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Modelling surface roughening during plastic deformation of metal crystals

under contact shear loading

Nilgoon Irania,∗, Lucia Nicolaa,b

aDepartment of Materials Science and Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
bDepartment of Industrial Engineering, University of Padova, 35131 Padua, Italy

Abstract

During plastic deformation, metal surfaces roughen and this has a deleterious impact on their tribological
performance. It is therefore desirable to be able to predict and control the amount of roughening caused by
subsurface plasticity. As a first step, we focus on modelling plastic deformation during contact shearing of
an FCC metallic single crystal, employing a finite strain Discrete Dislocation Plasticity (DDP) formulation.
This formulation allows us to capture the finite lattice rotations induced in the material by shearing and
the corresponding local rotation of the crystallographic slip planes. The simulations predict a pronounced
material pile-up in front of the contact and a sink-in at its rear, which are strongly crystal-orientation
dependent. By comparing finite and small strain DDP, we can assess the effect of slip plane rotation on
surface roughening and on metal plasticity in general. Results of the simulations are also compared with
crystal plasticity, which is also capable of predicting a pile-up and sink-in, but not the crystal-orientation
dependency of roughening.

Keywords: Contact shearing, Surface roughening, Dislocations, Finite strains, Size effects

1. Introduction

Tribological metal contacts are subjected to surface roughening induced by subsurface plastic strains and
strain gradients (Karthikeyan et al., 2005; Rigney and Karthikeyan, 2010). Roughening can promote wear
and degrade the performance of the rubbing materials, by that affecting their life time (Wilson et al.,
1981; Romanova et al., 2013). It is therefore important to be able to predict and possibly control plastic
roughening. This is even more relevant in micro-machines, where surface effects are dominant. This work
aims at shading light on the effect of dislocation plasticity and crystal orientation on surface roughening.

Recent experiments by Brinckmann and Dehm (2015) showed that scratching by micro-sized tools results
in plastic ploughing and surface slip markings. The markings are the signature of dislocations gliding out of
the surface. Moreover, they found that local crystal orientation has a significant influence on the development
and spread of plasticity and surface deformation.

Several numerical studies have been performed to examine micro-scale plasticity and surface deformation.
For example, using two-dimensional discrete dislocation plasticity (DDP) shearing of crystals has been
performed by Deshpande et al. (2004), Song et al. (2016), Sun et al. (2016) and Ng Wei Siang and Nicola
(2017). These works have shown that during plastic deformation pronounced crystallographic steps appear
on the surface of the material, when dislocations glide out of a free surface. More recently, Gagel et al. (2018),
performed three-dimensional DDP simulations of an asperity sliding over a metal crystal. Based on their
calculations, they concluded that as an asperity moves on the metal surface, transport of dislocations may
largely influence the plastic deformation and the stemming surface topology. All these numerical analyses
were performed under the assumption of small strains and hence, effects of finite lattice rotations and shape
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changes due to deformation and dislocation slip were neglected. However, both these effects are expected
to play a non-negligible role in the plastic response of the material and its surface roughening (Irani et al.,
2017). In this paper, we present a finite strain analysis of the shearing of a metallic FCC single crystal
by a rigid solid. The primary aim of this study is to identify how and to what extend finite deformations
influence the plastic response and the resultant surface profile in metals. To tackle this question we will use
both the small strain DDP method of Van der Giessen and Needleman (1995) and the finite strain DDP
formulation of Irani et al. (2015). Crystal plasticity (CP) results are also presented to asses its limitations
when modelling the deformation of a single crystal. Note that the finite strain formulation is used only for
rather small deformations, because the method does not yet include remeshing and can therefore not be
applied for very large strains.

The outline of the paper is as follows: First, the employed DDP formulations, as well as the employed
CP method, are presented. Second, the small and finite strain DDP calculations of the plastic response
are discussed for a crystal sheared by rigid solids of different size. The effects of crystal orientation and
nucleation source density are investigated. Finally, the surface roughening profiles for all these cases as
obtained by small and finite strain DDP as well as CP simulations are presented and discussed. It is worth
noting that in the current study the finite strain effects considered are lattice rotations and shape changes
caused by dislocation slip. Any impact of heat and thermal expansion is ignored. Cases involving abrasion,
i.e. fracture and removal of the base material are also excluded from this work.

2. Formulation of the problem

The 2D model of a single crystal sheared by a rigid solid of width W is shown in Fig. 1. This is an idealized
representation of the contact between a metal surface and a tool or a hard contaminant particle. Plane

φ

Lp

H
p

Rigid Solid

X1

X2

W

u̇0

Ductile Material

Figure 1: Schematic representation of a single crystal sheared by a rigid solid. The coordinate system and critical dimensions
are indicated, as well as some slip planes and dislocations in the plastic zone. The convention employed for the sign of the edge
dislocations is also shown.

strain conditions are assumed with deformations restricted to the X1-X2 plane. The surface of the crystal
is considered to be flat and smooth, and to be in perfect adhesive contact with the rigid solid which shears
the crystal by moving at constant speed in the tangential direction. Thus, the boundary conditions at the
contact are given by

u̇1 = u̇0, u̇2 = 0. (1a)
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All other surfaces have traction-free boundary conditions except the bottom surface, where

u̇1 = u̇2 = 0. (1b)

In this work, results are presented in terms of the contact shear stress

τ =
1

W

∫

SC

T1 ds. (2)

The integration above is performed along the contact area SC = {−W/2 ≤ X1 ≤ W/2 and X2 = 0} and
T1 are the tractions in the X1 direction. To limit simulation time, plasticity is assumed to be confined to
a rectangular window of Lp × Hp inside of which dislocations are treated discretely. The window is taken
to be sufficiently large so that the dislocations do not reach its boundary during the simulations. The
dislocations that impinge on the contact are not allowed to penetrate the rigid solid. To establish this
condition, impenetrable obstacles are placed at the end of the slip planes just below the contact region.

2.1. Small strain discrete dislocation plasticity

At time t, the body under study contains N discrete edge dislocations represented as line singularities in
an elastic domain (Van der Giessen and Needleman, 1995). In the small strain DDP, the aim is to solve the
equilibrium equation

σij,j = 0, (3)

along with the corresponding boundary conditions. Here, ( ),i ≡ ∂( )/∂Xi are the spatial gradients in the
undeformed configuration. Boundary conditions are specified as

Ti = T 0
i on ST , (4)

ui = u 0
i on SU , (5)

where Ti and ui are tractions and displacements, respectively. In this method, the fields are calculated using
superposition of: (i) singular (̃ ) fields of the N dislocations which are computed analytically and (ii) the
image (̂ ) fields which ensure the boundary conditions are satisfied. Thus, displacements, strains and stresses
are expressed as

ui = ûi + ũi, εij = ε̂ij + ε̃ij , σij = σ̂ij + σ̃ij , (6)

while the analytical fields of the discrete dislocations are:

ũi =

N
∑

I=1

ũ
(I)
i , ε̃ij =

N
∑

I=1

ε̃
(I)
ij , σ̃ij =

N
∑

I=1

σ̃
(I)
ij . (7)

Unlike the dislocation fields, the (̂ ) fields are smooth and they are obtained by using the conventional finite
element method, while solving

∫

Ω

σ̂ij η̂i,j dΩ =

∫

ST

(T 0
i − T̃i) η̂i dS, (8)

where η̂i are arbitrary continuous displacement fields.

2.1.1. Constitutive rules

The Peach-Koehler force f (I) on dislocation I is calculated as

f (I) =



σ̂ij +
∑

J 6=I

σ̃
(J)
ij



 b
(I)
j m

(α)
i . (9)
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Here, σ̃
(J)
ij is the stress field of dislocation J at the position of dislocation I. The Burgers vector of dislocation

I is shown by b
(I)
j and the unit vector normal to slip plane α is indicated by m(α). The glide velocity v(I)

of dislocation I has a linear relation with the Peach-Koehler force f (I):

v(I) =
1

B
f (I), (10)

where B is the drag coefficient. New dislocation pairs are generated by randomly distributed Frank-Read
sources. Nucleation occurs when the Peach-Koehler force f (I) on source I exceeds τnucb for a time period
tnuc. Furthermore, two opposite signed dislocations on a slip plane annihilate each other if they are within
the distance Le. An Obstacle pins a dislocation, as it tries to glide through this obstacle. When the
Peach-Koehler force on the obstacle becomes larger than τobsb, the dislocation is released from the Obstacle.

2.2. Finite strain discrete dislocation plasticity

The finite strain DDP framework, in contrast to the small strain calculations, accounts for: (i) lattice
rotations and (ii) shape changes due to slip. The aim of finite strain DDP is to solve the equilibrium
equation

σij;j = 0, (11)

along with the boundary conditions for this equation. Here, ( );i ≡ ∂( )/∂xi are the spatial gradients in
the deformed configuration. In this method, for each time-step the total displacement rate is decomposed
into the analytically known (̃ ) dislocation fields and the (̂ ) fields which ensure the boundary conditions are
satisfied:

u̇i(Xj , t) = ˙̂ui(Xj , t) + ˙̃ui(Xj , t), (12)

where Xj is the position of a material point in the undeformed configuration. Hence, the material and
lattice velocity gradients, u̇m

i,j and u̇e
i,j are

u̇m
i,j = ˙̂ui,j + ˙̃ud

i,j , (13)

u̇e
i,j = ˙̂ui,j + ˙̃ui,j , (14)

respectively. The gradient ˙̃ud
i,j is calculated by the numerical differentiation of the velocity field ˙̃ui with

respect to Xj using the finite element shape functions in the undeformed configuration. Besides, ˙̃ui,j is
obtained by analytical differentiation of ˙̃ui with respect to Xj . Moreover, the Cauchy stress field σij is given
by

σij = σ̂ij + σ̃ij . (15)

Recall that σ̃ij is an equilibrium field. Hence, the weak form of the equilibrium equation (11) simplifies to

∫

Ω∗

σ̂ij η̂i;j dΩ =

∫

S∗

T

(T ∗
i − T̃ ∗

i ) η̂i dS, (16)

where Ω∗ is the domain in its deformed configuration and T ∗
i and T̃i are the tractions specified on the

boundary S∗
T in the deformed configuration. Displacement boundary conditions are also specified on S∗

U .
The deformation gradient is given by Fij = δij + um

i,j , where δij is the Kronecker delta. Hence, the 2nd
Piola-Kirchhoff stress Sij is obtained as

Sij = F −1
im σmn F −1

jn J, (17)

where J ≡ det(Fij). Relation (15) implies that

Ŝij = F −1
im σ̂mn F −1

jn J, (18a)
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and
S̃ij = F −1

im σ̃mn F −1
jn J, (18b)

such that Sij = Ŝij + S̃ij . Using Eq. (18a) along with Eq. (13), the weak form of the equilibrium equation
(16) in the undeformed configuration is written as

∫

Ω

(

Ŝij η̂i,j + Ŝij ûk,i η̂k,j

)

dΩ =

∫

S∗

T

(T ∗
i − T̃ ∗

i ) η̂i dS −

∫

Ω

(

Ŝij ũd
k,i η̂k,j

)

dΩ, (19)

where Ω is the domain in its undeformed configuration. Finally, the constitutive relations for Sij and Ŝij

are obtained analogous to conventional crystal plasticity (Irani et al., 2015, 2017).
The equation (19) along with boundary conditions can be solved by a conventional finite element method.

However, dissimilar to the small strain formulation, the (̂ ) field problem is nonlinear and therefore, it should
be solved iteratively (Irani et al., 2015, 2017). Here, traction free and displacement boundary conditions are
prescribed on the same material points throughout the simulation.

2.2.1. Constitutive rules

In the finite strain model, unlike the small strain DDP, the dislocations do not glide on a straight slip plane.
This is because due to finite deformations and lattice rotations, they move may away from a straight path.
The local lattice rotation is obtained as

ϕ = sin−1(R21). (20)

Here, the rotation tensor Rij = F e
ik U−1

kj , where Uij = (F e
ki F e

kj)1/2. Thus, the slip plane oriented at φ(α) in
the undeformed configuration has locally rotated by ϕ in the deformed configuration. The Peach-Koehler
force f (I) on dislocation I is

f (I) =



σ̂ij +
∑

J 6=I

σ̃
(J)
ij



 b
∗(I)
j m

∗(α)
i , (21)

where σ̃
(J)
ij is the stress field of dislocation J at the position of dislocation I. Moreover, b

∗(I)
j is the Burgers

vector of dislocation I and m∗(α) is the unit vector normal to slip plane α, where both are defined in the
deformed configuration. Similar to small strain DDP, new dislocation pairs are generated by Frank-Read
sources. Differently from small strain DDP, the discrete point sources belong to a slip system rather than

a slip plane and the Burgers vectors of the nucleated dislocation dipole are aligned with s
∗(α)
i , i.e. the

unit vector in the direction of slip system α in the deformed configuration. Opposite signed dislocations
on slip system α annihilate when they are closer than Le. In the small strain formulation, opposite signed
dislocations may annihilate solely if they are on a given slip plane. However, in the finite strain case opposite
signed dislocations annihilate if they are on a given slip system. Finally, dislocations which glide on the slip
system of an obstacle and are closer than Le from it, get pinned to that obstacle.

2.3. Crystal plasticity

In the following, the surface roughening profiles are also obtained by means of the size-independent visco-
plastic continuum crystal plasticity formulation of Peirce et al. (1983). The total strain rate is computed as
the sum of an elastic and a viscoplastic part:

ǫ̇ij = ǫ̇e
ij + ǫ̇p

ij . (22)

The elastic part is given by
σ̇ij = Lijkl ǫ̇e

kl, (23)

where Lijkl is the elastic moduli tensor. The plastic part of the strain rate is written as

ǫ̇p
ij =

∑

α

γ̇α µα
ij , µα

ij =
1

2
(sα

i mα
j + sα

j mα
i ), (24)
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where mα
i and sα

i are unit vectors normal to and in the direction of slip system α. Besides, γ̇α is the intrinsic
slip rate and its value is given by the following power law relation:

γ̇α = γ̇0
τα

gα

∣

∣

∣

τα

gα

∣

∣

∣

(1/m)−1

, (25)

where τα = mα
i σij sα

j is the resolved shear stress on slip system α and γ̇0 is a reference slip rate. Moreover,
m is the strain rate sensitivity exponent and gα is the hardness of slip system α with an initial value τ0 for
all α. Furthermore, gα evolves according to

ġα = h0

∑

α

|γ̇α|. (26)

2.4. Choice of properties

The crystal has a Young’s modulus E = 70 GPa and a Poisson’s ratio ν = 0.33, representative values for
aluminium. Simulations are reported for a reference crystallographic configuration representing a FCC metal
crystal with three slip systems, where the slip planes are oriented in the original configuration at φ1 = 15 ◦,
φ2 = 75 ◦ and φ3 = 135 ◦ with respect to the X1-axis. The impact of crystal orientation is analysed by
repeating the simulations for a crystal rotated by 30 ◦. Three contact sizes W = 1.0 µm, 2.0 µm and 4.0 µm
are considered. The size of the crystal is 1000 µm ×50 µm which is large enough to have a negligible effect
on the outcome of the simulations.

In the finite and small strain DDP simulations, the body is initially dislocation-free. Dislocations are
nucleated from Frank-Read sources which are randomly distributed on the slip planes with a density ρsrc =
50 µm−2. The nucleation sources have a Gaussian strength distribution. The mean source strength is
τ̄nuc = 50 MPa. Moreover, the nucleation time tnuc = 10 ns. The density of obstacles is ρobs = 25 µm−2

and the obstacle strength is τobs = 150 MPa. The drag coefficient for glide is B = 10−4 Pa s (Kubin et al.,
1992) and the critical distance for annihilation is Le = 6b, where b = 2.5 × 10−4 µm is the magnitude of the
Burgers vector. Besides, in all calculations a time step of ∆t = 0.5 ns is employed. The DDP simulations
are performed for five realisations of nucleation source and obstacle distributions. In the following, the
presented results are obtained by averaging over these five realisations.

The crystal plasticity simulation parameters are chosen to fit the small strain DDP simulations for large
contacts, i.e. for sizes where plastic shear response is size independent. Accordingly, in the CP simulations
the default values for the strength of the slip systems are chosen as τ0 = 50 MPa and h0 = 500 MPa. The
initial slip rate is γ̇ = 0.002 s−1 and the rate sensitivity exponent is m = 1/200. The finite element mesh
size in CP and DDP simulations is identical.

3. Size dependent shearing response

Computed curves of contact shear stress τ versus applied displacement u1 are shown in Fig. 2(a) for three
different contact sizes, W = 1.0 µm, 2.0 µm and 4.0 µm. Here, finite strain DDP simulations are contrasted
with their small strain counterparts while the same realisations of obstacle and nucleation source distributions
are used for both methods. This figure shows that both the DDP simulations result in an elastic response
followed by plasticity for all crystals considered. The curves calculated by small and finite strain DDP
deviate from each other during plastic deformation. The difference is very pronounced for contact size
W = 1.0 µm and negligible for W = 4.0 µm. The onset of yield is minorly affected, while the hardening
slope depends on whether finite deformations are considered or not. We shall emphasise that the difference
between the results of small and finite strain DDP are mainly due to finite strain plasticity effects and not
due to finite strain elastic effects (see Appendix A).

We now proceed to investigate the reasons behind the observed differences starting from the dislocation
densities, ρdisl, presented in Fig. 2(b) as a function of lateral displacement u1. Here, for all widths W , the
dislocation density has been calculated as the ratio of the total number of dislocations to the area of the
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Figure 2: Finite and small strain DDP results of (a) contact shear stress τ and (b) dislocation density ρdisl vs. lateral
displacement u1. Results are shown for three selected widths W of the shearing solid.

process zone, i.e. Lp × Hp. Here, the dislocation density ρdisl is only employed to compare the finite and
small strain predictions. Hence, the assumption of a constant plastic area for all contact sizes is appropriate.
Fig. 2(b) demonstrates that the difference between the obtained dislocation densities ρdisl are too small for
all widths W to justify the different plastic responses observed in Fig. 2(a). Therefore, we will proceed to
examine the estimated plastic slip.

Here, following the work of Balint et al. (2006), plastic slip is calculated by using the values of total
displacements ui at the finite element nodes and evaluating their gradients by numerical differentiation
based on the undeformed configuration. One may observe that the definition of slip in this way is mesh
dependent. However, as we employ the exact same mesh in both the small and finite strain simulations, the
mesh dependency of this definition does not result in any discrepancy when comparing the results. Here,
as the calculation of plastic slip is based on the total displacement ui values, we have included the slip
contributions of all the dislocations inside the crystal along the ones that have exited from free surfaces.
The slip γ(α) is defined by

γ(α) = s
(α)
i (ui,j + uj,i) m

(α)
j . (27)

The quantity γ(α) is not the actual slip on slip system α as it includes contributions from dislocations on all
slip systems. Nevertheless, the slip pattern can conveniently be shown using this parameter. Subsequently,
the total slip over the three slip systems is calculated as Γ =

∑3
α=1 |γ(α)|. Contours of the total slip Γ

are shown in Figs. 3(a) and (b) for finite and small strain DDP simulations, respectively. Both figures
are obtained for the same realisation and a contact size of W = 1.0 µm at u1 = 0.04 µm. This figure
demonstrates that during plastic shearing, the imposed deformations are accompanied by the formation of
slip bands below and around the contact region. Moreover, a comparison between the slip bands in Figs. 3(a)
and (b) shows that while the number of formed slip bands are visually the same, on average, the finite strain
calculations correspond to a larger total slip Γ, responsible for the softer shear response obtained with the
finite strain calculations.

Figure 3(c) provides a comparison between the dislocation pile-ups obtained by finite and small strain
DDP simulations. As it can be observed, the dislocations pile-ups in the finite strain calculations are shorter
and less dense when compared to their small strain counterparts. Moreover, the dislocation pile-ups in the
finite strain case are not aligned as in these calculations the effect of lattice rotations and finite deformations
are included. Consequently, in the finite strain case the dislocations glide more easily and plastic hardening
is less. Nevertheless, plastic slip increases significantly with contact area, to such an extent that in large
contacts the material displays a perfect plastic response in both the finite and small strain calculations (see
Fig. 2(a)).
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Figure 3: (a) Finite and (b) small strain DDP predictions of total slip Γ at u1 = 0.04 µm for contact size W = 1.0 µm. The
results are plotted on the deformed configuration where the deformation is magnified by the factor 5. (c) Selection of three
dislocation pile-ups obtained by finite (in red) and small (in green) strain DDP simulations.
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Figure 4: Finite and small strain DDP results of shear flow strength τf for various contact sizes W . The error bars indicate
the scatter in τf values due to different realisations of the source and obstacle distributions.
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To summarise, we define the shear flow strength as

τf = τ(u1 = 0.04 µm) − τY, (28)

where τY is the magnitude of shear stress at the point of yielding. The variation of τf with contact size W
is plotted in Fig. 4 for both the small and finite strain calculations.

In this paper, we only discuss the observations made for contact shearing. For the sake of completeness,
a short description of the results obtained for indentation by a flat punch are also included in Appendix B.

3.1. Effect of crystal orientation

Here, the crystal under study is obtained by rotating the reference slip orientations by 30◦ in the counter
clockwise direction and is identified by φ1 = 45◦, φ2 = 105◦ and φ3 = 135◦. The current crystal is equivalent
to mirroring the reference crystal with respect to the X2−X3 plane and hence, the simulations of this section
can also be interpreted as shearing the reference crystal in the opposite direction.

Small Strain DDP

Finite Strain DDP

W = 1.0 µm

2.0 µm

4.0 µm

0

50

100

150

200

250

300

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

τ
(M

P
a)

u1 (µm)

Figure 5: Finite and small strain DDP results of contact shear stress τ vs. lateral displacement u1. Results are shown for three
selected widths W of the shearing solid.

The evolution of contact shear stresses τ with lateral displacement u1 is shown in Fig. 5 for three selected
widths W of the rigid body. The observations obtained from this figure are very similar to the results shown
in Fig. 2(a) as both τ and the difference between finite and small strain results decrease with contact size.

3.2. Effect of nucleation source and obstacle density

In this section, we examine the role of source and obstacle densities by analysing crystals with two new sets
of parameters: (i) ρnuc = 50 µm−2 and ρobs = 50 µm−2; (ii) ρnuc = 125 µm−2 and ρobs = 25 µm−2. The
width of the rigid solid is chosen to be W = 1.0 µm, the case where the largest difference between small and
finite strain DDP calculations was observed (see Fig. 2(a)). The finite and small strain DDP results of the
contact shear stress τ for these two cases are shown in Fig. 6. Results for the reference crystal of Section 3
with ρnuc = 50 µm−2 and ρobs = 25 µm−2 are also repeated here for the purpose of comparison.

Figure 6 demonstrates that even doubling the obstacle density has a negligible impact on both the small
and finite strain DDP results. Besides, in both the DDP simulations a higher ρnuc results in a decrease in
yield stress and plastic hardening rate as plastic slip increases with ρnuc. Consequently, similar to employing
a large contact size, increasing the dislocation source density also reduces the difference between the shear
stress τ of finite and small strain DDP methods.
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Figure 6: Finite and small strain DDP results of the effect of dislocation source and obstacle density on contact shear stress τ
for the rigid body width W = 1.0 µm.

4. Surface roughening

During plastic shearing of crystals, surface roughening takes place with material piling-up in front of the
contact and sinking in behind it. A schematic representation of this phenomenon is shown in Fig. 7. This
figure also represents the definition of the two roughening parameters employed in this work: (i) The material
pile-up height RH, which is defined as the distance between the highest point of the profile and the original
surface and (ii) The distance between the deepest valley of the profile and the original surface which is
called the material sink-in depth RD. In industrial applications, RH is used to check the size of protrusions
as it affects both static and sliding contacts. In the following, we shall compare and examine the resultant

contact

RD

RH

Figure 7: Schematic representation of the surface roughening and the definition of material pile-up height RH and material
sink-in depth RD as employed in the current work.

surface roughening profiles as obtained by finite and small strain DDP methods as well as crystal plasticity.
Notice that in the current study, the rigid solid which shears the crystal is in the form of a rectangle.
For studies on surface roughening including non-rectangular sliders, we refer the reader to Sundaram et al.
(2012), Beckmann et al. (2014) and Brinckmann and Dehm (2015).

The finite and small strain DDP results of surface profiles for widths of W = 1.0 µm and W = 4.0 µm are
shown in Figs. 8(a) and (b) at u1 = 0.04 µm. The corresponding crystal plasticity results are also included
here. A comparison between the CP results in these figures shows that the height of the material pile-up
and the depth of the material sink-in and their widths are all larger for the W = 1.0 µm case. This is due
to the fact that for the contact size of W = 4.0 µm plastic deformation is mostly concentrated under the
rigid solid where the material is more constrained. On the contrary, for the case of W = 1.0 µm a large
part of plastic slip occurs towards the free surfaces surrounding the contact region. The same features are
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also captured by both the DDP methods with the difference that a wider portion of the surface has been
affected by roughening. This is due to the fact that in the DDP calculations the plastic zone is broader
as in these simulations the availability of nucleation sources limits the amount of plasticity that can be
achieved locally. However, plastic deformation in CP calculations occurs at every material point where the
shear strength was exceeded and therefore, compared to DDP, plasticity is more localized. Figure 8 also
demonstrates that while in CP calculations, for a single W the magnitudes of RD and RH are visually the
same, these values distinctly differ from each other in DDP. The surface profiles due to elastic deformations
are given in Appendix A.
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Figure 8: Finite and small strain DDP and crystal plasticity results of surface profiles for contact sizes of (a) W = 1.0 µm and
(b) W = 4.0 µm at deformation of u1 = 0.04 µm. The DDP calculations are carried out for the same realisation.

The results in Figs. 8(a) and (b) also illustrate that finite strain DDP calculations lead to a relatively
smoother surface profile with fewer sharp points. This is because in the small strain calculations, the nu-
cleated dislocations gliding on the same slip plane leave the crystal from the same point on the surface. In
a finite strain study, however, the location of exit for dislocations of the same slip plane changes slightly
with continued deformation and this leads to a smoother surface profile. The profiles obtained by crystal
plasticity calculations are completely smooth, since they are not based on discrete slip systems and lack
crystallographic steps.

ϕ (degrees)
-0.12-0.24-0.6 -0.48 -0.36 0.0

contact contact

(a) (b)

Figure 9: Finite strain DDP predictions of lattice rotation ϕ at an applied displacement u1 = 0.04 µm for contact sizes of (a)
W = 1.0 µm and (b) W = 4.0 µm. The results are plotted on the deformed configuration where the deformation is magnified
by 10.
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Finite strain DDP results of lattice rotation ϕ for widths of W = 1.0 µm and W = 4.0 µm are shown in
Figs. 9(a) and (b). One may observe that the difference between large and small contact sizes also manifests
itself in the resultant lattice rotation contours. As it can be seen, the area affected by lattice rotations is
more confined to the contact region for the W = 4.0 µm case. It is worth mentioning that, different from
the case of wedge indentation (Zhang et al., 2014), removing obstacles from the DDP calculations does not
affect the lattice misorientation distribution.

To further elaborate on the above-mentioned trends, finite and small strain DDP calculations of the
variation of normalized material pile-up height RH/W and sink-in depth RD/W with displacement u1 are
given in Figs. 10(a) and (b), respectively. These figures demonstrate that with the advent of plasticity, the

Small Strain DDP

Finite Strain DDP

W = 1.0 µm 2.0 µm

4.0 µm

0

2.5

5.0

7.5

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

R
H
/
W

×
10

3

u1 (µm)

Small Strain DDP
Finite Strain DDP

W = 1.0 µm

2.0 µm

4.0 µm

-17.5

-15

-12.5

-10

-7.5

-5

-2.5

0

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

R
D
/
W

×
10

3

u1 (µm)

(a) (b)

Figure 10: Finite and small strain DDP results of normalized (a) material pile-up height RH/W and (b) material sink-in depth
RD/W vs. lateral displacement u1. Results are shown for three selected widths W of the shearing solid.

magnitude of the roughening parameters starts to increase with applied displacement. The values of RH/W
and RD/W are size dependent with the smallest width W resulting in largest absolute values. Furthermore,
similar to the shearing response, the difference between small and finite strain calculations decreases with
contact size. Therefore, allowing for finite strain effects not only results in smaller plastic hardening but
also in a different surface profile for relatively small contact sizes.

4.1. Effect of crystal orientation

We now will repeat our calculations for the crystal of Section 3.1 obtained by mirroring the reference crystal
with respect to the X2−X3 plane. The finite and small strain DDP predictions of pile-up height RH/W and
sink-in depth RD/W are shown in Figs. 11(a) and (b). By contrasting this figure with Fig. 10, an opposite
trend is observed: By mirroring the crystal orientations the ranges of RH/W and RD/W have swapped and
the depth of the valley at the rear of contact is less than the height of the material pile-up. Furthermore,
contrary to the results obtained for the reference crystal, here, the finite strain curves of maximum peak in
pile-up and deepest valley in sink-in both fall above their small strain counterparts.

The surface profiles obtained by finite strain DDP and crystal plasticity are presented in Fig. 12(a) for
W = 1.0 µm. In the previous section, it was shown that CP surface profiles have similar values for RD

and RH. Hence, contrary to DDP, the CP simulations lead to surface profiles that are insensitive to crystal
orientation. In addition, Fig. 12(b) illustrates that the resultant lattice rotation distribution is also mirrored
along with the crystal orientation.

A comparison between the results obtained for the two crystals employed in this work shows that the
distribution of lattice rotation and the surface profile are both sensitive to the orientation of slip even
though the shear response is not. Therefore, it is possible to find orientations which give less roughening
while keeping the plastic shearing strength constant.

To obtain a guideline for controlled ploughing and wear, it is of interest to find a relation between
the resultant surface profile and the crystallographic orientation. In the study of indentation of mono-
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Figure 11: Finite and small strain DDP results of normalized (a) material pile-up height RH/W and (b) material sink-in depth
RD/W vs. lateral displacement u1. Results are shown for three selected widths W of the shearing solid.
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Figure 12: (a) Comparison between finite strain DDP and crystal plasticity results of surface profiles and (b) finite strain
DDP predictions of lattice rotation ϕ at an applied displacement u1 = 0.04 µm for a width of W = 1.0 µm and a particular
realisation. The results in (b) are plotted on the deformed configuration where the deformation is magnified by 10.
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crystals, Peralta et al. (2004) showed that material sink-in is present in regions where at least two slip
traces intersect, whereas material pile-up is typical of single slip. Moreover, performing CP simulations of
indentation, Bouvier and Needleman (2006) showed that both sink-ins and pile-ups may occur in crystals
with a single soft slip system. Here, to simplify our problem, we will also start by considering the effect of
a single slip system on the surface profiles obtained by shearing.

15
◦

165
◦

135
◦

105
◦

75
◦

45
◦

Figure 13: Finite strain DDP predictions of surface profiles for a rigid body width of W = 1.0 µm and crystals with single slip
system. The employed slip system orientation is shown beside the corresponding figure and the contact is highlighted in red.
The results are shown for an applied displacement u1 = 0.04 µm with the u2 displacements being magnified by 400.

To this end finite strain DDP simulations have been performed for different slip orientations varying
from φ1 = 15◦ to 165◦ and a rigid body width of W = 1.0 µm. Figure 13 illustrates that the angle between
the direction of shearing and the orientation of slip plays a key role in the determination of the surface
roughening profiles. The results obtained for acute angles (φ1 < 90◦) show that the depth of the sink-in
behind the contact increases with slip system angle as φ1 rises from 15◦ to 45◦. The sink-in becomes less
deep for the slip direction φ1 = 75◦. For obtuse angles (φ1 > 90◦), however, the material pile-up in front
of the contact is the dominant feature of the surface profiles with the height of the material pile-up being
maximum when φ1 = 135◦. These calculations show that in a two dimensional analysis, a distinct material
sink-in behind the contact and a material pile-up in front of it form if at least two slip systems are active:
one forming an acute angle and the other an obtuse angle with the loading direction.

contact contact

(a) (b)

Figure 14: Finite strain DDP predictions of dislocation structure at an applied displacement u1 = 0.04 µm for single-slip
orientation crystals with (a) φ1 = 75◦ and (b) φ1 = 105◦.

The dislocation patterns of the single-slip orientation crystals with φ1 = 75◦ and φ1 = 105◦ are presented
in Figs. 14(a) and (b), respectively. In the φ1 = 75◦ crystal, pile-ups of positive dislocations form at the rear
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of the contact region as the negative dislocations have left the domain, creating a sink-in behind the contact.
Conversely, in the φ1 = 105◦ crystals, the developed strain gradients dictate the negative dislocations to
leave in front of the contact, forming a material pile-up ahead of it.

Going back to the reference crystal with three slip systems, the slip Γ contours in Fig. 3 indicate that
the material pile-up ahead of the contact is due to the dislocations exiting from φ3 = 135◦. In addition,
a sink-in is formed at the rear of contact, mostly due to dislocation activities on φ2 = 75◦ slip systems.
Finally, shearing a crystal with three active slip systems where two of the slip systems have acute angles
results in a surface profile where the depth of the sink-in is larger than the height of the material pile-up.

4.2. Effect of nucleation source density

Becker (1998) stated that when poly-crystals are under uniaxial loading, a softer plastic response manifests
itself by increased surface roughening. He showed that a plastically softer material admits strain localization
more readily. As a result of this, material sink-ins develop earlier and deeper when compared to what is
observed in harder materials.
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Figure 15: Finite strain DDP and crystal plasticity results of surface profiles for a contact size of W = 1.0 µm. The single
crystal is identified by ρnuc = 125 µm−2 and 50 µm−2 in the finite strain DDP simulations and h0 = 50 MPa and 500 MPa in
the crystal plasticity calculations.

In Section 3.2, it was shown that increasing the nucleation source density from 50 µm−2 to 125 µm−2

results in a softer shear plastic response. The finite strain DDP surface profile for the cases of ρnuc = 50 µm−2

and 125 µm−2 are shown in Fig. 15. The CP calculations corresponding to materials with strength of slip
systems h0 = 50 MPa and h0 = 500 MPa are also included in this figure. Here, the crystal plasticity
parameters are chosen to fit the DDP calculation. This figure illustrates that for crystals with a lower
plastic hardening response both material pile-up height RH and sink-in depth RD are larger while the region
affected by roughening is smaller.

5. Conclusions

In this paper, we present the analysis of the contact shearing of an FCC single crystal by a rigid solid. The
plastic shear response and the resultant surface roughening are studied by both the finite and small strain
discrete dislocation plasticity (DDP) methods to examine the influence of finite deformation on plasticity
and surface roughening. Crystal plasticity (CP) results are also presented as a mean of comparison and to
asses the validity of this method to study plasticity of single crystals upon contact shearing. This study
leads to the following conclusions:

During plastic shearing of FCC crystals, surface roughening takes place with material piling up in front
of the contact and sinking in behind it. Pile-ups and sink-ins are captured by all methods used in this
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work, including crystal plasticity simulations. However, only discrete dislocation plasticity predicts crystal-
lographic steps on the surface, associated with dislocations gliding outside of the free surfaces. The size of
the pile-ups and sink-ins are found to be much larger in discrete dislocation plasticity when compared to
crystal plasticity, where plastic deformation is more localized because there are no limitations to the number
of plastic carriers as in DDP. Also, contrary to crystal plasticity, DDP predicts a strong crystal-orientation
dependence of the pile-ups and sink-ins. The shear stress in the material is instead found to be insensitive
to crystal orientation. This indicates that it is possible to select a preferential crystallographic texture to
limit surface roughening, by keeping similar elastic and plastic properties.

Surface roughening is only locally affected by using a finite DDP formulation, while the major features
are unchanged with respect to small strain DDP. The local differences are caused by the fact that in the
finite strain formulation the location of exit for dislocations of the same slip plane changes slightly with
continued deformation.

The largest difference between the results obtained by small and finite DDP is in terms of plastic flow.
The finite strain calculations, compared to the small strain simulations, typically correspond to a larger
plastic slip and hence, a smaller shear flow strength. However, the difference between finite and small strain
calculations becomes negligible for large contacts and high dislocation source densities, as both cases lead to
pronounced plastic slip. When plasticity is limited, dislocations pile-up on few slip planes and dislocation
glide is limited. These pile-ups are strong, straight, and associated with the strong back-stress in small
strain plasticity, while they are curved and shorter in finite strains, allowing for more plastic glide.

Appendix A. Finite strain effects in elastic shearing

Finite and small strain elastic results of contact shear stress τ versus lateral displacement u1 are presented
in Fig. A.1(a) for the cases of W = 1.0 µm, 2.0 µm and 4.0 µm. Over the range of lateral displacements
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Figure A.1: (a) Finite and small strain elastic predictions of contact shear stress τ vs. lateral displacement u1 for rigid body
widths of W = 1.0 µm, 2.0 µm and 4.0 µm. (b) Elastic surface deformations at an applied displacement u1 = 0.04 µm for rigid
body widths of W = 1.0 µm and 4.0 µm.

investigated here there is a negligible difference between the small and finite strain elastic results. This is
due to the fact that the dimensions of the specimen are relatively large (1000 µm ×50 µm) when compared
to the applied displacements and the contact size. As a result of this the rotations and the deformations
developed in the domain are very small. Therefore, the differences between the finite and small strain DDP
simulations as seen in Section 3 are solely caused by finite strain discrete dislocation plasticity effects.

The elastic surface deformations at an applied displacement u1 = 0.04 µm are shown in Fig. A.1(b)
for rigid body widths W = 1.0 µm and 4.0 µm. The differences between these surface profiles and their
plastic counterparts stem from the fact that in an elastic study, surface deformations are solely a result of
the imposed deformations and rotations as there is no dislocation activity present.
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Appendix B. Indentation results

Finite and small strain DDP results of contact normal stress σ versus normal displacement |u2| are shown
in Fig. B.1(a) for the cases of W = 1.0 µm, 2.0 µm and 4.0 µm. Here, in order to calculate the contact
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Figure B.1: Finite and small strain DDP results of nominal normal stress σ vs. normal displacement |u2|. Results are shown
for three selected indenter widths W .

normal stress we have employed the following relation:
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where the integration is performed along the contact area SC = {−W/2 ≤ X1 ≤ W/2 and X2 = 0} and T2

are the tractions in the X2 direction. This figure shows that in the plastic regime, compared to their finite
strain counterparts, the small strain DDP simulations present a harder response. Furthermore, analogous
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Figure B.2: Finite strain DDP predictions of (a) lattice rotation ϕ and (b) the employed measure of total slip Γ at an applied
displacement |u2| = 0.04 µm for indenter width of W = 1.0 µm and a particular realisation. Both results are plotted on the
deformed configuration where the deformation is magnified by 10.

to the case of shearing, the difference between the small and finite strain predictions decreases with indenter
width. However, by comparing Figs B.1(a) and 2(a) one may observe that the difference between the results
obtained by finite and small strain DDP calculations are smaller in the case of indentation. The finite strain
DDP predictions of lattice rotation ϕ for the contact size of W = 1.0 µm are shown in Fig. B.2(a). The
corresponding results of total slip Γ are demonstrated in Fig. B.2(b). It is shown that in the case of indention
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lattice rotations develop in both clockwise and counter clockwise directions, in contradiction with the case of
shearing where the dislocations pile-ups accommodate solely to a clockwise lattice rotation. Besides, the Γ
contours show that here, the formed slip bands are relatively shorter when compared to their shear counter
parts. Hence, in the case of indentation the observed difference between the small and finite strain DDP
predictions is less.
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