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Summary 
 
Full Wavefield Migration (FWMig) is an inversion-based seismic imaging modality that incorporates 

multiple reflections via one-way wave propagation. The flexible Full Wavefield Modelling (FWMod) 

engine that undergirds FWMig can be extended to address both compressional and converted waves. 

To take care of the angle-dependent nature of reflection and transmission coefficients, a vast number of 

unknown subsurface parameters has to be estimated in the FWMig process, especially when 

elastodynamic wave propagation is considered. This can easily result in a significant null space, 

potentially hampering the underlying inversion procedure. To restrain the number of unknown 

parameters, we propose an efficient new parameterization for FWMod by expanding reflection and 

transmission coefficients in Legendre polynomials, providing us with an orthonormal basis that is 

expected to benefit FWMig. With the aid of a numerical experiment in a two-dimensional layered elastic 

medium, we show that a relatively small number of only three or four Legendre polynomials per 

coefficient per gridpoint is sufficient to model pre-critical seismic data. We prospect that our 

methodology can be extended to include (spatially-varying) reflector dips, so that it might eventually 

be used for FWMig in laterally-varying two- and three-dimensional elastic media. 
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Elastodynamic Full Wavefield Modelling with Legendre Polynomials 

 

Introduction 

 

In Full Wavefield Modelling (FWMod), seismic wavefields are generated by recursively applying depth 

extrapolation and reflection / transmission operators (Berkhout, 2014). These operators that are 

typically expressed as convolutional matrices in the (horizontal) space-frequency domain, describe the 

angle-dependent reflection / transmission process that takes place at each depth level in the subsurface. 

With the help of the slant-stack (or Radon) transform (Stoffa et al., 2006), these matrices can be related 

to the angle-dependent reflection / transmission coefficients at individual subsurface gridpoints 

(Davydenko & Verschuur, 2017). In Full Wavefield Migration (FWMig), the FWMod framework is 

used to invert for the reflection and transmission coefficients by least-squares minimization. As these 

coefficients are functions of the incident angle, this approach might easily lead to an unacceptably high 

number of unknown parameters per gridpoint, especially when elastodynamic wave propagation is 

considered. To mitigate this problem, it has been proposed to relate the reflection and  transmission 

coefficients to physical rock properties with the aid of Shuey’s approximation (Shuey, 1985), leading 

to a manageable problem with three unknown subsurface parameters per gridpoint (Hoogerbrugge & 

Verschuur, 2021). Since Shuey’s approximation is known to be inaccurate at high incident angles and 

for high-contrast interfaces (which are especially relevant for imaging with multiple reflections), we 

propose a more flexible mathematical alternative by expanding the reflection and transmission 

coefficients in Legendre polynomials, providing us with an orthonormal basis that may benefit FWMig. 

 

Theory 

 

After each extrapolation step in the FWMod framework (Berkhout, 2014), the down- and upgoing 

wavefields at each depth level are convolved with reflection and transmission operators. In case of 

elastodynamic wave propagation in a two-dimensional medium, these operators are the sixteen entries 

of the following scattering matrix �̂�, expressed here as a function of depth 𝑧 and angular frequency 𝜔: 
 

�̂�(𝑧, 𝜔) =

(

 
 

𝑰 + 𝛿�̂�𝑃𝑃
↓ (𝑧, 𝜔) 𝛿�̂�𝑃𝑆

↓ (𝑧, 𝜔) �̂�𝑆𝑆
∩ (𝑧, 𝜔) �̂�𝑃𝑆

∩ (𝑧, 𝜔)

𝛿�̂�𝑆𝑃
↓ (𝑧, 𝜔) 𝑰 + 𝛿�̂�𝑆𝑆

↓ (𝑧, 𝜔) �̂�𝑆𝑃
∩ (𝑧, 𝜔) �̂�𝑆𝑆

∩ (𝑧, 𝜔)

�̂�𝑃𝑃
∪ (𝑧, 𝜔) �̂�𝑃𝑆

∪ (𝑧, 𝜔) 𝑰 + 𝛿�̂�𝑃𝑃
↑ (𝑧, 𝜔) 𝛿�̂�𝑃𝑆

↑ (𝑧, 𝜔)

�̂�𝑆𝑃
∪ (𝑧, 𝜔) �̂�𝑆𝑆

∪ (𝑧, 𝜔) 𝛿�̂�𝑆𝑃
↑ (𝑧, 𝜔) 𝑰 + 𝛿�̂�𝑆𝑆

↑ (𝑧, 𝜔))

 
 

.  (1) 

 

Each of the sixteen entries  𝛿�̂�𝑃𝑃
↓ , 𝛿�̂�𝑆𝑃

↓ , �̂�𝑃𝑃
∪ ,… is a  𝑁𝑥 × 𝑁𝑥 matrix, where 𝑁𝑥 is the number of 

(horizontal) gridpoints at each depth level. These matrices can be related to the transmission and 

reflection coefficients 𝛿�̃�𝑃𝑃
↓ (𝑧, 𝑥, 𝑝), 𝛿�̃�𝑆𝑃

↓ (𝑧, 𝑥, 𝑝), �̃�𝑃𝑃
∪ (𝑧, 𝑥, 𝑝), …  at the individual horizontal 

locations 𝑥 (at depth 𝑧) and rayparameters 𝑝 by incorporating an inverse slant-stack transform (Stoffa 

et al., 2006). More specifically, we may write  

 

(𝛿�̂�𝑃𝑃
↓ )

𝑚𝑛
(𝑧, 𝜔) = 𝜔 ∫ 𝐹(𝑝) 𝛿�̃�𝑃𝑃

↓ (𝑧, 𝑥𝑚, 𝑝) 𝑒
𝑖𝜔𝑝(𝑥𝑚−𝑥𝑛) 𝑑𝑝

𝑝𝑚𝑎𝑥+𝑝𝑡𝑎𝑝𝑒𝑟
−𝑝𝑚𝑎𝑥−𝑝𝑡𝑎𝑝𝑒𝑟

,  

(𝛿�̂�𝑆𝑃
↓ )

𝑚𝑛
(𝑧, 𝜔) = 𝜔∫ 𝐹(𝑝) 𝛿�̃�𝑆𝑃

↓ (𝑧, 𝑥𝑚, 𝑝) 𝑒
𝑖𝜔𝑝(𝑥𝑚−𝑥𝑛) 𝑑𝑝

𝑝𝑚𝑎𝑥+𝑝𝑡𝑎𝑝𝑒𝑟
−𝑝𝑚𝑎𝑥−𝑝𝑡𝑎𝑝𝑒𝑟

,  

(�̂�𝑃𝑃
∪ )

𝑚𝑛
(𝑧, 𝜔) = 𝜔∫ 𝐹(𝑝) �̃�𝑃𝑃

∪ (𝑧, 𝑥𝑚, 𝑝) 𝑒
𝑖𝜔𝑝(𝑥𝑚−𝑥𝑛) 𝑑𝑝

𝑝𝑚𝑎𝑥+𝑝𝑡𝑎𝑝𝑒𝑟
−𝑝𝑚𝑎𝑥−𝑝𝑡𝑎𝑝𝑒𝑟

, …,   (2) 

 

where 𝑚 and 𝑛 refer to matrix row and column indices, respectively. Here, 𝑝𝑚𝑎𝑥 is the maximum 

rayparameter that we consider and 𝐹(𝑝) is Tukey (tapered cosine) window to taper the intervals 

±[𝑝𝑚𝑎𝑥, 𝑝𝑚𝑎𝑥 + 𝑝𝑡𝑎𝑝𝑒𝑟].  We exclude post-critical wave phenomena by choosing  𝑝𝑚𝑎𝑥 + 𝑝𝑡𝑎𝑝𝑒𝑟 ≤

1 𝑐𝑚𝑎𝑥⁄  (where 𝑐𝑚𝑎𝑥 is the maximum propagation velocity). To restrain the number of unknowns, we 

propose to approximate the transmission and reflection coefficients with normalized Legendre 

polynomials  �̅�𝑘 (
𝑝

𝑝𝑚𝑎𝑥
). Since all non-converted coefficients are even functions of 𝑝, we approximate 

them by a weighted sum of the first  𝐾 even Legendre polynomials, i.e. 
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𝛿�̃�𝑃𝑃
↓ (𝑧, 𝑥, 𝑝) =  ∑ 𝐶𝑃𝑃,𝑘

↓ (𝑧, 𝑥) �̅�2𝑘−2 (
𝑝

𝑝𝑚𝑎𝑥
)𝐾

𝑘=1 ,    

�̃�𝑃𝑃
∪ (𝑧, 𝑥, 𝑝) =  ∑ 𝐶𝑃𝑃,𝑘

∪ (𝑧, 𝑥) �̅�2𝑘−2 (
𝑝

𝑝𝑚𝑎𝑥
)𝐾

𝑘=1 , …,      (3) 

 

where {𝐶𝑃𝑃,1
↓ , 𝐶𝑃𝑃,1

∪ , … , 𝐶𝑆𝑆,𝐾
∩ , 𝐶𝑆𝑆,𝐾

↑ } denotes a set of 8 ∙ 𝐾 even Legendre coefficients. Similarly, since 

all converted coefficients are odd functions of 𝑝, we approximate them by a weighted sum of the first 

𝐾 odd Legendre polynomials, i.e. 

 

𝛿�̃�𝑆𝑃
↓ (𝑧, 𝑥, 𝑝) =  ∑ 𝐶𝑆𝑃,𝑘

↓ (𝑧, 𝑥) �̅�2𝑘−1 (
𝑝

𝑝𝑚𝑎𝑥
)𝐾

𝑘=1 ,  

�̃�𝑆𝑃
∪ (𝑧, 𝑥, 𝑝) =  ∑ 𝐶𝑆𝑃,𝑘

∪ (𝑧, 𝑥) �̅�2𝑘−1 (
𝑝

𝑝𝑚𝑎𝑥
)𝐾

𝑘=1 , ….,      (4) 

 

where {𝐶𝑆𝑃,1
↓ , 𝐶𝑆𝑃,1

∪ , … 𝐶𝑃𝑆,𝐾
∩ , 𝐶𝑃𝑆,𝐾

↑ } denotes a set of 8 ∙ 𝐾 odd Legendre coefficients. Next, we can 

construct the relevant entries of the scattering matrix �̂�(𝑧, 𝜔) by inverse slant-stack transformation of 

the system of equations (3)-(4) (Stoffa et al., 2006). The result of this operation can be written as 

 

𝛿�̂�𝑃𝑃
↓ (𝑧, 𝜔) = ∑ diag (𝐶𝑃𝑃,𝑘

↓ (𝑧, 𝑥1), 𝐶𝑃𝑃,𝑘
↓ (𝑧, 𝑥2),… , 𝐶𝑃𝑃,𝑘

↓ (𝑧, 𝑥𝑁𝑥)) �̂�2𝑘−2(𝜔)
𝐾
𝑘=1 , 

𝛿�̂�𝑆𝑃
↓ (𝑧, 𝜔) = ∑ diag (𝐶𝑆𝑃,𝑘

↓ (𝑧, 𝑥1), 𝐶𝑆𝑃,𝑘
↓ (𝑧, 𝑥2), … , 𝐶𝑆𝑃,𝑘

↓ (𝑧, 𝑥𝑁𝑥)) �̂�2𝑘−1(𝜔)
𝐾
𝑘=1 , 

�̂�𝑃𝑃
∪ (𝑧, 𝜔) = ∑ diag (𝐶𝑃𝑃,𝑘

∪ (𝑧, 𝑥1), 𝐶𝑃𝑃,𝑘
∪ (𝑧, 𝑥2),… , 𝐶𝑃𝑃,𝑘

∪ (𝑧, 𝑥𝑁𝑥)) �̂�2𝑘−2(𝜔)
𝐾
𝑘=1 ,   

�̂�𝑆𝑃
∪ (𝑧, 𝜔) = ∑ diag (𝐶𝑆𝑃,𝑘

∪ (𝑧, 𝑥1), 𝐶𝑆𝑃,𝑘
∪ (𝑧, 𝑥2),… , 𝐶𝑆𝑃,𝑘

∪ (𝑧, 𝑥𝑁𝑥)) �̂�2𝑘−1(𝜔)
𝐾
𝑘=1 , …  (5) 

 

In this formulation, matrices �̂�𝑘(𝜔) are constructed by applying the inverse slant-stack transform to the 

individual Legendre polynomials, yielding akin to equation (2) 

 

(�̂�𝑘)𝑚𝑛
(𝜔) = 𝜔∫  𝐹(𝑝) �̅�𝑘 (

𝑝

𝑝𝑚𝑎𝑥
) 𝑒𝑖𝜔𝑝(𝑥𝑚−𝑥𝑛) 𝑑𝑝

𝑝𝑚𝑎𝑥+𝑝𝑡𝑎𝑝𝑒𝑟
−𝑝𝑚𝑎𝑥−𝑝𝑡𝑎𝑝𝑒𝑟

.    (6) 

 

The system of equations (5) can be used to construct reflection and transmission operators directly from 

the Legendre coefficients. These operators may then be used to realize elastodynamic FWMod. 

 

Numerical example 

 

In Figure 1, we show a two-dimensional elastic medium. At all horizontal interfaces between spatial 

gridpoints, we compute the analytic reflection and transmission coefficients as a function of 

rayparameter 𝑝 (Wapenaar & Berkhout, 1989) on the interval [−𝑝𝑚𝑎𝑥, 𝑝𝑚𝑎𝑥], where we have chosen  

𝑝𝑚𝑎𝑥 = 0.28 s km⁄ . As an example, some of these curves are shown in Figure 2 (solid black lines). We 

find a set of 16 ∙ 𝐾 Legendre coefficients {𝐶𝑃𝑃,1
↓ , 𝐶𝑆𝑃,1

↓ , 𝐶𝑃𝑃,1
∪ , … , 𝐶𝑆𝑆,𝐾

∩ , 𝐶𝑃𝑆,𝐾
↑ , 𝐶𝑆𝑆,𝐾

↑ } by least-squares 

fitting the system of equations (3)-(4). As an example, we show some of the fitted curves in Figure 2 

for 𝐾 = 1 (dotted blue lines) and 𝐾 = 3 (dashed red lines). The retrieved set of Legendre coefficients 

may then serve as model parameters for FWMod. To test this idea, we deploy 401 P-wave sources and 

401 collocated P- and S-wave receivers with spacing 𝑑𝑥 = 8m at the acquisition surface 𝑧 = 0. As a 

source signal, we choose a Ricker wavelet with a peak frequency of  𝑓𝑝𝑒𝑎𝑘 = 40Hz. For our simulation, 

we use 𝑁𝑡 = 256 time samples with 𝑑𝑡 = 4ms. We employ the theory that was described in the 

previous section to construct the reflection and transmission operators at each spatial gridpoint, where 

we choose  𝑝𝑡𝑎𝑝𝑒𝑟 = 0.02 s km⁄ . Then, we generate pre-critical PP- and SP-data (i.e. the S-wave data 

from a P-wave source) by elastodynamic FWMod (Berkhout, 2014). We compare our results with 

reference responses that were obtained by Kennett modelling (Kennett & Kerry, 1979), after filtering 

the latter with 𝐹(𝑝) for a fair comparison. This comparison is shown in Figures 3 and 4, for the cases 

that  𝐾 = 1 and 𝐾 = 3 polynomials are used per component per gridpoint, respectively. When we 

compare the difference plots in Figures 4(c) and (f) with those in Figures 3(c) and (f), it is clear that the 

FWMod results with 𝐾 = 3 are superior to their counterparts with 𝐾 = 1. 
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Figure 1 (a) P-wave velocity, (b) S-wave velocity 

and (c) density model. All models have 𝑁𝑧 = 121 

and 𝑁𝑥 = 401 samples with 𝑑𝑧 = 5𝑚 and 𝑑𝑥 =
8𝑚. 

 

 

Figure 2 Transmission and reflection coefficients 

(a) 𝛿�̃�𝑃𝑃
↓ , (b) 𝛿�̃�𝑆𝑃

↓ , (c) �̃�𝑃𝑃
∪  and (d) �̃�𝑆𝑃

∪  (black 

lines) just below (𝑧, 𝑥) = (0.12km, 0km) 
(coinciding with the first reflector). The dotted 

blue and dashed red curves are obtained by least-

squares fitting (the system of) equations (3)-(4) 

with 𝐾 = 1 and 𝐾 = 3, respectively.

Figure 3 (a) Reference PP data, (b) FWMod PP 

data and (c) their difference; (d) reference SP data, 

(e) FWMod SP data and (f) their difference. In this 

simulation, we have set  𝐾 = 1. 

Figure 4 Same as Figure 3, after setting 𝐾 = 3. 

 

 

In Figure 5, we show the relative modelling error ℰ = ‖𝐷𝑚𝑜𝑑 − 𝐷𝑟𝑒𝑓‖
2
‖𝐷𝑟𝑒𝑓‖

2
⁄  (where ‖…‖ denotes 

the Euclidean norm) as a function of 𝐾. It is clear from these results that a single polynomial per 

component per gridpoint (as is commonly applied in scalar FWMig) is relatively inaccurate, which is 

in line with equivalent observations in acoustic media as reported by Davydenko & Verschuur (2019). 

 

Discussion 

 

The optimal number  𝐾 of polynomials per component per gridpoint remains a topic for discussion. 

Raising 𝐾 increases the computational burden and could easily enlarge the null space of the FWMod 

operator, which may hinder FWMig. Based on Figures 2(a) and (c), the fitted curves of 𝛿�̃�𝑃𝑃
↓ (𝑝) and  

�̃�𝑃𝑃
∪ (𝑝) with 𝐾 = 3 seem suboptimal for the first reflector (while the fitted curves of  𝛿�̃�𝑆𝑃

↓ (𝑝) and  

�̃�𝑆𝑃
∪ (𝑝) in Figures 2(b) and (d) are close to perfect in this case). Judging from Figure 5, adding one more 

Legendre polynomial (i.e. 𝐾 = 4)  delivers only a marginal improvement to the PP data, which may or 

may not be worth the additional computational burden and potential increase of the null space. This 

observation might be different at higher frequencies and also depends on the medium parameters. 
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Figure 5 Relative error ℰ of modelled PP- and SP-data on a (a) normal and (b) logarithmic scale for 

varying numbers 𝐾 of polynomials per component per gridpoint. 

 

Future prospects 

 

In the future, we aim to recover the Legendre coefficients  {𝐶𝑃𝑃,1
↓ , 𝐶𝑆𝑃,1

↓ , 𝐶𝑃𝑃,1
∪ , … , 𝐶𝑆𝑆,𝐾

∩ , 𝐶𝑃𝑆,𝐾
↑ , 𝐶𝑆𝑆,𝐾

↑ }  by 

inverting the FWMod operator, thus laying the foundation for elastodynamic FWMig. Moreover, we 

want to extend our model by including (spatially-varying) reflector dips, eventually allowing for 

applications in arbitrary elastic media. 

 

Conclusions 

 

We have presented a framework for elastodynamic FWMod by expanding reflection and transmission 

coefficients in Legendre polynomials. We have used this framework to generate pre-critical seismic 

reflection data in an elastic medium and compared our results with those of standard Kennett modelling. 

Choosing an optimal number 𝐾 of polynomials per component per gridpoint seems to be a trade-off 

between accuracy and efficiency. We emphasize that our framework is principally designed for 

inversion, i.e. FWMig. To constrain the null space of the associated inverse problem, we opt for 𝐾 to 

be relatively small. For our specific numerical study, 𝐾 = 3 or 𝐾 = 4 seems to be a good choice. 
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