. As 

mentioned before, it exhibits decent functional modularity [31] and within the polarity 

module there is more sub-functional modularity [32]. This module has another very appealing 

property. Under the right perturbation, it becomes possible to make experimental 

evolutionary trajectories of a trait reproducible, identifiable and quantifiable [24]. 

Going into more detail on yeast polarity, one can observe that it has been extensively studied 

through multiple means, so that the leap from genotype to phenotype will soon be feasible. 

For example, in a bioinformatical approach the evolutionary history of yeast polarity has been 

studied in [65] (among others of budding yeast), while good reviews of detailed molecular 

knowledge of the current system can be found in [66], [67]. Hence, not only is yeast well 

studied, it holds for its polarization machinery as well, which seems to have a tractable basis 

upon which evolution research may be conducted. 

Finally, in terms of self-organization, we reencounter the desirable properties postulate 

beforehand. Yeast can polarize using multiple pathways, for example, proteins can 

concentrate on the plasma membrane through reaction-diffusion (passive transport), or by 

means of transport on actin cables (active) [48]. Secondly, as will be shown in the next 

section, the number of components within the reaction-diffusion pathway in particular is 

tractable. The interaction network is not fully mapped yet in literature, but will be rich given 

earlier studies showing clear epistasis. In section 1.5, it will be shown in detail how the 

modularity and prevalence of certain elements above other interactions of various pathways 

can be enforced experimentally, which is required as well. For example, in [24] we note how 

deletion of a single gene (BEM1) leads to promotion of the reaction-diffusion pathway, while 

the dependency on other proteins (more specifically named GAPs, see 1.4.2) becomes critical, 

something normally modelled in low detail [68]. 

In conclusion, polarity in budding yeast will provide an excellent platform upon which 

evolutionary and self-organization studies may be conducted. Analogous alternatives are 

either expected to be less rich in network behavior (for example, consider the minimal 

systems of budding yeast and E. coli [69]), or currently still much too elusive (human cells). 

This system is at the right time with the right size to study. 

Now that the use of studying the spontaneous symmetry breaking during polarization in 

budding yeast has been established, we will piece by piece dissect and describe the whole 

network. This introduction features two ways to classify this network, each with their own 

benefits and shortcomings. Firstly, a more traditional way focused on physical interactions is 

described, which needs to precede the second, conceptual way suitable for generalization to 

other systems. 
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1.4 Physical interaction network representation 

 

Studying biology bottom-up, whether the object is an organism, a single function or even one 

network component, undergoes multiple historical phases, in which the level of detail is 

steadily increased. Firstly, the relevant genes and possible alleles must be documented. Using 

crossing techniques or genetic manipulations, the step of finding simple genetic interactions 

follows, from which an interaction map can be made and hypotheses can be drafted 

regarding functional groupings. Yet, genetic interactions do not shine sufficient light on the 

associated biological processes. Therefore, relevant physical interactions must be studied, 

whose range covers bulk affinity assays to detailed genetic engineering. 

It is at this stage where multiple important system properties become apparent. A physical 

interactions map will be a more reliable representation of for example (causal) hierarchy, 

modularity, possible redundancies and pathway groupings. Fortunately, thanks to many years 

of tedious work, this level of understanding has generally been reached for budding yeast. 

The next subsection will treat the polarization module in terms of its internal physical 

interactions, displaying four pathways with a clear hierarchy, although with significant 

overlap, and one timing pathway as a control knob. 

Importantly, this overlapping, hierarchical representation allows grouping of available 

literature and enables us to sensibly zoom into various parts of this network. Since we wish to 

fully understand the self-organization core, the layers around it must be peeled like an onion. 

Once we zoom in, we will discover that other factors play a pivotal role in the detailed 

mechanistic understanding of this network. Evidence for this is already shown in the fact that 

we need to distinguish a timing module. Generally, precise temporal information is not 

included in all pathways. Secondly, the spatial confinement and distribution of components is 

not always represented. Sometimes it can be assumed for metabolic pathways that the 

protein pool is essentially well-mixed (as employed in e.g., this model in [70]), but this will not 

suffice for the polarity pathways. 

If we could add precise spatio-temporal information to the overlapping hierarchy 

representation, we could discriminate polarity mechanisms, putting more order and hierarchy 

into the strength of each interaction. This allows predictions on many mutants, redundancies 

or near-neutral mutations, which may yield possible avenues for evolution. Yet, the current 

state of literature has not yet reached this stage for the reaction-diffusion module, which is at 

the core of self-organization. This dissertation aims to make this jump. The traditional, 

physical interaction representation helps us to understand what is needed to experimentally 

explore it beyond its limits, which provide the lessons in section 1.5. Then a conceptual leap 

has to be made, which is why the section thereafter advocates the use of mechanistically 

labelling subcomponents, dubbed functional subunits [51]. Still, we must first build upon the 

more traditional view on protein networks, which also serves as a good overview on polarity 

literature.  
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1.4.1 A Venn-network diagram: Non-modular and hierarchical 

A convenient way of ordering the myriad of physical interactions is by placing these in 

appropriate regions of a Venn diagram. This depiction allows overlap between categories, 

which accompanies well the non-modular nature within the yeast polarity module, as will be 

shown. Five categories are constructed: timing (purple), mating (orange), bud scar (blue), 

reaction-diffusion (green) and actin (red), in that hierarchical order (see Figure 6). These 

correspond to five pathways, where the timing pathway acts as a control for the other four. 

While the diagram is an extensive description, completeness competes with usefulness, as 

the purpose is to provide a clear overview. Therefore, some simplifying choices have been 

made. In polarity of yeast, but also of many other organisms, Cdc42 is the polarity hub [71], 

and should therefore have the most prominent role in the diagram. Since we wish to study 

self-organization, the reaction-diffusion pathway that allows polarization even in absence of 

external cues is essential to describe, and as a separate pathway actin will likely be a factor in 

polarity as well. Yet, obscuring effects by dominant external cues governing other pathways 

will have to be included for experimental reasons, while the timing pathway may be needed 

to provide an interpretation for experimental results in [24]. The bounds of the diagram will 

then not include expendable or infrequently encountered interactions within these polarity 

pathways, making polarity to a reasonable extent separable from other modules [31]. 

In the following subsection, each pathway will be highlighted. For three protein (classes), 

there is additional attention (boxes). These will be more prominently featured in experiments 

throughout this dissertation and require more detailed knowledge for the conclusions. 

 

1.4.2 Reaction-diffusion (green circle Venn diagram) 

The core of self-organization in yeast polarity is a pathway governed by reactions, causing 

e.g., (un)binding or activation of components, and diffusion of proteins, hence the name 

reaction-diffusion pathway. As mentioned earlier, the hub is Cdc42, a small GTPase which 

consequently has two states [72]; one GTP-bound (active state) and one GDP-bound (inactive 

state), see also Figure 7. The former is also known as its active state, with the latter being 

inactive. The activity refers to the capacity of a particular conformation to kickstart 

downstream signalling protein effectors, which relay the signal of polarity establishment 

towards further steps in cell division. 

Furthermore, two other positional states may be identified. In itself, Cdc42 has a, post-

translationally appended, hydrophobic tail1, which makes it membrane prone. Symmetry 

breaking during polarization is considered established when a high concentration of Cdc42 

has localized to one point on the plasma membrane. This does not require all Cdc42 to be 

                                                            
1 Interestingly, it is commonly thought that the CAAX protein motif in Cdc42 causes geranyl-geranyl 
attachment needed for GDI interaction. However, Cdc42 in some strains (such as W303 in this 
dissertation) has a CTIL end, T being polar and hydrophilic instead of an aliphatic residue. This is of 
small importance for the post-translational modification, mostly affecting the balance between 
Cdc42’s with a geranyl-geranyl or farnesyl tail [73]. 
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concentrated in one spot; remaining Cdc42 can be found on other places on the membrane, 

but Cdc42 can be made cytoplasmic (usually in the GDP-state) when the tail is covered by 

Rdi1 [74], a chaperone part of the general class of GDI dissociation inhibitors (GDI). Its 

mechanistic functionality may resemble that of the GDI for mammalian Cdc42, since it shares 

large resemblance with yeast Cdc42 as it is well conserved [75]. In mammals, the GDI can only 

discriminate the active from the inactive form when on specific membranes, and does not 

facilitate Cdc42 dissociation, only blocks re-attachment by covering the hydrophobic tail [76]. 

Furthermore, it protects Cdc42 from misfolding and degradation [77]. 

Figure 6 Venn diagram depicting four polarity pathways in budding yeast (mating in orange, bud scar 
in blue, reaction-diffusion in green and actin in red, in that hierarchical order), with the corresponding 
timing pathway (purple), based on physical interactions found in literature. 
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Figure 7 Simplified overview of the Cdc42 GTPase cycle. Cdc42 with an attached GTP on the membrane 
is considered active, otherwise it is inactive. Chaperone Rdi1 helps to maintain Cdc42 in the cytosol. 

Conversely, a protein complex is normally responsible for recruitment of Cdc42 back to the 

membrane, with Bem1 as the glue [78]–[80] for Cdc42, Cdc24 and Cla4. Cla4 is a kinase of the 

PAK-family, capable of phosphorylating Rdi1 to disrupt its binding with Cdc42 [81], freeing the 

GTPase. Subsequently, Cdc24 can bind and effectively activate Cdc42 [80], [82], by promoting 

the dissociation of its GDP, which will usually get replaced by a GTP due to the typical 

GTP/GDP ratio in cells [83]. This is why Cdc24 is typically referred to as a guanine exchange 

factor (GEF), whose activity might be slightly upregulated by Bem1 [84]. Bem1 can then 

anchor to the membrane, guided by active Cdc42 (possibly with help of Cdc24 and Cla4 [80]), 

completing a positive feedback loop for activation and recruitment of Cdc42 to one spot in 

the membrane, as accurately modelled in [68]. Simultaneously, Cla4 (without Bem1) may act 

as a switch to avoid excessively long duration of the polarized state during the cell cycle, 

phosphorylating the GEF and priming the dismantling of the Bem1 complex [79], [85], [86]. 

In principle, the start of the recruitment and activation cycle is an amplification of a small 

noise perturbation, which suffices for swift polarization [68]. Alternatively, the initial 

condition may be set by asymmetric translation of Cdc42 mRNA. Before budding, Cdc42 

mRNA has been shown to associate to the cortical endoplasmic reticulum [87]. Together with 

the bursty nature of Cdc42 production (see later on this dissertation), this may lead to 

significant, temporary asymmetry in Cdc42 content. 

Recruitment and activation must also work in tandem with removal of unwanted active Cdc42 

outside the incipient bud site. Before returning to the cytoplasm, Cdc42 must first be 

deactivated (GDP-bound), possibly because this increases the specificity of the GDI [76], 

blocking a quick return to the membrane. One class containing 4 proteins, Bem2 [88] 

(although most convincingly in vitro), Bem3 [89], Rga1 and Rga2 [90] (the latter in complex 

with Bem1 [91]), is responsible for deactivation: the GTPase activating (in the sense that GTP 

to GDP action is promoted) proteins, in short GAPs. How these mechanistically perform their 

action is not yet clear. In wild-type, it has been shown that these details are not of importance 

for polarity success [68], and therefore difficult to measure. It is at least known that Bem2 and 

Bem3 are cytoplasmic at first and localize at the bud site after Start [92]. Rga1 is also localized 

at the membrane, forming an exclusion zone around the previous bud site [93]. 
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Box 2 Theorized influence of Cla4 

 

 

 

 

 

In absence of Bem1, only less potent positive feedbacks than from the Bem1-Cdc24 

complex remain to recruit Cdc42, which are needed to allow polarization (see e.g., [24]). 

Otherwise, the GTPase detachment from the membrane through Cdc42-GTP hydrolysis 

by the GAPs will dominate everywhere. The important role of a rescue mechanism as a 

form of alternative membrane recruitment (possibly containing Cla4) is explained in [51] 

and experimentally verified in Chapter 2. 

 

Such a route requires three steps; disruption of the Rdi1 binding to cytosolic Cdc42, 

replacement of the GDP by GTP attached to the Cdc42 (turning Cdc42 into its active 

state) and preferential attachment of the then active Cdc42 to the membrane where 

other Cdc42 already is present. Supposedly, Cla4 plays a crucial role in these aspects. 

Firstly, in [81] evidence was presented that Cla4 could disrupt the binding of Cdc42 with 

the GDI Rdi1, but this requires the kinase activity of Cla4. Given the exposed membrane 

anchor (the geranylgeranyl Cdc42-tail), membrane attachment of Cdc42 without the 

GDI seems likely. The second step may be automatic, as the role of the GDP dissociation 

inhibitors (GDI) is keeping the GDP in place [94], which otherwise would get replaced by 

a GTP given the typical abundance of GTP over GDP in the cytoplasm [83]. Finally, it was 

shown in [95] that for Cla4 to properly fulfil its kinase ability, it requires binding with 

Cdc42 and the membrane (through its PH domain). In conclusion, Cla4 will only 

phosphorylate the Rdi1 and disrupt its binding with Cdc42 when already attached to 

other Cdc42 on the membrane, thereby leading to a positive feedback loop for 

membrane recruitment of active Cdc42. This process is depicted in Figure 8: 

 

 

Figure 8 Bem1 and Cla4 (theorized)-mediated positive feedbacks, combined with GAP-mediated non-
polar deactivation [68], [51], proteins not to scale. 
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In summary, simply put the Bem1-GEF-PAK complex activates and recruits, the GAPs 

deactivate and the GDI recycles Cdc42, forming its life cycle (see also Figure 8). In absence of 

scaffold Bem1, Cla4 presumably takes on another function, see Box 2. This in turn may make 

the role of actin more critical and visible, as explained in the next subsection. 

 

1.4.3 Actin (red circle) 

Actin transport of Cdc42 or downstream effectors may also play a role in positive feedback 

(e.g., [48]) leading to polarization. However, this positive contribution is under debate, other 

authors claiming actin may actually negatively dilute the Cdc42 accumulation [96]. Precise 

spatial localization of endo- and exocytosis may promote the positive contribution again [97]. 

Still, a shift is visible towards the belief that Cdc42 is not the crucial component in the vesicle 

transport [67]. Instead, another cargo may be of importance, which could contain Bem1 [98] 

but cannot be limited to it. Even when all known (Bem1-mediated) and hypothesized positive 

feedbacks of the reaction-diffusion network have been disabled (see section 3.3.3) viable 

genotypes still exist. Clues surface when digging deeper into the actin network. 

We can distinguish two types of actin transport, both relying on fast actin (de-)polymerization 

[99], [100]; the formin-dependent endo-/exocytosis and the clathrin dependent endocytosis. 

The former relies on Bni1 (binding to active Cdc42 [101]) and to a lesser extent Bnr1 to 

nucleate sites of actin bundles leading to their assembly [102], mediating exocytosis. 

Conversely, the endocytosis is determined by [103] Rho1, which signals Bni1, Spa2 

(convenient target for a clean polarity marker [24], [104]) and Bud6. Initially, Cdc42 itself was 

connected to vesicle delivery [105], but findings on its GFP fusion casted doubts on this [96]. 

Instead, there is strong evidence from literature for transport of another class of important 

polarity proteins, namely the GAPs. These travel using the epsin-coatings in the clahrin 

dependent transport route [106] (see the mechanistic explanation in Figure 9 and Box 3). The 

full pathway for the formation and coating of actin cables is very extensive. For conciseness, 

Figure 6 omits the irrelevant details for the understanding of polarity. The interested reader is 

referred to [107] for an elaborate review. 

 

1.4.4 Timing (purple region) 

In the purple rectangle denoting timing in Figure 6, the cell finds itself initially in early G1 

phase. The protein Whi3, which binds cyclin (cell cycle regulator) Cln3 mRNA [108], was 

initially thought to act as a cytoplasmic retention pool for Cln3 [109], which is translated but 

degraded very quickly [110]. More recently, Whi3 was shown to sufficiently destabilize and 

decrease translation deficiency of Cln3 mRNA [111], thereby limiting nuclear Cln3 levels. 

Instead, Cln3 remains at the endoplasmic reticulum, until levels of its chaperone Ydj1 reach 

high enough to trigger its release, which may correspond to the moment of sufficient cell size 

and relatively limited (compared to G2) protein synthesis [112]. Nutritional cues also affect 

Cln3 e.g., nitrogen starvation heavily represses Cln3 mRNA [113]. 
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Box 3 Theorized polarity contribution of actin 

 

 

 

 

 

 

It has been shown that a clathrin-dependent form of endocytosis, aided by epsins 

(coating vesicles, see e.g, [114]), targets GAPs (except Bem2) and colocalize to the 

polarization site [106], [115]. Possibly, these epsins facilitate polarity maintenance 

without displacing the Cdc42. Firstly, since Cdc42 does not seem heavily trafficked, 

mainly GAPs unbound to Cdc42 must be displaced. Secondly, Cdc42’s downstream PAKs 

Ste20 and Cla4 may phosphorylate motor proteins which help to activate the Arp2/3 

protein complex, nucleating actin assembly [116]. Therefore, any unbound GAPs may 

also be specifically removed from the bud site, allowing Cdc42 to remain active for a 

longer time at the polarization site. 

 

This adds to the local depletion of the GAPs at the bud site; in the theoretical model 

validated in Chapter 2, free GAPS (available for attachment to Cdc42) were already 

locally depleted by forming a complex with active Cdc42 until there were insufficient 

left to stop accumulation of Cdc42 at that point. Doubling the local depletion replaces 

the need for the positive feedback mediated by Cla4 (in mechanistic terms shifting the 

polarity model from scenario E to F in [117]). Interestingly, deleting the polar activation 

part of the polarity mechanism through Bem1 deletion and adversely affecting the 

endocytosis transport through deletion of Gic1/2 is lethal [118], in line with the 

required set of functional subunits in [51]. Therefore, GAP depletion on the 

presumptive bud site through endocytosis by clathrin-binding epsins may play an 

important role in polarity once other mechanisms are disabled, such as in experiments 

in Chapter 3. A depiction of the GAP depletion from the polar zone is found in Figure 9. 

 

 

 

 

  

Figure 9 Formin-mediated endo-
/exocytosis and the 
hypothesized actin contribution 
to polarization; active Cdc42 
recruits actin bundles [101], 
[102], along which epsin-coated 
vesicles can recycle the GAPs 
Bem3, Rga1 and Rga2 
endocytically [106]. 
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Once Cln3, bound to the essential master regulator and cyclin-dependent kinase Cdc28 

through Whi3 [109], reaches the nucleus, it upregulates cyclin Cln2, which then upregulates 

itself through a feed forward loop to enter Start [119]. This loop consist in more detail of Cln3 

binding to the kinase Cdc28, which phosphorylates Whi5, stopping Whi5 from binding and 

inhibiting the Swi4, Swi6 and Mbp1 protein complexes [120]. The Swi4/Swi6 complex 

promotes Bud9 landmark expression [121] and more importantly, Cln2 expression [122], 

which binds to Cdc28 [123] and as such further exports Whi5 from the nucleus [120], [124]. 

Then, Cdc28 bound to Cln2 phosphorylates many targets, that all work together to promote 

polarization. On the one hand, GAPs Bem2, Bem3 [92], Rga2 [91], [125] and possibly Rga1 

[126] are phosphorylated, decreasing their activity, shifting the balance towards a larger pool 

of active Cdc42. Additionally, the GEF Cdc24, which is sequestered in the nucleus by Far1, is 

released by phosphorylation of Far1 by the Cdc28-Cln2 complex inducing degradation of Far1 

[127], leading to more active Cdc42. This also removes the presumed effective inhibition of 

Far1 of Cdc28-Cln2 functionality by freeing it for other duties, including phosphorylating Ste5 

to prime it for degradation to stop the mating pathway in absence of pheromones [124], 

[128], [129]. In line with the experimentally finding that expressing Cln2 under an inducible 

promoter and removing Cln1 and Cln3 allow control over Start [85], this means Cln2 is the 

cyclin that marks Start. A short mechanistic summary is depicted in Figure 10. 

Despite that this timing picture has been established in relatively high detail, there is reason 

to assume that an important player in polarity, Nrp1, is still missing. Box 4 bundles the 

evidence, which while yielding an incomplete picture, provides a sufficient handle on its 

function for model implementation in Chapter 3. 

 

 
Figure 10 Brief mechanistic overview of the timing pathway, leading towards Start, by releasing Cdc24 
from the nucleus and phosphorylating and inhibiting the GAPs. 
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Box 4 Theorized polarity contribution of Nrp1 

 

 

 

 

In [24], it was found that Nrp1 also influenced polarization, often the second mutation 

to recover the ill Δbem1 after BEM3 deletion. This is somewhat surprising, given that 

Nrp1 had not been implicated in polarization before, in fact it was originally not known 

to be of much importance. Phenotypically, it seems to shorten G1 time in the Δbem1 

Δbem3 background, prompting the suggestion that it is involved in an earlier of more 

abundant release of Cdc24 from the nucleus [24]. 

The classification of Nrp1 as part of the timing pathway allows some discussion on the 

possible mechanism with which it acts.  It has a known RNA-binding motif, a prion-like 

domain [130], [131]. Furthermore, it may have two more domain that can bind RNAs as 

well [132] in the form of RanBP2-type Zinc finger motifs according to 

www.yeastgenome.org [57] (consulted on 6/6/2019), yet that database does not relate 

found RNA targets in [133] to polarity, as mentioned in [24]. Thus, the function of Nrp1 

is unlikely to be through a direct mRNA target. 

Nrp1 is also known to form part of stress granules, a form of RNA-protein granules 

composed of aggregates of interaction prion-like proteins that regulate mRNAs [131], 

using either its prion-like domain or RNA-binding domain. This is similar to Whi3, which 

also localizes in stress granules, using either of those two domains [111]. In the two-

step model of [131], stress granules form by proteins first binding RNAs forming 

complexes (e.g., Nrp1 binding mRNAs, Whi3 binding others), and these form aggregates 

through binding through prion-forming domains, which Nrp1 and Whi3 both have. This 

could establish a link between Nrp1 and the timing pathway through Whi3. Still, the 

exact function that Nrp1 exerts on Whi3 is unclear. 

Interestingly, in an in polarity terms evolutionary related yeast [65] Ashbya gossypii, 

RNA-protein assemblies were found to be mediated by Whi3 aggregates, localizing 

polarization mRNAs like Bni1 and Spa2 mediated by a pumilio-family protein (Puf2) 

[134]. Because Whi3 has more functions, such as binding of cyclins analogous to 

budding yeast, the aggregation needed for polarity mRNA localization is controlled, and 

presumably governed by heat stress protein chaperones such as Ydj1. Possibly, if this 

mechanism is conserved in budding yeast as well, Nrp1 may play a role in these 

aggregates. 

As aforementioned, Nrp1 has no polarity mRNA targets, making it an unlikely substitute 

for the Pumilio protein Puf2. But, the role as chaperone controlling aggregation fits 

http://www.yeastgenome.org/
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Nrp1 well. Although in S. cerevisiae, the role of Puf2 seems different, binding 

Whi3 and NRP1 mRNA rather than the proteins [135], Nrp1 could physically 

associate to Whi3 through stress granule protein Pub1, which binds to both [136], 

[137]. The role of the Pumilio protein may then be taken over by Puf4, which binds to it 

[137]. 

 

As a chaperone, Nrp1 could then influence which mRNA Whi3 targets, which in turn 

may influence the mRNA stability, half-life and ultimately protein abundance of many 

targets [111]. A mechanistic depiction of the role of Nrp1 is given in Figure 11. In 

budding yeast, notable mRNA targets of Whi3 are that of Cln3 [108], regulating G1 time 

which seems shorter in Δbem1 Δbem3 upon the deletion of nrp1 [24], and Cla4 [138], as 

aforementioned important in a Δbem1 Δbem3 as well to contribute to the needed 

positive polarity feedback. This leads to the hypothesis that Nrp1 contributes to Whi3 

binding and destabilizing Cln3 mRNA, allowing G1 to pass at normal speed. 

As a consequence, Cln3 is faster and more heavily expressed without Nrp1, causing 

early G1 exit. At high Nrp1 levels, one may expect slow G1 exit due to Cln3 being lowly 

expressed, and it was found the Cla4 deletion becomes lethal in that circumstance 

[139]. This leaves the opportunity (although it is not necessary) that Cla4 is upregulated 

when Nrp1 is overexpressed. Possibly, Nrp1 causes less Cla4 mRNA to bind Whi3, 

stabilizing it. The excessive Cla4 generated may then facilitate an alternative 

polarization cue through its positive feedback mechanism and force G1 exit in absence 

of the Bem1-GEF complex mechanism, since the GEF stays sequestered due to low 

abundance of Cln3. This is how Cla4 might counteracting the deleterious effect of Cln3 

suppression, and overexpression of Cla4 may contribute to this. 

 

 

Figure 11 Hypothesized Nrp1 influence on polarization. Nrp1 works as a chaperone for Whi3, 
determining which mRNA becomes predominantly bound, reducing the mRNA stability and 
ultimately translation. 
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1.4.5 Mating (orange circle) 

The mating pheromones α and a bind to the membrane proteins Ste2 and Ste3 respectively 

[140], [141]. Once bound, the Gpa1 unbinds from Ste4 and Ste18 with which it had formed a 

heterotrimeric complex [142]. This causes the Ste4-Ste18 complex to dissociate from the 

membrane [143] and relay the mating signal (although conformational change of the 

heterotrimeric complex could also work [144]). 

Ste4 can then bind the kinase Ste20 [145] and Ste5 [146], a scaffold that binds Ste7, Ste11 

and Fus3 [147]. The Ste4-Ste5 bond is essential to cause phosphorylation and activation of 

Ste11 by kinase Ste20 allowing propagation of the mating signal [146]. Active Cdc42 

contributes by binding Ste20 to release it from its auto-inhibited form [148], but this action of 

Cdc42 may not be as critical [149] as its localization. 

The Ste4-Ste5 bond is mediated through recruited Cdc24 [150], which is bound to Ste4 by 

Far1 [151]. Here, Cdc24 is exported out of the nucleus in complex with Far1 by exportin 

Msn5, in contrast to the situation without pheromone signalling where Far1 was degraded 

[127]. Evidence exists that after nuclear export, actin is important to localize the Cdc24-Far1 

complex. Active Cdc42 recruits formin Bni1 [101], which allows nucleation of actin cables 

necessary for transport of Cdc24-Ste5 complexes to the site of free Ste4-Ste18 complexes 

[152]. Possibly, this actin-Cdc24 link is mediated by Bem1, which is known to co-

immunoprecipitate with Act1 [98] and bind Cdc24 [78]. 

The mating pathway is hence extensively cross-linked with many redundant paths towards 

local recruitment. Bem1 can bring more Ste20 and Ste5 to the same point [98], as well as Far1 

[153], which solidifies this location as the point of recruitment. A similar reinforcing effect 

resulting from Far1 may even activate Cdc24 upon binding to Ste4 [154]. Moreover, once this 

recruitment cycle starts on the membrane, it may proceed analogously to the reaction-

diffusion pathway, recruiting more Bem1, Cdc24 and Cdc42 to one point in the membrane, 

concurrently attaching scaffold Ste5 to Ste4 complexes. For more extensive reviews of the 

interplay of mating and actin recruiters with accompanying literature, the reader is referred 

to [155], [156]. 

Subsequently, Ste5 can facilitate more reactions; active Ste11 can phosphorylate Ste7, and 

Ste7 can in turn activate and phosphorylate Fus3, with both processes promoted by their 

binding to Ste5 [146], [157]. Fus3 then dissociates from Ste5 [158], and can phosphorylate 

Bni1, necessary for its localization [159]. In the latter paper, it was conjectured that Fus3 also 

binds Gpa1 (formerly in complex with Ste4 and Ste18), possibly providing an alternative actin 

targeting route towards the pheromone signal. Finally, Fus3 may also inhibit the GAPs Bem2 

and Bem3 [92], to complete the picture; both the GEF is activated and recruited, and GAPs 

become inactivated. 
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Figure 12 Overview of the mating pathway core, kick-starting the Bem1-mediated positive feedback 
and GAP inhibition. 

 

1.4.6 Bud scar (blue circle) 

Normally in absence of a mating cue, the bud scar cue is prevalent. The bud scar consists of 

septins left behind after cytokinesis in the previous cell cycle [160], [161], providing a spatial 

asymmetry that can be amplified. Two possible patterns exist [162], namely axial, where 

division takes place next to the previous division site, and bipolar, where the location 

opposite of the previous site is taken. The former is typically encountered in haploids, while 

the latter takes place in diploids, and this is regulated by exclusive expression of Axl1 in 

haploid cells [163]. 

In haploid axial budding, septins interact with Bud4, which importantly interacts with Bud3 

[164], [165], a second, less-known GEF for Cdc42 earlier in G1 [166]. Bud4 also binds Axl2 and 

Axl1, causing Bud5, the GEF for Rsr1 [167], [168] to bind this complex [164] in haploids alone. 

This leads to activation and localization of Rsr1 by promoting its dimerization [169], [170] (in 

concordance with the GAP for Rsr1, Bud2 [167], [169]). Subsequently, recruitment results of 

Cdc24 [171] (GEF of Cdc42) and Cdc42 [170] itself. The reaction-diffusion pathway can then 

amplify this initial condition to generate a new bud site close to  the previous bud site (but 

due to Rga1 not exactly at the site [172], possibly connecting to septins [93]). 

Alternatively, in diploid cells that do not express the crucial Axl1, landmark proteins Rax1 

[173] and Rax2 [174] are dominant. This prompts the hypothesis that Axl1 is also involved in 

inhibiting the functionality of Rax1/2 [175]. Rax1 and Rax2 are located in the bud neck ring 

and bud tips as landmarks [176] and cause localization of Bud8 at the opposite end of the 

previous division, and of Bud9 at the bud neck. Transport of Bud8 and Bud9 depends on actin 

(and of Bud9 also on septins) [121], linking the bud scar and actin pathway together. In turn, 

Bud8 and Bud9 bind Bud5 [177], localizing Rsr1 activity to generate the budding pattern at 

two possible poles. 
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Figure 13 Core of the diploid bud scar pathway, leading towards the start of the Bem1-mediated 
positive feedback. In haploids, Rax1/2 are replaced by septins and Bud8/9 is replaced by the 
Bud4/Axl1/Axl2 complex to recruit Bud5. 

 

1.4.7 What are the advantages of such a network? 

Following-up on the hierarchical and non-modular nature of this network, one may ask why 

this network has been formed in this way. Naively, one pathway would be sufficient, and in a 

simplified form compared to those currently in place. Instead, large redundancies exist. There 

are relatively few essential genes in this network, 7 out of 61, where normally around 20% is 

essential [59]. Those that are essential are e.g., master switches like Cdc28, the GEF Cdc24 

and Cdc42, and actin is essential only outside polarization (it is needed for other functions). 

The existence of some inevitable degree of overlap in pathways makes sense. If the problem 

is to break symmetry, the answers differ only in the direction in which it is broken, so 

following a mating cue, bud scar cue or random cue. This means that the mechanism to 

activate Cdc42 can be shared, but the localization is pathway specific. Still, there is more than 

the minimal amount of overlap needed. One possible use of this can be exemplified by the 

GAPs. 

Ample redundancies keep many genes free to evolve, as explained for the GAPs in [51]. In 

budding yeast, there are four GAPs, Bem2, Bem3 and Rga1 and Rga2. From a reaction-

diffusion point of view, one GAP suffices, and the Δbem3Δrga1Δrga2 triple knockout is indeed 

viable (yet ill) under standard conditions [90]. Possibly, specializing GAPs to facilitate other 

functions in the cell may carry certain benefits for robustness. There is data showing that 

GAPs differ in their ability to rescue mutants under non-standard conditions, such as high 

temperatures [90]. 

The distribution of the GAPs across the Venn diagram also makes for a tempting suggestion. 

Seemingly dispersed across pathways, these GAPs might serve as a switch to maintain the 

correct hierarchy between pathways under different conditions. Easy switching intuitively 

requires components to be shared between at least two pathways but preferably not all of 

them. Optimizing components in a single pathway might not influence the hierarchy (just 

itself), but optimizing the essential components shared by all pathways might shift the relative 
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importance of pathways. Possibly, this could require an initially high fitness cost such as with 

the Δbem1. 

If this notion is true, then the network is very flexible in this configuration to adapt to 

foreseeable situations. For example, evolution in absence of a mating cue might have BEM2 

as a logical target, or if landmarks are often not present (for example after spore formation) 

then the balance can shift more towards the reaction-diffusion pathway. This is not a 

hypothesis that will be addressed further, but may incite interesting experiments. When 

artificially imposing these conditions that favour dominance of a pathway, experimental 

evolution may reveal interpretable genetic consequences. If these involve mutations targeting 

the crucial components at the edge between pathways, there would be support for this idea. 

A positive indication is the multitude of ways to artificially set the dominant pathway, which is 

further discussed in the next section. 

 

1.5 Experimentally promoting modularity 

 

Inconveniently, the previous analysis of the physical interactions shows a certain degree of 

non-modularity and hierarchy within yeast polarity. Typical experiments entail recording the 

response to an imposed perturbation, for example determining the speed of polarization 

when a gene is knocked out. The hope is that it becomes possible to reverse-engineer the 

system of interest, yet this depends on the interpretability of the experimental results. Non-

modularity complicates this, as it becomes more difficult to attribute results to roles of 

proteins within the system. Similarly, the hierarchical structure may cause insensitivity to 

particular perturbations. 

For this purpose, care must be taken to maximize modularity and sensitivity to the 

perturbation where possible. This is not straightforward; the effects of the required 

preparatory modifications must be clear, with minimal off-target effects. Fortunately, 

depending on the parts of yeast polarity upon which one wishes to focus, several solutions in 

literature exist to conveniently increase or decrease importance of the various pathways. 

 

1.5.1 Solution I: Mating (orange) 

Given the default hierarchy, it is easiest to study the mating pathway. Pheromone gradients 

are the dominant cues, obscuring somewhat the self-organization. The simplest solution to 

decrease importance of the mating pathway is to restrict experiments to one mating type at a 

time. More solutions exist, such as what yeast utilizes to continue polarization along other 

pathways, when supplied with a “deceptive” pheromone signal [54].  
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In that experiment, yeast cells were faced with a constant pheromone signal in absence of an 

actual mating partner. This initially kept cells waiting in G1, but not indefinitely (up to 3 

hours). Authors discovered how yeast downgrades the mating pathway. They show how 

prion-forming domains in Whi3 control Cln3 expression and hence the bypass from the 

mating cue. It is possible to delete these domains from Whi3 and these would be an 

unexpected upstream way (located in the timing pathway) of cutting off the mating pathway. 

 

1.5.2 Solution II: Bud scar (blue) 

Promoting the bud scar pathway seems straightforward, especially when restricting to 

experiments of the same mating type. However, the reaction diffusion network on its own is 

quite fast (also minute time scale) as it relies on the same core components (Bem1-GEF-

Cdc42). Thus, the hierarchy is only slightly in favour of the bud scar pathway. This means care 

must be taken when handling bud scar mutants while studying the pathway they are in. 

Literature does not provide easy ways to further emphasize the bud scar pathway. As the 

reaction-diffusion mechanism starting from an intrinsic noise cue requires amplifying only a 

small fluctuation/cue, it will be hard to suppress this. It requires very careful tuning of the 

reaction-diffusion network to make it only sensitive to an imposed cue and insensitive to 

noise fluctuations. Observing the physical interactions network and the distribution of the 

GAPs across pathways, I expect this to require modification of the GAPs. Yet, it requires 

theoretical modelling and more experimental data to make an accurate prediction. 

 

1.5.3 Solution III: Reaction-diffusion (green) 

To study the reaction-diffusion pathway independent of the bud scar cue (and provided the 

mating cue has been taken care of), people have tried various approaches. Most 

commonplace has been the RSR1 deletion, forming a major link to Cdc24 (shared by the 

reaction-diffusion pathway), which can be supplemented with the BUD8 for complete 

landmark cue removal [178]. However, it has been shown in [84] that a more elegant solution 

exists, which does not have an influence on the reaction-diffusion network especially when 

the actin pathway is supressed by a drug. The more upstream approach that those authors 

take, namely to remove two landmark proteins, seems without fitness effect or epistatic 

interactions on the reaction-diffusion proteins. This was the conclusion based on observations 

of growth on a plate and polarization success with and without actin. 

Remarkably, an entirely different approach has landed success as well. Rather than fine tuning 

the network by precise modifications, it is possible to turn the hierarchy upside down by a 

single, heavy perturbation. The logic is that in this network, besides the essential Cdc42, 

Bem1 is the other protein shared amongst all pathways, so one mutation there will affect the 

balance between these. As expected, the BEM1 deletion is very deleterious but fortunately, 

still viable. In [24], polarization in this background seems quite random (not relying on spatial 
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cues), while the evolution experiment with this Bem1 mutant shows strong reliance on the 

reaction-diffusion pathway. It harboured two out of three recurring recovery mutations, with 

the other one presumably in the timing pathway. Further analysis of the evolved genotypes 

shows symmetry breaking behaviour that allows for theoretical modelling with minor 

considerations on actin [51]. Therefore, this experimental perturbation approach will be taken 

when studying the self-organization of the yeast polarity reaction-diffusion pathway in this 

dissertation. 

 

1.5.4 Solution IV: Actin (red) 

In practice abolishing the mating pathway and depreciating the bud scar pathway suffices to 

allow good visualization of the reaction-diffusion pathway, but a concern can still be the actin 

pathway. While there are multiple possibilities to disturb the influence of actin, there are 

problems associated with this course of action. The most obvious one is the general 

essentiality of actin for progression through the cell cycle, so bluntly knocking out genes is 

risky. 

Therefore, typical ways to perturb the actin transport network rely on first keeping the cells in 

G1 through cyclin [85] or pheromone arrest. Only then latrunculin (an actin-binding agent 

that causes depolymerization) is added or a mutant thermosensitive formin (actin nucleation 

point) [179] is activated. The side effects and stress response when using the latrunculin are 

detectable [180], all the way upstream to Whi5 delaying polarization in the range of 15 

minutes [179]. Furthermore, care must also be taken when using different versions of 

latrunculin, as lat-B may only abolish the cables but not the patches which govern endocytosis 

[181]. Since the clathrin-dependent endocytosis pathway has the possibility of influencing the 

spatial distribution of the GAPs [106], [115],  there is in that case no definitive independence 

of actin from the reaction-diffusion pathway. 

 

1.5.5 General design considerations 

What one can learn from this, even in other model systems, is that it is typically non-trivial to 

choose the exact perturbations needed to isolate the pathway of choice, or to make 

interpretation of the data easier. Sometimes these perturbations occur upstream of 

pathways, sometimes inside the pathway and sometimes the best strategy is to make a big 

shock to the system and see what happens. The latter option becomes more tempting and 

viable the deeper down the hierarchy one goes, as more and more well-chosen mutations are 

required to make a subsystem modular. In any case, it must be stressed that all strategies 

require very good understanding of the underlying interactions, even with the last option of 

hit-and-hope, or the risk of misinterpreting experimental data becomes very high. 
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1.6 Conceptual representation 

 

As the previous section has shown, we can shape our network of interest, yeast polarity as an 

example of self-organization, to quite some extent. Importantly, the modularity can be 

artificially promoted, placing different pathways in the limelight. This greatly facilitates 

interpretation of experiments, as the system appears to have layers that can be peeled off 

like an onion. 

Still, the thus far final layer containing a small version of the reaction-diffusion pathway, with 

still some actin influences, is not readily understood. As mentioned earlier in this 

introduction, a conceptual step beyond physical interactions must be made to promote 

further knowledge, taking into account spatio-temporal interactions. This process is not 

obvious and heavily depends on the reduction of the polarity network to a small, near 

minimal state. From then onwards, we can hope to extent towards polarity as a whole, and 

generalize across modules.  

In [51], this first step in conceptual progress is taken. There, the reaction-diffusion pathway 

has been dismantled in multiple mechanisms: the wild-type (WT, Bem1-mediated), rescue (in 

absence of Bem1), and an immobile Cdc42 variant. At the sub-mechanistic level, the origin of 

the prevalence and existence of these mechanisms lies in what is dubbed functional subunits. 

Proteins can be classified (non-exclusively) to participate in these functional subunits, which 

theoretically can generate any of these mechanisms. In this case, three subunits exist; Cdc42 

transport, polar activation and non-polar deactivation. Which proteins are present in a 

particular genotype, their interaction ability (in case of mutants) and protein copy number 

ultimately determine which mechanism exists and dominates. A graphical summary of this 

hierarchical concept is depicted in Figure 14. 

The framework of functional subunits may turn out to be powerful. Every subunit 

(combination) yields quite tractable rules for the overarching mechanism to work. For 

example, the combination Cdc42 transport and non-polar deactivation, where the rescue 

mechanism prevails, dictates strong dependence on Cdc42 copy number. Below a certain 

threshold, no polarization is possible, while immediately above it polarization can be quite 

effective. It is the outcome of these simple rules that suggest the formation of a network level 

between genotype and phenotype different from functional grouping, as frequently 

attempted. As further explained in Chapter 3, this leads to defining the mesotype, which will 

prove pivotal to show how genotypes generate otherwise surprising population phenotypes. 

Whether this has generality beyond yeast polarity depends largely on analysis of other, self-

organizing systems to a degree of detail and tractability with which yeast polarity has been 

studied in literature. As shown, mechanistically deciphering a system is only feasible when the 

depth of the physical interaction map is such that we know how to make the system 

experimentally tractable. When we have reconstructed the functional subunits for multiple 
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systems, the hope is that there are recurring themes, i.e. that evolution converges to the 

same solutions more often than not, yielding a limited set of rules to be incorporated in the 

mesotype. Whether this will be true remains to be seen, but currently I see this as the best 

attempt at a level-based understanding of the genotype-to-phenotype map. 

Finally, there is one important, unavoidable contribution to the genotype-phenotype map left 

thus far unmentioned in this introduction, which is noise. As aforementioned, the framework 

of functional subunits depends not only on the proteins present at the level below, but also 

on the quantities. In biological systems, these are inherently noisy. So even when 

conceptually the system is fully determined by a hierarchical tree as in Figure 14, there is still 

some room for phenotypical variation across clones in the same environment. 

A good study on the propagation of noise in copy number to the cell as a whole and its 

consequences can be found in [182]. There, variation in expression of one gene which 

influences growth, can influence the concentration of other proteins. Therefore, the growth 

can be intricately influenced by cross-correlated noisy gene expression. This can even have 

effects on evolution, as is shown in [183]. There, noisiness of expression can become a 

tweakable property for adaptation to environmental changes. In other words, the goal that 

was established for this dissertation, to elucidate the genotype-phenotype map structure and 

evolution as its reciprocal path, cannot be achieved without taking noise into account. 

Therefore, much of Chapter 3 and Chapter 4 is dedicated to provide some deeper 

understanding to the implications of noise in terms of phenotypical variation and evolution. 

 

 

Figure 14 Gene to function hierarchy including the concept of functional subunits [51]. At the lowest 
level (genes), only the most important players are mentioned for clarity. 
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1.7 Research questions 

 

Based on the rules in literature concerning evolution and self-organization, we can establish 

that there are some gaps in the knowledge regarding these fundamental properties of life. 

While it is not possible to address all of these, some key problems will receive the necessary 

attention in the next chapter of this dissertation. The following enumeration has at the end of 

each item in parentheses the number of the chapter where the question is addressed. 

 

• What is an appropriate level definition to study evolution of self-organizing systems? 

o Can the theoretical framework of functional subunits be experimentally 

validated? (2) 

▪ Which theoretical predictions are best suited for experimental 

validation in budding yeast polarity? (2) 

▪ What experimental data on polarity is required? (2) 

▪ How do we construct the probes for the experimental validation? (2) 

o How can functional subunits be integrated into a bottom-up, biophysically 

sound level definition for predicting population phenotypes from genotypes?  

▪ Can a model based on this level definition describe the experimental 

genotype-phenotype map in polarity of budding yeast? (3) 

• How do we construct the experimental probe for high-

resolution genotype-phenotype data? (2) 

o What are the evolutionary lessons learned from a bottom-up, biophysically 

sound level definition, in terms of e.g., the information requirement to predict 

phenotype from genotype or the environmental influence on evolution? (3) 

• What are mechanistic rules for epistasis and indirectly evolutionary adaptability and 

robustness? 

o What mechanism makes (genetic) epistasis so pervasive? (4) 

▪ How important is protein copy number for fitness? (4) 

▪ How do selective forces shape protein copy numbers across the 

population to generate epistasis? (4) 

▪ When does selection on protein copy number cause epistasis between 

seemingly unrelated proteins and how strong is this effect? (4) 

▪ How do we design an experiment to illustrate this epistatic mechanism 

in e.g., budding yeast polarity? (4) 

o Does epistasis imply a tradeoff between adaptability and robustness? (4) 

▪ How does an epigenetic epistatic mechanism balance adaptability and 

robustness? (4) 

 

Finally, a recapitulation of the results in the context of answering the main research questions 

will be given in Chapter 5. 
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2 Experimental validation of a molecular model for yeast polarity 

 

2.1 How to reverse-engineer the correct system 

 

In the introductory chapter 1, the case has been made to choose establishment of budding 

yeast polarity as a suitable model system for learning about self-organization and evolution. In 

this process, proteins localize to one point on the plasma membrane, breaking the internal, 

spherical symmetry of budding yeast. The overview of literature (1.4) revealed that even this 

specific subfunction in the life cycle of budding yeast uses a long chain of hierarchically 

ordered and interconnected reactions. While it is possible to make our system of interest 

simpler (1.5), the essential core still contains open questions.  

Despite experimental ingenuities e.g., the ability to relocalize Cdc42 binding partners at will to 

the membrane or cytoplasm through a light sensitive tail [184], we are left at a point where a 

conceptual step is needed to advance. For example, why does the Δbem1 have such a 

stochastic phenotype, what is the relative strength of the different GAPs and how do they 

mechanistically act on Cdc42? Without mechanistically understanding the molecular model 

underlying the core of polarity, we cannot improve on methods to more generally describe 

the transition from genes to traits (phenotypes), or how evolution affects the opposite path. 

Until now, the best experimentally validated model for budding yeast polarization has been 

that of [68], focusing on the role of the Bem1-mediated positive feedback (left side of Figure 

8). There, a simple, constitutive view on the role of the GAPs suffices as long as Bem1 is 

present. However, when this feedback falls away, polarization cannot take place anymore 

without assuming other interactions, as can be envisioned through the interpretation in [117], 

defining 6 scenarios for polarization (labelled A to F). In that paper, the Bem1-feedback that 

allows both a net self-recruitment of Cdc42 and GEF recruitment, is needed for polarization 

(scenario A). As the absence of Bem1 triggers the emerging importance of the GAPs [24], the 

sensible addition would be an interaction between Cdc42 and GAPs (scenario F), yielding 

again a polarizing system. This is not very trivial, as this requires a feedback inhibition of GAP 

action by active Cdc42. However, if a simple self-recruitment of Cdc42 can be conjectured 

(without GEF recruitment), only a simple interaction between GAPs and Cdc42 is required 

(scenario E). In any case, polarization entails active Cdc42 somehow disabling GAP activity at 

the polarization site. 

The simplest way to accomplish this inhibitory effect on the GAPs is by making the second 

step in the GAP cycle of attachment to Cdc42, nucleotide hydrolysis and dissociation, rate-

limiting as done in the model of [51]. Intuitively, the result is as follows; active Cdc42 (with 

GTP) temporarily sequesters GAPs by binding to it, rendering the GAP unable to act on other 

Cdc42-GTP for a period of time. In a membrane location with relatively low (compared to the 
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amount of GAP available) active Cdc42 this does not matter; sufficient GAPs remain to 

deactivate and ultimately dislodge all Cdc42 present there. However, when Cdc42 has 

localized to such an extent that it outnumbers the GAPs, Cdc42 recruitment locally triumphs 

over dissociation. As can be expected, copy numbers of Cdc42 relative to GAPs will have to 

have to be in the right regime in order to restrict the latter behavior to only one possible 

membrane location in the cell, such that polarization may be established. 

 

 

Figure 15 Two models for effective GAP action. The two states enclosed in pink connected by the 
dashed pink arrow represent the GAP action as modelled in [68], the full reactions are covered in [51], 
although the state enclosed in purple is implicit. 

 

Conveniently, the mechanisms behind polarization in the complete model of [51] allows 

dissection into “functional subunits”. This is an abstract building block, which can serve as a 

level definition  between genotype and phenotype (as in Figure 4 and Figure 14 of Chapter 1). 

More precisely, this level is positioned beneath mechanisms and modules. Therefore, 

validating this model means an important conceptual step in completing the genotype-

phenotype map. As described in Chapter 1, finding intermediate levels between genotypes 

and phenotypes facilitates prediction of the latter, and makes concrete where the feedback 

from phenotype to genotype runs to cause adaptation. 

More concrete predictions for validation of this model follow from numerical simulations, 

where the surprising result was established  that symmetry breaking relies very sharply on the 

ratio of total Cdc42 and GAP proteins [51]. Beneath a certain value, polarization is impossible 

(see also Figure 16), while just above it the time to polarize time is minimal, increasing slowly 
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again for increasing [Cdc42]/[GAP] ratio. More concretely, the prediction is that a Cdc42 

concentration threshold to polarize exists for every background, and that this is highest for a 

Δbem1, followed by a Δbem1 Δbem3 and then WT. Such a striking feature is theoretically 

quite suitable for experimental validation. If validated, there is strong evidence for the 

polarity picture as depicted in Figure 15. 

 

Figure 16 Schematic polarity cones for yeast strains with and without BEM1, marking the viable regions 
as a function of total Cdc42 concentration and GAP concentration in the cell, as under the model of 
[51]. Under WT expression, the Δbem1 is at the edge of viability. At very low GAP levels, there is a 
marginal region which does not allow sustained growth either. 

 

As Cdc42 concentration is most important to control in any assay validating the remarkable 

dependence of doubling time on Cdc42/GAP concentrations, it is convenient to cross-validate 

this control. Ideally, Cdc42 is fluorescently labelled, which presents the first experimental 

obstacle. As the C-terminus contains the membrane anchor for Cdc42, fusing GFP to its N-

terminus instead proved a common recipe for its labelling (e.g.,  [105], [97], [179]), 

conveniently also under inducible expression. However, it has become apparent in recent 

years that this construct suffers from artefacts, such as increased temperature sensitivity [48] 

and notably decreased Cdc42 association with vesicles secreted from the Golgi apparatus 

[96]. Clearly, an alternative, less invasive way of tracking Cdc42 needs to be devised. 

Fortunately, much progress has been made for a related organism, fission yeast [185]. 

Strikingly, careful placement of the fluorophore (sfGFP) in the middle of the Cdc42 sequence 

yielded a fully functional fluorescent version of Cdc42. Given that conservation of this GTPase 

extends even to humans [75], it seems obvious to try the same approach on S. cerevisiae 

Cdc42. The construction and subsequent validation form the content of Appendix C.1, which 
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is summarized in the next section. Incidentally, as its human analog can be considered an 

important target in oncology studies [186], [187], the success of transferring this technique to 

other species may hold a relevant promise for its application to human biology as well. 

Subsequently, assays concisely described in the next section (and extensively in Appendix C.2) 

demonstrate the functionality of the fluorescent Cdc42 under inducible expression. This 

allows us to proceed to the original experimental purpose, namely the detection of the 

aforementioned sharp Cdc42 concentration boundary for polarity. The growth assays at the 

heart of section 2.3 will highlight the boundary, albeit at a qualitative level. As we will see, 

more intricate modelling as done in Chapter 3 is required to understand the precise, 

quantitative consequences of the sharp Cdc42 boundary. Nevertheless, the assay suffices to 

draw conclusions on the detailed mechanics underlying the Cdc42 polarity model including 

the GAP details and its level interpretation in terms of “functional subunits”. 

 

2.2 Overview of preparatory experiments for Cdc42-probe 

 

Using methods as extensively described in section 2.6, sfGFP was successfully sandwich fused 

to Cdc42 in S. cerevisiae (following [185] in S. pombe). Additionally, the new sfGFP-CDC42SW 

construct was placed under a Gal1-promoter, and inserted in strains with various polarity 

backgrounds, such as the Δbem1 and the Δbem1 Δbem3 background. Flow cytometry 

experiments on the more traditional N-term fusion of GFP to Cdc42 showed that we are able 

to vary the expression of Cdc42 under the Gal1-promoter from at least an order of magnitude 

beneath, to about an order of magnitude above endogenous expression. This yields sufficient 

dynamical range to probe the cone from Figure 16. 

The single-cell microscopy experiments brought a minor artefact of the fluorescent sandwich 

fusion to our attention. Particularly aging cells accumulate bright fluorescent spots, consistent 

with the notion that sfGFP remnants withstand degradation [188]. These spots are brighter 

than the polarity spots located at the future bud sites, which are very difficult to see. This 

construct is hence not suitable for Cdc42 localization measurements. However, flow 

cytometry experiments on strains containing the sandwich fusion showed that the artefacts 

only had minimal influence on the total fluorescence distribution across the population. This 

caused this distribution to remain as theoretically expected [189] and as with the N-term 

fusion. Consequently, the construct serves to quantify Cdc42 copy number distributions on a 

population scale. 

If we also take into consideration that the Gal1-promoter has a large variability of expression 

(i.e., is noisy), we can see the first indication that Cdc42 copy number influences fitness and is 

subsequently under selection. This is because even at a single induction level, the Cdc42 

expression can still span more than one region of Figure 16 in terms of expressed protein 
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copies. How noisy expression exactly couples to population phenotypes is the topic of 

Chapter 4. Also, a proposal for a more sophisticated experiments is presented there. 

Fitness is not only affected by the Cdc42 expression we induce, but also by the environment. 

This is well visualized in an assay that determines cell volumes under different inducer 

(galactose) levels. Presumably due to osmolarity effects, cells expand by almost 1 µm in 

diameter when varying galactose from zero to the maximum of 2% in the medium. Correcting 

for osmolarity removes the corresponding fitness effects. Secondly, the richness of the 

medium influences the results significantly. Remarkably, slow growth medium (less rich in 

amino acids) acts to equalize fitness (and volumes) of polarity backgrounds with low and high 

Cdc42 expression levels. This phenomenon is further explained in 2.3.2 and 3.4.1. For now, it 

suffices to state that we require rich medium (particularly rich in amino acids) to exacerbate 

phenotypical difference between strains with distinct polarity backgrounds and/or that 

differentially express Cdc42. 

Conveniently, suboptimal medium conditions allow us to better determine that the sfGFP 

construct itself exhibits very little fitness effects. Volume effects (indicative of fitness effects) 

of this construct are within 10% of WT with unmodified CDC42. Hence, in terms of the goals 

in this chapter to validate the molecular polarity model including the GAPs through a fitness 

assay, this construct is fully functional and appropriate here. 

 

2.3 Growth assay for Cdc42 threshold determination 

 

2.3.1 Growth assays shows predicted trends while varying Cdc42 expression 

Ultimately, our goal from the start of this chapter has been to test the molecular model 

describing the GAPs. For this to be confirmed, we restate that a Cdc42 concentration 

threshold to polarize exists for every background, but highest for a Δbem1, followed by a 

Δbem1 Δbem3 and then WT. As failure to meet the threshold negatively impacts fitness, 

measuring this along a gradient of Cdc42 expression for these backgrounds is required.  

By distributing biological samples in a 96 well layout, it is possible to do the necessary bulk 

measurements in automated form. The protocol is further described in the supplement to 

this chapter (2.6). In short, growth of cells in a well can be effectively detected through 

transparency measurements of the well, expressed as the optical density (OD at 600 nm 

wavelength light). At low OD, the rise in biomass is proportional to the rise in OD. This means 

that e.g., if strain 1 causes a doubling of the OD within a time T, this may be because of a 

doubling in cross-sectional area of the cells, because the number of cells has doubled, or a 

combination of both. Experience with the growth model of Chapter 3 learns that the size 

distribution across the population equilibrates within a few-fold of the doubling time into the 

experiment. This means we can attribute the rise in OD to an increase in number of cells, and 
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consequently, to fitness. The latter step follows from assuming exponential growth, which 

translates to a linear fit in log-space. By using a self-made GUI, weighted least squared 

regressions are performed on all growth curves, resulting in growth rates with (fitting) error 

estimates. An example of how this works is depicted in Figure 17. 

 

A first, low-resolution check of the aforementioned model hypotheses is given by the 

frequency with which growth is observed across technical replicates of the same genotype, 

see Figure 18. Seemingly, we observe some indication of thresholds. Wild-type with GAL1pr-

sfGFP-CDC42SW always grows, except at the lowest level of induction. The threshold for 

growth is more diffuse for the Δbem1 backgrounds. Likely, we are not getting binary results 

for replicates in the same medium as the production of Cdc42 is stochastic. Initial conditions 

will become important, such as the saturation duration prior to inoculation for measurements 

(also considering Appendix C.2.1.3). Therefore, we only qualitatively state that the threshold 

for the Δbem1 backgrounds from this figure is around 0.06%. This is consistent with the 

earlier rough estimate of endogenous expression equivalence between 0.05% and 0.2% (see 

Appendix C.2.1.1, Figure 59), at which both the Δbem1 and Δbem1 Δbem3 should be viable. 

However, we can pinpoint the Cdc42 barrier more precisely by considering growth rates. As 

aforementioned, the colony equilibrates quickly in biomass growth rate, and initial conditions 

become irrelevant. If we only consider the (maximum) growth rates and therefore only the 

replicates where growth actually took place, we get a good measurement on the behavior of 

a strain background, cleared of initial condition-specific effects. Ideally, the data would then 

be as reproducible as possible, with the measurement errors as the dominant noise source. 

 

 
Figure 17 Growth curve GUI with curves (colored lines) from different wells (coded in the legend) with 
doubling time estimates (the first values in parentheses in the legend) resulting from linear fits (red 
dashed lines) on the log OD (background correction is called ‘base’ in vertical axis label). 
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Figure 18 Bar plot of the frequency of growth (opaque) and no growth (transparent) as a function of 
galactose content in the medium. Backgrounds comprise of pure WT (dark blue, YIdB001), and those 
with GAL1pr-sfGFP-CDC42SW as the only source of Cdc42 in an otherwise WT (purple, YIdB003), Δbem1 
(green, YWKD069a) and Δbem1 Δbem3 (light blue, YWKD070a) background. 

 

When performing multiple technical replicates of the same genotype (typically 10 for pure 

WT), it is observed that the fitting error is not the dominant error. A clear overdispersion is 

seen in the data, so we need to incorporate the uncontrolled source of noise into the data. As 

the number of data points for bootstrapping is low, one parametric solution is inflating the 

variance of each point by the same numerical constant, assuming all points are equally 

affected. This factor known as the modified Birge ratio [190] has been estimated in pure WT, 

averaging across media, and applied to all other backgrounds to account for overdispersion. 

Secondly, using pure WT as a reference, we find that it is influenced by the medium, possibly 

due to osmolarity effects, as experienced in Appendix C.2.2. To de-trend all growth rates, the 

relative fitness is considered, the ratio of the growth rate of a strain to that of WT in the same 

medium. This gives the plot of Figure 19.  

Probability distributions for the growth rates follow from Bayesian analysis. Its advantage over 

the frequentist approach is that it allows answering the question whether the hypothesis is 

true (instead of whether we can reject it), as explained in e.g., [191]. Bayes factors (posterior 

odds ratio) can be constructed (as shown in Table 1) denoting the probability ratios of one 

growth rate being larger than another, to the opposite scenario. These form a means to 

statistically test whether one rate can indeed be considered larger than the other. As a guide, 

we adhere to the convention mentioned in [192], where an odds ratio of greater than 10 

provides strong evidence that the hypothesis of ‘rate 1 larger than rate 2’ is true. 
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Figure 19 Relative growth rates (fitness) of four strain backgrounds as a function of galactose content 
in the medium. Individual measurement errors have been corrected for overdispersion through the 
average Birge ratio in pure WT [190]. Growth rate distributions (the error bars indicate the 68% 
credible interval) have subsequently been constructed by using the Metropolis-Hastings algorithm 
[193] with a prior assuming doubling times of >70 min. while otherwise uninformative. Backgrounds 
comprise of pure WT (dark blue circles, YIdB001), and those with GAL1pr-sfGFP-CDC42SW as the only 
source of Cdc42 in an otherwise WT (purple triangles, YIdB003), Δbem1 (green squares, YWKD069a) 
and Δbem1 Δbem3 (light blue diamonds, YWKD070a) background. Dotted lines serve as a guide to the 
eye. 

 

Strikingly, what can be seen from the growth rates is mostly as predicted. The trends in 

growth rates suggest indeed a cut-off for Cdc42 copy number, which is different across 

genetic backgrounds. In the otherwise WT background, only very low expressions of Cdc42 

are insufficient for viability, and at 0.01% induction a negative fitness effect is still significant. 

However, above 0.01% there is some evidence that the sandwich fusion somehow confers 

even a slight advantage, as also noted in Appendix C.2.2. In any case, this shows that the 

sfGFP-CDC42SW can adequately replace endogenous Cdc42 in terms of fitness as well, without 

negative consequences. 

Moreover, the growth rates are significantly lower than WT (with construct) for the Δbem1 

Δbem3 below 0.1% and the Δbem1, except at maximum induction. The negative effect of the 

higher Cdc42 barrier relative to WT in these backgrounds is problematic for the cells, unless 

expression is high, in which case all growth rates converge. Similarly, rates of the Δbem1 

Δbem3 are always higher than those of the Δbem1 (sometimes significantly, except at 

maximum induction), which points towards a higher concentration barrier for the Δbem1, as 

hypothesized. 
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The question remains why the boundaries are perhaps less sharp as one may have naively 

foreseen. More concretely, extrapolating the Δbem1 Δbem3 curve indeed suggests it halts at 

a lower induction level than the Δbem1. Yet, the occasional single growth detection occurred 

for the Δbem1 at a rather low level. The intuition behind this is as follows. 

The promoter, either the endogenous or the GAL1, is intrinsically very noisy. This causes part 

of the population to acquire a large excess of Cdc42. If sufficient cells have this lucky fate, the 

population can grow for a substantial period of time. Particularly the first phase at very low 

OD is crucial to survive and most subject to chance, which makes the critical Cdc42 threshold 

seem less sharp. Additionally, the observed Cdc42 distributions imply a monotonic, but very 

non-linear relation with induction and galactose content. Therefore, the sharpness of the cut-

off can only be reconstructed taking into account the population protein distributions. 

 

Table 1 Posterior odds ratio for the hypothesis that one strain has a higher growth rate than another, 
for the strains of Figure 19 which follow the respective shorthand notation WT, WT (sfGFP),  Δbem1 
(sfGFP) and Δbem1 Δbem3 (sfGFP). Cells in green represent values for which there is strong evidence 
(>10, [192]) that this hypothesis is true. 

Strains 
 
 
 
Galactose 

WT/ 
WT (sfGFP) 

WT/ 
Δbem1 
(sfGFP) 

WT/ 
Δbem1 
Δbem3 
(sfGFP) 

WT (sfGFP)/ 
Δbem1 
(sfGFP) 

WT (sfGFP)/ 
Δbem1 
Δbem3 
(sfGFP) 

Δbem1 
(sfGFP)/ 
Δbem1 
Δbem3 
(sfGFP) 

0% - - - - - - 

0.01% 293 - - - - - 

0.015% 5 - - - - - 

0.2% 4 - - - - - 

0.03% 3 67 - 12 - - 

0.04% 3 - - - - - 

0.05% 3 - - - - - 

0.06% 5 4999 5 ∞ 19 7 

0.08% 2 - 356 - 129 - 

0.1% 2 ∞ 4 ∞ 4 146 

0.2% 2 399 3 63 4 6 

2% 5 113 5 1 2 3 
 

2.3.2 Cdc42 thresholds are subject to growth conditions 

In order to reconfirm our predictions on the Cdc42 thresholds, we turn to a repetition of this 

experiment, but this time under slower growth conditions. The idea would be that if growth is 

slower, there should be more time for the cells to accumulate Cdc42 or more time to be 

lucky, as the Gal-promoter is very noisy. Under these circumstances, even mutants as the 

Δbem1 Δbem3 with relatively low expression from the GAL1pr-sfGFP-CDC42SW construct 

(given Figure 19 below 0.06%) may then survive. 
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Since changing sugars is problematic with regards to the use of the Gal-promoter, the poorer 

growth conditions are accomplished by a deficiency in amino acids (at least 4 times less than 

in Figure 19). Unfortunately, due to a problem with medium evaporation (up to 50%), 

galactose concentrations can be up to twice as designed. Still, the resolution in expression is 

sufficient for our conclusions. 

As can be seen from Figure 20, this time strains with the sfGFP-CDC42SW sandwich construct 

as their sole Cdc42 source grow at every run of every non-zero inducer concentration 

measured. In the negative control condition of 0% galactose, these strains indeed do not 

grow, as before (only WT with endogenous CDC42 grows here). More details on the doubling 

times are found in Appendix C.3. As expected, the poorer medium has shifted the minimum 

Cdc42 concentration threshold downwards, to below the level induced at 0.04% galactose 

concentration (based on measurements designed at 0.02% galactose, with the factor of 2 

taking into account possible evaporation).  

 

 

Figure 20 Poor (low amino acid containing) medium promotes survival of Δbem1 backgrounds. Bar plot 
of the frequency of growth (opaque) and no growth (transparent) as a function of galactose content in 
the medium. Backgrounds comprise of pure WT (dark blue, YWKD062c), and those with GAL1pr-sfGFP-
CDC42SW as the only source of Cdc42 in an otherwise WT (purple, YWKD065a), Δbem1 (green, 
YWKD069a) and Δbem1 Δbem3 (light blue, YWKD070a) background. 
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2.4 Discussion 

 

Determining how self-organizing systems evolve is a crucial part in understanding life as a 

whole. The spontaneous symmetry breaking during cell polarity for budding yeast provides a 

unique opportunity for this. Here, a self-organizing system can be reverse-engineered to such 

detail, that constructing the bridge between genes and traits, one level at a time, becomes 

within reach. The functional subunits concept, which aims to summarize molecular details 

regarding pattern formation, forms a stepping stone. However, this concept first had to be 

tested by validating the mechanistic model it forms for this polarity process. 

The central model prediction is the existence of minimum concentration thresholds (for 

polarity success) of Cdc42, the key polarity player. These boundaries differ per genotype, e.g., 

it is very low for WT, but higher for the Δbem1 Δbem3 and even higher for the Δbem1. By 

replacing the endogenous Cdc42 by an inducible, fluorescent variant, we were able to test 

this hypothesis, removing some of the remaining mechanistic unknowns of this system. The 

following was found (conclusions in bold, hypotheses or claims in italic): 

 

• The novel sandwich fusion of Cdc42 with sfGFP in S. cerevisiae (following [185] in S. 

pombe) exhibits essentially no fitness effects. While the cell volume effects of this 

construct are within 10% of WT (indicative of fitness effects), the growth rate 

measurements seem consistent with no significant fitness effects. 

There might be some size effects of the addition of sfGFP on the diffusive constant and 

degradation of Cdc42 as explained at the end of Appendix C.2.2.2, as volumes with the sfGFP 

sandwich are slightly smaller. This may even suggest a positive fitness effect for the sfGFP 

construct, and from Figure 19/Table 1, it is indeed closer to being beneficial than deleterious. 

However, at every single galactose concentration above 0.015%, the fitness difference is not 

significant. As far as fitness is concerned the construct is therefore fully functional, prompting: 

The GAL1pr-sfGFP-CDC42SW construct is the first fully functional fluorescent Cdc42 in terms of 

fitness for S. cerevisiae. 

• Fluorescent microscopy on Cdc42-sfGFP sandwich fusions shows artefacts in aging cells 

which leads to small (on the population scale) artefacts. These interfere with Cdc42 

localization, but not with the determinations of copy number. The artefacts are brighter 

than the polarized Cdc42-sfGFP spots, which are on the edge of detectability. 

This is arguably related to sfGFP enduring degradation, which may be mitigated by 

mNeonGreen [188]. As authors there state this fluorophore can be up to 5 times brighter, this 

will likely provide the signal-to-noise ratio jump needed for localizing Cdc42. We thus expect: 

The use of mNeongreen in a sandwich fusion with Cdc42 will likely mitigate the artefacts in 

Cdc42-fluorophore sandwich fusions, allowing clear visualization of Cdc42 localization. 
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Follow-up work conducted in the Laan Lab also provides further support for this claim, 

yielding sharp images of Cdc42 localization using confocal microscopy (personal 

communication). 

 

• The GAL1pr-sfGFP-CDC42SW construct as the only source of Cdc42 demonstrates 

minimum viable Cdc42 thresholds. These are lowest for WT (below 0.015% galactose 

induction) followed by those of Δbem1 Δbem3 and Δbem1 mutants. As growth rates of 

the Δbem1 Δbem3 are always higher than those of the Δbem1, the latter presumably 

has the highest threshold. WT outgrows the Δbem1 Δbem3 and Δbem1 mutants unless 

expression well exceeds the respective threshold of the mutants. 

This conclusion is arguably the most important one, as it demonstrates how a theoretically 

sharp boundary can still be observed across genotypes, although heavily subject to noise in 

Cdc42 copy number. The resolution of the experiment is also high enough to decisively state 

that WT has the lowest bound. The Δbem1 backgrounds could benefit from more statistical 

power with more data points, as the evidence is compelling but still influenced slightly by 

uncertain growth around the threshold. It still seems certain enough to claim the hypotheses 

from the molecular model which we wanted to investigate are true, which then implies: 

To polarize in absence of the strong positive feedback loop mediated by Bem1, local depletion 

of GAPs available for deactivating Cdc42 at the polarity site is required. 

Following further experimental evidence from [51], we accept this hypothesis definitively. 

Additionally, as explained there, it fits neatly within the context of functional subunits, which 

seems a useful and tractable molecular level definition. 

 

• The fitness dependency on Cdc42 is subject to growth conditions, which can be 

manipulated in a predictable manner. Slower growth conditions (poorer amino acid 

content) equalize fitness of otherwise ill mutants, facilitating their growth and lowering 

the minimum Cdc42 expression for viability (e.g., for the Δbem1 Δbem3 with inducible 

Cdc42, from 0.06% inducer concentration to at least below 0.04%). 

For our understanding of the system’s evolvability, it is not only of importance how flexible 

this self-organizing system is in terms of genetic alternatives. Routes towards adaptation 

occur within an environment, and generally this environment influences the fitness resulting 

from a genotype. Disentangling the intertwined influences of genotypes and environment 

proved critical in determining the mechanistic details of polarity. We established in the 

growth assays in Figure 20 (see also Appendix C.3) that poorer medium lowers the Cdc42 

thresholds and hence mitigates the effect of low Cdc42 expression, which was most apparent 

in the assay of 2.3.1. We influenced the fitness of struggling polarity mutants with different 

media types, although their mutations belonged to a module seemingly unrelated to 
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metabolism. These findings allow further speculation on the emergence of certain genotypes, 

and the influence the environment may have had on the evolution of this particular system.  

While the aforementioned Cdc42 threshold was found particularly relevant in the Δbem1, it 

becomes less relevant as the growth is slowed down due to another cause (low amino acid 

content in this case). As growth conditions might rarely be optimal, determining what 

genotypes are better is not so self-evident. More paths of evolution may become feasible this 

way. This medium effect is further quantified through modelling in the next chapter. 

Furthermore, the differential roles of noisy Cdc42 expression during times of fast and slow 

growth on evolutionary capacity will be treated in 4.2.1.6. For now, it is tempting to formulate 

the following hypothesis: 

Evolution of the yeast polarity system is subject to a trade-off ratchet (as the lac operon [42]), 

using environmental fluctuations to land on non-obvious genotypes. 

 

With the green light on the verification of the mechanistic details of the model, as a next step 

I will construct the genotype-phenotype map. We have seen that there is an intricate 

interplay between genes and environment. Furthermore, there is by no means a single Cdc42 

concentration at an expression level, not in the induction case nor in the endogenous case. 

These effects prevented us thus far from a full quantitative understanding of the system at 

hand, with volumes and fitness amongst the phenotypes concerned. Building upon the 

molecular model, and the accompanying functional subunits concept that forms a level above 

proteins, we must model our way to the phenotype level. This will be the focus of the next 

chapter, and brings us closer to the ultimate goal of discovering new evolutionary rules. 
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2.6 Supplementary information on methods 

 

As a general notice, all details of used materials (brands, Appendix A) and strains/plasmids 

(Appendix B) are enumerated separately in the Appendices. For conciseness, these are 

generally not named throughout this chapter. 

 

2.6.1 Cloning 

Starting with pRL368, which has Gal1pr-GFP-CDC42 and the URA3 marker, the goal is to 

obtain a plasmid which has the sandwich fusion GAL1-sfGFP-CDC42sw instead of the N-term 

GFP fusion. This plasmid would have to be integrated replacing the endogenous CDC42, so 

homology regions have to be inserted into the backbone as well. Homology regions are 

designed to be separated by a unique restriction enzyme cut site (for EcoRI), so that the 

regions form the flanks of plasmid when linearized, which can then integrate into the 

genome. 

Using standard molecular biology techniques (e.g., [195]), pRL368 is amplified and ligated to 

remove the GFP, yielding pWKD006. Using Gibson assembly [196], aforementioned genomic 

homology regions are inserted to yield pWKD010, Similarly, the sfGFP was added to obtain 

pWKD011 (see Figure 58). 

 

2.6.2 Strain construction 

After cutting pWKD010 and pWKD0111 with EcoRI, yeast transformation then followed the 

main line of [197], using diploid YWKD045 (heterozygous for BEM1 and BEM3), yielding 

YWKD054 and YWKD055. These were sporulated (using standard methods, see e.g., [198]) to 

generate the polarity mutants haploids with and without sfGFP used throughout this 

dissertation2. 

  

2.6.3 Experimental assay protocols 

2.6.3.1 Microscopy 

For the details on microscopy hardware, see Appendix A. Several GAL1pr-sfGFP-CDC42SW 

strains were measured under the microscope. The time lapse movie underlying Figure 60 was 

constructed by measuring YWKD065a at 30 ºC for 16 hours every 4 minutes (60x objective, 1x 

zoom) brightfield (LED at 5% power, exposure 30 ms) and wide field fluorescence images (200 

ms, 485 nm excitation, Spectra at 10% power). Wide field fluorescence images were taken at 

11 z-planes (600 nm apart) and then projected using the maximum intensity at each pixel. 

                                                            
2 The strain YFM007a resulted in a similar manner, only instead of sonicating the spores to separate 
them, the tetrads were dissected (see acknowledgement at 2.5). 
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Cells were pre-grown in a rotating wheel at 30 ºC in CSM-URA + 2% raffinose and 0.1% 

galactose, then 500 times diluted into CSM-NF +2% raffinose and 0.1% galactose. Cells were 

shaken loose by vortexing and pipetting up and down with 10 µl pipette. Then cells were 

placed into 96 well plate for imaging, by first coating the wells with 70 µl 0.1 mg/ml 

concanavalin A (incubated 30 min. at room temperature) with the lid on. After removing it, 

200 µl of 500x diluted cells were placed in the wells, and the same amount of water was 

placed in surrounding wells to counter evaporation. Additionally, the plate is sealed by 

surrounding the edge with parafilm. The cells are then centrifuged stuck to the bottom of the 

well (1000 rpm, 3-5 minutes), at which time the plate is ready for imaging. 

 

2.6.3.2 Flow cytometry 

2.6.3.2.1 GFP 

Using a BD FACScan flow cytometer, the fluorescence intensity measurements concerning all 

strains with the N-term GFP fusion to Cdc42 were performed (see 2.5). The protocol 

encompassed the following: 

• Turning on machine and allow 5 minutes of idle time to warm-up lasers 

• Fill the sheath tank with at most 3L of PBS 

• Empty the waste tank 

• Flip the velve at the sheath tank, and if there are any, dislodge air bubbles from the 

vent line 

• To remove bubbles from the sheath line, drain (10”) and fill (20”) three times, the first 

two times without a tube, the last time with 3 mL MilliQ in a tube submerging the 

probe (“Sample Injection Port”). Continue the fill until the sheath to waste line is 

completely filled. 

• Flip to standby, and the system is ready for measurements (put probe sample tubes). 

Strains measured were YMS02-04, replicates of RWS116, 119, and RWS1421 from the 

Wedlich-Söldner lab, see also Appendix E: Reconstruction of burst parameters from FACS data 

for subsequent data processing. 

 

2.6.3.2.2 sfGFP 

After three days, strains grown in a 96 well plate were diluted in the morning in fresh media, 

and then measured in the afternoon (in a well plate). Measurements took place using the 

following protocol on a FACSCelesta (see 2.5):  

• Turning on machine and allow 30 minutes of idle time to warm-up lasers 

• Fill the sheath tank with at most 10L of PBS 

• Empty the waste tank 

• Prime system: press run button and HTS/prime in menu (~3 min.) and repeat 
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• Calibrate using beads (1 drop in in 150 µl PBS) in well A1 by clicking Cytometer/CST in 

the menu, select flat bottom and supply lot ID of beads. 

• Set to standby, and the system is ready for measurements 

• For measurements, set threshold to remove debris, set plate to 96 well flat bottom. 

• Then select how to measure, premix well before measuring, sampling volume/well 

(with 50 µl of dead volume) and amount of washing volume in ‘Standard-Throughput’ 

mode 

• In Experiment/Experiment lay-out/Acquisition, select which wells to measure, 

stopping gate, and do not record more than 2500 events/s (then well too dense). 

• Afterwards, use a plate for cleaning, where 3 wells contain FACS Clean, 3 wells FACS 

Rinse and 6 wells MilliQ (all 200 µl, with 50 µl dead volume). 

 

2.6.3.3 Volumetric assay 

 

2.6.3.3.1 Measurement 

Strains used for the Coulter Counter measurements were inoculated in 5 mL CSM-low 

fluorescence + sugar incubated at 30 ºC. After two days, these were diluted in fresh 5 mL of 

the same medium, with the dilution factor depending on how dense the tube appeared. 

Tubes were categorized in four groups, which were diluted up to 1000 times. The next day 

the densest samples were diluted a factor of 5. After sonication (6 min. on time with 15” off 

every 30” on at 70% of 500 W), the cells were then brought to the Coulter Counter, and 

measured using the following procedure (see acknowledgement 2.5): 

• The probe is submerged in Coulter CLENZ Cleaning Agent. Remove this cuvette and 

replace by cuvette with Isoton II Diluent. Flush five times. 

• Measure blank (new cuvette with Isoton II Diluent) to get an indication of the 

background reads, which stabilize around 50. 

• Samples were diluted to about 100 000 cells/ml by eye, sometimes overdiluting first 

and from the counts preparing a new sample diluted in Isoton II with the appropriate 

density in 10 mL volumes. 

• Usually, all samples are measured five times 

• Run a blank (cuvette with only Isoton II) between different samples and at the end to 

confirm all cells are flushed 

Not all strains at all concentrations were ultimately sufficiently grown for the measurements, 

leaving the strains shown in Figure 65 and Figure 66. 
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2.6.3.4 Growth assays 

2.6.3.4.1 Media 

There are several considerations for medium choice. Firstly, we would like to have our 

medium composition very controlled and reproducible. Therefore, we use synthetic medium, 

consisting of yeast nitrogen base (0.69% w/v), CSM amino acid mix (0.79% w/v) and sugar. To 

maintain compatibility with the medium of the microscopy assays, we choose the nitrogen 

base without the autofluorescent components riboflavin and folic acid. The amino acid mix is 

four-fold higher in concentration for the assay in 2.3.1 (and filter sterilized, to preserve amino 

acids) compared to the assay of 2.3.2 (see also Appendix C), which used autoclaved amino 

acids. The former assay ensures that strains do not run out of amino acids early in log phase, 

causing a small shift in growth rate within which cells proceed to make these amino acids 

themselves. The latter can illustrate the effect of poorer medium on Cdc42 thresholds. 

As the GAL1 promoter is used, we cannot use dextrose as our sugar (supresses expression 

[199]), but also not only galactose either as this sugar should be the inducer and not the 

metabolite. Without dextrose, the Gal promoter should eventually turn on for the 

percentages used in this dissertation (≥ 0.01%) [199]. For the metabolite, we therefore use 

2% raffinose. To avoid osmolarity differences (see the growth assay in Appendix C.3) the 

varying galactose can be buffered by the for budding yeast non-metabolizable sorbitol, which 

has comparable molecular weight. Only in that assay, x% galactose was therefore 

supplemented with (2-x)% sorbitol. 

Finally, evaporation of media during the experiment turned out to be a potential problem. 

While plates used for the growth assay in 2.3.2 (see also Appendix C.3) did have additional 

water between wells and at the sides of the plate to counter evaporation, even that does not 

stop media from evaporating significantly. This also creates an evaporation bias (up to nearly 

50%) for strains on the edge of the plate compared to the centre of the plate. 

In this assay, this has the consequence that galactose concentration may be up to twice as 

high as intended (as the water evaporates). Secondly, OD values may be overestimated, as 

the wells become denser with cells, mainly due to growth but partially due to evaporation. 

The latter will not be a severe effect though, since a doubling of OD in 2 days due to 

evaporation in strains which typically double every 2 hours is only an effect of a few percent. 

Still, the quantitative growth assay where galactose concentrations are most critical, in 2.3.1, 

mitigates these problems by not trying to block the water with parafilm on the sides, but by a 

transparent sticker on top of each well. 

 

2.6.3.4.2 Strains and layout 

To test the Cdc42 dependence in different backgrounds, strains with GAL1-sfGFP-CDC42sw in 

either a WT (YIdB003/YWKD065a), Δbem1 (YWKD069a) or Δbem1Δbem3 (YWKD070a) 

background are placed in a 96 well plate layout. Additionally, all runs featured YIdB001, a 

CDC42 strain in a WT polarity background, as a reference. Concretely, four growth 
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measurement runs were done with the layout as in Table 2. The assays of 2.3.2 / Appendix C 

had the layout of Table 3, where the pure WT was YWKD062c this time. 

Table 2 Media and strain position in a 96 well layout for the four growth assay runs of 2.3.1. 

Column (every run) 
 

Row Run 1/2 Run 3/4 

1 0% Gal 
 

A YIdB001 Only medium 
2 0.01% Gal 

 
B Only medium YIdB001 

3 0.015% Gal C YIdB001 YWKD065a 
4 0.02'% Gal D YWKD069a YWKD070a 
5 0.03% Gal 

 
E YIdB001 YWKD065a 

6 0.04% Gal 
 

F YWKD069a YWKD070a 
7 0.05% Gal 

 
G Only medium YIdB001 

8 0.06% Gal 
 

H YWKD069a Only medium 
9 0.08% Gal 

    

10 0.1% Gal 
    

11 0.2% Gal 
    

12 2% Gal 
    

 

Table 3 Distribution of strains and media for the growth assay runs of 2.3.2. All media has 1x 
autoclaved CSM + 2% raffinose, the third run also has (2-x) % sorbitol, where x is the galactose 
percentage. Wells marked with an asterisk were switched to 0% galactose in the measurement plate. 
Strain % 

Gal 
1st run 2nd run 3rd run (Sorbitol 

added) 

CDC42 0 
    

D2* B4* F5 G5 G6 

CDC42 0.02 B1 C3 
  

C6 D6 B2 C2 D2 

CDC42 0.1 C10 B12 
  

C7 D7 B5 C5 B6 

CDC42 0.2 G1 F3 
  

E6 F6 B11 C11 D11 

CDC42 2 F10 G12 
  

E7 F7 E11 F11 G11 

GAL1-CDC42 0.02 A4 B4 C4 
 

C3 C4 
   

GAL1-CDC42 0.1 A9 B9 C9 
 

C9 C10 
   

GAL1-CDC42 0.2 F4 G4 H4 
 

F3 F4 
   

GAL1-CDC42 2 F9 G9 H9 
 

F9 F10 
   

GAL1-sfGFP-CDC42SW 0 
    

D4* B5* F6 F7 G7 

GAL1-sfGFP-CDC42SW 0.02 D3 D4 
  

C5 D5 B3 C3 D3 

GAL1-sfGFP-CDC42SW 0.1 D9 D10 
  

C8 D8 C6 B7 C7 

GAL1-sfGFP-CDC42SW 0.2 E3 E4 
  

E5 F5 B10 C10 D10 

GAL1-sfGFP-CDC42SW 2 E9 E10 
  

E8 F8 E10 F10 G10 

Δbem1 GAL1-sfGFP-CDC42SW 0 
    

D3* B6* E8 F8 G8 

Δbem1 GAL1-sfGFP-CDC42SW 0.02 B3 B6 C6 D6   B4 C4 D4 

Δbem1 GAL1-sfGFP-CDC42SW 0.1 B7 C7 D7 B10   B8 C8 D8 

Δbem1 GAL1-sfGFP-CDC42SW 0.2 G3 E6 F6 G6   B9 C9 D9 

Δbem1 GAL1-sfGFP-CDC42SW 2 E7 F7 G7 G10   E9 F9 G9 

Δbem1 Δbem3 GAL1-sfGFP-CDC42SW 0     G9* E10*    

Δbem1 Δbem3 GAL1-sfGFP-CDC42SW 0.02 C2 B5 C5 D5   
   

Δbem1 Δbem3 GAL1-sfGFP-CDC42SW 0.1 B8 C8 D8 C11   
   

Δbem1 Δbem3 GAL1-sfGFP-CDC42SW 0.2 F2 E5 F5 G5   
   

Δbem1 Δbem3 GAL1-sfGFP-CDC42SW 2 E8 F8 G8 F11   
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2.6.3.4.3 Protocol 

First, a 96 well plate is inoculated with about 5 µl of cells into 100 µl medium per well in a 

predefined layout. In addition, sterile MilliQ is put in the four reservoirs in the perimeter (4 

times 2 mL) and 77 times 100 µl in the reservoirs between wells. The wells are then covered 

by a sticker and with the lid on, it is placed shaking slowly (100-150 rpm) for 2 days at 30 ºC. 

Then, using a multi-pipette, 10 µl of cells of this plate are transferred to a new plate which has 

90 µl of media in the same layout, which dilutes the cells a factor of ten. This is then repeated 

for a new plate, where 5 µl of cells are transferred to 95 µl media, to ultimately accomplish a 

200x dilution compared to the original plate. When making the dilution, wells are gently 

mixed before dilution by pipetting up and down. The 200x diluted plate is then sealed by a 

transparent sticker, and covered with the lid to minimize evaporation (and water is placed in 

the reservoirs as before). 

The diluted plate is placed in a TECAN Infinite 200 PRO for about 48 hours at 36 ºC for 

measurements. The first 1000s linearly pre-shakes (amplitude 1 mm) the plate, before 

shaking just before each measurement round in a 380 second interval. These rounds start 

with 90” linear shaking (amplitude 2 mm), 90” orbital shaking (amplitude 1.5 mm), 90” linear 

shaking (amplitude 1 mm), waiting 10” and then OD-600 +/-9 nm measurements (25 flashes, 

5ms settle time). Rounds were executed in two consecutive loops of 24 hours, after which OD 

values were documented in a excel sheet. 

 

2.6.3.4.4 GUI 

A graphical user interface (GUI) in Matlab (designed in R2014b) was made to facilitate the 

analysis of the many growth curves measured by the plate reader. The doubling times, which 

are most important outputs from the GUI, were found as follows. The output of the TECAN 

plate reader is in an excel format. These are read into Matlab with xlsread. As time loops run 

at most 24h, multiple loops were required to get the data in the time span of the experiments 

of Chapter 2. The time stamps of the second loop were offset by the mean time difference 

between the iterations of the first loop, as the second loop restarts at time stamp 0. 

Then, the background of the signal must be subtracted, as there is an OD-value even for wells 

without cells (about 0.08), which differs slightly per well. For every well the average of ODs at 

the first ten time points provides an estimate of this basal background value. The instrument 

error is estimated as the standard deviation of these points. In the event that all values are 

the same (because of rounding of the data before storing the data in the excel file), the error 

is then taken to be 10−𝑑𝑖𝑔𝑖𝑡/2, where digit is the lowest number of figures after the decimal 

point for which rounding to this number does not alter the number. In other words, the error 

is the precision implied by the rounded number. 

After background subtraction per well, the log (base 2) of the OD values were taken. Still, 

because of the noise in the machine, some values are below the background, of which the log 
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is not defined. Therefore, the part of the data is only retained which constitutes the longest 

stretch of points above the background with a user-specified signal to noise ratio. By default, 

this is twice the instrument error. Furthermore, the data stretch must also satisfy the user-

specified lower- and upper-time bounds. By default, these are such that every window along 

which will be fitted (as explained in the next paragraph) can symmetrically accommodate a 

user-defined number of points. 

Along this data stretch weighted least squares regression is done, which is explained in e.g., 

[200].  Normally in linear space the WLS weights are chosen inversely proportional to the 

instrument error. As an approximation in log space, the reciprocal of the difference between 

the log2 of the background subtracted values +/- the instrument error are taken. These fits 

are done along a moving, symmetrical window of a user-defined size, which by default is 51 

points (must be uneven). The window centre location is chosen such that linear fit with the 

highest R-squared is found, provided it exceeds a user defined minimum (by default 0.9), 

otherwise no fit is given. 

The WLS parameter fits, including the growth rates, with standard errors are then calculated 

per well, where the user can modify the user-defined fitting constraints per well. In >95% of 

the cases, the default settings work fine, so manual improvements are rare. This results in the 

growth rates given in 2.3.1. For the data in Appendix C.3, there is the slight modification that 

the OD of the stretch of data considered must also exceed 0.1. This was to find the advanced 

growth phase instead of the maximal growth phase, which better mimics conditions in the 

related volume experiment. 

2.6.3.5 Statistical methods 

Error bars in Figure 59, Figure 61 and Figure 62 are fitting uncertainty following from 

maximum likelihood estimation (mle in Matlab R2014b) from gamma distributions on flow 

cytometry data, see also Appendix E: Reconstruction of burst parameters from FACS data. At 

most 3000 iterations and 6000 function evaluations were allowed, with the lower bounds of 

parameters at zero and upper bounds at infinity, except the fraction of the off-state which is 

at most 1. Promoter off-state fraction values, combining replicates, were constructed by 

weighted averaging (using the errors in the weights). 

For Figure 63 and Table 9, only data was considered for wells with the number of data points 

exceeding 1000. The median sample distributions follows from Laplace’s result [201], where 

the density estimate at the median position was approximated by using Matlab’s ksdensity, 

finding the first point at which more than half the probability mass is left of that point. The 

error on the standard deviation follows from 1000 bootstrap samples from the bootstrp 

function in Matlab. Correlation coefficients from the green and red channels including 

uncertainties resulted from corrcoef. Values combining for replicates were again constructed 

by weighted averaging. When reporting the relative medians, standard deviations and 

correlation coefficients, errors were processed through propagation of uncertainty [202], 

assuming no cross-correlations. 
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Volume medians and standard deviations in Figure 65 and Figure 66 were estimated setting 

all counts in the measured bins in the Coulter Counter at the centre of the bins. Uncertainties 

were somewhat crudely estimated using the bootstrp function, using 100 samples. Only data 

from strain/medium combinations that (with all runs combined) has more than 500 counts in 

total were considered, as some are background counts. Again, when combining replicates, 

weighted averages are taken, and propagation of uncertainty [202] assuming no cross-

correlations yielded the errors of the relative values. 

The growth rate data from Figure 18 and Figure 19 were generated as through a GUI as 

described in the previous subsection 2.6.3.4.4. When a control well (only medium no cells) 

exhibited growth, all samples in the same medium in that run were omitted from analysis 

(discarding one column and one row out of 4 runs). Data was further processed by observing 

that wells with and without growth could typically be very well discriminated by having an OD 

rise above or below 0.02. This helped to objectify the judgements in the difficult cases where 

growth is marginal. 

By weighted averaging, runs of the same background and medium were combined. As clearly 

the fitting errors were underestimating the error across replicates, all the errors were 

increased by the same modified Birge ratio [190], estimated in pure WT, averaged across 

media. The distribution type of the errors remained the same, so this means the growth rate 

values minus their means, divided by the corrected errors are still distributed as a Student’s t-

distribution with the fitting window size minus 2 as the degrees of freedom, as before [200]. 

We then refine this estimate with Bayesian analysis, defining the likelihood of the mean value 

as the product of the t-distributions of the points. When multiplied by the uniform prior 

between a rate of 0 and 1/70 [1/min.], a distribution proportional to the posterior is obtained. 

The posterior samples can then be retrieved by use of the Metropolis-Hastings algorithm 

[193], implemented in Matlab as mhsample. A normal distribution centered around the mean 

with 10 times the corrected error was used as the proposal distribution, while the random 

number generator makes numbers uniformly across the range [sampling point -/+ half the WT 

error at 0% galactose]. A burn-in period of 1000 points was used, leaving 50000 sample points 

from the posterior distribution. 

Monte Carlo simulation of the ratio distribution (10000 samples) of the rates divided by the 

pure WT rates, and then taking the mean of those for the estimate of the mean and the 0.16 

and 0.84 quantiles, gave the corresponding 68% credible intervals shown in Figure 19. 

Similarly, Monte Carlo simulation of the difference distributions (10000 samples) between 

two rates gave probability estimates of one rate being larger than the other (number of times 

simulated data is greater or smaller than zero). The highest chance of the scenarios ‘value 1 is 

larger than value 2’ and ‘value 1 is smaller than value 2’ is taken, and those odds are 

documented in Table 1. The convention for strong evidence found in [192] is adhered. 
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3 Genotype to phenotype model 

 

3.1 Genotype, phenotype, … mesotype 

 

The previous chapter showed the experimental validation of a detailed molecular model for 

the polarization mechanisms in budding yeast, the case study for self-organization in this 

dissertation. In particular, growth rate measurements on polarity mutants were generally in 

line with expectations on their viability as a function of Cdc42 concentration, which is central 

to polarity success. However, we already observe some shortcomings if we reset our goal to 

predict properties as growth rate more quantitatively. Even in a clonal population, polarity 

success turns out to be subject to stochasticity. When genotypes do not behave so discretely, 

this complicates our understanding of evolutionary targets in the genome, and the efficacy of 

evolution. 

Given the level-based idea from the introductory chapter 1 to make trait generation of 

evolving, self-organizing systems tractable (as visualized in in Figure 4), the need of another 

intermediate level becomes apparent. Whereas the molecular mechanisms for self-

organization emerge from the genotype, that can be modified through evolution, the 

selection criteria for evolution are phenotypes contributing to fitness, on for example a 

cellular, population, or organismal level. This means that to understand how evolution can 

shape the genotype as a function of phenotype, first the path from genotype to phenotype 

must at least to some extend be understood.  

In itself, the prediction of phenotypes from genotypes is a central problem in many fields, 

such as medicine [203], [204], synthetic biology [205] and forensics [206]. This has by no 

means a trivial solution; for example the common disease-common (genetic) variant 

hypothesis as tested by genome-wide association studies typically does not hold [207], [208], 

partly due to ubiquitous epistasis [209] and pleiotropy (although one gene affecting many 

traits is not universally found, see [30]). More comprehensive modelling is hence necessary, 

with methods ranging from statistical/phenomenological [210], [211] to biophysical [212].  

Much recent interest has risen in statistical methods, benefitting from the increasing 

availability of large genotype/phenotype data sets (e.g., [213], [214]). The downside is that 

this ‘big data’ approach will not provide mechanistic understanding of the emergence of 

phenotypes and subsequently, not of potential new evolutionary paths either, contrary to the 

potential of the biophysical approach [215], [216]. However, the latter apporach in turn 

requires much detail, which together with the difficulty to interpret outcomes in more 

general terms is very (computational) time consuming. Furthermore, there is no guarantee 

that reverse-engineering genotype to phenotype maps is possible when this map is much 
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more complex than one-to-one. Hence, conceptual progress is required to make a justifiable 

bottom-up model to predict phenotypes feasible. 

It has been suggested in e.g., [217] that introducing intermediate levels between genotype 

and the trait of interest could improve tractability of the prediction process, and yield general 

insights [22]. Several types of levels have been defined in literature, e.g., endophenotypes 

[218], ontotypes [219]. While used with success in situations when pure predictability of 

phenotypes is demanded, previously posed questions regarding evolution and evolvability 

remain unanswered due to a lack of explicitly incorporating underlying molecular 

mechanisms. As an illustration of how combining interpretable parameters and a 

biophysically sound justification remains a shortcoming, the principles behind 

endophenotypes and ontotypes are briefly described here (see also Figure 21 for a schematic 

overview). 

 

 

Figure 21 Schematic overview of the generation of phenotypes, starting from the bottom-up from the 
genotype/genome (red box), in a particular environmental background (grey). Evolution (dark blue 
arrow) couples phenotype (green cone, depicting the expansion of possible phenotypes across higher-
order structures) back to genotype. Light blue, orange and purple ellipses depict the approximate 
realms of mesotypes, ontotypes and endophenotypes respectively. 



Genotype to phenotype model  
 

71 

Endophenotypes are now in common use for neurological diseases, as an observable internal 

risk factor that correlates with (future) diseases. Diverse examples exist, leading to diffuse 

definitions that are not always met [220], and its interpretations as risk factors or very early 

manifestations of the disease itself are also up for debate [221]. The ontoype comprises a 

state defined by the effect on the hierarchical chain of GO annotations (starting from the 

genes of interest) upon which phenotypes can be predicted through machine learning. While 

quite a successful method for predicting growth rates when ample data is available, this 

statistical scoring method explains the emergence of phenotypes from genotypes only in 

terms of biofunctional classifications. While a part of the biophysics involved will have been 

integrated through the GO annotations, phenomena granting insight in the question why 

phenotypes occur are bypassed. 

As a solution, in [70] a chemically justifiable approach is taken that modularly encompasses 

three main processes in budding yeast: metabolism, the cell cycle and growth. This makes 

good use of the functional grouping tendencies [31] in S. cerevisiae, yielding a coarse-grained 

model that remains tractable. Yet, while the underlying Michaelis-Menten dynamics may be a 

sufficiently accurate approximation in terms of metabolites, this relies on well mixed reagents 

and a negligible role for diffusion. In a crowded cell this is often not the case (as explained in 

e.g., [222]), and such an approach also ignores the coupling between reaction and diffusion 

that can generate pattern formation as described in [223]. There is still a need for a multi-

level modelling approach that coarse-grains the spatio-temporal features of cellular processes 

in a way that applies to a broader class of cellular modules. 

In Chapter 2, the experimental side of [51] has been expounded, validating a theory on the 

level ‘above’ genotype in S. cerevisiae. The analysis of the mass-conserving reaction-diffusion 

equations governing symmetry-breaking during cell polarity revealed a grouping of protein 

interactions into “functional subunits”. Combinations of these constitute symmetry breaking 

mechanisms with well-defined properties, such as the requirement of a minimum Cdc42 

concentration in order to polarize. Considering the generality of pattern formation through 

these equations (see [224], [225]), it seems an appropriate emergent level upon which to 

build a model attempting to describe higher order, population phenotypes. 

That this is not straightforward is illustrated as follows. Theoretically, the boundary between 

insufficient and sufficient Cdc42 to polarize in a Δbem1 mutant (using the rescue mechanism) 

is sharp; above this boundary polarization is fast, below this it is not possible. Paradoxically, 

the experimental fitness of the Δbem1 mutant with WT Cdc42 expression, which is expected 

to be around this boundary, is neither high nor zero, but very low instead. This genotype 

cannot be mapped onto the appropriate phenotype yet. But coarse-graining principles 

derived from the functional subunits can be integrated into a higher-order, population 

dynamics model to complete the mapping, which will be the content of this chapter. 

To avoid confusion, we define the set of coarse-grained rules under a new name, the 

mesotype. The goal is to integrate this in a population model; its validity will then be tested on 
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experimental data of the model system of choice, yeast polarity. The goal is to describe and 

predict phenotypes of polarity mutants, such as cell volumes, doubling times and cell cycle 

times. This approach is applicable to other systems provided sufficient knowledge is present 

of the underlying protein networks to characterize the resulting physical mechanisms. Once 

this modelling approach to bridge the gap from genotype to phenotype is validated, we zoom 

out to discuss general lessons on how evolution influences this bridge. For example, the 

tractable nature of the calculations reveals the hypothesis that transcriptional noise appears 

to be a driver of epistasis emergence. These discussions form the foundation for 

understanding the evolutionary coupling to this self-organizing system in Chapter 4. 

 

3.2 Mesotypical integration into a growth model 

 

To understand how the mesotype affects population phenotypes, or even a single cell 

throughout its life, we must model its coupling to other existential processes in the cell. For 

the purpose of tractability, these are summarized into a model, after having identified the 

main phenomena that should be taken into account. As we saw in the previous chapter that 

the ability to polarize depends strongly on the amount of Cdc42, an obvious inclusion is a 

sound description of the dominant factors affecting concentration. This leads to three 

branches in the population growth model tree that incorporates polarity: cell growth, 

polarization dynamics via coarse-grained rules (mesotype), and protein turnover. 

One of the strengths of the model is that different polarity mutants can be represented in the 

simulations by simple changes in parameters, as will be described in the next subsections. All 

GAP mutants in [24] require four fitting parameters, the nrp1 mutant one and extension to 

incorporate the CLA4 mutation one more. The resulting model keeps track of the Cdc42 

protein concentration [Cdc42] that varies stochastically across time and population. This in 

turns influences the outcome of the coarse-grained polarity rules, which influences the 

growth phases of the cell. Conversely, cell growth affects the protein concentration as well, 

leading to interesting behaviour that would have been difficult to predict beforehand.  

Figure 22 shows a graphical summary of the integrative cell growth model, while Table 4 

provides a summary of the parameters. Details on the model implementation in Matlab can 

be found in 3.7.1. 

 

3.2.1.1 Cell growth 

In the cell cycle of yeast, two types of growth can be identified: isotropic growth, which 

roughly corresponds to G1 phase and where only the mother cell grows, and polarized 

growth, which roughly corresponds to S, G2 and M phase and where only the bud grows. 

There is no consensus in literature (see e.g., [226]) on how to characterize these growth 
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phases. More specifically, authors in [227] identify four regimes wherein volume scales 

linearly with time 𝑡, although one may have chosen to fit only two regimes of constant 

membrane area growth rate on the data. On the other hand, two regimes of approximately 

constant volume growth are found in [228], which are then integrated in an detailed model 

for growth. 

Hence, in absence of a standardized model and as the exact nature of the growth is likely to 

be condition or even strain dependent, a parsimonious model is chosen here. However, as 

demonstrated in Figure 77 of Appendix I and the description of epistasis in a more 

minimalistic model (Chapter 4), the exact nature of the growth assumptions with the 

exception of the mesotype coupling will prove cosmetic for the most important conclusions. 

 

 
Figure 22 Graphical overview of integrative growth-polarization model with stochastic Cdc42 
production, with parameter values in light blue and fitting parameter values in orange. Top half 
represents the isotropic growth phase, the bottom half the polarized growth phase. 

 

We start by assuming a constant cell membrane area (𝐴 = 4𝜋𝑟2 with cell radius 𝑟) growth 

rate 𝑑𝐴/𝑑𝑡 (see left corners of Figure 22). This rate follows the commonly observed trend, 

that the polarized growth (rate 𝐶2) occurs faster than the isotropic growth (rate 𝐶1). This 

factor will be between 2 and 3, inferring from fig. 7 of [227] and fig. 1c of [228] respectively. 
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From analytical work, we can also get a fair estimate for the value of membrane growth rate 

during isotropic growth, if it is assumed that WT is relatively optimized such that for optimal 

media, the minimum size to polarize 𝑟𝑚𝑖𝑛 is not an important factor. Then, lower rates slow 

WT down, but higher rates do not confer much of an advantage in terms of doubling time. In 

this case, the rate 𝐶1 is defined as (see derivation in Appendix D: Membrane growth rate 

considerations for calibration): 

 

𝐶1 =
4𝜋 (1 − 0.7

2
3) 𝑟𝑚𝑖𝑛

2

𝑡𝐺1,𝑚𝑖𝑛 (1 + 0.7
2
3
𝑡𝑝𝑜𝑙,𝑚𝑖𝑛
𝑡𝐺1,𝑚𝑖𝑛

)
 (3.1) 

where 𝑡𝑝𝑜𝑙,𝑚𝑖𝑛 and 𝑡𝐺1,𝑚𝑖𝑛 are the minimal polarization time and time spent in G1 

respectively. This value of 𝐶1 is independent of the exact value of 𝐶2/𝐶1, which is determined 

from calibrating the speed of growth by the wild-type doubling time (taken to be 83 min. in 

YPD, from data of [24]). This restricts the model sufficiently to make deviations from this 

idealized behaviour inconsequential (see Appendix I: Relaxation of model assumptions). 

Now that isotropic and polarized growth are defined, the transition points between the two 

phases must be set. Bud emergence, the start of polarized growth, must be preceded by 

polarization, which still occurs during isotropic growth. In turn, polarization cannot occur 

under certain circumstances, which can be absorbed into the following three conditions: i) 

there exists a minimum cell size to polarize, ii) there is a minimum time already spent in G1 

before polarization, iii) polarization proteins must be at appropriate concentrations. 

The first condition will only be an average resulting from a distribution, with 2 μm for the 

minimum radius as an appropriate value given data of [228]. The second condition aims to 

summarize gene expression cues for cell cycle progression. As explained in 1.4.4, the timing of 

the polarization event requires a cascade of upstream effects, which will require a minimum 

time (𝑡𝐺1,𝑚𝑖𝑛) for completion, which the time spent so far in G1 (𝑡1) must exceed. For WT, 

the mean mother G1 time value of 15.6 minutes from table S7 of [228] is taken as a proxy. 

Still, this 𝑡𝐺1,𝑚𝑖𝑛 may be affected by certain mutations. In particular, we phenomenologically 

model the ∆nrp1 mutation to reduce this minimum time, as reasoned in Box 4, by a factor 

𝑡𝑚𝑢𝑡. The inclusion of Nrp1 hence requires one parameter. 

Finally, the last condition reflects the symmetry breaking model from [51] validated in chapter 

2. Essentially, this links the most important hallmark of the functional subunits observed in 

budding yeast [51] (recall the polarity cone of Figure 16) in a coarse-grained fashion; a 

minimum Cdc42 concentration ([𝐶𝑑𝑐42]𝑚𝑖𝑛) must exist before pattern formation can 

succeed and downstream effectors are recruited. This minimum will depend on genotype, 

most notably on GAP genes present for the rescue mechanism, and on GEF, Bem1 and GAP 

concentrations in a more relaxed way in the WT mechanism (see 3.2.1.2). Therefore, the 

minimum will be a genotypic fitting parameter to let mutant doubling times match 

experimental results.  
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After all conditions are fulfilled, the cell proceeds to polarized growth after a polarization time 

specified in the next subsection. If these conditions are not met before the cell exceeds the 

prespecified radius 𝑟𝑚𝑎𝑥, the cell is pronounced dead. This is motivated by e.g., movies of 

[24], where Δbem1 cells are not capable of halting growth if polarization is delayed, ultimately 

leading to their demise. Here, a feasible maximum size of 6 μm is taken. 

Having specified the conditions to complete the transition to polarized growth, after some 

time the reverse transition must be made. Again, the exact details of the timing for this event 

are debatable. From [228], daughters are predicted to have a constant, small starting volume 

𝑉 (25 μm3), regardless of the mother size. By contrast, movies of the for this model critical 

∆bem1 mutant appear to show a different picture, with large cells giving birth to large 

daughters [24].3 Interestingly, a simple daughter volume (𝑉𝑏𝑢𝑑) scaling of 70% (𝑐𝑉 = 0.7) of 

the mother volume (𝑉𝑚𝑜𝑡ℎ𝑒𝑟) also yields a volume reasonable consistent with the 

aforementioned 25 μm3 daughter volume when assuming a typical young mother with a 

radius of about 2 μm (still close to the minimum to bud 𝑟𝑚𝑖𝑛). Therefore, by default the 

volume scaling is chosen, although the algorithm accommodates the fixed daughter size 

option. Finally, once returned to isotropic growth, the bud is defined as a new cell, inherits all 

proteins proportional to its volume with respect to the mother and the cycle can restart. 

 

3.2.1.2 Coarse-grained polarity 

The polarization times that fall in the isotropic growth phase form together with the 

aforementioned Cdc42 concentration ([Cdc42]) threshold to polarize, the two links between 

growth and mesotype. In short, the polarization time 𝑡𝑝𝑜𝑙 depends exponentially on the 

relative Cdc42 amount in excess of the threshold. This is a simplified approximation for 

tractability of more thorough reaction-diffusion equation computations [51]. How such a 

simple functional form for 𝑡𝑝𝑜𝑙 encompasses the molecular information sufficiently can be 

motivated as follows, also considering Figure 23 and Figure 24. 

  
Figure 23 Figure courtesy of Fridtjof Brauns. Qualitative plot for polarization times with respect to 
Cdc42 copy number (based on parameters of [68]), for the Bem1 (left) and rescue mechanism (right). 

                                                            
3 It may also be the case that daughter size is genotype dependent. It should be noted that both BEM1 
and BEM2 have been implicated in G2/M morphogenesis checkpoint regulation [88]. 
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Figure 24 Figure courtesy of Fridtjof Brauns. Qualitative plot for polarization times with respect to GAP 
copy number (based on parameters of [68]), for the Bem1 (left) and rescue mechanism (right). 

 

What is apparent is that regardless whether the Bem1 or rescue (Δbem1) mechanism is 

active, a minimum Cdc42 concentration always exists below which polarization is impossible. 

There is no strict upper bound on Cdc42, although polarization will slow down. Conversely, 

there is a maximum GAP concentration, and there is almost no lower bound. Again, 

polarization may still slow down for very low GAP concentrations. For any GAP concentration, 

the minimum Cdc42 concentration is always smaller for the Bem1-mechanism than for the 

rescue mechanism. Similarly, the maximum GAP concentration is always higher for the Bem1-

mechanism than for the rescue mechanism (see Figure 16 of section 2.1). 

For various reasons, the Cdc42-axis is the most important one to retain in detail for the 

model. Firstly, the experiments conducted in this dissertation only take large, discrete steps in 

GAP space, whereas Cdc42 concentration is gradually changed. Secondly, we learned on the 

importance of noise throughout this dissertation for the fitness of strains, which is much 

lower for the GAPs than it is for Cdc42 [229], see also the discussion in 3.2.1.3.1. Finally, it is 

convenient to reduce dimensionality and complexity, both for computational as for 

interpretability reasons. Therefore, the behaviour of numerical, reaction-diffusion 

computations can be summarized as follows: 

 𝑡𝑝𝑜𝑙 = {

∞ , [𝐶𝑑𝑐42] < [𝐶𝑑𝑐42]𝑚𝑖𝑛

𝑓 (
[𝐶𝑑𝑐42]

[𝐶𝑑𝑐42]𝑚𝑖𝑛
− 1) , [𝐶𝑑𝑐42] ≥ [𝐶𝑑𝑐42]𝑚𝑖𝑛

 (3.2) 

where 𝑓 (
[𝐶𝑑𝑐42]

[𝐶𝑑𝑐42]𝑚𝑖𝑛
− 1) is some function of the relative excess Cdc42 above the minimum. 

[𝐶𝑑𝑐42]𝑚𝑖𝑛 is linearly dependent on GAP concentration, only the slope is shallower for the 

Bem1 mechanism than for the rescue mechanism and zero for [𝐺𝐴𝑃] = 0. Hence, 

[𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇 < [𝐶𝑑𝑐42]𝑚𝑖𝑛,∆𝑏𝑒𝑚1 and because of the cone structure, the following 

identities hold: 
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[𝐺𝐴𝑃]𝐵𝐸𝑀2𝐵𝐸𝑀3 = 𝑎𝑤[𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇 = 𝑎𝑟[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1 

[𝐺𝐴𝑃]Δ𝑏𝑒𝑚2𝐵𝐸𝑀3 = 𝑎𝑤[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚2 = 𝑎𝑟[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1Δ𝑏𝑒𝑚2 

[𝐺𝐴𝑃]𝐵𝐸𝑀2Δ𝑏𝑒𝑚3 = 𝑎𝑤[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚3 = 𝑎𝑟[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1Δ𝑏𝑒𝑚3 

[𝐺𝐴𝑃]Δ𝑏𝑒𝑚2Δ𝑏𝑒𝑚3 = 𝑎𝑤[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚2Δ𝑏𝑒𝑚3 = 𝑎𝑟[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1Δ𝑏𝑒𝑚2Δ𝑏𝑒𝑚3 

[𝐺𝐴𝑃]Δ𝑏𝑒𝑚2Δ𝑏𝑒𝑚3 = [𝐺𝐴𝑃]𝐵𝐸𝑀2𝐵𝐸𝑀3 − ([𝐺𝐴𝑃]𝐵𝐸𝑀2𝐵𝐸𝑀3 − [𝐺𝐴𝑃]Δ𝑏𝑒𝑚2𝐵𝐸𝑀3) 

−([𝐺𝐴𝑃]𝐵𝐸𝑀2𝐵𝐸𝑀3 − [𝐺𝐴𝑃]𝐵𝐸𝑀2Δ𝑏𝑒𝑚3) = [𝐺𝐴𝑃]Δ𝑏𝑒𝑚2𝐵𝐸𝑀3 + [𝐺𝐴𝑃]𝐵𝐸𝑀2Δ𝑏𝑒𝑚3 − [𝐺𝐴𝑃]𝐵𝐸𝑀2𝐵𝐸𝑀3 

where 𝑎𝑤 and 𝑎𝑟  are the conversion factors between GAP and minimum Cdc42 concentration 

thresholds for the WT (BEM1) and Δbem1 background respectively. So then: 

[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚2Δ𝑏𝑒𝑚3 = [𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚2 + [𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚3 − [𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇 (3.3) 

[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚2Δ𝑏𝑒𝑚3 = [𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚2 + [𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚3 − [𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇 (3.4) 

[𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇
[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1

=
[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚2

[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1Δ𝑏𝑒𝑚2
=

[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚3
[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1Δ𝑏𝑒𝑚3

 (3.5) 

 

The final results are four identities, with the latter two ratios being smaller than unity. Having 

eight unknowns, this shows that only four parameters are required to set the thresholds for all 

the GAP mutants from [24]. 

Looking at the single Cdc42 dimension for the Bem1 and rescue mechanisms, we see that 

polarization times look like an exponentially increasing function of excess Cdc42. This suggests 

defining polarization time as the following functional form: 

𝑡𝑝𝑜𝑙 = {

∞ , [𝐶𝑑𝑐42] < [𝐶𝑑𝑐42]𝑚𝑖𝑛

𝑡𝑝𝑜𝑙,𝑚𝑖𝑛 exp [(
[𝐶𝑑𝑐42]

[𝐶𝑑𝑐42]𝑚𝑖𝑛
− 1)/𝜏𝑝𝑜𝑙] , [𝐶𝑑𝑐42] ≥ [𝐶𝑑𝑐42]𝑚𝑖𝑛

 (3.6) 

The minimum polarization time 𝑡𝑝𝑜𝑙,𝑚𝑖𝑛 can be estimated for WT from experimental data 

[230] (fig. S1B) to be about 5 minutes. It seems reasonable to assume a similar “top speed” 

for the rescue mechanism with perfectly balanced concentrations, given the similar 

performance of the rescue and WT mechanism at the end of an evolution experiment [24]. 

The scaling parameter 𝜏𝑝𝑜𝑙  represents the sharpness of the exponential, i.e. how much the 

polarization time suffers from having excess amounts of Cdc42. This is always in relation to 

the GAP concentration. For both mechanisms in Figure 24, behaviours are quite similar in the 
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low GAP-regime, with the lower bounds seemingly on the same order of magnitude. There, 

𝑡𝑝𝑜𝑙 ≈ 𝑡𝑝𝑜𝑙,𝑚𝑖𝑛 exp (
[𝐶𝑑𝑐42]

[𝐶𝑑𝑐42]𝑚𝑖𝑛𝜏𝑝𝑜𝑙
), implying 

[𝐶𝑑𝑐42]

[𝐶𝑑𝑐42]𝑚𝑖𝑛,WT𝜏𝑝𝑜𝑙,𝑊𝑇
≈

[𝐶𝑑𝑐42]𝜏𝑝𝑜𝑙,𝑟𝑒𝑠𝑐𝑢𝑒

[𝐶𝑑𝑐42]𝑚𝑖𝑛,𝛥𝑏𝑒𝑚1𝜏𝑝𝑜𝑙,𝑟𝑒𝑠𝑐𝑢𝑒
. 

We find that a [𝐶𝑑𝑐42]𝑚𝑖𝑛 of an order of magnitude lower for WT than for the rescue 

background to be self-consistent. Therefore, 𝜏𝑝𝑜𝑙  will be an order of magnitude higher for 

WT, yielding the expression: 

𝜏𝑝𝑜𝑙,𝑊𝑇 ≈
[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1𝜏𝑝𝑜𝑙,𝑟𝑒𝑠𝑐𝑢𝑒

[𝐶𝑑𝑐42]𝑚𝑖𝑛,WT
 

Furthermore, experimental data from section 2.3 does not show a strong upward trend in 

doubling times when overexpressing Cdc42 about an order of magnitude in a rescue 

background, making a value of e.g., 𝜏𝑝𝑜𝑙,𝑟𝑒𝑠𝑐𝑢𝑒 = 25, consistent with the data. 

 

3.2.1.3 Protein turnover 

As shown in the previous two subsections, [Cdc42] is a critical quantity. In cells, 

concentrations such as that of Cdc42 are not at all constant. On the one hand, the processes 

of DNA transcription and subsequent RNA translation to protein contain steps that use finite 

resources (such as RNA polymerases) and take variable amounts of time (see e.g., in humans 

[231]). On the other hand, protein degradation is also not a fully deterministic process, 

occurring at variable speeds (see e.g., [232]). Hence, protein copy number noise in the 

population and across time is quite common (e.g., [233]). Even cells with the same genes and 

the same size in the same cell cycle phase have fluctuating amounts of Cdc42. 

To adequately model its time-dependence and cell-dependent variations, assumptions on 

protein production and degradation need to be made. The latter is relatively straightforward. 

The WT estimate for average number of Cdc42 proteins is considerable, about 8700, only one 

order of magnitude lower than Act1 [234]. Assuming no cell cycle dependent degradation 

targeting, there will be no relevant stochastic effects in terms of degradation, so the Cdc42 

decay will have the following simple form: 

 𝑑[𝐶𝑑𝑐42]

𝑑𝑡
= −

[𝐶𝑑𝑐42]

𝜏1 2⁄ ,𝐶𝑑𝑐42
 (3.1) 

The recent literature value for Cdc42 protein half-life 𝜏1 2⁄ ,𝐶𝑑𝑐42 is about 8 hours [235], as 

measured by non-radioactive amino acid labelling. 

On the other hand, modelling production requires more attention. Given the short Cdc42 

mRNA half-life (10-12 minutes [236]) compared to its protein half-life, it may be possible to 

integrate out the mRNA level in the gene to protein process as shown in [189]. After all, from 

the point of the protein production time is instantaneous compared to its overall life, so 

production occurs in effective bursts. Further assuming memory-less properties for 



Genotype to phenotype model  
 

79 

polymerase and ribosomal arrivals on DNA and mRNA respectively (they occur independently 

from each other) cause the times between bursts and the burst sizes to be exponentially 

distributed.4 Both a rigorous derivation and an intuitive explanation for this is found in [237]. 

This results in a gamma distribution for protein copy number across the population [189]. 

Remarkably, it is possible to infer microscopic details such as average time between bursts 

and average burst size from bulk measurements on a population of yeast cells. Concretely, 

the two parameters of the gamma distribution, inferable from flow cytometry measurements 

of a fluorescent version of the protein of interest, relate in a straightforward manner to these 

burst characteristics. Given this gamma probability density function for the concentration of 

protein 𝑐𝑝 across the population: 

 

𝑓(𝑐𝑝; 𝑘, 𝜃) =
𝑐𝑝
𝑘−1𝑒−𝑐𝑝/𝜃

𝜃𝑘Γ(𝑘)
 (3.2) 

the shape parameter 𝑘 and scale parameter 𝜃 can be viewed in light of average time between 

bursts 𝜏𝑏,𝑎𝑣 and average burst size 𝑝𝑏,𝑎𝑣, using [189]: 

 
𝜏𝑏,𝑎𝑣 =

𝜏𝑑𝑜𝑢𝑏𝑙
𝑘

 (3.3) 

 
𝑝𝑏,𝑎𝑣 = 𝑐𝑠𝑐𝜃 (3.4) 

with 𝑐𝑠𝑐 as a scaling constant5 related to an average volume, connecting protein number to 

concentration distributions, required to interpret 𝜃 in terms of burst size. 

It may also be the case that Cdc42 expression is regulated, for example by temporal 

regulation and/or positive/negative feedback. While from [189] it is even then still possible to 

infer average burst times and sizes, it complicates the matter for this model as e.g., it would 

require investigating at what point in the cycle temporal regulation is occurring. Fortunately, 

as shown in the analysis of Appendix E, the population protein distribution is fairly accurately 

described by a single gamma distribution, although a bit better by a double gamma. This 

                                                            

4 An analogous mathematical representation is given in the center of Figure 22. Within a time-
increment 𝑑𝑡, the number of bursts that are exponentially spaced in time is Poisson distributed. This 
means production is mathematically described by stochastic compound Poisson process 𝜂𝑡𝑑𝑁𝑡, where 
𝜂𝑡 reflects the exponentially distributed sizes of bursts given by Poissonian jump process 𝑁𝑡. In total, 
the process for Cdc42 copy number 𝐶𝑑𝑐42𝑡  consists of this production term, minus the drift term 
representing degradation and scaling as 1/𝜏1 2⁄ ,𝐶𝑑𝑐42. 

5 In [189], 𝑐𝑠𝑐 is straightforward to calculate for bacterial growth displaying exponential growth of cell 
volume during the cell cycle, namely 1/ ln 2 ≈ 1.44. For the integrative growth model in yeast, the 
factor 𝑐𝑠𝑐 of 0.8133 was needed to center the protein copy number distribution at 8700 copies [234] 
for observed 𝑘 and 𝜃, following data processed as in Appendix E. This multiplicative constant does not 
affect the gamma nature of the resulting distribution, as 𝜃 is its scale parameter. 
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suggests minor regulation in the form of a switch-like expression where a transcription factor 

can assist or repress transcription mildly.6 However, the single gamma approximation appears 

sufficiently good to neglect this minor regulation. 

The analysis of that data yielded burst property values of 𝜏𝑏,𝑎𝑣 = 57 min. and 𝑝𝑏,𝑎𝑣 = 4940 

proteins. It should be noted that these are effective numbers, resulting from integrating out 

the mRNA step from DNA to protein. Presumably this is the result of a burst of transcription 

yielding a few dozen mRNAs that survive on average 10-12 min., although it has been noted 

for actin that every mRNA molecule seems to get transcribed about a 1000 times [238]. 

With protein production defined, the final criterion for the isotropic to polarized growth 

transition can be executed. When this condition is not fulfilled, growth continues isotropically 

until the next burst of transcription, at which point this condition is re-evaluated. This suits an 

implementation of the Gillespie algorithm [239], which runs until the condition is fulfilled, or 

until the cell is too large. As aforementioned, the critical radius is 6 µm, although it is possible 

for a cell to momentarily exceed this size during the isotropic growth in the next iteration, as 

the volume check is only done right before polarization. 

 

3.2.1.3.1 Note on exclusion explicit GAP turnover 

It is possible to justify the omission of stochastic GAP expression by looking at literature. The 

data of [229] gives the mean μ and standard deviation σ of the fluorescent intensity 

distributions of many protein, including all GAPs. This can be translated to coefficient of 

variations 𝑉 (=σ/μ). This leads to an estimate for the average number of bursts per cell cycle 

𝑘 = 1 𝑉2⁄ , which is 62, 46, 54 and 53 for BEM3, BEM2, RGA1 and RGA2 respectively. This is 

more than an order of magnitude larger than for CDC42 (for endogenous Cdc42 this value 

inferred from flow cytometry was 3.48, see Table 4) and equates to bursts on a minute time 

scale, effectively yielding constitutive expression. The distribution of the Cdc42/GAP ratios will 

then also be dominated by the stochasticity from CDC42, retaining approximately the same 

form as CDC42 alone (see Appendix F: Effect of stochastic GAP production on Cdc42/GAP 

ratio). The protein number scale (parameter) is affected, shifting all minimum concentrations 

by the same factor, but relative GAP strengths are expected to stay the same. Furthermore, it 

can be shown that one source of stochasticity suffices to explain e.g., the epistasis amongst 

GAPs, in a minimal model with fairly robust relative GAP contributions, see Figure 39. Hence, 

only stochasticity in Cdc42 production is considered here for the sake of simplicity. 

  

                                                            
6 The poor functionality of the measured N-term GFP fusion of Cdc42 excludes the possibility that 
fitness effects warp the protein distribution as in Chapter 4 to provide an alternative explanation for 
the deviation from the gamma distribution. 
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Table 4 Growth model parameter summary, with symbol, description, value and source, color coded by 
category: orange for fitting parameters, red for polarization parameters, green for growth parameters, 
blue for protein turnover parameters and grey for technical parameters for simulations. 

Parameter Description Value Reason/source 

[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1 

Minimum Cdc42 
concentration to 

polarize for ∆bem1 
background 

Positive number Fitting parameter 

[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1Δ𝑏𝑒𝑚3 

Minimum Cdc42 
concentration to 

polarize for 
∆bem1∆bem3 

background 

Positive, smaller than 
[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1 

Fitting parameter 

[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1Δ𝑏𝑒𝑚2 

Minimum Cdc42 
concentration to 

polarize for 
∆bem1∆bem2 

background 

Positive, smaller than 
[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1Δ𝑏𝑒𝑚3 

Fitting parameter 

[𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇 

Minimum Cdc42 
concentration to 
polarize for WT 

(BEM1) 
background 

Positive, smaller than 
[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1, 
close to minimum in 

(𝑡𝑑𝑜𝑢𝑏𝑙 , [𝐶𝑑𝑐42]𝑚𝑖𝑛) space 

Fitting parameter 

𝑡𝑚𝑢𝑡 
Mutant and WT 

minimum G1 time 
ratio 

1 for NRP1, between 0 and 1 for 
the ∆nrp1 background 

Fitting parameter 

𝑡𝑝𝑜𝑙,𝑚𝑖𝑛 
Minimum time to 

polarize 
5 [min.] [230] 

𝜏𝑝𝑜𝑙,𝑟𝑒𝑠𝑐𝑢𝑒 
Scale parameter 

rescue fitness 
landscape 

25 

Consistent with 
data and reaction-
diffusion equation 

solutions using 
parameters from 

[68] 

𝜏𝑝𝑜𝑙,𝑊𝑇 
Scale parameter 

WT fitness 
landscape 

500 
 

(very roughly 
[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1𝜏𝑝𝑜𝑙,𝑟𝑒𝑠𝑐𝑢𝑒

[𝐶𝑑𝑐42]𝑚𝑖𝑛,WT
) 

Consistent with 
data and reaction-
diffusion equation 

solutions using 
parameters from 

[68] 

𝑡𝐺1,𝑚𝑖𝑛,𝑊𝑇 
WT minimum G1 

time before 
polarization phase 

15.6 [min.] [228] 

𝑐𝑉 
Daughter to 

mother volume 
ratio 

0.7 
Consistent with 

[228] 

𝑐𝑝 

Ratio between 
polarized and 

isotropic 
membrane growth 

rates 

2.1324 WT calibration 



 Chapter 3 
 

82 

𝐶1 
Isotropic 

membrane growth 
rate 

4𝜋(1 − 𝑐𝑉
2 3⁄ )𝑟𝑚𝑖𝑛

2

𝑡𝐺1,𝑚𝑖𝑛,𝑊𝑇 (1 + 𝑐𝑉
2 3⁄

𝑡𝑝𝑜𝑙,𝑚𝑖𝑛
𝑡𝐺1,𝑚𝑖𝑛,𝑊𝑇

)
 

Analytical work 
assuming 

optimized WT 

𝐶2 
Polarized 

membrane growth 
rate 

𝑐𝑝𝐶1,𝑊𝑇 
Assumption 

consistent with 
[227] 

𝑇𝑊𝑇 
Target doubling 

time for WT 
calibration 

83 [min.] [24] 

𝑇𝑊𝑇,𝐹𝐴𝐶𝑆 
Doubling time for 
the WT measured 

in the FACS 
200 [min.] See 3.6 

𝑃𝑊𝑇 

Target average 
Cdc42 copy 

number for WT 
calibration 

8700 [234] 

𝑟𝑚𝑖𝑛,𝑊𝑇 
Minimum radius 

before polarization 
phase 

2 [μm] [228] 

𝑘𝑒𝑛𝑑𝑜 

Endogenous Cdc42 
shape parameter 
(mean number of 
bursts / cell cycle 

[189]) 

3.48 
Inferred from 

FACS (see 
Appendix E) 

𝑘𝑒𝑛𝑑𝑜,𝑊𝑇 

Endogenous Cdc42 
shape parameter, 
rescaled to target 

WT 

𝑘𝑒𝑛𝑑𝑜
𝑇𝑊𝑇

𝑇𝑊𝑇,𝐹𝐴𝐶𝑆
 

Inferred from 
FACS 

𝑡𝑏,𝑊𝑇 
Average time 

between Cdc42 
bursts 

𝑇𝑊𝑇/𝑘𝑒𝑛𝑑𝑜,𝑊𝑇 
Inferred from 

FACS and [189] 

𝑝𝑏,𝑊𝑇 
Average size of 
Cdc42 bursts 

0.8133  𝑃𝑊𝑇/𝑘𝑒𝑛𝑑𝑜,𝑊𝑇 

Inferred from 
FACS and [189], 
corrected by WT 

calibration 

𝜏1/2,𝐶𝐷𝐶42 
Half-life Cdc42 

protein 
7.9 ∙ 60 𝑙𝑜𝑔(2)⁄  [min.] 

[235], scaled to 
have exponential 

base 

𝑁𝑖𝑛𝑖𝑡 
Number of cells at 

the start of the 
simulation 

1000 
For doubling time 

convergence 

𝑟𝑖𝑛𝑖𝑡 
Size of the cells at 

the start of the 
simulation 

1.1 𝑟𝑚𝑖𝑛,𝑊𝑇 
For doubling time 

convergence 

𝑃𝑖𝑛𝑖𝑡 

Number of Cdc42 
proteins at the 

start of the 
simulation 

0 
For doubling time 

convergence 

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 
Minimum colony 

size to reach 
5∙106 

Sufficiently large 
for convergence 

within 1-2% 
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In the next subsection, the model will be used in the following ways: Firstly, it is put to the 

test by attempting to describe the experimental data of 16 polarity mutants from [24], which 

represent all possible genetic variants with BEM1, BEM2, BEM3 and NRP1 either present or 

deleted. This experimental data encompasses volume distributions, doubling times and cell 

cycle times. Additionally, the model is extended towards several polarity mutants where the 

experimental focus is on doubling times; 4 Δcla4 strains and three strain backgrounds where 

the endogenous CDC42 is replaced by one under the variable GAL1-promoter. Finally, we 

explore the limits of the model by extending beyond polarity, to determine the minimum 

information required to make sensible predictions on epistasis. 

 

3.3 Model validation 

 

With the mesotypical inclusion into the cell growth model in place, it must be determined 

how useful this model is in describing polarity phenotypes, starting from genotypes. In 

particular, can this model reproduce observed features that are otherwise difficult to explain? 

For this purpose, we match the simulations to diverse experimental data of polarity mutants 

across the board; those range from supposedly well understood (e.g., GAP) to enigmatic (e.g., 

nrp1) mutants, from strong (deletions) to subtle (varying expression) perturbations and from 

coarse (doubling times) to detailed (G1 times) phenotypes. Once the value of the model has 

been established within polarity, the section thereafter covers what to learn from this model 

beyond polarity. 

 

3.3.1 Bem1 evolution data set 

The first goal is to get an accurate description of the genotypes present in [24]. There, authors 

show evolutionary recovery of the very ill mutant Δbem1 by successive deactivation of two 

GAPs and NRP1. The experimental data set provided some puzzling aspects: while from the 

biophysical analysis of the polarity mechanisms (recall Chapter 2) we expect a sharp survival 

cut-off for the Δbem1 when too many GAPs are present, in reality the fate of the pure Δbem1 

is very uncertain. It has a broad range of volumes and mysteriously, while ill, it has faster G1 

times than the much fitter Δbem1 Δbem3. Also, there has been no clear link between Nrp1 

and polarity, while these experiments showed the influence of that gene deletion. 

 

3.3.1.1 Model implementation 

To provide some clarity for these curious phenotypes, the genotypes of our interest (16 in 

total) are incorporated into this growth model. This requires fitting of the doubling time data 

of [24] using the free parameters that are connected to the various gene deletions. The 

minimum Cdc42 concentration to polarize is the main fitting parameter, and represents 

different GAP deletion phenotypes. In particular, when more GAPs are deleted, the minimum 
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Cdc42 concentration will decrease. The detailed model description in section 3.2 showed that 

four parameters describe all GAP mutations present. 

Additionally, the nrp1 deletion is hypothesized to reduce the minimum required G1 time, as 

explained in 1.4.4 (Box 4). The idea is that Nrp1 causes Whi3 to bind Cln3 mRNA, and 

consequently absence of Nrp1 frees Cln3 mRNA. This increases the amount of Cln3, causing 

faster cell cycle progression through G1. Additionally, there are indications that connect Nrp1 

to Cla4. As opposed to its effect on Cln3 mRNA, Nrp1 may cause Cla4 mRNA to detach from 

Whi3, leading to more Cla4 and as explained in 3.3.3.1, lower Cdc42 concentration 

thresholds. However, this hypothesized effect of Nrp1 is not incorporated in the model, so 

that Nrp1 only adds one free parameter (smaller G1 time) to the model. The system remains 

well overdetermined as five mesotypical fitting parameters are needed to describe the 16 

mutants of [24]. 

 

3.3.1.2 Fitness descriptions and NRP1 link 

Figure 25 and Figure 26 show the comparison of the experimental data (symbols) to the 

simulated data (lines) for 16 genotypes. Conveniently, when placing the GAP variation on the 

(bottom) horizontal axis, there is a linear mapping to the minimum Cdc42 concentration to 

polarize as just described, allowing the placement of genotype (below), (part of the) 

mesotype (top) and phenotype (doubling times, vertical) in a single plot. Note that the 

simulated data can be generated for any GAP concentration, providing more resolution to the 

genotype-phenotype map than when based on experiments. 

As seen from Figure 25 and Figure 26 (see Table 5 in the Appendix for the numeric 

representation of the data), fits are successful for gap deletions with and without the bem1 

deletion. Incorporation of the mesotypical rule of a hard polarity cut-off as a function of GAP 

(or Cdc42) concentration into this population growth model translates to a much softer 

transition between viability and unviability. As long as a sufficient part of the population 

accumulates enough Cdc42 relative to the number of GAPs, this part of the population 

continues to divide, allowing the population to survive. This makes the fate of the bem1 

deletion background rather diffuse. 

Moreover, other subtle observations on Δbem1 become apparent by observing the curves of 

the rescue mechanism. For example, from [24] the viability of spores with the genotype 

Δbem1 SPA2-GFP-URA is about 10%, while this was a factor 1000 lower for spores with 

endogenous SPA2. This was unexpected, given that the fluorescent marker on Spa2 did not 

show an observable phenotype before [104], suggesting that the effect is weak under normal 

circumstances. However, from the steepness of the curves (blue lines in Figure 25 and Figure 

26) where the Δbem1 genotype is located, even small effects on e.g., Cdc42 recruitment 

causing slight shifts in [Cdc42]min (its minimum concentration to polarize) have relatively large 

results. This explains the sharp increase in viability, despite a minimal invasiveness of the GFP. 
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Figure 25 Simulated doubling times for various minimal Cdc42 concentrations to divide (top-axis) for 
the Δbem1 (blue line) and Δbem1Δnrp1 (green line) background. The position of various GAP deletions 
on the x-axis is determined by fitting the experimental values (diamonds with error bars) to these lines. 

 

 

Figure 26 Simulated doubling times for various minimal Cdc42 concentrations to divide (top-axis) for 
the Δbem1 (blue line) and Δbem1Δnrp1 (green line) background. The position of various GAP deletions 
on the x-axis is determined by fitting the experimental values (diamonds with error bars) to these lines. 
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Moving the analysis from the GEF to the GAP reveals one of the most robust model outcomes 

(see also Appendix I: Relaxation of model assumptions): the ratio between relative GAP 

contributions of Bem3 and Bem2, which is about 1.8 (x-axis tick locations of Figure 25 and 

Figure 26). Given that Bem2 is almost twice as abundant as Bem3 [234], this means that the 

GAP potency of Bem3 for polarization is 3 to 4 times higher than that of Bem2. This provides a 

convenient reverse-engineered measure of GAP strength in vivo, which yields a less extreme 

result than what was observed in vitro, where the contribution of Bem2 was negligible [89]. 

While the bem1 and GAP deletions are easily incorporated into the model, more care must be 

taken with analysing the nrp1 deletions (green lines in Figure 25 and Figure 26). Doubling time 

descriptions are qualitatively correct, but not always quantitatively correct. The experimental 

doubling time of the Δbem3Δnrp1 is higher than expected, although the large experimental 

error bars may indicate unpredictable effects of disrupting the exact timing of Start. On the 

other hand, the beneficial effects of the nrp1 deletion for a pure ∆bem1 are underestimated.  

The simulations suggest that an additional, unmodelled interaction of NRP1 exists. The 

doubling time discrepancy for the ∆bem1 Δnrp1 would not be solved by incorporating the 

omitted hypothesized Nrp1-Cla4 interaction described in 3.3.1.1. This would increase the 

minimum Cdc42 thresholds, which makes particularly the ∆bem1 Δnrp1 even less fit. Hence, 

from the literature overview in Box 4, it is not apparent on the mechanistic level how to 

specify the last unmodelled Nrp1 interaction. This fits the view seen later in this chapter, that 

generally mutant incorporation into this model benefits from including functional information 

(typically the minimal information needed for the ontotype route as well [240]), which for 

Nrp1 is currently uncertain. Still, in absence of a direct link of Nrp1 with polarity, its influence 

on the ability to polarize in the Δbem1 background can to a decent extend be reproduced. 

This is supporting evidence for the hypothesized Nrp1 mechanism on Cln3 (Figure 11). 

 

3.3.1.3 Cell cycle time descriptions 

The next peculiar observation in [24] is that the Δbem1 delete actually has a smaller G1 time 

until the first polarization spot appears than WT. This seems very counterintuitive. WT should 

be fairly optimized in terms of speed, so it is unlikely that minutes can be gained from the 

time to polarize alone. This suggests that the time spent in G1 is shorter for the Δbem1. Based 

on the model simulations with parameters from the doubling time fit of Figure 25 and Figure 

26, the G1 times can be generated. Those simulated times correspond to the average time in 

isotropic phase until 𝑡𝑚𝑢𝑡𝑡𝐺1,𝑚𝑖𝑛,𝑊𝑇 is exceeded and size 𝑟𝑚𝑖𝑛 is exceeded, see Figure 22. 

Given the membrane growth rates as given in Table 4 (such that WT has a doubling time of 83 

minutes), the shorter G1 time of Δbem1 compared to WT is not seen (see Figure 27). 

However, a fair comparison between the experimental data necessitates remarking one 

subtle difference. The fluorescence measurements on which observed G1 times were based 
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require synthetic media, which slightly slows the WT growth down. This influences times 

spent in G1 by the following reasoning. 

Both the paper of [24] and simulations (see later on in 3.3.1.4) show fitness relates to size, 

such that WT cells are typically smaller than the Δbem1. Under the assumptions that daughter 

size scales with mother size, WT daughter cells may spend more time in G1 than the Δbem1 

daughters to reach radius 𝑟𝑚𝑖𝑛. For fast growth as in YPD, this is not the case, as the growth 

during the minimum G1 time guarantees reaching the minimum size. However, for slower 

growth medium, WT is more frequently limited in G1 by the minimum size requirement than 

its Δbem1 counterpart, as the growth during the minimum G1 time can be insufficient. 

Figure 28 shows the cell cycle times when accounting for the change in media (see 3.4.1 for 

details, effectively 𝐶1 and 𝐶2 from Figure 22 are reduced by a factor 0.5, yielding a WT 

doubling time of 109 min.).  As under this experimental condition it is not possible to 

reconstruct the exact experimental doubling time, those times have been rescaled to match 

the simulated WT time to first spot to make a fairer comparison. The trends show good 

accordance with the experimental data from [24]. Indeed, the shorter G1 time property of the 

Δbem1 is described (comparing the top two red bars of Figure 28). 

 

 
Figure 27 Bar plot from simulations of WT and Δbem1 mutants of [24]. In dark/light green are the 
simulated values for the average times until both the minimum G1 time and the minimum size to 
polarize are exceeded per mutant for WT/Δbem1 respectively. In dark/purple are the simulated values 
the average time it takes after the conditions in red are fulfilled to surpass the Cdc42 threshold, added 
to the polarization time. Top bars show simulations under conditions reflecting YPD as in Table 4, 
bottom bars with half the membrane area growth rates, reflecting synthetic medium (CSM). The inset 
shows a zoomed version of the figure. 
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Figure 28 Bar plot from simulation of several mutants of [24]. In dark red are the experimental values 
for the time to first spot, in light red the simulated average times until both the minimum G1 time and 
the minimum size to polarize are exceeded per mutant. In dark blue are the experimental values for 
time to all spots, in light blue are the average times it takes after the conditions in red are fulfilled to 
surpass the Cdc42 threshold, added to the polarization time. The inset shows a zoomed version of the 
figure, to see the differences in times to first spot. All experimental values are rescaled from [24] to 
match the WT time to first spot value with the simulated minimum time before polarization for WT.7 
 

An alternative explanation of the G1 time paradox is that the minimum G1 time, set by time 

required for e.g., cyclins to express downstream pathways, is in reality not constant for every 

cell, but a distribution. This may benefit the Δbem1 relatively more. These cells continuously 

need to counteract the degradation and dilution that cause lucky cells with above average 

Cdc42 concentration, to equilibrate again. Particularly the dilution is a problem (see Appendix 

H: Single cell test case), making every minute count. This makes cells with a less than average 

minimum G1 time more likely to survive, leading to a smaller average time to first spot, as the 

cells with higher than average minimum G1 time get purged out. This is also consistent with 

fig. 1D of [24], which shows the Δbem1 either forming a bud fast, or not at all. Since the exact 

minimum G1 time does not matter much for WT, this accounts for an apparent shorter G1 

time for the Δbem1. This effect is not included in the model, but can be integrated if desired. 

 

3.3.1.4 Cell size descriptions 

The final comparison of the model with the literature comes in terms of size data. As seen 

from fig. 2 of [24], polarization time scales with size. This also follows from the simulations, 

see Figure 29. Regardless of the relative location of the Cdc42 thresholds, slower growing 

mutants increases their size approximately proportionally. 

                                                            
7 Legend created using: Adrian Cherry (2016), gridLegend – a multi column format for legends (latest 
version on https://www.mathworks.com/matlabcentral/fileexchange/29248-gridlegend-a-multi-
column-format-for-legends), Matlab Central File Exchange, version 1.4, 20/1/2016. 

https://www.mathworks.com/matlabcentral/fileexchange/29248-gridlegend-a-multi-column-format-for-legends
https://www.mathworks.com/matlabcentral/fileexchange/29248-gridlegend-a-multi-column-format-for-legends
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Figure 29 Doubling time as a function of the cell size, which is twice the mean of the effective radius 
(volume from simulated Coulter measurement (only live cells), converted to a radius) for different strain 
backgrounds. Polygons in cyan and dark green represent the simulated populations in which cells 
typically suffer from insufficient amounts of Cdc42 or excessive amount of Cdc42 respectively, slowing 
their growth relative to the optimum. 

When the concentration threshold is challengingly high, as it is for e.g., the Δbem1, most cells 

typically suffer from insufficient amounts of Cdc42 to progress through the cell cycle as fast as 

possible (cyan polygon in Figure 29). Analogously, when due to the exponential nature of the 

polarization time as function of Cdc42 concentration (recall Figure 22) so much Cdc42 is 

present that most cells start to slow down, size also grow accordingly (dark green polygon). It 

must be noted that as seen from Figure 25 and Figure 26, the experimental mutants of [24] 

are usually far from this domain (where the curve steeply rises at the low x-axis end). Instead, 

the simulations forming this part of Figure 29 represent for example (unmeasured) further 

GAP deletions or Cdc42 overexpression in the Δbem1 Δbem3 Δbem2 background. 

Additionally, the trends visible in the size distribution data of [24] are also seen in the model, 

see Figure 30. The ∆bem1 is characterized by a large size, with a relatively broad distribution. 

The fitter mutant ∆bem1∆bem3 improves in that aspect, but it still not as small and 

homogeneously distributed across the population as the WT, showing that size and fitness are 

seemingly inversely related to each other. 

 

3.3.2 Cdc42 expression sweep data set 

In the previous subsections it was established that the model incorporates features of polarity 

mutants under strong perturbations, and for a wide array of phenotypes. To define the value 

of this model, it is necessary to determine what its resolution is. In other words, what level of 

detail is still accurately described? 
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Figure 30 Comparison of experimental data from [24] (combining information of fig. 2E,F and 3B to 
determine the time point of the mutants in the evolution experiment from which to read out size 
properties) and simulations. Size is defined as twice the mode, found by the maximum value of the 
simulated volume data covering only live cells, converted to an effective radius. The size standard 
deviation is twice the sample standard deviation of the effective radii. 

For that purpose, we zoom into the polarity cone that theoretically describes under which 

protein concentrations polarization still takes place, using the experimental data from 

Chapter 2 used to validate that theory. Previously discussed mutants probed in a step like 

fashion the GAP axis, but as mentioned there, a gradual sweep is more appropriate on the 

orthogonal Cdc42 axis, as this involves varying only one protein. Also, restricting the 

comparison of experimental and simulated outputs to doubling times alone will provide the 

most telling variation with the different genetic backgrounds. This experimental data is the 

same as presented in Chapter 2, to validate the theoretically proposed polarity mechanisms, 

but details on the protocols are found in the supplement to this Chapter, section 3.7. 

 

3.3.2.1 Model implementation 

The experimental conditions of the data from Chapter 2 first needs to be translated into the 

model. Given that the model takes into account stochastic production of Cdc42, changing its 

expression levels through the galactose induced GAL1 promoter requires changing the two 

parameters that govern production in the model: the average Cdc42 expression burst time 

and size 𝑡𝑏 and 𝑝𝑏 respectively (see also Figure 22 or Table 4). From the theory of [189], it was 

shown how to extract the parameters from the population distribution of protein copy 

numbers. Typically, such distributions are measured by flow cytometry, with the protein of 

interest labelled using a fluorescent marker. If it is possible to translate the flow cytometry 

data from fluorescent counts to actual number of proteins, one obtains the burst parameters. 
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In this dissertation, we have measured Cdc42 with either GFP and sfGFP attached (see section 

2.2). Paradoxically, while results in e.g., 2.3 proved the sfGFP sandwich fusion was fully 

functional with respect to fitness, we would prefer to use the GFP flow cytometry results for 

the collection of burst parameters. As seen in 2.3.1, varying expression leads to large fitness 

effects, which warp the fluorescent protein distribution through transgenerational feedback, 

an effect discussed in detail in Chapter 4. Therefore, a non-functional (but not deleterious) 

tagged Cdc42 version, like the N-terminally GFP fusion to Cdc42 (see discussion in 2.1), would 

allow more accurate reconstruction of Cdc42 burst dynamics.  

A description of the flow cytometry experiments is found in Appendix C.2.1.1, while Appendix 

E shows the reconstitution of burst parameters. In short, the distribution of GFP-CDC42 under 

various expression levels (through different galactose concentrations) was normalized to 

represent actual protein numbers by comparing to the reference distribution of GFP-CDC42 

under the endogenous promoter. This yielded Cdc42 copy number distributions under 0.05%, 

0.2% and 2% (galactose) induction levels. It requires interpolation to obtain values for the 

inducer levels used for the doubling times measurement to correct for the different media 

used in the flow cytometry and growth assay experiments. This is explained in more detail in 

the supplement of the chapter (3.7.2.2). Ultimately, we are able to crudely estimate the 

expression burst parameter values for the inducer conditions used in the growth rate assays. 

 

3.3.2.2 Doubling times comparisons 

Figure 31 shows the simulated growth rate values based on the Cdc42 expression inferred 

from flow cytometry, compared to the experimental doubling times as previously shown in 

Figure 19. Here, the membrane growth rate differences across media are accounted for by 

matching the WT doubling times, which gives a bandwidth of membrane area growth speeds. 

Consequently, simulated growth rates for different expression levels are also spread across a 

bandwidth, contained within the dashed and dotted lines. 

An important deficiency in the flow cytometry data is the lack of coverage particularly at the 

low expression levels. As growth rates were mainly measured in this regime, at first sight 

agreement is poor. Yet, the main cause of uncertainty at low expression does not stem from 

unknown membrane growth speed, but lack of burst parameter fits (particularly as we require 

interpolation, see 3.7.2.2). Indeed, quantitative agreement improves at high induction levels. 

Overall, the trends described in 2.3 are well captured. The ∆bem1∆bem3 background survives 

for lower expression than the ∆bem1, predicting viability thresholds at 0.06% and 0.1% 

inducer concentration respectively. WT survives even better, down to 0.04% induction 

concentration, although this threshold is quantitatively higher than experiments show. At the 

highest expression levels, the ∆bem1∆bem3 starts to suffer slightly from excessive Cdc42, 

which is less of a problem for the ∆bem1. This is however a small effect, falling within the 

plotted bandwidth. Indeed, the conclusion based on experimental data was that there is no 

strong evidence that these doubling times are different. 
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Figure 31 Simulated growth rates (upper limit dashed line, lower limit dotted line, based on uncertainty 
of the pure WT growth rate) and experimental growth rates for strains carrying  pGAL1-sfGFP-CDC42SW  
as their sole Cdc42 source (dashed lines with error bars), as a function of galactose concentration. In 
the simulations, membrane area growth rate is corrected for growth in synthetic medium, using the 
doubling time of WT with endogenous CDC42 at every concentration. The colors purple, green and blue 
indicate otherwise WT, ∆bem1 and ∆bem1∆bem3 background respectively. 
 

Ultimately, we gained upon the understanding of the experimental data in the following 

aspect. In 2.3.1, we needed to settle with the observation that despite a sharp threshold on 

the molecular level to polarize, the doubling times as a function of mean expression levels are 

diffuse. We have gained ground on how the sharp threshold quantitatively translates to the 

growth rate curves observed. This inspires trust that the simulated data fits benefit if more 

flow cytometry data were to be included, as that of [51]. 

 

3.3.3 Cla4 mutant data set 

In the previous subsections it was established that the model incorporates peculiar features 

of polarity mutants when the molecular mechanism dominant in WT, the positive feedback 

mediated by Bem1, is removed. Based on this foundation, we aim to experimentally 

characterize the remaining polarity mechanism further by addressing more mutants in the 

Δbem1 background, and try to interpret this using the model. A logical starting point is adding 

the Δcla4 mutation, as it is thought to have a strong interaction with the bem1 deletion (even 

synthetical lethality [241]). We will see the result is not simply the same for all Δcla4 mutants. 

 

3.3.3.1 Model implementation 

In Box 2, the hypothesized influence of Cla4 in absence of Bem1 was motivated. After 

disrupting the binding with Rdi1 [81], and subsequent activation of Cdc42 by natural release 
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of its GDP, Cdc42 would move to the membrane. Cla4 then binds Cdc42, specifically where it 

is bound to Cdc42 [95]. This process was depicted in Figure 8. The additional hypothesis of 

Cla4 in relation to Nrp1 (see Figure 11 in 1.4.4) is not considered, as results in 3.3.1.2 did not 

provide supporting evidence for this claim.  Furthermore, only mutants with the rescue 

(Δbem1) mechanism are taken, as the hypothesized role of Cla4 in the WT mechanism has not 

been considered in detail in terms of theoretical reaction-diffusion modelling (see e.g., [68]). 

As explained in more detail in the methods of section 3.7.2.3, this makes the numerical 

implementation of the Cla4 deletion relative straightforward when Bem1 is not present. As 

graphically shown in Figure 32, the polarity cone narrows, leading to a linear shift in minimum 

Cdc42 concentrations for different genetic GAP backgrounds. This adds another degree of 

freedom to the model, namely the slope of the cone, from which all remaining model 

parameters for the different observed cla4 mutants are deduced. 

 

 
Figure 32 Polarity cone in the phase diagram of GAP concentration and minimum Cdc42 concentration. 
Horizontal grey lines represent various GAP mutants, whereas the colored vertical lines originating 
from the intersection with the horizontal grey lines and the edge of the polarity cone for WT (green), 
the rescue mechanism (blue) and the rescue mechanism including a cla4 deletion (red) represent 
minimum Cdc42 concentration for those backgrounds respectively, given a particular gap mutant. At 
very low GAP levels, there is a marginal region which does not allow sustained growth either. 

The experimental data set to which simulations can be compared also requires some 

attention. It consists of the doubling times of the Δcla4 in various mutants (see 3.6). that are 

the arithmetic mean of the doubling times across biological replicates placed in a 96 well 

plate which is subject to automated OD measurements. These times are in turn the weighted 

average of three technical replicates. By the method of generation of these diverse genotypes 

(3.7.2.3), potential background and unidentified suppressor mutations may arise, thwarting 

immediate comparison of the resulting doubling times. Therefore, the on paper identical 
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mutants that are also measured before in [24] are rescaled to those values, and the new 

mutants times are also rescaled by the same factor as an approximate correction.  

 

3.3.3.2 Doubling time comparisons 

Figure 33 shows the comparison of the experimental doubling times and simulated doubling 

times for the Δbem1Δnrp1Δcla4, Δbem1Δnrp1Δcla4Δbem3, Δbem1Δcla4 and 

Δbem1Δnrp1Δcla4Δbem3 mutants, adding one free parameter to the model fit (which 

required five for the 16 mutants of [24]) as previously explained. 

Remarkably, the GAP BEM3 and NRP1 rescue the synthetic lethality of the Δbem1Δcla4. 

Immediately, this suggests another remaining form of positive feedback, but this discussion is 

left for 3.5. Secondly, the Δbem1Δcla4 is located outside the bounds of the plot, as this is a 

lethal combination, both in reality as in the simulations. Only the Δbem1Δnrp1Δcla4 is 

misfitted, because Δbem1Δnrp1 was quantitatively off in the previous section due to the 

decent yet incomplete description of NRP1 in the model8. This means that overall, there is 

good quantitative agreement between model and experiments. 

 

 

Figure 33 Simulated doubling times for various minimal Cdc42 concentrations to divide (top-axis) for 
the Δbem1 Δcla4 (blue line) and Δbem1 Δcla4 Δnrp1 (green line) background. The x-axis position of 
various GAP deletions is determined by fitting the experimental values (diamond with error bars) to 
these lines, while maintaining the relative GAP contributions of the fit in section 3.3.1.2. Experimental 
values for the cla4 mutants are rescaled to match doubling times of CLA4 strains with those of [24] 
(and have their error bar as well). The Δbem1 Δcla4 falls off the graph, depicting synthetic lethality. 

                                                            
8 If we would artificially ‘correct’ the Δbem1 Δnrp1 discrepancy in Figure 25 by also letting the nrp1 
deletion reduce the minimum Cdc42 concentration drop to about 100 [#/µm3] the full deviation of 
Δbem1Δnrp1Δcla4 is also explained without compromising the other points. This points towards 
incomplete Nrp1 inclusion as the cause of the Δbem1Δnrp1Δcla4 doubling time discrepancy. 
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3.4 Model extensions 

 

The validation of the model in the previous section shows the ability of the model to deal to 

some extend with diverse polarity genotypes, even those not fully theoretically 

comprehended, and allows the generation of an array of phenotypes, up to the population 

level. While the last subsection investigated the resolution of polarity gene variations, the 

model can also incorporate other perturbations, both in origin and function. Concretely, the 

former is exemplified by the cells responding to a different environment, such as different 

media type. The latter claim is elaborated through the statistical analysis of epistasis 

predictions of polarity genes with genes of arbitrary function. 

 

3.4.1 Different perturbation (media types) 

Phenotypes are not dependent on genotypes alone; this dependence occurs within the 

context of an environment. Changes in environment are known to influence for example 

evolvability [42]. There, media changes discriminate between various genotypes in their 

effect, opening up new evolutionary avenues. By the same token, we may wish to examine 

the influence of an environmental perturbation in this polarity system, and determine what 

this means for e.g., the fit WT versus the ill Δbem1. 

A preview of the media effect was already given in 3.3.1.3 when validating modelled G1 times 

with experiments. There, the Δbem1 only displayed shorter average G1 times than WT in the 

simulated equivalent of synthetic medium, not in YPD (see Figure 27). The translation of 

medium to model parameters was simply made by halving the membrane area growth rates 

𝐶1 and 𝐶2 (see Figure 22). One may think that suboptimal medium also slows down Cdc42 

production, but there is no clear experimental indication for this [242]. This leaves membrane 

growth speed as the main knob to accomplish lower maximum growth rates and to reflect the 

internal process of slower membrane phospholipid production. 

As an example, the effect of halving the membrane growth rate is shown in Figure 34. This 

demonstrates the reduced deleterious effect of the bem1 deletion when grown in less rich 

medium. This is because slower membrane growth rates give more time to generate enough 

Cdc42 to get over the minimum threshold to polarize, which is otherwise more problematic 

for the Δbem1. Analogously, this also shifts the minimum amount of galactose to be added in 

a GAL1-CDC42 system that replaces endogenous CDC42 expression, to remain viable.  

This was also observed in the growth assays in this dissertation. When optimizing the richness 

of the synthetic medium (by adding more amino acids and sterilizing through filtration) as 

done for the assay in Figure 19 (2.3.1), the Δbem1 and Δbem1Δbem3 with inducibly expressed 

Cdc42 are severely affected below 0.08% inducer concentration, and not growing beneath 

0.06% with one exception. In poorer synthetic medium (see Appendix C.3, Figure 67), down to 

0.04% inducer concentration (0.02% + at worst 50% evaporation there) these backgrounds 

remained clearly viable. Hence, the richness of the medium determines the strength of Cdc42 

concentration barrier. If the media is richer, there is less time to be lucky with expression. 
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Figure 34 Simulated doubling times as a function of GAP concentration for the ∆bem1 (blue), 
∆bem1∆nrp1 (green), WT (purple) and ∆nrp1 (dark green) background, for rich (filled line) and poor 
(dashed-dotted line) medium (defined as yielding half the membrane growth rate of rich medium). 

A critical reader could note the polarization threshold depends on the GAPs as well as Cdc42, 

given the polarity cones in Figure 16  and Figure 32. This can give the impression that the GAP 

expression noise is relevant to the aforementioned argument. The most relevant GAP to 

include is Bem3 (from Appendix: Relaxation of model assumptions, the dominance of the 

Bem3 contribution to the effective GAP action is quite robust, and at least 60%). A model 

extension explicitly including Bem3 as the major factor in GAP concentration as a stochastic 

variable would then also predict more Bem3 over time, possibly keeping the Bem3/Cdc42 

ratio relevant for polarization more robust than when only Cdc42 is considered. 

However, the Bem3 contribution to the noise (and of other GAPs for that matter) is limited 

(see 3.2.1.3.1). Inferring BEM3 burst parameters from expression assays in [229] yields 62 

bursts per cell cycle (46 for BEM2), showing that GAPs are approximately constitutively 

expressed. By contrast, Cdc42 is expressed a handful of times per cell cycle from our flow 

cytometry experiments (see value for 𝑘 in Table 4). The noisy burst behaviour required for ill-

growing mutants can then almost entirely be attributed to Cdc42. So, the beneficial effect of 

less rich medium persists in an extended model explicitly including GAPs expression noise. 

 

3.4.2 Epistatic interactions (beyond polarity) 

After including environmental effects, we aim to assess the incorporation of other modules 

than polarity into the growth model. The phenotype used to evaluate the performance of the 

model is epistasis of genes in the polarity module, with genes outside polarity. This makes the 

best use of the myriad of information available from high-throughput studies on the effects of 

individual mutations. Here, BIOGRID [58] and SGD data [57] are used, as explained in 3.7.3.2. 
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As the polarity gene we consider only BEM1. The null mutation has a large effect, brings yeast 

close to inviability, and consequently effects of other genes on bem1 mutants are most likely 

to have been picked up and documented in literature. We categorize the incorporation of 

Bem1-interacting mutants into the model predictions as: coarse phenotypical effects, refined 

phenotypical effects or by functionality. In this order, the mutant categorization requires 

progressively more information about the genes/proteins, whose interactions with Bem1 are 

addressed. A quantitative assessment of the predicted epistatic effects is found in Appendix J. 

Starting from the broadest category, there are many mutations that mildly decrease or 

increase fitness, However, if these mutations decrease or increase growth rate in a manner 

(generally) unrelated to polarization, they may interact with a bem1 deletion in a similar way 

as with a medium switch. More concretely, if a mutation has a negative fitness effect on its 

own (slowing growth), this may more often allow the time needed to elevate Cdc42 

production to above the threshold within a Δbem1 background. Thus, naively we may expect 

more positive epistatic interactions than usual for the bem1 deletion, with those deleterious 

mutants, and more negative interactions for beneficial mutants. 

However, it may be more appropriate to zoom in for the second mutant category and 

consider only mutants that have smaller/larger size at start or are fast/slow in G1, as the 

threshold concentration (problematic for the ∆bem1) is relevant at that time. Analogously, 

more positive epistatic interactions are then expected for the bem1 deletion with those 

mutants that have smaller size at start or are faster through G1. Similarly, more negative 

epistatic interactions are expected for those that are larger at start or have slow G1. 

Still, considering all these mutants ignores the ample functional information that is present 

for many genes. So, if this is included in the way the mutants are incorporated into the model, 

better predictions may be made. Since we generally expect improved performance of the 

∆bem1 with more Cdc42, we may get more positive epistatic interactions for proteasome 

mutants (that may delay Cdc42 degradation9). Analogously, the ∆bem1 benefits from more 

time to make Cdc42, so positive epistasis is also expected for mutants related to 

phospholipids (so that membrane expansion may get slowed down). By contrast, more 

negative epistatic interactions are expected for translation mutants (ribosomal-related)10, as 

then less Cdc42 expression is expected, which was already problematic for the ∆bem1. 

The conversion of mutant categories to changes in growth model parameters are also 

concretely stated in Appendix J. The subsequent predictions on epistasis signs with Δbem1 
                                                            
9 Since from [235] it is known that the half-life of Bem3 is more than 20% longer, a model extension 
explicitly including Bem3 as the major factor in GAP concentration as a stochastic variable would still 
predict a higher, but smaller benefit of less degradation for Cdc42 than for Bem3. 

10 From [236], the half-life of mRNA of Bem3 is a factor two larger than for Cdc42. Therefore, a 
ribosomal deficiency will affect Cdc42 mRNA more heavily, as proportionally more ribosomes may be 
hitting the mRNA half-time with their minimum translation time needed. A model extension explicitly 
including Bem3 as the major factor in GAP concentration as a stochastic variable would hence still 
predict the same direction for the epistasis, but the effect is more diluted. 
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should be interpreted as expecting more/less positive epistasis than normal, as we ignore 

many details. Here, more/less than normal is relative to the situation considering all mutants 

with Δbem1 interactions, where 16% has positive epistasis with Δbem1 (see dotted line and 

most left point in Figure 35). The observed epistasis within a group is thus compared to 16%. 

Because of the limited sample size, the estimates of the actual percentage of positive 

epistasis within a group has notable uncertainty. Following Bayesian analysis on the data, we 

obtain credible intervals for the positive epistasis fraction in Figure 35 (see for more details 

3.7.3.2). Given this uncertainty, we calculate whether the deviation from the 16% is 

meaningful or not. This is assessed by means of the posterior odds ratio or Bayes factor, 

which reflects the probability that the deviation in positive epistasis fraction exists in the 

hypothesized direction, divided by the probability that the deviation is in the opposite 

direction. The values in each group are shown in the bars (right axis). 

Using the typical interpretation of Bayes factors [192], there is generally no added value for 

the model when only considering phenotypical evidence (factors in bars typically ≲ 3, except 

small at start/ fast in G1 phenotype). However, when functional information is used, positive 

evidence exists that this model in part describes the expected epistatic relations (factors ≳ 3, 

strong if ≳ 10). This was also encountered for the ∆nrp1 mutant description: under the 

hypothesis that Nrp1 mechanistically affects the timing of the Start transition, there is enough 

information to describe a substantial part of the Bem1 interaction. The value of biofunctional 

information encountered here also seems in line with the theory behind ontotypes [240]. 

 

 
Figure 35 Epistasis predictions require functional information. Plotted are the most probable values 
and 95% credible intervals (left y-axis) for the fraction of the epistatic interactions with Δbem1 that is 
positive for different mutant types, categorized by accommodation into the model through a coarse 
phenotype (green background), more refined phenotype (purple), or through functional information 
(orange). The corresponding model hypothesis is shown through the plot symbol of the most probable 
vales, which is either a green triangle (up-facing) for more frequent positive epistasis than expected 
from considering all mutants (dashed line), or red triangle (down-facing) for less than expected. The 
blue bars (right y-axis) shows the Bayes factor (posterior odds ratio) for the corresponding hypotheses.  
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3.5 Discussion 

 

As explained in the introduction of this chapter, a key problem in biology is the prediction of 

phenotype from genotype. Evolution uses phenotypes that determine fitness as criteria for 

selection, so understanding of the possibilities and limitations of evolution relies on a detailed 

grasp of how phenotypes are generated by genotype and/or the environment. Particularly the 

former and to some extent the latter path of generation have been explored in this chapter 

through a population dynamics model, aiming to describe phenotypes of polarity mutants. 

This model incorporated cell growth, protein turnover and polarization through what is 

defined as the mesotype. It is now possible to recapitulate the resulting conclusions (bold), 

and discuss their implications, summarized in hypotheses or claims (italic): 

 

• The cell growth model fits all doubling times and epistasis of 4 strains with a Δbem1 

NRP1 and 4 BEM1 NRP1 background using 3 fitting parameters to integrate 8 

genotypes. Qualitatively, predicted trends in G1 times for the typical evolutionary 

rescue path of the Δbem1 are in accordance with literature. Similarly, trends in cell size 

are also followed. 

It is not straightforward for any model to capture the ample epistasis between Bem1 and the 

GAPs Bem2 and Bem3. In any case, molecular mechanisms must be included in some way to 

account for the much-increased importance of the GAPs in the Δbem1 background. Bio-

functional information, used in the ontotype approach, alone is not sufficient for this complex 

network (e.g., outcomes depend strongly on even concentrations), nor is disregarding 

diffusion and merely exanimating reactions in an Michaelis-Menten approach. Even reaction-

diffusion equation results are in itself not enough; a cell having insufficient Cdc42 (or too 

many GAPs), as is the default for the Δbem1, does not necessarily die, leaving a smoother 

transition between viability and unviability than expected from the mesotypical rules 

summarizing molecular interactions alone. That is where this model has its added value: 

The mesotypical inclusion into a growth model with protein turnover is both new and 

necessary to successfully describe phenotypes from the bottom-up. 

Given the rather parsimonious approach taken from all growth details, yet the more detailed 

description of protein turnover, it seems that the latter is the key addition towards the 

success of the model. So, while simple in the sense that only few fitting parameters were 

required, it may be possible to strip this model further to its essence. Therefore, in Chapter 

four the hypothesis is put to the test that: 

Protein expression noise coupling to a simple mesotype (minimum protein level to polarize) 

drives epistasis in the yeast polarity system. 
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• The model fits 5 out of 8 doubling times quantitatively correct (within experimental 

uncertainty) for the Δbem1ΔNRP1 (with 1 qualitatively off), adding 1 parameter 

(reduced minimum G1 time) for the Nrp1 action. 

In absence of solid evidence of the exact molecular mechanism of Nrp1, it is not 

straightforward to make any prediction on what Nrp1 will do. Another convenient feature of 

this model that in absence of such clear information, phenomenological integration of 

phenotypes (here, reduced G1 time) is easily facilitated. That alone accounts for most of the 

doubling time variation in 8 polarity mutants, arguing that: 

Nrp1 acts on polarity mainly through influencing its cue at Start (GEF release/GAP inhibition). 

Still, the description is far from perfect, and this may in part be due to the difficulty of 

measuring Δnrp1 (large experimental errors), but also because functional information may 

have some added value. The latter is in line with the ontotype approach. As the additional 

hypothesized Nrp1-Cla4 interaction (without Nrp1 less stable Cla4 mRNA, less Cla4 and higher 

Cdc42 concentration thresholds) would e.g., rather deteriorate the fit of the Δbem1 Δnrp1, 

the solution is not in this direction. Instead, deletion of Nrp1 may not only affect the average 

G1 time, but breaking the Nrp1 regulation can also increases the dispersion of G1 time 

distributions. If G1 times are not considered as a constant but as a distribution of times, 

particularly the Δbem1 Δnrp1 benefits from this, even accentuating the already present 

smaller mean G1 time with respect to WT found in simulations (see end of 3.3.1.3). 

 

• Doubling times of Cla4 mutants in the Δbem1 background are accurately described 

using one added fitting parameter 

The accurate description of Cla4’s function is interesting given the uncertainty of its molecular 

mechanism. Despite the theoretically inherently forgiving nature of the positive feedback (in 

terms of needing detailed information), it was possible to infer a good detailed suggestion for 

the action of Cla4 from a combination of literature sources. This model combined with the 

doubling time data provide supporting evidence for this mechanism: 

Cla4 effectively decreases the minimum Cdc42 to polarize in a Δbem1 background through 

anchoring to the membrane, activating where Cdc42 is present, and dislodging Rdi1 from 

cytosolic Cdc42 which can then attach to the membrane, completing a positive feedback loop 

for Cdc42. 

As the Δcla4 mutation is not always synthetically lethal for every Δbem1 mutant, a new 

missing link surfaces in the polarity puzzle. The fitted 20% decrease in minimum Cdc42 

concentration that the Cla4 addition causes in the Δbem1 background suggests that 80% is 

still unknown. While sensible from a theoretical point of view (the nature of the positive 

feedback can be very generic), it is experimentally not clear which protein(s) should be 
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responsible for this. For example, candidates Ste20 and Skm1, PAKs related to Cla4, cannot 

dislodge Rdi1 from Cdc42 [81], so these independently do not suffice. 

Actin transport of Cdc42 or downstream effectors may be an answer, yet the effect on Cdc42 

is controversial [97], [243]. In an attempt to reconcile opposing views, we turn to the clathrin-

dependent form of endocytosis, which has not received as much attention in polarity with the 

discovery of the formin-dependent mode of endocytosis [103]. As explained in the 

introduction (Box 3 in 1.4), free GAP removal from the bud site by epsin-mediated 

endocytosis adds to the local depletion of the free GAPs in the theoretical model [51] 

validated in Chapter 2. 

There, GAPs were depleted by forming a complex with active Cdc42 until there were 

insufficient left to stop accumulation of Cdc42 at that point. Alternatively, in the endocytosis 

case active Cdc42 recruits the formation of actin cables and facilitates endocytosis. This 

transport along endocytic vesicles removes free GAPs away from locations where active 

Cdc42 is abundant. Effectively, insufficient GAPs remain at the future bud site to deactivate all 

the Cdc42 on the membrane, establishing pattern formation. At this moment, this appears 

the most credible alternative for the known polarity mechanisms, leading to the statement: 

The positive feedback of Cdc42 in a Δbem1 background is not mediated by Cla4 alone, one or 

more hidden players account for 80% of the positive feedback. The likeliest scenario is local 

free GAP depletion on the presumptive bud site through endocytosis by clathrin-binding epsins. 

For a follow-up experiment to shed more light on the remaining positive feedback, one can 

think of a renewed evolution experiment. Starting out with the evolved mutant from [24], a 

further subtle epsin-related mutation from [106] can be added which negatively influences its 

GAP interaction. A possibility is removing both ENT1 and ENT2 and replacing these by a 

weakly expressed ENTH-domain from Ent1, which contains the presumptive binding site to 

the GAPs. This way, the GAP depletion at the presumptive bud site is weakened. 

 

• When varying Cdc42 copy number through gradually inducing its promoter (12 values), 

the measured changes in doubling times are to a certain degree in line with model 

predictions based on expression levels obtained by flow cytometry 

To make accurate model predictions for the fitness dependency on protein copy number, the 

mechanistic theory, overarching growth model and experimental coverage of expression data 

must be adequate. A limiting factor here is the flow cytometry data available, where 

expression levels from 3 values (plus one literature value) must be interpolated to generate 

the set of 12 levels used in the growth assay.  

Where the latter assay’s resolution matches most closely the flow cytometry assay’s 

resolution (0.2%-2%), the model fits the experiments well. This is in spite of some side notes 
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on the direct comparison between the strains from the growth and flow cytometry assay, 

such as that both use different versions of fluorescent Cdc42. The discrepancy becomes larger 

once expression at more inducer values must be interpolated, suggesting that the limiting 

factor is not the underlying mechanistic model for polarization, nor the growth model in itself, 

but availability of experimental data with good coverage to feed into the model. 

This puts the difficulty to quantitatively match the predictions of the mechanistic GAP model 

based on functional subunits (see Chapter 2) into context. There, even the most prominent 

feature, the sharp Cdc42 concentration boundary to polarize, becomes diffuse in terms of 

population phenotypes that are acquired in bulk, such as doubling times, which we to use to 

test many genetic scenarios. This preliminary data set addresses this issue and gives a hopeful 

outlook, namely: 

The growth model allows the observation of fine features of the underlying mechanistic model 

for polarization, which would otherwise be impossible to retrieve from experimental data. 

   

• Halving the membrane area growth rate as a proxy for poorer medium increases 

doubling time of WT by 30%, yet reduces that of Δbem1 by 65%, bringing them within 

about 20% of each other. 

A rather surprising find is that simulations let the Δbem1 notably benefit from poorer 

medium. As this background suffers from shortage of Cdc42, a slowdown of dilution and more 

time to be lucky with a large expression burst turn this ill strain into a decently viable mutant. 

WT on the other hand, already in the sweet spot with regards to protein concentrations in its 

fitness landscape, can only deteriorate from its optimal state. The two backgrounds are 

brought close together without having to delay WT to an unrealistic extent. In an attempt to 

generalize this reasoning, one will always see an optimal mutant suffer from suboptimal 

media, while expression bursts always favor the ill-adapted, because they are content with all 

the time they get in poorer medium. This suggests that: 

Less rich medium may act as an equalizer for competitive fitness between diverse genetic 

backgrounds, offering ill-adapted mutants more time to maintain and improve itself through 

evolution, possibly facilitating evolution by shallowing fitness valleys. 

 

This also has implications for the hypothesis how this polarity network may have ended up 

this way. It is rather remarkable that symmetry breaking is already accomplished by a much 

simpler system (without Bem1, Bem2, Bem3, Nrp1 and Cla4) using completely different 

mechanisms (GAP depletion, possibly actin, instead of the positive feedback by the Bem1 

protein complex). The current, WT system is more complex, with a small gain in doubling 
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time, and one can speculate how a system could have evolved to such an advanced state, 

despite ample epistasis and corresponding fitness valleys. 

One conjecture [51] is that at first without Bem1, GAP concentration is critical. The next step 

in evolution would be a protein (the future Bem1) that binds the GEF, lifting its autoinhibition, 

increasing its potency and conferring an advantage. At this point the optimal GAP 

concentration may increase slightly, which may be another adaptation step. This protein 

could then evolve to bind Cdc42, yielding the more robust Bem1-mediated positive feedback 

loop, after which GAP concentration becomes less critical, and free to evolve along the lines 

of the innovation, amplification, duplication model [6] to the state it is now. 

However, after having illustrated the effect that the environment can have on shallowing 

fitness valleys (here through poorer medium), the focus may shift to the clear selective fitness 

advantage every adaptation must have. Under slow growing conditions (considering the 

original territory of budding yeast is fruit outside of a laboratory), more avenues may have 

been available to reach to same goal, which is a fast, yet robust polarity mechanism. In the 

next chapter the mechanism behind shallowing fitness valleys is uncovered, to further 

understand how evolutionary restrictions are relaxed. 

 

• Extending this growth model’s predictions, namely description of epistasis between the 

Δbem1 and other mutations, requires functional rather than mere phenotypical 

information. 

The model has coarse-grained many molecular details related to growth, focusing mostly on 

protein turnover and polarization (mesotype), as polarity mutant phenotypes were the main 

objective. If one however wishes to extend or adapt this model to other goals, this is in theory 

well possible as there are many handles in this model to accommodate changes. Ideally, this 

newly incorporated module shares the same level of detail that polarization has received. 

In practice, this is often not possible for systems not so well biophysically characterized as the 

polarization network. Consequently, in the case of epistasis between a mutation from the 

polarity module and one from another module, the assertion of fitness relies on the coarse 

description of the second module and of the growth module, only having a rigorous 

justification for the polarity module. While arguably far from perfect, it is reassuring that even 

then some lessons can be learned, if one at least has added functional information for its new 

mutants. This requirement seems reasonable; it is in line with the usage of ontotypes [240]. 

Function may not tell the whole story, but it gives a notion of the story line. 

Accurate phenotypical description is ideally based on an appropriately coarse-grained bottom-

up description of molecular details, but cross-module descriptions already benefit from 

functional information. 
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3.5.1 Outlook 

This chapter provided lessons on how genotypes (and lesser extent environment) give rise to 

(population) phenotypes. This provides some handles to then understand how evolution acts 

to select upon the appropriate phenotypes. In that light, the most interesting hypothesis has 

been concerning the influence of protein copy number noise on epistasis. 

Therefore, the next chapter aims to expand further on the implications for the general 

emergence of epistasis. While it may be difficult to predict specific epistatic interactions 

without functional information or physical interaction knowledge, interesting assessments 

can be made for the prevalence of epistasis, in particular the existence of negative epistasis. 

As will be shown in the next chapter, a general evolutionary mechanism is conjectured, which 

may inter alia facilitate the generation of epistasis. This acts far beyond the characteristics of 

this growth model, but the polarization case serves as a good illustration of this principle to 

understand evolvability better. 
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3.7 Supplementary information on methods 

 

3.7.1 Computational matters 

 

3.7.1.1 Specifics on implementation 

The integrative growth model was written in Matlab and run on version R2014b. The same 

random number generator settings, the default for Matlab R2014b namely Mersenne twister 

with random seed 0, are used throughout this thesis, except for the plot regarding the effect 

of different seeds on reproducibility of the doubling times in Appendix G: Convergence and 

error estimation. 

The implementation uses a while loop whose iterations correspond to generations in the 

colony. The stopping criteria are that both the minimum population size must be reached and 

the last simulated protein copy number (‘FACS’) and volume (‘Coulter’) measurement time 

point (if supplied beforehand by the user) must have passed in order to stop. At every 

iteration inside the while loop, every cell attempts to go through four phases. In the first 

phase isotropic growth occurs during a deterministic amount of time per cell, either the time 

needed to reach the minimum size to polarize or the minimum time needed in G1 to polarize 

(whichever time is greater). Both volumes and Cdc42 amount (through random draws of the 

appropriate exponential and Poisson distributions to match dynamics of [189]) are adjusted. 

The second isotropic growth phase is an implementation of the Gillespie algorithm [239] for 

Cdc42 production, advancing time per cell one Cdc42 expression burst at a time. As 

concentration only increases after a burst and a minimum must be exceeded, at the start of 

the phase and after every subsequent burst the concentration is evaluated. If this exceeds the 

minimum threshold to divide, the cell moves to the next phase, otherwise it remains in this 

phase through a while loop. If the maximum cell size is exceeded the cell also exits this while 

loop, but is annotated as death and will not participate in any further calculations. Time of 

death relative to the start of the simulation is stored. 

The third phase is deterministic as well, and volumes and Cdc42 amount are adjusted for an 

isotropic growth time for the duration of the polarization time which depends on Cdc42 

concentration (see equation 3.2). Finally, bud growth also occurs for a deterministic amount 

of time, until the daughter size is as specified, encompassing the fourth phase. 

As time since ancestors increases, so do the differences between these times for every cell, 

e.g., the fourth generation of cells is timewise mixed with the third and fifth generation. The 

algorithm computes one generation at a time, yet the relevant output such as doubling times, 

FACS and Coulter measurements are only valid when for a specific time it is certain no more 

cells can contribute to these outputs. This phenomenon can unnecessarily extend the 

computation time. Therefore, it is possible to temporary (for one iteration) pronounce cell 
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belonging to an upper quantile (used here 0.5) of time to ancestors dead so that computation 

only progresses for the cells that timewise lag behind in the colony. Every iteration the list of 

cells that progress one generation is then updated.  

While this computational trick also accommodates many artificial dilutions of the colony to 

speed up calculations, the added level of stochasticity introduced into the outputs is generally 

not advised. However, robustness is obtained when diluting once, after reaching the critical 

colony size for the first time, and using a sample of 1000 live cells at that moment as the 

initial conditions for the second simulation round. When the colony size reaches the critical 

colony size for the second time, equilibrium has been reached, see Appendix G : Convergence 

and error estimation. Results also proved robust against ‘technical’ replications of the 

simulations, i.e. using different random seeds. 

Doubling times are determined by averaging the ordinary least squares fits on the log cell 

count versus time, with time discretized to a one-minute resolution, of the final hundred 

moving windows of two-hundred-minute size. Simulated FACS and volume measurements are 

simultaneously performed at time points just before (0.1 min.) the end of the second run, 

unless otherwise specified. Only for the volume measurements the dead cells are passed on 

to the output volumes as imaginary numbers, so that the user can decide whether to include 

these into the simulated measurement (for the FACS they are discarded). A single cell time 

trace (of the copy number and the concentration, which includes the volume information) is 

found in Appendix H: Single cell test case), to illustrate the proper functionality of the model. 

 

3.7.1.2 Initialization 

A sensible choice must be made for the initial conditions. This is relevant, as if only one cell is 

taken, cell death is risked before the colony can reach a substantial size (though always 5 runs 

are done before giving up if all five fail). While an interesting case for e.g., studying spore 

germination efficiency leading to colony formation on plates, for this dissertation the 

equilibrium properties of the colony are most interesting in terms of observations. The 

starting population has no proteins and consists of 1000 cells, with cell size at 110% of the 

minimal cell radius to polarize. The starting colony is asynchronized by setting the starting 

time stamp for all cells evenly spaced between minus the doubling time of WT to 0. 

Ultimately, the results of interest are equilibrium properties, such as the maximum doubling 

times. As aforementioned, to improve convergence but also to minimize the influence of the 

initial conditions, a dilution step was added after reaching the critical colony size. Resampling 

1000 cells provided a new starting point for the next iteration of the simulation (much like the 

procedure for the growth rate assays) to attain convergence. 
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3.7.1.3 Calibration 

After specification, the model is calibrated to accommodate existing data. More specifically, 

the WT should follow these ‘ground truths’, sorted in decreasing order of importance: 

• Doubling time in YPD is 83 minutes [24]. This fixes the ratio 𝐶2/𝐶1. 

• In the fitness landscape of doubling time as a function of minimum Cdc42 

concentration to polarize, WT is close to the optimum, as it would have evolved 

towards there. This sets [𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇 needed to evaluate the previous statement.  

• Mean population number of Cdc42 is 8690 [234]. This corrects 𝑝𝑏,𝑎𝑣 slightly, 

previously inferred from FACS data. 

• As a relatively loose condition, we should have approximately 

[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1𝜏𝑝𝑜𝑙,𝑟𝑒𝑠𝑐𝑢𝑒 = [𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇𝜏𝑝𝑜𝑙,𝑊𝑇, as we expect reasonably 

similar behaviour for low GAPs. 

Initially, average time between bursts 𝜏𝑏,𝑎𝑣 and average burst size 𝑝𝑏,𝑎𝑣 are taken from FACS 

data om GAL1-GFP-CDC42 normalized to the endogenous CDC42 expression as found from 

pCDC42-GFP-CDC42 (see Appendix E: Reconstruction of burst parameters from FACS data). 

Also, 𝐶2 𝐶1⁄ = 2 is assumed, as that value seems to follow from literature data that best 

matches a constant area growth rate for isotropic and polarized growth. Then a first sweep is 

done for the value of [𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇. An apparent plateau in doubling times as a function of 

[𝐶𝑑𝑐42]𝑚𝑖𝑛 runs from roughly 3 to 25 [# proteins/μm3] with a small minimum close to 7. The 

∆bem1 threshold appears to be located around 130 to 160 [# proteins/μm3]. So, there is likely 

a factor 20 difference between [𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇 and [𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1. For arguments given 

in the coarse-graining section, this should also be reflected in  𝜏𝑝𝑜𝑙, so that 𝜏𝑝𝑜𝑙,𝑊𝑇 =

20𝜏𝑝𝑜𝑙,𝑟𝑒𝑠𝑐𝑢𝑒 = 500 to get approximately the same behaviour for low [GAP]. 

Then a new sweep at low [𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇 can be done for WT parameters (so using  

𝜏𝑝𝑜𝑙 = 𝜏𝑝𝑜𝑙,𝑊𝑇 and a range of [𝐶𝑑𝑐42]𝑚𝑖𝑛 close to 7. The new target [𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇 follows 

from finding the minimum of doubling time with respect to [𝐶𝑑𝑐42]𝑚𝑖𝑛, which does not shift 

much thanks to the plateau around that value. Then the ratio 𝐶2/𝐶1 is adjusted such that the 

doubling time is 83 𝑚𝑖𝑛., and 𝐶2 𝐶1⁄ ≈ 2.13 is found. 

Now we supply the time to reach approximate equilibrium at 5 million cells to the algorithm 

to probe the final population distribution of protein copy numbers, yielding the mean Cdc42 

amount. 𝑝𝑏,𝑎𝑣 is then adjusted accordingly to match 8690 from [234] as close as possible. It 

turns out a correction factor from the FACS data of 0.8133 is needed to match this value. 

If needed, this round of calibration can be repeated to get a completely self-consistent system 

where [𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1𝜏𝑝𝑜𝑙,𝑟𝑒𝑠𝑐𝑢𝑒 = [𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇𝜏𝑝𝑜𝑙,𝑊𝑇, 2 < 𝐶2 𝐶1⁄ < 3 such that 

𝜏𝑑𝑜𝑢𝑏𝑙,𝑊𝑇 = 83, 𝑝𝑏,𝑟𝑒𝑙 such that 〈𝐶𝑑𝑐42〉 ≈ 8690 and [𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇 ≈

argmin
[𝐶𝑑𝑐42]𝑚𝑖𝑛

𝜏𝑑𝑜𝑢𝑏𝑙([𝐶𝑑𝑐42]𝑚𝑖𝑛). In this dissertation, [𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇 ≈ 4 was found, with 

𝐶2 𝐶1⁄ ≈ 2.13, 〈𝐶𝑑𝑐42〉 ≈ 8646 and 𝜏𝑑𝑜𝑢𝑏𝑙,𝑊𝑇 ≈ 82.4. 
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3.7.1.4 Model flexibility 

Tests for relaxing assumptions for this model can be found in Appendix I: Relaxation of model 

assumptions. These show that the calibrations provide quite stringent conditions, in the sense 

that the main results do not depend very much on exact assumptions underlying these 

parameters. The robustness of the results hence suggests identifiability problems (when 

doubling times are the main source of observations) for some non-fitting parameters if these 

would be attempted to be fitted. This provides positive evidence for the generality of the 

model, as these exact values of these parameter values are expected to vary between 

environments, details in (full) genetic background, etc. 

Regarding the number of fitting parameters, one must note that this does not equal the 

actual degrees of freedom. Table 4 shows all the boundaries on the five fitting parameters, 

and given the number of data points upon which these will be fitted (e.g., [24] already 

contains doubling times for 16 genotypes, several mutant sizes and time until first 

polarization spots), this system is safely in the overdetermined regime. Including observations 

of ill mutants, such as ∆bem1 data, makes the system well-conditioned (the fitting parameters 

are sensitive with respect to change in the parameters) and identifiable (the value of each 

parameter can be uniquely determined). 

 

3.7.2 Model validation 

3.7.2.1 Bem1 evolution data methods 

The goal is to get an accurate description of the genotypes present in [24], particularly for 

strains subject to the rescue mechanism (Δbem1 background). The minimum Cdc42 

concentration to polarize is the main fitting parameter, and represents different GAP deletion 

phenotypes. In section 3.2, it was shown that four parameters describe all GAP mutations 

present. Additionally, the nrp1 deletion is hypothesized to reduce the minimum time required 

to spend in G1, as explained in Box 4. 

Using the other parameters from Table 4, a [𝐶𝑑𝑐42]𝑚𝑖𝑛 sweep was done, ranging from 

normalized values (
[𝐶𝑑𝑐42]𝑚𝑖𝑛

𝑃𝑊𝑇 / (4 3𝜋𝑟𝑚𝑖𝑛
3⁄ )

) of 10-4, from 0.001 to 0.01 (step 0.001), and from 0.02 to 

0.2 (step 0.2) and 0.21 to 0.65 (step 0.01) for the WT and Δbem1 background, setting 𝑡𝑚𝑢𝑡 to 

unity. To avoid fitting on data with high experimental errors the nrp1 deletion effect is chosen 

by manual fit to match the data well that has the lowest standard errors, also reducing the 

dimensionality of the fitting procedure. It was found that 𝑡𝑚𝑢𝑡 = 0.75 works well, and for this 

value the [𝐶𝑑𝑐42]𝑚𝑖𝑛 was repeated. This yielded the lines in Figure 25 and Figure 26. 

The bottom x-axis in these figures resulted from the curves to the experimental data of [24]. 

The concentration thresholds are fitted numerically on the 16 mutants. Using Matlab R2014b 

fminsearch, the minimum of the objective function was found, which is the sum of scores to 

the fourth power (to penalize deviations very heavy), between model and experimental 

values, having the four [𝐶𝑑𝑐42]𝑚𝑖𝑛 parameters as variables, restricted as explained in section 
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3.2. Model doubling times for a particular [𝐶𝑑𝑐42]𝑚𝑖𝑛 in between or beyond those calculated 

in the [𝐶𝑑𝑐42]𝑚𝑖𝑛 sweep, were linear interpolated or extrapolated respectively using 

Matlab’s interp1 function. This completed Figure 25 and Figure 26, whose data is also 

represented in Table 5. 

 

Table 5 Mutant doubling times of [24] in YPD, compared with the fit of the growth model, together 
with corresponding parameters. [GAP] refers to the effective GAP concentration. The experimental 
error of Δbem2Δnrp1 was not measured but set at a conservative, high value of 30 minutes. 

Genotypes Doubling 
time 

(min.) 

Standard 
error 
(min.) 

Model 
doubling 

time 
(min.) 

[𝑪𝒅𝒄𝟒𝟐]𝒎𝒊𝒏 
(#/𝝁𝒎𝟑) 

[𝑮𝑨𝑷]

[𝑮𝑨𝑷]𝒂𝒍𝒍
 
𝒕𝑮𝟏,𝒎𝒊𝒏
𝒕𝑮𝟏,𝒎𝒊𝒏,𝑾𝑻

 

Δbem1 443 31 391 115 1 1 
Δbem1Δbem3 97 5 105 43 0.38 1 
Δbem1Δbem2 139 9 153 76 0.66 1 

Δbem1Δbem3Δbem2 95 6 100 4.2 0.04 1 
Δbem1Δnrp1 126 37 209 115 1 0.75 
Δbem1Δbem3Δnrp1 91 6 87 43 0.38 0.75 
Δbem1Δnrp1Δbem2 115 4 116 76 0.66 0.75 

Δbem1Δbem3Δnrp1Δbem2 87 2 87 4.2 0.04 0.75 
WT 83 5 82 3.9 1 1 
Δbem3 86 5 83 1.5 0.38 1 
Δbem2 80 5 82 2.6 0.66 1 

Δbem3Δbem2 100 5 107 0.10 0.04 1 
Δnrp1 96 9 68 3.9 1 0.75 
Δbem3Δnrp1 130 20 69 1.5 0.38 0.75 
Δbem2Δnrp1 75 30 68 2.6 0.66 0.75 

Δbem3Δnrp1Δbem2 102 6 94 0.10 0.04 0.75 

 

For the colony time at the end of the simulation, all volumes are stored and converted to an 

effective size (diameter), assuming spherical shapes. For all values in the [𝐶𝑑𝑐42]𝑚𝑖𝑛 sweep 

and for all backgrounds, statistics such as the mode (peak of the kernel smoothed probability 

density estimate, from Matlab’s function ksdensity) or the mean were calculated, yielding 

Figure 29. For the modes, the bin edges from 0 to 10 µm in steps of 0.01 µm were used, as 

also in the modes from Figure 30, which also displays the standard deviation from the 

effective sizes. These are compared to the experimental values from [24]. 

Setting 𝐶1 and 𝐶2 to half the value from Table 4 (to mimic less rich medium) and using the 

fitted [𝐶𝑑𝑐42]𝑚𝑖𝑛 and 𝑡𝑚𝑢𝑡, WT and Δbem1 mutants are simulated once again. In the last 

iteration, the times of the first, second, third phase of the iteration are stored (see 3.7.1.1 for 

the phase description). These are averaged across the population. The first phase 

corresponds to the cell isotropically growing while no polarization can take place. This hence 

relates to the time to first spot from [24]. The sum of the second and third phase corresponds 
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to the cell trying to meet the Cdc42 threshold to polarize, and then polarizing. This can hence 

be correlated to the time to all spots from [24]. Because it is difficult to reconstruct exactly 

what the growth conditions were, all experimental values were rescaled by the same factor 

such that for WT, time to first spot matches the simulated equivalent, yielding Figure 28. 

 

3.7.2.2 Cdc42 expression sweep methods 

Using the flow cytometry data for mutants with pGAL1-GFP-CDC42 normalized to the 

endogenous expression pCDC42-GFP-CDC42, galactose concentration in the medium was 

related to Cdc42 expression. This expression is represented by burst parameters under 

various levels of galactose induction (see Appendix E: Reconstruction of burst parameters 

from FACS data), using the identities  (given how shape and scale parameters relate to 

average burst size and times, [189]): 

𝜏𝑏,𝑟𝑒𝑙 =
𝑘𝐺𝑎𝑙
𝑘𝑒𝑛𝑑𝑜

 

𝑝𝑏,𝑟𝑒𝑙 = 𝜃𝐺𝑎𝑙𝑘𝑒𝑛𝑑𝑜 

The results are summarized into Table 6. Substituting these burst parameters into the model 

gives doubling time predictions. Ideally, the doubling times are compared to experiments on 

strains carrying pGAL1-sfGFP-CDC42SW but the measured galactose concentration do not 

always match. This requires interpolating for the measured, albeit limited number of values. 

 

Table 6 Results from fitting gamma distributions on the data of chapter 2, see also Appendix 
Reconstruction of burst parameters from FACS data, giving shape parameter k and scale parameter θ. 
Average times between bursts 𝑡𝑏,𝑟𝑒𝑙 and average burst sizes 𝑝𝑏,𝑟𝑒𝑙  are all relative to WT, such that 

endogenous expression would have values of 1. 

Concentration 𝒌 𝜽 𝒕𝒃,𝒓𝒆𝒍 𝒑𝒃,𝒓𝒆𝒍 

0.05% Gal 0.03 0.22 121 0.76 
0.2% Gal 2.7 1.2 1.37 3.88 
2% Gal 10.1 0.72 0.34 2.51 

 

Apparently, most variation exists in the average time between bursts. The average burst size 

must be dominated by the number of ribosomes present (translation) and therefore we will 

make the very rough approximation that it is constant at 2.5 relative to endogenous 

expression (smoothing the other data points). We can also use the information that the Gal1-

promoter dynamical range is about 1000 [244]. So, given that we fix the burst size, the 

average burst time at 2% must be a factor 1000 more than the minimum burst size, so 198 

min. at very low gal, i.e., 0.01%. 
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The average burst time is inter- and extrapolated linearly on a log scale (given the seemingly 

order of magnitude difference in the few data points present) to the galactose concentration 

values upon which the doubling times are experimentally measured. This yields the values 

from Table 7: 

Table 7 Interpolated values for average times between bursts, relative to endogenous expression, for 
different galactose concentrations. 

Gal Concentration 𝒕𝒃,𝒓𝒆𝒍 [min.] 

0.01% 198 
0.015% 174 
0.02% 160 
0.03% 141 
0.04% 129 
0.05% 121 
0.06% 67 
0.08% 26 
0.1% 13 
0.2% 1.37 
2% 0.34 

 

Because the growth rates for the strains in 2.3 have been measured in synthetic medium 

(filter sterilized 4xCSM + 2% raffinose and 0-2% galactose instead of YPD), growth rates are 

different for the WT in this medium than for the WT used for calibration of the model from 

[24]. Therefore, the membrane area growth rate is adjusted to reach the WT doubling times 

in each medium, as an approximation of the effect of synthetic medium. 

It is assumed that this is the only effect of synthetic medium. One could hypothesize that the 

burst properties get affected, for example because less proteins are produced in that 

situation. In the paper of [242], no change in Cdc42 expression was found if the sugar was 

changed from dextrose to ethanol (which likely leads to slower growth rates). Of course 

translation may still be affected, but this is not expected if nitrogen is not limiting [245]. 

Possibly, larger cells may induce more protein production (as a general effect, there could be 

more of all components) and Appendix C.2.2 shows variation in volumes. Volume-dependent 

expression is not taken into account in this model. 

𝐶1 and 𝐶2 are both reduced by a factor ranging from 0.1 to 1 (step size 0.1), with otherwise 

WT parameters (see Table 4). This yields WT doubling times at different membrane area 

expansion speeds. Through linear interpolation (extrapolation uses default 𝐶’s) the precise 

factor that needs to be multiplied to 𝐶1 and 𝐶2 to match the doubling times of WT in Figure 

19 is determined (for the minimum, mean and maximum values within the credible interval). 

Incidentally, similarly interpolating the mean effective radius and standard deviation of these, 

values increase from 0.02% to 2% galactose from about 2.2 to 2.8 µm, and 0.2 to 0.36 µm. 
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These increments are roughly consistent those observed in Figure 65. Apparently, the fitness 

effects of adding galactose to the medium that already has 2% raffinose, can readily be 

absorbed into the model as a generic influence on the membrane growth rate, in line with the 

presumed osmolarity effects. 

The membrane area growth rates are in turn used to calculate the doubling times at each 

medium (minimum, mean and maximum) for the sfGFP strains, taking into account to altered 

production at each medium. Backgrounds (presence or absence of Bem1 and Bem3) are 

represented by the threshold values fitted in 3.3.1 to approximate the GAL1pr-sfGFP-CDC42SW 

in an otherwise WT, Δbem1 and Δbem1 Δbem3 background. The lower and upper model 

doubling times bounds are then converted to relative fitness through dividing by the mean 

WT doubling times. These are then plotted on top of the experimental data (Figure 31). 

 

3.7.2.3 Cla4 mutant data methods 

The Cla4 mutants were created and measured by Leila Iñigo de la Cruz, as attributed in 3.6. 

What follows is a summary of her protocols in her Master thesis. All mutants were generated 

by first crossing yMP203a (a cla4::LEU2, trp1) with pure WT (yLL3a, leu2,3-112 TRP1) (yields 

yLIC08) and sporulating to retrieve a Δcla4 mutant (yLIC09) that has mating type α (spores 

that do not survive on a medium without leucine and tryptophan, but survive in a medium 

without only leucine. This haploid is then crossed with yLL131a (Δbem1 Δbem3 Δnrp1 SPA2-

GFP mutant) to yield yLIC1051. Through subsequent sporulation and selection on different 

media, different polarity mutants are obtained. Those growing on added (1 mg/ml) G418 have 

the bem1 deletion, on added (0.1 mg/ml) clonNAT have the bem3 deletion, on -uracil have 

the SPA2-GFP mutation, on added (0.45 mg/ml) Hygromycin have the nrp1 deletion and on -

leucine have the cla4 deletion. 

Doubling times were measured as follows: after first inoculating in a 96 well plate, on the next 

day a 10x dilution is placed into 100 µl YPD in a 96 well plate inside a TECAN Infinite 200 PRO 

for about 48 hours at 30ºC. The first 1000s the plate is linearly pre-shaken (amplitude 1 mm), 

before measurements (6-7 min. interval) and the same shaking for 260 or 330s (OD-600 +/-9 

nm measurements, 25 flashes, 5 ms settle time). Weighted linear regression on background-

subtracted OD values, smoothed with Matlab’s rlowess (10 points) yielded doubling time 

estimates for this data set. 

Ultimately, the arithmetic mean is taken of the doubling times across biological replicates, 

which are the weighted average of three technical replicates. The crossings could have 

introduced unidentified mutations, adding uncertainty to the doubling times. Therefore, by 

the logic of generic mutations as seen later in 4.2.1.5, the mutants also measured by [24] are 

rescaled to those values, and the new mutants times are rescaled by the same factor as an 

approximate correction, see Figure 33 and Table 8. 
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For the rescue mechanism, Cla4 is hypothesized to mediate the positive feedback in absence 

of Δbem1, see Figure 8 in Box 2. Schematically, the influence on the ability to polarize was 

found in Figure 32. This leads to the following identity: 

 [𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇
[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚3

=
[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1Δ𝑐𝑙𝑎4

[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1Δ𝑐𝑙𝑎4Δ𝑏𝑒𝑚3
 (3.5) 

From fits in 3.3.1 the left-hand side is known, so it shows that the cla4 deletion can be 

modelled using only one additional parameter, which given the role of Cla4 must also satisfy: 

[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1Δ𝑐𝑙𝑎4 > [𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1 

Note how we cannot determine [𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1Δ𝑐𝑙𝑎4 exactly form that genotype (that 

combination of mutations is synthetically lethal) but [𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1Δ𝑐𝑙𝑎4 =

[𝐶𝑑𝑐42]𝑚𝑖𝑛,Δ𝑏𝑒𝑚1Δ𝑛𝑟𝑝1Δ𝑐𝑙𝑎4 and we can determine the latter. 

The normalized [𝐶𝑑𝑐42]𝑚𝑖𝑛 sweep (
[𝐶𝑑𝑐42]𝑚𝑖𝑛

𝑃𝑊𝑇 / (4 3𝜋𝑟𝑚𝑖𝑛
3⁄ )

) was extended from 0.61 to 1.2 (step 

0.01) for the Δbem1 background. Fits are performed similarly to those in the Bem1 evolution 

data set, this time minimizing the objective from the four doubling times of the cla4 mutants 

in Table 8. 

 

Table 8 Mutant doubling times in YPD, rescaled to match isogenic mutants of [24], compared with the 
fits of integrative growth model, together with corresponding parameters. [GAP] refers to effective 
GAP concentration. Experimental errors of cla4 mutants were assumed to be the same as for 
corresponding CLA4 strains of [24]. 

Genotypes 

Doubling 
time 
from 
[24] 

(min.) 

Stan-
dard 
error 
(min.) 

Unscaled 
new 

doubling 
time 

(min.) 

Rescaled 
new 

doubling 
time 

(min.) 

Model 
doubling 

time 
(min.) 

[𝑪𝒅𝒄𝟒𝟐]𝒎𝒊𝒏 
(#/𝝁𝒎𝟑) 

[𝑮𝑨𝑷]

[𝑮𝑨𝑷]𝒂𝒍𝒍
 
𝒕𝑮𝟏,𝒎𝒊𝒏
𝒕𝑮𝟏,𝒎𝒊𝒏,𝑾𝑻

 

Δbem1 443 31 - - 399 115.3 1 1 

Δbem1 Δcla4 - - ∞ ∞ ∞ 140.2 1 1 

Δbem1Δbem3 97 5 121 97 105 43.2 0.38 1 

Δbem1Δbem3 
Δcla4 

- - 135 108 115 52.7 0.38 1 

Δbem1Δnrp1 126 37 86 126 209 115.1 1 0.75 

Δbem1Δnrp1 
Δcla4 

- - 109 160 465 140.2 1 0.75 

Δbem1Δbem3
Δnrp1 

91 6 93 91 87 43.2 0.38 0.75 

Δbem1Δbem3
Δnrp1 Δcla4 

- - 89 87 93 52.7 0.38 0.75 
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3.7.3 Model extension methods 

3.7.3.1 Media types 

To mimic the effect of poorer medium, this is reflected in the model as before, by reducing 𝐶1 

and 𝐶2. The same threshold sweep was conducted as for the Bem1 evolution data set, only 

this time halving both the membrane area growth parameters, yielding Figure 34. 

3.7.3.2 Epistatic interactions 

BIOGRID data [58] (as of 08-03-2018) was taken to obtain all interactions with BEM1 that are 

either positive genetic, synthetic rescue, negative genetic, synthetically lethal. The former two 

are considered “positive”, and the latter two “negative”. For those mutants with multiple, 

conflicting interactions the majority (of the low throughput data, if available) vote prevails, 

and in the case of a tie the mutant is discarded from further analysis. Interactions with BEM2, 

BEM3, CDC24, CLA4 and NRP1 are deemed to be known with such certainty that they are 

manually overwritten to positive, positive, negative, negative and positive respectively, 

regardless of other literature. 

For the effects on other mutants, data of SGD [57] was used, more specifically from 

https://www.yeastgenome.org/observable/APO:0000110 (date of access 06-03-2018), 

https://www.yeastgenome.org/observable/APO:0000308 (date of access 06-03-2018), 

https://www.yeastgenome.org/observable/APO:0000141 (date of access 08-03-2018), 

https://www.yeastgenome.org/observable/APO:0000255 (date of access 08-03-2018), and 

through the search button and genes subsection on the SGD website with queries 

proteasome, ribosome and phospholipid. For the (fermentative) fitness, only null mutants in 

YPD are considered. To maintain the sample size as large as possible, for the size and G1 time 

mutants not only null mutants are considered, but also those with reduction of function and 

overexpression mutants. 

These mutants are then all correlated with the positive and negative interactions documented 

for Bem1. The posterior density distribution for the fraction of positive epistatic interactions 

compared to the total epistatic interactions for every class of mutants is then calculated, 

using a uniform, uninformed prior. Using the binomial distribution as a logical likelihood 

function for how the data follows from the positive epistatic fraction parameter, this leads to 

a beta distribution for its posterior density, from which the most probable value and 95% 

credible interval is plotted in Figure 35. By differencing Monte-Carlo samples of each mutant 

case and the total Bem1 epistatic interaction set as a reference, the posterior odds of the 

aforementioned model hypotheses can be constructed.  

https://www.yeastgenome.org/observable/APO:0000110
https://www.yeastgenome.org/observable/APO:0000308
https://www.yeastgenome.org/observable/APO:0000141
https://www.yeastgenome.org/observable/APO:0000255
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4 Evolutionary roles of noise and transgenerational feedback 

 

4.1 Consequences of protein expression noise 
 

In the previous chapter, several non-intuitive cell polarity phenotypes of budding yeast, such 

as epistasis between GAPs within a Δbem1 background, were successfully described using a 

growth model. This involved making assumptions on membrane expansion, protein turnover 

and the mesotype, the coarse-grained rule set emerging from molecular mechanisms. In 

order to understand what exactly is crucial in order to describe e.g., the epistasis (the 

phenotype most transferrable and comparable to other systems), the first goal of this chapter 

is to further reduce the model. Consequently, once the minimum requirements have been 

identified, it becomes possible to improve our mechanistic understanding of the origin of 

epistasis in more general terms (adding to those known [246]), beyond yeast polarity. 

As discussed in section 3.5 and considering results in Appendix I (insensitivity of epistasis to 

certain model assumptions) and in literature (e.g., degradation only matters for 15% of the 

proteins [235]), at first sight the critical components are noisy protein expression and the 

mesotype. This implies discarding, among others, protein degradation and cell volume effects. 

The importance of noisy gene expression influencing phenotypes under selection has been 

featured in literature. On the one hand, noise is known to be an integral part of evolutionary 

strategies with various benefits, see e.g., [233], [247]. As described in [233], a heterogenous 

population for example in terms of metabolism, can help the colony anticipate environmental 

fluctuations or survive antibiotics. Authors in [247] show how higher noise levels in gene 

expression can improve Darwinian fitness in yeast and even speed up genetic adaptation. 

On the other hand, noise is also considered a process against which cells intend to buffer, 

whether this is variation in protein concentration or environments [248]. The buffering results 

in widely observed mutational robustness, often referred to as canalization [249]. Particularly 

when fitness depends sharply on protein concentrations, low expression noise seems critical, 

explaining the typically quiet, observed expression distributions in this case [20]. In this paper, 

authors reason that this observation suggests evolution shapes promoter noise to favour 

robustness, as population fitness otherwise suffers from noise-driven deviations of protein 

copy numbers to suboptimal levels. However, in this chapter I will argue that stochastic 

variability can be the source of robustness, rather than the objective to be minimized. 

Essential for this claim is the expected memory feature in the population protein distribution, 

which is caused by expression noise. Simply put, a population where the average (stochastic) 

protein production is suboptimal given the mesotype, will improve (or deteriorate less) its 

point of departure amongst the most prolific survivors with every generation, compared to 

the situation without expression noise. This changes the protein distribution across the 

population in a non-trivial way. As the mesotype leaves an inherited, non-genetic imprint on 
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the population, this epigenetic mechanism can be considered a transgenerational feedback, 

different from other known epigenetic mechanisms in [40] and more along the lines of [41]. 

The important difference is that the selection takes place with respect to suboptimal genetic 

environments instead of the “tangible” environment. 

Box 5 Terminology in Chapter 4 

Term In this context Symbol 

Cell cycle 
time 

Fixed time step between division decision events 𝑇0 

Fitness Population fitness, reciprocal of doubling time 𝜔 

Relative 
fitness 

Population fitness scaled by the maximum fitness 
attainable in the model, set by the cycle time 

𝜔𝑟 

Protein 
concen-
tration 

Number of proteins inside the cell normalized by the 
mean expressed number of proteins, equivalent to 
normalized concentration as volume is constant here. 

𝑥 

Mesotype Progeny as function of protein concentration 𝑔(𝑥) 

Mesotypical 
inflection 
(MI) point 

Inflection point of mesotype function 𝑔, loosely the 
concentration ‘half-way’ between best and worst 
outcome in terms of progeny 

𝑐𝑖 

High/low 
protein 
state 

Discrete state where cells have higher/lower amounts 
of protein relative to the MI point at the moment 
before division. 

𝑓(𝑥) where 𝑥 = 
4𝑐𝑖/3 and 2𝑐𝑖/3 

right before 
division, 2𝑐𝑖/3 

and 0 afterwards 

Expression Added protein concentration during a cell cycle time. 
As concentration states are discrete, expression is 
described by a probability of state change following 
evaluation of a cumulative distribution function. 

𝐹𝑉(𝑥) or 
shorthand 𝐹(𝑥) 

Noise level Coefficient of variation associated with the expression 𝑉 

Mesotype-
preserving 
mutation 

Mutation that is represented in the model solely by a 
shift in 𝑐𝑖, such as the GAP deletions which shift the 
minimum Cdc42 threshold (MI-point) 

Mutation size 
Δ𝑐𝑖 

Epistasis 
generating 
function 

2nd  derivative of relative fitness w.r.t. the MI-point, 
whose sign represents positive (negative) epistasis for 
same (opposite) sign mesotype-preserving mutations. 

𝜂 

Growth 
factor 

Factor by which the population grows per generation 𝛾 

Transition 
matrix 

2-by-2 matrix containing all probabilities to maintain 
or switch protein states per cell cycle 

𝑀 

Sustainably 
viable 
region 

Region in concentration space outside which given 
enough time, any population eventually dies out 
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To illustrate the noise mechanics behind epistasis and the transgenerational feedback that 

influences evolvability, the following section (4.2) describes a model where fitness emerges 

solely from a simple mesotype (sharp concentration threshold) and noisy Cdc42 expression. In 

order to help the reader through the vocabulary used in this chapter, Box 5 describes some 

commonly used definitions. 

Once the familiar Cdc42 case has been described, the model is generalized to incorporate 

other mesotypes. This will prove sufficient to provide more insight into existing experimental 

bulk studies on epistasis. Section 4.3 will then treat the transgenerational feedback, 

quantifying this effect and generating concrete predictions on its relevance. For conciseness, 

the interested reader is referred to Appendix M for mathematical derivations. Finally, an 

experimental design for the validation of the feedback is expounded in 4.4, making use again 

of the well-studied yeast polarity network. 

 

4.2 Minimal model for epistasis 

 

4.2.1  “Cdc42/GAP” test example  

4.2.1.1 Model definitions 

The goal is to describe the epistasis of the GAPs in the Δbem1 accounting only for the 

absolute minimum number of processes in the cell. Therefore, the Cdc42 mesotype is 

reduced to only a sharp lower concentration boundary in order to successfully divide. This 

means that either the progeny of a cell is 0 or 2, depending on protein concentration (see also 

Figure 36). It is therefore attractive to only consider two protein concentration states, called 

low and high. These are always relative to the location of the threshold, which differs per 

genotype as in Chapter 3. 

Cell volume growth and cell cycle events are disregarded, reducing the life of a cell to only the 

division events. This also means that copy number and concentration can be used 

interchangeably, as volume is fixed. Every set time 𝑇0, every cell divides or dies based on the 

mesotype. The protein production during this time until division is stochastic, based on a 

sensible probability density function with coefficient of variation 𝑉, dubbed the noise level. 

Based on both theoretical11 and experimental arguments (considering 99% of observed 

coefficients of variation in yeast are smaller than 1 [229]), we will further assume 0 < 𝑉 < 1. 

                                                            
11 Fixing the cell cycle time in the context of Chapter 3 implies that the protein produced per cell cycle 
is a Coxian random variable [250]. This results from summation of unequal exponentially distributed 
random variables, generating a hypoexponential distribution (or Erlang, without degradation), with 
the number of exponentials also as a random variable (Poissonian number of bursts within a fixed 
time). Biologically, the latter implies the mRNA lifetime being notably smaller than the protein life time 
[189]. For the hypoexponential distribution coefficient of variation is known to be smaller than 1 [251]. 
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The model for the Cdc42 case is graphically depicted in Figure 36. Alternatively, the two-state 

model is mathematically represented by a transition matrix governing the probabilities to 

switch states. The entries of this 2-by-2 matrix are dependent on the probability distribution 

for protein generation and the mesotype. In matrix form, the two-state model reads: 

[
𝑓(2𝑐𝑖 3⁄ )

𝑓(0)
] = [

2(1 − 𝐹𝑉(2𝑐𝑖/3)) 2(1 − 𝐹𝑉(4𝑐𝑖/3))

0 0
] [
𝑓(2𝑐𝑖/3)

𝑓(0)
] = 𝑀𝐶𝑑𝑐42,𝑠𝑓 (4.1) 

where symbols are described in Box 5. 

At steady state, the population grows according to the largest eigenvalue 𝜆𝑚𝑎𝑥 of transition 

matrix 𝑀, which we can rewrite to fitness as: 

 𝜔 =
log2 𝜆𝑚𝑎𝑥

𝑇0
 (4.2) 

The relative fitness then becomes: 

 𝜔𝑟(𝑐𝑖) = 1 + log2(1 − 𝐹𝑉(2𝑐𝑖/3)) (4.3) 

 

 
Figure 36 Two state model for fitness reflecting yeast cells polarizing with success depending solely on 
Cdc42 concentration. Noisy expression during cell cycle time 𝑇0, combined with the simplified 
mesotypical rule for progeny depending on Cdc42 concentration yields fitness, as stochastic switching 
occurs between the low and high Cdc42 concentration state, with probabilities following from 
cumulative distribution function 𝐹, which is a function of noise level / coefficient of variation 𝑉. 
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4.2.1.2 Epistasis definitions 

The definition of choice for epistasis is relative multiplicative epistasis, which implies 

dependence of the relative fitness effect of a mutation on the genetic background. This is 

mathematically defined as [252]: 

 𝜖 = log10(
𝜔𝑟(𝑐1)

𝜔𝑟(𝑐4) ∏
𝜔𝑟(𝑐𝑖)
𝜔𝑟(𝑐4)

𝑖=2,3

) = log10 (
𝜔𝑟(𝑐4)𝜔𝑟(𝑐1)

𝜔𝑟(𝑐2)𝜔𝑟(𝑐3) 
) (4.4) 

which e.g., for our target GAP epistasis in the Δbem1 background means that 𝑐1 is the 

mesotypical inflection point of Cdc42 in the mutant Δbem1 Δbem3 Δbem2, 𝑐2 corresponds to 

Δbem1 Δbem2, 𝑐3 to Δbem1 Δbem3 and finally, 𝑐4 to Δbem1. From the doubling times in [24], 

the observed epistasis is -0.49.  

In this model, the most important mutations take into consideration mesotype-preserving 

mutations, i.e. those that cause a shift in concentration space of the mesotype (progeny 𝑔), 

so a shift in MI-point 𝑐𝑖. For the Cdc42 case, this includes GAP activity mutations (such as 

deletions), because we saw in Chapter 2 how the bem3 and bem2 deletions lowered the 

minimum [Cdc42] threshold to polarize. As concentration values such as 𝑐𝑖 are normalized to 

mean expression per cycle, which remains unchanged in this example as cycle time is fixed, 

deletion of GAPs invariably decreases the mesotypical inflection point. 

More generally, mesotype-preserving mutations include mutations that influence the copy 

number of the protein. Again, as 𝑐𝑖 is normalized to mean expression, when the latter 

changes 𝑐𝑖 changes accordingly (e.g., increased expression lowers 𝑐𝑖). Therefore, expression 

changes are always reflected in the MI-point, such as due to promoter or 5’UTR mutations, 

mRNA interactions, activity enhancers or suppressors. 

Indirectly, other mutations that change fitness but do not influence the protein of interest are 

also felt in 𝑐𝑖. As these mutations can only be generically incorporated into the model by a 

change in 𝑇0, the average expressed protein per cycle changes accordingly, subsequently 

shifting 𝑐𝑖. This class of generic fitness mutations will also be considered in section 4.2.1.7. An 

overview of the defined mutation types can be found in Figure 37. However, mutations that 

change the shape of 𝑔 as a whole (e.g., mutations that for example make the protein of 

interest completely redundant) are beyond the scope of this model. 

To show how epistasis is easily generated for mesotype-preserving mutations, let us consider 

the special case where no epistasis is present. In order to have no epistasis through the 

definition of 4.4, the fitness must be of the form: 

 𝜔𝑟(𝑐𝑖) = 𝑒
−𝛼𝑐𝑖 (4.5) 
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Figure 37 Graphical representation of mesotype-preserving and generic mutation definitions. 

 

Consequently, no epistasis implies that the slope of the log of the fitness is constant (as this is 

multiplicative, not additive epistasis). In that case, the second derivative of the log fitness is 

constant. Conversely, non-zero second derivatives of the log fitness show regions where 

mutations that shifts 𝑐𝑖 cause non-zero epistasis. This prompts the definition of an “epistasis 

generating function” 𝜂, as the second derivative of the log fitness: 

 𝜂(𝑐𝑖) ≡
𝜕2 log10𝜔𝑟(𝑐𝑖)

𝜕𝑐𝑖
2  (4.6) 

Subsequently, when the log fitness is contour-plotted as a function of inflection point 𝑐𝑖 and 

noise level 𝑉, the spacing between contours for constant 𝑉 shows in which regions of 

concentration space mutations harbouring epistasis can exist. As an example, a purely 

hypothetical case with log fitness contours as a function of noise level and mesotypical 

inflection point is plotted in Figure 38. The violet arrows denote mesotype-preserving 

mutations, that cause a constant translation in 𝑐𝑖 given a certain 𝑉, starting at various genetic 

backgrounds. 

When considering the log relative fitness contours across the dashed line, which is along a 

constant noise level, the mutations cause the same shift in log relative fitness, regardless of 

the starting point (the population moves up exactly one contour). Consequently, there should 

be no epistasis involved with these mutations, because its relative effect is always the same. 

Concordantly, the epistasis generating function (lower part of the figure) is constant at zero, 

corresponding to no possible epistasis. 
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Figure 38 Visualisation of epistasis by means of fitness landscape contours. Top: Contour plot of log 
relative fitness as function of concentration and the coefficient of variation, for a hypothetical (non-
biological) case. Violet arrows denote shifts in mesotypical inflection point 𝑐𝑖 and are of constant size 
for a given 𝑉, representing mutations from the dot at the arrow base to the point in state space where 
the arrow head is. Bottom: Second derivative of fitness with respect to inflection point along the 
dashed, dotted or dash-dotted lines of the top axis of the log relative fitness. Only the dashed line is 
always zero, not allowing any epistasis. Positive (negative) values of the second derivative imply 
positive (negative) epistasis between mutations that shift 𝑐𝑖 in the same direction. 

By contrast, the mutations along the dotted line have decreasing relative impact on fitness 

when the 𝑐𝑖 starting points are higher. Consequently, the genetic background matters for the 

mutational effect, and this is reflected in a non-zero value for the epistasis generating 

function 𝜂. The positive value of 𝜂 represents positive epistasis between mutations that shift 

𝑐𝑖 in the same direction. By the same token, the mutations along the dash-dotted line have 

increasing relative impact when the 𝑐𝑖 starting points are higher. Again, the genetic 

background matters for the mutational effect, and this is reflected in a negative value of 𝜂. 

This represents negative epistasis between mutations that shift 𝑐𝑖 in the same direction. 

 

4.2.1.3 GAP epistasis description is not dependent on expression noise distribution 

The two-state model that includes noisy Cdc42 expression described in Figure 36 is supposed 

to explain the epistasis in the GAPs, defined by equation 4.4. Using the fitness definition of 

equation 4.3, the goal is to approach the observed value of -0.49. However, the question is 

which noise distribution is most appropriate. 

Assuming for the noise level 𝑉 = 0.832 as measured from data used in Chapter 3, Figure 39 

shows common and less common choices of noise distributions fit at least 60% of the GAP 
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epistasis in a Δbem1 background (70% for more sensible production distributions). The 

insensitivity with regards to noise distribution suggests that epistasis is not generated by the 

presence of any distribution in particular, but by sufficient noise of any kind. Once the 

locations for the concentrations are fitted using the observed coefficient of variation, varying 

𝑉 greatly affects the epistasis that would have been observed (Figure 78 in Appendix K). This 

means the noise level is critical for the epistasis, but the exact way the noise is generated is 

not important. This motivates that for the remainder of the chapter we can safely alternate 

between a gamma (the more natural choice [189]) and log-normal distribution (more 

tractable mathematics), without much loss of generality. 

The important message is hence that this minimal model suffices to describe the observed 

GAP epistasis. Even the simplistic view of binning protein levels into two states does not 

adversely affect this outcome. Figure 40 compares the shape of the relative fitness of this 

model with that of the more advanced model of Chapter 3 (the blue line in Figure 25, where 

the minimum Cdc42 concentration to polarize equates to the mesotypical inflection point). 

While the fixed volume assumption does not allow 1:1 comparison of concentration 

thresholds, the qualitative match for quantities as epistasis is sufficient. The two-state model 

assumptions such as binning of protein concentrations do not notably cause fitness artefacts. 

This generates trust to proceed with this model, to derive other claims regarding the polarity 

system and ultimately, to suggest more general mechanistic lessons on epistasis, a tractable 

goal given the minimal nature of this model. 

 

 
Figure 39 Distribution type of expression noise is not important for describing GAP epistasis in a Δbem1 
background. Left vertical axis: epistasis explained for the GAPs in the Δbem1 background in the two-
state model when different Cdc42 production distributions are assumed (last column model 3 results), 
with coefficient of variation of 0.832 (as observed for Cdc42), except the triangular and uniform 
distribution (set to the maximum CV with positive support). Right vertical axis: fraction of GAP action 
for Bem3 (light blue) and Bem2 (dark blue) respectively. 
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Figure 40 Comparison of fitness curves as function of Cdc42 threshold location, for the models from 
chapter three (dashed blue line, top blue x-axis) and the two-state model of this chapter (black line, 
bottom x-axis), relative to mean expression. The curve of the chapter three model is equivalent to 
Figure 25, with the [Cdc42]min-axis normalized to match the end of the two-state model curve to allow 
a qualitative model comparison. The two-state model curve follows from 4.3 assuming a gamma 
distribution and the observed noise level 𝑉 = 0.832 for Cdc42. 

 

4.2.1.4 Noise can benefit steady state growth for the GAPs, not for Cdc42 

As seen from 4.3, the population remains viable as long as the mesotypical inflection point 𝑐𝑖 

is less than 1.5 times the median of protein production distribution 𝐹𝑉. Here we also see the 

downside of excess noise (high coefficient of variation 𝑉). In the worst case of a maximum 

difference between median and mean (assuming a unimodal production distribution) [253], 

the maximum threshold the population can withstand decays as: 

 𝑐𝑖,𝑙𝑖𝑚 =
3

2
−
3

2
𝑉√3/5 (4.7) 

However, for the log-normal distribution (a sensible choice for the protein production 

distribution), the deleterious effect is less severe than the maximum, namely: 

 𝑐𝑖,𝑙𝑖𝑚 =
3

2√1 + 𝑉2
 (4.8) 

An interesting note is that in a variation of this model reflecting noisy GAPs (still in the Δbem1 

background, see Figure 79 of Appendix L), the opposite occurs. There, the mesotype involves 

a sharp upper bound, and this changes the limiting concentration to (3/4) √1 + 𝑉2⁄  . In this 

case, noise is actually beneficial. Yet, the GAP coefficients of variation are so low (<0.15) [229] 

that the viable concentration region only expands with 1%, so no real advantage is taken from 

this situation. The retained potential is that a non-viable GAP genotype can be evolutionary 

rescued by an adaptation that simply increases the noise. This GAP case is in line with the 

statement in [247], that noise can sometimes increase mean fitness. 
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Still, this is contrary to the common opinion about noise, which is generally considered 

deleterious (e.g.,  [254]). Also, the idea (presented in [255]) that essential genes should have 

less noise can still hold, but can be extended. We also expect that toxic genes (for which too 

much gene product is deleterious) could have more noise than purely non-essential genes. 

 

4.2.1.5 Noise increases likelihood of negative epistasis mutants 

The larger the coefficient of variation, the larger also the region where epistasis may take 

place. This is exemplified by Figure 41, where the log relative fitness is contour-plotted for 

different mesotypical inflection points and noise levels (blue to green contours). As explained, 

the spacing between log doubling time contours illustrates whether epistasis is present. 

When the noise level increases, fitness contours disperse, leading to a larger region in 

concentration space with a significantly positive slope in log relative fitness. This is the region 

where epistasis is generated. 

As a measure of the width in the concentration ratio space for notable epistasis, we define 

𝑤𝑒: the difference between the maximally (or minimally) allowed mesotypical inflection point 

and the inflection point where the relative fitness is Δ𝜔𝑟 less than the maximum (of 1). In 

practice, the experimental precision for which doubling times can be measured sets Δ𝜔𝑟. 

 𝑤𝑒 ≝ 𝑐𝑖,𝑙𝑖𝑚 − 𝑐𝑖,𝜔𝑟=1−Δ𝜔𝑟 (4.9) 

For the Cdc42 case, and assuming the sensible log-normal distribution, we obtain: 

𝑤𝑒 = 𝑐𝑖,𝐹𝑉(2𝑐𝑖/3)=1/2 − 𝑐𝑖,𝜔𝑟=1−Δ𝜔𝑟 =
3 2⁄

√1 + 𝑉2
−
3

4
exp (𝑉√

𝜋

2
erf−1(1 − 21−Δ𝜔𝑟) − 𝑉2/2) 

Using the tanh approximation for erf [256] and assuming high precision measurements and 

small 𝑉 (usually true in yeast, 95% has 𝑉 ≤ 0.36 [229]), it is possible to expand to yield: 

 𝑤𝑒 =
3𝑉

4
√
𝜋

2
ln (

1

Δ𝜔𝑟 ln 2
) (4.10) 

So, the width in the observed fitness landscape in which negative epistasis can be found, 

scales mostly linearly with the amount of noise (𝑉 as a measure) and incidentally, is 

proportional to the log of the reciprocal of minimum relative fitness difference Δ𝜔𝑟 (e.g., 0.1) 

that can be measured. Analogously, for the GAP case, whose mesotype is subject to a sharp 

upper boundary, the width is quite similarly given by: 

 𝑤𝑒 =
3𝑉

8
√
𝜋

2
ln (

1 − Δ𝜔𝑟 ln 2

Δ𝜔𝑟 ln 2
) (4.11) 
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4.2.1.6 Protein expression noise as evolutionary capacitor 

When the population is outside the viable region so when the location of the sharp boundary 

is at 𝑐𝑖 > 𝑐𝑖,𝑙𝑖𝑚, noise gives the population an advantage compared to no noise. A simple 

example is when the population starts with very low protein concentrations (near zero). With 

noise, part of the population will be able to divide for another few rounds by chance, which is 

not possible without noise and 𝑐𝑖 > 3/2. Specifically, the part of the population surviving the 

first round is given by 1 − 𝐹(4𝑐𝑖/3), and every subsequent round a fraction 1 − 𝐹(2𝑐𝑖/3) of 

the remainder survives. A population starting out with size 𝑁0 will then have approximately 

the following number of generations to find a mutation that allows more durable survival: 

 2(1 − 𝐹(4𝑐𝑖/3))(2 − 2𝐹(2𝑐𝑖/3))
𝑛𝑔𝑒𝑛−1

≈ 1 𝑁0⁄  (4.12) 

 ⟹ 𝑛𝑔𝑒𝑛 =
log𝑁0 − log (

1 − 𝐹(2𝑐𝑖/3)
1 − 𝐹(4𝑐𝑖/3)

)

− log (2(1 − 𝐹(2𝑐𝑖/3)))
 (4.13) 

For example, assuming once again the log-normal distribution, and expanding to first order 

near the boundary 𝑐𝑖 = 𝑐𝑖.𝑙𝑖𝑚: 

 𝑛𝑔𝑒𝑛 ≈
𝑉√𝜋 8⁄ log𝑁0 − log 4

𝑐𝑖 𝑐𝑖,𝑙𝑖𝑚⁄ − 1
− 1 (4.14) 

After an initial bump (surviving the first round of division is the most difficult), the survival 

time increases logarithmically with the population size, linearly with noise level and is 

inversely proportional to the distance to the sustainable survival limit 𝑐𝑖 = 𝑐𝑖,𝑙𝑖𝑚. 

For the average 𝑉 = 0.22 [229] and a typical population size of a million, the population 

usually survives 2 generations even when 𝑐𝑖 = 1.7, and 4 to 5 for 𝑐𝑖 = 1.6. If the noise is 

relatively large, as for Cdc42, the amount of generations that will be survived becomes 11 

when 𝑐𝑖 = 1.7 and still 7 when 𝑐𝑖 = 2. As another (slightly less extreme) example, Figure 41 

contains a contour plot (red to yellow contours) which shows how many generations a 

population can survive given a certain 𝑐𝑖 and 𝑉, starting with a population size of 106, when 

assuming a gamma distribution for protein production. In the figure, the most favorable initial 

condition is used, to show the maximum number of generations that can be survived. 

As can be seen from Figure 41, high noise can allow growth for dozens of generations, well 

beyond the sustainable growth limit (purple line, bottom panel). This more than makes up for 

the deleterious dependency of the limit on the noise (as derived in 4.8). In Appendix L, Figure 

80 shows the same plot, but from the perspective of the GAPs (sharp upper boundary). 

Analogously, even if there are insufficient GAPs, the population survives for many 

generations, but the purple sustainable growth limit even favors more noise here. The 

epistasis generating functions are discussed in the next subsection. 
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Figure 41 Noise in Cdc42 expression limits the sustainable growth region, but extends unsustainable 
growth, as well as the region that harbours epistasis. Top: Two state model schematic summary (left) 
and mesotype (right) of the Cdc42 case. Middle: Contour plots of log relative fitness (blue to green) and 
number of generations a population of a million cells survives (red to yellow) as function of mesotypical 
inflection point of the sharp lower boundary in the fitness landscape, and the noise level (coefficient of 
variation), assuming a gamma protein expression distribution. The purple dotted line indicates the 
survival edge. The dashed black line denotes the line 𝑉 = 0.5, along which the plot in the bottom is 
valid. Bottom: Second derivative of log relative fitness with respect to mesotypical inflection point 
(along the dashed line of the top axis). Here, it is always negative for values of 𝑐𝑖 that support growth, 
allowing negative epistasis for mutations of the same sign. 

 

One might question how a population with heavily unfavorable initial conditions could arise 

with such an initial size, while clearly not being very fit (asymptotically going extinct). Yet, 

since yeast switches between diploid and haploid states, one possibility is not so fit haploids 

arising from a fit heterozygous diploid. After sporulation protein concentrations may be below 

par, which is a one-time hurdle that must be taken. Similarly, when in prolonged period of 

saturation, yeast starts to recycle its own proteins (see e.g., [257]), leaving low concentrations 

when new food is supplied. Noise is an easy solution to these one-time hurdles. 



Evolutionary roles of noise and transgenerational feedback  
 

127 

Moreover, in chapter three we have seen how the environment, such as not so rich media, 

can influence fitness. There, the ill Δbem1 profited immensely from slow growth conditions, 

allowing temporal coexistence with the WT, as the difference in fitness was heavily reduced. 

Especially from a heterozygous diploid, it is easy to see how ill haploids emerge that can grow 

to sufficient size when the growth conditions are suboptimal. 

The added role of noise shown here is that it lets the cells stall for time until the conditions 

change again, allowing survival of for example another 10 generation times. This delays the 

purifying selection of potentially lethal mutants. Ultimately, fitness valleys can be buffered to 

some extent this way, increasing the evolvability beyond the expected levels (or decreasing 

the population size one would have expected to be needed for certain evolutionary paths). 

The increased adaptability due to noise is sometimes overlooked in literature [254], 

presumably due to neglecting the main mechanism behind this beneficial noise effect. This 

will be explained further in section 4.3. This is also complementary to the positive effect of 

noise described in [247]. In that paper, a colony with noisier expression may significantly 

reduce its time to genetically adapt mean expression to e.g., new environments.  

 

4.2.1.7 Sharp lower mesotypical bound induces diminishing adaptive returns 

In anticipation of generalizing this model to general mesotypes, as done in the next 

subsection, it is already possible to preliminary relate the Cdc42/GAP case to 

phenomenological rules of epistasis encountered in literature. In addition to the epistasis 

across mesotype-preserving mutations, it is possible to consider generic mutations, that are 

known to influence cell cycle time 𝑇0. These thereby influence 𝜔 and indirectly 𝑐𝑖 due to the 

normalization of concentration to average protein production within 𝑇0. The combinations of 

mesotype preserving mutations and generic mutations yield the following scenario’s: 

• Two beneficial mutations, both shifting 𝑐𝑖, exhibit negative epistasis. 

The sign of 𝜂 shows this (see bottom plots of Figure 41 and Figure 80, Appendix L), when 

mutations occur in a direction where log𝜔(𝑐𝑖) contours bunch progressively closer together.  

• Two deleterious mutations, both shifting 𝑐𝑖, exhibit negative epistasis 

Similar to the previous point, without a sign change of the second derivative representing 𝜂, 

the deleterious effects compound to make each other worse, showing negative epistasis. 

• One beneficial and one deleterious mutation, both shifting 𝑐𝑖, exhibit positive epistasis 

Beneficial and deleterious mutations are in opposite direction in the log 𝜔(𝑐𝑖) plots. 

Therefore, moving across the beneficial direction (lower 𝑐𝑖), and then moving to the 

deleterious direction (higher 𝑐𝑖) effectively means a sign change in the derivative of log 𝜔(𝑐𝑖). 

In other words, the deleterious mutation is not so bad when the beneficial mutation has 

occurred earlier, showing positive epistasis. But as the amount of deleterious mutations 



 Chapter 4 
 

128 

typically exceeds the number of beneficial mutations [258], the previous two cases generating 

negative epistasis form the majority of cases, compared to the rarer case of positive epistasis. 

• One mutation that shifts 𝑐𝑖 and a generic mutation that affects 𝑇0 generate positive, 

negative and sign epistasis. 

This case is a bit more complicated. Suppose a general mutation 𝑋𝑚 where we can only know 

it has an effect on 𝑇0 (no precise fitness landscape is known), yielding cycle time 𝑇1. If it slows 

down the cycle 𝑇1 > 𝑇0, this is a deleterious mutation when 𝑐𝑖 ≪ 𝑐𝑖,𝑙𝑖𝑚. However, as 𝑐𝑖 

approaches 𝑐𝑖,𝑙𝑖𝑚, this becomes beneficial at some point as the slow cycle allows more 

protein production, hence decreasing 𝑐𝑖 again. This means that the mutation 𝑋𝑚 can show 

sign epistasis, so is beneficial or deleterious depending on genetic background (location of 𝑐𝑖). 

 

 

Figure 42 Epistasis exhibited in the Cdc42 (sharp lower boundary) case. Epistasis (times 100) of typical 
mesotype-preserving mutations and generic mutations, affecting 𝑇0 and subsequently fitness, in the 
sharp lower boundary case (𝑉 = 0.22). Positive (red) and negative (blue) epistasis can be seen, as well 
as sign epistasis of the generic mutation, marked by the green region at the left top. 

 

As many situations are imaginable, let us restrict ourselves to the most likely case during 

adaptation, where beneficial mutations are typically of a <5% size [259] and a typical value of 

𝑉 is 0.22 [229] (see Figure 42). The combination of beneficial mutations (top right quadrant) 

exhibits negative epistasis. The former is in line with the diminishing returns observation 

during adaptation [260], which is further discussed in the next subsection on the general 

landscape case. Interestingly, the opposite is true for the sharp upper boundaries, but 0 will 

show that the chance that this case will occur is rare compared to the “Cdc42” case. 
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4.2.2   General case 

4.2.2.1 Model definitions 

We can generalize the previous sharp mesotypes to a smooth, monotonous12 mesotype 

describing progeny as a continuous number between 0 and 2, as depicted in Figure 43. In this 

case, both the low or high protein state may be viable and must be considered. Assuming 

progeny is proportional to the protein concentration in a particular state/conformation/ 

complex resulting from a chemical reaction, a frequent description of this concentration is 

through the Hill equation. This leads to the definition of 𝑔 as the sigmoid: 

 𝑔(𝑥) = 𝑔0 +
2 − 𝑔0

1 + (𝑥 𝑐𝑖⁄ )−𝑘
 (4.15) 

The minimum progeny in the landscape, also the “shallowness”, is modulated by 𝑔0. The 

parameter |𝑘| denotes the cooperativity (of the chemical binding) and the “sharpness” of this 

boundary. Positive and negative values of 𝑘 reflect lower and upper boundaries respectively. 

In loose terms one could view polarization as an ultrasensitive (very high-cooperativity) 

process (a positive feedback), which is an intuitive way of understanding why a sharp lower 

boundary results at the concentration where the positive feedback dominates. This holds in 

any background, but the boundary shifts downward for WT compared to Δbem1. Since GAPs 

counteract this process, we have a sharp upper boundary there instead. For other common 

situations in the cell where proteins participate in a chemical reaction that influence fitness, 

but without positive feedback, we expect smoother curves, so lower |𝑘|. 

The low and high state values that are used heavily here are then respectively: 

 𝑔(2𝑐𝑖/3) = 𝑔0 +
2 − 𝑔0

1 + (2/3)−𝑘
 (4.16) 

 𝑔(4𝑐𝑖/3) = 𝑔0 +
2 − 𝑔0

1 + (4/3)−𝑘
 (4.17) 

Note that by e.g., letting 𝑘 → ∞ and 𝑔0 = 0 then 𝑔(2𝑐𝑖/3) = 0 and 𝑔(4𝑐𝑖/3) = 2 the Cdc42 

case is retrieved. The full state equation with the transition matrix now reads: 

[
𝑓 (
2𝑐𝑖
3
)

𝑓(0)

] =

[
 
 
 
 𝑔 (

4𝑐𝑖
3
)(1 − 𝐹𝑉 (

2𝑐𝑖
3
)) 𝑔 (

4𝑐𝑖
3
)(1 − 𝐹𝑉 (

4𝑐𝑖
3
))

𝑔 (
2𝑐𝑖
3
)(𝐹𝑉 (

2𝑐𝑖
3
)) 𝑔 (

2𝑐𝑖
3
)𝐹𝑉 (

4𝑐𝑖
3
)

]
 
 
 
 

[
𝑓 (
2𝑐𝑖
3
)

𝑓(0)

] = 𝑀�⃗⃗� (4.18) 

                                                            
12 For more generality, it is sometimes possible to divide more advanced landscapes into multiple 
regions with a single boundary. For example, a wide peak could be a region with a lower boundary 
plus one with an upper boundary, provided the progeny peak width as a function of concentration is 
large enough such that switching from below the peak to above it is not possible within a generation. 
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Figure 43 Two state model for fitness reflecting yeast cells polarizing with success depending solely on 
a general, simple mesotype function 𝑔. Noisy expression during cell cycle time 𝑇0, combined with the  
mesotypical rule yields fitness, as stochastic switching occurs between the low and high protein 
concentration state, with probabilities following from cumulative distribution function 𝐹, which is a 
function of noise level / coefficient of variation 𝑉. 

 

Using the model definitions in 4.15 and 4.18, the general fitness, with 𝜆𝑚𝑎𝑥 as the largest 

eigenvalue of the transition matrix, is given by: 

 𝜔 =
log2 𝜆𝑚𝑎𝑥

𝑇0
 (4.19) 

with 

 𝜆𝑚𝑎𝑥 = 𝑡𝑟(𝑀)/2 + √𝑡𝑟(𝑀)2/4 − det(𝑀) (4.20) 

and 

 det(𝑀) = 𝑔(4𝑐𝑖/3)𝑔(2𝑐𝑖/3)(𝐹(4𝑐𝑖/3) − 𝐹(2𝑐𝑖/3)) (4.21) 

 𝑡𝑟(𝑀) = 𝑔(4𝑐𝑖/3) − 𝑔(4𝑐𝑖/3)𝐹(2𝑐𝑖/3) + 𝑔(2𝑐𝑖/3)𝐹(4𝑐𝑖/3) (4.22) 

where 𝑡𝑟(𝑀) is the trace of matrix 𝑀. In the simple case of sharp boundaries |𝑘| ≫ 1, then: 
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 𝜆𝑚𝑎𝑥 ≈ 𝑡𝑟(𝑀) (4.23) 

which reduces to the Cdc42/GAP case when 𝑘 = ∞ or 𝑘 = −∞.  

For the coefficients of variation typically found in yeast and a sensible choice of the 

expression distribution, it can be shown (see Appendix M.4) that  

𝜆𝑚𝑎𝑥 ≈ max (𝑔(4𝑐𝑖/3)(1 − 𝐹(2𝑐𝑖/3)), 𝑔(2𝑐𝑖/3)𝐹(4𝑐𝑖/3)) (4.24) 

𝜔𝑟 ≈ log2max(𝑔(4𝑐𝑖/3)(1 − 𝐹(2𝑐𝑖/3)),   𝑔(2𝑐𝑖/3)𝐹(4𝑐𝑖/3),   1) (4.25) 

 

4.2.2.2 Noise shapes observed fitness curves, not the other way around 

As 𝜆𝑚𝑎𝑥 is the growth factor from generation to generation, 𝜆𝑚𝑎𝑥/2 can be interpreted as 

the mean progeny number across the population divided by that of WT (which is 2, the 

maximum within cycle time 𝑇0). This is a convenient in light of the relative fitness definition in 

[20] (to be called Keren fitness, where needed, to avoid confusion). In that paper, 81 fitness 

landscapes in yeast were probed as a function of protein expression level, by measuring the 

relative number of doublings of mutants with under- and overexpression of a gene, within the 

WT doubling time as a measure of fitness. Therefore, Keren fitness corresponds to 𝜆𝑚𝑎𝑥/2. 

Moreover, the Keren fitness landscapes were fitted rather ad hoc with a double sigmoid 

function. We can understand why this worked considering that our 𝜆𝑚𝑎𝑥/2 is equivalent to 

Keren fitness. Since both 𝑔 and essentially 𝐹 (or 1 − 𝐹) are sigmoids, 𝜆𝑚𝑎𝑥/2 becomes a 

double sigmoid. The Keren fitness landscape data can therefore easily be interpreted in terms 

of noisy expression and a simple mesotype by use of the two-state model. 

Therefore, the 81 genes from [20] are fitted using the two-state model to obtain a data set of 

inferred mesotypes. The expression levels measured in [20] are normalized to WT expression 

(using protein copy number data from [234]), to interpret the mesotypical inflection point as 

defined in Box 5. Genes whose fitness landscapes are considered are related to their own 

coefficients of variation from [229]. As not all genes considered in [20] are present in the data 

sets of [229] and [234], it was necessary to omit 22 genes from further analysis. 

Performing the fits for all two-state model parameters (see also 4.6.4) improved those in [20] 

in 88% of the cases (metric adjusted R-squared). For the remaining cases, the observed fitness 

landscapes were typically beyond the defined scope of this two-state model due to multiple 

inflection points (recall 4.2.2.1). Therefore, these genes are excluded from the subsequent 

analysis, ultimately leaving 50 genes for Figure 44. This is not a large data set, but sufficient to 

get an idea of typical mesotypes. As seen in the pie chart, lower boundaries are the 

predominant mesotype. Additionally, most boundaries are relatively shallow (1 < 𝑔0 ≤ 2), 

not exhibiting gene essentiality or toxicity within the measured expression range. 
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Figure 44 Abundance of lower boundaries in empirical mesotypes and absence of correlation between 
sharpness and noise. Left: pie chart for the distribution of 50 fitted mesotypes using the two-state 
model on experimental fitness landscapes from [20]. Right: scatter plot for fitted mesotypical boundary 
sharpness |𝑘| and noise levels from [229]. 

What is found regarding the relation between fitness landscapes and noise (right side of 

Figure 44) is not in line with the conclusions from [20]. There, it was noticed that when Keren 

fitness landscapes were sharp, these always corresponded with genes that have small 

expression noise. TheAuthors hypothesize that the fitness penalty for large noise in sharp 

landscapes causes selection for low noise in those genes. Yet, from the near-double sigmoid 

interpretation for the two-state model fitness described in this chapter, we can understand 

this correlation in a new light, which reverses the causality. 

When expression of a gene connected to a sharp mesotype is noisy, the sharpness is diluted 

and ultimately broadens the observed fitness landscape. In other words, in order to observe a 

sharp fitness landscape, both a sharp mesotype and low noise are required. Sharp fitness 

landscapes are therefore an automatic, epigenetic consequence of low noise, and not 

necessarily causing the low noise by selection on the fitness cost of noise. Indeed from Figure 

44, the correlation at the mesotype level between noisy genes and landscape sharpness is not 

significant (p-value 0.64, Spearman 𝜌). So, while a sharp fitness landscape requires a sharp 

mesotype, the latter is typically not accompanied by low noise, which would have been 

expected if fitness sharpness selects low noise. 

 

4.2.2.3 Noise can form the basis for global adaptive coupling 

The sign of the epistasis for the general model case is again reflected in the sign of 𝜂. In the 

case of sharp boundaries, there will always be a bunching of relative fitness contours (as seen 

in Figure 41 and Figure 80 for sharp lower and upper boundary respectively), showing a 

negative second derivative. As discussed in section 4.2.1.7, this implies negative epistasis (for 

mutations with the same sign in Δ𝑐𝑖) is generated for mutants falling into that region. 
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For shallower boundaries (𝑔0 > 1), the mesotype allows growth for any 𝑐𝑖, but in practice 

when the width of the probability distribution is much smaller than the total width of the 

mesotype space accessible through mutations. Then, there exists a region where the 

bunching of contours takes place between the two extreme viable states (𝜆𝑚𝑎𝑥 = 𝑔0 and 

𝜆𝑚𝑎𝑥 = 2), leading to a sign change in the second derivative of log(𝜔𝑟(𝑐𝑖)) (see the shallow 

upper boundary example of Figure 45). This creates a region where even for same sign 

mutations, positive epistasis can be generated (inside the region where 𝜂 > 0). 

 

 
 

 
Figure 45 Noise in shallow upper boundary mesotypes extends mutational regions that harbour 
epistasis. Top: Two state model schematic summary (left) and mesotype (right) of the shallow upper 
boundary case. Middle: Contour plot of log relative fitness (blue to green) as function of mesotypical 
inflection point of the shallow upper boundary in the fitness landscape, and the noise level (coefficient 
of variation), assuming a gamma protein expression distribution. The dashed black line denotes the line 
𝑉 = 0.5, along which the plot in the bottom is valid. Bottom: Second derivative of log relative fitness 
with respect to mesotypical inflection point (along the dashed line of the top axis). Here, it can be 
positive and negative, allowing both positive and negative epistasis for mutations of the same sign. 
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The region with a positive epistasis generating function is in addition to the region where 𝜂 <

0 (in Figure 45 when 𝑐𝑖 ≳ 0.6), where negative epistasis is generated for same-sign mutations 

maintaining the MI-point in this region. It is important to note that this region with 𝜂 < 0 

corresponds to the mutational region near the optimum (where fitness is relatively high). This 

remains true with a lower instead of an upper boundary. If we then assume that adaptations 

are usually refinements in fitness (typical fitness gain is <5% [259]), we expect the mutational 

region where 𝜂 < 0 to be most relevant for adaptations.  

Moreover, we can combine this relevance with the empirical observation that lower bounds 

are most commonly encountered (Figure 44). Then, we expect that shallow boundaries 

exhibit similar epistatic behaviour as deep boundaries (where 𝑔0 ≈ 0, which always has 𝜂 ≤

0) and more specifically as the Cdc42 case (lower bound case). This allows us to reformulate 

the conclusions from 4.2.1.7 on the prevalence of negative epistasis in more general terms. 

Firstly, same sign (in Δ𝑐𝑖) mesotype-preserving mutations generate negative epistasis, and 

opposite sign mutations generate positive epistasis. The former applies more frequently from 

combinatorial arguments, due to the abundance of deleterious mutations over beneficial 

mutations [258]. This is consistent with the documented abundance of negative over positive 

genetic interactions (335056 against 81384, based on the interaction data incorporated into 

SGD (www.yeastgenome.org) from www.thebiogrid.org, date of access 09-07-2019). 

Secondly, the coupling of a generic mutation to a mesotype-preserving mutation through 

cycle time 𝑇0 yields negative epistasis for mutations of the same sign for lower boundaries, 

the most abundant boundary type (as visualized by the exclusive negative epistasis in Figure 

46). This result is complementary with observations of diminishing returns among beneficial 

mutations, showing pervasive negative epistasis as in [260]. There, the authors pondered 

about a “biological basis for global coupling”. As explained, noise generating this epistasis can 

be a cause for the global negative epistatic coupling between unrelated modules. 

It is also important to mark the extent of the valid predictions from this model. For mesotype 

preserving mutations, we expect to see a correlation between epistatic observations and 

noise. Combining the same aforementioned interaction data set with protein expression data 

from [229] does not yield experimental validation of this correlation. Instead, the number of 

genetic interaction partners anti-correlates weakly with coefficient of variation (Kendall’s tau 

= -0.05). Possibly, the data set is biased by coarse mutations that do not simply shift 

mesotypes (e.g., not just activity and/or copy number changes). Therefore, these mutations 

cannot be used to validate the prediction which holds for mesotype-preserving mutations. 

Alternatively, mutations may be structurally unevenly distributed inside the inflection-point 

ranges, i.e., a larger epistatic width is not strongly correlated to more potential mutations. 

Now that the effects of noise have been determined, it is time to treat the mechanism that 

exploits the benefits of noise, particularly when noise is low. The mechanism is called 

transgenerational feedback, and will be the subject of the next section. 

http://www.yeastgenome.org/
http://www.thebiogrid.org/
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Figure 46 Diminishing returns for adaptive (beneficial) mutations in the prevalent shallow lower 
boundary mesotype case. Epistasis (times 100) of typical mesotype preserving mutations and generic 
mutations, affecting 𝑇0 and subsequently fitness, in the shallow lower boundary case (𝑉 = 0.22, 𝑔0 =
1.2) in the high fitness (𝜂 < 0) regime. Negative (blue) epistasis is the only form of epistasis present. 

 

4.3 Transgenerational feedback as a noise mechanism 

 

4.3.1   Transgenerational feedback effect on doubling times (Cdc42 case) 

When protein copy numbers are subject to noise, this leads to intragenerational differences 

amongst cells. However, also between generations (transgenerationally), the effects of noise 

persist. Because cells with the luck to have the optimal amount of protein are more likely to 

survive, there is a bias towards that protein concentration at every generation. Simply put, 

the surviving cells have a better starting point than one would naively expect. This is a 

continuous epigenetic adaptation to a genetic background (e.g., Cdc42 production in a bem1 

deletion), which shifts the protein distribution away from the production equilibrium. 

Consequently,  a “transgenerational feedback loop” is formed, a term coined in [41], although 

in the context of adaptation to environments (non-genetically). 

To illustrate the importance of this effect, suppose that a protein that is normally under 

selection has its population distribution reset after every division to the value it has without 

selection. Effectively, this entails that the system loses its memory. This is best illustrated in 

the most extreme case of a sharp boundary in viable protein concentrations, so consider the 

Cdc42 case (sharp lower boundary, see Figure 47). First, the population distribution without 

selection must be determined (the default value to which the population now gets reset, even 

under selection). This means that 𝑔 = 2 in 4.18, and that the transition matrix 𝑀 now reads: 
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Figure 47 Two state model for fitness reflecting yeast cells polarizing with success depending solely on 
Cdc42 concentration. Noisy expression during cell cycle time 𝑇0, combined with the simplified 
mesotypical rule for progeny depending on Cdc42 concentration yields fitness, as stochastic switching 
occurs between the low and high Cdc42 concentration state, with probabilities following from 
cumulative distribution function 𝐹, which is a function of noise level / coefficient of variation 𝑉. 
Absence of transgenerational feedback is represented by a mixing step of the population distribution 
across states right after division, to reset the state distribution to that in the absence of selection. 

 𝑀𝑛𝑠 = 2 [
(1 − 𝐹(2𝑐𝑖 3⁄ )) (1 − 𝐹(4𝑐𝑖/3))

𝐹(2𝑐𝑖/3) 𝐹(4𝑐𝑖/3)
] (4.26) 

which will have 2 (number of progeny) as the largest eigenvalue, and an eigenvector 

(representing the division across the high and low protein state) of: 

 𝑓𝑒𝑞,𝑛𝑠 = [1 − 𝐹(4𝑐𝑖/3), 𝐹(2𝑐𝑖/3)] (4.27) 

This is the protein distribution (across the two bins) to which the population reverts after 

every division in the memoryless system. Normally, the Cdc42 case has an eigenvalue of 𝑀 

during equilibrium growth given by 2 − 2𝐹(2𝑐𝑖/3), with corresponding eigenvector [1,0]. 

However, if after every division the proportions of the population distributions are reset to 

𝑓𝑒𝑞,𝑛𝑠, then 𝑓𝐶𝑑𝑐42 cannot equilibrate to [1,0], and instead the population is lost that reverts 

to the unfavourable low protein state. Concretely, provided that 1 − 𝐹(4𝑐𝑖/3) > 𝐹(2𝑐𝑖 3⁄ ), 

the relative fitness with this reset (−𝑡𝑔𝑓) changes to: 

 
𝜔𝑟,−𝑡𝑔𝑓 = log2 (

2(1 − 𝐹(4𝑐𝑖/3))

1 + 𝐹(2𝑐𝑖 3⁄ ) − 𝐹(4𝑐𝑖/3)
) 

(4.28) 
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The absence of feedback changes limiting concentration 𝑐𝑖,𝑙𝑖𝑚 for the sharp lower bound to: 

 𝐹(2𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓 3⁄ ) = 1 − 𝐹(4𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓/3) (4.29) 

The relative fitness ratio with this reset (−𝑡𝑔𝑓) and without (+𝑡𝑔𝑓, the normal situation) is: 

𝜔𝑟,−𝑡𝑔𝑓

𝜔𝑟,+𝑡𝑔𝑓
= 1 −

1

𝜔𝑟,+𝑡𝑔𝑓
log (

1 − 𝐹(4𝑐𝑖/3) + 𝐹(2𝑐𝑖/3)(𝐹(4𝑐𝑖/3) − 𝐹(2𝑐𝑖/3))

1 − 𝐹(4𝑐𝑖/3)
) (4.30) 

This ratio inside the logarithm is always larger than 1, as 𝐹(2𝑐𝑖/3) < 𝐹(4𝑐𝑖/3). Hence, the 

transgenerational feedback always mitigates part of the negative influence of the noise 

(suboptimal growth under conditions where survival is possible without noise), and becomes 

stronger when fitness decreases. 

Again, using the log-normal distribution as an example, the maximally allowed concentration 

value for the sharp lower boundary reduces to: 

 𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓 ≈ 𝑐𝑖,𝑙𝑖𝑚,+𝑡𝑔𝑓 √2⁄  (4.31) 

An important note must be made here. Without noise, there cannot be any feedback (the 

system is deterministic, and there can be no memory). Yet in practice, there cannot be a 

discontinuity from 𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓 = 𝑐𝑖,𝑙𝑖𝑚,+𝑡𝑔𝑓 as soon as there is minimal noise to 𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓 ≈

𝑐𝑖,𝑙𝑖𝑚,+𝑡𝑔𝑓 √2⁄ . In reality, population size is finite and a small amount of noise will usually not 

yield any cell leaving the high/low bin it would have been in without noise. In other words, 

memory encoded in the population has to be built-up slowly, and becomes more prominent 

with finite population size and higher noise. Therefore, for subsequent plots without 

transgenerational feedback, a typical population of 106 cells will be assumed, and results at 

very low 𝑉 are approximated to have continuity for 𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓 as a function of noise level. 

 

4.3.2   Transgenerational feedback triples epistatic region (Cdc42 case) 

If we assume again the log-normal distribution, we can derive that the fitness shift in absence 

of transgenerational feedback as (assuming small (say 0.2), but not very small (<0.05) 𝑉): 

 
𝜔𝑟,−𝑡𝑔𝑓
𝜔𝑟,+𝑡𝑔𝑓

≈ 1 −
1

𝜔𝑟,+𝑡𝑔𝑓
(

𝑐𝑖
𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓

)

3 𝑉⁄

 (4.32) 

As expected, at small 𝑐𝑖 the transgenerational feedback has small effects. Further down the 

concentration space and since without feedback, 𝑐𝑖 < √2, smaller noise increases the 

sharpness with which 𝜔𝑟,−𝑡𝑔𝑓 rises as a function of 𝑐𝑖, decreasing the width of the epistatic 

region. Inversely, the presence of transgenerational feedback, particularly at low noise but 
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effectively at any level, widens the viable expression space and dampens sharp fitness 

features even further than noise alone does. Furthermore, it can be shown that to first 

approximation (for small noise), the epistatic width becomes: 

 𝑤𝑒 ≈
𝑉

4
√2 ln (

1

Δ𝜔𝑟
) (4.33) 

Compared to the case with transgenerational feedback (the regular situation, (4.10)), this 

roughly equates to a 65% loss. 

 

4.3.3   Transgenerational feedback promotes evolutionary capacitance (Cdc42 case) 

Additionally, the transgenerational feedback also affects the always advantageous property of 

noise, namely the ability to survive for a few generations under conditions where the 

population is normally unviable. For the Cdc42 case, the equation for number of survivable 

generations (4.13, +𝑡𝑔𝑓) turns 𝑛𝑔𝑒𝑛,−𝑡𝑔𝑓 to: 

log𝑁0 − log (
1 − 𝐹(2𝑐𝑖 3⁄ )
1 − 𝐹(4𝑐𝑖/3)

) + log (
1 − 𝐹(4𝑐𝑖/3) − 𝐹(2𝑐𝑖 3⁄ )(𝐹(4𝑐𝑖/3) − 𝐹(2𝑐𝑖 3⁄ ))

1 − 𝐹(4𝑐𝑖/3)
)

log (
1

1 − 𝐹(2𝑐𝑖 3⁄ )
) − log 2 + log (

1 − 𝐹(4𝑐𝑖/3) − 𝐹(2𝑐𝑖 3⁄ )(𝐹(4𝑐𝑖/3) − 𝐹(2𝑐𝑖 3⁄ ))

1 − 𝐹(4𝑐𝑖/3)
)

 (4.34) 

This looks like the case with feedback (4.13), only with the same term added in the numerator 

and denominator. Since 1 − 𝐹(4𝑐𝑖 3⁄ ) − 𝐹(2𝑐𝑖 3⁄ )(𝐹(4𝑐𝑖 3⁄ ) − 𝐹(2𝑐𝑖 3⁄ )) >  1 − 𝐹(4𝑐𝑖/3), 

absence of transgenerational feedback decreases the number of generations survived 

whenever it is larger than 1. For the log-normal case: 

𝑛𝑔𝑒𝑛,−𝑡𝑔𝑓 =

log𝑁0 − log(
1 − 𝐹 (

2𝑐𝑖
3
)

1 − 𝐹 (
4𝑐𝑖
3
)
) + log (1 + (2

√
8
𝜋𝑉2 − 1)(𝐹 (

2𝑐𝑖
3
))

2

)

log(
1

1 − 𝐹 (
2𝑐𝑖
3
)
) − log 2 + log (1 + (2

√
8
𝜋𝑉2 − 1)(𝐹 (

2𝑐𝑖
3
))

2

)

 (4.35) 

Again, the feedback effect is strongest when noise is low, but is in principle always in effect. 

Figure 48 demonstrates the effect of the (absence of) transgenerational feedback. As in 

Figure 41, the blue to green contours denote the log fitness, while the red to yellow show the 

number of survivable generations (with optimal initial condition, contrary to equation above). 

The opaque lines show the case without feedback, the transparent lines are the same as in 

Figure 41, the normal situation with feedback. As derived, we see feedback improves the 

purple survival edge to allow more growth, and where growth is allowed in both cases, the 
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effect of feedback is never negative. Also, the number of generations the population can 

survive improves sharply, e.g., a factor of 3.5 for Cdc42’s 𝑉 = 0.832 at three times the 

sustainable survival limit without feedback. 

In terms of epistasis, the plot indeed bunches the contours. This is in line with the reduced 

predicted epistatic width of the previous subsection. In terms of the epistasis sign, nothing 

changes. Same sign mutations (in MI-point shifts) still generate only negative epistasis.  

 

 

  

Figure 48 Absence of transgenerational feedback in the Cdc42 case is deleterious for sustainable and 
unsustainable growth. Top: Two state model schematic summary (left) and mesotype (right) of the 
Cdc42 case, without transgenerational feedback. Middle: Contour plot of log relative fitness (blue to 
green) and number of generations a population of a million cells survives (red to yellow) as function of 
mesotypical inflection point of the sharp lower boundary in the fitness landscape, and the noise level 
(coefficient of variation), assuming a gamma protein expression distribution, with transgenerational 
feedback (transparent) and without (opaque). The purple dotted line indicates the survival edge. The 
dashed black line denotes the line 𝑉 = 0.5, along which the plot in the bottom is valid. Bottom: Second 
derivative of log relative fitness with respect to mesotypical inflection point (along the dashed line of 
the top axis). Here, it is always negative for values of 𝑐𝑖 that support growth, allowing negative 
epistasis for mutations of the same sign. 
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In Appendix L, Figure 81 shows an analogous plot for the sharp upper boundary case 

(applicable to the GAPs), yielding similar conclusions. Again, the transgenerational feedback 

effect is never negative and the survivable regime expands compared to the case without 

feedback. Epistasis signs remain unchanged. 

 

4.3.4   Transgenerational feedback (general case) 

After the sharp boundary examples connected to Cdc42 and the GAPs in the Δbem1, the 

mesotypes are again generalized, as graphically depicted in Figure 49. When considering the 

general mesotypical landscape case, it is possible to derive that: 

𝜔𝑟,−𝑡𝑔𝑓 = log2 (
𝑔(4𝑐𝑖 3⁄ )(1 − 𝐹(4𝑐𝑖 3⁄ )) + 𝑔(2𝑐𝑖 3⁄ )𝐹(2𝑐𝑖 3⁄ )

1 − 𝐹(4𝑐𝑖 3⁄ ) + 𝐹(2𝑐𝑖 3⁄ )
) (4.36) 

It can be proven (Appendix M.4.4) that the fitness value in the general case without feedback 

is never higher than with the feedback. Additionally, when outside the sustainable growth 

zone, the number of generations that can be survived is never larger without feedback. 

Consequently, the transgenerational feedback is never deleterious. 

 
Figure 49 Two state model for fitness reflecting yeast cells polarizing with success depending solely on 
general, simple mesotype function 𝑔. Noisy expression during cell cycle time 𝑇0, combined with the 
mesotype mesotypical rule yields fitness, as stochastic switching occurs between the low and high 
protein concentration state, with probabilities following from cumulative distribution function 𝐹, which 
is a function of noise level/ coefficient of variation 𝑉. Moreover, absence of transgenerational feedback 
is represented by a mixing step of the population distribution across states after division but prior to 
expression, to reset the state distribution to that in the absence of selection. 
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Examples of the transgenerational feedback were depicted in Figure 48 and Figure 81, for 

sharp boundaries. As an example of a more general mesotype, a shallow upper boundary is 

considered in Figure 50. The transgenerational feedback becomes less pronounced, to the 

limit of no effect when the fitness landscape is flat. This can be seen from 4.36, as when 

𝑔(4𝑐𝑖/3) ≈ 𝑔(2𝑐𝑖/3), then 𝜔𝑟,−𝑡𝑔𝑓 = 𝜔𝑟,+𝑡𝑔𝑓 = log2 𝑔(4𝑐𝑟/3). Additionally, high levels of 

noise neutralize the effect of the transgenerational feedback, again showing that the 

feedback is most useful when noise is low. With regards to possibilities for epistasis, in 

absence of feedback the total epistatic region is this time larger. 

 

 

  

 
Figure 50 Absence of transgenerational feedback in the general case is deleterious. Top left: Two state 
model schematic summary (left) and mesotype (right) of shallow lower boundary case, without 
transgenerational feedback. Middle: Contour plot of log relative fitness (blue to green) as function of 
mesotypical inflection point of the sharp upper boundary in the fitness landscape, and the noise level 
(coefficient of variation), assuming a gamma protein expression distribution, with transgenerational 
feedback (transparent) and without (opaque). The dashed black line denotes the line 𝑉 = 0.5, along 
which the plot in the bottom is valid. Bottom: Second derivative of log relative fitness with respect to 
mesotypical inflection point (along the dashed line of the top axis). Here, it can be positive and 
negative, allowing both positive and negative epistasis for mutations of the same sign. 
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4.3.5   Transgenerational feedback promotes evolvability of mainly essential genes 

After the theory, it is time to determine how often transgenerational feedback may affect the 

evolvability of genes in practice. To this extent, we return to the two-state model fit on the 

genes from [20] as performed in the previous section. The feedback effect is then measured 

in terms of the size of the fitness effect with and without transgenerational feedback. As this 

depends on expression level of the gene, we consider mutations ranging from deletion or 

silencing (a mutation that has a large target size) to duplication (commonly found in 

adaptations during experimental evolution, e.g., with self-diploidization [261]). Another 

assumption is that other mutations also often encountered (synonymous and promoter 

mutations [260]) will not affect activity or expression beyond this range either. The relevant 

evolutionary range that is most often explored is then from zero to twice WT expression. 

We consider a sizeable fitness decrease in absence of transgenerational feedback as >5%, as 

from experimental evolution, this seems a typical fitness size of beneficial mutations [259]. 

Absence of feedback renders these mutations in that regime of expression inaccessible, 

influencing the evolvability of that gene. Figure 51 shows how large the region in expression 

space is that is affected by more than 5% in fitness due to transgenerational feedback. 

If we define affected genes as genes whose expression space diminishes by >5%, these occurs 

in 12 out of the 50 genes, and in 11 out of the 25 essential genes. This means that around 

25% to 60% (95% credible interval is 26%-63%, see section 4.6.4) of the essential genes are 

expected to be affected in their accessible evolutionary space by at least 5% (and 15% to 50% 

of the essential genes at least 10%). 

 

 
Figure 51 Transgenerational feedback contributes mostly to essential genes. Histogram of the 
predicted feedback effect for 50 genes whose fitness landscapes in [20] are fitted here using the two-
state model. The horizontal axis shows for how much of the expression levels between gene deletion 
and duplication (the easily accessible expression space by mutations), the fitness is negatively affected 
by >5% in absence of the feedback. Blue bars represent non-essential genes, green essential genes. 
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For non-essential genes, transgenerational feedback is far less influential, affecting <17% of 

the genes. If we correct for the bias in the data for essential genes (in yeast, around 20% is 

essential [59]), evolvability of 8% to 25% of all genes in total should be significantly affected 

by transgenerational feedback. 

 

4.4 Experimental design for transgenerational feedback 

 

The previous section establishes that transgenerational feedback is an important noise 

mechanism, potentially responsible for expanding the evolvability of 25% to 60% of the 

essential genes. However, it has never been shown explicitly. For this purpose, a system is 

necessary where the mesotype can be accurately determined from molecular mechanisms, as 

is the case in budding yeast polarity. Yet, in experiments it is not possible to disable the 

transgenerational feedback in the artificial way as was mathematically done in our model. The 

most convincing way to see the transgenerational feedback is through a population protein 

distribution where the memory of the mesotype is encoded. 

For this purpose, we return to the model from Chapter three, that was able to generate these 

distributions (the two-state model only had two bins). Unfortunately, even in the most 

extreme Cdc42 case (sharp lower boundary) for the ill Δbem1, the difference between protein 

under selection or not under selection are subtle, as they are obscured by other effects, see 

Figure 52. Most notably, ill cells tend to get large, which generally correlates copy number 

with volume, and the asynchrony of the cells (supposing they are not synchronized before 

measurement) also obscures the appearance of the effect in the observed protein 

distribution, although sizeable right at G1. 

Therefore, there is a clear trade-off between proposing single-cell and bulk experiments. If 

protein distributions are acquired through careful analysis under the microscope, one cell at a 

time, one can correct for volume differences (and get concentrations, which determine the 

thresholds) and asynchronies. On the other hand, it is easier to get the amount of data 

needed to obtain the statistical power to draw conclusion through bulk studies, likely a flow 

cytometry experiment with fluorescent proteins. However,  volumes cannot be reliably 

determined from flow cytometry as yeast falls into the Mie scattering domain [262], [263]. 

Additionally, the chemical manner to synchronize cells in a bulk fashion is likely to add 

artefacts to the data as well. Still, the subsequent analysis shows that it should be possible to 

measure the transgenerational effect combining the two approaches. 

 

4.4.1   Preliminary assay 

To obtain a first glimpse of this effect of selection on Cdc42 distributions, we can turn to the 

flow cytometer experiment performed in section 2.2. This experiment is further discussed in 

Appendix N. The idea is to compare the green (sfGFP) channel, which corresponds to Cdc42, 
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to the red channel which corresponds to miscellaneous auto-fluorescent proteins which are 

not under selection. Admittedly, this is not a cleanest or accurate assay, but a motivation for 

the pursuit of the more comprehensive experimental designs following in the next subsection. 

In particular for the Δbem1 at low inducer concentrations (which is nearly lethal), part of the 

population will profit from the fat right tail in the noisy distribution (see Figure 59) generated 

by the Gal promoter. In this background, lucky cells become overrepresented in the data, and 

the typical scaling of protein abundance and volume becomes less pronounced. This bias 

should vanish at high expressions with healthier cells. Conversely, this effect should be 

minimal in WT, as it has a broader range of healthy copy numbers than Δbem1 (recall Figure 

16).  

 

 
Figure 52 Concentration distributions for Cdc42 as simulated from the model of Chapter three, as a 
function of doubling time within a Δbem1 background relative to the fastest possible (indicated by the 
color bar). 

 

What is observed (see Table 9) is less cross-correlation between the green and red channels 

than expected (based on volume effects between the pure WT with regular Cdc42) at low 

levels of Cdc42, particularly for the Δbem1 background. An explanation is that there are more 

smaller cells that have high Cdc42 copy numbers than expected, benefitting from the high 

expression tail which leads to a bias in survival of these cells. It is also stronger for the less 

healthy Δbem1 than for the Δbem1 Δbem3. This suggests selection on Cdc42 copy number for 

survival. This effect indeed vanishes when the induced expression of Cdc42 (in green) is so 

high that cells become fit, which results in a largely identical correlation between colors at 

high inducer concentration. These effects on the Cdc42 distributions provide some indication 

that Cdc42 influences fitness and vice versa, through a feedback loop. 
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Table 9 Observed correlation coefficients (minus the correlation in the pure WT control (YWKD062a,b,c) 
of GAL1pr-sfGFP-CDC42SW expression, for a WT (YWKD065a), Δbem1 (YWKD069a, b, c combined) and 
Δbem1 Δbem3 (YWKD070a, b ,c combined) background, and the pure WT control (YWKD062,a,b,c 
combined), for the green and red channel (the approximate standard error in parentheses), at different 
inducer concentration (due to evaporation uncertainty at least 0.05% galactose, 0.15%, 0.2% galactose 
and 2%). Values are the weighted average of mentioned biological replicates that yielded >1000 points. 

                                               
Background 

Lower bound 
Inducer concentration 

WT Δbem1 Δbem1 Δbem3 

0.05% Galactose -0.38 (0.019) -0.53 (0.024) -0.49 (0.036) 
0.15% Galactose -0.27 (0.016) -0.53 (0.023) -0.41 (0.021) 
0.2% Galactose -0.18 (0.019) -0.45 (0.018) -0.26 (0.020) 
2% Galactose 0.018 (0.014) -0.064 (0.014) 0.0097 (0.015) 

 

4.4.2   Simple assay design 

Motivated by the preliminary results, we proceed to the new design. In chapter two, we 

completed a functional budding yeast Cdc42 probe, which still had some artefacts due to 

turnover issues of the fluorophore. Assuming these issues have been mitigated using the 

fluorophore mNeongreen [188], the population distribution of the sandwich fusion of Cdc42 

with the fluorophore, which is under selection, must be compared to a protein not under 

selection to see the effects of selection. The sharp mesotype landscape leaves its imprint in 

the former, but not the latter. Moreover, this situation must be compared to the situation 

where selection is very weak as the fitness landscape is locally nearly flat, to exclude the 

effect of mere noise without memory. This suggests an experiment with the following strains: 

• Strain 1: Δbem1 pCDC42-CDC42SW-mNeongreen, pCDC42-mCherry @ HO-locus 

• Strain 2: Δbem1 Δbem3 pCDC42-CDC42SW-mNeongreen, pCDC42-mCherry @ HO-locus 

The mCherry can be inserted at any neutral location, like the HO-locus [264]. Strain 1 and 2 

are used to compare distributions of proteins under selection and not under selection, with a 

sharp or flat fitness landscape. We expect the variance (and subsequently, the coefficient of 

variation) of the Cdc42 distribution under sharp selection to decrease, as the left tail is eroded 

away. The ratio of coefficient of variation of Cdc42 and an unselected protein should be 

clearly smaller than 1, but approach 1 when the fitness landscape flattens (strain 2). 

Preferably, all fluorophores have the same promoter, although this may cause some strain 

construction difficulties due to large homologies. Also including the ribosome binding site, we 

expect this to equalize production of the different fluorophores [205]. An alternative is a 

cistronic design of comparable strength and noise level, as done in [265]. That being said, 

some deviations of the average expression of unselected protein from the Cdc42 expression is 

not a big problem, because of the use of a rank correlation coefficient, as long as the 

noisiness is well macthed. Most critical for the feedback is the noisiness. In addition, it is 
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important to note that mCherry has a long protein lifetime (~24h) [266], [267], which is 

convenient since short lifetimes can randomize the distributions, nullifying the feedback. 

Finally, we remove the C-term from Cdc42, which influences mRNA localization [87], to have 

more comparable circumstances for production as with mCherry. 

If we measure fluorescence of single cells under the microscope and perform image analysis 

on those, we can determine when cells have just passed the polarity threshold. At this point, 

erosion of the left tail is maximal. This allows the completion of the first part of the proof for 

transgenerational feedback, namely that selection takes place at division. Since we can match 

copy number (proportional to intensity) to volume (assuming spherical cells), we can 

determine concentrations. However, also in the case of merely counting copy numbers, the 

effect is clear and reliably significant when measuring on the order of 100 cells, which is 

feasible even without automated tools for analysis (see Figure 53). 

The second (and final) step is proving the selection has a lasting effect on the population as a 

whole. Therefore, the same erosion must be shown for asynchronous cells as well. In the flow 

cytometer, we expect to see significant erosion at a few thousand analyzed cells (see Figure 

54). This is very well feasible as well (typically one gets on the order of 10000 cells). Obtaining 

concentrations is not particularly beneficial and also not easy to obtain. 

As an indication of feasibility, the concentration and copy number distributions of Figure 53 at 

100 cells and of Figure 54 at 10000 cells are plotted in Figure 55 and Figure 56. While for 

combining measurements, it is convenient to turn a distribution into a single metric, these 

plots provide some insights in the ‘visual’ distance between selection and no selection. 

Inevitably, some instrument / protocol-related obscuring factors may occur, which should be 

weak enough to not overshadow the simulated predictions. 

 

4.4.3   More advanced assay design 

Supposing we are not satisfied by the results of the previous assay, a further confirmation is 

to see the correlation between the two colors (between selection and no selection). As we 

also need to establish what the correlation between two unrelated proteins normally is, the 

strain design is more complex: 

• Strain 1: Δbem1 pCDC42-CDC42SW-mNeongreen, pCDC42-mCherry @HO locus 

• Strain 2: Δbem1 pCDC42-CDC42 pCDC42-mNeongreen pCDC42-mCherry, @HO locus 

• Strain 3: Δbem1 Δbem3 pCDC42-CDC42SW-mNeongreen pCDC42-mCherry, @HO locus 

• Strain 4: Δbem1 Δbem3 pCDC42-CDC42 pCDC42-mNeongreen pCDC42-mCherry, @HO 

locus 

Strain 1 is used to correlate colors from a distribution under selection and not under 

selection. To know what a normal correlation is (due to effects as from volume correlations), 

this will have to be statistically different from the correlation found when comparing two 
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proteins not under selection, which is the case in strain 2. In both cases, any correlation is 

expected to vanish when the strains become fit (transgenerational feedback works best when 

the strain is ill), which is the case in strains 3 and 4.  

 

 

Figure 53 Feasibility of discriminating transgenerational feedback with single cell microscopy using 
100-1000 cells. Plotted is the expected ratio of coefficients of variation at the end of G1, as a function 
of number of analyzed cells, with bootstrapped (10000 samples) confidence intervals, simulated from 
the model from chapter 3. Green and blue are for Cdc42 and an unselected protein copy number, 
purple and orange for concentrations. 

 

Figure 54 Feasibility of discriminating transgenerational feedback with flow cytometry using 10000 
cells. Plotted is the expected ratio of coefficients of variation of asynchronous cells, as a function of 
number of analyzed cells, with bootstrapped (10000 samples) confidence intervals, simulated from the 
model from chapter 3. Green and blue are for Cdc42 and an unselected protein copy number, purple 
and orange for concentrations. 
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Figure 55 Example of simulated concentration distributions, processed by Matlab’s kernel smoothing 
density estimator ksdensity, at the end of G1, for 100 cells. 

 

 
Figure 56 Example of simulated copy number distributions, processed by Matlab’s kernel smoothing 
density estimator ksdensity, of 10000 asynchronous cells. 

 

From Figure 52, we may think that correlating the left tail of the distribution magnifies the 

differences in correlations. However, with the typical flow cytometry data size of 104, 

excluding too much data means losing too much statistical power. We would not be able to 

prove anymore that due to a fitness barrier, Cdc42 in the Δbem1 background is correlated 

less to a protein not under selection, than to be expected when comparing two proteins that 

are not under selection. This is what would verify the claim that fitness leaves a detectable 
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memory effect in the population protein distribution, which is reduced when the fitness 

landscape flattens, as in the Δbem1 Δbem3, demonstrating transgenerational feedback. 

As seen from Figure 57, including at least the lower half of the data may generate a 

statistically significant difference in correlation between Cdc42(selected)/unselected and 

unselected/unselected proteins. Cdc42 and the unselected protein correlate more when 

including high copy numbers, as these typically correspond to high volumes. Still, a small 

difference is likely to be measured. For cells where the volume distribution is much smaller 

(fit cells), there should be no detectable correlations, showing that the feedback vanishes for 

a flat mesotype, and that noise alone does not generate correlations. 

 

 

 

Figure 57 Flow cytometry data does not benefit from discarding quantiles for demonstrating 
transgenerational feedback. Spearman rank cross correlation of protein copy number as simulated 
from the growth model of Chapter three, for Δbem1 Δbem3 and Δbem1 between Cdc42 (under 
selection) and an unselected protein or between two unselected proteins. 95% confidence intervals are 
retrieved through bootstrapping (1000 samples). This is plotted as a function of quantile of the flow 
cytometry data (10000 points in total) used. 
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4.5 Discussion 

In the previous chapter, we have seen that even simple mesotypes can amount to elaborate 

phenotypes, as exemplified by the noisy protein Cdc42 for polarizing budding yeast. However, 

the model used to demonstrate this still contained various details that are not crucial for the 

description of e.g., the GAP epistasis in the Δbem1. Therefore, the goal for this chapter has 

been to dive into the fundamental reasons for non-trivial phenotype generation from 

relatively simple geno-/mesotypes. Ultimately, this is crucial to gain an understanding of the 

general genotype-to-phenotype map, and the rules of evolution, which couple phenotype 

back to genotype (within a certain environment). 

A minimalistic, two-state model has been constructed, without any cell cycle and cell growth 

details. The only features are stochastic production of protein per generation, and a simple 

sigmoidal mesotype curve determining progeny after every generation depending on the 

current protein copy number. Only two protein number bins exist; low and high. While 

seemingly simplistic, this model captures experimental observations such as the GAP epistasis 

in the Δbem1 and observed fitness landscape shapes. Importantly, it provided the analytical 

tractability to illustrate the important concepts from cellular to population dynamics. 

Concretely, the role of noise and its intrinsically active mechanism surfaced, namely protein 

expression noise generating a process called transgenerational feedback. 

Noise is typically considered deleterious (e.g.,  [254]) or something that may be selected 

against (e.g., [255]). This model allowed the quantification of its effects, which were far from 

predominantly negative. The following quantifiable consequences were observed 

(conclusions in bold, hypotheses or claims in italic): 

• Noise limits the sustainably viable protein expression space if the mesotype has a sharp 

lower boundary (e.g., Cdc42 in a Δbem1), which is typically associated with an essential 

gene (although much more pronounced in absence of the transgenerational feedback 

discussed further on). Conversely, it expands the sustainably viable protein space if the 

mesotype has a sharp upper boundary (e.g., any GAP in a Δbem1), which is typically 

associated with a non-essential gene. 

Interestingly, it means that high noise, even at steady state growth, can be selected for and 

forms a good short-term evolutionary solution. While high noise and narrow landscapes are 

not encountered in the sample of [268], trajectories are imaginable where increasing the 

noise of a protein (which would face a sharp upper boundary) has a larger target size (a 

simpler solution) than finding the mutation to precisely get the right expression level. On the 

long-term the latter mutation will be found, ultimately reverting the noise increase 

thereafter. This trajectory still accommodates the observation of [268], which states that 

fitness costs in sharp fitness landscapes cause selection for lower noise, motivating the claim: 

Increasing expression noise can provide a convenient short-term solution for adaptation. 
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• Noise allows the temporal survival of a colony outside the protein expression range 

where the colony is sustainably viable (the more noise the better). This can be sizeable, 

for example doubling the temporary survivable region during 15 generations for Cdc42 

in a Δbem1 colony of size 𝟏𝟎𝟔. 

The notion of an optimal genotype is very relative. Other circumstances, such as an initial 

condition (e.g., does the cell start as a spore, from quiescence or from a log-phase ancestor) 

and the environment determine how well the cell is equipped for fast growth. Noise is 

important to buffer against invariably changing circumstances, which can alter at a faster 

pace than that genomic adaptation can occur. Noise acts a temporary buffer, for a number of 

generations that can be high enough to hold on until more permanent genomic changes arise. 

This buffering shares some similarities to bet-hedging [269], where a population sacrifices 

fitness under physiological conditions to improve its odds during stress. However, the 

previous discussion point showed such a trade-off does not have to exist. Moreover, as 

explained further on in this discussion, the added role of memory is essential, such as in bet 

hedging in Bacillus subtilis where the variable but heritable phosphorylation state of Spo0A 

diversifies sporulation fates in the population [270]. 

With the previous paragraph in mind and because noise is both the buffer and the cause of 

phenotypical variation, noise works instead in a manner reminiscent of evolutionary 

capacitance, where genotypical variation is initially nullified in terms of selection. When e.g., 

an environmental change switches the nullification off, selection is allowed on a more diverse 

population than normally possible. A notable example is the heat-stress protein Hsp90 [271], 

[272] in fruit fly and plant model systems respectively. As a chaperone, it assists folding of 

unstable proteins, until stress causes an overload for its function. At this point, many unstable 

folds become phenotypically apparent, allowing selection to take place. In the case of yeast 

Sup35 prion formation, impairing the function (translation termination) that normally 

supressed genetic variation is also widespread and hereditary [273]. 

A difference emerges when regarding noise as an evolutionary capacitor in the traditional 

sense. Even after a perturbation primes selection on the diverse population, noise continues 

to facilitate evolution outside the sustainably viable genetic zone (the genotype space with 

appropriate protein expression for durable survival). While not completely nullifying certain 

genetic variation, it can stall the purging effect of selection for relevant time scales. From that 

perspective, noise most prominently buffers after the perturbation.  

It may therefore be more appropriate to treat noise as an inductor-capacitor (LC-) circuit, 

familiar in electronics. There (simply put), a closed electronic circuit comprising in the minimal 

form of a coil (the inductor) connected to two conducting plates (the capacitor) allows 

storage of energy. The capacitor has electrical energy stored in the space between the plates, 

which upon discharge pushes a current through the coil, which absorbs the energy into a 
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magnetic field. Conversely, the latter field may induce a current reverting the energy back to 

the capacitor. As a consequence, energy is moved back-and-forth. 

In this analogy, noise oscillates between inducing the variation, and uses the capacitance to 

release the evolutionary potential to the population. Continuing with this electronic analogy, 

the ‘resonance frequency’ of the LC-circuit is then set by the time between perturbations and 

the time to complete genetic selection. This leads to the formulation of the claim: 

Expression noise can act as an evolutionary capacitor, or even a LC-circuit, allowing survival of 

deleterious genotypes within a certain environment until a rescuing mutation occurs or until a 

change of environment ‘reshuffles the deck’. 

 

• Two mutations that conserve the shape of a non-flat mesotype landscape containing an 

inviable region, exhibit negative (positive) epistasis when from the same (opposite) sign. 

This also holds true for a generic mutation (noted only through changing cell cycle time) 

combined with a mutation preserving a lower bound mesotype, while the opposite 

holds for the less common upper bound mesotype. However, when the worst-case 

fitness is still viable, all mesotype-preserving mutations (shifting only the mesotypical 

inflection point) can exhibit both positive and negative epistasis. 

When combined with observations on mutations in literature, this conclusion has important 

implications. For example, since there are much more deleterious than beneficial mutations 

[258], the amount of combinations between same sign mutations outnumber the opposite 

sign combinations. The subsequently predicted epistatic encounters from this model are then 

consistent with the observation that negative epistasis is more abundant than positive. 

Additionally, it has been observed in e.g., [260] and [274], that (beneficial) adaptive 

mutations, even while originating from unrelated modules, tend to exhibit negative epistasis. 

From [20], we could deduce (see also next point) that the epistatis generating adaptive 

mutations will typically have lower bounds in their mesotypes. Together, this leads to the 

prediction that adaptive mutations will usually interact negatively with each other, as they are 

the same sign in a typically lower bound mesotype, providing evidence to the claim: 

Noise contributes to the biological basis for the observed global negative epistatic coupling of 

adaptive mutations. 

Noise then forms part of a broader documented range of explanations for the diminishing 

returns of adaptive mutations. For example, in [275] some alleles found in experimental 

evolution of Methylobacterium extorquens exhibited negative epistasis due to the global cost 

of protein overexpression. In another study (in yeast) [276], the “modular life model” is 

defined. In this paper authors show that diminishing returns occur when genes (in a data set 

of >28000 SNPs) are categorized into modules, and assuming each module has a maximum 

functionality (how fast this maximum is reached depends on the environment). In a more 
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mechanistically detailed approach, the study on directed protein evolution in [277] showed 

how for a single protein (an arylesterase in E. coli) mutations become less beneficial. The 

described multiple molecular principles might apply to other enzymes as well. 

 

• Taking into account how expression noise affects observed fitness landscapes, a simple 

sigmoidal mesotype landscape, interpretable as a Hill curve, is retrieved in 88% of 

tested fitness landscapes from [20]. 

The two-state model from this chapter contained only a minimal level of detail: a simple 

mesotypical landscape and expression noise. These two features combined were enough to 

improve upon the fits from [20] 88% of the time (metric adjusted R-squared). This suggests 

that realized fitness curves are often a result of simple mesotypes with noisy protein copy 

numbers. The fact that the mesotypes used here were a simple Hill curve is even more 

remarkable, since it is typically explained along the lines of linear, cooperative chemical 

reactions. While this simple interpretation has some caveats (see e.g, [278]), for example for 

ultrasensitive processes with very high cooperativity, it forms a good starting point to find a 

molecular justification for every reverse-engineered mesotype. Even when more 

sophisticated mesotypes are chosen (for an overview see [279]), including noise is the only 

way for observed fitness landscapes to give clues on what happens at the molecular level in a 

top-down fashion. This is very important, particularly in the context of building “levels” in the 

genotype-phenotype map, as explained in Chapter 1. Thus: 

 

Noise is necessary to translate observed fitness landscapes to relatively simple lower-level 

processes, forming a critical part of the bridge from molecular processes to phenotype. 

 

• The aforementioned conclusions hold for noise coming from any sensible, unimodal 

protein expression distribution, including common choices as the gamma and log-

normal distribution. 

While translating real protein expression distributions to simple, parametric forms can be 

subject to multiple acceptable formulations, general rules can be postulated. In yeast, most 

genes lack dosage regulation [11], and the long half-lives [235] also suggests little cell cycle 

regulation, favouring unimodal distributions. Molecular burst models [189], [237] suggest 

skewed distributions as a negative binomial or an even simpler continuous gamma variant are 

appropriate at the population level. Down to the single-cell level, this still suggests gamma-

like distributions [280], like a log-normal (which also has positive skew and fat tails). Across 

tested distributions, what matters most are the first two moments; the mean level compared 

to the location of the fitness feature, and the noise level (using the coefficient of variation as 

a metric). These heavily influence the doubling times, the epistatic regions, etc. Seemingly: 

 

Given a mean expression level, the noise level is crucial for fitness, while the exact family (log-

normal, gamma, etc.) of the expression noise distribution is of marginal importance. 
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While noise is important, the question was also why noise can be utilized in this way. What 

was found is that an epigenetic mechanism called transgenerational feedback (akin to [41]) is 

very likely responsible, as a Lamarckian survival-of-the-fittest effect based on protein copy 

numbers. Provided it is experimentally shown (which was the topic of 4.4), its existence now 

seems so self-evident that it is worth shining the light on some important, quantifiable 

conclusions that have been reached. 

• The differential inheritance of protein copy numbers based on fitness serves as a 

beneficial, impromptu mnemonic tool for a non-flat mesotype landscape; it always 

expands the sustainbly viable protein expression space and never decreases fitness. 

 

If there is sufficient noise (this depends also on population size, so say 𝑉 > 0.05 for 𝑁0 =

106), there is always a part of the population that is better equipped in terms of protein copy 

number for the fitness landscape determined by the genotype and environment. As their off-

spring inherit proteins from the ancestors, the new starting point is better than those with 

ancestors having suboptimal copy numbers. Those with by chance better copy numbers will 

become more abundant, as they can pass down their advantage. In this way, the fitness 

landscape imprints itself in the population, helping it overcome its suboptimal genotype. This 

lets itself be felt in terms of e.g., viable protein expressions (at most expanding it by a sizeable 

40% (factor √2 − 1) for sharp boundaries), which results in an expansion of the evolutionary 

accessible mutational space and hence the evolvability. Incidentally the transgenerational 

feedback works best at the typical noise levels found in yeast genes [229] and for sharper 

boundaries. Evidently, for flat landscapes there can be no effect. 

Pending final experimental validation, simple epigenetic inheritance of noisy protein copy 

numbers provides a transgenerational feedback to serve as an exclusively beneficial, fast and 

reversible adaptation mechanism. 

 

• Transgenerational feedback expands the region in expression space where epistatic 

mutants can be encountered when the mesotype is sharp. The region can shrink for 

shallow landscapes. 

It is an important question where epistasis comes from in the mechanistic sense. As 

aforementioned, inferred mesotypes typically have lower bounds. In this case, particularly for 

low noise, the driving force for noise to cause epistasis (which occurs as explained earlier in 

this discussion) is transgenerational feedback. In the extreme case of maximum sharpness, 

absence of transgenerational feedback could mean a 65% reduction in epistatic expression 

space. This prompts the hypothesis: 

Transgenerational feedback is the likely driving mechanism for the epistasis caused by noise, 

including the global negative epistasis coupling for which noise is deemed partially responsible. 
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• When applying the two-state model to observed fitness landscapes from [20], the 

transgenerational feedback emerged as an evolutionary factor to consider for essential 

genes. Concretely, for 11 out of 25 of the essential genes fitness is increased >5% for 

>5% of the commonly explored evolutionary space between gene deletion and 

duplication, which allows the typical beneficial mutation [259] in that space to become 

accessible (for 8 of those 11 even in >10% of the space). The same holds for a small 

minority of the non-essential genes. 

While non-essential genes are relatively free to evolve, the evolution of essential genes 

provides a certain bottle-neck in terms of adaptability. To obtain predictability of possible 

evolutionary trajectories, all the possible accessible mutations need to be considered. 

Transgenerational feedback is responsible for a significant addition to these paths. The 

question is the degree to which we can extend this finding. 

Very little had to be assumed for the feedback to work. Preferably, 𝑉 < 1 for the strongest 

effect, which comes naturally in the models used in this dissertation as long as protein life 

time is much longer than mRNA lifetime. This still holds true to some extent for higher 

organisms as mouse fibroblasts and humans, see [281]. The protein lifetimes from that paper 

seem long enough to allow some memory across generations, another important factor. 

Moreover, turnover characteristics seem well conserved across mammals [282], which 

suggested to authors a new turnover model. This was needed to avoid an in their eyes 

unlikely conserved elaborate regulatory mechanism to adequately maintain the right copy 

number in every situation. However, the basic and automatic transgenerational feedback will 

contribute to this, reducing the need for extensive regulation. Therefore, extrapolating the 

results from this chapter to the yeast genome and beyond leads to the following hypothesis: 

Evolvability of 25% to 60% of the essential genes in yeast are significantly affected by 

transgenerational feedback. The mRNA and protein lifetimes, together with the simple nature 

of the mechanism, suggest similar numbers for other organisms, including mammals. 

 

Returning to the principal goal in this dissertation, adding to rules of life (defined by evolution 

and self-organization) in the context of genotype-phenotype map constructions, 

transgenerational feedback provides an interesting new epigenetic mechanism. It exclusively 

acts as a promoter of evolvability, a rare property for an evolutionary mechanism. The 

feedback circumvents the supposed trade-off between robustness and adaptability. In the 

worst case it is neutral, while it is strongest when it is most needed, at the edge of viability. In 

combination with noise, realized fitness landscapes are non-trivially different from the 

mesotypes one would predict on the basis of protein function. The feedback and noise 

therefore work in tandem to alter the genotype-phenotype map, and form part of the rules of 

evolution.  



 Chapter 4 
 

156 

4.6 Supplementary information on methods 

 

4.6.1 Epistasis fraction explained and as function of noise level 

To determine the contributions to the observed epistasis for the GAP deletions in a Δbem1 

background due to Cdc42 copy number noise, the epistasis is calculated using 4.4, with the 

experimental data from [24], see also Table 5. The calculated observed value was -0.4943. 

The fitted fitness values follow from substituting different values for 𝑐𝑖 for different strain 

backgrounds in 4.3, with a cumulative distribution function (CDF) of choice that has 

coefficient of variation 𝑉 and mean 1 (the ratio 𝑐𝑖 is normalized with respect to endogenous 

expression). The CDFs are specified as in Table 10 (the three parameter one allows some 

degeneracy), to become a function of 𝑉 alone: 

 

Table 10 Distribution types and parameter choice for CDFs with mean 1 and coefficient of variation 𝑉. 

CDF Parameters 

Gamma 𝑘 = 1/𝑉2,  𝜃 = 𝑉2 (shape, scale) 
Triangular 𝑎 (𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡) 𝑏 (𝑚𝑜𝑑𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) 𝑐 (𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡) 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

1 − 𝑉√6 1 1 + √6 𝑉 ≤ 1/√6

0
3

2
− √6𝑉2 − 3/4

3

2
+ √6𝑉2 − 3/4

1

√6
< 𝑉 ≤ 1/√2

𝑛𝑜𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑛𝑜𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑛𝑜𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑉 > 1/√2

 

Uniform 𝑎 (𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡) 𝑐 (𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡) 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

1 − 𝑉√3 1 + √3 𝑉 ≤ 1/√3

𝑛𝑜𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑛𝑜𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑉 > 1/√3

 

Pareto 𝛼 = 1 + √1 + 1/𝑉2,  𝑥𝑚 = (𝛼 − 1) 𝛼⁄  (shape, scale) 
Log-normal 𝜇 = −𝜎2/2, 𝜎 = √ln(1 + 𝑉2) 

For Cdc42, analysis on the measured flow cytometry data had shown 𝑉 = 0.832. Fixing 𝑉 to 

this value (or the maximum allowed within a CDF to be defined) then resulted in a three-

parameter fit to find the appropriate 𝑐𝑖’s that minimized the sum of absolute standard scores 

(time deviations from observed doubling times, divided by the observed standard error). The 

𝑐𝑖’s of Δbem1, Δbem1 Δbem3 and Δbem1 Δbem2 are the parameters, as the 𝑐𝑖 of Δbem1 

Δbem3 Δbem2 follows from Figure 32, since 𝑐𝑖,Δ𝑏𝑒𝑚1 Δ𝑏𝑒𝑚3 Δ𝑏𝑒𝑚2 = 𝑐𝑖,Δ𝑏𝑒𝑚1 Δ𝑏𝑒𝑚3 +

𝑐𝑖,Δ𝑏𝑒𝑚1 Δ𝑏𝑒𝑚2 − 𝑐𝑖,Δ𝑏𝑒𝑚1,  with the restriction that it is positive. The objective minimization 

was conducted in Matlab R2014b using successively fminsearch, fminsearch and fminunc, all 

with maximum function evaluations and iterations set to 10000. Each use the previous output 

as its starting point. The first starting vector was (𝑐𝑖,Δ𝑏𝑒𝑚1, 𝑐𝑖,Δ𝑏𝑒𝑚1 Δ𝑏𝑒𝑚2, 𝑐𝑖,Δ𝑏𝑒𝑚1 Δ𝑏𝑒𝑚3) =

(0.975, 0.675, 0.45). Relative GAP fractions then follow from (𝑐𝑖,Δ𝑏𝑒𝑚1 − 𝑐𝑖,Δ𝑏𝑒𝑚1 ΔGAP)/

𝑐𝑖,Δ𝑏𝑒𝑚1 and are plotted in Figure 39. Then, fixing these 𝑐𝑖’s, coefficient of variation 𝑉 is varied 

to see how epistasis varies along this dimension. This changes CDFs through Table 10 and 

fitness through 4.3 resulting in Figure 78 (see Appendix K). 
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4.6.2 Fitness/survival contours as function of noise level and MI-point location 

A grid of 𝑐𝑖 from 0.001 to 2.25 with step 0.00075 and 𝑉 from 0.001 to 1 with step 0.001 was 

generated, which defined the gamma CDF output values using Table 10 for the contour plots 

in Figure 41, Figure 80 and Figure 45. Fitness on this grid then followed from 4.19 and 4.20. 

For consistency with results without transgenerational feedback (explained further on), 

fitness values are rounded to 6 decimals. The lower/upper boundary example was 

implemented using 𝑘 = +/−105, 𝑔0 = 0, while the shallow example had 𝑘 = −105, 𝑔0 =

1.2 to insert in 4.15. In case 0 < 𝜆𝑚𝑎𝑥 < 1, this does not result in structural growth and a 

defined fitness. Instead, it provides the basis for the number of survivable generations 𝑛𝑔𝑒𝑛 

until the population size reaches 1, starting with a population size 𝑁0 of 106, through: 

 𝑁0𝜆𝑚𝑎𝑥
𝑛𝑔𝑒𝑛 = 1⟹ 𝑛𝑔𝑒𝑛 = − log(𝑁0) / log 𝜆𝑚𝑎𝑥 (4.6) 

Analogously, fitness and 𝑛𝑔𝑒𝑛 grids were calculated without transgenerational feedback 

replacing 4.19 with 4.36. However, as explained in the text, the finite population size is 

relevant here for the growth factors / doubling times, which modifies 𝜆𝑚𝑎𝑥 slightly to: 

{
 

 
𝑔(4𝑐𝑖/3)[1 − 𝐹(4𝑐𝑖/3)]

∗ + 𝑔(2𝑐𝑖/3)[𝐹(2𝑐𝑖/3)]
∗

[1 − 𝐹(4𝑐𝑖/3)]
∗ + [𝐹(2𝑐𝑖/3)]

∗
, [1 − 𝐹(4𝑐𝑖/3)]

∗ = 0 ∧ [𝐹(2𝑐𝑖/3)]
∗ > 0

𝑔(4𝑐𝑖/3),                                                                                     [𝐹(2𝑐𝑖/3)]
∗ = 0

𝑔(2𝑐𝑖/3),                                                [1 − 𝐹(4𝑐𝑖/3)]
∗ = 0 ∧ [𝐹(2𝑐𝑖/3)]

∗ > 0

 

where [ ]∗ denotes rounding to [log10𝑁0] number of digits, which is 6 here. 

Contours were generated for these grids of fitness and number of survivable generations 

through the contour function in Matlab 2014b. Because of the rounding of the CDF, this also 

sets the accuracy of the calculated fitnesses, which is rounded to the same number of digits 

(here, 6). Derivatives needed for the epistasis generating function (4.6) plots are 

approximated differences along the line 𝑉 = 0.5, using Matlab’s diff. As the rounding without 

feedback induced some numerical discontinuities, the derivatives are smoothed by a 25-point 

robust locally estimated scatter plot smoothing. These calculations yield Figure 48, Figure 81 

(Appendix L) and Figure 50. Incidentally, Figure 38 contains a contour plot example regarding 

epistasis. The functional form of the fitness is given as 𝜔𝑟 = exp(−𝐹𝑉(1.5)𝑐𝑖
1−(𝑉−0.5) 1.3⁄

). 

 

4.6.3 Epistasis generic mutations figure 

For the epistasis between a mesotype-preserving and generic mutation, the sharp lower 

boundary case is considered, with an average 𝑉 of 0.22 [229]. The relative fitness point of 

origin (to which fitness differences are measured) is 0.96 (𝑐𝑖 = 0.9375), with 1 as the 

optimum without generic mutations. The sweep along the horizontal axis is performed in 

analogy with 4.6.2, with feedback, keeping 𝑉 fixed and with a grid of 𝑐𝑖 from 0.6675 to 1.14 

(steps of 0.0037). As fitness are inversely proportional to cycle time 𝑇0, generic mutations are 

absorbed into the model by changing cycle time to 𝜃𝑇0 and shifting mean expression, so that: 



 Chapter 4 
 

158 

𝜔𝑟,𝑚𝑢𝑡 𝑔𝑒𝑛𝑒𝑟𝑖𝑐(𝑐𝑖) = 𝜃 𝜔𝑟(𝑐𝑖 𝜃⁄ )⁄  

with 𝜃 ranging from 0.9 to 1.15 (step 0.0005) in Figure 42. Fitness values are then converted 

to epistasis values 𝜖 through 4.4, for the deviation in expected effect of combining the 

mesotype-preserving shift in 𝑐𝑖 mutation (relative to the origin, 𝑐𝑖 = 0.9375) and the shift in 

𝜃 mutations (relative to the origin, 𝜃 = 1), so: 

𝜖 = log10 (
𝜔𝑔𝑒𝑛𝑒𝑟𝑖𝑐𝜔𝑚𝑒𝑠𝑜𝑡𝑦𝑝𝑒

 𝜔𝑔𝑒𝑛𝑒𝑟𝑖𝑐+𝑚𝑒𝑠𝑜𝑡𝑦𝑝𝑒𝜔𝑜𝑟𝑖𝑔𝑖𝑛
) 

Sign epistasis occurs when the generic mutation is beneficial relative to the origin but is 

deleterious when the mesotype-preserving mutation is already in place, or vice versa. 

 

4.6.4 Fitting empirical fitness landscapes 

Empirical fitness landscapes (glucose data) from [20] were re-analyzed. There, fluorescence 

intensity values at various expression levels were given, which need to be translated to 𝑐𝑖’s 

from the two-state model. This implies dividing by WT intensities, but it is not so robust to do 

this directly from the reported fluorescence measurements of WT expression, since these 

contained sub-zero and missing values. Instead, converting intensities to 𝑐𝑖’s is done indirectly 

by first converting to protein copy numbers. 

Estimates for the average copy number of these gene products are obtained from [234]. As 

this data set did not contain all of the original 81 genes, 8 were discarded. The 

fluorescence/protein conversion factor was calculated robustly by finding the median of the 

measured WT expression in fluorescence and the 73 remaining WT copy number estimates, 

and applied to the reported relative (to WT) promoter strengths. Then, the copy numbers for 

the 73 genes across all expression levels are normalized using their respective WT copy 

number values. Since 𝑐𝑖 is the ratio of the concentration location of the mesotypical inflection 

point, divided by the mean expressed concentration, different 𝑐𝑖 per protein are retrieved by 

divided to these normalized expression values. 

The two-state model is then fitted with four free parameters; 𝑐𝑖, 𝑘, 𝑔0 and 𝑉, where 𝑉 is 

actually an effective average of the noise of all used promoters. The fitness values in [20] 

were defined as average number of doublings in a certain time frame, divided by that of WT, 

which in the two-state model translates as 𝜆𝑚𝑎𝑥/2. This is because the growth factors of a 

general background and that of WT are 𝜆𝑚𝑎𝑥 (4.20) and 2 (perfection) respectively. The four-

parameters set yielding the lowest sum of squared residuals of the measured fitness values 

and two-state model predictions were then found using Matlab’s fminsearch (maximum 

function evaluations and iterations 104, function and parameter change tolerance 10−18). 

Appropriate starting values for the search were found by finding the lowest sum of squared 

residuals in a grid of parameter values, with ranges of -2 to 2 (20 logarithmically spaced 
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points) for 𝑐𝑖, 0.001 to 1.999 (20 linearly spaced points) for 𝑔0, −101.999 to −10−1.999 (20 

logarithmically spaced points), 0 and 10−1.999 to 101.999 for 𝑘 and finally, 0.001 to 0.999 (20 

linearly spaced points) for 𝑉. For the search is conducted, parameters are transformed using 

the log and atanh functions and their inverses to impose the bounds 𝑐0 > 0, 0 ≤ 𝑔0 ≤ 2, 

−200 ≤ 𝑘 ≤ 200 and 0 ≤ 𝑉 ≤ 1. The first restriction is for sensibility, the restriction on 

fitness landscape depth ensures the number of progeny is between 0 and 2 per division, 𝑘 is 

only between these values as large values of |𝑘| are essentially indiscernible for interpretation 

as a cooperativity coefficient, and values of 𝑉 below 1 are typical for yeast [229]. 

Then, the adjusted R-squared of the original impulse fits were calculated for all genes, and 

only those genes for which the two-state model fit provided better adjusted R-squared were 

kept for further analysis (64 out of 73). To predict the effect of transgenerational feedback, 

the actual coefficients of variation are needed (not the effective fitted 𝑉 from the collection 

of promoters). Linking the 64 remaining genes to observed 𝑉’s from [229], left only 50 genes 

for further analysis, depicted in Figure 44. 

For these genes, relative fitness was calculated (as defined in 4.19, 4.36 of this dissertation,  

not as defined in [20]) with and without feedback. The relative percentual benefit of feedback 

was calculated along a grid of 0 to 2 times WT expression (0.001 step size). The percentage of 

points on the grid that were viable with feedback and whose feedback benefit exceeded 5% 

were plotted in Figure 51. The essential genes were gathered from 

https://www.yeastgenome.org/observable/APO:0000112 (date of access 01-08-2019), 

selecting for inviable null mutants in S288c, and marked in the plot. 

For the predicted range of (essential) genes that the feedback affects, we note that 11 out of 

the tested 25 essential genes are affected by at least 5% in their evolutionary relevant 

expression space (and 14 less than 5%). If we consider the likelihood of encountering an 

affected essential gene out of the pool of all essential genes binomial and assuming no prior 

knowledge about the fraction affected (uniform prior, beta(1,1) distribution), the posterior 

density of the affected fraction follows a beta(11, 14) (representing 11 affected, 14 not 

affected) distribution. Consequently, the highest posterior density interval (as the credible 

interval) for the fraction affected is between 0.26 and 0.63, so the fraction affected essential 

genes should roughly be between 25% and 60%.  

Similarly, for the non-essential genes, the posterior density of the affected fraction follows a 

beta(1 affected, 24 not affected) distribution. The highest posterior density interval (as the 

credible interval) for the fraction affected is between 0.002 and 0.17, so the fraction affected 

non-essential genes should roughly be below 17%. By Monte Carlo simulation of a 20%/80% 

mixture of beta(11,14) and beta(1,24) distributions, we get an estimate of the distribution of 

affected genes, assuming 20% is essential and 80% is non-essential [59]. Taking the 2.5% and 

97,5% quantiles of the resulting distribution, the bounds on the total of affected genes can be 

generated, which are 8% and 25% respectively. 

https://www.yeastgenome.org/observable/APO:0000112


 Chapter 4 
 

160 

4.6.5 Simulated noise levels and correlations in feedback experimental design 

To get an idea of the influence of [𝐶𝑑𝑐42]𝑚𝑖𝑛 on concentration of Cdc42, a sweep was 

conducted of normalized values [𝐶𝑑𝑐42]𝑚𝑖𝑛 (𝑃𝑊𝑇/4/3𝜋𝑟𝑚𝑖𝑛
3⁄ ) from 0.03 to 0.18 (step 0.03), 

0.2 to 0.28 (step 0.02) and 0.3 to 0.45 (step 0.01) in the model from Chapter 3 with standard 

parameters (see Table 4) in the Δbem1 background. This yielded simulated volume and copy 

number count (a simulated “flow cytometry measurement”) for Cdc42, measured at a single 

time point where the colony size is around 5 ∙ 106. Dividing copy numbers by the volumes 

yielded concentrations, whose distributions were approximated by a kernel smoothing 

function (Matlab R2014b ksdensity) at points 0 to 500 #/μ3, with step size 5 #/μ3. These were 

plotted together with the calculated respective doubling times in Figure 52. 

Then, simulations continued for two values of the Cdc42 threshold, as fitted in 3.3.1. Volume 

and copy number counts for Cdc42 were calculated in the simulations, and this time also for 

another protein with identical turnover characteristics but without function in polarity. The 

samples were taken at either the last simulated end of G1 (containing ~1/2 the cells) or at a 

single time point (for Figure 53 and Figure 54 respectively), both where the colony size is 

around 5 ∙ 106. Again, only live cells were considered for the simulated volume and flow 

cytometer data. The data was then reduced to 10000 cells, a typical experimental size. 

Subsequently, the data is further divided, such that the effect of sample size is visible. The 

100 sizes considered are logarithmically spaced between 10 and the maximum of 10000, and 

the data is such that e.g., all data included in the sample with size 10 is also included in the 

sample of size 11, etc. For every sample size, we generate 10000 bootstrapped samples to 

compute the coefficient of variations (squared) for the copy numbers and concentration in 

Δbem1 Δbem3 and the Δbem1 for Cdc42 and the Cdc42-like proteins (mCherry in the 

experimental proposal). The latter protein is assumed to be long lived [266], [267], and for the 

simulation a factor three for the protein lifetime above that of Cdc42 is chosen. The 95% 

confidence intervals of the ratio of 𝑉’s of Cdc42/Cdc42-like followed from the 0.025 and 

0.975 quantiles of the bootstrapped results. The median is chosen as the highlighted values 

between these bounds, shown in Figure 53 and Figure 54. As an visual example of feasibility 

of the experiments, Figure 55 and Figure 56 show the protein (copy number / concentration) 

distributions at 100 (end of G1) and 10000 (arbitrary cell cycle stage) cells respectively. 

Then, repeating simulations only having another Cdc42-like protein added to be traced, it is 

possible to calculate correlations between Cdc42 and the Cdc42-like protein, as well as 

between Cdc42-like proteins. Under optimal growth conditions (not the case in Appendix N), 

the copy numbers correlate differently across backgrounds, which depends also on the health 

of the subsets of cells considered. To envision this, data is sorted and correlations are plotted 

(from 1000 bootstrap samples, 95% confidence intervals from 0.025 and 0.975 quantiles as 

before) for a grid of left quantiles (0.05 to 1 with step size 0.05) of copy number data. As 

described in 4.4.3, the Spearman 𝜌 rank correlation coefficient is used, to be robust against 

experimental deviations of matched mean expression of Cdc42 and Cdc42-like proteins. 
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5 Conclusions and discussion 

 

This century holds great promise for synthetic biology and medicine. In the far future, it will 

be possible to repair any genetic defect, find weak spots for every pathogen, regenerate 

organs, and device organisms to manufacture any organic material we want. Key in these 

advances is complete understanding of how genes cause traits (phenotypes), i.e., the 

genotype-phenotype (GP)-map. For example, the powers of Crispr-Cas already allow vast 

possibilities in genetic manipulations, and the future of prime editing [283] looks even more 

promising. But what is currently most limiting is not the question how to make desired 

changes, but rather what these are. Therefore, increased efforts in deciphering the rules for 

the built-up of biological systems, which self-organize and evolve, are needed. 

Important open questions include how the structure of the GP-map is composed. What are 

possible stepping stones or more metaphorically, islands in the ocean between genotype and 

phenotype? Is there at least one model system where the complete voyage across water can 

be validated and what boat (experimental design) would be needed? Also, what hidden 

treasures can be found on these islands, perhaps a spring of epistasis, or a chest containing an 

evolutionary mechanism? 

My vision on how to accomplish understanding of the GP-map is working our way from 

genotype to (population) phenotype through levels, where each contains relatively simple, 

coarse-grained rules of the level below. As chapter one and three explained in more detail, 

these level definitions are far from trivial. Actually, it is not even certain that the most suitable 

level choice to understand a self-organizing system is the same as for an evolving one. Several 

attempts have been made in literature, each with their own purpose, but not oriented on 

gaining general and fundamentally justifiable insights in the process of phenotype generation 

that can be translated to new, understandable rules of life. 

Throughout this dissertation, I have proposed and tested a new definition to bridge genotype 

and phenotype, called mesotype. This is a biophysically justified simplification of the effect of 

varying protein concentrations, which is derived from molecular mechanisms. For example, 

the mesotype can be as simple as “divide when a protein concentration exceeds a certain 

threshold”. If needed, the description can be made more detailed, but in any case, the 

mesotype relies on deep knowledge of the molecular mechanisms emerging from the 

proteins involved in the phenotype of interest. Consequently, this currently imposes strong 

requirements on model systems where this level definition can be tested. 

As demonstrated in chapter one (1.3), polarization in budding yeast fulfills all requirements. 

This relatively modular process involves about ten core proteins to self-organize a protein 

(Cdc42) pattern that is used to mark the next site of division and conveniently, it has 

precedent in evolutionary studies as well. Decades of research allow the formation of an 
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interpretable physical interaction map, which must precede experimental efforts to reduce 

the system to a tractable form. Only then it is feasible to distinguish so-called functional 

subunits [51] that make up molecular mechanisms, which are ultimately responsible for the 

generation of the mesotype that acts as a summary of protein fitness landscapes. 

However, the concept of functional subunits is new itself and required validation. To this end, 

its relatively extreme prediction for the yeast polarity mutant Δbem1 (lacking an important 

Cdc42 recruitment player) was validated, which was the focus of attention in Chapter two. In 

short, the prediction was that on the cellular level, a sharp minimum Cdc42 concentration 

boundary existed for polarization (and hence viability). The validation required variably 

inducing Cdc42 expression (through the galactose-sensitive GAL1 promoter), and a 

fluorescent tag to cross-validate expression. Despite the collection of data on the population 

level, where such strong dependencies are diluted (through the mesotype to phenotype 

transition), we measured the expected fitness effects of variable Cdc42 expression and 

polarity genotype (such as GAP deletions, the deactivating agent for Cdc42) in section 2.3. En 

passant, the efforts to make this experiment possible also yielded the first fully functional 

fluorescently labeled Cdc42 in budding yeast, mimicking the strategy employed in [185] for 

fission yeast. 

With the functional subunits validated, the focus was shifted to validating the utility of the 

mesotype concept, which allows translation of molecular mechanisms to population 

phenotypes. This entails for example, quantitative understanding of how the aforementioned 

sharp Cdc42 boundary is diluted in population fitness curves, or the emergence of complex 

phenotypes as measured in [24]. To this end, a cell growth model was constructed in chapter 

three, incorporating protein turnover, simple cell expansion dynamics and the mesotype. As 

simulations of this model successfully replicated the observed, non-standard phenotypes 

(section 3.3), this inspired enough confidence in the mesotype-including growth model to 

make new general predictions that stem from deeper understanding of the GP-map. 

Interestingly from an evolutionary perspective, small changes in the environment can have 

large impacts on competitive fitness. For example, the model from Chapter 3 predicts that 

while the Δbem1 grows 5 times slower than WT under lab conditions, the difference is only 

20% when suboptimal food slows WT down by 30% (see Figure 34 in 3.4.1). This equalizing 

behavior is also consistent with observations in growth assays done in Chapter 2. This 

supports the general suggestion that lab conditions are ideal for (almost) perfectly-tuned 

strains as WT. Yet, out in the wild where nutrition is rarely optimal, genetic backgrounds that 

are severely hampered have ample time to catch-up while the best genotypes are stalled. This 

makes an important difference for experimental evolution (in the lab) and historical evolution 

(as occurred in the wild). The explorable evolutionary space may in the latter case be much 

larger, as are the consequences of drift, as the forces of selection are either weak or short-

lived (the brief moment food is abundant). 
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A second hypothesis also emerged, namely the evolutionary importance of expression noise, 

which was further considered in chapter four. As results from chapter three did not reveal 

that details in cell growth or degradation were of much importance, a model containing only 

noisy protein production and the mesotype was considered. Cells were divided into two bins; 

having a high or low protein number. Several interesting results follow from this minimal 

model. 

Firstly, an important and likely abundant evolutionary mechanism is found that underlies 

expression noise, called transgenerational feedback. For suboptimal genotypes, it can utilize 

the noise to create a sub-population of more favorable protein copy numbers, which causes a 

bias for the next generation to inherit better protein copy numbers than their ancestors had. 

This forms a simple epigenetic adaptation mechanism, with which the population ‘memorizes’ 

the fitness landscape. 

Particularly when the mesotypical landscape is rather sharp compared to the broadness of 

the protein production distribution, this confers an advantage; steady state growth is 

improved and population survival times for sustainably non-viable genotypes are increased. 

Based on observed landscapes in [20], I predict 25-60% of the essential genes to have 

expanded their permitted expression range by >5%, a significant contribution to their 

evolvability (see Figure 51 in 4.3.5). Moreover, this mechanism is never deleterious and does 

not sacrifice robustness for adaptability, a notable feature. 

The transgenerational feedback, while seemingly inevitable, will have to be validated in at 

least one model system. Again, polarization in budding yeast, and in particular the Δbem1 

situation seems suited for the job. Section 4.4 describes an experimental design appropriate 

for testing the presence of the feedback. When proven, and given that this epigenetic 

mechanism does not require any additional functions in the cell (e.g., no formation of 

histones that curl DNA) nor does it come at any energetic cost, I expect this mechanism to be 

a factor in many organisms. Moreover, the balance between mRNA, protein and cell life times 

of mammals [281] and yeast does not seem to differ much, and turnover seems conserved 

[282] (which could erase the protein copy number memory), further suggesting that the 

feedback exists as a general phenomenon across species. 

Secondly, expression noise emerges as a source of epistasis, mainly the negative variant. The 

implications may be profound. Suppose we consider two unrelated mutations, which both 

individually affect fitness, but one through affecting the respective mean protein copy 

number and another generically through a change in average cell cycle time. These fall into 

the category of mutations investigated in chapter 4. As the cell moves away from the optimal 

protein concentration, negative epistasis fueled by noise is shown to be more likely than 

positive epistasis. This can provide the “biological basis for global coupling”, leading to 

diminishing returns in evolutionary adaptation (see sections 4.2.1.7 and 4.2.2.3), an open 

question put forward in [260]. 
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Ultimately, the question remains whether the bottom-up approach from genotype through 

protein, functional subunits, molecular mechanisms, mesotype, phenotype and ultimately, 

population phenotype will always be so tractable and fruitful. Fortunately, we see that most 

observed fitness landscapes in yeast are readily decomposed into expression noise and a 

tractable mesotype (a simple Hill curve with documented interpretations). This looks 

promising for future built-ups of the GP-map in other model systems and organisms (see 4th 

discussion point in 4.5). 

In summary, important rules of life, when defined as self-organizing, evolving systems, are 

found: functional subunits are an experimentally verified way of coarse-graining genotypes. 

The mesotype in turn provides a suitable level above this, for both self-organization and 

evolution, to bridge the GP-transition. From this we learned that the likely abundant 

transgenerational feedback is a prime example that evolutionary mechanisms do not always 

trade-off adaptability with robustness. Moreover, pervasive negative epistasis can have its 

source in inevitable expression noise. How much further these level definitions will bring us 

will follow from applying them to more situations in more organisms, but I hope to have 

contributed to a promising start.  
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Appendix 

A Material list 

 

Table 11 List of used materials, kits, equipment and corresponding software packages 

Item Company 

Media 
 

Agar (plates) VWR 
CSM (including single and double dropouts) Formedium 
Dextrose Sigma-Aldrich 
Galactose Sigma-Aldrich 
Peptone VWR 
Raffinose pentahydrate Sigma-Aldrich 
Sorbitol Sigma-Aldrich 
Yeast extract VWR 
Yeast nitrogen base Sigma-Aldrich 
Yeast nitrogen base, low fluorescence Formedium 
Water / MilliQ Merck Millipore   

Antibiotics 
 

Carbeniccilin Formedium 
G418 Disuplhate Formedium 
Nourseothricin sulfate (clonNAT) Melford Biolaboratories 
Hygromycin B Formedium   

Enzymes 
 

BamHI New England Biolabs 
DpnI New England Biolabs 
EcoRI-HF New England Biolabs 
PsahI New England Biolabs 
XhoI New England Biolabs 
Zymolyase Zymo research   

PCR related 
 

Agarose (DNA gels) Sigma-Aldrich 
CutSmart Buffer New England Biolabs 
DNA ladders Eurogentec & Melford 

Biolaboratories dNTP mix Thermo Fisher 
GoTaq buffer Promega 
GoTaq polymerase Promega 
Loading Dye Melford Biolaboratories 
Phusion buffer Thermo Fisher 
Phusion polymerase Thermo Fisher 
Primers IDT 
Sequencing Macrogen 
SYBR Safe DNA Gel stain Thermo Fisher / Invitrogen 
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TAE Formedium   

Container-related materials 
 

96 well plates for growth assays (Cat. no. 267427) Thermo Scientific 
96 well plates for microscopy Cat. no. 5241-20) Zell-Kontakt GmbH 
Accuvettes Coulter 
Concanavalin A Sigma-Aldrich 
Cover slips VWR / Thermo Scientific 
Glass slides VWR / Thermo Scientific   

Other reagents 
 

Coulter Clenz Cleaning Agent Coulter 
Isoton II diluent Coulter 
Lithium Acetate Sigma-Aldrich 
PBS VWR 
Potassium acetate Sigma-Aldrich 
SDS Biorad 
ssDNA (for transformation) Sigma-Aldrich 
TE VWR 
Tris (pH 7.5) VWR 
Triton Sigma-Aldrich   

Kits 
 

Plasmid Miniprep (PureYield) Kit Promega 
Wizard SV Gel and PCR clean up system Promega 
YeaStar Genomic DNA extraction kit Zymo research   

Hardware and software 
 

Brightfield light source pE-100 CoolLED 
C1000 Touch Thermal Cycler (PCR machine) Biorad 
Camera (Orca Flash v4) Hamamatsu  
FACScan (flow cytometer for GFP strains) BD 
FACSCelesta Flow cytometer (sfGFP strains) BD 
Fluorescence excitation source Spectra X Lumencor 
Gel Doc EZ (Gel imager) Biorad 
Matlab R2014b Mathworks 
Microscope Ti Eclipse (60x Plan Apo objective, x1.5 
optional lens) 

Nikon 
NIS Elements version 4.3-4.5 Nikon 
Plate reader TECAN Infinite 200 pro 
Software flow cytometry GFP strains FlowJo CE 
Software flow cytometry sfGFP strains BD FACSDiva 
Sonicator Qsonica 
Spectrophotometer (11 series) for OD and DNA 
concentration measurements 

Denovix 
Temperature regulation microscopy Okolab incubator 
Z2 Coulter Counter Analyzer Beckman Coulter 
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B Strain and plasmid list 

 

Table 12 List of strains used in this dissertation (continues on next page). Green stands for dominant 
allele, red for recessive and orange for a diploid mix of dominant and recessive alleles at that locus 
(white is not determined). 
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Table 13 Used plasmids throughout this dissertation, with their origin and most important features. 

Name Former 
name 

Source Contains Selectable 
markers 

pWKD001 pRL368 Rong Li 
Lab 

Gal1pr-GFP-Cdc42, URA3 Ampicillin 

pWKD006 New pWKD001 Gal1pr-Cdc42, URA3 Ampicillin 

pWKD008 sfGFP 
pSB1C3 

See 2.5 sfGFP Chloramphenicol 

pWKD009 New pWKD006 Gal1pr-Cdc42, URA3, Post-Cdc42 
homology regions 

Ampicillin, URA3 

pWKD010 New pWKD006 Gal1pr-Cdc42, URA3, Pre/Post-Cdc42 
homology regions 

Ampicillin, URA3 

pWKD011 New pWKD010 Gal1pr-sfGFP-Cdc42 (sandwich), URA3, 
Pre/Post-Cdc42 homology regions 

Ampicillin, URA3 
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C Preparatory experiments with a Cdc42-probe 

 

C.1 Visible, inducible and functional Cdc42-probe 

C.1.1 Cdc42 copy number control through the Gal-promoter 

In order to proof correct modelling of the details of GAP action, precise control of Cdc42 is 

required. To control the Cdc42 copy numbers in our experiments, we place the Gal1/10 

promoter ahead of our Cdc42-fluorophore construct. It is known to have a large dynamical 

range (about 1000-fold [244]), making it a well-suitable promoter to toggle between viable 

and inviable Cdc42 expression levels. This is particularly true since Cdc42 is quite an abundant 

protein [234], so strong maximum expression is needed. Care must be taken for the choice of 

medium. Galactose is necessary for modulating the induction for variable expression, but is 

also a sugar that yeast can metabolize. As is explained further in the supplement of Chapter 2, 

2.6, medium is not supplemented with glucose as this modifies expression, but raffinose is 

used instead [199]. 

Ideally, we would like to characterize the expression levels of Gal promoter in this context 

(strain background, media, etc.) relative to the endogenous expression. This is possible by 

measuring fluorescent intensities in bulk of the strains with the traditional N-term fusions 

CDC42pr-GFP-CDC42 and GAL1pr-GFP-CDC42 from [48]. We assume results reasonably 

transfer to the expression of the new fluorophore fusion described in the next section, 

although being situated at a different locus, a different start after the start codon (gene start 

of CDC42 instead of GFP) and a different 3’ UTR. 

While at first sight the use of the N-term GFP fusion seems inappropriate, since it was argued 

in 2.1 that this construct has functionality deficiencies, this will not impede with the 

expression count. In fact, measuring instead strains with the fluorophore-construct whose 

construction we describe in the next subsection can fully restore Cdc42 function when 

measured through fitness, can have a surprising downside. As explained in Chapter 4, the 

fitness associated with each expression level couples back to the observed expression levels 

through a process called transgenerational feedback. Of course, the improved construct 

functionality is necessary in all other contexts, particularly those relating Cdc42 levels to 

fitness as in 2.3. 

 

C.1.2 Fluorophore fusion 

The previous section mentioned the problem with previous versions of fluorescent Cdc42 

under the Gal-promoter, as in [105]. Additionally, the importance must be noted of the 3’ 

UTR region. It has been shown that for Cdc42, this region is of particular importance for 

correct localization of mRNAs [87], which is potentially compromised when using exogenous 

fluorescent Cdc42 versions if the terminator region is not included. 
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Despite these deficiencies, this N-term fusion is still useful for characterization of the Gal-

promoter. To ensure correct mRNA localization, sfGFP is inserted into an endogenous version 

of Cdc42 of a diploid S. cerevisiae (background W303, from [24]), yielding the GAL1pr-sfGFP-

CDC42SW construct. This leaves the terminator region unchanged. Importantly, the choice of 

sfGFP should yield a faster maturation time than with mCherry [188], which has been used in 

a similar sandwich construct in [284], and was found to be only partially functional. Authors in 

that paper conducted a growth assay on a plate, showing that this fusion as the only source of 

Cdc42 allowed similar growth to WT at 24 ºC, mildly decreased growth at 30 ºC, and 

significantly slower growth at higher temperatures. The goal is to eliminate the 30 ºC growth 

defect with the use of sfGFP. 

Furthermore, the transformed diploid is heterozygous for BEM1 and BEM3. This allows 

generation of the required haploid polarity mutants containing the fluorescent Cdc42 version 

following from sporulation. Schematically, this insertion (without promoter) is depicted in 

Figure 58, where it can be seen that sfGFP is quite a heavy addition to Cdc42. While the logic 

is the same as in [185], the amino acids differ at the insertion location authors used in S. 

pombe. Still, given the location of the domains there is no obvious reason to reconsider the 

location. Placing the construct between L134 and R135 leaves the most important domains 

uninterrupted, except arguably a GEF interacting site, which should have other dominant 

sites. 

 

Figure 58 Domain-wise (purple) overview of the Cdc42(blue)-sfGFP(green) sandwich construct made in 
S. cerevisiae. Domain information from [285] and for the switch II region from [286]. 

 

The goal is now to validate this probe. Subsequently, a series of tests, each shining light on a 

different manifestation of fitness effects of Cdc42 concentrations, is used to cross-validate 

the prediction concerning strong Cdc42 threshold to polarize, dependent on background. 

Ultimately, these provide supporting evidence for the quantitative assay in Chapter 2 (2.3). 
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C.2 Probe validation 

 

C.2.1 Fluorescence assays 

C.2.1.1 Gal promoter varies in target range 

Ideally, the Gal promoter in our constructs is able to vary expression between an order of 

magnitude below and above endogenous expression of Cdc42. This way strong under- and 

overexpression can be established using a single construct. To determine the dynamical range 

relative to endogenous Cdc42 expression, we turn to flow cytometry, which allows 

measurement of the Cdc42 fluorescent protein distribution across the population. 

As previously explained, we acquired the Cdc42 distributions using the poorly functional N-

term GFP fusion. The strains containing this fusion (RWS119 and RWS1421) have GFP-Cdc42 

under both the GAL1 and the endogenous promoter respectively [48]. This distribution of 

GFP-Cdc42 under various expression levels (through different galactose concentrations) can 

then be normalized to represent actual protein numbers by comparing to the reference 

distribution of GFP-Cdc42 under the endogenous promoter. 

As explained in more detail in 3.2.1.3 and Appendix E, the copy number distributions follow 

after some data processing. First, gamma distributions are fitted on the data (as expected 

from [189]). Removal of the background by deconvolution is approximated by analytical 

means [287]. This yielded Cdc42 copy number distributions under 0.05%, 0.2% and 2% 

(galactose) inducer levels (see Figure 59). What can be seen is that in practice we can 

approximately get an order of magnitude below and above endogenous expression. Also, the 

distribution is quite wide, e.g., at maximum induction part of the population has 3 times the 

average endogenous expression, and part has up to 12. The notion that expression is very 

noise, particularly for Cdc42 has important implications for quantitative predictions on fitness, 

as done in Chapter 3. 

 

C.2.1.2 Cdc42-probe suitable for abundance, not localization measurements 

With the promoter part verified, we can address the fluorescent behavior of the new 

construct, the Cdc42-sfGFP sandwich fusion. As a qualitatively diagnostic, time lapse movies 

are made of several strains containing the GAL1pr-sfGFP-CDC42SW construct, with different 

genetic background and ploidy. Sometimes for the GAL1pr-sfGFP-CDC42SW strains, strong 

fluorescent punctae were visible, particularly in aging cells. These differ distinctly from the 

abnormal internal (somewhat ring-like) structures that can sometimes be observed in the old 

fusion (see e.g., in [48]). The strong spots accumulated during the life time of a cell, but were 

not transferred to new daughter cells, which always started ‘clean’. These were not related to 

polarization, and are usually mobile. In extremely affected cells, also stationary spots were 

present (see Figure 60). 
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Figure 59 Top, four normalized histograms with gated data from flow cytometry experiments of 
GAL1pr-GFP-CDC42 (0.05% galactose in red, 0.2% in orange and 2% in green) and CDC42pr-GFP-CDC42 
(blue), bottom: expression levels normalized to WT endogenous expression from flow cytometry 
measurements of GAL1pr-GFP-CDC42 normalized to CDC42pr-GFP-CDC42 with distribution fitting 
errors at different induction levels. Horizontal axis showing expression is in units of endogenous Cdc42 
expression. 

 

Despite heavy presence of these spots, cells were still able to divide properly (see again Figure 

60), suggesting that it is not Cdc42 that is particularly strongly concentrated at these points. 

Otherwise, these would strongly interfere with the polarity cue, whose strength is on the 

verge of being visualized (the signal-to-noise is narrowly too low). This implies that 
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fluorescent remnants are not properly degraded, while the Cdc42 is. This behavior is 

documented in literature [188], where authors show that sfGFP suffers from incomplete 

degradation, which influences the perceived protein turnover. 

While unlikely to affect the Cdc42 concentrations in the cell, the artefact impedes good single 

cell fluorescent measurements of the polarity spot. However, noting that mainly old cells are 

affected, the influence on the population level will not be very strong. Therefore, we turn to 

bulk measurements of protein distribution through flow cytometry to gain a better insight in 

the magnitude of this effect. 

 

  
Figure 60 Example of a YWKD065a cell, which has GAL1pr-sfGFP-CDC42SW as its sole Cdc42 source and 
otherwise a WT polarity background at 0.1% galactose, which has many fluorescent protein foci, as 
seen in the green fluorescent channel frame on the right. However, the brightfield image reveals this 
cell is still budding. 

 

  
Figure 61 Protein abundance distribution examples (grey with double gamma fit in blue) from flow 
cytometry of GAL1pr-sfGFP-CDC42SW as the only source of Cdc42 in an otherwise WT (left, YWKD065a) 
or Δbem1 (right, YWKD069a) background at maximal induction (at least 2% galactose) concentration. 

 

Using flow cytometry, we this time measure GAL1pr-sfGFP-CDC42SW strains to assess the 

influence of artefacts. Two examples of fluorescent protein distributions are given in Figure 

61. As hoped, the gamma shapes of the distribution are conserved in this construct. Only a 

mild excess around the peak in observed for WT, which is likely due to the degradation 

artefacts also exhibited in fluorescence microscopy. While the artefacts are frustrating single 

cell microscopy measurements for Cdc42 localization, considering the reasonably small size of 
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this effect across the whole population, the sandwich fusion construct is still useful for 

determining Cdc42 content. 

C.2.1.3 Cdc42-needy cells have slow starts 

After having assessed the minor influence of artefacts across the population, we can expand 

on the influence that different Cdc42 concentrations have in different backgrounds, and how 

this manifests itself in Cdc42 distributions using the flow cytometry assay. However, when 

comparing the strain background at various inducer concentrations, it should be noted that in 

this flow cytometry (with the sfGFP construct) evaporation was not very well countered. 

Subsequently, effective galactose concentration could be up to most twice as large as 

intended. Accounting for this, and taking into account the lack of technical replicates for this 

assay, not much is gained in terms of relative expression levels at different inducer 

concentration. Still, we can determine clear differential expression. 

One of the distinct differences across media/strain background is the presence of two peaks 

in the Cdc42 distribution, that relate to an ‘on’ and ‘off’ state of the promoter. The setup of 

the experiment was such that media for cells was refreshed hours before measurement, at 

which point cells had been in saturation. Typically, cells degrade their proteins [257] and will 

‘reboot’ in G1. We expect this to form a bigger challenge for Δbem1 backgrounds than for 

WT, considering they need to muster more Cdc42 in order to polarize. Indeed, it was quite 

apparent that fitting the data with two gamma distributions attributed a sizeable fraction of 

Δbem1 backgrounds (see Figure 62) in the lower state of production, presumably 

corresponding to problems with ‘rebooting’. The pure Δbem1 was even worse off than the 

Δbem1 Δbem3, which is consistent with the notion that the former requires a higher 

abundance of Cdc42 (see Figure 16). Problems quickly vanished as expression became 

stronger, showing a first indication of Cdc42 dependence on fitness. 

These slow starts let themselves be further felt in the typical strength of the on-state. Figure 

63 compares expression across backgrounds. While the former allows a qualitative 

comparison of the whole distribution, the latter condenses the information to two summary 

statistics to visualize more quantitatively what the effect of higher induction is: median and 

width (standard deviation). For convenience, all summary statistics have been background 

corrected (intensity counts of samples without sfGFP) and a reference point is chosen (WT at 

maximum expression), to which all values are normalized.  

The following trends are then visible: firstly, expression increases with higher induction 

(progressively higher medians for 0.05%, 0.15%, 0.2% and 2% for all colors/backgrounds), as it 

should. Secondly, the width of the distribution increases with higher induction (progressively 

higher distribution widths for 0.05%, 0.15%, 0.2% and 2% for all colors/backgrounds). Finally, 

both previous trends are more pronounced in the Δbem1 background, particularly when 

Bem3 is still present (blue). The low expression of Cdc42 seems to stop this background in its 

tracks early on. However, once expression is suitable also for this background, its expression is 
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the one that increases the most. Conversely, WT performance appears mostly insensitive to 

expression, in line with the view that the viable WT expression range is very broad. 

 

 
Figure 62 Top: Example of a Δbem1 replicate with GAL1pr-sfGFP-CDC42SW intensity histogram from 
flow cytometry. Two distinct peaks are visible, the ‘off’ (lower) and ‘on’ (higher) state, which have been 
fitted by a mixture of two gamma distributions with the blue patch showing the uncertainty due to the 
fitting error on the parameters. Bottom: Fraction of the population found in the lower, ‘off’-state of 
protein production when the sfGFP-CDC42SW distribution is fitted with two gamma distributions. Colors 
denote at which induction concentration was measured, which due to evaporation uncertainty is at 
least 0.05% galactose (red), 0.15% (orange), 0.2% (yellow) and 2% (green). Error bars represent the 
standard fitting errors on these fractions, for three polarity backgrounds: WT (YWKD065a), Δbem1 
(YWKD069a, b, c combined) and Δbem1 Δbem3 (YWKD070a, b, c combined). 
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Figure 63 Summary statistics on the sfGFP intensity distributions as measured in flow cytometry, 
corrected for background. All values are relative, i.e., they are normalized to WT values at maximum 
expression for convenience. The median (vertical axis) is plotted against the standard deviation 
(horizontal axis) for strains with GAL1pr-sfGFP-CDC42SW as the only source of Cdc42 in an otherwise 
WT (green line, YWKD065a), Δbem1 (blue line, YWKD069a/b/c) and Δbem1 Δbem3 (red line, 
YWKD070a) background. Values are the weighted average of mentioned biological replicates that 
yielded at least 1000 points. Markers denote at which induction concentration was measured, which 
due to evaporation uncertainty is at least 0.05% galactose (square), 0.15% (triangle), 0.2% (square) 
and 2% (asterisk)). Error bars construct the approximate 95% confidence interval. 

 

C.2.2 Volumetric assay 

C.2.2.1 Slow medium great equalizer 

After the fluorescence tests, we assessed as a final check the effect of the GAL1pr-sfGFP-

CDC42SW construct on volumes. Disentangling possible unwanted side-effects from the 

expected influence that variable expression of Cdc42 has on volumes is not trivial. Notably, 

within the Δbem1 there is a quite strong documented corollary of fitness on size [24], which 

we suppress to double-check the correct functionality of the construct. 

Therefore, we decide to conduct this experiment in an environment such that fitness 

differences are minimal, which implies relatively poor medium. Concretely, low amino acid 

concentrations (and autoclaving for sterilization) impede prolonged growth under maximum 

speed. In 3.4.1, we model the effect of slow growth conditions, to more quantitatively 

understand why this equalizes fitness differences so well. Experimentally, a rough growth 

assay in this medium (shown in 2.3.2 and Appendix C.3) shows that for example the Δbem1 is 

still well alive at 0.04% galactose, despite that endogenous expression is estimated around 

0.1% (see Figure 59), which is narrowly enough in optimal growth conditions (YPD). So, when 
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maximum growth conditions given a media type are not optimal because e.g., amino acids are 

not abundant, this benefits mutants short of Cdc42, allowing us here to focus on the effect of 

sugar concentration and the sfGFP construct itself. 

 

C.2.2.2 Minor influence sfGFP sandwich on volumes 

To condense the amount of information, we reduce the distribution data to two summary 

statistics; the median and the standard deviation. An example for WT is found in Figure 64. 

This allows visualization of the size trends dependent on induced expression and polarity 

background. 

Firstly, we see that simply adding galactose in the medium affects volumes Figure 65, even for 

pure WT, which present another obstacle in assessing the construct. Volumes increase with 

sugar concentration, even beyond values for growth in dextrose. As the typical size (as 

expressed in the median) increases, the width of the distribution scales with it. This does not 

seem a background dependent effect, as this also holds for the Δbem1 Δbem3. As shown in 

Appendix C.3, this is likely an osmolarity effect due to high sugar concentration. While it is 

possible to mitigate this when buffering with sorbitol, lower osmolarity values are more 

conventional. Therefore, we decided to simply de-trend the data of the strains without 

endogenous CDC42, looking instead at relative sizes compared to WT under the same 

conditions (Figure 66). 

 

 

Figure 64 Histogram of sizes (radii) of WT in various media, together with the median (red line) and 
standard deviation (purple), for simplicity assuming all sizes are at the center of the bin in which they 
belong. 
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Figure 65 Median and standard deviation of volumes as measured with a Coulter Counter for strains 
with endogenous CDC42 in a WT background (YKWD001, blue) and Δbem1 Δbem3 (YWKD007, orange) 
background, for five galactose concentrations; 0.02% (circular markers), 0.1% (triangular markers), 
0.2% (square markers), 2% (diamond markers) and 0% (also no raffinose, instead 2% dextrose, 
asterisks as markers). Error bars show the 95% confidence interval. 

 

 
Figure 66 Median and standard deviation of volumes as measured with a Coulter Counter for strains 
with GAL1pr-sfGFP-CDC42SW as the only source of Cdc42 in an otherwise WT (purple, YWKD065a), 
Δbem1 (green, YWKD069a/b) and Δbem1 Δbem3 (light blue, YWKD070a/b/c) background and with 
GAL1pr-CDC42 as the only source of Cdc42 in an otherwise WT (burgundy, YWKD071a) and Δbem1 
Δbem3 (olive, YWKD073a/b) background, for four galactose concentrations; 0.02% (circular markers), 
0.1% (triangular markers), 0.2% (square markers) and 2% (diamond markers). When multiple biological 
replicates where present, values and corresponding error bars result from weighted averaging. Error 
bars show the 95% confidence interval. 
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Now, the non-endogenous Cdc42 strains (either with sfGFP or not, but always under the Gal1-

promoter) exhibit small trends upwards when supplied with more galactose, resulting in 

higher induction. These are presumably some residual fitness effects, with background 

benefitting from more Cdc42. Still, overall the media has largely equalized fitness, as under 

this concentration the Δbem1 under fast growth conditions was expected to be unviable and 

is at the edge of viability 30% larger than WT [24]. It is an interesting find that the influence of 

the environment on successfully crossing the presumed Cdc42 barrier resulting from its 

genotype can be well controlled in the experiment. 

The most important conclusion follows when comparing the strains with/without sfGFP 

sandwiched in the Cdc42. We see in Figure 66 only a +/- 10% difference in volumes compared 

to WT without and with sfGFP respectively. Remarkably, cells with sfGFP in the construct 

become slightly smaller, so there is no sign of deleterious effects of this construct on fitness, 

which scales with volumes [24] (at constant osmolarity). 

The causes of the small volume deviation might be a change in diffusive constant important 

for the reaction-diffusion pathway, as sfGFP is more than twice the size of Cdc42 (Figure 58). 

Cytoplasmic mobility is shown in E. coli to depend sharply on the molecular weight around the 

weight of Cdc42 [288]. Additionally, the fast maturation of sfGFP and how its evades 

degradation [188] may contribute to a more stable and faster fold of Cdc42, which might 

weaken the role of Rdi1 to protect Cdc42 from degradation [77]. This may result in slightly 

higher overall Cdc42 number, which is beneficial. 

 

Ultimately, the small volume deviations and the on population-scale small fluorescent 

artefacts inspire sufficient trust to proceed with strains containing the GAL1pr-sfGFP-CDC42SW 

construct for the conclusive growth assay, which are conducted in 2.3. 

 

C.3 Rough growth assay in suboptimal growth conditions 

 

This assay (Figure 67) has comparable medium to the volumetric assay in Chapter 2. However, 

as evaporation was poorly controlled, actual galactose concentration may be up to twice as 

high, not the case in the volumetric assay). Curves are intended to reflect growth as during 

the volumetric assay, which does not imply the fastest growth at very low OD, but 

somewhere higher up the curve (OD>0.1, as OD base starting level is typically already around 

0.08). Also, when supplemented with sorbitol such that all strains are measured in the same 

high osmolarity media, trends as function of galactose concentration vanish (see Figure 68). 
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Figure 67 Doubling times as measured from a TECAN plate reader for GAL1pr-sfGFP-CDC42SW as the 
only source of Cdc42 in an otherwise WT (orange line, YWKD065a), Δbem1 (purple line, 
YWKD069a/b/c) and Δbem1 Δbem3 (light blue, YWKD070a/b/c) background, for GAL1pr-CDC42 as the 
only source of Cdc42 in an otherwise WT (yellow, YWKD071a/b/c) background and pure WT (dark blue 
line, YWKD062/b/c). Values are linear fits using weighted least squares (inverse of approximated 
measurements errors as weights) intended on the regime where most of the log-phase growth takes 
place, defined as OD>0.1 (so not necessarily the ‘fastest part’). The induction concentrations at the 
horizontal axis represent due to evaporation uncertainty at least 0.02%, 0.1%, 0.2% and 2% galactose. 
Error bars represent lowest and highest replicate value. 

 
Figure 68 Doubling times as measured from a TECAN plate reader for GAL1pr-sfGFP-CDC42SW as the 
only source of Cdc42 in an otherwise WT (orange line, YWKD065a), Δbem1 (purple line, YWKD069a) 
background and pure WT (dark blue line, YWKD062c). Values are linear fits using weighted least 
squares (inverse of approximated measurements errors as weights) intended on the regime where 
most of the log-phase growth takes place, defined as OD>0.1 (so not necessarily the ‘fastest part’). The 
induction concentrations at the horizontal axis represent due to evaporation uncertainty at least 
0.02%, 0.1%, 0.2% and 2% galactose. Error bars represent lowest and highest replicate value. Medium 
was supplemented with sorbitol such that the osmolarity of all media are the same.  
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D Membrane growth rate considerations for calibration 

 

When calibrating the growth parameters to match the WT experimental doubling time of 83 

min., we first consider the rough dependency of the doubling time on the growth parameters. 

We assume that WT is relatively optimized such that polarization time is always 𝑡𝑝𝑜𝑙,𝑚𝑖𝑛, and 

that switching from isotropic to polarized growth is limited by the minimum G1 time (𝑡𝐺1,𝑚𝑖𝑛) 

requirement. So, changing membrane growth rate 𝐶1 does not strongly alter fitness. In that 

case, the smallest size after G1 𝑟1 follows from growing for 𝑡𝐺1,𝑚𝑖𝑛 to reach 𝑟𝑚𝑖𝑛 and for 

𝑡𝑝𝑜𝑙,𝑚𝑖𝑛 afterwards (𝑡𝑃1 total in G1): 

4𝜋𝑟1
2 = 4𝜋𝑟𝑚𝑖𝑛

2 + 𝐶1𝑡𝑝𝑜𝑙,𝑚𝑖𝑛 ⟹ 𝑟1 = (𝑟𝑚𝑖𝑛
2 + 𝐶1𝑡𝑝𝑜𝑙,𝑚𝑖𝑛 (4𝜋)⁄ )

1/2
 

The radius of the bud, 𝑟𝑏𝑢𝑑, then becomes: 

 
𝑟𝑏𝑢𝑑 = 0.71/3𝑟1 = 0.71/3(𝑟𝑚𝑖𝑛

2 + 𝐶1𝑡𝑝𝑜𝑙,𝑚𝑖𝑛 (4𝜋)⁄ )
1/2

 (D.1) 

which takes amount of time 𝑡𝑃2 to grow, governed by: 

 
4𝜋𝑟𝑏𝑢𝑑

2 = 𝐶2𝑡𝑃2 ⟹ 4𝜋0.72 3⁄ (𝑟𝑚𝑖𝑛
2 + 𝐶1𝑡𝑝𝑜𝑙,𝑚𝑖𝑛) = 𝑐𝑃𝐶1𝑡𝑃2  

 

⟹ 𝑡𝑃2 =
4𝜋0.72 3⁄

𝑐𝑃𝐶1
𝑟𝑚𝑖𝑛
2 +

0.72 3⁄

𝑐𝑃
𝑡𝑝𝑜𝑙,𝑚𝑖𝑛 (D.2) 

For self-consistency, this will only hold when the daughter cell can also obtain the same size, 

otherwise G1 growth is too fast: 

 

4𝜋𝑟𝑚𝑖𝑛
2 ≥ 4𝜋𝑟𝑏𝑢𝑑

2 + 𝐶1𝑡𝐺1,𝑚𝑖𝑛 ⟹ 𝐶1 ≤ 4𝜋(𝑟𝑚𝑖𝑛
2 − 𝑟𝑏𝑢𝑑

2 ) 𝑡𝐺1,𝑚𝑖𝑛⁄  

Now suppose G1 growth is maximal, so we set 𝐶1 = 4𝜋(𝑟𝑚𝑖𝑛
2 − 𝑟𝑏𝑢𝑑

2 ) 𝑡𝐺1,𝑚𝑖𝑛⁄  in D.1 and D.2: 

 

𝑡𝑃2 =
𝑡𝐺1,𝑚𝑖𝑛0.7

2 3⁄

𝑐𝜙(𝑟𝑚𝑖𝑛
2 − 𝑟𝑏𝑢𝑑

2 )
𝑟𝑚𝑖𝑛
2 +

0.72 3⁄

𝑐𝑃
𝑡𝑝𝑜𝑙,𝑚𝑖𝑛 (D.3) 

 
𝑟𝑏𝑢𝑑
2 = 0.7

2
3(𝑟𝑚𝑖𝑛

2 + (𝑟𝑚𝑖𝑛
2 − 𝑟𝑏𝑢𝑑

2 )𝑡𝑝𝑜𝑙,𝑚𝑖𝑛 𝑡𝐺1,𝑚𝑖𝑛⁄ )  

 

⟹ 𝑟𝑏𝑢𝑑
2 =

0.72 3⁄ (1 + 𝑡𝑝𝑜𝑙,𝑚𝑖𝑛 𝑡𝐺1,𝑚𝑖𝑛⁄ )

(1 + 0.72 3⁄ 𝑡𝑝𝑜𝑙,𝑚𝑖𝑛 𝑡𝐺1,𝑚𝑖𝑛⁄ )
𝑟𝑚𝑖𝑛
2  (D.4) 

Plugging these values into D.3 yields 

𝑡𝑃2 =
0.72 3⁄

𝑐𝑃(1 − 0.7
2 3⁄ )

𝑡𝐺1,𝑚𝑖𝑛 + (
0.74 3⁄

𝑐𝑃(1 − 0.7
2 3⁄ )

+
0.72 3⁄

𝑐𝑃
) 𝑡𝑝𝑜𝑙,𝑚𝑖𝑛 (D.5) 

Then for the doubling time 𝑡𝑡𝑜𝑡 of that mother cell: 
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𝑡𝑡𝑜𝑡 = (1 +
0.72 3⁄

𝑐𝑃(1 − 0.7
2 3⁄ )

) 𝑡𝐺1,𝑚𝑖𝑛 + (1 +
0.74 3⁄

𝑐𝑃(1 − 0.7
2 3⁄ )

+
0.72 3⁄

𝑐𝑃
) 𝑡𝑝𝑜𝑙,𝑚𝑖𝑛  

 

= (1 +
0.72 3⁄

𝑐𝑃(1 − 0.7
2 3⁄ )

) (𝑡𝐺1,𝑚𝑖𝑛 + 𝑡𝑝𝑜𝑙,𝑚𝑖𝑛) (D.6) 

The value of 𝐶1 is then: 

𝐶1 =

4𝜋 (𝑟𝑚𝑖𝑛
2 − 0.72/3 (𝑟𝑚𝑖𝑛

2 +
𝐶1𝑡𝑝𝑜𝑙,𝑚𝑖𝑛

4𝜋
))

𝑡𝐺1,𝑚𝑖𝑛
=

4𝜋 (1 − 0.7
2
3) 𝑟𝑚𝑖𝑛

2

𝑡𝐺1,𝑚𝑖𝑛 (1 + 0.7
2 3⁄

𝑡𝑝𝑜𝑙,𝑚𝑖𝑛
𝑡𝐺1,𝑚𝑖𝑛

)
 (D.7) 

Substituting the time values assumed in this model (see Table 4, section 3.2), we get: 

 
𝐶1 = 0.136 𝑟𝑚𝑖𝑛

2  (D.8) 

The population doubling time is now to some extend robust against changes in 𝐶1, as one 

may expect in WT. For example, doubling 𝐶1 only changes up polarized growth; more yet 

faster growth is required. Supposing a 20/60 min. balance between G1/G2 times for 

calibrated WT, the speed gain in polarized growth would be 30 min. (60/2), while the loss due 

to more G1 growth is 10 min., so 20 min. time gain overall for the first generation. For the 

cells that have already had one daughter, this gain would be 10 min. instead (loss has 

doubled), and for two daughter mothers this would be about 0. But because these 

generations are smaller fractions of the population, the total population doubling time would 

likely only have about 10 min. gain from doubling 𝐶1. This shows a rather broad optimum. 

However, for the smallest daughter size will increase as well. Doubling 𝐶1 would imply twice 

the added membrane growth for about a quarter of the cell cycle. For self-consistency, 

𝑟𝑚𝑖𝑛 = 𝑟𝑏𝑢𝑑 in D.1 gives: 

 

(1 − 0.7
2
3) 𝑟𝑏𝑢𝑑

2 = 0.7
2
3
𝐶1𝑡𝐹1
4𝜋

⟹ 𝑟𝑏𝑢𝑑 = √
0.7

2
3𝐶1𝑡𝐹1

4𝜋 (1 − 0.7
2
3)

 (D.9) 

For the usually assumed parameters, this is about 1.82 μm. While an increase of a factor of 2 

in 𝐶1 would gain at most 15% in doubling time, it will also increase the smallest daughter size 

by more than 40%. So an increase in 𝐶1 quickly becomes incompatible with [228]. 

Decreasing 𝐶1 has a much larger effect on doubling times. Decreasing a factor of two means 

for cells (that do not yet have a daughter) almost a doubling of G1 phase (20 to 35 min., as 

only time before polarization gets doubled), while polarized growth phase will double 

doubled as well from 60 to 115 min. Subsequent generations suffer less, but overall having 

𝐶1 = 0.136 𝑟𝑚𝑖𝑛
2  is hence relatively optimized.  
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E Reconstruction of burst parameters from FACS data 

 

In order to characterize expression of the endogenous CDC42 and analogously, expression 

under the inducible promoter GAL1, a fluorescent protein, in this case GFP, must be attached 

to Cdc42. While this notably leads to loss-of-function when N-terminally fused, an additional, 

endogenous version of Cdc42 must remain present. However, this is not a big disadvantage: 

overexpression of Cdc42 may have otherwise led to a fitness effect, which in turn may 

influence the shape of the population protein distribution.  

Presumably, measuring population protein distributions through fluorescent intensity by flow 

cytometry should yield a gamma distribution, given the small mRNA/protein life time ratios  

𝜏1 2⁄ ,𝐶𝑑𝑐42 [189], [235], [236]. That this seems true is shown in Figure 69 to Figure 72. This 

data was acquired from strains YMS02-04, replicates of RWS116, 119, and RWS1421 from the 

Wedlich-Söldner lab, measured by Marit Smeets (see also 2.5) and gated to remove artefacts.  

There is evidence for a mixture distribution, mainly for the lowest galactose concentration. 

This suggests a significant fraction of the population seems to have the promoter in the “off” 

state. Yet, another paper [199] did not see this, so presumably these are just cells that had 

not yet left lag phase, so we will fit using mixture distributions, but take the one with the 

highest mean as the GAL1 promoter distribution. The mixture distribution also gives a slightly 

better fit for the endogenous expression (see Figure 72, suggesting minor regulation (possibly 

a transcription factor causing a two-level expression system) which will be neglected. 

 
Figure 69 Flow cytometry data of YMS02, which has non-fluorescent, endogenous CDC42 to obtain a 
measure for the autofluorescence. In green is the gamma distribution fit on the data, with the 
corresponding 95% confidence interval (CI) given the parameter uncertainty after estimation. The CI 
resulted from Monte Carlo simulation of parameter values assuming normal errors and zero cross 
correlation in uncertainty estimates for 𝑘 and 𝜃. 



 Appendix 

 

200 

 
Figure 70 Flow cytometry data of YMS03 with 0.05% galactose, which has GAL1-GFP-CDC42. In green is 
the gamma distribution fit on the data, in orange is the background corrected gamma fit, with the 
corresponding 95% confidence interval (CI) given the parameter uncertainty after estimation. The CI 
resulted from Monte Carlo simulation of parameter values assuming normal errors and zero cross 
correlation in uncertainty estimates for 𝑘 and 𝜃. 

 
Figure 71 Flow cytometry data of YMS03 with 2% galactose, which has GAL1-GFP-CDC42. In green is 
the gamma distribution fit on the data, in orange is the background corrected gamma fit, with the 
corresponding 95% confidence interval (CI) given the parameter uncertainty after estimation. The CI 
resulted from Monte Carlo simulation of parameter values assuming normal errors and zero cross 
correlation in uncertainty estimates for 𝑘 and 𝜃. 

There is significant autofluorescence given the histogram of the strain without GFP, 

particularly for the pGAL1-GFP-CDC42 strain in medium with 0.05% galactose. This would 

have to be “subtracted” from the observations, yielding a distribution for the fluorescent 

Cdc42 copy number. In statistical terms, the observations should be deconvolved (of the 

background). Conceptually, one could try to remove the autofluorescence from the observed 

distributions in two ways: either non-parametrically or assuming certain properties for the 

underlying distributions (modelling). 
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Figure 72 Flow cytometry data of YMS04 with 0.2% galactose, which has pCDC42-GFP-CDC42 to obtain 
a measure for the endogenous expression. In green is the gamma distribution fit on the data, in orange 
is the background corrected gamma fit and in red a double gamma mixture distribution fit, with the 
corresponding 95% confidence interval (CI) given the parameter uncertainty after estimation. The CI 
resulted from Monte Carlo simulation of parameter values assuming normal errors and zero cross 
correlation in uncertainty estimates for 𝑘 and 𝜃. 

The non-parametric approach is not straightforward. Convolution in the Fourier domain 

means multiplication, so in very basic terms, one should take the Fourier transform, divide 

out the noise (the autofluorescent signal) and do an inverse Fourier transform. This last step 

is difficult; the necessary integral is hard to compute or does not exist because the empirically 

derived probability distributions are typically not so well behaved. Researchers usually 

smoothen the discrete observations data with kernels. Without assuming any theoretical 

knowledge on the noise distribution, this problem gets difficult, but is solved, e.g. here [289]. 

The parametric approach seems more feasible. The non-parametric approach ignores how 

much is already known about the underlying processes, knowledge that plays to our 

advantage. From a theoretical point of view, assuming exponential waiting times between 

bursts of expression, one would expect a gamma distribution (see [189], [237]), which fits the 

noise well. That this also holds for the convolved observations can be explained by [287], 

where it is shown that one can approximate the convolution of two gamma probability 

density functions by another gamma function. This is a very useful property of the Gamma 

distribution, because it becomes possible to assume a Gamma distribution for the 

unobserved Cdc42 distribution, with parameters inferred from the observed distributions.  

Concretely, the unobserved, real Cdc42 distribution is reconstructed as follows: The observed, 

convoluted Cdc42 distribution is modelled as a mixture distribution subject to a random 

variable having probability 𝑝 to be “off”, following Γ𝑜𝑓𝑓, and (1 − 𝑝) to be “on” following Γ𝑜𝑛. 

These are decomposed separately. The actual Cdc42 signal 𝑆 then follows the distribution: 

 

𝑆 ~ 𝑓(𝑥) = {
Γ(𝑘𝑠,𝑜𝑓𝑓, 𝜃𝑠,𝑜𝑓𝑓), 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝

Γ(𝑘𝑠,𝑜𝑛, 𝜃𝑠,𝑜𝑛), 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑝)
 (E.1) 
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where parameters follow from: 

 

𝑘𝑡,𝑜𝑓𝑓 =
(𝑘𝑏𝜃𝑏 + 𝑘𝑠,𝑜𝑓𝑓𝜃𝑠,𝑜𝑓𝑓)

2

𝑘𝑏𝜃𝑏
2 + 𝑘𝑠,𝑜𝑓𝑓𝜃𝑠,𝑜𝑓𝑓

2  (E.2) 

 

𝜃𝑡,𝑜𝑓𝑓 =
𝑘𝑏𝜃𝑏

2 + 𝑘𝑠,𝑜𝑓𝑓𝜃𝑠,𝑜𝑓𝑓
2

𝑘𝑏𝜃𝑏 + 𝑘𝑠,𝑜𝑓𝑓𝜃𝑠,𝑜𝑓𝑓
 

(E.3) 

and similarly for “on”, with 𝑘𝑡,𝑜𝑓𝑓/𝑜𝑛 and 𝜃𝑡,𝑜𝑓𝑓/𝑜𝑛 resulting from maximum likelihood 

estimation (MLE) on the (total, subscript t) observed signal, and 𝑘𝑏 and 𝜃𝑏 resulting from 

fitting the background (subscript b) signal. The MLE also gives 95% confidence intervals. 

Similarly, (but now neglect the “off” state) this is done for the endogenous promoter case, 

yielding a gamma distribution with a mean given by 𝑘𝑒𝑛𝑑𝑜𝜃𝑒𝑛𝑑𝑜, and a confidence interval 

following propagation of error of the ML estimates. We define this mean as “the WT amount 

Cdc42”. This can be used to scale the x-axis of the distribution Γ𝑠 to have Cdc42 concentration 

(in WT units) instead of arbitrary fluorescence units. Gamma distributions are easily scaled: 

 
Γ𝑠𝑐𝑎𝑙𝑒𝑑 = Γ𝑠(𝑘𝑠, 𝜃𝑠 (𝑘𝑒𝑛𝑑𝑜𝜃𝑒𝑛𝑑𝑜)⁄ ) (E.4) 

Again, using Monte Carlo simulations gives the error estimates of 𝜃. The result of scaling 

should be only a slightly wider distribution. The resulting confidence interval will be 

asymmetric with respect to the mean value, for the fold Cdc42 increase when adding various 

amounts of galactose. The resulting, fitted flow cytometry data, normalized by the 

endogenous expression are then given in Figure 59  (bottom) in Appendix C.2.1.1. 
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F Effect of stochastic GAP production on Cdc42/GAP ratio 

 

If GAPs are explicitly included into the growth model, polarization will not depend on Cdc42 

concentration relative to a threshold, but on the ratio of Cdc42 and GAP concentrations 

relative to a threshold. In order to understand the distribution of the protein ratio, we use 

that within every generation, the production of new protein follows approximately a gamma 

distribution, by the following reasoning. The distribution of proteins 𝑍 by the model 

assumptions is a convolution of exponentially distributed burst sizes (as the random variable 

is a sum of exponentially distributed random variables): 

𝑍 =∑𝑋𝑖

𝑚

𝑖=1

 

where 𝑚 itself is Poisson distributed (number of bursts within a deterministic amount of time 

when burst waiting times are exponentially distributed). 

This sum of exponentials follows a Gamma distribution with scale parameter as the inverse of 

the individual exponential parameter and the shape parameter is Poisson distributed. This is 

because an exponential distribution is just a gamma distribution (with shape parameter 1 and 

scale as inverse exponential parameter), and the sum of gamma’s can be approximated by 

another gamma [287]. The latter is exact when scale parameters are identical, which is true if 

all exponentials are independent and identically distributed (not the case if degradation is an 

important factor, as then the first burst is effectively weaker than the last). So: 

[𝐶𝑑𝑐42]~Γ(𝑥; 𝑘1, 𝜃1)   ,   [𝐺𝐴𝑃]~Γ(𝑥; 𝑘2, 𝜃2) 

Hence, assuming that both Cdc42 and the GAPs approximately follow a gamma distribution 

within a cell cycle, the ratio of the two will follow a beta prime or generalized gamma ratio 

distribution [290]: 

[𝐶𝑑𝑐42]

[𝐺𝐴𝑃]
~
(𝑥 𝑞⁄ )𝑘1−1(1 + (𝑥 𝑞⁄ ))

−𝑘1−𝑘2

𝑞𝐵(𝑘1, 𝑘2)
 

with 𝑞 = 𝜃1/𝜃2. Since from [229] we know typically 𝑘1 ≪ 𝑘2 and 𝑘2 ≫ 1, the m-th moment 

as given in [290] reduces to: 

𝐸 [(
[𝐶𝑑𝑐42]

[𝐺𝐴𝑃]
)

𝑚

] = (
1

𝑞
)
−𝑚 Γ(𝑘1 +𝑚)

Γ(𝑘1)

Γ(𝑘2 −𝑚)

Γ(𝑘2)
≈ (

𝑞

𝑘2
)
𝑚 Γ(𝑘1 +𝑚)

Γ(𝑘1)
 

which are the moments of a gamma distribution with shape 𝑘1 , as for Cdc42, but rescaled 

with scale parameter 𝑞/𝑘2. This makes intuitive sense, because in the limit that GAPs are 

completely constitutively expressed, its gamma distribution just turns into a delta peak 

around one value. In other words, the burst dynamics of Cdc42 are dominant for the protein 

noise relevant for reaching the polarity threshold.  
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G Convergence and error estimation 

 

The following plot shows the convergence to an equilibrium state, for two opposite ends of 

the fitness spectrum; approximately WT and Δbem1, see Figure 73 and Figure 74. Simulations 

are run with [𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑟𝑒𝑙 =
[𝐶𝑑𝑐42]𝑚𝑖𝑛

𝑃𝑊𝑇 / 
4

3
𝜋𝑟𝑚𝑖𝑛,𝑊𝑇

3  of 0.03 and 0.45 respectively, and otherwise 

standard parameters (see Table 4). The choice of initial conditions is by default 1000 cells 

without protein at 1.1𝑟𝑚𝑖𝑛,𝑊𝑇, and is shown to be inconsequential for convergence. 

Additionally, to demonstrate the reproducibility of the equilibrium results, an estimate of the 

numerical error is obtained that inevitably occurs when estimating doubling time. This is 

shown in Figure 75. It depicts two main error sources: one is due to truncation of the 

simulation at a colony size of 5 million to maintain reasonable computation times (presented 

on the x-axis), and the other is due to the intrinsic randomness of protein bursts that the 

simulation take into account, leading to slightly different results from different random seeds 

(the multiple points per genotype). The chosen genotypes reflect fast, medium and slow 

growth (approximately WT, ∆bem1∆bem2 (𝑐𝑚𝑖𝑛,𝑟𝑒𝑙 = 0.27) and ∆bem1 respectively). 

It can be seen that cutting off the simulations at the point of 5 million cells seems 

appropriate, with deviations of typically 0.1% for adding 100 minutes to the colony simulation 

time. The doubling time estimates are instead dominated by the error from the “technical 

replicates” (different seeds). However, it is typically confined to 0.5%, up to typically 1% for 

slow growing cells. This is smaller than the typical experimental error of roughly 5%, showing 

that this level of accuracy for the simulations is sufficient. 

 
Figure 73 Simulated doubling times (blue filled line) and colony size (red dashed line) for 
(approximately) WT as a function of time from ancestor. Colony size / number of cells are in this case a 
subset of the actual colony size, namely those whose time stamps fall into the appropriate one-minute 
bins to be considered for the doubling times. With the dilution step half-way (leaving only 1000 cells in 
reality), this renders doubling time estimates (average of previous 100 200-point moving windows) 
around this time very unreliable, but convergence follows above a colony size of 100000. 
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Figure 74 Simulated doubling times (blue filled line) and colony size (red dashed line) for 
(approximately) Δbem1 as a function of time from ancestor. Colony size / number of cells are in this 
case a subset of the actual colony size, namely those whose time stamps fall into the appropriate one-
minute bins to be considered for the doubling times. With the dilution step half-way (leaving only 1000 
cells in reality), this renders doubling time estimates (average of previous 100 200-point moving 
windows) around this time very unreliable, but convergence follows above a colony size of 100000. 

 

Figure 75 Scatter plot of relative error in doubling times (in %, centered around 0) and average relative 
change for in doubling time (in %, defined as the 100 times the fitted slope on fitted doubling times 
over the last 100 time windows of 200 min. in the simulation that reaches a colony size of at least 5 
million cells) converted to a percentage for 100 different random seeds at the start of the simulations 
(mimicking “technical replicates”) for three genotypes, which approximately correspond to WT (fast 
growing), ∆bem1∆bem2 (medium growing), ∆bem1 (slow growing). 
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H Single cell test case 

 

In order to more easily assess the correctness of the numerical implementation of the growth 

rate model, the results from the perspective of a single cell are considered. What can be seen 

in Figure 76 is that for this example cell (from a ∆bem1 background simulation, with Cdc42 

threshold approximately as Δbem1Δbem2), there is continuous degradation of Cdc42, but an 

even steeper decline in concentration due to dilutions. The discontinuous increases show 

protein expression bursts. Indeed, the cell can only divide (discontinuous drops in protein 

number absent in protein concentration) when the concentration of Cdc42 exceeds the red 

zone at an earlier time before budding (there is polarization time and polarized growth in 

between these events). Otherwise, the cell will continue to grow until it exceeds the 

maximum cell size, after which it is pronounced dead. This is all according to the way the 

model is designed, validating the numerical implementation. 

 

Figure 76 Time trace of the Cdc42 copy number (blue, left y-axis) and corresponding concentrations 
(orange, right y-axis) in an approximate Δbem1Δbem2. The red patch denotes the region where the 
concentration is below the minimum concentration to polarize. Where protein number and 
concentration hit zero again, the cell is dead. 
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I Relaxation of model assumptions 

 

To test the robustness of the growth model results, the potential effect of relaxing certain 

model assumptions and varying parameter values is investigated. For otherwise WT 

parameters, the effect of minimum Cdc42 concentrations on doubling times is depicted in 

Figure 77. The curves for the ∆bem1 backgrounds show the same trends. Curves are created 

by first adjusting 𝐶1 and 𝐶2 by the same factor such that WT doubling time comes as close to 

83 minutes as possible. This is accomplished by modifying this factor in the model generating 

doubling times in a parameter sweep, and then linear interpolating to get an 83-minute 

doubling time. The sweeps for this pre-factor of 𝐶1 and 𝐶2 are 0.3 to 0.5 (step 0.02), 0.65 to 

0.75 (step 0.02), 0.5 to 0.7 (step 0.02) and 0.4 to 0.5 (step 0.01) for assumption sets with 

twice the normal 𝐶2/𝐶1, 85% the normal 𝑟𝑚𝑖𝑛, fixed 𝑟𝑏𝑢𝑑 and constant volume expansion 

respectively. 

 

 

 

Figure 77 Simulated doubling times as a function of minimum Cdc42 concentration to polarize for WT 
parameters under various assumptions: in blue the typical assumed settings, in red with twice the 
normal membrane area growth rate during polarized growth, in yellow with a smaller minimum radius 
to polarize, in purple with a constant small daughter size and in green with constant volume instead of 
area growth rate. Area growth rates are recalibrated for every assumption set to match the WT 
doubling time of 83 minutes. 
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While the exact values of the fitted Cdc42 thresholds shift for the GAP deletion genotypes, 

the model fit remains accurate in all cases (see Table 14), with the mean absolute error 

staying within 40% of the original settings, and always less than 1 standard error from the 

experimental values. The relative effect of the GAP deletion is essentially constant. 

 

Table 14 Growth model fitting parameters represented as [𝐶𝑑𝑐42]𝑚𝑖𝑛,𝛥𝑏𝑒𝑚1, [𝐶𝑑𝑐42]𝑚𝑖𝑛,𝑊𝑇 , relative 
effective GAP concentration effect of the bem3 deletion and bem2 deletion respectively for the model 
assumption set 1 to 5 (standard settings, twice the normal membrane area growth rate during 
polarized growth, smaller minimum radius to polarize, constant small daughter size and constant 
volume instead of area growth rate respectively), when fitted to the experimental data set for the 
Δbem1, Δbem1Δbem3, Δbem1Δbem2, Δbem1Δbem3Δbem2, WT, Δbem3, Δbem2 and Δbem3Δbem2 
mutants [24]. The last row shows the mean absolute error (MAE), defined as the average of all 
deviations of the fitted simulated doubling time from the experimental doubling time divided by their 
respective experimental standard error for these mutants. 

 Set 1 
(Default) 

Set 2 
(𝟐𝑪𝟐) 

Set 3 
(𝒓𝒎𝒊𝒏 =
𝟏. 𝟕 𝝁𝒎) 

Set 4 
(𝒓𝒃𝒖𝒅 =
𝟏. 𝟖 𝝁𝒎) 

Set 5 
(𝒅𝑽/𝒅𝒕 =

𝒄) 

[𝑪𝒅𝒄𝟒𝟐]𝒎𝒊𝒏,𝚫𝒃𝒆𝒎𝟏 116 327 214 314 308 

[𝑪𝒅𝒄𝟒𝟐]𝒎𝒊𝒏,𝑾𝑻 6 15 11 14 15 
[𝑩𝑬𝑴𝟑] [𝑮𝑨𝑷]𝒕𝒐𝒕,𝒆𝒇𝒇⁄  0.62 0.63 0.62 0.64 0.63 

[𝑩𝑬𝑴𝟐] [𝑮𝑨𝑷]𝒕𝒐𝒕,𝒆𝒇𝒇⁄  0.34 0.35 0.35 0.35 0.35 

MAE 0.88 0.57 0.90 0.43 0.68 
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J Epistasis prediction from growth model 

 

The growth model of Chapter 3 can predict epistasis between mutations that affect the 

model parameters. As an indication of this, in service of 3.4.2, the epistatic interactions 

between WT and Δbem1 is considered, when varying five model parameters. This leads to the 

epistatic predictions described in the aforementioned subsection, where parameter changes 

are coupled to the mutants related in literature, see Table 15.  

 

Table 15 WT and Δbem1 simulated doubling times for various parameter sets of the growth model of 
Chapter 3. The standard parameters set refers to Table 4 with the fits of 3.3.1, for the other cases 
indicated parameters are changed relative to that set. The exception is the small/large bud size set, 
where changes are relative to the standard set with fixed bud radius of 2.5 µm, as normally daughters 
scale in size with mothers. Epistasis reported is defined as in equation 4.4. Literature categories as 
described in 3.4.2 are connected to the corresponding cases. 

Case 
description 

Relates to 
literature 
category 

Parameters 
changed 

relative to 
standard 

Para-
meters 
change 

[%] 

Doubling 
time WT 

[min.] 

Doubling 
time Δbem1 

[min.] 

Epistasis 

Standard  
  

82 396 
 

Fast 
membrane 
growth 

Beneficial 𝐶1, 𝐶2 5 82 624 -0.20 

Slow 
membrane 
growth 

Deleterious 𝐶1, 𝐶2 -5 82 290 0.14 

Slow G1 Slow G1 
phase 

𝑡𝐺1,𝑚𝑖𝑛,𝑊𝑇 20 94 903 -0.30 

Fast G1 Fast G1 
phase 

𝑡𝐺1,𝑚𝑖𝑛,𝑊𝑇 -20 71 232 0.17 

Slow 
degradation 

Proteasomal 𝑡1/2,𝐶𝐷𝐶42 40 82 314 0.10 

Fast 
degradation 

 𝑡1/2,𝐶𝐷𝐶42 -40 83 962 -0.38 

Small bursts Ribosomal 𝑝𝑏,𝑊𝑇 -5 82 527 -0.12 

Large bursts  𝑝𝑏,𝑊𝑇 5 82 319 0.09 

Standard with 
bud radius = 
2.5 um 

   89 234  

Small bud size Small size at 
Start 

𝑟𝑏𝑢𝑑 -20 64 113 0.18 

Large bud size Large size at 
Start 

𝑟𝑏𝑢𝑑 20 119 2633 -0.92 
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K Effect of noise level in the two-state model 

 

Figure 78 depicts the relative multiplicative epistasis as in equation 4.4 for the GAP deletions 

in the Δbem1 background. The two-state model is assumed with the Cdc42 case (sharp lower 

boundary mesotype). Fits are first performed on experimental doubling times from [24], then 

the coefficient of variation is varied (see also 4.6.1). 

 

 

Figure 78 Epistasis as function of coefficient of variation for the volume-free two state model in the 
Cdc42 case. 
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L Two-state model fitness considering noisy GAPs in a Δbem1 background 

 

Figure 80 shows the two state model (see graphical representation for the GAPs in Figure 79) 

contours for the fitness and survivable number of generations with transgenerational 

feedback, assuming a shar upper mesotype boundary (GAP case). Figure 81 has the case 

without feedback placed on top of this. 

 

 

Figure 79 Two state model for fitness reflecting yeast cells polarizing with success depending solely on 
GAP concentration. Noisy expression during cell cycle time 𝑇0, combined with the simplified 
mesotypical rule for progeny depending on GAP concentration yields fitness, as stochastic switching 
occurs between the low and high GAP concentration state, with probabilities following from cumulative 
distribution function 𝐹, which is a function of noise level/ coefficient of variation 𝑉. 
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Figure 80 Noise in sharp upper boundary mesotypes (GAP case) extends both the sustainable and 
unsustainable growth regions, as well as the region that harbours epistasis. Top: Two state model 
schematic summary (left) and mesotype (right) of the sharp upper boundary (GAP) case. Middle: 
Contour plot of log relative fitness (blue to green) and number of generations a population of a million 
cells survives (red to yellow) as function of mesotypical inflection point of the sharp upper boundary in 
the fitness landscape, and the noise level (coefficient of variation), assuming a gamma protein 
expression distribution. The purple dotted line indicates the survival edge. The dashed black line 
denotes the line 𝑉 = 0.5, along which the plot in the bottom is valid. Bottom: Second derivative of log 
relative fitness with respect to mesotypical inflection point (along the dashed line of the top axis). Here, 
it is always negative for values of 𝑐𝑖 that support growth, allowing negative epistasis for mutations of 
the same sign. 
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Figure 81 Absence of transgenerational feedback in sharp upper boundary mesotypes (GAP case) limits 
both the sustainable and unsustainable growth regions. Top: Two state model schematic summary 
(left) and mesotype (right) of the sharp upper boundary (GAP) case without transgenerational 
feedback. Middle: Contour plot of log relative fitness (blue to green) and number of generations a 
population of a million survives (red to yellow) as function of mesotypical inflection point of the sharp 
upper boundary in the fitness landscape, and the noise level (coefficient of variation), assuming a 
gamma protein expression distribution, with transgenerational feedback (transparent) and without 
(opaque). The purple dotted line indicates the survival edge. The dashed black line denotes the line 𝑉 =
0.5, along which the plot in the bottom is valid. Bottom: Second derivative of log relative fitness with 
respect to mesotypical inflection point (along the dashed line of the top axis). Here, it is always 
negative for values of 𝒄𝒊 that support growth, allowing negative epistasis for mutations of the same 
sign. 
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M Derivations volume-free two-state model 

 

M.1 Concentration thresholds 

M.1.1 Sharp boundaries, with feedback, log-normal approximation 

For sharp lower boundaries, equation 4.3 showed the limiting concentration 𝑐𝑖 equals 1.5 

times the median of the protein production distribution. Assuming a log-normal distribution 

with parameters 𝜇 and 𝜎, the mean (normalized to 1 here) is 𝑒𝜇+𝜎
2/2, so that 𝜇 = −𝜎2/2. 

Rewriting the variance in terms of the coefficient of variation gives: 

𝑉2 ∗ (𝑚𝑒𝑎𝑛)2 = 𝑉2 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = (𝑒𝜎
2
− 1)𝑒2𝜇+𝜎

2
= 𝑒𝜎

2
− 1⟹ 𝜎 = √ln(1 + 𝑉2) 

Subsequently, the limiting concentration is given by: 

𝑐𝑖,𝑙𝑖𝑚,𝐶𝑑𝑐42 =
3

2
𝑒𝜇 =

3

2
𝑒−ln(1+𝑉

2)/2 =
3

2
𝑒ln(1+𝑉

2)
−1/2

=
3/2

√1 + 𝑉2
 (M.10) 

which for small 𝑉 reduces to: 

 
𝑐𝑖,𝑙𝑖𝑚,𝐶𝑑𝑐42 ≈

3

2
−
3

4
𝑉2 (M.11) 

Conversely, for sharp upper boundaries (e.g., for the GAPs), we get: 

[
𝑓(2𝑐𝑖/3)

𝑓(0)
] = [

0 0
2𝐹𝑉(2𝑐𝑖/3) 2𝐹𝑉(4𝑐𝑖/3)

] [
𝑓(2𝑐𝑖/3)

𝑓(0)
] = 𝑀𝐺𝐴𝑃,𝑠𝑓 ⟹ 𝜆𝑚𝑎𝑥 = 2𝐹(4𝑐𝑖/3) 

 
⟹𝜔𝑟 = log2 𝜆𝑚𝑎𝑥 = log2 2𝐹(4𝑐𝑖/3) (M.12) 

with the limit of 𝑐𝑖 such that 2𝐹(4𝑐𝑖/3) > 1, implying: 

 

⟹ 𝑐𝑖,𝑙𝑖𝑚,𝐺𝐴𝑃 =
3

4
∙ 𝑚𝑒𝑑𝑖𝑎𝑛 =

3

4

1

√1 + 𝑉2
≈
3

4
−
3𝑉2

8
 (M.13) 

 

M.1.2 Sharp boundaries, no feedback, log-normal approximation 

The growth factor 𝛾𝐶𝑑𝑐42,−𝑡𝑔𝑓 from generation to generation for the Cdc42 case, reverting to 

state vector 𝑓𝑒𝑞,𝑛𝑠 = [1 − 𝐹(4𝑐𝑖/3), 𝐹(2𝑐𝑖/3)] after every generation, is given by (with 𝜄 as a 

vector of ones): 

𝜄′𝑀𝐶𝑑𝑐42,𝑠𝑓𝑒𝑞,𝑛𝑠

𝜄′𝑓𝑒𝑞,𝑛𝑠
= 2

(1 − 𝐹𝑉(4𝑐𝑖/3))(1 − 𝐹𝑉(2𝑐𝑖/3)) + 𝐹𝑉(2𝑐𝑖/3)(1 − 𝐹𝑉(4𝑐𝑖/3))

1 + 𝐹𝑉(2𝑐𝑖/3) − 𝐹𝑉(4𝑐𝑖/3)
 

 
⟹ 𝛾𝐶𝑑𝑐42,−𝑡𝑔𝑓 = 2

1 − 𝐹𝑉(4𝑐𝑖/3)

1 + 𝐹𝑉(2𝑐𝑖/3) − 𝐹𝑉(4𝑐𝑖/3)
 (M.14) 
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So, to maintain 𝑔𝑠−𝑡𝑔𝑓 ≥ 1, then  𝐹(2𝑐𝑖,𝑙𝑖𝑚/3) = 1 − 𝐹(4𝑐𝑖,𝑙𝑖𝑚/3). Assuming a log-normal 

distribution and using the tanh approximation for erf [256], we obtain: 

In the log-normal case, we have: 

𝐹(𝑐) =
1

2
+
1

2
erf (

ln 𝑐 − 𝜇

√2𝜎
) ≈

1

2
+
1

2
tanh (√2 𝜋𝜎2⁄  (ln 𝑐 − 𝜇)) (M.15) 

=
1

2
+
1

2
tanh (√2 𝜋𝜎2⁄  ln(𝑐𝑒𝜎

2/2)) 

For the typically small 𝑉, we can simply say 𝜎 = 𝑉 (up to third order correct), and defining: 

 
𝐴 = √2 𝜋𝑉2⁄  (M.16) 

then we obtain: 

 

𝐹(𝑐) ≈
1

2
+
1

2
tanh (ln ((𝑐𝑒𝜎

2 2⁄ )
𝐴
)) =

(𝑐𝑒𝑉
2 2⁄ )

2𝐴

(𝑐𝑒𝑉
2 2⁄ )

2𝐴
+ 1

 (M.17) 

Substituting this into the condition 𝐹(2𝑐𝑖,𝑙𝑖𝑚/3) = 1 − 𝐹(4𝑐𝑖,𝑙𝑖𝑚/3)  without feedback gives: 

(2𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓𝑒
𝑉2/2/3)

2𝐴

(2𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓𝑒
𝑉2/2/3)

2𝐴
+ 1

=
1

(4𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓𝑒
𝑉2/2/3)

2𝐴
+ 1

⟹ 𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓 =
3𝑒−𝑉

2/2

2√2
⟹ 

 
𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓 ≈

1

√2
(
3

2
−
3

4
𝑉2) =

𝑐𝑙𝑖𝑚,+𝑡𝑔𝑓

√2
 (M.18) 

 

Note that this is the same limit as with the GAP case (sharp upper boundary). Analogously: 

𝛾𝐺𝐴𝑃,−𝑡𝑔𝑓 =
𝜄′𝑀𝐺𝐴𝑃,𝑠𝑓𝑒𝑞,𝑛𝑠

𝜄′𝑓𝑒𝑞,𝑛𝑠
= 2

𝐹𝑉(2𝑐𝑖,𝑙𝑖𝑚/3)(1 − 𝐹𝑉(4𝑐𝑖/3)) + 𝐹𝑉(4𝑐𝑖/3)𝐹𝑉(2𝑐𝑖,𝑙𝑖𝑚/3)

1 + 𝐹𝑉(2𝑐𝑖,𝑙𝑖𝑚/3) − 𝐹𝑉(4𝑐𝑖/3)
 

 
⟹ 𝛾𝐺𝐴𝑃,−𝑡𝑔𝑓 = 2

𝐹𝑉(2𝑐𝑖,𝑙𝑖𝑚/3)

1 + 𝐹𝑉(2𝑐𝑖,𝑙𝑖𝑚/3) − 𝐹𝑉(4𝑐𝑖/3)
 (M.19) 

This limits 𝑐𝑖,𝑙𝑖𝑚 again at 𝐹(2𝑐𝑖,𝑙𝑖𝑚/3) = 1 − 𝐹(4𝑐𝑖/3), the same as for Cdc42 (only now 𝑐𝑖 

must exceed this). 

M.2 Epistatic region width approximations 

M.2.1 Sharp boundaries, with feedback, log-normal approximation 

The epistatic width region 𝑤𝑒 has been defined in equation 4.9. Using equation 4.3 to fill in 

the relative fitness for the last term, we get: 

1 − 𝐹𝑉(2𝑐𝑖,𝜔𝑟=1−Δ𝜔𝑟 3⁄ ) = 2−Δ𝜔𝑟 
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Assuming log-normal protein production distribution, and recalling M.17, this yields: 

1

(2𝑐𝑖,𝜔𝑟=1−Δ𝜔𝑟𝑒
𝑉2/2/3)

2𝐴
+ 1

= 2−Δ𝜔𝑟 ⟹ (2𝑐𝑖,𝜔𝑟=1−Δ𝜔𝑟𝑒
𝑉2/2/3)

2𝐴
= 2Δ𝜔𝑟 − 1 

𝑐𝑖,𝜔𝑟=1−Δ𝜔𝑟 =
3

2
𝑒−

𝑉2

2 (2Δ𝜔𝑟 − 1)1 (2𝐴)⁄ ≈
3

2
𝑒−

𝑉2

2 (Δ𝜔𝑟 ln 2)
(1 2𝐴⁄ ) 

≈ (
3

2
−
3

4
𝑉2) (

1

2𝐴
ln(Δ𝜔𝑟 ln 2) + 1) ≈

3

2
−
3

4
𝑉2 +

3

4

1

𝐴
ln(Δ𝜔𝑟 ln 2) −

3

4

𝑉2

2𝐴
ln(Δ𝜔𝑟 ln 2) 

Combining with the concentration threshold M.10 derived earlier, the epistatic width 

becomes: 

⟹𝑤𝑒 = 𝑐𝑖,𝐹𝑉(2𝑐𝑖/3)=1/2 − 𝑐𝑖,𝜔𝑟=1−Δ𝜔𝑟 = −
3

4𝐴
ln(Δ𝜔𝑟 ln 2) +

3𝑉2

8𝐴
ln(Δ𝜔𝑟 ln 2) 

=
3𝑉

4
√
𝜋

2
ln (

1

Δ𝜔𝑟 ln 2
) −

3𝑉3

8
√
𝜋

2
ln (

1

Δ𝜔𝑟 ln 2
) 

Analogously, we define 𝑤𝑒 = 𝑐𝑖,𝜔𝑟=1−Δ𝜔𝑟 − 𝑐𝐹𝑉(4𝑐𝑖 3⁄ )=1 2⁄  for the GAPs., the first term follows 

from M.12 and the log-normal approximation: 

𝐹𝑉(4𝑐𝑖,𝜔𝑟=1−Δ𝜔𝑟/3) = 2
−Δ𝜔𝑟 ⟹

(4𝑐𝑖,𝜔𝑟=1−Δ𝜔𝑟𝑒
𝑉2/2/3)

2𝐴

(4𝑐𝑖,𝜔𝑟=1−Δ𝜔𝑟𝑒
𝑉2/2/3)

2𝐴
+ 1

≈ 2−Δ𝜔𝑟 ≈ 1 − Δ𝜔𝑟 ln 2 

⟹ (Δ𝜔𝑟 ln 2)(4𝑐𝑖,𝜔𝑟=1−Δ𝜔𝑟𝑒
𝑉2 2⁄ 3⁄ )

2𝐴
= 1 − Δ𝜔𝑟 ln 2 

⟹ 𝑐𝑖,𝜔𝑟=1−Δ𝜔𝑟 =
3

4
𝑒−

𝑉2

2 (
1 − Δ𝜔𝑟 ln 2

Δ𝜔𝑟 ln 2
)

1
2𝐴
≈
3

4
(1 −

𝑉2

2
) (

1

2𝐴
ln (

1 − Δ𝜔𝑟 ln 2

Δ𝜔𝑟 ln 2
) + 1) 

=
3

4
−
3𝑉2

8
+
3

8𝐴
ln (

1 − Δ𝜔𝑟 ln 2

Δ𝜔𝑟 ln 2
) 

Combining with the concentration threshold M.13 derived earlier, we get 

 

𝑤𝑒 =
3

8𝐴
ln (

1 − Δ𝜔𝑟 ln 2

Δ𝜔𝑟 ln 2
) ≈

3𝑉

8
√
𝜋

2
ln (

1 − Δ𝜔𝑟 ln 2

Δ𝜔𝑟 ln 2
) 

 

M.2.2 Sharp lower boundary, no feedback, log-normal approximation 

Similarly, the epistatic width without transgenerational feedback is defined as: 

𝑤𝑒,−𝑡𝑔𝑓 ≝ 𝑐𝑖,𝐹𝑉(2𝑐𝑖/3)=1 2⁄ ,−𝑡𝑔𝑓 − 𝑐𝑖,𝜔𝑟=1−Δ𝜔𝑟,−𝑡𝑔𝑓 

For low noise (see derivation at relative fitness section, M.21 and threshold M.18): 
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𝜔𝑟,−𝑡𝑔𝑓

𝜔𝑟,+𝑡𝑔𝑓
≈ 1−

1

𝜔𝑟,+𝑡𝑔𝑓
(
4𝑐𝑖

3√2
)

3 𝑉⁄

= 1 −
1

𝜔𝑟,+𝑡𝑔𝑓
(𝑐𝑖 𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓⁄ )

3 𝑉⁄
 

At low noise, 𝜔𝑟,+𝑡𝑔𝑓 = 1 at 𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓, so: 

𝜔𝑟,−𝑡𝑔𝑓 ≈ 1− (𝑐𝑖 𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓⁄ )
3 𝑉⁄

⟹Δ𝜔𝑟 = (𝑐𝑖,𝜔𝑟=1−Δ𝜔𝑟,−𝑡𝑔𝑓 𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓⁄ )
3 𝑉⁄

 

⟹ 𝑐𝑖,𝜔𝑟=1−Δ𝜔𝑟,−𝑡𝑔𝑓 = 𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓(Δ𝜔𝑟)
𝑉/3 

Combining with the concentration threshold derived earlier, we get 

𝑤𝑒,−𝑡𝑔𝑓 = 𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓 (1 − (Δ𝜔𝑟)
𝑉
3) ≈

𝑉

3
𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓 ln (

1

Δ𝜔𝑟
) ≈

𝑉

4
√2 ln (

1

Δ𝜔𝑟
) 

Compared to the situation with transgenerational feedback, we get: 

𝑤𝑒
𝑤𝑒,−𝑡𝑔𝑓

=

3
4
𝑉√

𝜋
2
ln (

1
Δ𝜔𝑟 ln 2

)

𝑉
4 √

2 ln (
1
Δ𝜔𝑟

)
=
3

2
√𝜋 (1 +

ln(ln 2)

ln(Δ𝜔𝑟)
) ≈ 3 𝑓𝑜𝑙𝑑 

 

M.3 Number of survivable generations approximations 

 

M.3.1 Sharp lower boundary, with feedback, log-normal approximation 

In the main text, we had equation 4.13 for the survivable number of generations for Cdc42 

the case. With the log-normal distribution approximation M.17, this yields: 

𝑛𝑔𝑒𝑛 =

log𝑁0 − log (
(4𝑐𝑖𝑒

𝑉2/2/3)
2𝐴
+ 1

(2𝑐𝑖𝑒
𝑉2/2/3)

2𝐴
+ 1

)

log (((2𝑐𝑖𝑒
𝑉2/2/3)

2𝐴
+ 1) 2⁄ )

 

Note that 2𝑐𝑖𝑒
𝑉2/2/3 has the same Taylor expansion around small 𝑉 up to third order as 

𝑐𝑖/𝑐𝑖,𝑙𝑖𝑚. Therefore, we rewrite this term as 1 + (𝑐𝑖 𝑐𝑖,𝑙𝑖𝑚⁄ − 1) and expand near 𝑐 𝑐𝑙𝑖𝑚⁄ ≈ 1: 

𝑛𝑔𝑒𝑛 ≈

log𝑁0 − log (
1 + 22𝐴 + 2𝐴 (𝑐𝑖 𝑐𝑖,𝑙𝑖𝑚⁄ − 1)22𝐴

2 + 2𝐴(𝑐𝑖 𝑐𝑖,𝑙𝑖𝑚⁄ − 1)
)

log (1 + 𝐴(𝑐𝑖 𝑐𝑖,𝑙𝑖𝑚⁄ − 1))
 

≈

log𝑁0 − log(2
2𝐴
1 + 2𝐴 (

𝑐𝑖
𝑐𝑖,𝑙𝑖𝑚

− 1)

2 + 2𝐴 (
𝑐𝑖
𝑐𝑖,𝑙𝑖𝑚

− 1)
)

𝐴 (
𝑐𝑖
𝑐𝑖,𝑙𝑖𝑚

− 1)
≈

log𝑁0 − log (2
2𝐴 (

1
2
+ 𝐴 (

𝑐𝑖
𝑐𝑖,𝑙𝑖𝑚

− 1) 2⁄ ))

𝐴 (
𝑐𝑖
𝑐𝑖,𝑙𝑖𝑚

− 1)
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Also, assuming small 𝑉 (so large 𝐴), then: 

𝑛𝑔𝑒𝑛 ≈

log𝑁0 − (2𝐴 − 1) log 2 − 𝐴 (
𝑐𝑖
𝑐𝑖,𝑙𝑖𝑚

− 1)

𝐴 (
𝑐𝑖
𝑐𝑖,𝑙𝑖𝑚

− 1)
≈

1
𝐴
log𝑁0 − log 4

𝑐𝑖
𝑐𝑖,𝑙𝑖𝑚

− 1
− 1 =

𝑉√
𝜋
8
log𝑁0 − log 4

𝑐𝑖
𝑐𝑖,𝑙𝑖𝑚

− 1
− 1 

 

M.3.2 Sharp lower boundary, no feedback, log-normal approximation 

With feedback, one could derive the number of survivable generations: 

2(1 − 𝐹(4𝑐𝑖/3))(2 − 2𝐹(2𝑐𝑖 3⁄ ))
𝑛𝑔𝑒𝑛−1

= 2(1 − 𝐹(4𝑐𝑖/3))(𝛾𝐶𝑑𝑐42,+𝑡𝑔𝑓)
𝑛𝑔𝑒𝑛−1

≈ 1 𝑁0⁄  

So now, without feedback, we would have: 

2(1 − 𝐹(4𝑐𝑖/3))(𝛾𝐶𝑑𝑐42,−𝑡𝑔𝑓)
𝑛𝑔𝑒𝑛−1

≈ 1 𝑁0⁄  

Recall from M.14 we had: 

𝛾𝐶𝑑𝑐42,−𝑡𝑔𝑓 = 2
1 − 𝐹𝑉(4𝑐𝑖 3⁄ )

1 + 𝐹𝑉(2𝑐𝑖 3⁄ ) − 𝐹𝑉(4𝑐𝑖 3⁄ )
⟹ 

𝛾𝐶𝑑𝑐42,−𝑡𝑔𝑓 =

(1 − 𝐹𝑉 (
4𝑐𝑖
3
))𝛾𝐶𝑑𝑐42,+𝑡𝑔𝑓

1 − 𝐹𝑉 (
4𝑐𝑖
3
) + 𝐹𝑉 (

2𝑐𝑖
3
)(𝐹𝑉 (

4𝑐𝑖
3
) − 𝐹𝑉 (

2𝑐𝑖
3
))

= 𝐵𝛾𝐶𝑑𝑐42,+𝑡𝑔𝑓 (M.20) 

 

This means that in analogy with the case with feedback: 

𝑛𝑔𝑒𝑛 =
log𝑁0 − log (𝐵

1 − 𝐹(2𝑐𝑖 3⁄ )
1 − 𝐹(4𝑐𝑖/3)

)

− log (2𝐵(1 − 𝐹(2𝑐𝑖 3⁄ )))
 

=

log𝑁0 − log (
1 − 𝐹(2𝑐𝑖 3⁄ )
1 − 𝐹(4𝑐𝑖/3)

) + log (
1 − 𝐹(4𝑐𝑖 3⁄ ) + 𝐹(2𝑐𝑖 3⁄ )(𝐹(4𝑐𝑖/3) − 𝐹(2𝑐𝑖 3⁄ ))

1 − 𝐹(4𝑐𝑖/3)
)

log (
1

1 − 𝐹(2𝑐𝑖 3⁄ )
) − log 2 + log (

1 − 𝐹(4𝑐𝑖 3⁄ ) + 𝐹(2𝑐𝑖 3⁄ )(𝐹(4𝑐𝑖/3) − 𝐹(2𝑐𝑖 3⁄ ))

1 − 𝐹(4𝑐𝑖/3)
)

 

In this expression the original expression with feedback can be recognized, except with the 

same added term in the numerator and denominator. Performing the log-normal substitution 

M.17 on argument 𝐵 (and for simplification, define 𝑧 =
4

3
𝑐𝑖𝑒

𝑉2/2 and assume small 𝑉): 

1

𝐵
≈

1
(𝑧)2𝐴 + 1

+
(𝑧 2⁄ )2𝐴

(𝑧 2⁄ )2𝐴 + 1
(
(𝑧)2𝐴

(𝑧)2𝐴 + 1
−

(𝑧 2⁄ )2𝐴

(𝑧 2⁄ )2𝐴 + 1
)

1 ((𝑧)2𝐴 + 1)⁄
≈ 1 +

(𝑧 2⁄ )4𝐴(22𝐴 − 1)

((𝑧 2⁄ )2𝐴 + 1)2
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= 1 + (22𝐴 − 1)(𝐹(2𝑐𝑖 3⁄ ))
2
 

This yields: 

 

𝑛𝑔𝑒𝑛,−𝑡𝑔𝑓 =
log𝑁0 − log (

1 − 𝐹(2𝑐𝑖 3⁄ )
1 − 𝐹(4𝑐𝑖/3)

) + log (1 + (2√8/𝜋𝑉
2
− 1) (𝐹(2𝑐𝑖 3⁄ ))

2
)

log (
1

1 − 𝐹(2𝑐𝑖 3⁄ )
) − log 2 + log (1 + (2√8/𝜋𝑉

2
− 1) (𝐹(2𝑐𝑖 3⁄ ))

2
)

 

 

M.4 Relative fitness approximations 

 

M.4.1 Sharp lower boundary, no feedback, log-normal approximation 

In the main text we had (using the identity in M.20): 

𝜔𝑟,−𝑡𝑔𝑓
𝜔𝑟,+𝑡𝑔𝑓

= 1 −
1

𝜔𝑟,+𝑡𝑔𝑓
log (

1 − 𝐹(4𝑐𝑖/3) + 𝐹(2𝑐𝑖/3)(𝐹(4𝑐𝑖/3) − 𝐹(2𝑐𝑖/3))

1 − 𝐹(4𝑐𝑖/3)
) 

Again, using the log-normal distribution: 

⟹
𝜔𝑟,−𝑡𝑔𝑓
𝜔𝑟,+𝑡𝑔𝑓

= 1 −
1

𝜔𝑟,+𝑡𝑔𝑓
log

(

 
 
 
 
 
 
 1

(
4
3
𝑐𝑖𝑒

𝑉2

2 )
2𝐴

+ 1

+

(
2
3
𝑐𝑖𝑒

𝑉2

2 )

2𝐴

(
2
3
𝑐𝑖𝑒

𝑉2

2 )
2𝐴

+ 1
(

 
 

(
4
3
𝑐𝑖𝑒

𝑉2

2 )

2𝐴

(
4
3
𝑐𝑖𝑒

𝑉2

2 )
2𝐴

+ 1

−

(
2
3
𝑐𝑖𝑒

𝑉2

2 )

2𝐴

(
2
3
𝑐𝑖𝑒

𝑉2

2 )
2𝐴

+ 1
)

 
 

1

(
4
3
𝑐𝑖𝑒

𝑉2

2 )
2𝐴

+ 1

)

 
 
 
 
 
 
 

 

= 1 −
1

𝜔𝑟,+𝑡𝑔𝑓
log

(

 
 1 + 2(

2
3
𝑐𝑖𝑒

𝑉2 2⁄ )
2𝐴

+ (
2
3
𝑐𝑖𝑒

𝑉2 2⁄ )
2𝐴

(
4
3
𝑐𝑖𝑒

𝑉2/2)
2𝐴

((
2
3
𝑐𝑖𝑒

𝑉2 2⁄ )
2𝐴

+ 1)

2

)

 
 

 

Given that 𝑐𝑖 <
3

4
√2 and 𝑉 ≪ 1: 

𝜔𝑟,−𝑡𝑔𝑓
𝜔𝑟,+𝑡𝑔𝑓

≈ 1 −
1

𝜔𝑟,+𝑡𝑔𝑓
log (1 + (

2

3
𝑐𝑖)

2𝐴

(
4

3
𝑐𝑖)

2𝐴

) = 1 −
1

𝜔𝑟,+𝑡𝑔𝑓
log (1 + (4𝑐𝑖 (3√2)⁄ )

4𝐴
) 

≈ 1 −
1

𝜔𝑟,+𝑡𝑔𝑓
(4𝑐𝑖 (3√2)⁄ )

4𝐴
= 1 −

1

𝜔𝑟,+𝑡𝑔𝑓
(4𝑐𝑖 (3√2)⁄ )

1
𝑉
√32
𝜋 ⟹ 

 
𝜔𝑟,−𝑡𝑔𝑓
𝜔𝑟,+𝑡𝑔𝑓

≈ 1 −
1

𝜔𝑟,+𝑡𝑔𝑓
(
4𝑐𝑖

3√2
)
3 𝑉⁄

= 1 −
1

𝜔𝑟,+𝑡𝑔𝑓
(

𝑐𝑖
𝑐𝑖,𝑙𝑖𝑚,−𝑡𝑔𝑓

)

3 𝑉⁄

 (M.21) 
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M.4.2 General case, with feedback 

From the main text, we had: 

𝜆𝑚𝑎𝑥 =
𝑡𝑟(𝑀) + √𝑡𝑟(𝑀)2 − 4det(𝑀)

2
 

det(𝑀) = 𝑔(4𝑐𝑖/3)(1 − 𝐹(2𝑐𝑖/3))𝑔(2𝑐𝑖/3)𝐹(4𝑐𝑖/3)

− 𝑔(2𝑐𝑖/3)𝐹(2𝑐𝑖/3)𝑔(4𝑐𝑖/3)(1 − 𝐹(4𝑐𝑖/3)) 

This can be approximated by det(𝑀) ≈ 𝑔(4𝑐𝑖/3)(1 − 𝐹(2𝑐𝑖/3))𝑔(2𝑐𝑖/3)𝐹(4𝑐𝑖/3) when 

noise is low. To illustrate this, divide the first term by the second term of the determinant in 

the log-normal case example (using the aforementioned tanh approximation M.17): 

𝐹 (
2𝑐𝑖
3
) (1 − 𝐹 (

4𝑐𝑖
3
))

(1 − 𝐹 (
2𝑐𝑖
3
))𝐹 (

4𝑐𝑖
3
)

=

(
2
3
𝑐𝑖𝑒

𝑉2

2 )

2𝐴

(
2
3
𝑐𝑖𝑒

𝑉2

2 )
2𝐴

+ 1

1

(
4
3
𝑐𝑖𝑒

𝑉2

2 )
2𝐴

+ 1

1

(
2
3
𝑐𝑖𝑒

𝑉2

2 )
2𝐴

+ 1

(
4
3
𝑐𝑖𝑒

𝑉2

2 )
2𝐴

(
4
3
𝑐𝑖𝑒

𝑉2

2 )
2𝐴

+ 1

=

(
2
3
𝑐𝑖𝑒

𝑉2

2 )

2𝐴

(
4
3
𝑐𝑖𝑒

𝑉2

2 )
2𝐴 = (

1

2
)
2𝐴

≈ 2−
1.6
𝑉  

So, for small 𝑉 the second term of determinant is negligible. 

⟹ 𝜆𝑚𝑎𝑥 =
𝑡𝑟(𝑀) + √𝑡𝑟(𝑀)2 − 4det(𝑀)

2
 

≈
𝑔(4𝑐𝑖/3)(1 − 𝐹(2𝑐𝑖/3)) + 𝑔(2𝑐𝑖/3)𝐹(4𝑐𝑖/3) + |𝑔(4𝑐𝑖/3)(1 − 𝐹(2𝑐𝑖/3)) − 𝑔(2𝑐𝑖/3)𝐹(4𝑐𝑖/3)|

2
 

= max (𝑔(4𝑐𝑖/3)(1 − 𝐹(2𝑐𝑖/3)), 𝑔(2𝑐𝑖/3)𝐹(4𝑐𝑖/3)) 

 

M.4.3 General case, no feedback 

The growth factor from generations to generations for the general case, reverting to state 

vector 𝑓𝑒𝑞,𝑛𝑠 = [1 − 𝐹(4𝑐𝑖/3), 𝐹(2𝑐𝑖/3)] after every generation, is given by (with 𝜄 as a 

vector of ones): 

𝛾−𝑡𝑔𝑓 =
𝜄′𝑀𝑔𝑒𝑛𝑒𝑟𝑎𝑙,𝑠𝑓𝑒𝑞,𝑛𝑠

𝜄′𝑓𝑒𝑞,𝑛𝑠
= 

𝑔 (
4𝑐𝑖
3
)(1 − 𝐹 (

2𝑐𝑖
3
))(1 − 𝐹 (

4𝑐𝑖
3
)) + 𝑔 (

4𝑐𝑖
3
)(1 − 𝐹 (

4𝑐𝑖
3
))𝐹 (

2𝑐𝑖
3
) + 𝑔 (

2𝑐𝑖
3
)𝐹 (

2𝑐𝑖
3
)(1 − 𝐹 (

4𝑐𝑖
3
)) + 𝑔 (

2𝑐𝑖
3
)𝐹 (

4𝑐𝑖
3
)𝐹 (

2𝑐𝑖
3
)

1 − 𝐹 (
4𝑐𝑖
3
) + 𝐹 (

2𝑐𝑖
3
)
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Simplifying yields: 

 𝛾−𝑡𝑔𝑓 =
𝑔(4𝑐𝑖 3⁄ )(1 − 𝐹(4𝑐𝑖 3⁄ )) + 𝑔(2𝑐𝑖 3⁄ )𝐹(2𝑐𝑖 3⁄ )

1 − 𝐹(4𝑐𝑖 3⁄ ) + 𝐹(2𝑐𝑖 3⁄ )
 (M.22) 

Then: 

𝜔𝑟,−𝑡𝑔𝑓 = log2(𝛾−𝑡𝑔𝑓) = log2 (
𝑔(4𝑐𝑖 3⁄ )(1 − 𝐹(4𝑐𝑖 3⁄ )) + 𝑔(2𝑐𝑖 3⁄ )𝐹(2𝑐𝑖 3⁄ )

1 − 𝐹(4𝑐𝑖 3⁄ ) + 𝐹(2𝑐𝑖 3⁄ )
) 

 

M.4.4 General case, feedback never decreases fitness 

To prove the transgenerational feedback is not deleterious, we must prove that the 

generation-by-generation growth factors with feedback is never lower than without. Using 

the expressions In equations 4.20 and M.22, we must prove: 

Δ𝛾 ≡ 𝜆𝑚𝑎𝑥 − 𝛾−𝑡𝑔𝑓 ≥ 0 

⟹
𝑡𝑟(𝑀) + √𝑡𝑟(𝑀)2 − 4det(𝑀)

2
≥
𝑔(4𝑐𝑖 3⁄ )(1 − 𝐹(4𝑐𝑖 3⁄ )) + 𝑔(2𝑐𝑖 3⁄ )𝐹(2𝑐𝑖 3⁄ )

1 − 𝐹(4𝑐𝑖 3⁄ ) + 𝐹(2𝑐𝑖 3⁄ )
 

⟹ 𝑡𝑟(𝑀)2 − 4det(𝑀) − (2
𝑔(4𝑐𝑖 3⁄ )(1 − 𝐹(4𝑐𝑖 3⁄ )) + 𝑔(2𝑐𝑖 3⁄ )𝐹(2𝑐𝑖 3⁄ )

1 − 𝐹(4𝑐𝑖 3⁄ ) + 𝐹(2𝑐𝑖 3⁄ )
− 𝑡𝑟(𝑀))

2

≥ 0 ⟹ 

0 ≤ (𝑔 (
4𝑐𝑖
3
))

2

(1 − 𝐹 (
2𝑐𝑖
3
))

2

+ (𝑔 (
2𝑐𝑖
3
))

2

(𝐹 (
4𝑐𝑖
3
))

2

+ 2𝑔 (
4𝑐𝑖
3
)𝑔 (

2𝑐𝑖
3
)(2𝐹 (

2𝑐𝑖
3
) − 𝐹 (

2𝑐𝑖
3
)𝐹 (

4𝑐𝑖
3
) − 𝐹 (

4𝑐𝑖
3
)) 

−

(2𝑔 (
4𝑐𝑖
3
)(1 − 𝐹 (

4𝑐𝑖
3
)) + 2𝑔 (

2𝑐𝑖
3
)𝐹 (

2𝑐𝑖
3
) − (1 − 𝐹 (

4𝑐𝑖
3
) + 𝐹 (

2𝑐𝑖
3
))(𝑔 (

4𝑐𝑖
3
) − 𝑔 (

4𝑐𝑖
3
)𝐹 (

2𝑐𝑖
3
) + 𝑔 (

2𝑐𝑖
3
)𝐹 (

4𝑐𝑖
3
)))

2

(1 − 𝐹 (
4𝑐𝑖
3
) + 𝐹 (

2𝑐𝑖
3
))

2  

Expanding and simplifying leads to proving: 

𝐹(2𝑐𝑖 3⁄ )(𝐹(4𝑐𝑖 3⁄ ) −  𝐹(2𝑐𝑖 3⁄ ))(𝑔(4𝑐𝑖 3⁄ ) −  𝑔(2𝑐𝑖 3⁄ ))
2
(1 − 𝐹(4𝑐𝑖 3⁄ ))

(1 − 𝐹(4𝑐𝑖 3⁄ ) + 𝐹(2𝑐𝑖 3⁄ ))
2 ≥ 0 

This is indeed always true, as 𝐹(4𝑐𝑖 3⁄ ) >  𝐹(2𝑐𝑖 3⁄ ). As can be seen, the feedback has no 

effect in flat landscapes, when 𝑔(2𝑐𝑖 3⁄ ) =  𝑔(4𝑐𝑖 3⁄ ). When the growth factor is larger than 

one, this means fitness with feedback is never worse than without feedback. When the 

growth actor is below one, this reflects that the number of generations that can be survived is 

never less with feedback than without feedback, as then the growth factor implies the decay 

of the population per generation.  
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N Preliminary experiment on Cdc42 distribution statistics 

 

In section 4.4, an experimental design is discussed where from the population distribution of 

Cdc42, the effects of selection on Cdc42 become apparent. When fitness relies directly on the 

copy number of the protein, the fitness (and volume) will invariably affect the copy number 

again as a feedback mechanism. We called this transgenerational feedback, after [41]. 

However, the flow cytometer experiments discussed in 4.4.1 (see Methods in 2.6.3.2.2) give 

some preliminary insights in the feasibility of visualizing the transgenerational feedback of 

Cdc42 selection. The general idea is to compare the Cdc42 distribution to a color channel 

where there is/are protein(s) not under selection. Here, in red there is only background, i.e. 

autofluorescent proteins that should not be under selection. 

Generally, the correlation between sfGFP and the autofluorescence increases (see Figure 82). 

As higher sugar content increases volumes (Figure 65) which scales with protein number, 

correlations increase. Of interest are the relative differences (Table 9, 4.4.1). 

Based on the volume effects (measured with the pure WT with non-inducible Cdc42), there 

should be correlations between the red and green channel for all backgrounds. However, 

relative to the pure WT, there is less correlation than expected. Particularly the Δbem1 

background is relatively anti-correlated. A survival bias for small cells with higher than 

expected amount of Cdc42 is a plausible explanation, considering this effect is also stronger in 

the less healthy Δbem1 than for the Δbem1 Δbem3. Conversely, this correlation difference 

should be smaller for fitter cells, having e.g., high Cdc42 levels or the WT background. Indeed, 

correlation between colors at high galactose are largely identical (within 0.07) and the WT 

background generally has the smallest differences with the control. This provides some 

indication that fitness couples back to observed Cdc42 copy numbers. Further implications of 

the feedback effect on fitness are described in Chapter 4.  

 
Figure 82 Intensity scatter plot example of the green (sfGFP) and red channel for a GAL1pr-sfGFP-
CDC42SW replicate (blue) and pure WT (black). The colors for the black dots are more correlated, while 
the blue dots are more scattered. 
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