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SUMMARY

Applying deep neural networks (DNNs) for system identification (SYSID) has attracted
more and more attention in recent years. The DNNs, which have universal approximation
capabilities for any measurable function, have been successfully implemented in SYSID
tasks with typical network structures, e.g., feed-forward neural networks and recurrent
neural networks (RNNs). However, DNNs also have limitations. First, DNNs can easily
overfit the training data due to the model complexity. Second, DNNs are normally re-
garded as black-box models, which lack interpretability and cannot be used for white-box
modelling. In this thesis, we develop sparse Bayesian deep learning (SBDL) algorithms
that can address these limitations in an effective manner.

In Chapter 2, we present the Bayesian treatment of DNNs for SYSID by adopting the
Laplace approximated method to approximate the posterior distribution of model param-
eters. However, although the Laplace approximated method can scale well to DNNs, it
requires the calculation of the inverse Hessian of model parameters. This is infeasible
for DNNs due to the intensive computation and storage burden. To address this chal-
lenge, we develop efficient and recursive Hessian calculation methods for DNN layers
(i.e., fully-connected, convolutional and recurrent layers), which can extract the block-
diagonal value of the Hessian and be calculated recursively along with the backpropa-
gation process. Compared to a previous Hessian calculation approach, the required
multiply accumulate operation (MACs) with the proposed Hessian calculation method
could be reduced from n(2m2 +2n2 +4mn +3m −1) to n(2+4m) with W ∈ Rn×m (e.g., if
n = 100,m = 100, the original method requires 107.97 MMACs compared with only 0.04
MMACs for the proposed method.). The presented Hessian calculation methods turn the
intractable optimization problem into a tractable one. Besides, as effective sparse regres-
sion solutions, the proposed SBDL algorithms prune the model redundancy by employing
sparsity-inducing priors on the model parameters. To extend the generalization ability of
the Bayesian approach, three kinds of priors are considered in this thesis, i.e., single prior,
group prior, and fused prior. The selection of priors will affect both training and pruning
results and is adapted to different applications’ specifics. Specifically, the single prior is
enforced on a single parameter and can be used to achieve non-structural model sparsity.
The group prior is enforced on a group of parameters and can be used to obtain the struc-
tural sparsity. The fused prior is a combination of single prior and group prior, and can be
used to achieve both non-structural and structural sparsity. The detailed procedures for
the Hessian calculation and three SBDL algorithms enforcing single prior, group prior and
fused prior, respectively, are explained in this chapter.

Chapter 3 investigates how to implement the SBDL algorithm with the single prior to
identifying a repressilator model. The repressilator model is a classical nonlinear dynam-
ical system in synthetic biology to represent mRNA transcription and and protein trans-
lation dynamics. It can be described by nonlinear ordinary differential equations (ODEs)
involving polynomial and rational functions. Identifying the topology and parameters of

xi
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the repressilator model is a typical research problem that has attracted a lot of attention.
In this chapter, we design a combined neural network that consists of a linear and non-
linear sub-network. The activation function of the nonlinear sub-network is replaced
by the Hill function, which reflects the binding of ligands to macromolecules (e.g., mRNA
and protein). With such model design, an initialized combined neural network can be re-
garded as a super-graph with a redundant structure, whose sub-graph can represent the
underlying mathematical model. The SBDL algorithm with the single prior, which can
achieve the nonstructured model sparsity, is adopted to identify the redundancy. Finally,
both the topology and parameters of the repressilator model can be identified. To address
several typical problems in SYSID, including input feature selection and easily overfitting
to the training dataset, the SBDL algorithm with the group prior is applied in Chapter 4.
With the multi-layer perceptron (MLP) and long short term memory networks (LSTM) as
the backbone, the Bayesian approach offers a solution by marginal likelihood/model evi-
dence approximation and structured group sparsity-inducing priors construction. In this
way, the input features of DNN models (i.e., MLP and LSTM) can be selected. The struc-
tural model sparsity can also alleviate the overfitting issue. Besides, a practical calculation
approach based on the Monte-Carlo integration method is derived for the uncertainty
quantification of the parameters and predictions. The effectiveness of the method is
demonstrated on several linear and nonlinear system identification benchmarks. Specif-
ically, the proposed method can achieve competitive simulation accuracy with the same
magnitude as other system identification methods adopting classical model types, e.g.,
state-space method, autoregressive with exogenous terms (ARX) model. Especially, we
can obtain the best simulation accuracy compared with existing methods in the cascaded
tank system.

In Chapter 5, the governing equations of several dynamic systems can be discovered
from data directly with the benefit of two key contributions. First, we present how to apply
the SBDL algorithm with the fused prior to the white-box modelling. Second, we design
a new representation of mathematical expressions with a NN-like hierarchical structure,
termed as Mathematical Operation Network (MathONet). The MathONet is stacked by
layers consisting of unary (e.g. sin, cos, log), and binary operations (e.g. +,−,×). An ini-
tialized MathONet is typically regarded as a over-parameterized model, whose sub-graph
can yield the underlying governing equation. By applying the SBDL algorithm, the es-
sential sub-graph can be extracted by employing both non-structurally and structurally
constructed priors over the model parameters. To ensure a connected derived graph af-
ter pruning, the connections’ dependencies are also considered in this chapter. It should
also be noted that since the structure of MathONet is similar to a neural network, the pro-
posed method belongs to the network-based symbolic regression approach. It provides
an encouraging solution that can be trained end-to-end through backpropagation on a
fully developed deep learning framework (e.g., PyTorch and TensorFlow). The proposed
approach can identify ordinary differential equations (ODEs) or partial differential equa-
tions (PDEs) from observations for several linear and nonlinear dynamic systems, i.e., Kol-
mogorov–Petrovsky–Piskunov, Lotka-Volterra and chaotic Lorenz systems. The extensions
of the proposed Bayesian approaches to two deep learning topics with high-dimensional
datasets (i.e., the neural architecture search (NAS) and neural network compression) are
also discussed in Chapter 6.



SAMENVATTING

Het toepassen van diepe neurale netwerken (DNNs) voor systeem identificatie (SYSID)
krijgt de laatste jaren steeds meer aandacht. De DNNs, die elke meetbare functie univer-
seel kunnen benaderen, zijn met succes geïmplementeerd in SYSID-taken met typische
netwerkstructuren, zoals feed-forward neurale netwerken en recurrente neurale netwer-
ken (RNNs). DNNs hebben echter ook beperkingen. Ten eerste kunnen DNNs de trai-
ningsdata gemakkelijk overfitten vanwege de complexiteit van het model. Ten tweede
worden DNNs normaal gesproken beschouwd als black-box-modellen, die niet interpre-
teerbaar zijn en niet kunnen worden gebruikt voor white-box-modellering. In dit proef-
schrift ontwikkelen we algoritmen voor schaars Bayesiaans diep leren (SBDL) die deze
beperkingen op een effectieve manier kunnen aanpakken.

In Hoofdstuk 2 presenteren we de Bayesiaanse behandeling van DNN’s voor SYSID
door de Laplace-benaderde methode toe te passen om de posterieure verdeling van mo-
delparameters te benaderen. Hoewel de Laplace-benaderde methode goed kan schalen
naar DNN’s, vereist deze de berekening van de inverse Hessiaan van modelparameters.
Dit is niet haalbaar voor DNN’s vanwege de intensieve reken- en opslaglast. Om deze uit-
daging aan te gaan, ontwikkelen we efficiënte en recursieve Hessiaan berekeningsmetho-
den voor DNN-lagen (d.w.z. volledig verbonden, convolutieve en terugkerende lagen), die
de blokdiagonale waarde van de Hessiaan kunnen extraheren en recursief kunnen wor-
den berekend samen met het terugpropagatie-proces. Vergeleken met een eerdere bere-
keningsmethode van de Hessiaan, zou de vereiste vermenigvuldigen-accumuleren ope-
raties (MACs) met de voorgestelde methode kunnen worden teruggebracht van n(2m2 +
2n2 +4mn +3m −1) naar n(2+4m) met W ∈ Rn×m (bijv. met n = 100,m = 100 vereist de
oorspronkelijke methode 107,97 MMACs, in vergelijking tot slechts 0,04 MMACs voor de
voorgestelde methode). De gepresenteerde Hessiaan-berekeningsmethoden maken van
het onhandelbare optimalisatieprobleem een handelbaar probleem. Bovendien, als een
effectieve schaarse regressie oplossing, verminderen de voorgestelde SBDL-algoritmen de
modelredundantie door gebruik te maken van schaarsheid inducerende priors op de mo-
delparameters. Om het generalisatievermogen van de Bayesiaanse benadering uit te brei-
den, worden in dit proefschrift drie soorten priors beschouwd, d.w.z. enkele prior, groep
prior en samengestelde prior. De selectie van priors is van invloed op zowel de trainings-
als de getrimde resultaten en moet worden aangepast aan de specifieke kenmerken van
de verschillende toepassingen. In het bijzonder wordt de enkele prior afgedwongen op
een enkele parameter en kan deze worden gebruikt om niet-structurele modelschaars-
heid te bereiken. De groep prior wordt afgedwongen op een groep parameters en kan
worden gebruikt om de structurele schaarsheid te verkrijgen. De samengestelde prior is
de combinatie van de enkele prior en een groep prior en kan worden gebruikt om zo-
wel niet-structurele als structurele schaarsheid te bereiken. De gedetailleerde procedures
voor berekening van de Hessiaan en drie SBDL-algoritmen die respectievelijk enkele prior,
groep prior en samengestelde prior afdwingen, worden in dit hoofdstuk uitgelegd.

xiii



xiv SAMENVATTING

Hoofdstuk 3 onderzoekt hoe het SBDL-algoritme kan worden geïmplementeerd met
de enkele prior. Het repressilator model is een klassiek niet-lineair dynamisch systeem
in de synthetische biologie om mRNA-transcriptie en eiwittranslatie dynamiek weer te
geven. Het kan worden beschreven door niet-lineaire gewone differentiaalvergelijkingen
(GDVs) met polynome en rationele functies. Het identificeren van de topologie en para-
meters van het repressilator model is een typisch onderzoeksprobleem dat veel aandacht
heeft gekregen. In dit hoofdstuk ontwerpen we een gecombineerd neuraal netwerk dat be-
staat uit een lineair een niet-lineair subnetwerk. De activatiefunctie van het niet-lineaire
subnetwerk wordt vervangen door de Hill-functie, die de binding van liganden aan macro-
moleculen (bijv. mRNA en eiwit) weerspiegelt. Met een dergelijk modelontwerp kan een
geïnitialiseerd gecombineerd neuraal netwerk worden beschouwd als een supergraaf met
een redundante structuur, waarvan de subgraaf het onderliggende wiskundige model kan
vertegenwoordigen. Het SBDL-algoritme met de enkele prior, die de niet-gestructureerde
modelschaarsheid kan bereiken, wordt gebruikt om de overtolligheid te identificeren. Ten
slotte kunnen zowel de topologie als de parameters van het repressilator model nauwkeu-
rig worden geïdentificeerd. Om een aantal typische problemen in SYSID aan te pakken,
waaronder de selectie van invoerkenmerken en het gemakkelijk overfitten van de trai-
ningsdataset, wordt het SBDL-algoritme met de groep prior toegepast in Hoofdstuk 4. Met
het meerlaagse perceptron (MLP) en lange kortetermijngeheugen netwerken (LSTM) als
de ruggengraat, biedt de Bayesiaanse benadering een oplossing door priors te construe-
ren die leiden tot marginale waarschijnlijkheid/benadering van modelbewijs en gestruc-
tureerde groepsschaarsheid. Op deze manier kunnen de invoerkenmerken van DNN-
modellen (d.w.z. MLP en LSTM) worden geselecteerd. The structurele modelschaarsheid
kan ook het probleem van overfitten verlichten. Daarnaast wordt een praktische bere-
keningsaanpak afgeleid op basis van de Monte-Carlo-integratiemethode voor de kwan-
tificering van de onzekerheid van de parameters en voorspellingen. De effectiviteit van
de methode is aangetoond op verschillende lineaire en niet-lineaire systeem identifica-
tie benchmarks. In het bijzonder kan de voorgestelde methode competitieve simulatie-
nauwkeurigheid bereiken met dezelfde omvang als andere systeem identificatie metho-
den die klassieke modeltypen gebruiken, bijv. state-space methode, autoregressief model
met exogene termen (ARX) model. Met name kunnen we de beste simulatienauwkeurig-
heid verkrijgen in vergelijking met bestaande methoden in het trapsgewijze tanksysteem.

In Hoofdstuk 5 kunnen de geldende vergelijkingen van verschillende dynamische sys-
temen direct uit data worden ontdekt met het voordeel van twee belangrijke bijdragen.
Eerst presenteren we hoe het SBDL-algoritme kan worden toegepast op de white-box-
modellering met de samengestelde prior. In de tweede plaats ontwerpen we een nieuwe
representatie van wiskundige uitdrukkingen met een NN-achtige hiërarchische structuur,
genaamd mathematisch operatienetwerk (MathONet). De MathONet is gestapeld door
lagen bestaande uit unaire (bijv. sin, cos, log) en binaire operaties (bijv. +,−,×). Een ge-
ïnitialiseerd MathONet wordt doorgaans beschouwd als een subgraaf, waarvan de super-
graaf de onderliggende geldende vergelijkingen kan opleveren. Door het SBDL-algoritme
toe te passen met de samengestelde prior (enkele prior & groep prior), kan de essentiële
subgraaf worden geëxtraheerd door zowel niet-structureel als structureel geconstrueerde
priors over de modelparameters te gebruiken. Om na trimmen een samenhangende af-
geleide graaf te garanderen, wordt in dit hoofdstuk ook rekening gehouden met de afhan-
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kelijkheden van de verbindingen. Er moet worden opgemerkt dat, aangezien de structuur
van MathONet vergelijkbaar is met een neuraal netwerk, de voorgestelde methode be-
hoort tot de netwerkgebaseerde symbolische regressiebenadering. Het biedt een bemoe-
digende oplossing die eind-tot-eind kan worden getraind door terugpropagatie op een
volledig ontwikkeld raamwerk voor diep leren (bijv. PyTorch en TensorFlow). De voor-
gestelde aanpak kan gewone differentiaalvergelijkingen (GDVs) of partiële differentiaal-
vergelijkingen (PDVs) identificeren uit waarnemingen voor verschillende lineaire en niet-
lineaire dynamische systemen, dat wil zeggen, Kolmogorov-Petrovsky-Piskunov, Lotka-
Volterra en chaotische Lorenz-systemen. De uitbreidingen van de voorgestelde Bayesi-
aanse benadering voor twee onderwerpen betreffende diep leren met hoog dimensionale
datasets (d.w.z. neurale architectuur zoeken (NAS) en neuraal netwerk compressie) wor-
den ook besproken in Hoofdstuk 6.





1
INTRODUCTION

The implementation of deep neural networks (DNNs) for system identification has regained
research interest recently, thanks to the boom of deep learning. DNNs have shown impres-
sive approximation ability in various fields, but there are still several challenges. First,
DNNs are known to be too complex to overfit the training data easily. Second, DNNs are
black-box models, which cannot be implemented for physical modelling tasks to uncover
the underlying phenomenon of the dynamic system. We address these challenges through
three aspects. First, we develop sparse Bayesian deep learning algorithms (SBDLs) to ap-
proximate the posterior distribution of model parameters. Second, the efficient and recur-
sive Hessian calculation methods for the Fully-Connected (FC) layer, convolutional (Conv)
layer, and recurrent layer are also proposed, respectively. Third, we design a DNN-like hier-
archical structure composed of mathematical operations, termed as Mathematical Opera-
tion Network (MathONet), to learn the explicit physical model of a dynamic system.

This chapter illustrates the research background in Section. 1.1 and summaries the research
contribution in Section 1.2. Finally, the thesis organization is presented in Section 1.3.
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2 1. INTRODUCTION

1.1. RESEARCH BACKGROUND
System identification (SYSID) has a long history in system and control engineering [32].
Its objective is to build the mathematical model (e.g., (partial) differential and difference
dynamic relations) between the observed input and output data [1, 2, 8–10, 22, 31, 46, 56–
58]. Whether the obtained model from SYSID can match the given dataset is decided by
several aspects, including the data quality, identification criterion, optimization method,
and model type selection. A detailed illustration of the influential factors for SYSID is in
Fig. 1.1.
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Figure 1.1: The paradigm for system identification.

Among these factors, the selection of model type is a fundamental one. The typical
model types include linear model, state-space model, deep neural network model, etc.
Different model types have their pros and cons and can adapt to diverse SYSID tasks. For
example, a deep neural network model can provide a description for the health monitor-
ing of a large chemical plant, which cannot be represented by mathematical expressions
with a few terms. To reveal the underlying mechanism of the transcription and translation
process between mRNAs and proteins, a white-box model taking account of the physical
structure should be used to discover both the topology and parameters of a repressilator
model. In recent years, with the prosperous development of deep learning [28], deep neu-
ral networks (DNNs) have attracted more and more attention in the SYSID community [2,
15, 33, 55]. Increasing attention has been put on DNNs for their inherent superiority, al-
though they are normally regarded as prominent black-box models [33, 48, 49]. [21] stated
that a feed-forward neural network with one hidden layer on a compact set has the uni-
versal approximation capabilities for any measurable function. Several works achieved
competitive system identification results by using feed-forward neural networks [30] and
recurrent neural networks (RNNs) [15, 45, 49] in dynamical systems. These achievements
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motivate us to focus on the research of applying neural networks for system identification
in this thesis.

However, DNNs also have disadvantages. First, the overfitting issue is a common
problem for neural networks, which may reduce the model generalization ability. Sec-
ond, DNNs are typically regarded as black-box models, which lack interpretability. The
performance-oriented characteristic of a neural network makes it an appropriate choice
for modelling tasks that aim to obtain a compact description of a system without consid-
ering the physical interpretability. However, every coin has two sides. This characteristic is
also a disadvantage that limits the generalization of DNNs to white-box modelling tasks,
which requires insight into the underlying phenomenon of the complex real-world sys-
tem. In the next, we will briefly illustrate our solutions to address the above challenges.

For the overfitting issue, DNN compression techniques are promising solutions [14,
16, 29, 52]. As two typical compression methods, the `1 norm regularization [17, 50] and
group `1 norm regularization [47, 54] can introduce the regularization term in the loss
function to promote the sparsity of the network. However, our practical implementation
showed that these two approaches are always non-sparse and time-consuming even when
the hyper-parameters are extensively tuned. This motivates us to seek a Bayesian learning
solution that can potentially result in sparser solutions and incorporate structural and
nonstructural sparsity as priors.

The second issue is about building physical models from data, which can be classified
as the symbolic regression (SR) problem. Previous works already propose several SR ap-
proaches, which can be divided into three categories, i.e., brute force methods [23, 51],
genetic programming [6, 25], basis function methods [6, 20, 41, 43, 44]. These methods
mainly suffer from the computational expense, sensitivity to initial conditions, and the
nontrivial task of choosing appropriate basis functions. Recently, some works proposed to
include a NN or NN-like model to benefit the discovery of the mathematical expressions.
These approaches are called the network-based symbolic regression methods [39, 42]. The
network-based SR method provides an encouraging solution that can be trained end-to-
end through backpropagation with a fully developed deep learning framework (e.g., Py-
Torch and TensorFlow). It should be noted that the network-based SR method does not
mean the mathematical expressions can be learned by simply training a classical neural
network model, which lacks interpretability. In [42], a neural network is used to gener-
ate the mathematical operations in a reinforcement learning framework. And a modified
NN-like structure is designed to denote the mathematical expressions in [39]. However,
these previous network-based approaches cannot fit the constant term in the equation.
Besides, they mainly use `1 norm regularization for training, which is inefficient, as illus-
trated before. In this thesis, we propose a novel type of network-based SR model termed as
the Mathematical operation network (MathONet), which has a DNN-like augmented hi-
erarchical structure composed of unary and binary operations. MathONet can be used to
reformulate the governing equations, which are also characterized by basic mathematical
operations, i.e., unary and binary ones. Besides, the governing equation discovery prob-
lem can also be treated as a sparse compression problem, which aims to search a subgraph
from an over-parameterized MathONet graph with redundant mathematical operations.
To this end, the compression of a DNN-like model MathONet is similar to the compression
of a DNN model. Both the overfitting issue and physical modelling issue can be addressed



1

4 1. INTRODUCTION

by sparse regression techniques. And the proposed Bayesian learning approach can also
be used to learn and train the MathONet with structural and nonstructural sparsities.

In this thesis, we argue that the Bayesian approach is an effective sparse regression
solution, where the redundant part of the model is pruned through employing sparsity-
inducing priors on model parameters. The selection of prior represents the anticipation
of the distribution of parameters and is an influential factor for the Bayesian method. The
way to employ the prior on model parameters will affect both training and pruning results
and should be adapted to different applications’ specifics. Specifically, we mainly consider
three kinds of priors. First, the prior is employed on a single weight. This can be used to
prune the individual weight and estimate the parameters for a given model structure. In
this thesis, we successfully employ the single prior to identify the closed form of Hill func-
tion for a repressilator model (see details in Chapter 3). Second, the prior is employed on
a group of weights. This can be used to obtain structural sparsity. We successfully employ
the group prior to select the input features for a dynamic system (see details in Chapter 4).
Third, the priors are employed with both a single weight and a group of weights. Such
priors are used to discover the governing equations of several dynamic systems, where
both input feature selection and parameter estimation are required (see details in Chap-
ter 5). To simplify the illustration, we use "single prior", "group-prior", and "fused prior"
to represent these three ways of employing priors on model parameters.

The way to treat neural networks in a Bayesian manner is also known as Bayesian
learning for neural networks [37, 40]. To approximate the posterior distribution, sev-
eral approximate inference approaches have been proposed, e.g., the Laplace approxima-
tion [37], Hamiltonian Monte Carlo [40], expectation propagation [18, 24], and variational
inference [13, 19]. Among these methods, we adopt Laplace approximation, which is mo-
tivated by several reasons: 1) its easy implementation, especially using recent popular
deep learning open-source software; 2) versatility of modern NN structures such as CNN
and RNN as well as their modern variations; 3) close relationship between the computa-
tion of Hessian and network compression using Hessian metric [16, 29]; 4) acceleration
effect to training convergence by second-order optimization algorithm [5] to which it is
related; 5) scalability to deep neural networks. However, Laplace approximation requires
the computation of the inverse Hessian of log-likelihood, which can be infeasible to com-
pute for large networks. Although [5] has proposed an efficient Hessian approximation
method for fully connected layers by calculating the diagonal blocks of the Hessian, it
cannot be used for other parametric layers, such as the convolutional (Conv) layers and
recurrent layers due to the indirect convolution operation and recurrent operation. This
also motivates us to explore efficient Hessian calculation methods for the convolutional
and recurrent layers in this thesis (see details in Chapter 2).

Furthermore, the objective of system identification is similar to training deep neural
networks, which is to build a mathematical model uncovering the relationship between
the input and output data. Therefore, the proposed Bayesian approaches, which aim to
work for system identification tasks, should also have the potential to be implemented for
the tasks related to deep learning. In this thesis, in addition to the typical SYSID topics, we
also explore the generalization of the proposed approach to deep learning applications
with high-dimensional datasets, including neural architecture search (NAS) and neural
network compression (see details in Chapter 6).
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1.2. RESEARCH CONTRIBUTIONS
The research contributions that we achieve in this thesis can be summarized as follow.

• Propose efficient sparse Bayesian deep learning algorithms to address the over-
fitting issue of DNNs. As a common problem in the training of DNNs, the over-
fitting issue is mainly caused by redundant structures. How to identify the model
redundancy becomes the breakthrough to solve this problem. The `0 norm regu-
larization of model parameters is a conceptually attractive approach by explicitly
penalizing nonzero parameters with no further restrictions [34]. However, it is im-
practical to incorporate `0 norm regularization directly in the loss function due to
its non-differentiability. To address this problem, `1 norm regularization [50] or
group `1 norm regularization [47, 54] are usually adopted to replace the `0 norm
regularization. They can shrink the actual value of the model parameters [50] and
have already been widely used for topics such as deep neural network compres-
sion [7, 11, 17, 52], neural architecture search [12], multi-task regression [26], sys-
tem identification [3, 7, 27], etc. However, the empirical evidence shows that `1

norm regularization methods cannot always effectively acquire sparse results, even
when the hyper-parameters are extensively tuned. This motivates us to seek the
Bayesian approach in this thesis, a more effective solution that can potentially re-
sult in sparser solutions. Specifically, we propose the sparse Bayesian deep learn-
ing (SBDL) approach, which uses the Laplace approximation to approximate the
model evidence/marginal likelihood. An iterative regularized optimization proce-
dure is derived as the identification algorithm. The effectiveness of the proposed
Bayesian approach is demonstrated on various tasks, i.e., the parameter estimation
and structure identification in Chapter 3, modelling on several linear and nonlinear
SYSID benchmarks in Chapter 4, the governing equation discovery in Chapter 5.

• The proposed Bayesian methods can be adapted to both black-box modelling and
white-box modelling. Typically, a model can be divided into three categories ac-
cording to whether it takes a particular account of the physical structure, i.e., black-
box model (e.g., DNN model), grey-box model, and white-box model (e.g., SR model).
However, it is generally known that these model types have their respective opti-
mization methods. For example, the DNN model can be trained by the stochastic
gradient descent (SGD) method, where the gradients are computed via the back-
propagation procedure. The SR model can be trained by genetic programming tech-
niques, brute force, or sparse regression methods (See Section. 5.6 in Chapter 5 for
details). It can be observed that these optimization methods are different and not
compatible, which brings inconvenience for efficient training among different mod-
els. In this thesis, the DNNs (e.g., Fully-connected neural networks, convolutional
neural networks, and recurrent neural networks) can be regarded as black-box mod-
els whose modelling task can be performed by the proposed SBDL approach. In
addition, we design a novel model for the white-box modelling, termed mathemat-
ical operation network (MathONet), which has a DNN-like hierarchical structure
consisting of basic mathematical operations, i.e., unary and binary ones (see more
details in Section 5.2 of Chapter 5). With such a design, the white-box modelling
problem can be treated as a subgraph search problem from an over-parameterized
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MathONet graph. Since the structure of MathONet is similar to DNN, the proposed
Bayesian approach, which works for DNNs, can also be used to train a MathONet.
Thereafter, both the black-box and white-box models adopted in this thesis can be
integrated with fully developed and advanced deep learning frameworks (e.g., Py-
Torch and TensorFlow), which can also accelerate the training process.

• Efficient Hessian calculation methods for convolutional and recurrent layer are
proposed to improve the calculation efficiency. Bayesian approach has already
proved to be an effective way to address the network compression problem [35],
enabling a faster search through the parameter space [36]. However, a Bayesian ap-
proach always requires the updating of a probabilistic model, which means at least
twice the parameters (e.g., mean and variance of each parameter) should be learned
compared with the conventional methods. Therefore, higher computational effi-
ciency is always a research direction worthy of effort. Simplifying related procedures
or calculations within the Bayesian approach would be beneficial to the improve-
ment of computational efficiency. Specifically, as we adopt the Laplace approxi-
mation method to update the posterior variance of parameters, the inverse Hes-
sian of log-likelihood has to be calculated. However, as the dimension of Hessian
is the square of the number of parameters, the calculation and storage of Hessian
for large-scale neural networks are infeasible considering their millions of parame-
ters [4, 5, 38]. To address this problem, efficient Hessian calculation techniques are
required to be proposed for various networks, especially for convolutional neural
networks and recurrent neural networks. In this thesis, inspired by a previous work
related to the Hessian calculation method for the fully connected neural network [5],
we present the efficient calculation/approximation methods of Hessian for both the
convolutional layer and recurrent layer. By extracting the block-diagonal value of
the Hessian, the proposed method can turn an intractable training/optimization
procedure into a tractable one. The proposed Hessian computation can be cal-
culated recursively along with the backpropagation process, potentially reducing
the search time and being well extended to large-scale models. For example, com-
pared to the Hessian calculation method proposed in [5], the required multiply-
accumulate operation (MACs) is reduced from n(2m2+2n2+4mn+3m−1) to n(2+
4m) with W ∈ Rn×m (e.g., if n = 100,m = 100, the original method requires 107.97
MMACs compared with only 0.04 MMACs for the proposed method.). The detailed
calculation procedures for a FC layer, Conv layer and recurrent layer are explained
in Section 2.2.1, Section 2.2.2 and Section 2.2.3 of Chapter 2, respectively.

• The proposed Bayesian methods can employ single prior, group prior and fused
prior on model parameters for different applications. In a Bayesian approach,
the selection of priors is always imperfect [53]. In this thesis, we mainly consider
three kinds of priors for different applications, i.e., single prior, group prior and
fused prior. The selection of different priors will lead to changes in the update of
the posterior distribution, loss function, and hyper-parameters (see Chapter. 2 for
details). In the case of different modelling tasks, different priors are required to be
employed on the model parameters. For example, a single prior would be proper for
the parameter estimation with known structure (see Chapter. 3 for details) and the
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determination of a CNN cell in NAS (see Chapter. 6 for details). The group prior is
necessary for the input feature selection (see Chapter. 4 for details) and structural
sparsity of a DNN compression (see Chapter. 6 for details). And the combination of
a single prior and group prior can be used to identify governing equations for several
dynamic systems (see details in Chapter 5). The corresponding Bayesian algorithms
with these priors and their corresponding regularization update rules are presented
in Section 2.1.2, Section 2.1.3 and Section 2.1.4 of Chapter 2, respectively. Besides,a
practical calculation approach based on the Monte-Carlo integration method is also
derived to quantify the uncertainty of the parameters and predictions (see details in
Section 4.2.2 of Chapter 4). Furthermore, the dependencies between adjacent con-
nections are also considered as the pruning criterium, which ensures a connected
derived graph after pruning. The encoding strategy of dependencies by calculating
the joint prior distribution is in Section 5.2.4 of Chapter 5.

• The proposed Bayesian methods have the generalization ability for diverse topics
in the deep learning research field with high-dimensional datasets. In this thesis,
the main objectives of SYSID tasks include building the mathematical model (e.g.,
(partial) differential and difference dynamic relations) between the observed input
and output data, acquiring good and competitive prediction or simulation accu-
racy. These typical objectives are regarded as sparse regression problems and can
be addressed with the proposed Bayesian approaches with diverse priors. In fact,
some deep learning tasks, such as neural network compression and neural archi-
tecture search, can also be treated as sparse regression problems. However, we can-
not directly apply the proposed Bayesian approaches to these deep learning tasks
considering their peculiarities. For example, a search space should be designed in
the first place for NAS, which requires the proposed Bayesian approach to adapt to
the designed search space. And the dimensional consistency is essential to obtain
the structured sparsity in a neural network compression task. In Chapter 6, we pre-
sented how to apply the proposed Bayesian approach for another two deep learning
topics, i.e., neural network compression and neural architecture search. Specifically,
the one-shot neural architecture search method is implemented on image classifi-
cation tasks on CIFAR-10 and ImageNet datasets. The neural network compression
is implemented for fully connected neural networks and convolutional neural net-
works.

1.3. THESIS ORGANIZATION
The remainder of the thesis is organized as follows.

Chapter 2 presents the proposed Bayesian approaches. The way to formulate the sys-
tem identification in a Bayesian framework, the derivation procedures of the Laplace ap-
proximation, the update rules for hyper-parameters, and the algorithms enforcing sin-
gle prior, group prior and fused prior on the model parameters are elaborated in detail.
Besides, to address the challenge of Hessian calculation for deep neural networks, the
efficient and recursive Hessian calculation methods for the DNN layers, including fully-
connected, convolutional and recurrent layers are also presented.

Chapter 3 applys the sparse Bayesian deep learning algorithm with the single prior to
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identify a repressilator model. The exact closed-form of the Hill function in a repressila-
tor model is discovered by implementing the proposed Bayesian approach on a specially
designed network structure. The designed network consists of two sub-networks. The
first subnetwork is a linear network. The second subnetwork is a Fully-connected neural
network that adopts the Hill function’s general form as the activation function. Both the
model structure and parameters can be identified accurately.

Chapter 4 applys the sparse Bayesian deep learning algorithm with the group prior
to address several existing challenges of DNNs for system identification, including easily
overfitting training datasets, input feature selection, and uncertainty quantification in es-
timated parameters and predictions. The effectiveness of the proposed method is demon-
strated on several linear and nonlinear system identification benchmarks by achieving
good and competitive simulation accuracy.

Chapter 5 applys the sparse Bayesian deep learning algorithm with the fused prior to
the white-box modelling tasks. By presenting a new representation for governing equa-
tions with a DNN-like hierarchical network (i.e., MathONet), the developed Bayesian ap-
proach can be used to discover governing equations (ordinary differential equations (ODEs)
or partial differential equations (PDEs)) from observations for several dynamic systems.

Chapter 6 presents the application of the proposed Bayesian approach to the neu-
ral architecture search (NAS) and neural network compression. For the NAS, the method
can encode the dependency between connections and provide uncertainty as the prun-
ing criteria, which are two typical issues associated with most one-shot NAS methods. The
method is demonstrated by searching the architectures for the image classification tasks
on CIFAR-10 and ImageNet datasets. For neural network compression, two classical DNN
models (i.e., Fully-connected neural network and convolutional neural network) are com-
pressed for their corresponding applications, including image classification on MNIST
and Cifar10 datasets and the prediction of atrial fibrillation on a physiological dataset.
It should be noted that the datasets used in this Chapter belong to high-dimensional
datasets.

Chapter 7 concludes this thesis.
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2
METHOD

This chapter illustrates two main theoretical contributions of this thesis. First, three sparse
Bayesian deep learning (SBDL) algorithms are presented that can enforce diverse priors
(e.g., single prior, group prior and fused prior) on model parameters and obtain different
regularization effect (non-structural, structural and combined regularization). The reg-
ularization update rules for the hyper-parameters and loss function with different priors
are also concluded. Second, we derived efficient and recursive Hessian calculation meth-
ods for different DNN layers, including fully-connected, convolutional and recurrent layers.
By extracting the block-diagonal value of the Hessian, the proposed method can turn an
intractable training/optimization procedure into a tractable one. For example, compared
to a previous Hessian calculation approach, the required multiply accumulate operation
(MACs) with the proposed Hessian calculation method could be reduced from n(2m2+2n2+
4mn +3m −1) to n(2+4m) with W ∈ Rn×m (e.g., if n = 100,m = 100, the original method
requires 107.97 MMACs compared with only 0.04 MMACs for the approximate method.).

In this Chapter, we formulate the DNN identification problem in a Bayesian framework in
Section. 2.1.1. Three corresponding Bayesian deep learning algorithms with these priors
are presented in Section. 2.1.2, Section. 2.1.3, and Section. 2.1.4, respectively. The efficient
and recursive Hessian calculation methods for fully-connected, convolutional and recur-
rent layers are in Section. 2.2.

Parts of this chapter have been published in the International Conference on Machine Learning (2019) [30] and
arXiv preprint arXiv:2107.12910(2021) [31].
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2.1. SPARSE BAYESIAN DEEP LEARNING ALGORITHMS

2.1.1. BAYESIAN NEURAL NETWORK

In this thesis, we mainly consider the system identification problems using DNN models
or the designed DNN-like models. The typical DNN models include fully-connected neu-
ral networks, convolutional neural networks and recurrent neural networks. To simplify
the explanation, we use a fully-connected neural network to explain how to formulate the
system identification problem from a Bayesian viewpoint.

Figure 2.1: Fully-connected neural networks with L layers.

Given the network model as shown in Fig. 2.1, its structure is the map generated by
training the network by Net(W, z), where W = {W l }, l = [1,2, · · · ,L] represents the set of
weights in the network and z represents the input regressors of size 1× (ly + lu +1). f (·)
stands for the activation function. The prediction model is defined as:

ŷ(t +1) = Net(W, z(t +1))+ε ε∼N (0,σ2) (2.1)

The noise term ε is assumed normally distributed with mean zero and known varianceσ2.
The input regressors of this model are defined as a combination of lagged elements of the
system inputs u and outputs y . The input lag is denoted as lu , and output lag ly , resulting
in the expression z(t +1) = [u(t +1),u(t ), · · · ,u(t − lu), y(t ), y(t −1), · · · , y(t − ly )]>.

Given a dataset D of T observations within a Bayesian framework, the posterior esti-
mation for network weights W is given by Bayes’ rule:

p(W |D,H ) = p(D|W,H )p(W,H )

p(D|H )
(2.2)

p(D|W,H ) designates the likelihood function, p(W,H ) the prior over the weights W and
p(D|H ) is the evidence of the hypothesis H given D. The hypothesis generally incorpo-
rates model and inference assumptions. For simplicity of notations, the hypothesis term
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is dropped in the rest of the paper. With variance σ2, the likelihood function is given by:

p(D|W,σ2) =
>∏

t=1
N (y(t )|Net(W, z(t +1)),σ2)

= (2πσ2)−
T
2 exp

{−E(W,σ2)
}

(2.3)

Assume the likelihood function belongs to a Gaussian distribution, E(W,σ2) denotes an
energy loss function of the neural network in the form of a sum of squared errors E(W,σ2) =

1
2σ2

∑>
t=1(y(t )−Net(W, z(t +1)))2.

The prior probability p(W ) takes a Gaussian relaxed variational form p(W ) ≥ p(W,ψ)
=N (W |0,Ψ) φ(ψ) , where φ(ψ) represents the hyperprior probability of ψ, [ψ1, · · · ,
ψn , · · · ,ψN ] and Ψ , diag(ψ). N denotes the number of unknown parameters. For in-

stance, suppose W l ∈Rnl−1×nl
, N =∑L

l=1 nl−1×nl where n0 = ly +lu+1. With the principle
of minimizing misaligned probability mass [22], the hyper-parameter ψ can be obtained
by:

ψ̂= argmin
ψ≥0

∫
p(D|W,σ2)|p(W )−p(W,ψ)| dW (2.4)

= argmax
ψ≥0

∫
p(D|W,σ2)p(W,ψ) dW (2.5)

The resulting problem is known as a type II maximum likelihood [26]. The intractable
integral can be approximated by approximate inference methods. We refer specifically to
the Laplace approximation.

It should be noted that we employ different priors to address diverse SYSID tasks in
this thesis. Specifically, three kinds of priors are included, i.e., the single prior for non-
structural sparsity used for parameter estimation, the group prior for structural sparsity
used for input feature selection and the fused prior (single prior & group prior) for com-
bined (non-structural & structural) sparsity used for governing equation identification.
Fig. 2.2 shows how to employ priors on model parameters. With the Laplace approxima-
tion method, the detailed derivation about the hyper-parameters under different priors is
also different and will be elaborated as follows.

2.1.2. SPARSE BAYESIAN DEEP LEARNING ALGORITHM WITH SINGLE PRIOR
For the single prior, the independent prior distribution will be enforced on each parameter
as shown in Fig. 2.2(a). Taking the weight matrix W l of layer l as the optimization target,
we assume that the prior probability for p(W l ) is a Gaussian relaxed variational form

p(W l ) ≥ p(W l ,ψl ) =N (W l |0,ψl ) φ(ψl ) (2.6)

where φ(ψl ) represents the hyperprior probability of ψl , [ψl
1, · · · ,ψl

m , · · · ,ψl
M ]. M de-

notes the number of unknown parameters. ψl
m is independent from each other.

THE LAPLACE APPROXIMATION

In this section, a detailed mathematical description of the adopted Laplace approximation
method is given. To compute the intractable integral in Eq. (2.5), the Laplace approxima-
tion is taken on the likelihood function as Eq. (2.3). The energy function E(W l ,σ2) is the
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Figure 2.2: Priors for structured sparsity of weight matrices. (a): the regularization is
enforced on a single parameter (coloured square), which is called shape-wise regulariza-
tion; (b)-(d): the regularization is enforced on a group of parameters (coloured squares).
The group can be a row, column, row & column of a 2D matrix, which are called row-
wise, column-wise, row & column-wise regularization, respectively; (e)-(f): a fused prior
(a single prior & group prior) is enforced on model parameters, which are marked as dark
brown.

loss of the network given the data D. It is given by:

E(W l ,σ2) = 1

2σ2

>∑
t=1

(y(t )−Net(W l , z(t )))2 (2.7)

The expression Net(·) in Eq. (2.7) is the resulting network non-linear map. To compute the
intractable integral for the evidence, the energy function can be expanded to a second-
order Taylor series expansion around W l ∗.

E(W l ∗,σ2) ≈ E(W l ∗,σ2)+ (W l −W l ∗)>g(W l ∗,σ2)+ 1

2
(W l −W l ∗)>H(W l ∗,σ2)(W l −W l ∗)

(2.8)

where g(W l ∗,σ2) = ∇E(W l ,σ2)|W l ∗ and Hl (W l ∗,σ2) = ∇∇E(W l ,σ2)|W l ∗ . To save space,

we use gl , Hl and E to denote g(W l ∗,σ2), Hl (W l ∗,σ2) and E(W l ∗,σ2) in the following,
respectively. The quadratic expression is also adopted among Trust-Region methods. A
region is defined around the current iterate connection weights W l , and the expansion in
Eq. (2.8) is considered a reasonable local representation of the loss function [21]. With this
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expansion, the likelihood function becomes:

p(D|W l ,σ2)

≈(2πσ2)−
T
2 exp

{
−

(1

2
(W l −W l ∗)>Hl (W l −W l ∗)+ (W l −W l ∗)>gl +E

)}
(2.9)

=(2πσ2)−
T
2 exp

{
−

(1

2
(W l )>Hl W l + (W l )>

(
gl −HW l ∗))}

·exp
{
−

(1

2
(W l ∗)>Hl W l ∗− (W l ∗)>gl +E

)}
(2.10)

=A ·exp
{
−

(1

2
(W l )>Hl W l + (W l )>ĝl

)}
(2.11)

with,

ĝl = gl −HW l ∗ (2.12)

A = (2πσ2)−
T
2 ·exp

{
−

(1

2
(W l ∗)>Hl W l ∗− (W l ∗)>gl +E

)}
(2.13)

A Gaussian form can be easily recuperated from Eq. (2.11) by completing the square in

the exponent. Before that, we define the following quantities: B = exp
{

1
2 (ĝ l )>Hl ĝl

}
,C =

(2π)
T
2 |H| 1

2

p(D|W l ,σ2)

≈A ·exp
{
−

(1

2
(W l )>Hl W l + (W l )>ĝl

)}
·exp

{1

2
(ĝl)>Hl ĝl − 1

2
(ĝl)>Hl ĝl

}
(2.14)

=A ·B ·exp
{
−

(1

2
(W l )>Hl W l + (W l )>ĝl + 1

2
(ĝl)>Hl ĝl

)}
(2.15)

=A ·B ·C ·N (W l |Ŵ l , (Hl )−1) (2.16)

where Ŵ l =−(Hl )−1ĝl .
Given such a Gaussian likelihood and a Gaussian prior, the posterior is also Gaussian

N (µW l ,ΣW l ) by the effect of the conjugacy rule:

µW l =
[
Hl + (ψl )−1]−1ĝl ΣW l =

[
Hl + (ψl )−1]−1 (2.17)

EVIDENCE MAXIMIZATION

In this section, we will derive the objective function, which is achieved by maximizing
the evidence and can be used to update the model parameters. The evidence in Eq. (2.5)
attempts to find the volume of the product p(D|W l ,σ2)p(W l ,ψl ), which is Gaussian and
proportional to the posterior. Thus, one can approximate the evidence as to the volume
around the most probable value (here the posterior µW l ).

ψ̂l = argmax
ψl≥0

∫
p(D|W l ,σ2)p(W l |ψl )p(ψl )dW l (2.18)

≈ argmax
ψl≥0

p(D|µW l ,σ2)︸ ︷︷ ︸
Best Fit Likelihood

p(µW l |ψl )|ΣW l | 1
2︸ ︷︷ ︸

Occam Factor

(2.19)
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In David Mackay’s words, the evidence is approximated by the product of the data like-
lihood given the most probable weights and the Occam factor [15]. It can also be inter-
preted as a Riemann approximation of the evidence, where the best-fit likelihood repre-
sents the peak of the evidence. And the Occam’s factor is the Gaussian curvature around
the peak [8].

By realizing that the posterior mean µW l maximizes p(D|W l ,σ2)p(W l |ψl ), the likeli-
hood and prior is replaced by their expressions:∫

p(D|W l ,σ2)p(W l |ψl )p(ψl ) dW l (2.20)

=
∫

A ·exp
{
−

(1

2
(W l )>Hl W l + (W l )>ĝl

)}
·N (W l |0,ψl ) ·φ(ψl ) dW l (2.21)

= A

(2π)T /2|ψl | 1
2

·
∫

exp
{
−

(1

2
(W l )>Hl W l + (W l )>ĝl

)}
·exp

{
−

(1

2
(W l )>(ψl)−1W l

)}
dW l ·

M∏
i=1

φ(ψl
i ) (2.22)

= A

(2π)T /2|ψl | 1
2

·
∫

exp
{
−E(W l ,σ2)

}
dW l ·

M∏
i=1

φ(ψl
i ) (2.23)

where,

E(W l ,σ2) = 1

2
(W l )>H(W l ∗,σ2)W l + (W l )>ĝl + 1

2
(W l )>(ψl)−1W l (2.24)

The integral in Eq. (2.20) is the integral of the product p(D|W l ,σ2)p(W l |ψl ), which is pro-
portional to the posterior p(W l |D,ψl ). In most applications, the posterior peaks with
respect to the prior, and the evidence can be approximated by the posterior volume. This
approximation is analogous to using the Laplace approximation of the posterior in David
MacKay’s Bayesian framework [15].∫

p(D|W l ,σ2)p(W l |ψl ) dW l ≈ p(D|µW l ,σ2)p(µW l |ψl ) · |ΣW l | 1
2 · (2π)T /2 (2.25)

⇐⇒
∫

exp
{
−E(W l ,σ2)

}
dW l ≈ exp

{
−E(µW l ,σ2)

}
· |ΣW l | 1

2 · (2π)T /2 (2.26)

where,

E(µW l ,σ2) = 1

2
(µW l )>H(W l ∗,σ2)µW l + (µW l )>ĝl + 1

2
(µW l )>(ψl)−1µW l (2.27)

= min
W l

1

2
(W l )>H(W l ∗,σ2)W l + (W l )>ĝl + 1

2
(W l )>(ψl)−1W l (2.28)

Hence the maximization of the evidence becomes the maximization in Eq. (2.29):

ψl = argmax
ψl>0

A

(2π)T /2|ψl | 1
2

·exp
{−E(µW l ,σ2)

} · |ΣW l | 1
2 ·

M∏
i=1

φ(ψl
i ) (2.29)
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By applying a −2log(·) operation and using Eq. (2.28), one obtains

ψl = argmin
ψl>0

−2log

[
A

(2π)T /2|ψl | 1
2

·exp
{−E(µW l ,σ2)

} · |ΣW l | 1
2 ·

M∏
i=1

φ(ψl
i )

]
(2.30)

= argmin
ψl>0

−2log(A)+E(µW l ,σ2)+ log |ψl |− log |ΣW l |−2
M∏

i=1
log

(
φ(ψl

i )
)

(2.31)

W l ,ψl = argmin
W l ,ψl>0

1

2
(W l )>H(W l ∗,σ2)W l + (W l )>ĝl + 1

2
(W l )>(ψl)−1W l + log |ψl |

+ log |H(W l ∗,σ2)+ (ψl )−1|−2log(A)−2
M∏

i=1
log

(
φ(ψl

i )
)

Since the hyperprior φ(ψl ) is a non-informative hyper-prior, the final objective func-
tion is given by:

L (W l ,ψl ,σ2) = (W l )>Hl W l +2(W l )>ĝl + (W l )>(ψl )−1W l + log |ψl |+ log |Hl + (ψl )−1|
−T log

(
2πσ2) (2.32)

This objective function will be revisited in the next section to update the parameters
W l ,ψl .

REGULARIZATION UPDATE RULES

In this section, we will derive how to update the parameters W l ,ψl using a convex-concave
procedure (CCCP). This is also a contribution of the thesis. As an optimization objective,
Eq. (2.32) has two parameters W l and ψl which are required to be trained. This section
will explain why the training objective is equivalent to including a regularizer on the model
complexity and how the regularized loss function helps update parameters. The objective
function in Eq. (2.32) can be seen as a sum of convex u and concave v functions in ψl

shown in Eq. (2.33)- (2.34).

u(W l ,ψl ) = (W l )>Hl W l +2(W l )>ĝl + (W l )>(ψl )−1W l (2.33)

v(ψl ) = log |ψl |+ log |Hl + (ψl )−1| (2.34)

(W l )>(ψl )−1W l is positive definite, since ψl > 0, thus u is convex in ψl . v can be refor-
mulated as a log-determinant of an affine function ofψl . By using the Schur complement
determinant identities,

|ψl ||Hl + (ψl )−1| =
∣∣∣∣Hl

−ψl

∣∣∣∣= |Hl ||(Hl )−1 +ψl | (2.35)

and taking the log of Eq. (2.35),

log |ψl |+ log |Hl + (ψl )−1| = log |Hl |+ log |(Hl )−1 +ψl | (2.36)

Since the log-determinant is concave (see page 74 in [4]), v is concave in ψl (Eq. (2.36)).
The minimization problem can therefore be reformulated as a convex-concave procedure
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(CCCP) [28]. W l and ψl are obtained with iterative minimization of Eq. (2.37)-(2.38).

W l (k +1) = argmin
W l (k)

u
(
W l (k),ψl (k)

)
(2.37)

ψl (k +1) = argmin
ψl≥0

u
(
W l (k +1),ψl (k)

)+αl (k) ·ψl (k) (2.38)

where αl (k) =∇l
ψv

(
ψl (k)

)> is the gradient of v evaluated at the current iterate ψl (k). Us-
ing the chain rule, its analytic form is given by:

αl (k) =∇l
ψ

(
log |ψl (k)|+ log |Hl +

(
ψl (k)

)−1 |
)∣∣∣
ψl=ψl (k)

(2.39)

=−diag
((
ψl (k)

)−1 )
◦diag

((
Hl +

(
ψl (k)

)−1 )−1
)

◦diag
((
ψl (k)

)−1 )
+diag

((
ψl (k)

)−1 )
(2.40)

◦ is the point-wise Hadamard product. Since ψl is a diagonal matrix, Eq. (2.38) can be
expressed per connection independently. With ΣW l (k) the connection weight posterior
variance, the analytical form for αl is given by

ΣW l (k) =
(
Hl (k)+ψl (k)−1)−1 (2.41)

αl
i (k) =−

ΣW l
i (k)(

ψl
i (k)

)2 + 1

ψl
i (k)

(2.42)

The optimization step in Eq. (2.38) for ψl
i becomes

ψl
i (k +1) = argmin

ψl≥0

(
W l

i (k +1)
)2

ψl
i (k)

+αl
i (k) ·ψl (k) (2.43)

By noting that

(W l
i )2

ψl
i

+αl
i ·ψl

i ≥ 2
∣∣∣√αl

i ·Wi

∣∣∣ (2.44)

The analytical solution is given by

ψl
i (k +1) = |W l

i (k +1)|
ωl

i (k)
(2.45)

ωl
i (k) =

√
αl

i (k) (2.46)

For the second part, finding W l can be done with stochastic gradient descent on Eq. (2.37),
which can be reformulated as a regularized neural network loss function.

W l (k +1) = argmin
W l

(
W l (k)

)>
Hl W l (k)+2

(
W l (k)

)>
ĝl +

M∑
i=1

||ωl
i ·W l

i (k)||`1

≈ argmin
W l

E(·)+ 1

2

M∑
i=1

||ωl
i ·W l

i (k)||`1 (2.47)
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E(·) designates the energy loss function defined in Eq. (2.3). Till now, W l can be calculated
according to (2.47), and the hyperparameter ψl can be updated correspondingly accord-
ing to (2.45). It is worth mentioning that W l obtained at time t is just the W l ∗ at time t +1
for the reason that the updated W l and ψl can be viewed as a temporary local optimum.

ALGORITHM

In this section, we summarize the iterative procedure derived in Section. 2.1.2.3. The
pseudo-code for illustrating the process of Bayesian learning is shown in algorithm 1.
By employing the single prior on model parameters, the proposed algorithm can lead to
a shape-wise regularization, which drives individual connection weights to 0. A hyper-
parameterλ is also introduced to tune the regularization. L denotes the number of hidden
layers. After the training process, the redundant parameters should be compressed. In this
chapter, we adopt the ψl and the magnitude of W l as the pruning criteria. ψl

i denotes the

uncertainty for the weight W l
i . A small variance ψl

i means high confidence that the cor-

responding weight W l
i has a high probability of being zero and does not contribute to the

final result. At the same time, the parameter with its magnitude smaller than a threshold
is also regarded as a redundant parameter. We define κψ,κw ∈R+ as these two thresholds.

Algorithm 1 Sparse Bayesian Deep Learning Algorithm with Single Prior

Initialize: hyper-parameters ωl ,ψl = I , l = [1,2, · · · ,L]; threshold for pruning κψ,κw ∈ R+;
regularization tuning parameter λ ∈ R+; Cmax ∈N+ denotes the maximum cycles; Emax ∈
N+ denotes the number of epochs in each cycle.
for i = 1 to Cmax

for j = 1 to Emax

(1) Update the weight W l by applying the gradient decent with loss function as

argmin
W l

E(W l ,σ2)+λ
L∑

l=1
||ωl ·W l ||`1

end for
for l = 1 to L

(2) Update ψl as Eq. (2.45).

(3) Update ωl as Eq. (2.46).

end for
end for
(4) One-shot prune W l if |W l | < κw and ψl < κψ

Remark 1 We now give some clarifications on the definition of cycle and epoch in Algo-
rithm 1. One identification “cycle” has Emax epochs. One “epoch” refers to that the entire
dataset is processed forward and backward by the NN for one time. In the first identifi-
cation cycle, regularization is conventional (ω(0) = 1). That is, the first obtained model is
a sparse model corresponding to the conventional sparse `1 norm regularization method,
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and sparser models are expected to result from the next identification cycles. The selection
of Cmax will impact the training effect. A Cmax that is too large will consume more time and
lead to overfitting, while a Cmax that is too small will result in underfitting.

2.1.3. SPARSE BAYESIAN DEEP LEARNING ALGORITHM WITH GROUP PRIOR
With the assumption on the independence and non-stationarity of connection weights,
the Bayesian approach derived in Section. 2.1.2 can be used to achieve the non-structural
(shape-wise) regularization by driving some individual weights to be 0. However, one may
want to enforce structured sparsity in some applications. This can be realized by enforc-
ing group priors on a group of weight and re-expressing the regularization term as a func-
tion of these groups [27]. Fig. 2.2(b-c) shows the structured regularization of rows and
columns. The benefit of such an approach, specific to this thesis, is obtaining compact
sparse models and the suppression of input features that are deemed less pertinent with-
out loss of accuracy. An example about input feature selection is in Figure. 2.3. The
relevant experiment on system identification is in Chapter 4.

Figure 2.3: An example about selecting input features by employing group prior on model
parameters. The outgoing connections of some input features are identified as redundant
(dotted line).

In order to distinguish it from the symbols used in Section. 2.1.2, we take the weight
matrix W l

g of layer l as the optimization target in this section. Assuming that the prior

probabilities for p(W l
g ) is still a Gaussian relaxed variational form

p(W l
g ) ≥ p(W l

g ,ψl
g ) =N (W l

g |0,ψl
g ) φ(ψl

g ) (2.48)

ψl
g , [ψl

g 1, · · · ,ψl
g m , · · · ,ψl

g M ] =
[
ψl

g 1, . . . ,ψl
gℵ1︸ ︷︷ ︸

ℵ1 elements

. . . ψl
g M−ℵO+1, . . . ,ψl

g M︸ ︷︷ ︸
ℵO elements

]
(2.49)

W l
g , [W l

g 1, · · · ,W l
g m , · · · ,W l

g M ] =
[

W l
g 1, . . . ,W l

gℵ1︸ ︷︷ ︸
ℵ1 elements

. . . W l
g M−ℵO+1, . . . ,W l

g M︸ ︷︷ ︸
ℵO elements

]
(2.50)

where M denotes the number of unknown parameters. φ(ψl
g ) represents the hyper-

prior probability of Ψl and ψl , diag(ψl ). It can be found from Eq. (2.49) that the un-
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known parameters can be divided into ℵO groups, where
∑O

i=1ℵi = M . Theψl within each

group shares the same value. Therefore, if we use theψl as the network pruning criteria, a
group of weights can be retained or compressed simultaneously. Typically, for a 2-D ma-
trix, the weights in the same row or column can be regarded as a group, which means O is
equal to the number of rows or columns. It should be noted that these groups are consid-
ered independent, but the weight of each connection in a specific group share the same
prior Gaussian relaxation (see Fig. 2.2(b-c)). This results in a slightly different iterative
update rule for the identification algorithm.

REGULARIZATION UPDATE RULES

With the group prior defined in Eq. (2.48) (2.49), the way to formulate the system identi-
fication in a Bayesian framework and the derivation of the loss function is similar to Sec-
tion. 2.1.2. The difference is with the optimization step forψl . Parameters in the same row
share the same prior uncertainty ψl

a: and the same column the prior uncertainty ψl
:b . Ac-

cording to the optimization step in Eq. (2.43) for ψl
ab , the prior shared among the weights

in the same column becomes

ψl
:b(k +1) = argmin

ψ≥0

nl∑
b=1

W l
:b(k +1)T W l

:b(k +1)

ψl
:b(k)

+αl
:b(k) ·ψl

:b(k) (2.51)

where αl
:b =

nl−1∑
a=1

αl
ab(k). By noting that

nl∑
b=1

W l
:b

T
W l

:b

ψl
:b

+αl
:b ·ψl

:b ≥ 2
∣∣∣∣∣∣√αl

:b ·W l
:b

∣∣∣∣∣∣
l2

(2.52)

the analytical solution is given by

ψl
:b(k +1) = ||W l

:b(k +1)||2
ωl

:b(k)
(2.53)

where

ωl
:b(k) =

√
αl

:b(k) =
√√√√nl−1∑

a=1
αl

ab(k) (2.54)

The row-wise regularization can be analogously derived. Note that the update rules for
αl

ab remains similar to Eq. (2.41) and (2.42).

ALGORITHM

Taking the column-wise regularization as the example. A pseudo-code for the algorithm
with the group prior is given by Algorithm 2. Similarly, the row-wise regularization item,
the update rules for ψ,ω are in Table 2.1.

Remark 2 In the first identification cycle, regularization is conventional (ω(0) =1). That is,
the first obtained model is a sparse model corresponding to the conventional sparse group
lasso regularization method, and sparser models result from the subsequent identification
cycles.
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Algorithm 2 Sparse Bayesian Deep Learning Algorithm with Group Prior

Initialize: hyper-parameters ωl ,ψl = I , l = [1,2, · · · ,L]; threshold for pruning κψ,κw ∈ R+;
regularization tuning parameter λ ∈ R+; Cmax ∈ N+ denotes the maximum cycles; Emax ∈
N+ denotes the number of epochs in each cycle.
for i = 1 to Cmax

for j = 1 to Emax

(1) Update the weight W l by applying the gradient decent with loss function:

argmin
W l

E(W l ,σ2)+λ
L∑

l=1

nl∑
b=1

||ωl
:b ·W l

:b ||`2

end for
for l = 1 to L

(2) Update ψl as Eq. (2.53).

(3) Update ωl as Eq. (2.54)

end for end for
(4) One-shot prune W l if |W l | < κw and ψl < κψ

Remark 3 The algorithm does not exhibit global convergence properties. It shares the lo-
cal convergence properties (local minima, saddle point) of the adopted stochastic gradient
descent method. This is because the Laplace approximation is a local approximation to
the energy function E(·) and includes an assumption on the uni-modality of the posterior.
However, the introduced pruning and the regularization techniques are heuristics that help
speed up the algorithm and improve convergence and optimality. Nonetheless, the identi-
fication experiments are run multiple times randomly initialized, and the generated model
with the best simulation validation performance is chosen.

2.1.4. SPARSE BAYESIAN DEEP LEARNING ALGORITHM WITH FUSED PRIOR
As shown in Fig. 2.2(d), the way to enforce fused prior on weight matrix means enforcing
both single prior and group prior on the same weight matrix. Taking the weight matrix
W l of layer l as the optimization target, we define the single prior p(W l ) and group prior
p(W l

g ) as:

p(W l ) ≥ p(W l ,ψl ) =N (W l |0,ψl ) φ(ψl ) p(W l
g ) ≥ p(W l

g ,ψl
g ) =N (W l

g |0,ψl
g ) (2.55)

where P (W l ) is imposed to regularize each weight. And a group prior P (W l
g ) is imposed

to regularize a group of weights with

ψl , [ψl
1, · · · ,ψl

m , · · · ,ψl
M ]

ψl
g , [ψl

g 1, · · · ,ψl
g m , · · · ,ψl

g M ] =
[
ψl

g 1, . . . ,ψl
gℵ1︸ ︷︷ ︸

ℵ1 elements

. . . ψl
g M−ℵO+1, . . . ,ψl

g M︸ ︷︷ ︸
ℵO elements

]
.
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W l
g , [W l

g 1, · · · ,W l
g m , · · · ,W l

g M ] =
[

W l
g 1, . . . ,W l

gℵ1︸ ︷︷ ︸
ℵ1 elements

. . . W l
g M−ℵO+1, . . . ,W l

g M︸ ︷︷ ︸
ℵO elements

]
.

where M denotes the number of unknown parameters. φ(ψl ) and φ(ψl
g ) represent

the hyperprior probability of ψl and ψl
g , respectively. For the group regularization, the

unknown parameters can be divided into ℵO groups, where
O∑

i=1
ℵi = M . The ψl within

each group shares the same value. However, when using both single prior and group prior,
there would be a slightly different iterative update rule for the identification algorithm.

REGULARIZATION UPDATE RULES

The difference is with the optimization step for ψ. When using both shape-wise and
group-wise regularization, the posterior is updated according to a combined prior given
by:

ψ̂i (k) = 1

( 1
ψi (k) + 1

ψg (k) )
(2.56)

The last row in Table 2.1 summarizes the update rules for ψ,ω,α according to the cate-
gory of regularization techniques adopted. R(·) in Table 2.1 represents the corresponding
regularization items. Note that the update rules for ψi remain similar to Eq. (2.45) of Sec-
tion. 2.1.2, and the update rules for ψg remain similar to Eq. (2.53) of Section. 2.1.2.

ALGORITHM

If both the shape-wise and column-wise regularization are adopted, a pseudo-code for
the algorithm is given by Algorithm 3.

A complete summary of the calculation of hyper-parameters (i.e.,ψ,ω,α) and the cor-
responding regularization item R(·) is in Table. 2.1. It should be noted that we use different
terms in Table. 2.1 to represent the regularization based on different priors. Specifically,
the "shape-wise" in the first row represents the single prior leading to shape-wise regular-
ization (Fig. 2.2(a)). The "row-wise" (Fig. 2.2(b)) and "column-wise" (Fig. 2.2(c)) in the sec-
ond and third row represent the group prior leading to row-wise or column-wise regular-
ization. The "row-wise + column-wise" (Fig. 2.2(d)), "shape-wise + row-wise" (Fig. 2.2(e))
and "shape-wise + column-wise" (Fig. 2.2(f)) in last three rows represent the fused priors
which is combination of different priors.

As explained in Section. 2.1.2.1, the Laplace approximation methods require the Hes-
sian calculation for weight matrices. In the next section, we propose efficient Hessian
calculation methods for several typical parametric layers, i.e., Fully-connected, convolu-
tional and recurrent layers.

2.2. HESSIAN CALCULATION
As explained in Section. 2.1.2.1, the Hessian of weight matrices is also a necessity for
the Laplace approximation method. We have to find effective calculation methods to
compute the Hessian of the weight matrices in a neural network model. This section
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Algorithm 3 Sparse Bayesian Deep Learning Algorithm with Fused Prior

Initialize: hyper-parameters ωl ,ψl = I , l = [1,2, · · · ,L]; threshold for pruning κψ,κw ∈ R+;
regularization tuning parameter λ ∈ R+; Cmax ∈ N+ denotes the maximum cycles; Emax ∈
N+ denotes the number of epochs in each cycle.
for i = 1 to Cmax

for j = 1 to Emax

(1) Update the weight W l by applying the gradient decent with loss function as

argmin
W l

E(W l ,σ2)+λ
L∑

l=1
||ωl ·W l ||`1 +λg

L∑
l=1

nl∑
b=1

||ωl
:b ·W l

:b ||`2

end for
for l = 1 to L

(2) Update ψl and ψl
:,b as Eq. (2.45) and Eq. (2.53), respectively.

(3) Update ψ̂l as Eq. (2.56).

(4) Update ωl and ωl
:,b as Eq. (2.46) and Eq. (2.54), respectively.

end for
end for
(4) One-shot prune W l if |W l | < κw and ψ̂l < κψ

will present the proposed efficient and recursive Hessian calculation methods for fully-
connected, convolutional and recurrent layers. In the beginning, we will explain the math-
ematical definition and properties of Hessian. The Hessian of the weight matrix W ∈Rm×n

is a square matrix of the second-order partial derivatives of the loss function, which in-
cludes the local curvature information and can be formulated as:

HL =



∂2L

∂~W 2
1

∂2L

∂~W1∂~W2
· · · ∂2L

∂~W1∂~Wmn

∂2L

∂~W2∂~W1

∂2L

∂~W 2
2

· · · ∂2L

∂~W2∂~Wn

...
...

. . .
...

∂2L

∂~Wmn∂~W1

∂2L

∂~Wmn∂~W2
· · · ∂2L

∂~W 2
mn,mn

 (2.57)

where the (i , j ) element of the HL can be represented as:

[HL ]i j = ∂2L

∂~Wi∂~W j
(2.58)

It can be found that the dimension of HL is the square of the number of parameters,
e.g., HL ∈ Rmn×mn if W ∈ Rm×n . Therefore, the Hessian calculation and storage for large-
scale neural networks are infeasible due to their millions of parameters [2]. Therefore,
we need to find the practical and effective calculation method to relieve the computation
burden. It should be noted that the weight ~W ∈Rmn here is the vectorization of the original
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multi-dimension weight matrix W ∈Rm×n . The vectorization is performed by the defined
vectorization operator. The definition of vectorization operators for the 2D matrix and
3D matrix are in definition 1 and definition 2, respectively. The Hessian matrix of W to
the loss function is also known as the jacobian matrix of the gradient of W to the loss
function. Since the dimension of the Hessian is decided by the amount of parameters, it
would be convenient to explain the Hessian calculation by treating the matrix as a vector.
Therefore, we define the vectorization operators for 2D and 3D matrix in definition 1 and
definition 2, respectively. It should be noted that the 2D matrix is the typical matrix in a
Fully-connected neural network and recurrent neural network. In contrast, the 3D matrix
is the typical matrix in the convolutional neural network.

Definition 1 The vectorization operator for a 2D matrix A ∈Rm×n is defined as stacking the
elements of A into a vector ~A ∈Rmn by assembling the columns of A sequentially. Formally,
the vectorization process V2D :Rm×n →Rmn is:

V2D (A) =


A:,1

A:,2

· · ·
A:,n

 (2.59)

where A:,i =
[

A1,i A2,i · · · Am,i
]>

The operatorV2D represents the identity map if the input A
is a vector itself.

Definition 2 The vectorization operator for a 3D matrix A ∈Rm×n×o is defined as stacking
the elements of A into a vector ~A ∈ Rmno by assembling the vectorization of the 2D ma-
trix Ai ,:,:, i = [1,2, · · · ,m] with the 2D vectorization operator 1 sequentially. Formally, the
vectorization process V3D :Rm×n×o →Rmno is:

V3D (A) =


V2D (A1,:,:)
V2D (A2,:,:)

· · ·
V2D (Am−1,:,:)
V2D (Am,:,:)

 (2.60)

It should be noted that these vectorization operators represent an isomorphic map. Be-
sides the vectorization operators, we also propose the definition of de-vectorization oper-
ators, which will be useful for the Hessian calculation of Conv layers in Section. 2.2.2.2.

Definition 3 The 2D de-vectorization operator to reshape a vector ~A ∈ Rmn to a 2D matrix
A ∈Rm×n is defined as truncating ~A into m equal segments, which are stacked sequentially
as a 2D matrix shaped as m ×n. Formally, the de-vectorization processDV2D :Rmn →Rm×n

is:

DV2D (~A) =


~A[1 : n]

~A[n +1 : 2n]
· · ·

~A[(m −1)n +1 : mn]

 (2.61)
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Definition 4 The 3D de-vectorization operator to reshape a vector ~A ∈Rmno to a 3D matrix
A ∈Rm×n×o is implemented by two steps. First, truncate the ~A into m equal segments, where
each segment is denoted as ~A(i−1)no+1:i no ∈Rno , i == [1,2, · · · ,m]. Second, de-vectorize each
segment A(i−1)no+1:i no into a 2D matrix shaped as n ×o with 2D de-vectorization operator
DV2D (~A). The de-vectorized 2D matrix is stacked sequentially as a 3D matrix shaped as
m ×n ×o. Formally, the de-vectorization process DV3D :Rmno →Rm×n×o is:

DV3D (~A) =


DV2D (~A1:no)

DV2D (~Ano+1:2no)
· · ·

DV2D (~A(m−1)no+1:mno)

 (2.62)

The definition of DV2D is in definition 2.61.

The Hessian of weight matrices can benefit the DNN training from two aspects. First,
it can accelerate optimization by adopting the Hessian in second-order optimization al-
gorithms, e.g., the Quasi-Newton methods [4, 20]. First-order optimization methods (e.g.,
gradient descent, gradient descent with momentum [23]) are the mainstream for deep
learning by leveraging their advantages, such as easily implementation with mature deep
learning frameworks (e.g., PyTorch and TensorFlow) and scalability to large models and
datasets [11, 29]. However, they also suffer the shortages such as heavy tuning effort for
hyper-parameters (e.g., learning rate), sensitivity to weight initialization and easily fall
into a local minimum. On the other hand, the second-order optimization methods have
shown their competence in rapid convergence without much tuning work [2, 3]. [17] also
demonstrated that the second-order optimization method could perform better than the
first-order approaches on problems such as pathological curvature, where the first-order
method often falls into the "valleys" with large varying curvatures because of their lack
of ability to capture the curvature information [5, 19]. However, the second-order ap-
proaches escape such pitfalls by leveraging the Hessian information, also known as the
curvature matrix. The use of curvature information can speed up the search process per
step. Second, the Hessian of weight matrices is also a necessity for the Laplace approxi-
mation method (see details in Section. 2.1.2.1). The Hessian is used to calculate the pos-
terior distribution of weight parameters as in Eq. 2.17 and incorporated to update the loss
function in each cycle. [16] has successfully adopted the curvature matrix as the precision
matrix of the approximated Gaussian distribution in some small scale neural networks.

Since the Hessian is diagonal dominant practically [19], [2, 3] presented an efficient
Hessian calculation method for fully-connected (FC) layer. The proposed approach fo-
cused on the diagonal blocks of the Hessian. Each block represents the diagonal en-
tries of the Hessian in each layer and can be calculated recursively along with the back-
propagation process using Kronecker products. However, this approach can only be used
to approximate the diagonal blocks of the Hessian for fully connected layers. It cannot
be used for other parametric layers, such as the convolutional (Conv) and recurrent lay-
ers. It can be observed that the difficulty of Hessian calculation for the Conv layer shall
increase due to the indirect convolution operation, as well as for the recurrent layer due
to the repeated multiplications of the same weights [18]. This motivates us to explore the
efficient Hessian calculation/approximation methods for the Conv and recurrent layer in
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this thesis. Inspired by the Hessian calculation methods for FC layers [3], we develop the
block-diagonal approximation methods for the Hessian of Conv and recurrent layers, re-
spectively. Specifically, the Hessian calculation methods for these three typical deep neu-
ral networks are in the following sections.

2.2.1. COMPUTE THE HESSIAN OF FULLY-CONNECTED LAYER

FULLY-CONNECTED NEURAL NETWORK

Fully-connected (FC) neural network is a feed-forward network constructed by arranging
perceptron type neurons in different layers. Fig. 2.4 is a schematic representation of a
simple FC neural network with two hidden layers. As a FC network, every neuron within

Figure 2.4: A Fully connected neural network with two hidden layers.

the model is connected to other neurons in the adjacent layers. As shown in Fig. 2.4, a2,
the output of the 2-nd hidden layer can be computed as:

h2 =W 2a1 +b2 (2.63a)

a2 = f (h2) (2.63b)

where the superscript of W,h,b, a denotes the layer index. Eq. (2.63a) stands for the linear
combination, computed as the sum of product between the weight matrix W 2 and input
vector a1. W 2

i j is the weighted scalar that determines the strength of the connection be-

tween the i-th neuron in the input layer and j-th neuron in the hidden layer. b is the bias.
The nonlinear behaviour of the neural network model is decided by f (·), which is named
the nonlinear activation function.

HESSIAN CALCULATION

In this section, we will first recap the derivation process of the Hessian calculation meth-
ods for the fully-connected layer proposed by [3]. And then, we present our simplified
Hessian calculation method, which can save more computation effort.
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Lemma 1 For a Fully-connected layer, given the activation function f , the activation value
al , al−1 and the pre-activation value hl , the Hessian of the weight matrix W l can be calcu-
lated recursively:

Hl = al−1 · (al−1)>⊗H l (2.64)

where ⊗ stands for Kronecker product. H l is the pre-activation Hessian and can be updated
as:

H l = B l (W l+1)>H l+1W l+1B l +D l (2.65)

with two diagonal matrices B l and D l defined as:

B l = diag( f ′(hl )), D l = diag( f ′′(hl )◦ ∂L

∂al
) (2.66)

where ◦ represents the element-wise multiplication. The initialised H l is the second-order
derivative of the loss function to the output of the neural network.

Proof 1 Since the Hessian is diagonally dominant, we mainly consider how to obtain the
diagonal value of the Hessian matrix. Suppose W l is a 2D matrix with W l ∈ Rm×n , the di-
agonal value of Hl can be computed as the jacobian matrix of the gradient of W l concerning
the vectorization of W l :

∂2L

∂V2D (W l )2
= ∂

∂V2D (W l )

(
∂L

∂V2D (W l )

)
= ∂

∂W l

(
∂L

∂hl

∂hl

W l

)
= ∂

∂W l

((
1⊗ ∂L

∂hl

)(
∂hl

W l
⊗ I

))

= ∂

∂W l

(
(al−1)>⊗ ∂L

∂hl

)
= (al−1)>⊗ ∂2L

∂W l∂hl
= (al−1)>⊗

(
∂h>

l

∂Wl

∂2L

∂(hl )2

)

=(al−1)>⊗
((

(al−1)>⊗ I
)> ∂2L

∂(hl )2

)
= (al−1)>⊗

(
al−1 ⊗ ∂2L

∂(hl )2

)
=(al−1)>⊗al−1 ⊗ ∂2L

∂(hl )2

=
(
al−1(al−1)>

)
⊗ ∂2L

∂(hl )2

(2.67)
where ∂2L

∂(hl )2 is defined as the pre-activation Hessian H l , which can be calculated as follows:

H l = ∂2L

(∂hl )2
= ∂

∂hl

(
∂L

∂hl

)
= ∂

∂hl

(
∂L

∂hl+1

∂hl+1

∂al

∂al

∂hl

)

= ∂2L

∂hl∂hl+1
W l+1 ∂al

∂hl
+ ∂L

∂hl+1

∂hl+1

∂al

∂

∂hl

(
∂al

∂hl

)

=∂(al )>

∂hl
(W l+1)>H l+1W l+1 ∂al

∂hl
+∑

k

∂L

∂al
k

∂2al
k

∂(hl )2

(2.68)

Define the diagonal matrices B l and D l as:

B l = diag(
∂(al )>

∂hl
) = diag( f ′(hl )), D l = diag(

∑
k

∂L

∂al
k

∂2al
k

∂(hl )2
) = diag( f ′′(hl )◦ ∂L

∂al
) (2.69)
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Eq. (2.68) can be reformulated as:

H l = B l (W l+1)>H l+1W l+1B l +D l (2.70)

where diag(~A) in Eq. (2.69) refers to generate a diagonal matrix whose diagonal value is
extracted from the vector ~A.

In this thesis, in order to reduce computation complexity, we make a further simplification
by extracting the diagonal values of the pre-activation Hessian H in Eq. (2.68) and Hessian
H Eq. (2.67) for recursive computation. Thus the matrix multiplication could be reduced
to vector multiplication. The Hessian calculation process can be approximated as:

Ĥl = diag((al−1)2 ⊗ Ĥ l ) (2.71)

Ĥ l = B̂ 2 ◦
((

(W l+1)>
)2

Ĥ l+1
)
+ D̂ l , B̂ l = f ′(hl ), D̂ l = f ′′(hl )◦ ∂L

∂al
(2.72)

If we compute Hessian with the approximate method as Eq. (2.71)-(2.72), the multiply
accumulate operation (MACs) for the pre-activation Hessian H and Hessian H could be
reduced from n(2m2+2n2+4mn+3m−1) to n(2+4m) with W ∈Rn×m . (e.g., if n = 100,m =
100, the original method requires 107.97 MMACs compared with only 0.04 MMACs for the
approximate method.)

Based on the above result, we conclude the simplified Hessian calculation method in
the following lemma:

Lemma 2 For a Fully-connected layer, given the activation function f , the activation value
al , al−1 and the pre-activation value hl , the Hessian of the weight matrix W l can be calcu-
lated recursively:

Ĥl = diag((al )2 ⊗ Ĥ l ) (2.73)

where ⊗ stands for Kronecker product. Ĥ l is the pre-activation Hessian and can be updated
as:

Ĥ l = B̂ 2 ◦
((

(W l+1)>
)2

Ĥ l+1
)
+ D̂ l (2.74)

with B̂ l and D̂ l are defined as:

B̂ l = f ′(hl ), D̂ l = f ′′(hl )◦ ∂L

∂al
(2.75)

where ◦ represents the element-wise multiplication. The initialised Ĥ l is the second-order
derivative of the loss function to the output of the neural network.

It can be noted that there is a gap between the diagonal matrix ( lemma 2) to the full
Hessian matrix (lemma 1), which means that our proposed method inevitably introduces
errors. In other words, we are trading the computational accuracy for improved compu-
tational efficiency. The gap is indeed a shortage of our method. Although we cannot the-
oretically assessed the influence of this gap, we found several previous works on Hessian
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inversion are very related and support the rationality of our method. Specifically, with di-
agonal or low-rank approximations to the curvature matrix, [19] proposed the Kronecker-
factored Approximate Curvature (K-FAC) method, which can approximate natural gradi-
ent descent and work very well in highly stochastic optimisation regimes. The experiment
results in [1] presented that diagonal approximation of the Hessian by finite differences
can perform better even than the well-established algorithms, e.g., steepest descent and
Broyden–Fletcher–Goldfarb–Shanno (BFGS). The variational approach is adopted in [32]
to determine the diagonal updating matrices to satisfy the quasi-Cauchy (QC) relation.
Since the Hessian of the minimising function is diagonally dominant (a common assump-
tion in nonlinear optimisation) [1], the above works have demonstrated that the approx-
imation of the diagonal elements of Hessian is an effective approximated and often used
solution to calculate the inverse Hessian. However, few of these works addressed how
to approximate the diagonal elements of the Hessian for deep neural networks, which is
nontrivial as it can promote the application of second-order optimisation methods from
machine learning (e.g., the Quasi-Newton methods [4, 20]) on the training of DNNs. And
it is especially challenging for “deep” models and vary from time to time on different net-
work architectures, e.g., LSTM.

It should also be noted that lemma 1 and lemma 2 illustrate the detailed procedures
to calculate the Hessian referred to a single data point (i.e., b = 1). If the number of data
points is more than 1 (i.e., b > 1), the Hessian is calculated as the average of the Hessian of
an individual data point. The lemma 2 is a modification of the Hessian calculation meth-
ods proposed by [3], which is also the inspiration of our Hessian calculation approach
for the Conv layer and recurrent layer. We will revisit this lemma repeatedly in the next
sections.

2.2.2. COMPUTE THE HESSIAN OF CONVOLUTIONAL LAYER

CONVOLUTIONAL NEURAL NETWORK

Figure 2.5: A convlutional neural network with standard architecture.

The convolutional neural network (CNN) is typically developed to perform computer
vision tasks, including but not limited to the image classification tasks [9, 10, 12] and ob-
ject detection tasks [6, 7, 24]. Different to the FC neural network, which extracts the infor-
mation via a direct linear map, the convolutional layer enables the DNN to integrate the
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information through convolutional operations, which includes a bank of small filters and
can perform the spatial convolution of the input features. The assembly of the filters in
each Conv layer is also called a convolutional kernel.

As shown in Fig. 2.5, the standard architecture of a CNN typically includes the con-
volutional layers and fully connected layers. The input information will be processed by
several convolutional layers in the first place, followed by the several fully-connected lay-
ers. It should be noted that the 3D input feature will be flattened into a vector before being
imparted to the fully-connected layers. The nonlinear activation functions are normally
applied after the convolutional layers.

HESSIAN CALCULATION

Unlike the FC layer, the difficulty of the Hessian calculation method for a Conv layer comes
from the indirect convolution operation. In this section, this challenge is addressed by
converting a Conv layer to its equivalent FC layer, then the Hessian calculation method
for a FC layer as in Section. 2.2.1.2 can be used to calculate the Hessian for a Conv layer.
A recursive and efficient approach to compute the block diagonal of the Hessian for Conv
layers is developed. Before continuing the following, we first give a lemma and two defini-
tions, which are used to explain how to convert a Conv layer to its equivalent FC layer [14].
This lemma will be revisited repeatedly for the proposed Hessian calculation approach.

Suppose the input vector, weight and output vector of a Conv layer are denoted as

B l
i ∈ Rb×C l

i ×H l
i ×W l

i , W l ∈ RC l
o×C l

i ×k l
1×k l

2 and B l
o ∈ Rb×C l

o×H l
o×W l

o respectively, where b is the

batch size, C l
i , H l

i , W l
i of B l

i are the size of input channel, height and width; C l
o , H l

o ,W l
o are

the size of output channel, height and width; k l
1 ×k l

2 is the kernel dimension. With these
variables, the lemma and definitions about converting convolutional operation to matrix
multiplication are given as follows:

Definition 5 Assume the input vector and weight of a spatial convolutional operator fconv (·)
are Bi ∈Rb×Ci×Hi×Wi and W ∈RCo×Ci×k1×k2 , respectively, then the spatial convolutional op-
erator fconv (·) :Rb×Ci×Hi×Wi →Rb×Co×Ho×Wo is defined as:

Bo = fconv (Bi ,W ) (2.76)

where Bo ∈Rb×Co×Ho×Wo with

Ho = Hi +2P −k1

s
+1 Wo = Wi +2P −k2

s
+1 (2.77)

where the number of rows or columns padded to each side of the input is denoted as P.
s represent the stride of the kernel, which is usually the same for both width and height
direction.

Definition 6 Assume the input vector and weight of a matrix multiplication operator g f c (·)
is Mi ∈ Rm×n and W ∈ Rn×k , respectively, then the matrix multiplication operator g f c (·) :

Rm×n →Rm×k is defined as:

Mo = g f c (Mi ,W ) = Mi ×W (2.78)

where Mo ∈Rm×k .
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Besides, it should be noted that the input, output and kernel of a convolutional layer
are usually 4D matrices with the form A ∈ Rm,n,o,p . The dimension reduction of a 4D
matrix to a 2D matrix will be used for the Hessian calculation of a Conv layer (see more
details in lemma 3). We give the definitions of the dimensionality reduction operator and
the dimensionality addition operator as follows:

Definition 7 Given a 4D matrix A ∈ Rd1,d2,d3,d4 with four axes, the dimensionality reduc-
tion operator for reducing the dimension of A to a 2D matrix shaped as (d j ,

∏4
i=1,i 6= j di )

along the j-th (j = [1,2, · · · ,4]) axis is implemented by two steps. Taking j = 2 as the ex-
ample, the first step is the sequential vectorization of the 3D matrix A:,k,:,:,k = [1, · · · ,d2].
The second step is to stack these vectors into a 2D matrix. Formally, the dimensionality

reduction from DR
4D→2D

:Rd1,d2,d3,d4 →R
d j ,

∏4
i=1,i 6= j di is:

DR
4D→2D

(A) =



V3D (A:,1,:,:)
· · ·

V3D (A:,2,:,:)
· · ·

V3D (A:,d2−1,:,:)
· · ·

V3D (A:,d2,:,:)


(2.79)

The definition of V3D is in definition 2.

Definition 8 Given a 2D matrix AM ∈ Rd j ,
∏4

i=1,i 6= j di generated by applying the dimension-
ality reduction operator (see definition 7) to a 4D matrix A ∈Rd1,d2,d3,d4 , the dimensionality
addition operator can recover the original 4D matrix by reshaping the AM by stacking the
3D matrix generated by applying the 3D de-vectorization operator along the row of AM se-

quentially. Formally, the dimensionality addition operator from DA
2D→4D

: R
d j ,

∏4
i=1,i 6= j di →

Rd1,d2,d3,d4 is:

DA
2D→4D

(AM ) =


DV3D (AM 1,:)
DV3D (AM 2,:)

· · ·
DV3D (AM d j −1,:)
DV3D (AM d j ,:)

 (2.80)

The definition of DV3D is in definition 4.

Lemma 3 For a spatial convolutional operator fconv (·) with its input vector, weight and

output vector denoted as B l
i ∈ Rb×C l

i ×H l
i ×W l

i , W l ∈ RC l
o×C l

i ×k l
1×k l

2 and B l
o ∈ Rb×C l

o×H l
o×W l

o

respectively, it can be converted to a matrix multiplication g f c (·) by converting the origi-

nal input vector, output vector and weight to corresponding 2D matrices denoted as M l
i ∈

R(bH l
oW l

o )×(C l
i k l

1k l
2), M l

o ∈ (bH l
oW l

o )×C l
o and W l

M ∈R(C l
i k l

1k l
2)×C l

o . Formally, the conversion op-
erator C

conv→ f c
: fconv (·) → g f c (·) is:

C
conv↔ f c

(
fconv (B l

i ,W l )
)
= g f c (M l

i ,W l
M ) (2.81)
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Fig. 2.6 is the explanation about how to generate M l
i , M l

o ,W l . The M l
i is generated by two

steps. First, flatten each input patch of the convolutional operator to a vector (as in Fig. 2.6(c)).
Second, stack all the flattened vectors (as in Fig. 2.6(c)(d)). Similarly, the M l

o is also gener-
ated by two steps. First, flatten the 3D matrix along the output channel into a vector (as in
Fig. 2.6(c)). Second, stack all the flattened vectors sequentially(as in Fig. 2.6(c)(d)). For the
W l

M , it is a 2D matrix that is generated by stacking the flattened filters (as in Fig. 2.6(c)). The
definitions of fconv (·) and g f c (·) are in definition 5 and definition 6, respectively.

Figure 2.6: Converting a convolutional operation to its equivalent matrix multiplication
operation.

Proof 2 Fig. 2.6 illustrates the process of the conversion from fconv (·) to g f c (·). First of all, as
shown in Fig. 2.6(a), the convolutional operation for a full image is implemented by moving
the kernels along with the width & height directions with stride s. In each step, the element-
wise multiplication will be carried out between a filter and an input patch as shown in
Fig. 2.6(b).

If we flatten the pair of the multiplier of the element-wise multiplication (i.e., a filter and
an input patch) as vectors, these vectors can be stacked together as 2D matrix as shown in
Fig. 2.6(c). And it can be observed that the convolutional operator fconv (·) for an input patch
in Fig. 2.6(b) can be converted to the matrix multiplication operator g f c (·) in Fig. 2.6(c).

Besides, as such a convolution operation on an input patch will be executed H l
o ×W l

o
times along with the kernel’s scrutiny, the convolutional operation for a full image (Fig. 2.6(a))
can be regarded as implementing the equivalent matrix multiplication for H l

o ×W l
o times

(Fig. 2.6(c)). By stacking all the input and output vectors (Fig. 2.6(d)), the convolutional
operation for the full image can be regarded as implementing one-shot matrix multiplica-

tion with the input matrix M l
i ∈ R(bH l

oW l
o )×(C l

i k l
1k l

2), output matrix M l
o ∈ (bH l

oW l
o )×C l

o and



2.2. HESSIAN CALCULATION

2

39

weight matrix W l
M ∈ R(C l

i k l
1k l

2)×C l
o . It should also be noted that the reshaping of the kernel

and output vector can also be regarded as applying the dimensionality reduction operator
(see definition 7) on W l and H l

o along the output channel, respectively. Besides, the 2D out-
put matrix M l

o can also be easily reshaped as (b,C l
o , H l

o ,W l
o ) by using the dimensionality

addition operator as in definition 8.

It should be noted that, by converting the spatial convolution operation to the ma-
trix multiplication, which is the main operation in the FC layer, the Hessian calculation
method for the FC layer in lemma 2 can be adopted to compute the Hessian of the Conv
layer. The detailed calculation procedures are in lemma 4.

Lemma 4 For a convolutional layer, given the activation function f , the input value B l
i and

the output value of after activation function B l
o , the Hessian of the weight matrix W l can

be calculated recursively as following steps:

Hl = DA
2D→4D

(Ĥl ) (2.82)

Ĥl denotes the Hessian of the equivalent FC layer, which can be calculated as lemma 2:

Ĥl = diag
(
(M l

o)2 ⊗ Ĥ l
)

(2.83)

where the pre-activation Hessian Ĥ l can be updated iteratively:

Ĥ l = (B̂ l )2 ◦
((

(W l+1
M )>

)2
Ĥ l+1

)
+ D̂ l (2.84)

with B̂ l and D̂ l are defined as:

B̂ l = f ′(M l
o), D̂ l = f ′′(M l

o)◦ ∂L

∂al+1
M

(2.85)

where ◦ represents the element-wise multiplication. M l
i , M l

o ,W l
M , al+1

M are the input, out-
put, weight, activation value of the equivalent FC layer by applying the conversion operator

C
conv→ f c

: fconv (·) → g f c (·) as in lemma 3

The equivalent pre-activation Hessian Ĥ l can also be converted to the Conv type by ap-
plying the dimensionality addition operator DA

2D→4D
:

H l = DA
2D→4D

(Ĥ l ) (2.86)

The pre-activation Hessian H l will be imparted along with the back-propagation process
and initialized as the second-order derivative of the loss function to the output of the neural
network.

Proof 3 As explained before, one main challenge for the Hessian calculation of a Conv layer
is the indirect convolution operation. By converting the spatial convolution operation to the
matrix multiplication, the Hessian calculation method for FC layer in lemma 2 can be used
to calculate the Hessian of the Conv layer. The procedures are summarized as follows:
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1. Convert the convolutional operation to its equivalent matrix multiplication opera-
tion by applying the conversion operator C

conv→ f c
: fconv (·) → g f c (·) as in lemma 3.

The generated equivalent input, output, weight and activation values are denoted as
M l

i , M l
o ,W l

M , al+1
M , respectively.

2. Calculate the Hessian of the equivalent FC layer according to lemma 2:

Ĥl = diag
(
(M l

o)2 ⊗ Ĥ l
)

(2.87)

where ⊗ stands for Kronecker product. Ĥ l is the pre-activation Hessian and can be
updated as:

Ĥ l = (B̂ l )2 ◦
((

(W l+1
M )>

)2
Ĥ l+1

)
+ D̂ l (2.88)

with B̂ l and D̂ l are defined as:

B̂ l = f ′(M l
i ), D̂ l = f ′′(M l

i )◦ ∂L

∂al+1
M

(2.89)

where ◦ represents the element-wise multiplication.

3. Reshape the 2D matrices Hessian Ĥl and pre-activation Hessian Ĥ l to the Conv type
by applying the dimensionality addition operator DA

2D→4D
as in definition 8:

Hl = DA
2D→4D

(Ĥl ), H l = DA
2D→4D

(Ĥ l ) (2.90)

Another challenge of Hessian calculation is the flattened operation for the input features
of the fully-connected layers at the tail of the networks (see Fig. 2.5). It is necessary to convert
the pre-activation Hessian information H l

f c from the FC layer to its adjacent Conv layer H l .

The dimensionality addition operator DA
2D→4D

should be enforced on H l
f c :

H l = DA
2D→4D

(H l
f c ) (2.91)

then the H l can be used as the pre-activation Hessian of the Conv layer.

It should be noted that lemma 4 illustrates the detailed procedures to calculate the Hessian
referred to a single data point (i.e., b = 1). If the number of data points is more than 1 (i.e.,
b > 1), the Hessian is calculated as the average of the Hessian of an individual data point.

2.2.3. COMPUTE THE HESSIAN OF RECURRENT LAYER

RECURRENT NEURAL NETWORK

The recurrent neural network (RNN) is mainly used to process sequential data and mem-
orize information by including the recurrent connections in the model. The recurrent
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Unfold

Figure 2.7: An unrolled RNN layer.

connection is embodied by the feedback loop of each hidden neuron, which will be cy-
cled over a sequence (time). The function of memorizing information of the recurrent
connection makes the RNN applicable to handwriting recognition tasks [25] and speech
recognition tasks [13].

As shown in the left part of Fig. 2.7, an unrolled RNN layer consists of three basic com-
ponents, the input weight matrix Wi , output weight matrix Wo and hidden weight matrix
Wh . Given f (·), g (·) as the activation functions, z(t ), h(t ) and y(t ) as the input, hidden
state and output of the time step t , The behaviour of this RNN layer can be described by:

h(t ) = f
(
h̄(t )

)= f (Wi z(t )+Whh(t −1)) (2.92)

y(t ) = g (Woh(t )) (2.93)

Eq. (2.92) reveals that the output of the hidden layer is updated based on both the input
vector z(t ) and the previous hidden states h(t −1). A RNN is trained by the backpropaga-
tion through time (BPTT) method, where the network is unfolded in time and weights are
updated based on an accumulation of gradients across time steps. The unfolded process
is shown in Fig. 2.7.

HESSIAN CALCULATION

The challenge of the Hessian calculation for a RNN layer comes from the recurrent opera-
tion, where the Wi ,Wh ,Wo will be revisited iteratively through time. This diffres from the
FC layer and Conv layer, where the weight matrices only participate once-through oper-
ation in a forward propagation process. As the unrolled RNN layer can be unfolded as a
fully connected neural network, the Hessian calculation for a RNN layer can be regarded
as the calculation of its equivalent FC neural network. Inspired by lemma 2, we propose a
recursive and efficient method to compute the Hessian of a recurrent layer as follows:

Lemma 5 For a recurrent layer, given f (·) representing the activation function, τ represent-
ing backward propagation time horizon, T representing the number of data samples, z(t ),
h(t ) and y(t ) representing the input, hidden state and output at the time step t , Wi , Wh

and Wo representing the weight matrix of the input layer, hidden layer and output layer,
the Hessian of Wi , Wh , Wo within the RNN layer can be calculated as follows:



2

42 2. METHOD

The Hessian for Wo is:

Ho = 1

T

T∑
t=1

H>
o , H>

o = (h(t ))2 ⊗H>
o (2.94)

where H>
o is the pre-activation Hessian. ⊗ stands for Kronecker product.

The Hessian for Wh is:

Hh = E
(

T∑
t=1

t∑
j=max(1,t−τ+1)

Ht , j
h

)
(2.95)

Ht , j
h = (h(t −1))2 ⊗H t , j

h , H t , j
h = B 2

h ◦
((

(Wh)>
)2

H t , j+1
h

)
+Dh (2.96)

where Bh = f ′(h̄( j )),Dh = f ′′(h̄( j ))◦ ∂L
∂h( j ) .

The Hessian for Wi is:

Hi = E
(

T∑
t=1

t∑
k=max(1,t−τ+1)

Ht ,k
i

)
(2.97)

Ht ,k
i = (z(k))2 ⊗H t ,k

i H t ,k
i =

t∏
j=k+1

B 2
i ◦

((
(Wi )>

)2
H j−1, j

i

)
(2.98)

where Bi = f ′(h̄( j )) The above Hessian process can be calculated through a backward prop-
agation through time (BPTT) process.

Proof 4 As explained before, a RNN layer is normally consist of three matrices, i.e., Wi ,Wo ,Wh ,
which will be revisited many times for a complete recurrent operation. The Hessian calcula-
tion for a RNN layer can be divided into three parts to calculate the Hessian of Wi ,Wo ,Wh ,
respectively. The procedures are summarized as follows:

1. Extend the RNN layer to its equivalent FC layers through sequence t (see Fig. 2.7).

2. Calculate the Hessian for Wo : If a RNN layer is unfolded through time, then Wo can

Unfold

Ht+1o

Figure 2.8: The equivalent FC layers about output weight.

be regarded as the weight matrix for a FC layer, whose input is h(t) and output is y(t ).
As explained in Eq. (2.93), the output y(t ) is computed by applying the activation
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function g (·) on the matrix multiplication between h(t ) and Wo . Such matrix mul-
tiplication is implemented T times for a complete recurrent operation (as shown in
the unblurred part in Fig. 2.8). According to the Hessian calculation method of the FC
layers as in lemma 2, the Hessian for Wo is:

Ho = 1

T

T∑
t=1

H>
o , H>

o = (h(t ))2 ⊗H>
o (2.99)

where H>
o is the initialized pre-activation Hessian of Wo . It should be noted that H>

o
will be updated along the BPTT process and be used as the initialized pre-activation
Hessian for Wh and Wi .

H t ,t
h = H t ,t

i = (B)2 ◦
((

(Wo)>
)2

H t
o

)
+D (2.100)

with B and D are defined as:

B = g ′(Mi ), D = g ′′(Mi )◦ ∂L

∂y(t )
(2.101)

3. Calculate the Hessian for Wh : As shown in Fig. 2.9, the Wh can be regarded as the

Unfold

t+1,t+1Hh

Figure 2.9: The equivalent FC layers about hidden weight.

weight matrix for a FC layer, whose input is h(t −1) and output is h(t ). As explained
in Eq. (2.92), one component of h(t ) is the matrix multiplication between h(t − 1)
and Wh . Such matrix multiplication is implemented min(t ,τ) times for the time step
t , where τ is the backward propagation time horizon, (as shown in the unblurred
part in Fig. 2.9). Therefore, if we only calculate the Hessian of Wh refer to a single
data sample at time t , then the Hessian can be calculated by averaging τ individual
Hessians as follows:

Hh = E
(

t∑
j=max(1,t−τ+1)

Ht , j
h

)
(2.102)

If we consider the total time steps T , the Hessian for Wh is:

Hh = E
(

T∑
t=1

t∑
j=max(1,t−τ+1)

Ht , j
h

)
(2.103)
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where

Ht , j
h = (h(t −1))2 ⊗H t , j

h , H t , j
h = B 2

h ◦
((

(Wh)>
)2

H t , j+1
h

)
+Dh (2.104)

where Bh = f ′(h̄(t −1)),Dh = f ′′(h̄(t −1)) ◦ ∂L
∂h(t ) . H t , j

h is the pre-activation Hessian
whose initialized value is calculated by Eq. (2.100).

4. Calculate the Hessian for Wi : As shown in Fig. 2.10, the Wi can be regarded as the

Unfold

t+1,t+1Hi

Figure 2.10: The equivalent FC layers about input weight.

weight matrix for a FC layer, whose input is z(t ) and output is h(t ). Similar to the cal-
culation method for Wh , the Hessian of Wi can be calculated by averaging min(t ,τ)×
T individual Hessians as follows:

Hi = E
(

T∑
t=1

t∑
k=max(1,t−τ+1)

Ht ,k
i

)
(2.105)

where the individual Hessian is updated as:

Ht ,k
i = (z(k))2 ⊗H t ,k

i H t ,k
i =

t∏
j=k+1

B 2
i ◦

((
(Wi )>

)2
H j−1, j

i

)
(2.106)

where Bi = f ′(h̄( j )) It should be noted that the initialized pre-activation Hessian H t ,t
i

is calculated by Eq. (2.100).

2.3. CONCLUSION
In this chapter, the Bayesian treatment of the system identification problem is presented.
To extend the generalization ability, the Bayesian approach, we propose three different
sparse Bayesian deep learning algorithms, which can employ single prior, group prior and
fused prior on model parameters. By extracting the diagonal values of the Hessian matrix,
we present the detailed derivation of the Hessian calculation methods, which can address
the indirect operations within the DNNs effectively, such as convolutional operation and
recurrent operation. In Chapter 3 4 5, we will explore how to apply the presented SBDL
algorithms and the Hessian calculation methods for different system identification tasks.
The extension to high dimensional data is in Chapter 6.
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3
THE ART OF PRIOR I: SINGLE PRIOR

This chapter implements the proposed sparse Bayesian deep learning algorithm with single
prior on the identification of a gene regulatory network. Identifying the gene regulatory net-
work is a central topic for systems biology as it captures the interaction between genes and
other cell substances (e.g., protein). This chapter presents how to use the proposed Bayesian
approach to identify both the topology and parameters of a repressilator model, which is
described by nonlinear ordinary difference equations involving polynomial and rational
functions. We designed a novel model structure consisting of a nonlinear Fully-connected
neural network and a linear neural network. The activation function of the nonlinear neu-
ral network is replaced by the Hill function with a typical structure, which is assumed as
the prior information. With such model design, an initialized model can be regarded as
a super-graph with a redundant structure, whose sub-graph can represent the underlying
mathematical model. The sparse Bayesian deep learning algorithm with the single prior is
implemented to identify the redundancy. The proposed approach is demonstrated by the
accurate identification of both model structure and parameters.
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3.1. INTRODUCTION
The identification of both topology and parameters of a biology network is an important
research topic in synthetic biology. As a classical synthetic oscillatory network, the repres-
silator model is a classical nonlinear dynamical system to represent mRNA transcription
and and protein translation dynamics. The repressilator model can be described by non-
linear ordinary differential equations (ODEs) involving polynomial and rational functions.
The identification of the topology and parameters of the repressilator model is a typical
research problem that has attracted a lot of attention. The sustained oscillation of mes-
senger RNAs (mRNA) and proteins is decided by several important parameters [3] (e.g.,
the translation rate, the transcription rate of repressor concentration, and the decay rates
of the protein and mRNA).

The identification of the repressilator, especially the parameters of the Hill function,
which decides the repression curve describing the transcriptional repression and is a spe-
cial case of a rectangular hyperbola with its typical form expressed as Eq. (3.7). Several
previous works have presented approach to identify the Hill function. To name a few
examples, [1] focused on identifying the interconnection topology of biological and bio-
chemical systems. It presented a network determination algorithm that can determine
the interaction topology of a gene regulatory network by treating the model descriptions
with polynomial and rational functions. Based on the convex relaxations of the sparsity
and stability constraints, [7, 20] developed an algorithm to infer stable genetic networks
from the steady-state measurements around the equilibrium state. With the linear pro-
gramming formulation of the identification task, the proposed algorithm is verified by
successful parameter selection on both simulated data and experimental data. By assum-
ing that the dynamics of the system can be described as a linear combination of a finite set
of candidate dictionary functions, [13–15] cast the identification problem as a sparse lin-
ear regression problem that could be addressed from a Bayesian viewpoint. Although the
proposed method could identify both nonlinear structure and kinematic parameters of
genetic regulatory networks, its effectiveness relied on the proper selection of basis func-
tions. The modelling process is more like "selecting" the relevant terms from pre-defined
alternative functions instead of "learning" from data It cannot identify the accurate phys-
ical models if the correct nonlinear/linear items are not included in the set of basis func-
tions. [13] also stated that only an approximated model could be obtained if the true func-
tion is not included in the considered set of dictionary functions.

Following these works, the main focus of this chapter is to identify the model topol-
ogy and parameters from data without a pre-defined set of basis functions. The proposed
method includes two parts. First, a combined neural network is designed to approximate
the underlying repressilator model. To design a proper model structure, some prior knowl-
edge is required to be known. First, it is assumed to be known that the repressilator model
includes both nonlinear and linear functions. Second, the typical structure of the Hill
function is supposed to be known (see Eq. (3.7)). Based on the prior information, the
model is designed to combine a linear sub-network and a nonlinear sub-network. And
the Hill function is adopted as the activation function in the nonlinear sub-network. Sec-
ond, with such model design, the identification problem can be cast as a sparse optimiza-
tion problem which can be addressed with the proposed sparse Bayesian deep learning
(SBDL) algorithm. An initialized combined neural network can be regarded as an over-
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parametrized model which includes extra input and a more complex Hill function. The
underlying model can be represented by removing the redundancy from the super-graph.
Besides, as the designed model structure is the same as a deep neural network, the sparse
regression techniques [4, 9, 18] for DNNs can also be implemented in this chapter. One
classical approach is the `1 norm regularization method [5, 16], which adds ‖W ‖`1 as the
penalty item to promote the model sparsity. However, the practical implementation
showed that this method is always non-sparse which requires a lot of tuning effort. In-
spired by [13–15], we propose to treat such a sparse regression problem from a Bayesian
viewpoint. The Bayesian approach has already been proved to be a practical ways to
address the network compression problem [10], enabling a faster search through the pa-
rameter space [11]. In this work, the proposed Bayesian approach can incorporate the
non-structural sparsity as priors and result in a sparser solution. The experiment result
in Section 3.3 verifies that the proposed approach can effectively identify the topology and
parameters of the repressilator model.

The organization of this chapter is as follows. Section 3.2 introduces the identification
method. Section 3.3 presents the identification results on the simulated dataset. Finally,
section 3.4 concludes the chapter.

3.2. IDENTIFICATION METHOD

3.2.1. MODEL DESIGN
The discrete-time mathematical description of the kinetics of the repressilator can be rep-
resented by following six coupled difference equations:

m1(t +1) = m1(t )+d t ·
[
−γ1m1(t )+ a1

K1 +pn
6 (t )

]
, (3.1)

m2(t +1) = m2(t )+d t ·
[
−γ2m2(t )+ a2

K2 +pn
4 (t )

]
, (3.2)

m3(t +1) = m3(t )+d t ·
[
−γ3m3(t )+ a3

K3 +pn
5 (t )

]
, (3.3)

p4(t +1) = p4(t )+d t · [−c1p4(t )+β1m1(t )
]

, (3.4)

p5(t +1) = p5(t )+d t · [−c2p5(k)+β2m2(t )
]

, (3.5)

p6(t +1) = p6(t )+d t · [−c3p6(t )+β3m3(t )
]

. (3.6)

where Eq. (3.1)- (3.3) denote the transcription dynamics and Eq. (3.4)- (3.6) stand for the
translation dynamics. m1,m2,m3 denote the mRNA concentrations. p4, p5, p6 are the pro-
tein concentrations. The nonlinear terms in Eq. (3.1)- (3.3) are the Hill functions which
decide the repression curve and describe the transcriptional repression. n is the Hill coef-
ficient, which is a measure of the sleep of the response curve. γ1,γ2,γ3 denote the mRNA
decay rates. K1,K2,K3 are the apparent dissociation constant derived from the law of
mass action. a1, a2, a3 denote the maximum promoter strength of the gene. In Eq. (3.4)-
(3.6), the ratio of protein production rate caused by mRNA decay rate are represented by
β1,β2,β3. c1,c2,c3 denote the protein decay rates. d t is the discretization time step. From
these equations, it can be found that the mRNA concentrations are rescaled by translation
efficiency. Typically, the repressilator model is a simplification of the transcriptional regu-
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lation. The oscillation behaviour can be observed and obtained by numerical integration
with predefined parameters (e.g.,∀i : Ki = 1, ai = 3.2,γi = 0.31,βi = 1.51,ci = 0.31,d t = 1
in this chapter).

The six equations in the repressilator model can be split as nonlinear (first three equa-
tions) and linear (the other three equations) parts. Therefore, the trained network model
can be designed as a combination of linear sub-network and nonlinear sub-network as
shown in Fig. 3.1, where the nonlinear sub-network consists of hidden layers, and the
linear part has no hidden layer. It should be noted that the activation function of the non-
linear sub-network is the typical form of the Hill function as in Eq. (3.7).

hill (xi ,t , k1, k2, n),
k1

k2 + (
N∑

j=1

6∑
i=1

W j i xi ,t )n

(3.7)

where W j i denotes the weight of the connection between i -th input feature and j -th hid-
den neuron. N represents the amount of hidden neurons in the hidden layer. The objec-
tive is to estimate the parameters k1,k2,n,W j i , in which n is the most important model pa-
rameter which has a critical impact on the dynamics of the transcription process. For this
task, the typical structure of the Hill function is assumed to be known as prior knowledge.
To simplify the notation, we use x1, x2, x3, x4, x5, x6 to represent m1,m2,m3, p1, p2, p3. The
input of the model is the vector X = [x1, · · · , x6]. The output target is defined as yi (k +1) =
xi (k +1)−xi (k), where i = 1,2, · · · ,6.

3.2.2. LEARNING IN A BAYESIAN FRAMEWORK
Using the designed model to approximate the given dataset can be denoted as training
Net(W, X ), where W represents an array of all inferred parameters in the network, in-
cluding the weight matrices in these two sub-networks and the parameters within the Hill
function k1,k2,n. The prediction model is defined as ŷi (t ) = Net(W, X (t )). The way to for-
mulate the system identification problem using a Bayesian framework can be referred to
Section. 2.1.1 of Chapter 2. The algorithm adopted in this chapter is the proposed SBDL
approach with the single prior, as explained in Section. 2.1.2 of Chapter 2.

3.3. EXPERIMENT

3.3.1. EXPERIMENT SETTING
According to Eq. (3.1)- (3.6), the simulated dataset is generated under the specific param-
eters setting, i.e., ∀i : Ki = 1, ai = 3.2,γi = 0.31,βi = 1.51,ci = 0.31,d t = 1. The mathemati-
cal model was simulated two times with different initialized xi . Both the training and test
dataset contains 200 samples. A snapshot of the persistent oscillatory behaviour can be
observed in Fig. 3.2.

As explained in Section. 3.2.1, there exists six different models to describe the mRNA
transcription and protein translation process. In this example, we also trained six dif-
ferent network models to learn the six mathematical models as in Eq. (3.1)- (3.6). The
network structure is defined as a nonlinear part with structure [6,10,1] and linear part
with structure [6,1]. The 6 is the number of input features. 1 is the number of the out-
put features. 10 is the number of hidden neurons. It should be noted that the number
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Figure 3.1: The designed combined network architecture consists of a nonlinear sub-
network and a linear sub-network. These two sub-networks have the same input features,
denoted as yellow circles. The blue circles in the nonlinear sub-network represent the re-
mained neurons after compression. Identified redundant input features and hidden neu-
rons are denoted as dotted circles. The summation of the two sub-networks forms the
output of the designed model.

of hidden neurons should be a positive integer greater than 1 with no upper limit. The
difficulty of the identification task increases with the increase of the number of hidden
neurons. We did not choose 1 in case the identification task is too simple. But limited by
computing resources, we also did not choose other larger numbers. We select 10 in this
experiment, an experimental setting with moderate identification difficulty. The shape-
wise regularization is applied to the model parameters. 10 cycles with 200 epochs in each
cycle are implemented during the training process. The pruning strategy consists of two
parts: a) dynamic pruning based on gamma, the weight with the magnitude of gamma
smaller than 0.058 is forced to be zero every 200 epochs; b) one-shot weight pruning, the
weight with magnitude smaller than 0.01 is removed after the whole training process. It
should be noted that the threshold κψ = 0.058 is decided according to the properties of
differential entropy for Gaussian distribution. As the prior distribution is assumed to be
Gaussian distribution with zero mean value, its differential entropy is 1

2 (1+ ln(2πψi )) (see
page 54 in Section 1.6 of [2]). It should be noted that the differential entropy can be neg-
ative and a distribution with larger entropy is typically regarded with a proper one [17].
Therefore, in this thesis, we only retain the weight whose ψ can make its differential en-
tropy positive, i.e., κψ is set as when 1

2 (1+ l n(2πψi )) ≤ 0, (ψi ≤ 0.0585.) ψi represents
the uncertainty of the prior distribution as illustrated in Eq. 2.45 and will be used as a
pruning criteria as presented in Algorithm 1 The threshold κW = 0.01 is an empirical
value. After the network pruning, the retraining process with several epochs is executed
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Figure 3.2: A snapshot of persistent oscillatory behavior of a repressilator consisting of 3
genes. The X-axis denotes time, and Y-axis denotes the value/concentration of each state.

to fine-tune the remained model parameters. As explained in Algorithm 1, the λ is also
a tuning hyper-parameter that can influence the regularization effect. A larger λ means
a stronger regularization on model parameters. It should be noted that λ is an empirical
parameter, which cannot be learned automatically in the training process. Therefore, we
have to define the value of λ before training. In this experiment, 10 different λ settings
(λ= {1e−1,1e−2,1e−3,1e−4,1e−5,1e−6,1e−7,1e−8,1e−9,1e−10}) were simulated. For each λ,
the identification procedure is repeated 200 times with differing weight initialization.

3.3.2. EXPERIMENT RESULT

The result of the identified structure is shown in Table. 3.1. First of all, the influential input
features for both the linear and nonlinear sub-networks can be identified. For example,
the identified result of M1 is shown in the first column of Table. 3.1 with only x6 retained
for the nonlinear sub-network and x1 retained for the linear sub-network. This is consis-
tent with the ground truth model of M1 that is illustrated in Eq. (3.1). The redundant input
features for other models can also be identified and removed after compression. Second,
it is also worth noting that the Hill coefficient n for model M1, M2, M3 can be identified
accurately by implementing fine-tune procedure after the compression. The fine-tune
procedure is a typical and conventional training procedure for neural network training
tasks, especially network compression [12, 19, 22] and neural architecture search [6, 21].
The “fine-tune" means the identified/trained network will be fine-tuned again for several
epochs on the training data using the standard back-propagation process [8]. The typi-
cal objective of “fine-tune" is to improve the prediction accuracy by optimizing the model
parameters within the identified/learned structure. In this experiment, the fine-tune pro-
cedure is also implemented after the compression of the combined neural network. The
simulated output of each identified network is almost the same as the ground truth, which



3.4. CONCLUSION

3

55

Table 3.1: Identified result for the synthetic gene network

Model M1 M2 M3 M4 M5 M6

Identified hill function
before fine-tune

3.1816
0.9955+x1.9918

6

3.0480
0.9542+x1.9592

4

3.1395
0.9841+x1.9775

5
- - -

Identified hill function
after fine-tune

3.2
1+x2

6

3.2
1+x2

4

3.2
1+x2

5
- - -

Identified linear component -0.31x1 -0.31x2 -0.31x3 1.51x1-0.51x4 1.51x2-0.51x5 1.51x3-0.51x6

proves the identified structure could represent the intrinsic features of the synthetic gene
network.

3.4. CONCLUSION
In this chapter, we present how to apply the sparse Bayesian deep learning algorithm with
the single prior to identify the topology and parameters of a repressilator model. With
the known prior information about the typical structure of the Hill function, a combined
model structure is designed to approximate the underlying governing equations. The non-
structured sparsity regularization is implemented on the designed model structure by en-
forcing the single prior on each parameter. The identified model structures are identical
to the true model structures. And the parameters can be learned accurately by retraining
the identified structure after the network pruning. The identified model can recover the
translation and transcription dynamics precisely in the free-run simulation setting.
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4
THE ART OF PRIOR II: GROUP

PRIOR

This chapter implements the proposed sparse Bayesian deep learning algorithm with group
prior on the system identification using deep neural networks (DNNs). Although DNNs
show impressive approximation ability in various fields, several challenges still exist for sys-
tem identification problems. First, DNNs are known to be too complex that they can easily
overfit the training data. Second, the selection of the input regressors for system identifica-
tion is nontrivial. Third, uncertainty quantification of the model parameters and predic-
tions are necessary. The proposed Bayesian approach offers a principled way to alleviate
the above challenges by marginal likelihood/model evidence approximation and structured
group sparsity-inducing priors construction. The identification algorithm is derived as an
iterative regularized optimization procedure that can be solved as efficiently as training
typical DNNs. Besides, a practical calculation approach based on the Monte-Carlo inte-
gration method is derived to quantify the uncertainty of the parameters and predictions.
The effectiveness of the proposed Bayesian approach is demonstrated on several linear and
nonlinear system identification benchmarks by achieving good and competitive simulation
accuracy. The one-step-ahead prediction experiments on a small ratio of datasets are also
implemented.

Parts of this chapter have been published in arXiv preprint:1911.06847(2019) [55] and arXiv preprint
arXiv:2107.12910(2021) [57].
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4.1. INTRODUCTION
System identification (SYSID) has a long history in natural and social sciences [28]. Var-
ious approaches have been proposed for both linear or nonlinear systems and static or
dynamical processes [1, 5, 8, 9]. Among these, deep neural networks (DNNs) are promi-
nent black-box models and recently regain research interest in the SYSID community [3,
12, 14, 30], thanks to the boom of deep learning.

The deep neural network (DNN) models have their advantages and disadvantages. An
early paper on feed-forward NNs proved the universal approximation capabilities of any
measurable function, using one hidden layer on a compact set [16]. Several works also
achieved competitive results by using feed-forward NNs [26] and recurrent neural net-
works (RNNs) [10, 48] in the context of dynamical systems. However, it is not easy to de-
sign a proper NN structure. First of all, the trade-off between the model complexity and
(simulation) prediction accuracy should be considered. An over-simplified model cannot
reveal the underlying relation between input data and output data. On the other hand, an
over-complex model may overfit the training data, thus reducing its generalization abil-
ity. Besides, the inevitable (non-Gaussian and non-additive) noise and non-smooth char-
acteristics of some nonlinear processes may also cause the overfitting problem. Further-
more, NNs can also be underspecified by the data and constitute a large space of hypothe-
ses for high-performing models [53]. Another challenging problem for SYSID is input re-
gressor selection, which is defined as follows: given a set of available input features, select
the most relevant ones which can explain the intrinsic phenomenon of the system [7]. An
effective feature selection can improve prediction performance, generalization ability and
reduce computational [2, 7].

For these challenges, the sparse Bayesian deep learning (SBDL) method offers a princi-
pled way to tackle them simultaneously: a) A more efficient exploration of the hypothesis
space (corresponding to saddle points) of NN models is possible [53, 56]; b) Over-fitting
can be alleviated, and model redundancies can be eliminated through marginalization
and by choice of sparsity inducing prior distribution over parameters [31]; c) Important
input variables can be selected automatically by imposing structured sparsity on the NN;
d) Model parameters and prediction uncertainties can be quantified, which is particularly
useful in decision making and safety-critical applications such as autonomous driving and
structural health monitoring [17].

Diverse Bayesian SYSID methods have been developed in the last decades. To name
a few, a practical sparse Bayesian approach to state-space identification of nonlinear sys-
tems was proposed in [38] in the context of biochemical networks. A Bayesian identifi-
cation algorithm of nonlinear autoregressive exogenous (NARX) models using variational
inference with a demonstration on the electroactive polymer was introduced in [22]. A
framework for identifying the governing interactions and transition logics of subsystems
in cyber-physical systems was presented in [54] by using Bayesian inference and pre-
defined basis functions. A variational expectation maximization approach to SYSID when
the data includes outliers was developed in [27]. Two approaches to SYSID using Bayesian
networks were proposed in [9]. The first one combines kernel-based stable spline and
group Least Angle Regression while the other combines stable splines with the hyper-prior
definition in a fully Bayesian model. However, this work did not discuss how to apply the
Bayesian approach to the NN model. Another typical probabilistic nonparametric mod-
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elling method is the Gaussian process (GP), which can perform excellently for linear and
nonlinear SYSID tasks, but suffers from the high computational burden for large datasets
and cannot conduct input regressor selection efficiently. Overall, specific to the use of NNs
as a model form, little attention has been given to the identification of dynamic systems
in a Bayesian framework.

The intractability of exact inference forces a trade-off between accuracy and computa-
tional needs [46]. There exists multiple approaches to approximate Bayesian inference, i.e.
Laplace approximation [32], expectation propagation [24], variational inference [15]. As
explained in Chapter. 2, the Laplace approximation method is adopted in this thesis and a
Bayesian iterative algorithm is derived and used repeatedly from different random initial
conditions. The efficient Hessian calculation methods for fully connection and recurrent
layers are developed, allowing a more efficient neural network exploration.

In this chapter, multi-layer perceptron (MLP) and long short term memory networks
(LSTM) are used as model forms. As two typical neural networks for system identification,
MLP is mainly can be used to model both static and dynamic systems [34, 35, 39] and,
while LSTM is mainly used to model the dynamic systems [10, 11, 23, 39]. To address
the challenges such as overfitting the training data and the selection of input regressors,
group priors are introduced over network parameters to induce structured sparsity. The
simulation error is adopted as the evaluation metric, which is a more challenging criterion
compared with one-step-ahead prediction. The simulation error is equivalent to the N -
step-ahead prediction error with N denoting a user-defined temporal horizon. The main
contributions of this chapter are:

• A practical iterative algorithm using Bayesian deep learning is proposed for SYSID.
The first identification cycle of the algorithm is equivalent to the conventional sparse
group lasso regularization method. This algorithm can be used with both MLP and
LSTM networks for linear and nonlinear processes.

• The structured sparsity is incorporated in the Bayesian formulation of the identi-
fication problem to alleviate the overfitting issue and perform the selection of the
input regressor. As a consequence, the number of hidden neurons in both MLP and
LSTM networks can be significantly reduced.

• The proposed algorithm achieves good and competitive simulation accuracy on five
benchmark datasets. The datasets of three linear processes are provided in the MAT-
LAB System Identification Toolbox1, including the Hairdryer, Heat exchanger, and
the Glass Tube manufacturing process. The datasets of two nonlinear processes are
provided in the Nonlinear System Identification Benchmarks website2, including
the Cascaded Tanks [45] and Coupled Electric Drives [51].

The organization of this chapter is as follows. Section 4.2 explains the input feature se-
lection, gives a practical Monte-Carlo sampling method to estimate the predictive uncer-
tainty, and illustrates the implementation information. Section 4.3 reports the identifica-
tion results on benchmark data of linear and nonlinear processes. Finally, Section 4.4 is a
discussion of the results, and Section 4.5 concludes the paper.

1https://nl.mathworks.com/help/ident/examples.html
2https://sites.google.com/view/nonlinear-benchmark/

https://nl.mathworks.com/help/ident/examples.html
https://sites.google.com/view/nonlinear-benchmark/
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4.2. IDENTIFICATION METHOD

4.2.1. INPUT FEATURE SELECTION

The objective of this chapter is the identification of dynamic systems. Hence the regres-
sors used as input to these models will be defined as a combination of lagged elements of
the system input u and outputs y . The input lag is denoted lu and output lag ly , result-
ing in the expression z(t +1) = [u(t +1),u(t ), · · · ,u(t − lu), y(t ), y(t −1), · · · , y(t − ly )]>. The
feature selection means to identify and remove the redundant features from z(t +1). The
proposed SBDL algorithm can select the input features automatically by imposing spar-
sity on the neural network. Specifically, the derived iterative procedure in Section. 2.1.3 of
Chapter 2 includes an assumption on the independence and non-stationarity of connec-
tion weights resulting in a shape-wise regularization as shown in Fig. 2.2(a). This drives the
individual connection weight to 0. In some applications, one may want to enforce more
structured sparsity by pre-defined groups and re-expressing the regularization term as a
function of these groups [49]. This chapter uses a structured regularization of rows and
columns (Fig. 2.2(b-c)). The benefit of such an approach, specific to this chapter, is not
only obtaining compact sparse models, but also, the suppression of input nodes in z that
are deemed less pertinent without loss of accuracy. The reduction in the dimensionality
of the input vector z represents the selection of input features.

To extend this approach to the Bayesian framework, one has to revisit the prior for-
mulation. The prior of a weight matrix is formulated based on the designated group of
weight matrices (row or column or both). These groups are considered independent, but
the connection weights of a specific group share the same prior Gaussian relaxation (see
Fig. 2.2(b-c)). For each of the cases shown in Fig. 2.2, the update rules for ψ, ω and the
regularization function ρ are given in Table. 2.1.

4.2.2. MAKING UNCERTAIN PREDICTIONS

In the Bayesian procedure, predictions are made using the posterior predictive distribu-
tion. It is given by Eq.(4.1):

p(ŷ |z,D) =
∫

p(ŷ |W, z) p(W |D)dW (4.1)

The first term of the integral is the likelihood of the prediction conditional on the network
parameters. The second term is the inferred posterior distribution over the weights W
given the training data D.

To find the expected value of the prediction, the expression of the predictive distribu-
tion in Eq. (4.1) is used, and given that the likelihood is defined as a Gaussian function one
obtains:

E
[

ŷ
]= ∫

ŷ p(ŷ |z,D)d ŷ (4.2)

=
∫ (∫

ŷ p(ŷ |W, z)d ŷ
)

p(W |D)dW (4.3)

=
∫

Net(W, z) p(W |D)dW (4.4)
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Using the inferred posterior distribution over the weights, one can approximate this inte-
gral by Monte-Carlo sampling methods [13, 36]. An unbiased estimate of the prediction is
given by the average predictions using W sampled by the posterior M times.

µŷ ≈
1

M

M∑
m=1

Net(W (m), z) (4.5)

In an analogous way, to estimate the variance in the posterior predictive distribution, the
expected value E

[
ŷT ŷ

]
is analytically derived as follows in Eq. (4.6)- (4.8):

E
[

ŷT ŷ
]= ∫

ŷT ŷ p(ŷ |z,D)d ŷ (4.6)

=
∫ (∫

ŷT ŷ p(ŷ |W, z)d ŷ
)

p(W |D)dW (4.7)

=
∫ (

σ2 +Net(W, z)2) p(W |D)dW (4.8)

An unbiased estimate of the variance is given by Monte-Carlo integration methods [13,
36], with M samples from the inferred posterior distribution of W .

Σŷ ≈σ2 + 1

M

M∑
m=1

Net(W (m), z)2 −µŷ
Tµŷ (4.9)

This variance (Eq. (4.9)) represents the model uncertainty in prediction. It is approximated
by the sum of an aleatoric uncertainty and an epistemic uncertainty. The aleatoric uncer-
tainty is generally known to be irreducible corresponding to the noise covariance of the
measurement and is generally incorporated in the likelihood form [13]. The epistemic
uncertainty corresponds to the model’s uncertainty in a prediction that is often called re-
ducible uncertainty [13] and grows when moving away from the training data [53].

4.2.3. VALIDATION AND SOFTWARE IMPLEMENTATION
The identification experiments are implemented using the PyTorch library on Python. The
MLP models are randomly initialized and trained based on a one-step-ahead prediction
approach and validated based on a free run simulation setting. The stochastic gradient
descent method adopted is the ADAM optimizer, and the learning rate is scheduled using
Cosine Annealing for each identification experiment.

For the evaluation metric, it should be noted that prediction and simulation error are
two typical evaluation metrics for SYSID. Given the current and past measurements of
the system input and output, the prediction means predicting the system response to the
future k steps, where k denotes the prediction horizon. Simulation is to predict the system
response based only on the input data and initial conditions. Therefore, the simulation
error is a more challenging evaluation metric and is used in this paper. The figure of merit
used is given by the root mean square error (RMSE) of the simulation experiment:

RMSE(ŷ , y) =
√√√√ 1

T

T∑
i=1

(yi − ŷi )2 (4.10)

Besides, the model sparsity refers to the number of zero-valued parameters divided by the
total number of parameters.
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4.2.4. ALGORITHM
In this chapter, we introduce a dynamic pruning strategy, which is different from the stan-
dard one-shot pruning strategy in Algorithm 2. By comparing the magnitude of weight
and uncertainty of weight, the network will be pruned in each cycle, which can achieve
more efficient pruning effects empirically. Specifically, the pruning criterium is based on
not only the magnitude of weight ‖W l

ab‖ but also the uncertainty ψl
ab . Typically, a de-

crease in ψl
ab means less regularization on corresponding weight W l

ab . Based on this, the

binary matrices C l are generated as the masks of W , which denotes the connection re-
dundancy. C l has the same dimension as W l and will be optimized during the training
process. The update of C is decided by:

C =
{

0, ψl
ab(k) ≥ κψ, |W l

ab(k)| ≥ κw

1, others
(4.11)

where 1 denotes the redundancy, and 0 means the weight should be retained. It should
be noted that the masks C is implemented updated at the last epoch of each cycle. A
pseudocode for the iterative procedure is given by Algorithm 4.

4.3. EXPERIMENT

4.3.1. SIMULATION EXPERIMENT
This section summarizes the identification experiments of three linear processes and two
nonlinear processes using the proposed algorithm. For linear systems, the identification
procedure is repeated M = 20 times with Kmax = 6 identification cycles. For nonlinear
systems, the identification is also repeated M = 20 times but with Kmax = 10 identifica-
tion cycles each. In Table 4.1, stands a summary of the model structure used for identi-
fication as well as the mean, standard deviation and minimum validation RMSE of the M
best-generated models, the percentage of sparse parameters in the best-generated model.
The benchmarks are described more thoroughly, and the reader is supported with spar-
sity plots, simulation plots, and plots of posterior predictive mean and uncertainty corre-
sponding to the best-generated model.

Three linear processes are identified, the Hairdryer, corresponding to the PT326 pro-
cess trainer [18], a Heat exchanger [19] and Glass Tube manufacturing process [20]. The
datasets of these processes are provided by Matlab in the corresponding tutorials on lin-
ear system identification. The chosen best validated models are compared to the methods
used in the corresponding tutorials. Additional model structures used for the identifica-
tion of the Hairdryer are taken from chapter 17.3 of [29] and run in Matlab. Check 4.3.1.6
Table. 4.2 for the comparisons. Two nonlinear processes, the Cascaded Tanks [45], Cou-
pled Electric Drives [51] are also identified. Information and datasets of these benchmarks
are compiled in the web page of the Workshop on Nonlinear System Identification Bench-
marks. The cascaded tank system is a fluid level control system, which is consist of two
tanks with free outlets fed by a water pump [45]. The fluid levels of these two tanks are
adjusted by the input signal that controls the water pump. The coupled electric drives is
a system that drives a pulley by controlling a flexible belt. Two electric motors provide
the driving force. And the spring is used to fix the pulley. The setup of the Coupled Elec-
tric Drives is in Fig. 4.2. A more detailed description of the system and datasets of these
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Algorithm 4 Sparse Bayesian Deep Learning Algorithm for System Identification.

Input: • Collect input-output data u(t ) and y(t ) for t = 1,2, · · · ,T .

• Arrange input regressors according to the chosen lags lu , ly .

• Define the network structure (number of layers L, neurons per layer nl and acti-
vations if it applies).

• Set regularization parameter λ (empirically tuned) and NN pruning thresholds
κψ,κW (≈ 10−3).

• Set the number of repeated experiments M , identification cycles Cmax and the
number of epochs in each cycle Emax.

• Initialize hyper-parameters Ψ(0) = I and ω(0) =1.
Output: Return the set of connection weights W

for m = 1 to M do
for i = 1 to Cmax do

for j = 1 to Emax do
(1) Stochastic Gradient Descent with loss function:

W (k +1) = min
W

E(·)++λ
L∑

l=1

nl∑
b=1

||ωl
:b ·C l

:b ¯W l
:b ||`2

end for
(2) Update hyper-parameters ψ and ω as Table. 2.1
(3) Update mask C

end for
Simulate on the validation dataset and choose the model with the smallest RMSE.

end for

benchmarks are compiled on the web page of the Nonlinear System Identification Bench-
marks. The models with the best validation performance are compared with best models
obtained using conventional neural network methods for multiple experiments (M = 20)
and previous works in literature for every benchmark in 4.3.1.6 Table. 4.3.

Besides the simulation experiment on the above five linear and nonlinear benchmarks,
we also explore the effectiveness of our method with a small ratio of datasets on five differ-
ent benchmarks, i.e., SilverBox Benchmark Dataset, Coupled Electric Drive Dataset, Bouc-
Wen Hysteresis Model, Electro-Mechanical Positioning System and Cascaded tank system.
The one-step head prediction result shows that the proposed approach can achieve sim-
ilar prediction accuracy with a sparser model given a small dataset. The detailed experi-
ment result is in Section. 4.3.2.

HAIRDRYER

In typical industrial settings with heating, temperature control is highly desired, given the
high transport lags and process delay. The hairdryer is a small scale laboratory apparatus
that designates the PT326 process trainer [19]. A mass of air is heated with thermal resis-
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Table 4.1: Models are trained to identify linear and nonlinear processes with validation
information

Process-Model Layers-Units Lags RMSEval (µ±σ) RMSEval (min) Sparsity Supporting Material

Hairdryer-MLP 1 - 50 5 0.074 ± 0.0005 0.073 88.1% 4.3.1.1
Hairdryer-LSTM 1 - 10 5 0.093 ± 0.0166 0.081 93.5% 4.3.1.1

Heat Exchanger-MLP 1 - 50 150 0.086 ± 0.0002 0.086 99.3% 4.3.1.2
Heat Exchanger-LSTM 1 - 10 150 0.114 ± 0.0299 0.088 96.4% 4.3.1.2

GT Manufacturing-MLP 1 - 50 5 0.660 ± 0.0013 0.657 97.8% 4.3.1.3
GT Manufacturing-LSTM 1 - 10 5 0.671 ± 0.0019 0.669 99.0% 4.3.1.3

Cascaded Tanks-MLP 3 - 10 20 0.428 ± 0.1032 0.257 84.5% 4.3.1.4
Cascaded Tanks-LSTM 1 - 50 20 0.500 ± 0.1012 0.362 60.3% 4.3.1.4

CED-MLP 2 - 50 10
0.187 ± 0.0285
0.134 ± 0.0192

0.149
0.120

78.4% 4.3.1.5

CED-LSTM 1 - 10 10
0.155 ± 0.0257
0.126 ± 0.0201

0.121
0.097

72.8% 4.3.1.5

tors and flows in a tube. The temperature at the outlet is measured by a thermocouple in
volts. The objective is to identify the dynamic relationship between the input voltage to
the thermal resistors and the thermocouple voltage at the outlet. The dataset specific to
this device is given by MATLAB in a tutorial on linear system identification. The sampling
time is 0.08 seconds, and the dataset contains 1000 data points. The dataset is detrended,
bringing data to a zero mean. The first 300 data points are used for identification, and the
remaining 700 are used for validation.

A fully connected MLP model with one hidden layer and 50 nodes is randomly initial-
ized. The activation function is a linear activation without the bias term. The input and
output lags chosen for the regressors are 5. Models are inferred through Kmax = 6 identi-
fication cycles. The best validated model was obtained in the 5th cycle of identification
with a sparsity of 88.1%. The model sparsity plot is shown in Fig. 4.3a. Furthermore, an
RNN network is randomly initialized with one layer and 10 hidden LSTM units and no bias
term. lu and ly are set to 5. The 6th and final identification cycle led to the sparsest and
best validated model with a sparsity of 93.5%. Fig. 4.3b shows the final model sparsity plot.

Plots of the posterior predictive distribution’s mean prediction and standard devia-
tions obtained by sampling 10000 times from the posterior distribution of the connec-
tions’ weights and by using equations (4.5) and (4.9) are shown in Fig. 4.4a and 4.4b. Plots
of the identified models’ free run simulations can be found in Fig. 4.14.

HEAT EXCHANGER

A heat exchanger is a thermodynamic device that ensures heat transfer between two fluids
separated by a wall. In this experiment, the dynamic relationship between the coolant
temperature and the product temperature is identified [19]. The first 3000 data points are
used for identification, and the remaining 2000 for validation. This dataset is particularly
unique among the others. The process exhibits a delay of around 1/4 of a minute [19].

One hidden-layer MLP with 50 nodes is initialised with a linear activation function and
no bias term. The lag chosen is lu = ly = 150 corresponding to the delay of 0.25 seconds
that can be observed in the first instance of the given dataset. The experiment ran for 6
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Figure 4.1: The cascaded tanks setup [45]

identification cycles, in which the 4th obtained model was selected as the best validated
model. The sparsity of the model is 99.3%.

One layer RNN network with 10 LSTM units is trained with the same lag used previ-
ously (lu = ly = 150). The best validated model was the second out of 6 identification cy-
cles. The accepted model’s sparsity is 96.4% for which the sparsity plot is given in Fig. 4.5b.

The predictive mean and standard deviation of the posterior predictive distribution
are shown in Fig. 4.6a-4.6b against the real validation signal. These were obtained using
10000 samples of the posterior distribution. Please refer to Fig. 4.15 for a plot of free run
simulations.

GLASS TUBE MANUFACTURING PROCESS

In the process of manufacturing glass tubes, the melted glass shapes around a rotating
cylinder while homogenizing. It is then drawn on rollers to a certain length. The thick-
ness of the obtained glass tube is measured by a laser beam outside the chamber [50]. The
objective is to identify the linear dynamic relationship between the input drawing speed
and the output thickness. The datasets are provided by the MATLAB example. These are
detrended and decimated by four to get rid of the high-frequency components of the sig-
nal [20]. This results in a sampling time of 4 seconds. The data used for identification
consist of the first 500 data points, and the remaining is used for validation.

An MLP is randomly initialized with one hidden layer and 50 neurons. The input re-
gressors are chosen such as lu = ly = 5. The activation function used is linear without a
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Figure 4.2: The coupled electric drives setup[51]

bias term. The final obtained model is 97.8% sparse with a sparsity plot shown in Fig. 4.7a.
This model was the third generated model out of 6 identification cycles.

With the same choice of regressors, an RNN network was initialized with one layer of
10 LSTM units. The bias term was not used in this case. In the 6 identification cycles,
the 6th generated model was the sparsest and had the best validation performance. The
sparsity plot of this network is given by Fig. 4.7b. The model sparsity is 99%, and the only
non-pruned parameters in the model correspond to the input to cell state operator Wi j .

The one-step ahead prediction estimates and uncertainties are obtained by Monte
Carlo sampling 10000 times from the posterior and are shown in Fig. 4.8a-4.8b as a repre-
sentation of the posterior predictive distribution. The free run simulations of the gener-
ated models in this chapter are presented in Fig. 4.16.

CASCADED TANKS

A pump drives water up from the reservoir to the upper tank of two vertically cascaded
tanks. The upper and lower tanks are separated by a small opening allowing water to fill
the lower tank. The lower tank and the reservoir are also separated by a small opening,
from which water goes back to the reservoir. In addition to that, water can overflow from
the upper tank to the lower tank and reservoir. Water can also overflow the second tank
and drop into the reservoir. The small openings and overflows are sources of nonlinear-
ity [45]. The benchmark’s objective is to identify the dynamic relationship between the
input voltage to the pump and the output measured water level in the lower tank by a ca-
pacitive sensor [45]. Two multi-sine input datasets and their corresponding outputs with a
sampling rate of 4 seconds are provided. The datasets contain 1024 samples and are with
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(a) Model sparsity of the identified MLP on Hairdryer dataset. Blue indicates non-pruned connec-
tions and white indicate pruned ones. The same follows with other sparsity plots.

0 2 4 6 8

0

2

4

6

8

10

In
p

u
ts

z

Wii

0 2 4 6 8

0

2

4

6

8

10

Wij

0 2 4 6 8

0

2

4

6

8

10

Wif

0 2 4 6 8

0

2

4

6

8

10

Wio

0 2 4 6 8

0

2

4

6

8

Whi

0 2 4 6 8

0

2

4

6

8

Whj

0 2 4 6 8

0

2

4

6

8

Whf

0 2 4 6 8

0

2

4

6

8

Who

0

2

4

6

8

Wf

(b) Model sparsity of the identified LSTM on Hairdryer dataset

Figure 4.3: Model sparsity of the identified MLP and LSTM on Hairdryer dataset
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(a) Posterior mean predictions of the identified MLP on Hairdryer dataset (±2σ)
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Figure 4.4: Posterior mean predictions of the identified MLP and LSTM on Hairdryer
dataset
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(a) Model sparsity of the identified MLP on Heat Exchanger dataset.
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(b) Model sparsity of the identified LSTM on Heat Exchanger dataset.

Figure 4.5: Model sparsity of the identified MLP and LSTM on Heat Exchanger dataset
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(a) Posterior mean predictions of the identified MLP on Heat Exchanger dataset (±2σ)

5.5 6.0 6.5 7.0 7.5 8.0

time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

pr
o

d
u

ct
δ

te
m

p
er

at
u

re
[◦

C
]

True Output

Bayesian Model (RMSE = 0.0223)

(b) Posterior mean predictions of the identified LSTM on Heat Exchanger dataset (±2σ)

Figure 4.6: Posterior mean predictions of the identified MLP and LSTM on Heat Exchanger
dataset
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(a) Model sparsity of the identified MLP on Glass Tube Manufacturing dataset.
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(b) Model sparsity of the identified LSTM on Glass Tube Manufacturing dataset.

Figure 4.7: Model sparsity of the identified MLP and LSTM on Glass Tube Manufacturing
dataset
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(a) Posterior mean predictions of the identified MLP on Glass Tube Manufacturing dataset (±2σ)
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Figure 4.8: Posterior mean predictions of the identified MLP and LSTM on Glass Tube
Manufacturing dataset
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different initial conditions. One of the datasets is used for estimation and the other for
validation. The provided signal shows a static deviation, which is processed by detrending
in the preprocessing stage of the identification program.

A 3 hidden layers deep MLP network with 10 neurons per layer is randomly initial-
ized. The activation function used is the relu activation. The input regressors are such as
lu = ly = 20. The identification experiment is run for 10 cycles. The 9th generated model
pig erforms the best in validation with a sparsity of 84.5%. The model’s sparsity plot is
shown in Fig. 4.9a.

Moreover, a one-layer RNN with 10 LSTM units is also used as a model structure for
the identification experiment. The 4th identified model with 60.3% sparsity was the best
validated model out of 10 identification cycles. The sparsity plot of the corresponding
model is shown in Fig. 4.9b.

In addition, the posterior predictive mean and standard deviation are given in Fig. 4.10a
and 4.10b. These are obtained by averaging Eq. 4.5 and 4.9 and sampling 50000 times from
the inferred posterior distribution of the weights. A plot of the models’ free run simula-
tions is by Fig. 4.17.

COUPLED ELECTRIC DRIVES

The coupled electric drives consist of 2 electric motors and a pulley, connected by a flexi-
ble belt forming a triangle. The pulley is attached by a spring to a fixed frame. This results
in belt tension, slippage, and pulley speed that is harder to model. In addition to that, the
output pulley rotational speed is measured in ticks per second, insensitive to rotational
directions. The dynamic relationship to be identified is between the input motors voltage
and the measured rotational speed of the pulley. For this identification task, 2 uniformly
distributed signals of 500 samples were provided spanning 10 seconds. With each of these
datasets, the first 300 samples are used for estimation and the remaining for validation.

Two hidden layers MLP with 50 neurons each and relu activation functions is randomly
initialized and trained with the estimation data for 10 identification cycles. The model’s
regressors are chosen such that lu = ly = 10. The model obtained in the 6th identification
iteration is the chosen best model. This model is 78.4% for which the sparsity plot is shown
in Fig. 4.11a.

The same regressors are used for the identification of the RNN model structure. An
RNN with one layer and 10 LSTM units is trained for 10 identification cycles. The 8th
identification yields the best simulation validation results. The resulting model sparsity is
72.8% with the sparsity plot in Fig. 4.11b.

By using Eq. (4.5) and (4.9), the mean and standard deviation of the posterior pre-
dictive distributions are plotted in Fig. 4.12a, 4.13a, 4.12b and 4.13b for both validation
datasets. These are obtained with Eq. (4.5)- (4.9) and 50000 samples of the posterior dis-
tribution. Figures showing the resulting free run simulations are Fig. 4.18-4.19.

FREE RUN SIMULATION RESULTS

This section supports the reader with plots of the simulated experiments using the identi-
fied models and a comparison with previous models presented in literature.
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(a) Model sparsity of the identified MLP on Cascaded Tanks dataset.
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(b) Model sparsity of the identified LSTM on Cascaded Tanks dataset.

Figure 4.9: Model sparsity of the identified MLP and LSTM on Cascaded Tanks dataset
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(a) Posterior mean predictions of the identified MLP on Cascaded Tanks dataset (±2σ)

0 500 1000 1500 2000 2500 3000 3500 4000

time [s]

2

4

6

8

10

12

w
at

er
le

ve
l

[V
]

True Output

Bayesian Model (RMSE = 0.3003)

(b) Posterior mean predictions of the identified LSTM on Cascaded Tanks dataset (±2σ)

Figure 4.10: Posterior mean predictions of the identified MLP and LSTM on Cascaded
Tanks dataset
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(a) Model sparsity of the identified MLP on Coupled Electric Drives dataset
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(b) Model sparsity of the identified LSTM on Coupled Electric Drives dataset

Figure 4.11: Model sparsity of the identified MLP and LSTM on Coupled Electric Drives
dataset
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(a) Posterior mean predictions of the identified MLP on the first validation dataset of Coupled Elec-
tric Drives dataset (±2σ)
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(b) Posterior mean predictions of the identified LSTM on the first validation dataset of Coupled
Electric Drives dataset (±2σ)

Figure 4.12: Posterior mean predictions of the identified MLP and LSTM on the first vali-
dation dataset of Coupled Electric Drives dataset (±2σ)



4

80 4. THE ART OF PRIOR II: GROUP PRIOR

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

time [s]

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

am
p

lit
u

d
e

[V
]

True Output

Bayesian Model (RMSE = 0.0565)

(a) Posterior mean predictions of the identified MLP on the second validation dataset of Coupled
Electric Drives dataset (±2σ)
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(b) Posterior mean predictions of the identified LSTM on the second validation dataset of Coupled
Electric Drives dataset (±2σ)

Figure 4.13: Posterior mean predictions of the identified MLP and LSTM on the second
validation dataset of Coupled Electric Drives dataset
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Figure 4.14: Hairdryer Free Run Simulation comparison
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Figure 4.15: Heat Exchanger Free Run Simulation comparison
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Figure 4.16: Glass Tube Manufacturing Free Run Simulation comparison
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Figure 4.17: Cascaded Tanks Free Run Simulation comparison
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Figure 4.18: Coupled Electric Drives Free Run Simulation comparison for the first valida-
tion dataset
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Figure 4.19: Coupled Electric Drives Free Run Simulation comparison for the second val-
idation dataset
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Table 4.2: Comparison of RMSE on identified linear systems with other works

Hairdryer RMSE [V]
Transfer Function Estimation [18] 0.108
Subspace Identification [29] 0.105
ARMAX Model [29] 0.104
ARX Model [29] 0.103
GPa with squared exponential kernel 0.066
LSTM without lags 0.219
LSTM without regularization 0.205
Bayesian LSTM 0.081
MLP without regularization 0.076
Bayesian MLP 0.073
Heat Exchanger RMSE [◦C ]
Transfer Function Estimation [19] 0.140
Process and Disturbance Model [19] 0.089
Process Model [19] 0.088
GPa with squared exponential kernel 0.187
LSTM without lags 0.185
LSTM without regularization 0.158
Bayesian LSTM 0.088
MLP without regularization 0.092
Bayesian MLP 0.086
Glass Tube Manufacturing RMSE [·]
Subspace Identification [20] 0.688
ARX Model [20] 0.676
GPa with squared exponential kernel 0.656
LSTM without lags 1.099
LSTM without regularization 1.056
Bayesian LSTM 0.669
MLP without regularization 0.663
Bayesian MLP 0.657
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Table 4.3: Comparison of RMSE on identified nonlinear systems with other works

Cascaded Tanks RMSE [V]
LMNb with NFIR [4] 0.669
Flexible State Space Model [47] 0.450
Voltera Feedback Model [44] 0.397
OEMc with NOMAD [6] 0.376
Piecewise ARX Models [33] 0.350
NLSSd [40] 0.343
Tensor network B-splines [25] 0.302
GPa with squared exponential kernel 0.344
LSTM without lags 0.954
LSTM without regularization 0.494
Bayesian LSTM 0.362
MLP without regularization 0.432
Bayesian MLP 0.257
Coupled Electric Drives RMSE [ticks/s]

Drive 1 Drive 2
Extended Fuzzy Logic [41] 0.150 0.092
Cascaded Splines [42] 0.216 0.110
TAG3Pd [37] - 0.128
RBFNN - FSDE f [1] 0.130 0.185
GPa with squared exponential kernel 0.153 0.132
LSTM without lags 0.394 0.252
LSTM without regularization 0.149 0.131
Bayesian LSTM 0.121 0.097
MLP without regularization 0.206 0.111
Bayesian MLP 0.149 0.120

a Gaussian process model.
b Tree based Local Model Networks with external dynamics represented by NARX or NFIR.
c Output Error parametric Model estimation based on derivative free method.
d nonlinear State Space model.
e Tree Adjoining Grammars
f Free Search Differential Evolution is used to determine the regressors.
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4.3.2. ONE STEP AHEAD PREDICTION EXPERIMENT ON SMALL DATASET
The SBDL algorithm is also tested on several benchmarks with varying ratios of available
data. Four dynamic systems are chosen for the implementation: silverBox benchmark,
coupled electric drive, Bouc-Wen hysteresis model, electro-Mechanical positioning sys-
tem and cascaded tank system. Only the MLP models are adopted in this section with
different initialized model structures and hyper-parameter settings. The one step ahead
prediction performance is used to evaluate the identified models. The SBDL algorithm is
also compared with another three training methods,i.e.,DNN training without any regu-
larization; DNN training with conventional shape-wise regularization; Deep Neural Net-
work training with conventional group regularization (row-wise & column-wise).

SILVERBOX

The SilverBox model simulates a second-order mechanical system with a nonlinear stiff-
ness constant. The benchmark input consists of two parts. The first is filtered white
Gaussian noise with a cutoff frequency of 200 Hz and varying amplitude (arrow head in
Fig. 4.20). The second part is a random odd multi-sine signal with a maximum frequency
of 200 Hz, varying amplitude and phases (arrow tail in Fig. 4.20). In this paper, the first
part is used for validation and the second part for training.
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Figure 4.20: Silver-Box provided input data. The head of the arrow represents validation
data, and the tail of the arrow the training data.

A MLP is initialized to be with two hidden layers and 500 neurons in each layer. Given
that the silverBox model simulates a second-order mechanical system, the input and out-
put lags are chosen to be at least 2. In other words, the input of the MLP includes the
system input at time t (ut ) and the system inputs and outputs at times t −1 and t −2 (i.e.,
ut−1, ut−2, yt−1, yt−2). The row-wise and column-wise regularization is applied on weight
matrices.

The SBDL algorithm provides a more robust result for the one step ahead prediction
task. As shown in Fig. 4.21b, The SBDL algorithm is more reliable when compared to the
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Figure 4.21: The one step ahead prediction results with different ratios of original dataset
for silver-box Benchmark. Subfigure (a) shows the best prediction errors. Subfigure (b)
shows the means of 20 best prediction errors with vertical error bar representing the stan-
dard deviation of validation losses.
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Figure 4.22: The One step ahead prediction results with different ratios of original dataset
for silverBox benchmark. The figures above are zoomed versions of figures in Fig. 4.21.
This is done to better visualize the results when regularization is used.
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no regularization case. It also achieves better results compared to other regularized meth-
ods as shown in the zoomed Fig. 4.22.

COUPLED ELECTRIC DRIVES

Coupled Electric Drive (CED) is a mechanical system that consists of a belt connecting two
motors and a pulley. The pulley is attached to a suspended spring. Motors can be used to
allow control of both the tension and the speed of the belt. The system’s dynamics are
often expressed as a third-order differential equation relating the input motor loads and
the pulley’s angular velocity. Two sets of uniform pulses with various random amplitude
inputs are provided and are used for training and validation. They are divided into 300
samples for estimation and 200 for validation each. One set is shown in Fig. 4.23.
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Figure 4.23: A snapshot of the provided input data for Coupled Electric Drive. The sam-
pling frequency is 50 Hz

A MLP is initialized to be with 2 hidden layers and 50 neurons in each layer. The input
and output lags are chosen to be 3. The experiments are done 50 times with different λ
and various ratios of the available training data from 5% to 100%. As mentioned earlier,
the dataset is divided into 300 data points for model estimation and 200 for validation.
Both datasets are used to generate one model and the validation is done on both testing
sets, with the combined RMSE results shown in the Fig. 4.24a and 4.24b.

The best one step ahead prediction performance can be obtained with both conven-
tional group regularization (conventional row-wise and column-wise regularization) and
the SBDL algorithm (as shown in Fig. 4.24). In addition, according to Table. 4.5, the best
models generated by the SBDL algorithm are sparser than those using conventional group
regularization. The SBDL algorithm can provide a relatively sparser model with lower er-
rors given different ratios of data.
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Figure 4.24: The one step ahead prediction results with different ratios of available estima-
tion data for CED Benchmark. Subfigure (a) shows the best prediction errors. Subfigure
(b) shows the mean of 50 best prediction errors with vertical error bar for each ratio rep-
resenting the standard deviation of validation losses.



4.3. EXPERIMENT

4

91

BOUC-WEN HYSTERESIS MODEL

Hysteresis is a nonlinear phenomenon characterized by a dependency of a system to a
previous state, even when the actuating force is not present anymore. Hysteresis can be
found in social sciences (for instance, unemployment in economics) and physical sciences
(magnetization, random vibration). Several parametric and non-parametric models of
this phenomenon exist. However, basing modelling on solely physical laws can be an ar-
duous task [21]. The Bouc-Wen model is a semi-physical model that has been given much
attention in the literature, specifically with tuning its parameters for specific applications.
The model is provided in Matlab Code, and the user is capable of generating the necessary
data for model estimation. In this experiment, and referring to several previous works on
this benchmark, a random multisine is generated with an excitation frequency range of 50-
150 Hz and an RMS amplitude of 50 N. The latter is shown in Fig. 4.25. For validation, two
fixed datasets are provided, one is a random multisine and the other is a sine-sweep [43].
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Figure 4.25: Bouc-Wen Model estimation input

A MLP is initialized to be with two hidden layers and 100 neurons in each layer. The
input and output lags are set to be 8. The experiments are implemented 50 times with
varying regularization parameters λ and ratios of estimation data. The prediction errors
in Fig. 4.26a and 4.26b are the joint RMSE over both test datasets.

The errors obtained with SBDL for one step ahead prediction, shown in Fig. 4.26, are
the lowest among these training methods. In addition, according to Table. 4.6, the models
generated by the SBDL algorithm are the sparsest.

ELECTRO-MECHANICAL POSITIONING SYSTEM

The Electro-Mechanical Positioning System (EMPS) is a standard machinery drive system
used in various robotics and manufacturing systems. This system consists of a position-
controlled DC motor with a translating load. It is mathematically expressed as a second-
order function relating the input load to the output actuator position. Both inputs used
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Figure 4.26: The one step ahead prediction results for BW Benchmark. Subfigure (a) shows
the best prediction errors. Subfigure (b) shows the mean of 50 best prediction errors with
vertical error bar for each ratio representing the standard deviation of validation losses.
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for training or validation consisting of impulse signals with various amplitudes are shown
in Fig. 4.27.
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Figure 4.27: The input data of Electro-Mechanical positioning system. The sampling fre-
quency is 1kHz

A MLP is initialized to be with two hidden layers and 100 neurons in each layer. The
input and output lags are chosen to be 3. The experiments are done 50 times with differ-
ent regularization parameters λ and various ratios of the training data shown in Fig. 4.27,
ranging from 5% to 100%. The errors obtained with SBDL for one step ahead prediction,
shown in Fig. 4.28, are the lowest among the three methods. In addition, according to
Table. 4.7, the models generated by the SBDL algorithm are the sparsest.

CASCADED TANK SYSTEM

The cascaded tank system is a liquid level control system. Its mathematical model can be
constructed as:

ẋ1(t ) =−k1

√
x1(t )+k4u(t )+w1(t ),

ẋ2(t ) = k2

√
x1(t )−k3

√
x2(t )+w2(t ),

y(t ) = x2(t )+e(t )

(4.12)

where u(t ) is the input pump voltage, y(t ) is the output which measures the liquid level,
x1(t ) and x2(t ) are the states of the system, w1(t ), w2(t ) and e(t ) are the noise and k1,k2,k3,
and k4 are the constants which is decided by the system properties. Both the training and
test dataset include 1024 samples. A MLP is initialized to be with two hidden layers and
100 neurons in each layer. The data lags for both input and output are set as 5. We apply
SBDL algorithm with different λ to the weight matrices. Experiments are implemented
with different ratios of the original training dataset. The ratio is selected in the from 5% to
100%. Each experiment with a different setting was repeatedly implemented 50 times in
total.



4

96 4. THE ART OF PRIOR II: GROUP PRIOR

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Precentage of training data (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

P
re

d
ic

ti
o

n
 e

rr
o

r 
(E

R
R

re
l)

The best prediction error result for EMPS Benchmark

No regularization

Conventional regularization

Conventional group regularization

Present Paper

(a) The best prediction error.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Precentage of training data (%)

0

0.05

0.1

0.15

0.2

0.25

0.3

P
re

d
ic

ti
on

 e
rr

or
 (

E
R

R
re

l)

The mean prediction error results for EMPS Benchmark

No regularization

Conventional regularization

Conventional group regularization

Present Paper

(b) The mean prediction error.

Figure 4.28: The One step ahead prediction result with different ratios of original dataset
for EMPS Benchmark. Subfigure (a) shows the best prediction error. Subfigure (b) shows
the mean prediction error with vertical error bar for each ratio representing the standard
deviation of validation losses.
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The result is shown in Fig. 4.29, where the smallest and mean prediction errors with a
different dataset of four approaches are plotted in different colours. From the result, we
observe some interesting phenomena. First of all, all curves show a similar and reason-
able trend that the prediction error becomes smaller with more provided training data.
Second, it is obvious that our method could obtain a smaller prediction error with a dif-
ferent ratio of the original dataset compared with the experiment without regularisation.
Besides, as shown in the blue curve, the prediction error shows a convergence trend. And
the optimal prediction error is 0.0472 with only 70% dataset. We argue that there exists
a balance between the number of samples and model accuracy. On the one hand, if the
provided data is too less (e.g.,less than 50%), we cannot obtain an optimal model no mat-
ter whether we introduce the regularization. On the other hand, the result shows that it is
possible to obtain the optimal model with a reduced training dataset. On the whole, this
result shows that our method can keep good performance even without enough data. Fi-
nally, the sparsity of weight matrices also changes over iterations. And compared with the
conventional group regularization method, our method could achieve a relatively sparser
model, especially when the training data is more than 60%. For example, with 80% training
data, the sparsity of the model with our method and the conventional group regulariza-
tion method is 2.5% and 10.98%. A more direct comparison of the model sparsity for the
proposed method and the conventional group regularization method refer to Table. 4.8.

4.4. DISCUSSION
In this section, the results will be discussed and analyzed concerning the claims made on
sparsity, uncertainty quantification, and simulation results.

Sparsity: In most cases, the obtained networks are sparse models with a compact
structured sparsity. According to Table. 4.1, sparsity was more prominent in the identi-
fied linear systems than in nonlinear systems. This demonstrates that the nonlinearity
that the data exhibits requires a higher complexity than in the linear case.

Starting with the linear systems, one can note that structured sparsity induced a recog-
nized transport delay in the Heat Exchanger MLP and LSTM models, which characterizes
this system. Fig. 4.5b is an example of a sparsity plot of the Heat Exchanger identified
LSTM Model. Furthermore, the LSTM models for linear systems have complete operators
pruned. This means that the cell state can well be regulated with fewer parameters than
imposed on the initialized model structure in the Heat Exchanger case. Similar behaviour
is seen across linear benchmarks.

Structured sparsity was also observed in the generated networks for nonlinear systems
(Table. 4.1). In addition to that, similarly to RNN models identified for linear systems, a
lot of parameters involving the hidden states are pruned. A possible explanation for this
behaviour is that the hidden states of LSTM units attempt to retain short-term informa-
tion from the time series that is also available as lagged elements in the input regressor.
The simulation result also shows that the input regressor with lagged elements can im-
prove simulation performance for a LSTM model (check 4.3.1.6 Table. 4.2-4.3). Another
observation related to the structured sparsity is the effect of input feature selection. As
shown in Fig. 4.8a, the number of input features was reduced from 40 to 2 after applying
the sparse Bayesian algorithm. The redundant input features were also identified for other
benchmarks and removed from the neural network, reducing model complexity.
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Figure 4.29: The one step ahead prediction results for cascaded tanks Benchmark. Sub-
figure (a) shows the best prediction errors. Subfigure (b) shows the mean of 50 best pre-
diction errors with vertical error bar for each ratio representing the standard deviation of
validation losses. In both subfigures, the red curve represents the result of our method, the
green curve is the result of conventional group regularization method and and blue curve
stands for the result of neural network without regularization. 11 data points in each curve
correspond to the best prediction error with 11 diverse ratios from 5% to 100%.
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Predictive Distributions: The posterior predictive distributions for each model result
from the forward propagation of the parameters’ posterior uncertainty obtained with the
estimation data. Hence, the posterior predictive distribution could spread a more exten-
sive range of predictions if the validation data holds information that the model did not
learn from the estimation data [53].

In addition, in some cases, the generated models show an unevenly distributed predic-
tive uncertainty related to nonlinearities or disturbances characteristics of the process and
regions where the model can be improved. Fig. 4.10b shows that the identified model for
Cascaded Tanks makes less robust predictions when overflow occurs. The Heat Exchanger
shows evenly distributed predictions with uncertainty possibly coming from the ambient
temperature disturbance. Furthermore, the model type also affects the predictive distri-
bution. Examples include the LSTM models identified for the Glass Tube Manufacturing
Process and Cascaded Tanks. In these benchmarks, the identified MLP model provides
more robust predictions than the identified LSTM model.

Free Run Simulation Performance: The free run simulation is a good measure of the
model’s approximation ability to represent a dynamic process by propagating a model’s
prediction error while forecasting. In this chapter, we select the simulation error as the
evaluation metric. It is important to note that, for the studied linear processes, a non-
regularized LSTM performs worse when compared to other identification methods. This
supports previous concerns made on using LSTM for the identification of linear systems.
The Bayesian MLP model outperforms the Bayesian LSTM model in most applications
except for the Coupled Electric Drive.

Table. 4.1 shows the mean and standard deviation of the validation simulation errors
and the minimum corresponding to the best-chosen model. The minimum is seen to fall
close to the range of one standard deviation from the mean. In addition, the variance of
validation errors for linear systems is overall less than nonlinear systems, and the variance
of validation error for the MLP model is also less than the LSTM model. A possible expla-
nation is that the added complexity in identifying nonlinear processes and the usage of
more complex nonlinear structures (LSTM in this case) increases the likelihood of con-
vergence towards saddle points. This is mainly because the Laplace method adopted is
a local approximation of the evidence, which is a limitation of the proposed method and
justifies running the identification experiment M times.

Nonetheless, in every case (check Table. 4.2-4.3), the Bayesian approach to the identi-
fication of each benchmark constitutes an improvement over the conventional MLP and
LSTM methods in simulation errors. It pushes these methods to perform competitively
against other literature. Besides, we also compare the Gaussian process (GP) [52], which
also achieves comparable performance on these benchmarks. However, GP method can-
not perform input feature selection efficiently. The detailed result of GP is put in 4.3.1.6
Table. 4.2-4.3.

4.5. CONCLUSION
A Bayesian perspective to system identification has been discussed. The SBDL algorithm
with the group prior is evaluated with datasets of three linear and two nonlinear dynamic
processes. The Bayesian approach in this chapter used the Laplace approximation to ap-
proximate the evidence, a formulation of group sparsity inducing priors to enforce spar-
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sity, and Monte-Carlo integration methods to estimate the posterior predictive distribu-
tion. The generated models for dynamic systems are sparse models that contribute to in-
put feature selection and perform competitively with other system identification methods
in a free-run simulation setting. In addition to that, uncertainties in the inferred predic-
tions and connection weights were quantified. The prediction experiments on different
benchmarks with varying ratios of datasets also support that the proposed method is ef-
fective and can achieve competitive prediction result given small datasests.
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5
THE ART OF PRIOR III: FUSED

PRIOR

This chapter implements the proposed sparse Bayesian deep learning algorithm with fused
prior on the discovery of governing equations from data. Discovering governing equations
from data is critical for diverse scientific disciplines as they can provide insights into the
underlying phenomenon of dynamic systems. This work presents a new representation for
governing equations by designing the Mathematical Operation Network (MathONet) with
a deep neural network-like hierarchical structure. Specifically, the MathONet is stacked by
several layers consisting of unary operations (e.g. sin, cos, log) and binary operations (e.g.
+,−,×), respectively. An initialized MathONet is typically regarded as a super-graph with
a redundant structure, a subgraph of which can yield the governing equation. The devel-
oped sparse Bayesian learning algorithm with fused prior is applied to extract the sub-graph
by employing both non-structurally and structurally constructed priors over the model pa-
rameters. By demonstrating on the chaotic Lorenz system, Lotka-Volterra system, and Kol-
mogorov–Petrovsky–Piskunov system, the proposed method can discover the ordinary dif-
ferential equations (ODEs) and partial differential equations (PDEs) from the observations
given limited mathematical operations.
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5.1. INTRODUCTION
Accurate governing equations (e.g., ordinary differential equations (ODEs) or partial dif-
ferential equations (PDEs)) can facilitate the study on robust prediction, system control,
stability analysis, and increase the interpretability of a physical process [38, 41]. The first
principle method is dominating to obtain the governing equation, for example, the one
for pendulums using Newton’s second law of motion pertains to the relation between the
acceleration of an object and the external forces acting on it. Nevertheless, the slow mod-
elling process [27] and the lack of domain knowledge [55] of the first principle method
motivate the shift to a data-driven approach.

A seminal breakthrough from [45] applied symbolic regression [10] to determine the
underlying structure and parameters of time-invariant nonlinear dynamic systems. Typi-
cally, the symbolic regression method [45] is too computationally expensive and is prone
to overfitting. [4, 15, 34, 42] used sparse regression techniques to determine the fewest
terms in the dynamic governing equations to represent the data accurately. The sparse re-
gression approaches of [4] cannot avoid the nontrivial task of choosing appropriate sets of
basis functions and cannot build the model with more unary functions (e.g., such as sin,
cos, log). More recently, physical-based machine learning methods arouse much inter-
est, which focuses on combining physical-based modelling and machine learning meth-
ods [43, 53]. [37] proposed physics-informed neural networks (PINNs) to discover both
the solution and structure of PDEs by encoding prior knowledge in the cost functions.
The physics-informed neural networks [35, 37] require prior knowledge and belong to the
grey-box approximator, which lacks complete interpretability.

This chapter is motivated by both symbolic regression and sparse regression to dis-
cover the governing equations of dynamic systems. Similar to symbolic regression, we
start from some basic mathematical operations, i.e., unary (e.g.sin, cos, log) and binary
operations (e.g. +,×), instead of a dictionary of predefined equation terms. Instead of ex-
ploring the best fitness by trying possible combinations of operations as much as possible,
we cast the discovery problem as a sparse optimization problem. Specifically, the opti-
mization is nothing different than training a sparse deep neural network (DNN), i.e., DNN
compression problem [12, 25, 52], which can be solved using sparse group Lasso type of
algorithms. The key idea is to reformulate the governing equation composed of unary
and binary operations into a augmented hierarchical structure similar to DNN. In Fig. 5.1,
a tutorial is given to show how an expression of k4 sin

(
k1 y +k2 y2

)+ k5 cos
(
k3x3

)
can be

decomposed into a DNN-like model, termed as Mathematical Operation Network (Math-
ONet). The model in Fig. 5.1(c) can be augmented into an over-parametrized network
(see Fig. 5.1(d)) by adding extra mathematical operations. In MathONet, the operations
are similar to the activation function in DNN; and the weights of the connection between
two operations are expected to be zeros if the corresponding operations are redundant.
To this end, the true underlying governing equations can be seen as a sub-graph of an
over-parameterized MathONet. Essentially, the governing equation discovery problem is
equivalent to the compression problem of MathONet with structural and nonstructural
sparsities.

Among various DNN compression techniques [12, 13, 24], the structured sparsity learn-
ing method in [52] is the most related algorithm for our approach and can be readily
applied. This method is essentially a sparse group Lasso type of algorithm [47] where



5.2. MODEL DESIGN

5

109

‖W ‖`1 and ‖Wg ‖`2 are added on top of the conventional loss function of data as reg-
ularizer to promote sparsity of the network weight W . Our practical implementation
found that the solutions are always non-sparse compared to the true underlying govern-
ing equations, even when the hyper-parameters are extensively tuned (more details can
be found in Fig. 5.6 in Section 5.4.1, Fig. 5.9 in Appendix.Section 5.4.2.3 and Fig. 5.12 in
Appendix.Section 5.4.3.3). This motivates us to seek a Bayesian learning solution that
can potentially result in sparser solutions. The Bayesian learning approach can incor-
porate the structural and nonstructural sparsity as priors in a principled manner. The
algorithm is demonstrated on chaotic Lorenz system, Lotka-Volterra system, and Kol-
mogorov–Petrovsky–Piskunov system. The proposed method can discover the ordinary
differential equations (ODEs) and partial differential equations (PDEs) from the observa-
tions given limited mathematical operations, without any prior knowledge on possible
expressions of the ODEs and PDEs. Overall, the contribution of this chapter has two folds:

Mathematical operation network design: The governing equations of dynamic sys-
tems (ODEs or PDEs) characterized by basic mathematical operations, i.e., unary and bi-
nary ones, can be represented as a DNN-like hierarchical structure, termed MathONet.
The governing equation discovery problem can be treated as a subgraph search problem
of an over-parameterized MathONet graph with redundant mathematical operations.

Bayesian learning discovery algorithm : A Bayesian learning alternative of the sparse
group Lasso type of algorithms is applied to discover a more sparse solution, the mathe-
matical operations in governing equations without too much hyperparameter tuning. The
algorithm was demonstrated on some well-known dynamics systems in physics and ecol-
ogy, for which the governing equations are learned from scratch given basic mathematical
operations without any prior knowledge on the format of the underlying governing equa-
tions.

5.2. MODEL DESIGN

5.2.1. MOTIVATION

We will describe the motivation for MathONet design in more depth following the tutorial
in Section 5.1 on the decomposition of k4 sin

(
k1 y +k2 y2

)+k5 cos
(
k3x3

)
into a DNN-like hi-

erarchical representation (see Fig. 5.1(c) and (d)). As shown in Fig. 5.1(c), the hierarchical
structure is stacked by two typical operations, i.e., unary operations (e.g., sin,cos,log de-
noted by diamond blocks) and binary operations (e.g. +,× denoted by square blocks ). It
should be noted that the input of the system will be “copied” (denoted as the green line in
Fig. 5.1(c)) and “pasted” in the following layers (similar to the principle in DenseNet [16])
for the calculations performed by binary operations. The design connecting each layer
to the preceding layers can augment the information flow and preserve the feed-forward
nature similar to in DenseNet [16].

Based on the motivation, the MathONet is stacked by two typical layers, i.e., binary
layer and unary layer. As in Fig. 5.1(b), the binary layer is stacked by Polynomial-Network
(PolyNet), and the unary layer is stacked by Operation-Network (OperNet). For a PolyNet,
its input is the same as the system input. Its output is a polynomial embodying the linear
combination of the inputs. A PolyNet can directly access the gradients of the loss func-
tion on the system input, thereby achieving implicit deep supervision. The unary layer is



5

110 5. THE ART OF PRIOR III: FUSED PRIOR

placed behind the binary layer and performs the linear (e.g., ident) or nonlinear trans-
formation (e.g., sin,cos). It should be noted that the structure of MathONet is similar to
the structure of a fully connected (FC) neural network, with only two modifications. First,
a PolyNet is introduced to replace the weights of a FC neural network. Second, an Oper-
Net is introduced to replace the activation function of a FC neural network. More detailed
illustration for PolyNet and OperNet is in Section 5.2.2 and Section 5.2.3, respectively.

(a) Decomposition procedure into mathematical operations

(c) Hierarchical representation using mathematical operations

(d) Over-parameterized hierarchical representation (b) Mathematical Operation Network (MathONet)

Polynomial-Network 
Operation-Network 

D
ec

o
m

p
o

si
ti

o
n

Figure 5.1: (a) Decomposition procedure for k4sin(k1 y +k2 y2)+k5cos(k3x3) into math-
ematical operations in term of unary operations (e.g., sin, cos, log, etc) and binary oper-
ations (e.g., +,−,×, etc). (b) A MathONet includes two basic modules, i.e., Polynomial-
Network (PolyNet) and Operation-Network (OperNet). The stacked PolyNets form the bi-
nary layer, and the stacked OperNets form the unary layer. (c) A DenseNet-like hierar-
chical representation using mathematical operations, where the square block stands for
the binary operation and the diamond block represents the unary operation. The green
line denotes that the input of the system will be copied and get involved in mathemati-
cal calculations performed by binary operations. (d) An over-parameterized hierarchical
structure. The black dotted connection represents the redundant connection that can be
regularized on each weight. The dotted connections with different colours denote the re-
dundant connections that can be regularized on a group of weights.

5.2.2. POLYNOMIAL-NETWORK
The Polynomial-Network (PolyNet) is a simple Fully-Connected network without hidden
layers, as shown in Fig. 5.1(b). Its input features are consist of two parts. The first part is
the original input of the system. The second part is a constant, which enables the Math-
ONet to represent a linear system. We take a PolyNet P 1

i k as an example (see Fig. 5.1(b)).
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Typically, the output of P 1
i k is a polynomial embodying the linear combination of the in-

put as:

p l
i k = w l

(n+1)i k +
n∑

i=1
(w l

i i k xi ) (5.1)

where p l
i k represents the output of the PolyNet P l

i k . l is the layer index. w l
i i k is the weight

parameter whose magnitude determines the strength of the connection within P l
i k .

5.2.3. OPERATION-NETWORK
The Operation-Network (OperNet) is designed as a linear combination of unary opera-
tions. As in Fig. 5.1(b), the general mathematical expression for the output of an OperNet
is

al
k =∑O

o=1 fo(w l
ok hl

k ) (5.2)

where hl
k is the output of the kth neuron in layer l with hl

k =∑nl

i=1(p l
i k al−1

i +bl
k ). However,

the calculation of h1
k is different for the first hidden layer with h1

k =∑n1

i=1(p1
i k xi +b1

k ). bl
k is

the bias. fo() stands for unary functions, e.g., sin, cos, log, exp.
By including the PolyNet and OperNet, the MathONet can construct the governing

equations of a dynamic system. The designed MathONet has the following advantages: a)
a MathONet with a simple structure can represent a considerable expression space. For
example, suppose a MathONet includes only 1 hidden layer and 1 hidden neuron with 2
input features and 2 unary functions, the compressed model can represent 29 different
expressions. b) a MathONet can be trained with typical optimization methods for deep
neural networks, e.g., SGD. c) the MathONet can approximate both linear and nonlin-
ear systems. It should be noted that the complexity of a MathONet is mainly limited by
three user-defined parameters: a) the number of hidden layers L, which denotes initial-
ized model order and limits the depth of the MathONet; b) nl , the number of hidden neu-
rons in layer l ; c) O, the number of unary functions for OperNet.

5.2.4. DEPENDENCY BETWEEN CONNECTIONS
As explained before, the overfitting problem can be addressed by pruning the redundant
connections, which is a prevalent technique for neural network design and neural ar-
chitecture search problems [5, 28, 57]. To elaborate the problem of pruning redundant
connections better, we suppose there are two states {ON,OFF} to describe a connection,
where {ON represents the retained state and {OFF represents the redundant state. The
traditional criterium to determine the connection redundancy is only based on the mag-
nitude of the weight of that connection.

However, this criterium ignores the dependencies between the adjacent connections.
In other words, the state of the connection will also be affected by its predecessor and
successor. It may result in a disconnected graph that includes some redundant struc-
ture if the dependency is not appropriately considered. Figure. 5.2(a) shows a Directed
Acyclic Graph (DAG), which can explain several typical types of disconnected graphs. It
should be noted that the behaviour of a neural network is similar to the behaviour of this
Directed Acyclic Graph (DAG). We use the circle to represent a neuron, whose index is
represented by the number within a circle. The edge between neuron i and neuron k is
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ei k . The coloured edges (e25,e47) represent two types of disconnected connections. Both
edges should be removed since they cannot perform the function of transmitting infor-
mation within the network. Specifically, e25 has no input information caused by its redun-
dant predecessor e12. e47 has no output information caused by its redundant successor
e78. However, if we mistreat the dependencies between connections, the states of e25,e47

is still possible to be evaluated as ON. Therefore, we need to consider how to encode
the dependencies into a novel pruning criterium. To address this problem, we first have
proposition 1:

Proposition 1 The state {ON,OFF} of a connection e l
i k is determined by whether it can

transmit information within the neural network. As shown in Fig. 5.2(b), e l
i k can be re-

tained if and only if e l
i k is ON, at least one predecessor connection of node i is ON and at

least one successor connection of node k is also ON.

1 3

4

5

6

7

8

2

(a) Two types of disconnected graph caused by mistreated
of the dependencies.

1

a

𝑛𝑙−1

𝑖 k

1

b

𝑛𝑙+1

⁞

⁞

⁞

⁞

(b) A multi-in-multi-output motif to show the dependencies
between connections

Figure 5.2: An illustration for the dependencies between connections.

Fig. 5.2(b) shows an abstracted multi-in-multi-output motif, which can be regarded as a
basic component for any neural network. With the assumption that sl

i k denotes the state

of e l
i k , the proposition 1 can be encoded as:

⋃
a

sl−1
ai ∩ sl

i k ∩
⋃
b

sl+1
kb or

⋃
a

sl−1
ai ∪ sl

i k ∪
⋃
b

sl+1
kb (5.3)
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where a, b denote the index of the neuron for the predecessors and successors, respec-
tively, where a ∈ (1, . . . ,nl−1), b ∈ (1, . . . ,nl+1). nl stands for the number of neurons in layer
l .

In this chapter, we propose two intuitive methods to encode the logic Eq. (5.3). The
first method is to calculate the joint probability distribution of e l

i k , as well as its predeces-

sors and successors. We use W l
i k to represent the weight of e l

i k . If the prior distribution

of W l
i k is a Gaussian distribution with p(W l

i k ) = N (W l
i k |0,ψl

i k ), the variance ψl
i k repre-

senting the uncertainty of W l
i k can be used as a pruning criteria. A smaller ψl

i k means the

W l
i k has a high possibility to be 0 and should be pruned. Assume the distribution of each

connection is independent, the joint distribution over W l
i k ,W l−1

ai ,W l+1
kb can be expressed

as:

p(c(W l
i k ,W l−1

ai ,W l+1
kb ))

,N (W l
i k |0,ψl

i k )
nl−1∑
a=1

N (W l−1
ai |0,ψl−1

ai )
nl+1∑
b=1

N (W l+1
kb |0,ψl+1

kb )

=N

(
W l

i k

nl−1∑
a=1

ψl−1
ai W l−1

ai∑nl−1

a=1 ψ
l−1
ai

nl+1∑
b=1

ψl+1
kb W l+1

kb∑nl+1

b=1 ψ
l+1
kb

|0,ψ̄l
i k

) (5.4)

where

ψ̄l
i k ,

(
1∑nl−1

a=1 ψ
l−1
ai

+ 1∑nl+1

b=1 ψ
l+1
kb

+ 1

ψl
i k

)−1

(5.5)

if κψ is the threshold for uncertainty, the connection with ψ̄l
i k smaller than κψ will be

determined as redundant.
The second method is to encode the dependency from the perspective of the magni-

tude of weight. It is well known that a larger magnitude typically means the correspond-
ing edge is more critical. If we define κw as the weight threshold, the proposition 1 can
be translated as follows. The state of e l

i k is OFF if at least one of the following three con-

ditions is satisfied: a) the magnitude of W l
i k is smaller than κw ; b) the weight magnitudes

of all predecessors W l−1
ai are smaller than κw ; c) the weight magnitudes of all successors

W l+1
kb are smaller than κw . The redundancy of e l

i k can be evaluated by the sign function

sg n(W l
i k ):

sg n(W l
i k ) = sg n(|W l

i k |)
nl−1∑
a=1

sg n(|W l−1
ai |)

nl+1∑
b=1

sg n(|W l+1
kb |) (5.6)

where sg n(|x|) =
{

0, |x| ≤ κw

1, |x| > κw
.

With the above two methods to encode dependency, the state sl
i k can be decided by:

sl
i k =

{
OFF, ψ̄l

i k < κψ or sg n(W l
i k ) = 0

ON, other s
(5.7)



5

114 5. THE ART OF PRIOR III: FUSED PRIOR

5.3. IDENTIFICATION METHOD

5.3.1. SPARSE GROUP LASSO
Sparse group Lasso [47] is a regularization optimization technique that is a combination
of Lasso [49] and group Lasso [56]. Suppose a weight matrix can be divided into different
groups and Wg represents a group of weights, its optimization target can be formulated
as:

min
W

E(·)+∑
W λ‖W ‖`1 +

∑
W

∑
g λg ‖Wg ‖`2 (5.8)

where E(·) is the loss of data. ‖W ‖`1 represents the Lasso regularization on each weight.
And ‖Wg ‖`2 is the group Lasso regularization on a group of weights. In this chapter, the
weights within each PolyNet and OperNet can be collected as one group. λ and λg are the
tuning parameters.

As in [20, 52], sparse group Lasso can identify the redundancy of each connection and
achieve structured sparsity by zeroing out all weights of a group. It should be noted in
our algorithm, the sparse group Lasso is exactly the first cycle to start. As shown in the
Lorenz experiment, the identified model by sparse group Lasso is still redundant/non-
sparse with 651 terms (see Fig. 5.6b) and cannot reproduce the attractor dynamics pre-
cisely (see Fig. 5.3(b)). Further research is needed to study why the sparse group Lasso is
inefficient. These inefficiencies motivate us to develop a Bayesian learning version of the
sparse group Lasso, which can potentially yield sparser solutions.

5.3.2. ALGORITHM
The Bayesian approach with fused priors can be referred to Section. 2.1.4 of Chapter. 2.
We generate the binary matrix C as the mask of W , which denotes the connection redun-
dancy. C has the same dimension as W and will be optimized during the training process.
The update of C is decided by:

C =
{

0, s =OF F
1, s =ON

(5.9)

where 1 denotes the redundancy, and 0 means the weight should be retained. As the de-
pendency between connections is considered in this chapter, the calculation of s is in
Eq. (5.7). It should be noted that the mask C will be updated at the last epoch of each
cycle. The generic optimization target for the MathONet can be formulated as:

min
W,C

E(·)+∑
W,c λ‖ω¯C ¯W ‖`1 +

∑
Wg ,Cg

λg ‖ωg ·C ¯Wg ‖2
`2

. (5.10)

The dimension of C and ω are the same as W . ωg a scalar which is shared by all connec-
tions within the group Wg . where E(·) is the energy function, E(·) = 1

D

∑K
k=1(yk − ŷk )2. ¯

denotes the Hadamard product. Inspired by [9, 30], we also evaluate the predictive un-
certainty using a practical Monte-Carlo sampling method. By sampling over the inferred
posterior distribution for T repetitions, an unbiased estimate of prediction can be approx-
imated by the average of predicted output, i.e., ȳk = 1

T

∑T
t=1 ŷt

k . where ŷt
k is the predicted

output of the t-th samples and Σŷk = 1
T

∑T
t=1(ŷt

k − ȳk )2, A pseudo-code for the discovery
algorithm is given by Algorithm 5.

It should be noted that Algorithm 5 is a modification of Algorithm 3, which includes
the dynamic pruning strategy as described in Algorithm. 4.
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Algorithm 5 Bayesian learning discovery algorithm

Initialize: hyper-parametersω,ψ= I ; regularization tuning parameter λ,λg ∈R+; thresh-
old for pruning κα,καg ∈ R+. Cmax ∈ Z+ denotes the maximum cycles; Emax ∈ Z+ denotes
the number of epochs in each cycle.
for i = 1 to Cmax

for j = 1 to Emax

1. Update the weight W by minimizing the loss function as Eq. (5.10).
end for

2. Update hyper-parametersψ, ω as Table. 2.1.

3. Update mask C and Cg as Eq. (5.9).

end for

5.4. EXPERIMENT

In this section, the algorithm is demonstrated on the chaotic Lorenz system [31], Lotka-
Volterra system [2] and Kolmogorov Petrovsky Piskunov (Fisher-KPP) system [8]. All ex-
periments are performed in PyTorch framework by using a single GPU (NVIDIA TITAN
V).

5.4.1. CHAOTIC LORENZ SYSTEM

SYSTEM DESCRIPTION

As a typical canonical model for chaotic dynamics, the Lorenz system is nonlinear, non-
periodic and is notable for its chaotic solution being sensitive to system parameters and
initial conditions. Although the dynamics of the Lorenz attractor is difficult to interpret,
the attractor action can be described by a simplified mathematical model, which is a
three-dimensional and deterministic ODE:

ẋ =σ(y −x), ẏ = x(ρ− z)− y, ż = x y −ωz (5.11)

with the standard parameter valuesσ= 10,ω= 8/3 and ρ = 28, the system exhibits chaotic
behavior as shown in Fig. 5.3(c). The data is collected through simulation experiments.
The state vector and their derivatives are stacked as input and output datasets, respec-
tively.

EXPERIMENT SETUP

The MathONet is initialized with 1 hidden layer and 3 hidden neurons. The OperNet
includes 5 basic unary functions, i.e. identity, sin, cos, log, exp. The initial values of
the regularization parameters λ,λg are assigned from the set {1e−2,1e−4,1e−6,1e−8,1e−10}
and are decayed to one-tenth every 200 epochs. For each hyper-parameter, the identifica-
tion procedure is repeated 10 times with differing weight initialization.
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RESULT ON NOISE-FREE DATASET

With the simulated dataset without noise, the identified governing equations without fine-
tuning are:

ẋ =−10.000x +10.000y (5.12a)

ẏ =−1.000xz +28.000x −1.000y (5.12b)

ż = 1.000x y −2.667z (5.12c)

It can be observed that both the equation structures and parameters are captured ac-
curately. The identified result for model z is shown in Fig. 5.3. Fig. 5.3(b) is the attractor
trajectory of the model generated in each cycle during the training process. The first cycle
is the conventional regularization that cannot identify the dynamics precisely. By apply-
ing the sparse Bayesian deep learning algorithm 5, the identified model of cycle 6 can
reproduce the attractor dynamics accurately.

Fig. 5.4, Fig. 5.5 and Fig. 5.6 show the searching process for the governing equations
of model x, y and z, respectively. In Fig. 5.4a, Fig. 5.5a and Fig. 5.6a, only the non-zero
weight elements of the MathONet generated in each cycle are collected to form a weight
vector. The identified governing equation has undergone a transformation from complex
to simple. If combined with Fig. 5.4b, Fig. 5.5b and Fig. 5.6b which show the change of
predictive ability and model sparsity, it can be observed that the predictive ability tends to
improve as the model complexity decreases. It only takes 7 cycles to identify the correct
structures and coefficients for model x, 9 cycles for model y and 6 cycles for model z . This
is reasonable because the model y is more complex with a second-order term than model
x and z as described in (5.12). This also verifies that the proposed method can discover
governing equations in a reasonable, effective and accurate manner.

(a) Identified MathONet (b) Identified PolyNet and OperNet (c) Simulated attractor trajectory of each cycle
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Figure 5.3: Identified result of Lorenz system. (a) Identified MathONet model for model
z. The MathONet is initialized with 1 hidden layer and 3 hidden neurons. The OperNet
includes 5 basic unary functions in the beginning, i.e., identity, sin, cos, log, exp. Al-
gorithm 5 can identify the essential connections after 6 cycles. The dotted parts are the
identified redundant connections and neurons. (b) The identified PolyNets and OperNets
represent simple mathematical expressions that are placed under each basic module. (b)
The attractor trajectories generated by the intermediate model of each cycle. The identi-
fied model can reproduce the attractor dynamics as the true model after 6 cycles.
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(a) The number of nonzero weights of the MathONet in each cycle.
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(b) The sparsity and predictive ability of the MathONet in each cycle.

Figure 5.4: The sparsity, predictive ability and weights of the MathONet generated in each
cycle, which aims to discover governing equation of model x of Lorenz system. a) The
nonzero weights of the MathONet generated in each cycle. The horizontal axis represents
the combination of non-zero weights in the MathONet generated in each cycle. The verti-
cal axis denotes the index of training cycles. The expression at each turning line (the cliff)
represents the governing equation identified in the corresponding cycle. b) The sparsity
and prediction ability of the MathONet identified in each cycle. The model becomes more
and more sparse and has more and more predictive ability. The annotation next to the
sparsity line represents the number of identified mathematical terms of the correspond-
ing cycle. The first cycle represents the result identified by the sparse group Lasso method,
which is still redundant (267 terms), and the prediction ability is low. The correct structure
and coefficients can be identified around 7 cycles. The same follows with other sparsity,
predictive ability and weights plots.
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(a) The number of nonzero weights of the MathONet in each cycle.
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(b) The sparsity and predictive ability of the MathONet in each cycle.

Figure 5.5: The sparsity, predictive ability and weights of the MathONet generated in each
cycle, which aims to discover governing equation of model y of Lorenz system.
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(a) The number of nonzero weights of the MathONet generated in each cycle.
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(b) The sparsity and predictive ability of the MathONet generated in each cycle.

Figure 5.6: The sparsity, predictive ability and weights of the MathONet generated in each
cycle, which aims to discover governing equation of model z of Lorenz system.
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Table 5.1: The identified governing equations for the chaotic Lorenz system with noisy
measurements

Noise (σ) Identified governing equations

0
ẋ =−9.99999935280567x +9.99999935280567y
ẏ =−0.999997263120259xz +27.9998710115329x −0.999953545630988y
ż = 0.99999998781167x y −2.66666669723636z

0.1
ẋ =−9.99999496925967x +9.99999952895684y
ẏ =−1.00052719172829xz +28.0258380824985x −1.00998669015022y
ż = 0.999999113716832x y −2.66666544271354z

1
ẋ =−10.0033841069518x +10.0034298967151y
ẏ =−1.00010106902181xz +28.0040216562134x −1.00069798536041y
ż = 0.999929109879073x y −2.66622599261675z

10
ẋ =−9.99893134664084x +10.0048109236265y
ẏ =−1.0092184658872xz +28.4682092943604x −1.1929184472878y
ż = 1.00051935274034x y −2.66709953162919z

The predicted distribution of the identified model is also investigated. We sampled a
total of 1000 times based on the identified model and parameters. The first row in Fig. 5.7
shows each model’s predicted mean and variance on the dataset without noise. Although
the variance is very small almost for all data points, it still can be observed that the pre-
dicted distribution spreads a bigger range around the turning points, which means more
training data is required around these points.

RESULT ON NOISY DATASET

To explore the robustness of the proposed method with noisy derivatives measurement, a
Gaussian noise ξ=N (0,σ2) with σ ∈ {0.01,1,10} is added to the exact derivatives, respec-
tively. The experiments were implemented with the same experiment setting as described
in Section 5.4.1.2. As shown in Table 5.1, both structure and parameters are correctly iden-
tified even under the large noise value (σ = 10). Besides, although the simulation accu-
racy of attractor dynamics decreases with the increase of noise, the coefficients σ,ω,γ can
still be determined accurately within 0.5% around the true value. The detailed identi-
fied structures and parameters are in Table 5.1. Fig. 5.7 is the prediction uncertainty for
each dataset, which shows that the predicted uncertainty of the identified model improves
along with increasing noise.

5.4.2. LOTKA-VOLTERRA SYSTEM

SYSTEM DESCRIPTION

The Lotka-Volterra system is known as a general framework of an ecological system that
can describe the dynamic relationship between the natural population of a predator and
prey through time [2]. With two main assumptions: a) the growth rate of the popula-
tion is proportional to its size; b) the predator population can only get food from the prey
population, and the food for the prey population is supplied sufficiently at all times. The
Lotka-Volterra equation can be described by a pair of deterministic first-order nonlinear
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Figure 5.7: Predicted distribution for the identified Lorenz system generated from data
with different noise ξ = N (0,σ2), where σ ∈ {0.01,1,10}.The blue curve stands for the
best-predicted output of our method. The shaded area represents the model uncertainty
(showing 2 standard deviations)
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ODEs:
ẋ =αx −ωx y, ẏ = δx y −γy (5.13)

where ẋ and ẏ represents the instantaneous growth rates of the prey (x) and predator (y),
respectively. It can be found that the growth rate of each species is determined by two
factors, i.e., the population of itself and the interaction with the other species.

EXPERIMENT SETUP

The coefficients α,ω,δ,γ in Eq. 5.13 are the positive real parameters identified in this ex-
periment and set as 1.3,0.9,0.8,1.8, respectively. Fig. 5.8a shows the generated prey and
predator population along time. Specifically, Fig. 5.8b illustrates the dynamic changes of
the prey and predator population in a circle of growth and decline. The input and output
data with the dimension 300× 2 is generated, where 300 represents the number of data
samples and 2 denotes the number of features. The ratio of training data and test data is
set to 90% : 10%. The regularization parameters λ and λg are selected from the alterna-
tives among {1e−2,1e−4,1e−6,1e−8,1e−10} and are decayed to one-tenth every 800 epochs.
For each λ (λg ), 10 repeated experiments are implemented with differing weight initial-
ization.

RESULT

The identified model with the best prediction accuracy and in line with Occam’s razor
principle is selected as the best model. The identified system equations are:

ẋ = 1.300x −0.900x y (5.14a)

ẏ = 0.800x y −1.800y (5.14b)

It can be observed that the identified equations are the same as the theoretical system
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Figure 5.8: The solution of the prey and predator population with the initial conditions
x(0) = 0.442, y(0) = 4.628. a) The data of the prey and predator population generated
by (5.13); b) Phase-space plot for the predator and prey population of the identified
model (5.14); c) The uncertainty of the predicted output.

Eq. (5.13). Fig. 5.9a shows the searching process of the algorithm. Fig. 5.9b shows the
change of predictive ability and model sparsity, and the annotations along the sparsity
line represent the number of retained mathematical terms of each cycle. It can be ob-
served that the algorithm can identify a model with only 4 terms that originate from the
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initialized structure with 140 terms. The predictive ability improves as the model com-
plexity decreases.
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(b) The sparsity and predictive ability of the MathONet in each cycle.

Figure 5.9: The sparsity, predictive ability and weights of the MathONet generated in each
cycle of the Lotka-Volterra system.

Fig. 5.10 shows the identified MathONet. It can be found that the introduced constant
input is removed from the input layer, which is in accordance with Eq. (5.13). The PolyNet
between input feature y and the first hidden neuron is also identified to be redundant.
Although the other basic modules are retained, the identified structures are sparse and
equivalent to a simple mathematical expression, as shown in Fig. 5.10(b). We also inves-
tigate the simulated output and predicted distribution of the identified model, which is
shown in Fig. 5.8.

5.4.3. FISHER-KPP (KOLMOGOROV–PETROVSKY–PISKUNOV ) EQUATION

SYSTEM DESCRIPTION

The Fisher equation, also known as Kolmogorov–Petrovsky–Piskunov (KPP) equation, is a
typical semilinear reaction-diffusion equation that describes the population growth and
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Figure 5.10: Identified MathONet model for Lotka-Volterra system. The MathONet is ini-
tialized with 1 hidden layer and 2 hidden neurons. The OperNet includes 3 unary func-
tions, i.e. identity,sin,cos. (b)The identified PolyNets and OperNets, where the dotted
line are the identified redundant parts.

propagation of a species [8]. The spatio-temporal dynamics of Fisher-KPP can be repre-
sented by a PDE:

∂p

∂t
= d

∂2p

∂x2 + r p(1−p) (5.15)

where p denotes the population density. x ∈ [0,1] represents the coordinate measurement
position of a species. t ∈ [0,T ] stands for the time of generation. d = 6.25 is a constant de-
noting the diffusion coefficient. r = 1 represents the intensity in favor of local population
growth, assumed to be independent of p. The dataset is generated by the Julia code pro-
vided in [35]. The dimension of the dataset is 26×11, in which 11 refers to the number of
samples for time; and 26 refers to the number of samples for the position.

(a) the partial derivate represented by a CNN stencil 
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Figure 5.11: An illustration to model the PDE by combining a MathONet and a CNN with

a special kernel. (a) An explanation of the partial derivative ∂p
∂t represented by a CNN

stencil with kernel [1,−2,1]. (b) Identified MathONet model for Fisher-KPP system. The
MathONet is initialized with 1 hidden layer and 3 hidden neurons. The OperNet includes
3 basic unary functions, i.e. identity,sin,cos. Only two basic modules, i.e., P 1

13 and A 1
3

are retained in the graph. (c) The retained PolyNet and OperNet.

EXPERIMENT SETUP

As in Eq. (5.15), a time history of the population density p and the derivative ∂p
∂t are used

as input and output. The regularization parameters λ and λg are selected from the al-



5.5. DISCUSSION

5

125

ternatives among {1e−8,1e−10,1e−12,1e−14,1e−16} and are decayed to one-tenth every 800
epochs. For each hyper-parameter, the identification procedure is repeated 10 times with
differing weight initializations. The best model is selected according to the prediction ac-
curacy, which is evaluated by the predicted mean square error.

As shown in Eq. (5.15), the one-dimensional Fisher equation consists of two parts, i.e.,
a polynomial representing the local growth item and a derivative operator. In this exper-
iment, we use a MathONet to approximate the local growth item. Inspired by [35, 44], a
discretized PDE can be interpreted as a convolutional layer that can exploit the relation
between adjacent elements of a 2-D matrix [36]. In Fig. 5.11(a), we explain this affine
transformation on a spatial-temporal matrix. It should be noted that an ideal CNN stencil
should be [1,−2,1], which satisfies the physical constraint that the sum of CNN stencils is
zero. To ensure the physical interpretability of the learned CNN stencil, previous work [35]
imposed the physical constraint on the CNN kernel and obtained the desired result. In this
work, we aim to discover the governing equations only from data. Therefore, we only in-
clude a simple convolutional neural network with the kernel size 3×1 is and try to learn
the stencil.

RESULT

The optimal learned model is obtained with the identified equation:

∂p

∂t
= 3.2424∗CNN(p)−1.5765p(0.6344∗p +2.7195)

The identified CNN stencil is [1.9276,−2.2245,1.9276]. If this stencil is rescaled to [1.000,
−2.000,1.000], the equivalent equation will be ∂p

∂t = 6.250∗CNN(p)+1.000p(1.000−1.000p)
which is almost the same as the true governing equations. Therefore, both the structure
and coefficients of Eq. (5.15) can be accurately learned. The identified structure of Math-
ONet is in Fig. 5.11(b).

Fig. 5.12a shows the searching process of the algorithm for the governing equations.
Fig. 5.12b shows the change of predictive ability and model sparsity, and the annotations
along the sparsity line represent the number of retained mathematical terms of each cycle
within the MathONet. It should be noted that MathONet contains the same number of
mathematical terms (7 terms) in the first three cycles. However, the sparsity is gradually
decreasing, which can also be observed in Fig. 5.12a. After some redundant connections
are removed from the model, the retained connections can still represent the same or sim-
ilar mathematical items represented by the redundant edges, so the number of mathemat-
ical terms remains unchanged.

5.5. DISCUSSION
Regularization parameter λ and λg in Algorithm 5: The regularization parameters λ and
λg in Eq. (5.10) needs to be properly tuned for network training. With the Bayesian ap-
proach that calculates ψ and ψg as the determining factors for redundancy, the effort for
tuning λ can be saved a lot. Typically, λ is also the necessity for the sparse group Lasso
method as shown in Eq. (5.8). More strict conditions are required to discover governing
equations through sparse group Lasso, including proper network initialization and an ex-
tensive computational resource used for tuningλ. It should be noted that the sparse group
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Figure 5.12: The sparsity, predictive ability and weights of the MathONet generated in
each cycle of the Fisher-KPP.
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Lasso is the first cycle in our algorithm, which is applied for all experiments. However, it is
challenging to discover governing equations precisely and efficiently (see Fig. 5.3(b) and
Fig. 5.6b for Lorenz experiment).

Comparison with deep ensemble: Deep ensemble is a learning paradigm to improve
generalization ability by training a set of deep neural network models with the same struc-
tures and random initializations [58]. An ensemble includes high performing models
weighted by their posterior probabilities for better accuracy and variance reduction [54].
In this work, we also train a set of MathONet models starting from random initialization
using the Bayesian approach. However, instead of averaging on an ensemble, a single
model is selected by evaluating its performance. Although a single point mass may cause
worse predictions with flawed assumptions (e.g. improper prior distribution [39]), it also
alleviates the issue of a tremendous computational expense that deep ensembles may in-
cur.

Comparison with variational inference: Variational inference (VI) is another typical
approximation method for Bayesian inference by minimizing the Kullback-Leibler diver-
gence between an assumed approximated posterior and the true posterior distribution. VI
method can provide bounds on probabilities of interest and yield deterministic approx-
imation procedures without tuning regularization parameters [18]. Its applications on
model compression have been explicitly interpreted in [14, 32] However, the manual se-
lection of proper pruning thresholds is also required, hindering its compression efficiency
for complex models. In contrast, the Laplace approximation method can be implemented
more efficiently and extended to complex models.

5.6. RELATED WORK
System identification Data-driven discovery of the governing equations has become an
active research area for many years [6, 40]. With the provided heuristics and expert guid-
ance, several pioneering works started from rediscovering known governing equations in
specific disciplines (e.g., Proust’s law in chemistry [22], ideal gas law [23]) with simulated
data [26]. Further work was also implemented for equation discovery of ecological appli-
cations with a real collected dataset [7]. Another typical classical method is system iden-
tification, which aims to obtain an approximated mathematical model by identifying the
model parameters [29]. However, since the typical prerequisite for system identification is
that the model structure is known, these methods are impractical for the domains without
known mathematical laws(e.g., neuroscience, cell biology, finance, epidemiology) [7, 53].
To improve generalization, the method of discovering both structure and coefficients of
the governing equations becomes a key research direction.

Symbolic regression Symbolic regression can be used to discover mathematical opera-
tions in governing equations without prior domain knowledge [10, 45]. In [51], symbolic
regression is applied for unsupervised learning of motion equations of the object from a
distorted unlabelled video. Other successful applications include automated refinement
and reverse engineering for metabolic networks [3, 46], synchronization control of oscilla-
tor networks [11], motion prediction of harmonic oscillator [33] and constructing smooth
value functions for reinforcement learning [21], etc. The symbolic regression method can
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learn the mathematical expression by searching over a space of basic arithmetic opera-
tions with brute force [17, 50] or self-evolved by genetic algorithms [1, 10, 45]. However,
these approaches are too computationally expensive to scale to high-dimensional systems
and large datasets and sensitivity to initialization [19].

Sparse regression The sparse regression is a promising technique that can determine
(almost) the fewest equation terms to describe a system. In [4], sparse identification of
nonlinear dynamics (SINDy) algorithm is proposed to identify the governing equations
as a linear combination of basis functions selected from a pre-built function dictionary.
The SINDy method has achieved success on many benchmarks, e.g., fluid dynamics [4],
chemical kinetics [15]. It was also expanded to address the model recovery of dynamic sys-
tems following abrupt changes [34] and the discovery of partial differential equations [42].
These works show that the sparse regression methods provide an effective manner to iden-
tify the governing equations. However, these approaches also suffer from the nontrivial
task of choosing appropriate basis functions, limiting their capacity for more general ap-
plications.

Both the symbolic and sparse regression techniques explore the governing equations
within an ample space of possibly nonlinear mathematical terms. The comparisons and
discussions between them can be found in a recent work [48] that identifies a distillation
column’s dynamical equations.

5.7. CONCLUSION
We present a method to learn governing equations of dynamic systems composed of basic
mathematical operations, i.e., unary and binary operations. The governing equations are
formulated as a DenseNet-like hierarchical structure, termed as MathONet. The govern-
ing equation discovery problem can be formulated as a deep neural network compression
problem. The sparse Bayesian deep learning algorithm with fused prior is proposed to find
a sparser solution than sparse group Lasso-type algorithms. The experiment result shows
that the proposed method effectively discovers general differential equations, including
linear and nonlinear differential equations, ordinary differential equations (ODEs), or par-
tial differential equations (PDEs).
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6
APPLICATION TO HIGH

DIMENSIONAL DATA

This chapter implements the proposed sparse Bayesian deep learning algorithm on two
deep learning topics with high-dimensional datasets, i.e., Neural Architecture Search (NAS)
and Neural Network Compression. One-Shot NAS is a promising method to significantly re-
duce the search time without any separate training. It can be treated as a Network Compres-
sion problem on the architecture parameters from an over-parameterized network. How-
ever, there are two issues associated with most one-shot NAS methods. First, the depen-
dencies between a node and its predecessor and successors are often disregarded, which re-
sult in improper treatment over zero operations. Second, architecture parameters pruning
based on their magnitude is questionable. In this chapter, we employ the proposed sparse
Bayesian deep learning learning approach to alleviate these two issues by modelling ar-
chitecture parameters using hierarchical automatic relevance determination (HARD) pri-
ors. Unlike other NAS methods, we train the over-parameterized network for only one
epoch then update the architecture. Impressively, this enabled us to find the architecture
on CIFAR-10 within only 0.2 GPU days using a single GPU. Competitive performance can
be also achieved by transferring to ImageNet. As a byproduct, this chapter also presents
the application of our approach to neural network compression tasks. Several typical fully
connected neural networks and convolutional neural networks are compressed on three
datasets, including MNIST, CIFAR10, and Atrial Fibrillation dataset. The experiment result
shows that the sparse networks can be obtained without accuracy deterioration.

Parts of this chapter have been published in the International Conference on Machine Learning (2019) [42]
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6.1. INTRODUCTION
Neural Architecture Search (NAS), the process of automating architecture engineering, is
thus a logical next step in automating machine learning since [43]. There are basically
three existing frameworks for neural architecture search. Reinforcement learning based
NAS [1, 7, 41, 43, 44] methods take the generation of a neural architecture as an agent’s ac-
tion with the action space identical to the search space. More recent neuro-evolutionary
approaches [9, 21, 26, 30, 31, 36] use gradient-based methods for optimizing weights and
solely use evolutionary algorithms for optimizing the neural architecture itself. However,
these two frameworks take enormous computational power when compared to a search
using a single GPU. One-Shot based NAS is a promising approach to significantly reduce
the search time without any separate training, which treats all architectures as different
sub-graphs of a super-graph (the one-shot model) and shares weights between architec-
tures that have the edges of this super-graph in common [2, 5, 6, 20, 29, 32, 37, 38, 40]. A
comprehensive survey on Neural Architecture Search can be found in [10].

Our approach is a one-shot based NAS solution which treats NAS as a Network Com-
pression/pruning problem on the architecture parameters from an over-parameterized
network. However, despite it’s remarkable less searching time compared to reinforcement
learning and neuro-evolutionary approaches, we can identify a number of significant and
practical disadvantages of the current one-shot based NAS. First, the dependencies be-
tween a node and its predecessors and successors are disregarded in the process of iden-
tifying the redundant connections. This is mainly motivated by the improper treatment
of zero operations. On one hand, the logit of zero may dominate some of the edges while
the child network still has other non-zero edges to keep it connected [6, 20, 37, 40], for
example, node 2 in Figure6.1a. Similarly, as shown in Figure 1 of [37], the probability of
invalid/disconnected graph sampled will be 511

1024 when there are three non-zero plus one
zero operation. Though post-processing to safely remove isolated nodes is possible, e.g.,
for chain-like structure, it demands extensive extra computations to reconstruct the graph
for complex search space with additional layer types and multiple branches and skip con-
nections. This may prevent the use of modern network structure as the backbone such
as DenseNet [16], newly designed motifs [21] and complex computer vision tasks such
as semantic segmentation [18]. On the other hand, zero operations should have higher
priority to rule out other possible operations, since zero operations equal to all non-zero
operations not being selected. Second, most one-shot NAS methods [6, 11, 20, 37, 40]
rely on the magnitude of architecture parameters to prune redundant parts and this is not
necessarily true. From the perspective of Network Compression [17], magnitude-based
metric depends on the scale of weights, thus requiring pre-training and is very sensitive
to the architectural choices. Also the magnitude does not necessarily imply the optimal
edge. Unfortunately, these drawbacks exist not only in Network Compression but also in
one-shot NAS.

In this work, we applied the proposed sparse Bayesian deep learning approach to al-
leviate these two issues simultaneously. We model the architecture parameters by a hier-
archical automatic relevance determination (HARD) prior. The dependency can be trans-
lated by multiplication and addition of some independent Gaussian distributions. The
classic Bayesian learning framework [24, 27, 34] prevents overfitting and promotes spar-
sity by specifying sparse priors. The uncertainty of the parameter distribution can be used
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as a new metric to prune the redundant parts if its associated entropy 1
2 ln

(
2πeγo′

j k

)
is non-

positive. The majority of parameters are automatically zeroed out during the learning
process.

Our Contributions

• Bayesian approach: BayesNAS is the first Bayesian approach for one-shot NAS.
Therefore, our approach shares the advantages of Bayesian learning, which prevents
overfitting and does not require tuning a lot of hyperparameters. Hierarchical sparse
priors are used to model the architecture parameters. Priors can not only promote
sparsity, but model the dependency between a node and its predecessors and suc-
cessors ensuring a connected derived graph after pruning. Furthermore, it provides
a principled way to prioritize zero operations over other non-zero operations. In our
experiment on CIFAR-10, we found that the variance of the prior, as well as that of
the posterior, is several magnitudes smaller than the posterior mean, which renders
a good metric for architecture parameters pruning.

• Simple and fast search: Our algorithm is formulated simply as an iteratively re-
weighted `1 type algorithm where the re-weighting coefficients used for the next
iteration are computed not only from the value of the current solution but also from
its posterior variance. The update of posterior variance is based on Laplace approx-
imation in Bayesian learning which requires computation of the inverse Hessian of
log likelihood. To make the computation for large networks feasible, a fast Hessian
calculation method is proposed. In our experiment, we train the model for only one
epoch before calculating the Hessian to update the posterior variance. Therefore,
the search time for very deep neural networks can be kept within 0.2 GPU days.

• Network compression: As a byproduct, our approach can be extended directly to
Network Compression by enforcing various structural sparsities over network pa-
rameters. Extremely sparse models can be obtained at the cost of minimal or no
loss in accuracy across all tested architectures. This can be effortlessly integrated
into BayesNAS to find sparse architecture along with sparse kernels for resource-
limited hardware.

6.2. SEARCH SPACE DESIGN
The search space defines which neural architectures a NAS approach might discover in
principle. Designing a good search space is a challenging problem for NAS. Some works
[6, 7, 20, 29, 40, 43, 44] have proposed that the search space could be represented by a
Directed Acyclic Graph (DAG). We denote ei j as the edge from node i to node j and oi j

stands for the operation that is associated with edge ei j .

Similar to other one-shot based NAS approaches [2, 6, 11, 20, 40], we also include (dif-
ferent or same) scaling scalars over all operations of all edges to control the information
flow, denoted as wo

i j which also represent the architecture parameters. The output of a
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mixed operation oi j , i < j is defined based on the outputs of its edge

o j (zi ) = ∑
o∈O

wo
i j oi j (zi ). (6.1)

Then z j can be obtained as
∑

i< j o j (zi ).
To this end, the objective is to learn a sparse subgraph while maintaining the accuracy

of the over-parameterized DAG [2]. Let us formulate the search problem as an optimiza-
tion problem. Given a dataset D = (X,Y) = {(xn ,yn)}N

n=1 and the desired sparsity level κ (i.e.,
the number of non-zero edges), one-shot NAS problem can be written as an optimization
problem with the following constraints:

min
W

L(W;D) = min
W

1

N

N∑
n=1

`(yn ,Net(xn ,W ,w))

s.t. W ∈Rmnet+medge
, ‖w‖0 ≤ κedge

(6.2)

where W are split into two parts: network parameters W = [W o
i j ] and architecture parame-

ters w = [wo
i j ] with dimension of mnet and medge respectively, and ‖ · ‖0 is the standard `0

norm. The formulation in Eq. (6.2) can be substantiated by incorporating zero operations
into O to allow removal of wo

i j [6, 20] aiming to further reduce the size of cells and improve

the design flexibility.
To alleviate the negative effect induced by the dependency and magnitude-based met-

ric whose issues have been discussed in Introduction, for each wo
i j , we introduce a switch

so
i j that is analogous to the one used in an electric circuit. There are four features associ-

ated with these switches. First, the “on-off” status is not solely determined by its magni-
tude. Second, dependency will be taken into account, i.e., the predecessor has superior
control over its successors as illustrated in Fig. 6.1c. Third, so

i j is an auxiliary variable that

will not be updated by gradient descent but computed directly to switch on or off the
edge. Lastly, so

i j should work for both proxy and proxyless scenarios and can be better em-

bedded into existing algorithmic frameworks [6, 11, 20]. The calculation method will be
introduced later in Section 6.3.1.

Inspired by the hierarchical representation of a DAG [20, 21], we abstract a single motif
as the building block of DAG, as shown in Fig. 6.1e. Apparently, any derived motif, path,
or network can be constructed by such a multi-input-multi-output motif. It shows that a
successor can have multiple predecessors and each predecessor can have multiple oper-
ations over each of its successors. Since the representation is general, each directed edge
can be associated with some primitive operations (e.g., convolution, pooling, etc.) and a
node can represent output of motifs, cells, or a network.

6.3. IDENTIFICATION METHOD

6.3.1. DEPENDENCY-BASED PERFORMANCE ESTIMATION STRATEGY
Encoding the Dependency Logic In the following, we will formally state the criterion
to identify the redundant connections in Proposition 2. The idea can be illustrated by
Fig. 6.1b in which both the blue and red edges from node 2 to 3 and from node 2 to 4
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might be non-zeros but should be removed as a consequence. To enable this and refer to
the proposition 1 in Chapter. 5, we have the following proposition for NAS.

Proposition 2 There is information flow from node j to k under operation o′ as shown in
Fig. 6.1e if and only if at least one operation of at least one predecessor of node j is non-zero
and wo′

j k is also non-zero.

Remark 4 The same expression for Proposition 2 is: there is no information flow from node
j to k under operation o′ if and only if all the operation of all the predecessors of node j
are zeros or wo′

j k is zero. This explains the incompleteness of the problem 6.2 as well as the

possible phenomenon that non-zero edges become dysfunctional in Fig. 6.1b.

Remark 5 The expression to encode Proposition 2 is not unique. Some examples include
but not limited to, e.g., wo′

j k

∑
i< j |wo

i j |, wo′
j k

∑
i< j α

o
i j |wo

i j |,∀αo
i j ∈ (0,1], wo′

j k

∑
i< j (wo

i j )2. Ap-

parently, `0 norm of these quantities are difficult to be included in a constraint in the opti-
mization problem formulation in 6.2.

As can be seen in Remark 5, we will construct a probability distribution jointly over wo′
j k ,

wo
i j , ∀i < j in the sequel, denoted as

p(c(wo′
j k , wo

i j )),∀i < j . (6.3)

where c is a possible expression like in Remark 5 to encode Proposition 2.
In the following, we will show how the “switch” s can be used to implement Propo-

sition 2. If we assume s has two states {ON,OFF}, wo′
j k is redundant when so′

j k is OFF

or all so
i j are OFF, ∀i < j ,o ∈ O . How to use s to encode the redundancy of wo′

j k , i.e.,

wo′
j k

∑
i< j |wo

i j | = 0? One possible solution is

⋃
i< j

⋃
o∈O

so
i j ∩ so′

j k or
⋃
i< j

⋃
o∈O

so
i j ∪ so′

j k (6.4)

If s is a continuous variable with s =∞ for ON and 0 for OFF, set union and intersection
can be arithmetically represented by addition and multiplication, respectively. s does not
directly determine the magnitude of w but plays a role as uncertainty or confidence for
zero magnitude.

A straightforward way to encode this logic is to assign a probability distribution, for
example, Gaussian distribution, over wo′

j k

p(wo′
j k ) =N (wo′

j k |0, so′
j k ),

∑
i< j

p(wo
i j ) = ∑

i< j
N (wo

i j |0, so
i j )

Since wo
i j ,∀i , j ,o are independent to each other, we construct the following distribu-

tion to express Eq. (6.3):
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p(c(wo′
j k , wo

i j )),N (wo′
j k |0, so′

j k )
∑
i< j

N (wo
i j |0, so

i j )

=N (wo′
j k |0, so′

j k )N

( ∑
i< j

so
i j wo

i j∑
i< j so

i j

|0, so
i j

)

=N

(
wo′

j k

∑
i< j

so
i j wo

i j∑
i< j so

i j

|0,γo′
j k

) (6.5)

where

γo′
j k ,

 1∑
i< j

∑
o∈O

so
i j

+ 1

so′
j k


−1

. (6.6)

Since so
i j > 0 in Eq. (6.5) always holds, regardless of what so

i j is, we can use the following

simpler alternative to substitute Eq. (6.5) to encode Proposition 2:

p(c(wo′
j k , wo

i j )),N

(
wo′

j k

∑
i< j

wo
i j |0,γo′

j k

)
. (6.7)

Interestingly, Eq. (6.7) and (6.4) are equivalent. This means that we may find an algo-
rithm that is able to find the sparse solution in a probabilistic manner. However, Gaussian
distribution, in general, does not promote sparsity. Fortunately, some classic yet powerful
techniques in Bayesian learning are applicable, i.e., sparse Bayesian learning (SBL) [28, 34]
and automatic relevance determination (ARD) prior [25, 27] in Bayesian neural networks.

Zero Operation Ruling All In this paper, we do not include zero operation as a primitive
operation. Instead, between node i and j we compulsively add one more node i ′ and
allow only a single identity operation (see Fig. 6.1f). The associated weight wi i ′ is trainable
and initialized to 1 as well as its switch si i ′ . The idea is that if si i ′ is OFF, all the operations
from i ′ to j will be disabled as a consequence. Then γo′

j k in Eq. (6.6) can be substituted by

γo′
j k ,

 1

si i ′
+ 1∑

i ′< j

∑
o∈O

so
i ′ j

+ 1

so′
j k


−1

. (6.8)

6.3.2. BAYESIAN LEARNING SEARCH STRATEGY
Bayesian Neural Network The likelihood for the network weights W and the noise pre-
cision σ−2 with data D = (X,Y) is

p(Y |W ,w,X,σ2) =
N∏

n=1
N (yn |Net(xn ;W ,w);σ2) . (6.9)
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To complete our probabilistic model, we specify a Gaussian prior distribution for each
entry in each of the weight matrices in W . In particular,

p(W |λ) = ∏
i< j

∏
o∈O

N (W o
i j |0,λ−1) (6.10)

p(w |s) = ∏
j<k

∏
o∈O

∏
o′∈O

N

(
wo′

j k

∑
i< j

wo
i j |0,γo′

j k

)
(6.11)

where γo′
j k is defined in Eq. (6.8). σ−2, λ and s are hyperparameters. Importantly, there is

an individual hyperparameter associated independently with every edge weight and a sin-
gle one with all network weight. Follow Mackay’s evidence framework [24], ’hierarchical
priors’ are employed on the latent variables using Gamma priors on the inverse variances.
The hyper-priors for σ−2, λ and s are chosen to be a gamma distribution [3], i.e., p(λ) =
Gam(λ |aλ, bλ), p(β) = Gam(β |aβ,bβ) with β = σ−2, and p(so

i j ) = Gam(so
i j |a

so
i j ,b

so
i j ). Es-

sentially, the choice of Gamma priors has the effect of making the marginal distribution
of the latent variable prior the non-Gaussian Student’s t therefore promoting the sparsity
[34, Section 2 and 5.1]. To make these priors non-informative (i.e., flat), we simply fix a
and b to zero by assuming uniform scale priors for analysis and implementation. This for-
mulation of prior distributions is a type of hierarchically constructed automatic relevance
determination (HARD) prior which is built upon the classic ARD prior [27, 34].

The posterior distribution for the parameters W , γ and λ can then be obtained by ap-
plying Bayes’ rule:

p(W ,w,λ,s,σ2 |D)

=p(Y |X,W ,w,λ,s,σ2)p(W |λ)p(w |s)p(λ)p(γ)p(σ2)

p(Y |X)
, (6.12)

where p(Y |X) is a normalization constant. Given a new input vector x?, we can make
predictions for its output y? using the predictive distribution given by

p(y? |x?,D)

=
∫

p(y?|x?,W ,w,λ,s,σ2)p(W ,w,λ,s,σ2 |D)

dσ2 dλdsdW dw,

(6.13)

where p(y?|x?,W ,w,λ,s,σ2) =N (y? |Net(x?),σ2). However, the exact computation of p(W ,w,λ,s,σ2 |D)
and p(y? |x?) is not tractable in most cases. Therefore, in practice, we have to resort to ap-
proximate inference methods.

It should be noted that λ is the same for all network parameters. However, it can be
different for W or constructed to represent the structural sparsity for Convolutional ker-
nels in NN aiming for Network Compression, which is related to Bayesian compression
[23] and structural sparsity compression [35]. Since our main focus is on architecture pa-
rameters, without breaking the flow, we will fix λ which is equivalent to the weight decay
coefficient in SGD and σ2 = 0.01 that is equivalent to the regularization coefficient for
network parameters.
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Figure 6.2: Structural Sparsity

In case of uniform hyperpriors, we only need to maximize the term p(Y |λ,s,σ2) [3, 24]∫ ∫
p(Y |W ,w,X,σ2)p(W |λ)p(w |s)dW dw. (6.14)

We assume that the distribution of data likelihood belongs to the exponential family

p(Y |W ,w,X,σ2) ∼ exp
(
−ED (Y;Net(X;W ,w);σ2)

)
(6.15)

where ED (∗) is the energy function over data.

Hessian Calculation of Architecture Parameter After we have the computation method
for the Hessian of a convolutional layer, we need to consider the Hessian of an architecture
parameter. Now the output from node i to j under operation o becomes wo

i j Bi , where wo
i j

is the architecture parameter and Bi stands for the input vector.
Inspired by [4], the Hessian for wo

i j could be computed recursively as Ho
i j = E(

∑
(Bi )2H j ),

where H j is supposed to be the known pre-activation Hessian for B j and Hi is the pre-
activation Hessian for Bi .

Hi =
∑

o∈O

(wo
i j )2H j . (6.16)

Since Bi and H j are independent of each other, the Hessian Ho
i j could also be calculated

more efficiently:

Ho
i j = (E(|Bi |)2H j (6.17)

where Ewill return the mean.

Algorithm As analyzed before, the optimization objective of searching architecture be-
comes removing redundant edges. The training algorithm is iteratively indexed by t . Each
iteration may contain several epochs. The pseudo code is summarized in Algorithm 6.
The cost function is simply the maximum likelihood over the data D with regularization
whose intensity is controlled by the re-weighted coefficient ω

LD = ED (·)+λw
∑
j<k

∑
o′∈O

‖ωo′
j k (t )wo′

j k‖1 +λ‖W ‖2
2 (6.18)
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Algorithm 6 BayesNAS Algorithm for Proxyless Tasks.

Input: γ(0),ω(0),w(0) = 1; λ= 0.01; sparsity intensity λo
w ∈R+

Output:
for t = 1 to Tmax do

1. Update w and W by minimizing LD in Eq. (6.18)
2. Compute Hessian for w (Eq. (6.16), Eq. (6.17))
3. Update variables associated with w
while i < j < k,o,o′ ∈O do

C o′
j k (t ) =

 1

γo′
j k (t −1)

+Ho′
j k (t )

−1

(6.19)

ωo′
j k (t ) =

√
γo′

j k (t −1)−Co′
j k (t )

γo′
j k (t −1)

(6.20)

so′
j k (t ) =

∣∣∣∣∣∣
wo′

j k (t )

ωo′
j k (t )

∣∣∣∣∣∣ (6.21)

γo′
j k (t ) is given by E q. (6.6) or E q. (6.8) (6.22)

end while

4. Prune the architecture if the entropy
ln

(
2πeγo′

j k

)
2 ≤ 0

5. Fix w = 1, train the pruned net in the standard way
end for

The algorithm mainly includes five parts. The first part is to jointly train W and w. The
second part is to freeze the architecture parameters and prepare to compute their Hessian.
The third part is to update the variables associated with the architecture parameters. The
fourth part is to prune the architecture parameters and the pruned net will be trained in
a standard way in the fifth part. As discussed previously on the drawback of magnitude-
based pruning metrics, we propose a new metric based on the properties of differential
entropy of the distribution. Since p(wo′

j k ) in Eq. (6.5) is Gaussian with zero mean γo′
j k vari-

ance, the differential entropy is 1
2 ln

(
2πeγo′

j k

)
. We set the threshold for γo′

j k to prune related

edges when 1
2 ln

(
2πeγo′

j k

)
≤ 0, i.e., γo′

j k ≤ 0.0585.

The algorithm can be easily transferred to other scenarios. One scenario involves
proxy tasks to find the cell. Suppose a network is assembled by stacking O different kinds
of cells together, such as ℵ1 normal cells and ℵO reduction cells in [20]. Then optimal O
cells are required to be designed in a NAS task. As explained before, we design a switch
s for each architecture parameter w to determine the “on-off” of the corresponding edge
in our method. In order to find such optimal cells, we propose that switches on the same
position of the identical kind of cells should also be same. Based on this, the architec-
ture parameters could be divided into different groups. The general grouped architecture
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parameters are given as follows:

wo′
j k (t ) =

[
wo′1

j k,1(t ), . . . ,wo′ℵ1
j k,1(t )︸ ︷︷ ︸

ℵ1 elements

. . . wo′1
j k,O(t ), . . . ,wo′ℵO

j k,O (t )︸ ︷︷ ︸
ℵO elements

]
. (6.23)

If the group o is consist of ℵo elements, where o = 1, . . . ,O, the optimal so′
j k,o can be ob-

tained as:

ℵo∑
i=1

wo′
j k,o

>
(t )wo′

j k,o(t )

so′
j k,o(t )

+ωo′i
j k,o(t )

2
so′

j k,o(t )

≥ 2

∥∥∥∥∥∥
√√√√ ℵo∑

i=1
ωo′i

j k,o(t )
2 ·wo′

j k,o(t )

∥∥∥∥∥∥
`2

, (6.24)

then

so′
j k,o(t ) =

∥∥∥wo′
j k,o(t )

∥∥∥
`2√∑ℵo

i=1ω
o′i
j k,o(t )

2
,∀i . (6.25)

The calculation of ωo′
j k,g for group o is:

ωo′
j k,o(t ) =

√√√√√√ ℵo∑
i=1

√
γo′i

j k,o(t −1)−Co′i
j k,o(t )

γo′i
j k,o(t −1)

2
(6.26)

and both s and ω for the different elements in the identity group should keep the same:

so′
j k (t ) =

[
so′

j k,1(t ), . . . ,so′
j k,1(t )︸ ︷︷ ︸

ℵ1 elements

. . . so′
j k,O(t ), . . . ,so′

j k,O(t )︸ ︷︷ ︸
ℵO elements

]
(6.27)

ωo′
j k (t ) =

[
ωo′

j k,1(t ), . . . ,ωo′
j k,1(t )︸ ︷︷ ︸

ℵ1 elements

. . . ωo′
j k,O(t ), . . . ,ωo′

j k,O(t )︸ ︷︷ ︸
ℵO elements

]
(6.28)

Similar to Eq. (6.18), we group the same edge/operation in the repeated stacked cells,
where g is the index. The cost function for proxy tasks is then given as follows in the form
of re-weighted group Lasso:

LD = ED (·)+λw
∑
g

∑
j<k

∑
o′∈O

‖ωo′
j k,g (t )wo′

j k,g ‖2 +λ‖W ‖2
2 (6.29)

The pseudo code is summarised in Algorithm 7.

6.4. EXPERIMENT

6.4.1. NEURAL ARCHITECTURE SEARCH
The experiments focus on two scenarios in NAS: proxy NAS and proxyless NAS. For proxy
NAS, we follow the pipeline in DARTS [20] and SNAS [37]. First BayesNAS is applied to
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Algorithm 7 The proposed Algorithm is transferable for cell selection of proxy tasks.

Input: γo′
j k (0),ωo′

j k (0),w(0) = 1; sparsity intensity λo
w ∈ R+; λ = 0.01; cost function LD in

Eq. (6.18)
Output:

for t = 1 to Tmax do
1. Maximum likelihood with regularization:

min
W ,w

ED (·)+λw
∑
g

∑
j<k

∑
o′∈O

‖ωo′
j k,g (t )wo′

j k,g ‖2 +λ‖W ‖2
2 (6.30)

2. Compute Hessian for w ( Eq. (6.17))
3. Update variables associated with w
while g ∈ (1,O); i < j < k;o,o′ ∈O do

C o′
j k (t ) =

 1

γo′
j k (t −1)

+Ho′
j k (t )

−1

(6.31)

ωo′
j k (t ) is given by (6.26) and (6.28) (6.32)

so′
j k (t ) is given by (6.25) and (6.27) (6.33)

γo′
j k (t ) is given by (6.6) or (6.8)with : γo′

j k (t ) =
[
γo′

j k,1(t ), . . .︸ ︷︷ ︸
ℵ1 elements

. . . γo′
j k,O(t ), . . .︸ ︷︷ ︸
ℵO elements

]
(6.34)

end while

4. Prune the architecture if the entropy
ln

(
2πeγo′

j k

)
2 ≤ 0

5. Fix w = 1, train the pruned net in the standard way
end for

search for the best convolutional cells in a complete network on CIFAR-10. Then a network
constructed by stacking the learned cells is retrained for performance comparison. For
proxyless NAS, we follow the pipeline in ProxylessNAS [6]. First, the tree-like cell from [7]
with multiple paths is integrated into the PyramidNet [12]. Then we search for the optimal
path(s) within each cell by BayesNAS. Finally, the network is reconstructed by retaining
only the optimal path(s) and retrained on CIFAR-10 for performance comparison.

ARCHITECTURE EVALUATION ON CIFAR-10
Proxy Search Unlike DARTS and SNAS that rely on validation accuracy during or after
search, we use γ in BayesNAS as a performance evaluation criterion which enables us to
achieve it in an one-shot manner. Our setup follows DARTS and SNAS, where convolu-
tional cells of 7 nodes are stacked for multiple times to form a network. The input nodes,
i.e., the first and second nodes, of cell k are set equal to the outputs of cell k −1 and cell
k−2 respectively, with 1×1 convolutions inserted as necessary, and the output node is the
depthwise concatenation of all the intermediate nodes. Reduction cells are located at 1/3
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Table 6.1: Classification errors of BayesNAS and state-of-the-art image classifiers on
CIFAR-10.

Architecture
Test Error

(%)
Params

(M)
Search Cost
(GPU days)

Search
Method

DenseNet-BC [16] 3.46 25.6 - manual
NASNet-A + cutout [44] 2.65 3.3 1800 RL
AmoebaNet-B + cutout [31] 2.55 ± 0.05 2.8 3150 evolution
Hierarchical Evo [21] 3.75 ± 0.12 15.7 300 evolution
PNAS [19] 3.41 ± 0.09 3.2 225 SMBO
ENAS + cutout [29] 2.89 4.6 0.5 RL
Random search baseline + cutout [20] 3.29 ± 0.15 3.2 1 random
DARTS (2nd order bi-level) + cutout [20] 2.76 ± 0.09 3.4 1 gradient
SNAS (single-level) + moderate con + cutout [37] 2.85 ± 0.02 2.8 1.5 gradient
DSO-NAS-share+cutout [40] 2.84 ± 0.07 3.0 1 gradient
Proxyless-G + cutout [6] 2.08 5.7 - gradient
BayesNAS + cutout + λo

w = 0.01 3.02±0.04 2.59±0.23 0.2 gradient
BayesNAS + cutout + λo

w = 0.007 2.90±0.05 3.10±0.15 0.2 gradient
BayesNAS + cutout + λo

w = 0.005 2.81±0.04 3.40±0.62 0.2 gradient
BayesNAS + TreeCell-A + Pyrimaid backbone + cutout 2.41 3.4 0.1 gradient
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Figure 6.3: Normal and reduction cell found by BayesNAS with λo
w = 0.01.

and 2/3 of the total depth of the network to reduce the spatial resolution of feature maps.
Unlike DARTS and SNAS, we exclude zero operations. In the searching stage, we train a
small network stacked by 8 cells using BayesNAS with different λw . This network size is
determined to fit into a single GPU. Since we cache the feature maps in memory, we can
only set batch size as 18. The optimizer we use is SGD optimizer with momentum 0.9 and
fixed learning rate 0.1. Other training setups follow DARTS and SNAS. The search takes
about 3 hours on a single GPU1. The normal and reduction cells learned on CIFAR-10 us-
ing BayesNAS are shown in Figure 6.3a and 6.3b. A large network of 20 cells where cells at
1/3 and 2/3 are reduction cells is trained from scratch with the batch size of 128. The val-
idation accuracy is presented in Table 6.1. The test error rate of BayesNAS is competitive
against state-of-the-art techniques and BayesNAS is able to find convolutional cells with
fewer parameters when compared to DARTS and SNAS.

1All the experiments were performed using NVIDIA TITAN V GPUs
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Table 6.2: Comparison with state-of-the-art image classifiers on ImageNet in the mobile
setting.

Architecture
Test Error (%) Params Search Cost

Search Method
top-1 top-5 (M) (GPU days)

Inception-v1 [33] 30.2 10.1 6.6 – manual
MobileNet [15] 29.4 10.5 4.2 – manual
ShuffleNet 2× (v1) [39] 29.1 10.2 ∼5 – manual
ShuffleNet 2× (v2) [39] 26.3 – ∼5 – manual

NASNet-A [44] 26.0 8.4 5.3 1800 RL
NASNet-B [44] 27.2 8.7 5.3 1800 RL
NASNet-C [44] 27.5 9.0 4.9 1800 RL
AmoebaNet-A [31] 25.5 8.0 5.1 3150 evolution
AmoebaNet-B [31] 26.0 8.5 5.3 3150 evolution
AmoebaNet-C [31] 24.3 7.6 6.4 3150 evolution
PNAS [19] 25.8 8.1 5.1 ∼225 SMBO
DARTS [20] 26.9 9.0 4.9 4 gradient

BayesNAS (λo
w = 0.01) 28.1 9.4 4.0 0.2 gradient

BayesNAS (λo
w = 0.007) 27.3 8.4 3.3 0.2 gradient

BayesNAS (λo
w = 0.005) 26.5 8.9 3.9 0.2 gradient

Proxyless Search Using an existing tree-like cell, we apply BayesNAS to search for the
optimal path(s) within each cell. Varying from proxy search, cells do not share architec-
ture in proxyless search. The backbone used is PyramidNet with three layers, each con-
sisting of 18 bottleneck blocks and α = 84. All 3×3 convolution in bottleneck blocks are
replaced by the tree-cell that has in total 9 possible paths within. The groups for grouped
convolution are set to 2. For the detailed structure of the tree-cell, we refer to [7]. In the
searching stage, we set the batch size to 32 and the learning rate to 0.1. We use the same
optimizer as for proxy search. The λ of BayesNAS for each possible path is set to 1×10−2.
Because each cell can have a different structure in the proxyless setting, we demonstrate
only two typical types of cell structure among all of them in Figure 6.4a and Figure 6.4b.
The first type is a chain-like structure where only one path exists in the cell connecting the
input of the cell to its output. The second type is an inception structure where divergence
and convergence both exist in the cell. Our further observation reveals that some cells are
dispensable with respect to the entire network. After the architecture is determined, the
network is trained from scratch with the batch size of 64, learning rate as 0.1, and cosine
annealing learning rate decay schedule [22]. The validation accuracy is also presented in
Table 6.1. Although the test error increases slightly compared to [6], there is a significant
drop in the number of model parameters to be learned, which is beneficial for both train-
ing and inference.

TRANSFERABILITY TO IMAGENET

For ImageNet mobile setting, the input images are of size 224×224. A network of 14 cells
is trained for 250 epochs with batch size 128, weight decay 3×10−5 and initial SGD learn-
ing rate 0.1 (decayed by a factor of 0.97 after each epoch). Results in Table 6.2 show that
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Figure 6.4: The pruned tree-cell: (a) The chain-like where only one path exists in the cell
connecting the input of the cell to its output. (b) The inception structure where divergence
and convergence both exist in the cell. The solid directed lines denote the path found by
BayesNAS while the dashed ones denote the paths discarded.

the cell learned on CIFAR-10 can be transfered to ImageNet and is capable of achieving
competitive performance.

6.4.2. NEURAL NETWORK COMPRESSION
In addition to applying the proposed sparse Bayesian deep learning algorithm to address
NAS problems, we also explore the possibility of our method on the network structural
compression problem. In this section, we summarise the calculation details about ap-
plying various sparse structured priors over the network weights of a convolution neural
network in Table 6.3. The regularization term and the calculation of hyper-parameters
(e.g. ω,ψ) are included. Specifically, for the weight in the l -th convolutional layer W l ∈
RNl×Cl×ml×kl , some examples of the structured sparsity are shown in Fig.6.5. The corre-
sponding sparse prior is given in the second column of Table 6.3.

It should be noted that Table 6.3 is an extension of Table 2.1 which explains the cal-
culation for a Fully-Connected neural network. And the prior for the weight in a FC layer
can also be represented as this table with ml = kl = 1, Nl and Cl stand for the size of input
feature and output features, respectively. The proposed network compression algorithm
is generic for the weights in fully connected and convolutional neural networks. Similar to
the pruning criterium, which has been illustrated in Section. 4.2.4 of Chapter. 4, the net-
work pruning criteria also include both the magnitude of weight and the uncertainty of
weight. The equation of pruning connection can be referred to Eq. (4.11).

LENET-300-100 AND LENET-5 ON MNIST
RESNET-18 ON CIFAR-10
We also evaluate our algorithm on the Cifar10 dataset using ResNet-18 as the initialized
backbone [13]. In addition to the input Conv layer and output FC layer, the other 16
Conv layers are separated into 8 blocks with 2 layers each block. We apply shape-wise
and filter-wise regularization to the Conv layer as shown in Fig. 6.5(a) and 6.5(j); row-wise
and column-wise regularization to the FC layer as shown in Fig. 6.5(b) and 6.5(c). The re-



6

148 6. APPLICATION TO HIGH DIMENSIONAL DATA

Tab
le

6.3:H
yp

er-p
aram

eter
u

p
d

ate
ru

le
fo

r
C

N
N

C
atego

ry
P

rio
r

Fo
rm

u
latio

n
R

(ω
l,W

l)
ω

l
ψ

l

(a)
Sh

ap
e-w

ise
∏c

l ∏m
l ∏k

l N
(0,ψ

c
l ,m

l ,k
l In

l )
C

l
∑c
l =

1

M
l

∑m
l =

1

K
l

∑k
l =

1 ‖
ω

l:,c
l ,m

l ,k
l ◦

W
l:,c

l ,m
l ,k

l ‖
2

ω
lo = √∑c

l ∑m
l ∑k

l |α
l:,c

l ,m
l ,k

l |
ω

l:,c
l ,m

l ,k
l =

ω
lo ·I l:,c

l ,m
l ,k

l

ψ
lo =

‖W
l:,cl ,m

l ,k
l ‖

2

ω
l:,cl ,m

l ,k
l (t−

1)

ψ
l:,c

l ,m
l ,k

l =
ψ

lo ·I l:,c
l ,m

l ,k
l

(b
)

R
ow

-w
ise

∏c
l ∏m

l N
(0,ψ

c
l ,m

l In
l k

l )
C

l
∑c
l =

1

M
l

∑m
l =

1 ‖ω
:,c

l ,m
l ,: ◦

W
l:,c

l ,m
l ,: ‖

2

ω
lo = √∑c

l ∑m
l |α

l:,c
l ,m

l ,: |
ω

l:,c
l ,m

l ,: =
ω

lo ·I l:,c
l ,m

l ,:

ψ
lo =

‖W
l:,cl ,m

l ,: ‖
2

ω
l:,cl ,m

l ,: (t−
1)

ψ
l:,c

l ,m
l ,: =

ψ
lo ·I l:,c

l ,m
l ,:

(c)
C

o
lu

m
n

-w
ise

∏c
l ∏k

l N
(0,ψ

c
l ,k

l In
l m

l )
C

l
∑c
l =

1

K
l

∑k
l =

1 ‖
ω

l:,c
l ,:,k

l ◦
W

l:,c
l ,:,k

l ‖
2

ω
lo = √∑c

l ∑k
l |α

l:,c
l ,:,k

l |
ω

l:,c
l ,:,k

l =
ω

lo ·I l:,c
l ,:,k

l

ψ
lo =

‖W
l:,cl ,:,k

l ‖
2

ω
l:,cl ,:,k

l (t−
1)

ψ
l:,c

l ,:,k
l =

ψ
lo ·I l:,c

l ,:,k
l

(d
)

R
ow

&
co

lu
m

n
-w

ise
∏c

l ∏m
l k

l N
(0,ψ

c
l ,m

l k
l In

l )

W̄
l=

[W
l:,c

l ,m
l ,: ,W

l:,c
l ,:,k

l ]

ω̄
l=

[ω
l:,c

l ,m
l ,: ,ω

l:,c
l ,:,k

l ]
C

l
∑c
l =

1 ∑
‖
ω̄

l◦
W̄

l‖
2

ω
lo = √∑c

l ∑m
l |α

l:,c
l ,m

l ,: |+ ∑c
l ∑k

l |α
l:,c

l ,:,k
l |

ω
l:,c

l ,m
l ,: =

ω
lo ·I l:,c

l ,m
l ,:

ω
l:,c

l ,:,k
l =

ω
lo ·I l:,c

l ,:,k
l

ψ
lo =

‖W̄
l‖

2

ω̄
l(t−

1)
ψ

l:,c
l ,m

l ,: =
ψ

lo ·I l:,c
l ,m

l ,:

ψ
l:,c

l ,:,k
l =

ψ
lo ·I l:,c

l ,:,k
l

(e)
C

h
an

n
el-w

ise
∏c

l

N
(0,ψ

c
l In

l m
l k

l )
C

l
∑c
l =

1 ‖
ω

l:,c
l ,:,: ◦

W
l:,c

l ,:,: ‖
2

ω
lo = √∑c

l |α
l:,c

l ,:,: |
ω

l:,c
l ,:,: =

ω
lo ·I l:,c

l ,:,:

ψ
lo =

‖W
l:,cl ,:,: ‖

2

ω
l:,cl ,:,: (t−

1)

ψ
l:,c

l ,:,: =
ψ

lo ·I l:,c
l ,:,:

(f)
G

ro
u

p
sh

ap
e-w

ise
∏m

l ∏k
l N

(0,ψ
m

l ,k
l In

l c
l )

M
l

∑m
l =

1

K
l

∑k
l =

1 ‖
ω

l:,:,m
l ,k

l ◦
W

l:,:,m
l ,k

l ‖
2

ω
lo = √∑m

l ∑k
l |α

l:,:,m
l ,k

l |
ω

l:,:,m
l ,k

l =
ω

lo ·I l:,:,m
l ,k

l

ψ
lo =

‖W
l:,:,m

l ,k
l ‖

2

ω
l:,:,m

l ,k
l (t−

1)

ψ
l:,:,m

l ,k
l =

ψ
lo ·I l:,:,m

l ,k
l

(g)
G

ro
u

p
row

-w
ise

∏m
l N

(0,ψ
m

l In
l c

l k
l )

M
l

∑m
l =

1 ‖
ω

l:,:,m
l ,: ◦

W
l:,:,m

l ,: ‖
2

ω
lo = √∑m

l |α
l:,:,m

l ,: |
ω

l:,:,m
l ,: =

ω
lo ·I l:,:,m

l ,:

ψ
lo =

‖W
l:,:,m

l ,: ‖
2

ω
l:,:,m

l ,: (t−
1)

ψ
l:,:,m

l ,: =
ψ

lo ·I l:,:,m
l ,:

(h
)

G
ro

u
p

co
lu

m
n

-w
ise

∏k
l N

(0,ψ
k

l In
l c

l m
l )

K
l

∑k
l =

1 ‖
ω

l:,:,:,k
l ◦

W
l:,:,:,k

l ‖
2

ω
lo = √∑k

l |α
l:,:,:,k

l |
ω

l:,:,:,k
l =

ω
lo ·I l:,:,:,k

l

ψ
lo =

‖W
l:,:,:,k

l ‖
2

ω
l:,:,:,k

l (t−
1)

ψ
l:,:,:,k

l =
ψ

lo ·I l:,:,:,k
l

(i)
G

ro
u

p
row

&
co

lu
m

n
-w

ise
∏m
l k

l N
(0,ψ

m
l k

l In
l c

l )

W̄
l=

[W
l:,:,m

l ,: ,W
l:,:,:,k

l ]

ω̄
l=

[ω
l:,:,m

l ,: ,ω
l:,:,:,k

l ]
∑
‖
ω̄

l◦
W̄

l‖
2

ω
lo = √∑m

l |α
l:,:,m

l ,: |+ ∑k
l |α

l:,:,:,k
l |

ω
l:,:,m

l ,: =
ω

lo ·I l:,:,m
l ,:

ω
l:,:,:,k

l =
ω

lo ·I l:,:,:,k
l

ψ
lo =

‖W̄
l‖

2

ω̄
l(t−

1)
ψ

l:,:,m
l ,: =

ψ
lo ·I l:,:,m

l ,:

ψ
l:,:,:,k

l =
ψ

lo ·I l:,:,:,k
l

(j)
F

ilter-w
ise

∏n
l N

(0,ψ
n

l Ic
l m

l k
l )

N
l

∑n
l =

1 ‖
ω

ln
l ,:,:,: ◦

W
ln

l ,:,:,: ‖
2

ω
lo = √∑n

l |α
ln

l ,:,:,: |
ω

ln
l ,:,:,: =

ω
lo ·I ln

l ,:,:,:

ψ
lo =

‖W
ln
l ,:,:,: ‖

2

ω
ln

l ,:,:,: (t−
1)

ψ
ln

l ,:,:,: =
ψ

lo ·I ln
l ,:,:,:



6.4. EXPERIMENT

6

149

(e) channel-wise(a) shape-wise (b) row-wise (c) column-wise (d) row & column-wise

(j) filter-wise(f) stack shape-wise (g) stack row-wise (h) stack column-wise (i) stack row & column-wise

Figure 6.5: some examples of structured sparsity for the 3D filters in Conv layer with ex-
tensions of [35]. Coloured squares mean the weights to be pruned. It should be noted that
the FC layer can be easily enforced by (a)-(e).

sult is given in Table 6.4. It can be found that the two Conv layers in block 4 are pruned
away, which shows the potential of our method to reduce the number of layers.

Table 6.4: Model Sparsity of ResNet-18 on Cifar10 dataset

conv1 conv2-5 conv6-9 conv10-13 con14-17 FC layer Total Test error

22.80%

10.06%
22.87%
20.05%
12.99%

9.24%
5.45%
4.94%

10.73%

20.64%
15.04%
10.77%
4.61%

1.43%
0.19%

0
0

10.33% 2.96%

6.58%
(baseline)

6.23%
(our method)

RESNET-33 ON ATRIAL FIBRILLATION DATASET

Atrial fibrillation (AF) is one typical symptom of cardiac arrhythmia. The pre-diagnosing
of AF based on electrocardiography (ECG) data has been a hot research topic in recent
years. In the PhysioNet and Computing in Cardiology Challenge 2017 [8], the work [14]
used a ResNet to extract deep features from ECG data and achieved an impressive result.
However, despite its accurate predicted performance, the complexity of the model also
makes it run slow. In this section, we try to apply network compression techniques to help
the model provided in [14] being more lightweight and more efficient. The network com-
pression experiments are performed on the PhysioNet/Computing in Cardiology Chal-
lenge 2017 dataset [8], containing 8528 records of short single-lead 300 Hz ECG data. The
data are labelled with four classes: (1) normal sinus rhythm (N for short, 5076 records),
(2) AF (A for short, 758 records), (3) alternative rhythm (O for short, 2415 records), and (4)
noisy recordings (P for short, 279 records).

We apply channel-wise regularization to the Conv layer as shown in Fig. 6.5(e); row-
wise and column-wise regularization to the FC layer as shown in Fig. 6.5(b) and 6.5(c).
The result is given in Table 6.5. The structural sparsity for each layer is in Table 6.6. During
the training process, the dynamic gamma pruning with threshold 0.001 is used. From
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Table 6.5, it can be found that 24 Conv layers are pruned away. And the overall sparsity is
only 1.03%. The model size reduced from 167.4M to 1.4M , which is very promising to be
implemented on resource-constrained mobile devices (e.g. smartphones and handheld
devices).

Table 6.5: Sparsity for each layer in ResNet-33 on Atrial fibrillation dataset

conv1 conv2-9 conv10-17 conv18-25 26-33 FC layer Total F1 Score Model size

9.37%

4.25%
22.85%

0
0
0
0
0
0

23.5%
19.13%

0
0
0
0
0
0

16.04%
9.11%

0
0
0
0
0
0

6.53%
0.35%

0
0
0
0
0
0

2.93% 1.03%

0.74
(baseline)

0.75
(our method)

167.4M
(baseline)

1.4M
(our method)

The structural sparsity for each layer is in Table 6.6.

Table 6.6: Structural sparsity for each layer in ResNet-33 on Atrial fibrillation dataset

Channel category conv1 conv2-9 conv10-17 conv18-25 26-33 FC layer

In channel 100%

9.35%
40.63%

0
0
0
0
0
0

54.69%
42.97%

0
0
0
0
0
0

56.25%
28.13%

0
0
0
0
0
0

50.78%
11.91%

0
0
0
0
0
0

100%

Out channel 9.37%

45.31%
56.25%

0
0
0
0
0
0

42.97%
44.53%

0
0
0
0
0
0

28.52%
32.42%

0
0
0
0
0
0

12.89%
2.93%

0
0
0
0
0
0

2.93%

6.5. CONCLUSION
We introduce BayesNAS that can directly learn a sparse neural network architecture based
on high-dimensional data. We significantly reduce the search time by using only one
epoch to get the candidate architecture. The proposed method can also be successfully
applied in the neural network compression tasks.
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7
CONCLUSION AND FUTURE WORK

This thesis investigates the applications of the developed sparse Bayesian deep learning al-
gorithms with different priors on DNN and DNN-like models. This chapter concludes the
thesis in Section 7.1 and outlines some possible avenues for future research in Section 7.2.
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7.1. CONCLUSION
To address the main research challenges about system identification (SYSID) using deep
neural networks (DNNs) as illustrated in Section ??, this thesis proposes several sparse
Bayesian deep learning algorithms which can be implemented in diverse SYSID appli-
cations. The scientific and technical implications of the research findings can be sum-
marised as follows.

Chapter 1 illustrates the research background, research motivation, and research chal-
lenges of using DNNs for SYSID. It highlights two main challenges, i.e., the overfitting issue
caused by model complexity and the infeasibility for white-box modelling. By regarding
these research challenges as sparse regression problems, the Bayesian approach becomes
a potentially more effective solution than the conventional sparse regression techniques,
such as lasso and group lasso. Chapter 2 presents three sparse Bayesian deep learning
(SBDL) algorithms that enforce different priors on model parameters, i.e., single prior,
group prior, and fused prior. This thesis adopts the Laplace approximated method to
approximate the posterior distribution since it can scale better to DNNs than other ap-
proximate inference methods, e.g., variational inference. However, the inverse Hessian is
a necessity for the Laplace approximated method. The Hessian calculation is intractable
for DNNs, especially for the indirect convolutional and recurrent operation. To address
this challenge, we develop efficient Hessian calculation methods by extracting the diag-
onal values of Hessian. The proposed Hessian calculation methods can accelerate the
optimization process and turn the intractable training problem into a tractable one. The
detailed procedures for the Hessian calculation are presented in Section 2.2 of Chapter 2.

In Chapter 3, the SBDL algorithm with the single prior is implemented to identify a
repressilator model. We designed a combined neural network that includes both a linear
and nonlinear sub-network. The linear sub-network is a fully connected (FC) neural net-
work without hidden layers. The nonlinear sub-network is also a FC neural network with
its activation function replaced by the typical form of Hill function. Finally, the structure
and parameters of the mathematical expressions of the repressilator model, especially the
topology and coefficients of the Hill function, can be identified precisely.

To address several typical problems in SYSID, including input feature selection, eas-
ily overfitting to the training dataset, we apply the SBDL algorithm with the group prior
in Chapter 4. In this way, the input features of DNN models (i.e., MLP and LSTM) can
be reduced clearly. Moreover, structural sparsity can be achieved to alleviate the over-
fitting issue. Besides, the parameter and prediction uncertainty is also derived with the
Monte-Carlo sampling method. The proposed method can achieve good and competitive
simulation accuracy on several linear and nonlinear system identification benchmarks.

To realize the white-box modelling which can discover the governing equations from
data, we design a DNN-like hierarchical network, termed as Mathematical Operation Net-
work (MathONet) in Chapter 5. The MathONet consists of unary and binary mathematical
operations, which can formulate closed-form mathematical expressions. An initialized
MathONet can be regarded as an over-redundant graph, whose sub-graph is the true un-
derlying solution. To extract the essential sub-graph, this chapter uses the SBDL algorithm
with the fused prior (single prior & group prior) on model parameters. The single prior is
used to select the mathematical operation, and the group prior is used to select the input
features. The proposed approach can identify ordinary differential equations (ODEs) or
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partial differential equations (PDEs) for several dynamic systems. We also extend the pro-
posed SBDL algorithms in two deep learning topics with high-dimensional datasets, i.e.,
neural architecture search (NAS) and neural network compression in Chapter 6.

7.2. FUTURE WORK

7.2.1. MODEL TYPE SELECTION

In SYSID, the model type selection is an important research aspect, which still lacks a spe-
cific definition to the best of our knowledge. The most relevant concept is the "model set
selection", which can be found in [4, 9]. In these works, the system model is normally
regarded as a transfer function y(t ) = G(q)u(t )+ H(q)e(t ). And the model set selection
means the choice of [G(q), H(q)], which decides the model structure and characterizes
the model as ARX, OE, ARMAX and FIR, etc. Another relevant concept is the "type of mod-
els" [9], which distinguishes models between four types, i.e., mental, software, graphi-
cal, and mathematical models. Obviously, these two primitive terminologies describe the
model with two polarizations. The first one confines a model in the range described by
transfer functions, deprived of discussion with other typical models such as neural net-
works. On the contrary, the second one covers a wide range of model categories that can
even be applied beyond the engineering field (e.g., mental model).

In the future, we think it is necessary to discuss the "model" in the range between
these two polarizations. First, with the prosperous development of machine/deep learn-
ing, some models, such as deep neural networks and symbolic trees, are indispensable
and should be included in the discussion. Second, we limit our focus only to the math-
ematical models, which are the most prevalent model type for SYSID in the control and
engineering field. Other types of models (e.g., mental models) are excluded from the con-
sideration. To unify the nomenclature, the "model type selection" refers to building a
mathematical model which can match the measurements by training a model selected
from or combined by four typical model types, i.e., neural network model, basis function
model, linear model and symbolic regression model. The main challenge of this research
direction is to develop an algorithm to select proper model types automatically. With mul-
tiple choices of model types, an intuitive solution to decide the proper model structure is
to implement all of these model types, and then the one that best satisfies the criteria (e.g.,
simulation accuracy) will be singled out. However, such a brute-force selection method is
not intelligent and may cost heavy computing resources, especially for the large-scale sys-
tem modelling tasks, requiring a lot of time and resources to train a model. An efficient
solution should be a selection algorithm that can select the proper model type from dif-
ferent choices before training. A possible solution is to regard this challenge as a sparse
regression problem, which is similar to addressing the overfitting issues of DNNs in this
thesis.

7.2.2. CONVERGENCE OF THE TRAINING

The convergence of DNN training is challenging to analyze, which is influenced by many
aspects, i.e., the pre-processing of training data [3], the initialization of weight matri-
ces [10], proper selection of learning rate and batch size, and the complexity of NN [3,
10]. A local convergence theory was developed for mildly over-parameterized two-layer
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DNN, which shows the gradient descent can converge to zero with the initial loss below
a threshold in [10]. [2] proposed using the efficient conjugate gradient (CG) algorithm to
train the RNN, which can accelerate the convergence procedure and help find the optimal
solution. In this thesis, although there is no guarantee that the absolute global minimum
can be achieved during the training process, the experimental result shows that the con-
vergence trend is noticeable. This is also consistent with the research findings in [3] that
state that the backpropagation process can always make it possible to meet practical stop-
ping criteria.

7.2.3. WHITE-BOX MODELLING ON HIGH-DIMENSIONAL SYSTEM
In this thesis, we propose a DNN-like model structure to learn the governing equations of
several dynamic systems. Although these systems include both linear and nonlinear ones
and can be described by either ordinary or partial differential equations, they still belong
to polynomials, which lack operations such as sin,cos, log. In the future, we will try more
complex experiments on several aspects: a) high-dimensional dynamic system. Actually,
most of the current symbolic regression techniques confine the identified systems to low-
order systems. For example, [8] made the assumption that the system can be described
by a polynomial of low degree (normally less than 3). However, a high-dimensional sys-
tem such as fluid dynamics [1] is the cornerstone of many applications. We should ex-
plore applying the proposed white-box modelling method to high-dimensional dynamic
systems, e.g., biology, physics and fluid dynamics, etc. b) model with periodic activation
functions e.g ., sin,cos. It is well known that sin,cos are non-monotonic periodic func-
tions that can explain the dynamics of many systems, such as the motion of a swinging
pendulum. However, previous research has verified that the inclusion of e.g ., sin,cos in a
DNN cannot contribute to the model training process because of their easy convergence
to local minima [5]. Besides, the conventional neural networks cannot approximate the
periodic dynamics even after a lot of tuning work [11]. In the future, we can try to address
this issue by encoding periodic functions in the proposed model structures. c) including
division in the model structure. The division operation is also a basic mathematical oper-
ation. However, previous works which tried to include the division in the DNN/DNN-like
model found that the division performed poorly when the denominator was near 0 [6]. [7]
proposed the equation learner (EQL∇∇∇···) structure, which includes the division in the out-

put layer. However, this approach precludes learning simple expressions such as sin
(

x
y

)
.

In the future, we should try more practical approaches to encode the division or represent
the division using an equivalent expression, e.g., 1

x = exp
{− log(x)

}
.
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