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Abstract

Electrical faults in the distribution network can lead to interruptions in the power supply of the customers.
Therefore penalties are applied to the DSOs if they overcome the benchmark set based on all the DSOs relia-
bility performance. Hence, the fast restoration of the power supply is crucial for the grid operator in order for
the operational costs to be decreased. The traditional way of fault locating is performed with the help of so-
called Fault-current Passage Indicators. This can be improved by automatic estimation of the fault location
using analysis of the current and voltage signals during the fault, which also depends on the accurate fault
classification. However, the existence of distortions and instabilities in some of the fault waveforms leads to
an unreliable fault loop-impedance/-reactance. As a result, the location of the fault has to be performed in
the traditional way which leads to a delay in the restoration of the power supply.

The objective of this thesis is to explore the potential of modern signal processing and machine learning
(ML) techniques for the development of an explainable classification scheme of faults in the distribution net-
work. ML explainability is a huge part of the research held for this thesis, as it is very important for the fault
analysis department to understand the model and for the grid operators to trust the results of the model. The
problem is divided into two parts. The first part concerns the construction of an explainable ML-based clas-
sification model that can accurately differentiate between types of stable faults. The second part concerns
the identification of suitable criteria for single-phase and multi-phase fault stability. Combined with a fault
classifier based on the first part research, this will lead to a classification and location scheme that can incor-
porate all fault types.

First, a literature study is done. The pre-modeling explainability stage is the most suitable one and based
on that, the Short-time Fourier Transform (STFT) is chosen as the signal processing technique since it can
lead to more explainable features than other techniques, e.g. the Wavelet Transform (WT). Also, the Support
Vector Machines (SVMs) are selected as the supervised learning technique, as it performs well in classifica-
tion problems and it is not a method as complicated as for example the Artificial Neural Network (ANN). Next,
three different feature sets are shaped appropriately from the three-phase fault current and voltage signals,
which are the inputs for the SVM classifier model, so then this model can be tuned and evaluated. The model
with the symmetrical feature set is selected serving suitably both the performance and explainability require-
ments. Following that, a set of stability rules are developed to better identify the stable faults that previously
were classified as unstable. These rules are tuned based on a set of initially labeled unstable faults. In the
end, the ML classification and the stability model combined with section selection rules constitute the final
classification scheme. This is tested on hidden data and the results indicate good performance in classifying
faults, locating faults and identifying stable faults that initially would be classified as unstable. In particu-
lar, the performance of the proposed scheme on that test set has f1-score of 95.1 % exceeding 93.3 % of the
current algorithm tested on the same data, errors regarding the fault loop-impedance/reactance are located
within the acceptable limits and 4 stable faults correctly identified that previously were seen as unstable.
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1
Introduction

1.1. Background

Traditionally electricity networks transfer electrical power from generation to demand in a downstream way,
from high voltage (HV) to medium voltage (MV) and in the end to low voltage (LV) and the end consumers.
The main feature of the the distribution network was to distribute the power from the HV/MV substation to
the end customers in that uniform direction. The increase of distributed generation located in the MV and
LV grid, such as the solar parks and rooftops, small-scale wind turbines, electric vehicles has changed the
traditional way of production and consumption. Also, the growth of electricity consumption per capita leads
the system towards its limits and creates the need for grid expansion. Moreover, the Netherlands is trying to
move away from the natural gas as a heating resource which turns the house appliances into electrical, hence
increasing more the electricity demand. All these changes in the energy production and consumption in the
distribution system, make it more powerful, however more vulnerable. As a result the reliability of the system
becomes very essential.

Alliander is the largest distribution system operator (DSO) in the Netherlands with 38% market share and
it is responsible for the operation and expansion of energy networks. It is important to offer high power qual-
ity and reliability of the electricity supply. A very significant aspect that ensures a high quality and reliability
is the fast location of a fault and the subsequent quick restoration of the power supply. In general, a fault in
the power system could be characterised an abnormal state in which large currents, even in the kA range, are
induced and they are cleared by switching off protective devices, such as circuit breakers. The time needed
for the fault to be located and then the time for that section to be isolated from the rest of the network consti-
tutes the interruption time. Therefore, the desire is for the interruption time to be as low as possible, so the
customers are out of power supply as little as possible.

In order to reduce the outage time a fast localisation process is required. The current process used by
Alliander depends on the type of the fault, as different equations are used for each case. So, if the fault clas-
sification model is not accurate, that effectively leads to inaccurate locations and an increased interruption
time. If the fault is self-extinguishing, which essentially does not trip the circuit breaker (CB) or an unstable
one, a possible fault location cannot be sent to the control room. Currently, Alliander uses an identification
and location scheme that compares certain measured properties of the fault (current, voltage, impedance,
reactance) with preset thresholds that are set based on past fault instances. The existence of the SASensor
which is a substation automation tool that stores the current and voltage waveforms of a fault at the substa-
tion, encourages the use of machine learning (ML) -based techniques for the recognition of the fault type.
However, since these methods make the model a black-box, techniques that add explainability and inter-
pretability in the results and convert it to a grey-box are required so it can be used in practice.

1



2 1. Introduction

1.2. Motivation

Figure 1.1 depicts a typical structure of a Dutch MV distribution network. The dutch distribution systems
usually have ring architecture, however the normal operation is radial. For that there exist normally open
points (NOP) that can connect feeders with a CB or a disconnector. Such points close the CB accordingly in
case of maintenance or fault on a cable section, so the power supply can be restored to the network beyond
that section with fewer customers affected [1]. When a fault occurs on a section in the distribution network,
the CB at the MV busbar opens. So the supply of that feeder stops until the exact location of the faulted cable
connecting the units is found and get isolated. Then the power supply is restored. Hence the importance of
locating the faulted section is that high. The fault location estimation is determined based on the fault loop-
impedance which is compared with the impedance derived from the Vision FaultFinder software, which is
a network analysis tool. The loop-impedance calculation depends on the type of the fault though and thus
the fault type classification accuracy is essential. A misclassification would result to a wrong loop-impedance
value which lead to a not proper estimation of the fault location.

Figure 1.1: Typical structure of a Dutch MV distribution grid [1]

The existing fault classification model of Alliander is quite accurate. However, the option of replacing the
current fault classification model with a ML model was chosen based on exploiting the data being stored by
Alliander regarding the faults in the system. Alliander uses the SASensor in a number of substations. This
system sends every suspect waveform that surpasses the preset thresholds to the control room for further
analysis, so the entries that correspond to faults could be useful for the fault classification. This database is
only getting larger so developing a ML-based algorithm has also a view to the future use.

The investigation of building such a ML-based classification model was done before by Ranganathan [2],
however there are still some weaknesses that make the use in practice still infeasible. The main issue is the
need from the fault analysis department to understand the model and the grid operators, the users of the
Vision FaultFinder software to trust the results of that model. This ML-based model then is operating as a
black-box and this specific application which concerns the fault location and the interruption time after a
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fault, making the use of such a model impractical.

Moreover, it is required to have a better set of rules regarding the classification of faults as unstable. An
unstable fault is not used for fault location, so the fault locating is performed in the traditional way. That
inevitably leads to an increased interruption time, compared to a stable fault passing through the automatic
procedure. After the fault is located by the traditional fault location process, the recorded data is analysed
by experts who manually calculate a fault location. This location is then compared with the actual one. In
several cases it appeared that the location given by the unstable fault was the correct one. The definition of
unstable faults is given by the thresholds presented by Gu and Provoost [3] which can be described as conser-
vative. Therefore, faults that could be classified as stable ones and could provide a reliable loop-impedance,
occasionally are classified as unstable if some of these thresholds are surpassed. So, a refinement of these
stability rules is required, so for less eventually stable faults only the traditional and time-consuming proce-
dure of fault location is used. Ranganathan [2], formulated some accurate and better rules in terms of that.
However, rules that can be applied to multi-phase faults which are also explainable are needed.

In the model developed that satisfies the explainability and stability issues should as well be added the
recognition of self-extinguishing faults. These consist of events of short duration which do not trigger any CB
and do not need direct location. However these faults are warnings of a possible real fault. So when a few of
these self-extinguishing faults are detected, the Smart Cable Guard system is used to pinpoint the weak point,
which can be repaired before the real fault happens. This saves a lot of customer minutes lost. The methods
for the preventive location of these faults are explained by Gu and Provoost [4] and they are out of this thesis’
scope. The importance of accurately recognize them is that a lot of trouble is saved since a possible loop-
impedance calculated from those most probably leads to a non-faulty section.

Overall, the goal is to find ways for the location to be faster, that leads the minimization of the interruption
time and subsequently to a more reliable system. The reliability is measured by the metrics Customer Average
Interruption Duration Index (CAIDI) for the customer side and System Average Interruption Duration Index
(SAIDI) for the system side, based on the time that power is not supplied by the electric grid. The regulator
in the Netherlands benchmarks the DSOs according to their quality of performance or q-factor and uses a
penalty and reward system [5]. This is an incentive for the DSOs to strive keeping a low customer and system
interruption time.

1.3. Thesis Objectives and Scope

The goal of this thesis project is to investigate the potential of an explainable Machine Learning (ML) model
for the classification of faults in the distribution network. First, an overview of the methods existing in the
literature for inserting explainability to an artificial intelligent (AI) model is held. Then modern classification
models are analysed from the literature review, in order to end up to the best combination. The focus is on
the feature extraction and the signal processing techniques used for the faults waveform analysis first for the
stable and then for the unstable faults.

Therefore, the thesis objective can be distinguished into two sections. One is to to develop an accurate
and explainable ML fault classifier algorithm that can identify the type of the stable faults and the other is to
formulate suitable rules and extend the classification model so the unstable faults are better identified.

The scope of the study depends on the reliable fault data available. This data represent real faults that
sometimes deviate from the ones investigated in ideal circumstances, so these difference should be known.
Insights are then made on the performance of the ML classifier on stable and unstable faults, under the
boundary of the explainable features. In the next section, the thesis objectives are presented in the form
of research questions that are intended to be answered over this thesis project.
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1.4. Research Questions

The following are the research questions that are addressed in this thesis. The overarching question is:

How can modern signal processing and machine learning techniques be used to construct an accurate and
explainable fault classification scheme in the distribution network?

The sub-questions that are answered during the course of this thesis are:

1. Which explainability approaches exist for a machine learning model and how to evaluate them?

2. What explainable features could be extracted for the fault classification?

3. How can the unstable faults that can provide fault location be better distinguished than the current
scheme?

4. What are the methods to evaluate the machine learning model’s performance on classifying the faults?

5. What are the methods to determine the best time period for the fault-loop impedance calculation for
accurate fault location estimation?

1.5. Thesis Structure

Figure 1.2 summarises the thesis structure.

Figure 1.2: Outline of the thesis

First, in chapter 2 the current fault classification and location techniques are presented, as well as a liter-
ature survey regarding the explainability in artificial intelligent (AI) models and the fault classification. The
different methods were discussed and the relevant choices were identified, so they could provide answers
to the research questions. Chapter 3 provides the required theoretical background about the dataset used,
the ML and the segmentation techniques that are further used in this project. Next, chapter 4 presents the
development of classification models for stable faults which have explainable features. The process of the
development based on the feature engineering is done and a then a final selection of model to be used for the
stable faults is given. Chapter 5 describes the procedure of developing a classification model for both stable
and unstable faults, that in the end extends to the fault location estimation. This is done, after a refinement of
the stability rules is held and evaluated by the final loop-impedance/-reactance, similar to the final model’s
performance evaluation. Finally, in chapter 6 the final conclusions are summarized and the research ques-
tions are answered based on the thesis findings. Proposals for future research avenues are formed.



2
Literature Review

This chapter introduces the faults in the distribution system and the explainability in Machine Learning (ML).
First, in section 2.1 the fault theory in distribution network is presented, then in section 2.2, the current Al-
liander fault location system is explained. Section 2.3 shows the explainability techniques available for ML
based models and following that section 2.4 reviews the classification methods for a fault in the literature.
Finally, section 2.5 sums up the major findings of this chapter.

2.1. Introduction to Faults in the Distribution Network

Fault in a distribution network is called any undesirable deviation from the normal operation conditions and
it can cause equipment failure and power outages [6]. Usual cause of such failures are a short circuit that
derives from the physical contact between lines after an insulation failure, digging, lightning and a contact
with trees or birds [7]. In the Alliander’s network there exist mostly underground cables, so the last two causes
of failure do not affect it [1].

We can distinguish the faults between symmetrical and unsymmetrical ones. Symmetrical faults are only
the three-phase faults, where all the three conductors have a contact with each other and/or the ground. In
those faults, the only symmetrical components’ sequence existed is the positive one, exactly like at the nor-
mal condition. They are usually developed as a result of a previous unsymmetrical fault. They consist of the
most severe type of fault and at the same time the rarest type, since they involve all the three phases. In con-
trast, unsymmetrical faults derived from the contact between a phase conductor and the earth (single-phase
to ground fault), two conductors (two-phase fault) and two conductors and the earth (two-phase to ground
fault). The single-phase to ground faults are the most frequent type of fault appearing in the system with
nearly 70-80% of faults being this type of fault [6].

Moreover, the faults could be distinguished between temporary and permanent ones. Temporary faults
are called the self-extinguishing faults that last for a very short-time period due to defects or localized degra-
dation caused by aging in the cable insulation. More precisely, the short self-extinguishing faults last normally
for about 2 ms and the long self-extinguishing faults for approximately 10 ms and they get extinguished at the
next zero-crossing of the fault current [4]. If the insulation is not healing or getting repaired on time, a series
of such faults may lead to a permanent fault and subsequently to a loss of supply. Self-extinguishing fault
waveforms can also be characterised by a transient with high frequency that is superposed on steady-state of
the signal. The discharge of the faulted phase creates transient behaviour [8]. Figure 2.1 shows the waveform
of a single-phase self-extinguishing fault at phase A. Permanent faults last for longer than four cycles and
must be switched off externally by a circuit-breaker.

The permanent faults can be further characterised by their stability. Stable faults are called the faults
which have current and voltage waveforms that are at a satisfactory point close to the ideal sinusoidal wave-
form [3]. The definition for the waveform stability here comes based on the Alliander relevant rules and
corresponds to sufficiently sinusoidal signals whose results regarding the loop-impedance can be trusted.

5



6 2. Literature Review

Figure 2.1: Current and voltage waveforms for a self-extinguishing single-phase fault

A formal definition for stable faults has not been instituted yet, so wherever the word stable is used in this
project, refers to the definition based on Alliander rules. Unstable faults are the events with waveforms that
cannot meet these thresholds, hence they cannot lead to a reliable loop impedance and subsequently to an
accurate fault location estimation. In the following chapters these rules are explored too so the stable and un-
stable sinusoidal waveforms can be better distinguished. Figure 2.2 presents an unstable single-phase fault
at phase B.

Figure 2.2: Current and voltage waveforms for an unstable single-phase fault

2.2. Present Fault Location Process at Alliander

In this section the present fault location process at Alliander is presented. The discuss then is focused on the
fault classification algorithm used, as well as the one previously proposed by Ranganathan [2].

2.2.1. Overview of the Fault Location Process
The current fault location process is shown in 2.3. First, there is the digital fault recording (DFR) of the three-
phase voltage and currents through the SASensor at the substation. SASensor is a substation automation
platform that measures and monitors the electricity flow within the substation at a high sampling rate of
28kHz. When these measurements exceed the predefined limits, the SASensor stores these waveforms as
DFR at a sampling rate of 4kHz which corresponds with 80 samples per period [9].



2.2. Present Fault Location Process at Alliander 7

Figure 2.3: Current fault location process stages

The event recognition stage is the following one. Once the DFR is created, the corresponding event needs
to be recognized. The events of main importance are the faults however due to exceeding the current or volt-
age thresholds, sometimes the event recorded may correspond to something else, such as inrush current or
temporal overcurrent. Then, the faults are further categorized in permanent and self-extinguishing faults.
Permanent faults trip the relay and the circuit breaker (CB) opens, so there is an immediate need to quickly
isolate that faulty section of the network. These faults are the ones that are being further examined for their
location to be found, since there has to be a fast restoration. Self-extinguishing faults initially do not trip
the relay however they could be seen as precursor to permanent faults, as the isolation of the cable may be
failed. The importance of distinguishing this type of faults compared to the inrush current event, lies on pre-
venting a following developed fault. Therefore, using techniques as Gu and Provoost [4], the location of a
self-extinguishing fault can be found, so the section could be repaired before a permanent fault comes up.
The location of this type of faults is at the scale of days, serving like a warning for the control room and thus
it is not in the scope of this project.

The type of the fault for each period is being identified based on the thresholds visible on the table 2.1
as presented by Gu and Provoost [3]. These thresholds concern the loop-impedance and -reactance and the
sequence current and voltage. In particular, Z is the loop-impedance, X the loop-reactance, I1 the positive
sequence current, I2 the negative sequence current, I0 the zero sequence current, U0 the zero sequence volt-
age, I0mi n,1 a minimum zero sequence current threshold, I f p the current of the fault phase and Iop the current
of other phases. Therefore, the set of thresholds hold determines the type of fault for each period, before the
stability is checked and the final fault type is classified. The investigation to see which set of thresholds is valid
begins from the most serious type (three-phase) towards the less serious type (single-phase). That way if a
certain set holds, the corresponding type is the final answer and the investigation halts. On the other hand,
if no set can be fulfilled it means that the event under investigation is not a fault. The threshold values of the
loop-reactance derived based on the assumption that the length of an MV feeder is less than 20km and that
the positive sequence reactance of an MV cable is around 0.1Ω/km. The loop-impedance threshold values
ensures that there is a fault and not just a high-resistive load. For the single-phase fault the zero sequence
current and voltage are preferred since they are predominant in that case.
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Table 2.1: Criteria for fault type classification [3]

Signal
Fault type

Single-phase Two-phase Two-phase to ground Three-phase
Loop impedance [Ω] - |Z | ≤ 15 |Z | ≤ 15 |Z | ≤ 7.5
Loop reactance [Ω] - X ≤ 6 X ≤ 6 X ≤ 2
Current sequence ratio - |I2|/|I1| ≥ 0.5 |I2|/|I1| ≥ 0.5 |I2|/|I1| ≤ 0.1

Zero-sequence current
max I0 > I0mi n,1

[A]
max I f p /max I0 ≥ 0.5 I0 ≤ 10 I0 > 10 -
max Iop /max I0 < 0.5

Zero-sequence voltage
maxU0 > 1 - - -

[V ]

Next stage is the distinction between stable and unstable faults. Stable faults have a current and volt-
age waveform which is close to an ideal waveform of 50 Hz. These are the faults that can be automatically
classified since they provide a reliable loop-impedance. Passing through the fault classifier it means that the
classification and subsequently the location of the fault is done at the quickest existed way. On the other
hand, unstable faults have not a regular waveform and normally they have no reliable loop-impedance avail-
able. So, the type and the location cannot be sent automatically to the control center for further isolation
of the suspect fault section. Nevertheless, some unstable faults based on the current Alliander classification
scheme can provide a reliable fault location. These kind of unstable faults are judged as almost stable ones
after visual observation later on by experts who then calculate the fault location. Table 2.2 presents the rules
used by Alliander to distnguish between stable and unstable fault periods as shown by Gu and Provoost [3].
There, M AX represents the maximum value of the waveform for the period explored, RMS is the root mean
square (RMS) of the waveform at that period, M axDel t a derives from the maximum value of the difference
between sequential data points and Ns is the number of samples per period. If these rules are valid for the
relevant fault type for a specific period, then this period is stable.

Table 2.2: Criteria for stable and unstable waveform distinguishing [3]

Signal Criteria
Fault type

Single-phase Two-phase Three-phase

phase voltage
M AX > 0 ✓ ✓ ✓

RMS/M AX > 0.6 ✓ ✓ ✓
M axDel t a/M AX < 8π/Ns ✓ ✓ ✓

phase current
M AX > 0 ✓ ✓ ✓

RMS/M AX > 0.6 ✓ ✓ ✓
M axDel t a/M AX < 4π/Ns ✓ ✓ ✓

zero-sequence
voltage

M AX > 0 ✓
RMS/M AX > 0.6 ✓

M axDel t a/M AX < 8π/Ns ✓

zero-sequence
current

M AX > 0 ✓
RMS/M AX > 0.6 ✓

M axDel t a/M AX < 4π/Ns ✓

After that the final classification of each fault signal is held. As per Gu and Provoost [3], a stable fault with
two consecutive periods of the same fault type can be classified as a fault of that type. If more than one types
of stable faults exist in an entry, then the most serious is the final type. Three-phase fault is the most serious
one, then the two-phase fault and in the end the single-phase fault. If there are no two consecutive periods
like that, then the whole event is classified as unstable fault and hence a location cannot be found directly
based on that. Input of this stage are the signals with fault type and stability labels for each period, whereas
output is the final type of the faults which is needed for the next step of the fault location estimation.
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The last step is the fault location estimation. The input of this stage is the fault type which is vital, since for
each type of fault a different equation is being used for the calculation of the corresponding loop-impedance
or -reactance. These equations can be seen in the table 2.3, where U0, U1, U2 are the zero, positive and neg-
ative sequence voltage, I1, I2 are the positive and negative sequence current, X1 is the positive sequence
reactance and Z1, Z0 are the positive and zero sequence impedance. Basically, the equations derive from the
sequence circuits analysis for each type of fault. For the three- and two-phase faults, only the positive se-
quence impedance X1 is needed and since it does not depend on the earthing properties, it can provide more
accurate results. More precisely, since the error margin in Ohms for multi-phase faults is 0.05Ω and given
that for multi-phase faults the correspondence 0.1Ω/km holds, the accepted error in distance is 500m. On
the other hand, for the single-phase fault the zero sequence impedance cannot be neglected, so the absolute
value of 2∗Z1+Z0 is used. That inserts more uncertainty, as the cable type and diameter affects the resistance
and the earthing properties the zero sequence components and hence the error margin is larger for the single-
phase faults location. In particular, the error margin in Ohms for single-phase faults is 1Ω and an acceptable
value that could be taken for the impedance per kilometer is around 0.4− 0.7Ω/km depending on the ca-
ble type and diameter. Hence, the accepted error in distance for single-phase faults could be around 1.5km.
Figure A.1 in Appendix A shows the values of reactance/km and impedance/km for three-phase and single-
phase fault respectively in different distances from the substation. After calculating the loop-impedance or
-reactance, this is being compared to the corresponding value derived from the Vision FaultFinder and thus
a possible fault location could be found. This location is sent as an indication to the control room, so the
search for the faulty section is more precise. Subsequently, the accuracy of the fault location estimation helps
the quicker restoration.

Table 2.3: Loop impedance/reactance equations for locating the fault [1]

Fault type Reactance/Impedance from the substation to the location of the fault

Three-phase X1 = Im
(

U1
I1

)

Two-phase X1 = Im
(

U1−U2
I1−I2

)

Single-phase |2∗Z1 +Z0| =
∣∣∣U1+U2+U0

I2

∣∣∣
Figure 2.4 presents a more detailed diagram of the whole restoration procedure. The previous explained

stages cover the whole procedure except for the restoration. As said, sending a possible fault location to the
control room, helps spotting the exact location of the fault quicker, so subsequently to lower interruption
time and faster outage restoration. Local sensors are used at the section, like the Smart Cable Guard (SCG),
for the exact location to be found, thus without an indication for the fault location, the restoration becomes
more time-consuming.
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Figure 2.4: Current fault restoration process diagram

2.2.2. Previously Proposed Fault Classification Methodology

In the context of a graduation project, Ranganathan proposed a different fault classification methodology [2].
First of all, the techniques being used in that project are quite different to the ones used in the Alliander’s
current process. The main differences are derived by the use of Machine Learning techniques for the fault
classification algorithm and sliding window Fourier Transform (FT) for formulation of new stability rules.

First, the stable and unstable single-phase faults are distinguished by different criteria, which derive from
the features shown in table 2.4. These features are extracted by short-time FT (STFT) and the Fr ati o which
equals:

Fr ati o =
α0 f aul t

α0r e f

(2.1)

Basically, this reflects to the ratio of fundamental frequency component’s magnitude α0 f aul t of the normal-
ized zero sequence current derivative to the fundamental frequency component’s magnitudeα0r e f of an ideal
reference current per one period. For the former, the derivative corresponds to the point-point difference be-
tween consecutive sample points of a signal and then this signal is normalized to unit energy. For the latter
an ideal sinusoidal is used only consisted by the fundamental frequency component and unit energy. Since
α0r e f is always equal or greater than α0 f aul t , the values of the Fr ati o are restricted by the interval [0,1] and
an ideally stable fault period should correspond to Fr ati o = 1. So, the thresholds of these features’ values in
order to determine if a fault is stable or not, are calculated by cross-validation on the whole dataset. These
values can be seen in table 2.4. The business rules developed by Ranganathan for the stability check involve a
5-point scoring system. Each threshold that holds, provide a score 1. Therefore, if the total score is 5 the fault
is definitely a stable fault. On the other hand if the score is 0 the fault is definitely an unstable fault. If the
score is 4 and both the two top thresholds hold, the fault is stable and if the score is 1 and both the two top
thresholds do not hold, the fault is unstable. The rest of the cases consist of unstable faults that need manual
inspection for the calculation of their fault location. These rules regard only the cases of single-phase faults,
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whereas the single-phase self-extinguishing fault is consider an extreme case of unstable fault. So, the scores
0 and 1 with the previously mentioned condition, lead to a self-extinguishing fault recognition which does
not require a direct fault location estimation. This technique is applied only in single-phase faults, so in this
thesis a technique that can be applied to multi-phase faults is investigated and developed in chapter 5.

Table 2.4: Proposed stability thresholds by Ranganathan [2]

Feature thresholds Description

f _max > 0.8
Maximum value of Fr ati o over the
entire period of the fault

f _stdev > 0.123
Standard deviation of Fr ati o over the
entire period of the fault

f _t i me > 0.015
Fraction of time that Fr ati o is greater
than a threshold over the entire
period of the fault

f _per i od s > 2.5
Number of periods that Fr ati o is greater
than a preset threshold over the entire
period of the fault

f _mean > 0.011
Mean value of Fr ati o when is greater
than a threshold over the entire
period of the fault

Second, for the fault type classification, a ML-based model is being used. The features selected for that
model have been extracted from the wavelet transform (WT) and the waveform, using segmentation tech-
niques, to isolate the faulted part. The feature list with their description is shown in the table 2.5, while the

Table 2.5: Final feature set used in the proposed fault classification model by Ranganathan [2]

Feature Description

Irms_comparison
Metric for the relationship between
the RMS of the phase currents

Irms_2, Irms_3
The smallest and second-smallest
RMS values of the phase currents

V0_regular_std, I0_regular_std
Standard deviation of the zero-sequence
voltage and current of the fault waveform

i_l1_std2
Middle value of the standard deviation
of the detail coefficients of the fault current
waveform in the 1-2 kHz bandwidth

i_l1_e3
Smallest value of the energy of the detail
coefficients of the fault current waveform
in the 1-2 kHz bandwidth

i_l2_e2
Middle value of the energy of the detail
coefficients of the fault current waveform
in the 0.5-1 kHz bandwidth
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hyper-parameters selected for the model are C = 100, γ = 0.01 which were derived by cross-validation. So,
here the use of FT per-period is totally abandoned.

Although this whole new method incorporating both the stability rules and the fault classification brings
quite accurate results, there are some issues that need to be solved before it could be used as a real appli-
cation. First, the features used need to be more explainable, so there is a more prominent understanding of
the procedure and subsequently it could be trusted by the users. Second, the stability rules concern only the
single-phase faults, which is not the only case. It is important to form stability rules for the multi-phase faults,
since a waveform can incorporate more than one fault types. Both issues are taken into account for the de-
velopment of a suitable model in this thesis. The methods followed in order to be resolved the explainability
and the stability are further explained in chapter 4 and 5, respectively.

2.3. Review of Explainability in Machine Learning

The introduction of ML models has affected the understanding of how a certain algorithm works, turning the
models from white-boxes into black-boxes. In some circumstances, applications do work with the black-box,
using the potential of such a model to its fullest [10]. These circumstances are for instance, when the inter-
pretability has no significant impact financial- or social-wise, when there is adequate practical experience
with problems being solved by the model, i.e. optical character recognition and when there is a risk of system
manipulation by human or program that interpret how the model is making decisions, i.e. bank credit scor-
ing. However, there are quite some applications that need to have a more explainable ML model, a grey-box
model [11]. In this section, the levels of explainablity and interpretability are discussed.

Figure 2.5: The three stages of AI explainability: Pre-modeling explainability, explainable modeling and post-modeling explainability
[12]

There are three main levels of distinguishing the explainability of a model [12] which are described in
figure 2.5. The pre-modeling explainability (feature engineering), explainable model (hybrid model) or post-
explainable. which again can be distinguished in model-agnostic (black-box) and model-specific (model
related) explainability. Pre-modeling explainability concerns the feature engineering, so the extraction of
features that are explainable [13]. The explainable model concerns the ML model itself, since there are ML
models which are a priori explainable and interpretable. Those are the linear regression, logistic regression,
decision trees (DTs), RuleFit, Naive Bayes and k-Nearest Neighbours (k-NN) [10]. More precisely, using one
of this model there is always a way to move from the result back to the model and find out why this was the
result. Also, based on those, a lot of hybrid models have been created accompanied by one of those with a
non-explainable model i.e. Artificial Neural Network (ANN), Support Vector Machine (SVM), etc. The third
category of post-explainable modeling concerns only the way the results can be interpreted. Again here,
there is a distinction between the model-agnostic and the model-specific methods and between the local
and the global methods [14], [15]. Model-agnostic methods are used as a black-box, without interfering the
existing model, whereas model-specific models are model related and have an internal structure. Global
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methods concern the general trend of a model to reach its results, for example where it gives more impor-
tance, while local methods concern specific results derivation. Some global model-agnostic methods are the
Partial Dependence Plot (PDP), the Accumulated Local Effects (ALE) and the Global Surrogate. Some local
model-agnostic methods are the Individual Conditional Expectation (ICE), the Local Surrogate (LIME) and
the Counterfactual Explanations.

Regarding the evaluation of the interpretability or explainability of a model there is not a clear path on
how to measure that. However according to Doshi-Velez and Kim [16], there can be three different categories
on that. The application level evaluation (real task), the human level evaluation (simple task) and the function
level evaluation (proxy task). For the application level evaluation, the model is assessed on the real applica-
tion with real data by a domain expert. For the human level evaluation the evaluation is carried out not by
domain experts, but by laypersons. This is mostly used when the general notion of the quality is needed,
allowing for both bigger subject pool and less expenses. On the other hand, function level evaluation does
not require humans, which requires class of model that have been already validated as interpretable. So, for
example, DT could be used as proxy, for the explanation of another model.

For this thesis project the explainability stage preferred is the pre-modeling one, so more precisely to use
explainable feature engineering. This choice seems the proper one, since a more simplistic and explainable
model would work in expense of the prediction accuracy. Furthermore, even though the techniques devel-
oped for the post-modeling explainability are a lot and they are coming from broad range of methodologies,
they still seem inconsistent in their results [17]. Different approaches lead to different conclusions, then for
instance if one chooses the technique based on the results that fit him/her, the explainable application will
be biased. Regarding the evaluation of the interpretability the most appropriate technique seems to be the
application level evaluation from experts, since they could be suitable judges of that because they are going
to be either way users of that model. Therefore, the goal is to develop features whose values are going to be
sufficiently understood by the users and would justify the results.

2.4. Review of Classification Methods for Electrical Faults

As mentioned previously, in order to find the location of a fault in a power system, first the type of the fault
needs to be identified. Since this location is a function of the fault loop impedance and this is dependent on
the fault type, the accurate fault classification is vital. More precisely, for each three types of faults, single-
phase, two-phase or three-phase fault, a different equation is used for the loop impedance calculation as
shown in table 2.2. So, in this section a literature review is presented regarding the ML models being used for
the fault classification, as well as the feature extraction techniques. Since the features have to be explainable,
there is a focus on reviewing models with such features.

2.4.1. Review of Feature Engineering Techniques

For this thesis project it is significant to overview feature engineering techniques, since this is the epicenter
of the explainability of the whole model. The first impression is that the frequency analysis which consists
of discrete WT (DWT) and FT, is the predominant signal processing technique. In papers which are using
the discrete DWT as a signal processing technique, it is observed a wide range of normalized energy being
used for the detail or approximation coefficients. For instance, Magaula et al [18] use normalized energy of
level-7 detail coefficients, Livani et al [19], [20] use normalized energy of level-1 and level-2 detail coefficients
and Abdelayed et al [21] use normalized energy of approximation and level-1 to level-4 detail coefficients.
In papers where FT and sliding window FT are used to analyse the data, the magnitudes of the fundamental
frequency components are applied and/or some other frequencies, either harmonics or simply a summa-
tion of a frequency range. In particular, Lout et al [22] use the DC component, the fundamental frequency
component, the summation of the components over the frequency range 100-550 Hz and 600-1050 Hz, while
Aslan et al [23] use the DC component, the 25 Hz component, the fundamental frequency component, the
summation of the components over the frequency range 75-200 Hz, 225-500 Hz and 550-1100 Hz. Moreover,
Han et al [24] use Short-time FT (STFT) for the fundamental frequency component and the summation of the
harmonic components, whereas Ben Hessine et al [25] and Gayathri et al [26] use the fundamental frequency
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component. When temporal analysis is used for the data, mostly the RMS value of the current/voltage and
their harmonics are selected such as in [27], [28] or simply some sampling values around the fault time like
in [29].

Another noticeable characteristic in the literature is the signals used as the input of the models. While in
a lot of papers only the three-phase voltage and current signals are preferred, in some others the symmetrical
components are also shaped and used, providing a phase decoupling to the model, either the zero sequence
components [2], [25], [26], [30] or as ratios compared to the positive sequence component [3], [31].

Lastly, the most common element in these techniques for feature engineering is the time period used for
the extraction of features useful for the fault type. All these models are using a time period around the fault
time deception, either a bit before and a bit after the fault occurs. However, this could lead into mistakes,
since real faults often evolve in time and become more severe, due to isolation defections. So, for example,
a fault can start as single-phase fault and then can develop into a two-phase fault before it switches off as
depicted in figure 2.6. Sometimes it can even further develop into a three-phase fault. So, all these algorithms
would focus on the initial fault time period, which would result in a wrong fault type identification and sub-
sequently location. Therefore, it is better to detect and use for feature extraction the time period of the last
developed stable fault type as supported by Gu and Provoost [3] and Ranganathan [2].

Figure 2.6: Example of a real fault that starts as a single-phase fault and it further develops into a two-phase fault

2.4.2. Review of Fault Classification Techniques

The main importance for this project concerns the fault classification, so it is essential to select an appropri-
ate model for that. It can be observed that the most popular methods proposed for fault classification models
are ML-based methods that could exploit the information obtained by the given data. In particular, authors
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in [18], [19], [20], [32], [33] prefer SVM since it can provide high accuracy reaching the optimal solution for the
marginal boundaries among the different classes, whereas authors in [22], [23], [26], [29] choose ANN as it can
lead to high performance and robustness. Also, authors in [21], [28] pick DT-based model which has a more
straightforward structure and can have quicker training time than ANN, it performs worse than the other ML
techniques though. Not all fault classification models are based on ML techniques and instead of that, the
features developed for instance from STFT [24], [34], [35] or DWT [29], [30], [36], are extracting directly rules
based on certain thresholds regarding the fault classification.

Since the desired techniques used for this project are ML-based, due to the willingness of taking antvan-
tage of the relevant data stored, the selection must be done around SVMs, ANNs and DTs. Additionally, ex-
plainability and interpretabilty is even more significant and the model can affect that. An ANN-based model
is basically a black-box that offers high accuracy in expense of explainability. On the other hand, DT is a high
interpretable model, however due to that, lacks in the accuracy compared to the others. The decision is to
use SVM for the fault classification model, since it can provide a more balanced interpretability and accuracy
compared to the rest. Therefore, the model developed in this thesis can have as a basis model the one devel-
oped from Ranganathan [2], as also the data are similar.

2.5. Summary

First, in this chapter the meaning of a fault in the distribution system was introduced. Subsequently, the
current fault location and restoration procedure was explained, with focus on the current and proposed fault
classification techniques. After reviewing what explainability in ML is, the development of explainable fea-
tures was set as the primary source of explainability. Because of that, STFT was selected as the signal process-
ing technique mostly used, as it can offer straightforward results in expense though of performance power
compared to WT. At the same context, taking account the trade-off between explainability and performance,
SVM is the emerging method to be used in this project as the ML model. Finally, based on the literature review
presented in this chapter, some research questions could already have answers.

Which explainability approaches exist for a machine learning model and how to evaluate them? There are
three levels of distinguishing the explainability of a model. Pre-modeling explainability (feature engineering),
explainable model (e.g. linear regression, DT, hybrid model) or post-explainable, which again can be distin-
guished in model-agnostic (black-box) and model-specific (model related) explainability. Since it is more
important for Alliander what each feature represents, the study will be focused on the pre-modeling explain-
ability and the feature engineering. The evaluation of explainability/interpretability can be done by experts
as an application level evaluation or by using a DT as a proxy in a function level evaluation.

What explainable features could be extracted for the fault classification? The less explainable features are
predominantly derived by the WT, which according to the literature is being used for the feature extraction
for the fault classification in transmission and distribution networks. Also various other signal processing
techniques for feature extraction are being used based on the literature study done, such as FT, STFT or even
temporal analysis. The most prominent argument against the WT is that the resulted detailed coefficient
cannot provide precise frequency or voltage/current information, thus WT can be characterized as less ex-
plainable and interpretable compared to STFT. Although STFT or Windowed FT has poorer time-frequency
resolution, within each window it can provide precise frequency content information. Since in this project
the explainability in the model is vital, it can be used for any transient frequency features needed, instead
of WT. Additionally, features based on the fundamental frequency component and the phase angle, such as
symmetrical components, impedances, can be extracted using STFT.





3
Theoretical Background

This chapter provides background information needed regarding the developement of the models in the fol-
lowing chapters of this thesis. First, in section 3.1 the kind and the way the data is used in the models is
described, in section 3.2 the definition of Machine Learning (ML) is presented with more focus on Support
Vector Machines (SVMs). Section 3.3 reflect on the suitable metrics for evaluating the performance of a model
on classifying and calculating the loop-impedance respectively. Section 3.4 explores the basis of the segmen-
tation algorithm used for the models developed in the thesis and the different versions of those. Finally,
section 3.5 summarizes the key points of the work done in this chapter.

3.1. Description of Dataset

The dataset available by Alliander and the one was used in this thesis concern digital fault recordings (DFRs)
of three-phase current and voltage waveforms which reflect to a fault detected in the distribution network.
There are different types of fault included in the dataset. In particular, there are single-phase faults both per-
manent and self-extinguishing ones, two-phase permanent faults, two-phase to ground faults, three-phase
permanent faults and unstable faults. The two-phase and two-phase to ground faults are all called with one
single label of two-phase faults since they have minimal differences and the two-phase to ground labels cor-
respond to only 6 recordings. The class of unstable faults corresponds mostly to unstable single-phase faults
(only 2 unstable two-phase). Table 3.1 sums up the number of samples that correspond to each different fault
type. These labels reflect on the real class of each fault provided by Alliander.

Table 3.1: Summary of the number of samples existed in the dataset for each class of fault

True fault type Number of samples

Single-phase permanent 128
Two-phase 109
Three-phase 94
Single-phase self-extinguishing 432
Unstable 120

First, the result from the Alliander’s current model is available which is not for all the types 100% accurate.
Then for some faults a manual inspection of their waveform is done by experts afterwards, which leads to the
corrected real type of fault which is the one stated above. So, for each recording there exist two labels regard-
ing the fault type. One that corresponds to the output of Alliander’s current classification algorithm and one
that corresponds to the real type after the manual inspection. For the faults that have no information about
the manual inspection, the Alliander’s classification model result is considered the real one and it is assumed
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to be the same as after the manual inspection. Therefore, these are the labels used in order to train correctly
the models in chapter 4 and the new proposed model in chapter 5. However also the Alliander’s current model
results are used for the data recordings that belong to the test set in chapter 5 so to compare the new model
with. Most of the misclassifications of the current Alliander’s algorithm concern the unstable faults, since the
stability rules are a bit conservative. Some other misclassifications come from the self-extinguishing faults,
because a series of restriking self-extinguishing faults can lead to a permanent fault which they are in some
occasions wrongfully classified as such. Regarding the misclassification of different types of stable perma-
nent faults, there only a few in the data set. They concern 8 faults labeled as single-phase permanent faults,
which in reality correspond to 2 two-phase and 6 self-extinguishing faults. This is a result of an old Vision
version used. For the multi-phase faults the current classification model is working perfectly.

It is worth mentioning that in chapter 5, a different dataset is used for training and evaluating the ML
classification model. The segmentation technique is changing there, then each data recording could result to
one or two segmented parts. So, a manual labeling based on the real labels is being done for the recordings
that will result in two segments. That means at least one of the segments it should be the same as the real
label and the other is assigned manually. However, since each fault sample leads to a single value for its type,
the final results for the entire proposed model in that chapter, are evaluated based on their true fault type
values.

For the first modeling part of the thesis, the development of classification model for stable faults pre-
sented in chapter 4, only the stable permanent faults are considered, hence the single-phase, two-phase and
three-phase faults. For the second modeling part of the thesis, the development of classification model that
incorporates also the unstable faults and discussed in chapter 5, the whole data set is used. As said above,
the segmentation technique is changing there resulting up to two segmented parts, thus a manual labeling is
being done based on the real labels. Although the segmentation techniques between these two parts are be-

Figure 3.1: Description of the dataset separation needed for the suitable evaluation of the models
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ing altered, so the ML model could see differently the same entry in each case, there is a clear division of the
dataset in training, validation and test sets, in order to keep the data used for evaluation certainly unseen.
Therefore, the stable faults that belong to the test sets needed for the two models in chapter 5 are also re-
moved from the training and validation sets of the models developed in chapter 4.

Figure 3.1 depicts the separation through all over the whole real dataset. So, for the training and validation
of the models concern the stable faults in chapter 4, only the solid green box is used. For the training of the
stability rules model in chapter 5 the solid blue box is used, where as then for fitting the data to both that and
the classification model the whole training set is used and for the evaluation of the two models the whole test
set. The test set was randomly selected in advance. Additional stable faults that were initially labeled unstable
by Alliander were added, as well as the 8 stable faults misclassified by that. This way it would be possible to
compare the performance of the model developed there with the one currently in use by Alliander.

3.2. Machine Learning

ML constitutes a subset of artificial intelligence (AI). It solves problems based historical data and informa-
tion, using algorithms and statistical models without the need of explicit programming and executing com-
plex mathematical calculations in a fast way [37]. The main function of ML is to learn and recognize hidden
patterns within the available data and then use these patterns for an output prediction or decision of a related
event. The ML algorithms can be distinguished in two main categories, supervised and unsupervised learning
and their difference is that for the former there exist labels in the training data subset [38]. Supervised learn-
ing can further categorized into regression and classification problems. The regression problem involves a
continuous output, whereas classification problem involves a discrete output. Unsupervised learning mostly
consists of clustering and association mining techniques. Clustering algorithms form various inherent sub-
groups based on the hidden relationships between the attributes of the observations, while association min-
ing algorithms focus on finding suitable rules that express the relationships between variables accurately. In
figure 3.2 a diagram with the ML subcategories is shown.

Figure 3.2: Machine Learning subcategories diagram

3.2.1. Supervised Machine Learning

A main problem that is intended to be solved is the classification of the fault type. The dataset used for
this problem involves the three-phase current and voltage waveforms of the fault signals recorded from the
SASensor, as well as their corresponding type of fault. This is actually the label of each data entry and the one
that is going to be predicted by the model in the end. So, this constitutes a supervised learning problem.
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In order to create such an appropriate classification model, first this needs to be fitted by a training set of
data and then evaluated by a test set. So, the goal is to have a model with an accurate enough performance
on the test set, which is the unseen set of data. These two sets must be split in advance and there must be no
overlaps, so there is no leak in the fitting procedure.

For given N training samples X = {x1, x2, ..., xN }, where xi ∈Rm is the i th sample and each of these sam-
ples has m dimensions or features. Each training sample corresponds to a label Y = {y1, y2, ..., yN }, where
yi ∈ {1,2, ...,c}, with a certain class. Therefore, in the end the training data set is {(x1, y1), (x2, y2), ..., (xn , yn)}.
During the training procedure, such a machine learning model aims at discovering the relationship between
the observations X and their labels Y . Subsequently, the performance of the fitted model is evaluated on
the test set, the unseen data and in particular, the accuracy of the predicted results is checked compared to
the actual labels. That way, the model’s ability to generalize and performance on future real unseen data is
measured.

Since the generalization of the model and the response in future data has high importance, there should
be a suitable trade-off between bias and variance. A model that is fitted remarkably close to the training
data, learning all the details and small irregularities of the dataset, including noise and various other random
components, inevitably cannot be generalized properly. Thus, although it has an extremely high scoring per-
formance on the training dataset, it has a poor scoring performance on the test dataset. This means that the
model has high variance and this is called overfitting. In contrast, a model that learns only broad and loose
relationships of the dataset, while missing the meaningful aspects, it has a high bias. This is called underfit-
ting. [39]. Therefore, the goal is to have an harmonized trade-off between bias and variance of the model, so
it can follow the useful and significant trends of the dataset, without entailing very trivial and noisy aspects
of that.

3.2.2. Support Vector Machine

As seen from the literature review, SVM is a very suitable model for a classification model. It can use hyper-
planes to separate the different classes optimally, not only for linearly but for non-linearly separable data as
well. This is feasible due to the use of kernel functions, which can transform the feature space into a higher-
dimensional space, such as cubic, quadratic etc where the data is linearly separable.

However, discovering a hyperplane that entirely separates the data is not the only criterion for a well-
performed classification. In such a case, the sensitivity of the model is endangered, because even one single
point can change the position of the hyperplane. Thus, the SVM finds such a hyperplane that does allow a
few misclassifications during the fitting procedure by the training set, so it can perform better in the unseen
data. That comes after an suitable determination of the bias/variance trade-off.

In Figure 3.3, a hyperplane is shown which can adequately separate the two datasets. As seen, the hy-
perplane here is a line, since the space is 2-dimensional. Correspondingly, the hyperplane is a plane in a
3-dimensional space and in general, for a m-dimensional space, the hyperplane is a subspace with m −1 di-
mensions. The decision boundary between the classes in the figure 3.3 corresponds to the line wT xi +b = 0,
where w is the weight vector, b is the bias and x is the training sample data.

Here the data is non-separable, so there are some misclassifications [39]. In that case a new variable, the
slack variable ξi ≥ 0 is introduced, which is equal to the distance between the misclassified point xi and the
its respective margin hyperplane. When 0 ≤ ξi ≤ 1, the sample is located between the hyperplane and the
correct margin plane which means that there is no misclassification. However when ξi > 1, the sample is not
classified correctly. The case of separable data is the special case when ξi = 0. So, the general equation for the
margin hyperplanes is:

yi (wT xi +b) ≥ 1−ξi , ∀i = 1,2, ..., N (3.1)

where yi ∈ {−1,+1} here for the negative and positive class respectively.

The distance between the margin planes is called margin and it is equal to d1 +d2 = 2
∥w∥ , where d1, d2

correspond to the distance from the two planes to the hyperplane respectively. The objective function of the
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Figure 3.3: Diagram of the seperating hyperplanes using support vectors for a two-class classification problem

SVM equals:

min
1

2
∥w∥2 +C

N∑
i=1

ξi

s.t. yi (wT xi +b)−1+ξi ≥ 0, ∀i = 1,2, ..., N

ξi ≥ 0

(3.2)

where C is is the penalty factor for misclassifications.

As mentioned above, when the dataset samples are non-linearly separable (ξi > 1), SVM can use kernel
functions so that maps the data in a higher-dimensional space, where the data may be linearly separable [39].
These kernel functions consist of the dot product of nonlinear functions φ and more precisely they are equal
to K (xi , x j ) = φ(xi )Tφ(x j ). As from Ranganathan [2] and Livani et al [19], the suitable kernel function in the
case of fault classification is the radial basis function (RBF), which equals to:

K (xi , x j ) = exp

(
−∥xi −x j ∥2

γ

)
(3.3)

Therefore, using a SVM with a RBF kernel, in order to tune the model satisfyingly, it is crucial to determine
the values of the parameters C from equation 3.2 and γ from 3.3. These parameters are called hyperparame-
ters and the process of finding their values is called hyperparameter tuning. In particular, parameter C is the
regularization parameter since it can control the trade-off between the classification margin and the classifi-
cation error of the training dataset. Parameter C is proportional to the variance and inversely proportional to
the bias of the classifier, so an extremely high value of C can lead to overfitting and a extremely low value can
lead to underfitting. Parameter γ determines the degree of similarity between two training samples. A small γ
results in high variance, low variance and an almost flat hyperplane, whereas a large γ results in low variance,
high bias and a more curvy and spiky hyperplane. So, it has a huge influence on the separating hyperplane’s
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position and shape. In conclusion, a simultaneous optimization of C and γ values must be done such that
the model works appropriately.

For the fault classification of these thesis there exist at least 3 different classes. Thus, a multi-class clas-
sification has to be applied which makes some aspects of SVM different. Since SVM was designed for binary
classification, there exist two different techniques to convert it to multi-class classification [40]. The first
is the "one-against-all" method where each class is trained against the rest of the classes. The second is the
"one-against-one" method where each class is trained against each class separately. For the first approach the
training of k classifiers and for the second approach the training of k(k−1)/2 classifiers are required, where k
is the number of classes existed. So, the "one-against-all" is more computational efficient and interpretable,
however the "one-against-one" is usually more accurate with kernel algorithms [41]. "One-against-all" is the
most commonly used technique and it is the one preferred for this project.

3.3. Metrics for Evaluating the Model’s Performance

3.3.1. Metrics for Evaluating the Classification Model’s Performance

In this thesis project the f1-score is used for evaluating the performance of the classification model. F1-score
derives from the combination of precision and recall which could also be used for specific evaluation of a
classification model. In the following section the definitions of precision, recall and f1-score are introduced.

In figure 3.4 a confusion matrix for binary classification is presented, so these metrics could be explained
better. Each sample can be classified as positive or negative. Each row of the matrix corresponds to a true
class whereas each column corresponds to an predicted class. So, the number of positive instances correctly
classified as positive is called True Positive (TP) while the number of negative instances correctly classified as
negative is called True Negative (TN). Combined these two consist of the samples that are classified correctly.
In contrast, the number of positive entries which have misclassified as negative is called False Negative (FN)
and the number of negative entries which have misclassified as positive is called False Positive (FP). These
two combined consist of the misclassifications of the model. With these definitions, the formulation of the
metrics precision, recall and f1-score can be shown.

Figure 3.4: Confusion matrix for a binary classification problem

Precision is defined as the ratio of the correctly classified positive samples to the total instances that are
predicted to be positive [42]. It indicates the accuracy of the model in classifying the positive class and it is
useful when FP is a higher concern than FN, such as in spam recognition. Its equation is given in equation 3.4.

Precision = TP

TP+FP
(3.4)
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Recall represents the ratio of the correctly classified positive samples divided by the total number of the
samples that are actually positive [42]. It indicates the strength of a model to predict the positive class and it
is useful when FN exceeds the importance of FP, such as in a disease diagnosis. Recall is also called sensitivity
and because it is using only the fraction of entries that are positive is not that a standalone metric. Equation
3.6 shows the equation of recall.

Recall = TP

TP+FN
(3.5)

Precision and recall cannot represent separately the entire performance of a classifier because they focus
mostly on the positive class covering each a half of the confusion matrix not in compliance. So, the f1-score
metric is introduced which represents the weighted harmonic average of precision and recall, aiming at the
optimal trade-off between these two metrics [43], [44]. That way f1-score is high when both precision and
recall is high and low when both are low. It is designed so it works well with imbalanced data and its equation
is provided in equation 3.6.

F1-score = 2
Recall∗Precision

Recall+Precision
(3.6)

When there is a multi-class classification problem, there is not an overall F1-score calculation. Instead,
the evaluation becomes a one-vs-rest manner where each class is evaluated against all the other classes. So,
each class success is rated in distinct steps, treating the rest of the classes as the negative one and subse-
quently turning the multi-class problem into a combination of binary classification problems [44]. For each
class the precision, the recall and then the f1-score are calculated. For a better comparison a single value of
f1-score is needed so the final result is an average of each class’s score. There are three averaging techniques
namely macro, weighted and micro. In particular, macro averaging is calculated by the unweighted mean of
all the per-class f1 scores, weighted averaged f1 score is computed by the weighted mean of all the per-class
respective scores and micro averaging is the global average where the sums of TPs, FNs and FPs are consid-
ered. For the evaluation of multi-class classification problems in this project the averaging method used is
mostly the macro. It is suitable in situations like this with the given dataset that contains imbalanced classes,
but regardless all the classes are treated equally and there is no distinction between highly and poorly pop-
ulated classes [44]. The weighted averaging method is used as well for the final result, since there is a huge
difference in the balance of the five different classes and in order to compare previous results where the same
method was used.

3.3.2. Metrics for Evaluating the Model’s Performance on Calculating the Loop-Impedance

In the scope of this project is after classifying the type of the faults to also provide an accurate fault loop-
impedance so the fault location could be found. Thus, there is need to evaluate how close is the calculated
by the thesis model loop-impedance compared to the one given by Alliander. The main metrics used for this
evaluation are the root mean square error (RMSE), the mean absolute error (MAE) and the 90th percentile of
the absolute error.

RMSE =
√√√√ 1

N

N∑
n=1

(yi − ŷi )2 (3.7)

M AE = 1

N

N∑
n=1

|yi − ŷi | (3.8)

Their equations of the first two are presented in equations 3.7 and 3.8 respectively, where yi is the impedance
value as calculated by Alliander with the Vision FaultFinder, ŷi is the predicted impedance value by the model
developed in this thesis and N is number of total data in the specific set. Ideally the error should be zero, so
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basically the goal is to find sufficiently low error on the set of faults that are evaluated each time. The differ-
ence between the two first metrics is that RMSE is penalizing more the further points or outliers than MAE,
so it takes into consideration even the small number of data that lead to very bad results. The use also of the
90th percentile of the absolute error helps into detecting where the huge part of the errors stands (lower 90%)
and that indeed the rest of it could be outliers.

3.4. Fault Segmentation Algorithm

Each signal entry can be divided into three parts, the pre-fault state, the fault state and the post-fault state.
The part with the important information about the fault and its type is the fault state. So as Ranganathan also
showed in [2], it would be more beneficial to isolate and use only the fault state for further analysis. Since
the ML method used is SVM, it is more suitable for the performance of the model to use features that reflect
closer to the faulted part, that consists of the information regarding the type of fault.

Segmentation is gaining also great significance from the fact that in the duration of the fault, more than
one types could exist due to the nature of faults in reality to evolve into a more serious type. That is the main
reason why the segmentation algorithms are not stressed in the literature where the simulated faults used as
data do not possess evolving stages. Usually only the late pre-fault and early fault stages are used for drain-
ing information about the fault type which in case of an evolving fault would lead to a not correct result. It
is more useful to use the most serious fault for the fault location, since it is more accurate the calculation
of the estimated fault location in the case of a multi-phase fault. Thus, applying a suitable segmentation al-
gorithm ensures that the most serious fault stage is isolated and used further for the fault location estimation.

Figure 3.5 shows a three-phase fault. This is the final type of fault, since it begins as a single-phase fault
and then progresses into a two-phase fault before it evolves into a three-phase fault. In that case the fault lo-
cation could calculated more accurately from the three-phase fault part. In the rest of this section the theory
behind the algorithm used is explained and the different implementations used are presented.

Figure 3.5: Fault that starts as a single-phase fault, then evolves to a two-phase fault and in the end a three-phase fault

3.4.1. Binary Segmentation Algorithm

For segmenting the fault signal and ending up to the final fault stage the binary segmentation algorithm is
used. This is an offline change point detection method which helps detect change points such as major dis-
ruptions in a time series and more specifically the fault inception and the fault clearing time for a fault signal
[45], [46]. For a multivariate non-stationary time series y1, y2, ..., yT that consists of T samples, if the number
of change points is K , then there are possible change positions t1 < t2 < ... < tK which partition the signal into
K −1 sections (K +1 sections if the start and the end of the signal entry are included). The i -th segmented
section consists of (yti , yti+1 ).
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The objective function of this optimization problem can be represented by the equation 3.9 as seen below.

t̂1, t̂2, ..., t̂K = arg min
t1,...,tK

V (t1, t2, ..., tK )

s.t. V (t1, t2, ..., tK ) :=
K∑

k=0
C

(
ytk ...tk+1

) (3.9)

where C (ytk ...tk+1 ) is the cost function. By convention the zero changepoint of the time series is t0 = 0 and the
last changepoint is tK+1 = T . The cost function used could be among others the least absolute deviation, least
square deviation, gaussian process change, kernelized mean change [45]. Here the least square deviation is
selected and is given in equation 3.10.

C
(
ytk ...tk+1

)= tk+1−1∑
t=tk

∥∥yt − ȳtk ...tk+1

∥∥2 (3.10)

where ȳtk ...tk+1 is the average value of the part (ytk , ytk+1, ..., ytk+1−1) of the signal. Eventually the binary seg-
mentation aims to find the required changepoints that optimally split the whole signal based on the best
mean-shifts.

3.4.2. Segmentation Algorithm Implementations

The different ways of implementing the binary segmentation algorithm are presented in this section. The aim
is to isolate the final serious part of the fault before its clearing. For the two model developments in chapters 4
and 5, two different approaches are applied. For the model in chapter 4 a combination of univariate segmen-
tation and peak techniques with two breakpoints are used whereas in chapter 5 a multivariate segmentation
with three breakpoints is used. For both the implementations the same objective function is applied, since
it is suitable for both univariate and multivariate input data. In the following subsections each of these tech-
niques is further explained.

Univariate segmentation algorithm

For the first case, the binary segmentation algorithm is applied in the current signals of each phase provid-
ing three sets of two breakpoints which correspond to the most eminent change in mean value of the signal,
similar to what Ranganathan used in [2]. The absolute value of each signal is used so the zero mean of the
sinusoidal signal is eliminated. In order to make sure that the segmentation is going to be correct, the largest
value of the first breakpoints is selected and the average of the second breakpoints.

Figure 3.6 shows an example of this univariate segmentation technique. The calculated breakpoints for
each phase are shown, as well as the final result. In general, since Ranganathan in [2] showed that a similar
segmentation technique on similar dataset and model was sufficient in isolating the final section of the fault,
it is quite promising for the performance of the model in this project.

Regarding the self-extinguishing faults, this algorithm cannot always detect suitable changepoints, since
they are either too short or the consists of a lot of similar disturbances in the signal. So, when the differ-
ence between two break points is less than two periods, the whole signal is selected instead of a section. The
features used for the model later would be selected appropriately so the a long segmented part indicates a
self-extinguishing fault. For instance, using the average value of the current at the whole signal of a self-
extinguishing fault, the influence of the sudden and short-time current increase would be deteriorated.
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(a) Phase A

(b) Phase B

(c) Phase C

(d) Final three phases

Figure 3.6: Univariate segmentation

Multivariate segmentation technique

For the second case, the binary segmentation algorithm is implemented in all the current and voltage sig-
nals of a data entry, as a multivariate technique. Once again the absolute value of the signals is used for the
elimination of the zero mean. The algorithm returns three breakpoints instead of two, that correspond to the
most notable mean-shifts in the signal and can create two segmented sections, from the first to the second
changepoint and from the second to the third changepoint.

Figure 3.7 displays an example of the multivariate segmentation. The two resulted segmentations are
important for the model in chapter 5, since signal-wise may the last fault section be selected by the previ-
ous algorithm. However if this is an unstable fault and if there is before another different fault section, that
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should also be considered for the stability and the fault location. More details how the selection between the
two sections is provided in chapter 5.

Again, all the segmented sections that last less than two periods are discarded. Even one section valid
is sufficient for the model, but when both are discarded then the whole signal is selected as before. This is
mostly applied to self-extinguishing faults to promote them by the smoothness that the entire signal would
bring to the model compared to the segmented relatively small sections.

(a) Phase current

(b) Phase voltage

Figure 3.7: Multivariate segmentation

3.5. Summary

In this chapter a required theoretical background knowledge was given essential for the development of the
models in the following chapters. The nature of the dataset used was presented and the way is split so the
models could be trained and evaluated fairly. The necessary theory of ML was shown with a deeper descrip-
tion regarding the SVM as it is the preferred ML method and the main evaluation metrics for the classification
and the loop-impedance calculation models were depicted. In the end, the univariate and multivariate seg-
mentation techniques were defined which both are based on the binary segmentation algorithm.





4
Classification Models with Explainable

Features for Stable Faults

For the development of a machine learning (ML) model, it is important to have a solid feature set that re-
ally captures the essence of the problem, which usually involves various characteristics of the existing data
set. So, this is the way to translate the information derived from the data into a meaningful input set for the
model. In this project, the aim is to develop explainable classification models that have explainable features.
That makes the task for the development of the feature set even more important and constrained, since it is
the main source of explainability.

4.1. Development of Explainable Features for Stable Faults

The features reflect on specific property of the data that compares each entry among the others. So, there is
a need for features that can identify the differences among the various classes that would distinguish them
more effectively. In the following part is explained in more detail the process of developing three models with
different feature sets.

4.1.1. Development of Three Models

Figure 4.1: Diagram of the three models

The decision was to develop three different models, so there will be a comparison of the results of each
model. The ML model is similar for all three versions, since for all of them the Support Vector Machine (SVM)

29
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algorithm for classification is used. Three different approaches were depicted about the feature set develop-
ment, therefore the main difference among them derives from the way feature set is shaped for each model.
The majority of models in literature are using explicit indication in which exact phase the fault occurs, such
as [18], [32], [33], [20], [19], whereas fewer examples such as [2] a model with no exact faulted phase is being
used. In such a case, incorporating symmetry is substantial since the same faults with a phase rotation should
lead to the same result. For example, a single-phase fault with the fault in phase A, should provide the same
information and be recognized as exactly the same single-phase fault, even if with the phase rotation the fault
occurs in phase B or phase C. Thus inserting symmetry to the model it can lead to a more generalized and a
less prone to overfitting model as Bergman depicts in [47]. This can be done by developing phase-invariant
features. Since Alliander’s current classification model uses a non explicit phase fault model, the Digital Fault
Recordings (DFRs) and the excel files with the DFR entries do not posses that information. So, any per-phase
classification model would need an additional preproccessing stage, where the data would be further catego-
rized in phase-dependent labels with a manual inspection.

The first distinguishing step among the three models developed is that the one is a per phase model and
the other two are incorporating all the three phases at the same time. The former model was developed based
on what the majority in literature uses, despite the need for a prepossessing level. Each of the three phases
trains the same ML model separately, so that makes the model work appropriately under phase permutation.
The latter models are not per-phase models but they are both symmetrical. The difference between them is
depicted on the way the features used are getting phase invariant. In the one the phase decoupling is done
using the features of each phase in an order (e.g. maximum to minimum value) replacing the features used
in [2] with corresponding more explainable ones. The symmetry of this model with the features in order is
forced by the metrics used. In particular, using a rank of the values three different features are created corre-
sponding to the maximum, middle and minimum value. Thus, especially the centre value loses its meaning
because there is not a specific definition that determines the distance between this and the minimum or
maximum value. Also, this is always dependent on those as its value is limited by them both in the upper and
lower boundary. Another property of that model is the discontinuity of the values and the considerable jumps
among the values of these three levels. In the other model, mainly the symmetrical components are used for
the feature extraction, which injects a more pure symmetry into the model due to their nature and consist
of continuous values. The other features are developed that way so to be standalone symmetrical features.
Figure 4.1 shows some of the key characteristics of each model.

It is important to mention some assumptions made and followed by all the models’ feature extraction.
First, all the features are developed after the segmentation algorithm, so they are related to the segmented
part of the signal entry which essentially corresponds to the suspected fault period. Second, all the features,
except for the average of active power for the symmetrical model and the peak to peak current value in the
per-phase model, are developed based on the sliding window Fourier transform (FT). Lastly, the use of posi-
tive and negative sequences as symmetrical is valid, due to the fact that the voltage and current entry values
in the DFR files follow the sequence of A->B->C. That makes sure that the model is symmetrical under the
phase permutations A->B->C->A of the data.

4.1.2. Features based on the Short-time Fourier Transform Results
As mentioned above, the majority of the features is developed based on the Short-time FT (STFT). Using this,
the required frequencies can be isolated per period and used for a more general behaviour of the signal. This
is in a way similar to the WT, but with quite less adaptability since a single window size is used. The focus on
the explainability brings STFT in more prominent position for use in this specific project, though. Further-
more, the STFT for the fundamental frequency provide similar information with the root mean square (RMS)
value of the same period, as a single period waveform is expressed with a single magnitude. However using
the former some additional benefits are offered. Since the result of FT provides absolute value and angle for
each period, it is quite more informative than the per-period RMS value and can help grasp a better image of
the fault signal. More importantly, it can be used to define the per-period impedance, reactance, resistance
and symmetrical components, which cannot be calculated through the real signal.

Mostly, the sliding window FT is being used for capturing the fundamental frequency component for the
voltage and current signals and then shaping accordingly the impedance and the symmetrical components.
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For all the features, the sliding window consists of 80 samples, which corresponds to one period. However the
step is not the same for all the cases. Mainly a step of 80 samples is used, thus there is no overlap of windows
and that means a per-period analysis. Only for the features concerning the third harmonic a step of 1 sample
is used. Such features are essential for the transient parts and there, a better resolution seems like a more rea-
sonable approach. This fundamental component is a complex component that consists of the magnitude and
angle of the signal for a specific period. This holds when the signal is pure sinusoidal and that’s why the faults
without a sufficient sine wave (unstable) cannot lead to reliable results regarding the fault loop impedance.
In the chapter 5, new rules to distinguish better stable faults from unstable ones regarding their waveform are
developed. The per-period complex voltage fundamental component divided by the corresponding current
component, can lead to the per-period impedance calculations. The value of that complex number resulted
by this ratio constitutes directly the impedance value, the imaginary part corresponds to the reactance and
the real part to the resistance, as shown in equations 4.1, 4.2 and 4.3 correspondingly. In those equations, V
and φV correspond to the fundamental voltage magnitude and angle for a period, whereas I and φI corre-
spond to the fundamental current magnitude and angle for a period. In equation 4.1 the absolute value of
the per-period impedance is calculated, so only real values are used.

|Z | =
∣∣∣∣V ∠φV

I∠φI

∣∣∣∣ (4.1)

X = Im

(
V ∠φV

I∠φI

)
(4.2)

R = Re

(
V ∠φV

I∠φI

)
(4.3)

In a similar way, from the per-period complex components the symmetrical components can be formed for
the voltage and the current signals, as seen in the equation 4.4 for the current symmetrical components,
where I0, I1, I2 are the zero, positive and negative current components respectively, Ia∠φIa , Ib∠φIb , Ic∠φIc

correspond to the pair fundamental current magnitude and angle for phase a, b, c, correspondingly and α=
1∠120°.
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∗
Ia∠φIa

Ib∠φIb

Ic∠φIc

 (4.4)

In addition, STFT is also being used for the third harmonic frequency component, so the features for the
transient phenomena to be extracted. This way, changes of an event’s state are captured, such as the fault
inception and fault clearing. This effectively consists of the replacement of the Wavelet transform (WT) coef-
ficient with more explainable way. The third harmonic is a harmonic that does not pass from the low voltage
(LV) to the medium voltage (MV) through the LV/MV transformer. So, the existence of a third harmonic com-
ponent in current or voltage is a good indication of a disturbance inside the MV network and the higher is
that value the higher is the probability for a fault in that phase. Figure 4.2 shows the current and voltage sig-
nal of a single-phase fault as well as the third harmonic of the current and the voltage. Figure 4.3 depicts the
corresponding plots for a three-phase fault.
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Figure 4.2: Current, voltage signal third harmonic of the current and the voltage of a single-phase fault

Figure 4.3: Current, voltage signal third harmonic of the current and the voltage of a three-phase fault

4.1.3. Features based on the Symmetrical Components Ratios

In the following sections, some features will be presented that derived from symmetrical components’ ratios.
As shown before, based on the STFT the per-period symmetrical components could be shaped for the current
and the voltage. Taking one step forward, for the feature selection of this thesis’ model, features coming from
different combinations of symmetrical components ratios are used. This is done based on Gu and Provoost
[3] where the ratio I2/I1 is used as a criterion for the distinction between two- and three-phase faults. Here,
also the ratios I0/I 1, V2/V1 and V0/V1 are used as a basis for the further development of features. The thought
behind this is that these ratios first have an expected value which is per unit and normally would be between 0
and maximum 2. Second, for each type of fault there is a specific area of the values anticipated for each one of
these per-period ratios. In particular, these approximate per-period values are shown in table 4.1. Therefore,
the features developed in the following sections based on these per-period ratios would have an expected
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value that would reflect to the correct type of fault. That makes them more explainable and interpretable if
used and this is a very essential advantage for this project given the importance of explainability.

Table 4.1: Anticipated values of the symmetrical components ratios for each type of fault

Fault type I0/I1 I2/I1 V0/V1 V2/V1

1 ∼1 ∼1 ∼1 ∼0

2 ∼0 ∼1 ∼0.5 ∼0.5

3 ∼0 ∼0 ∼0 ∼0

4.1.4. Statistical Metrics used for the Feature Extraction
Before presenting in detail the features extracted, it is important to mention the metrics that are used for that.
That aspects that determine the decision over the specific metrics used are the need for explainability, the use
of segmentation and of course the domain of the data. Since explainability comes from the feature engineer-
ing is significant to used not complicated metrics. The segmentation focuses on the fault duration, so the
metrics used do too and finally, the domain of the data, for example if it is a sine or sliding FT, influences the
metrics used in the end.

The statistical metrics used are the mean or average value, the minimum value, the peak to peak value and
the energy of the signal. In particular, energy is not the same as the active power of the signal and it consists
of the summation of all the points of the signal squared, as shown in the equation 4.5.

ener g y =
N∑

i=1
x(i )2 (4.5)

4.1.5. Features from the Voltage signal
The extraction of features from the voltage was only done by using the sliding window FT. Mainly, the av-
erage of the segmented part was the feature used with some variations based on the model. For the sorted
features model the mean value of the phase voltages of the segmented signal descending order V_wft_mean
is used, with 1 named the maximum value, 2 the middle value and 3 the minimum. Also, the energy of the
transient FT for the third harmonic V_wft_harmonic_energy of the voltage signal again in descending order.
The mean value of the symmetrical components’ voltages V_0_mean, V_1_mean, V_2_mean is used in both
sorted and symmetrical features model. For the per-phase model, the mean V_wft_mean and the minimum
value V_wft_min of the per-phase segmented voltage is used. Also, the energy of the transient FT for the
third harmonic V_wft_harmonic_energy through the segmented voltage signal duration. In addition for the
symmetrical model, two ratios of the symmetrical components segmented voltage mean values are used.
V_2_mean/V_1_mean corresponds to the division of the average values of the negative to the positive voltage
components and V_0_mean/V_1_mean corresponds to the division of the average values of the zero to the
positive voltage components. Table 4.2 sums up the features derived from the voltage signals.
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Table 4.2: Description of features derived from the voltage signal

Feature Description

V_wft_mean_1
V_wft_mean_2
V_wft_mean_3

Maximum, middle and minimum
order for the mean value of the
windowed FT of the phase voltage

V_wft_harmonic_energy_1
V_wft_harmonic_energy_2
V_wft_harmonic_energy_3

Maximum, middle and minimum order for
the energy of the third harmonic windowed
FT component of the phase voltage

V_wft_harmonic_energy
Energy of the third harmonic
windowed FT component of
the phase voltage

V_0_mean
V_1_mean
V_2_mean

Mean value of the windowed FT
of the zero, positive, negative
voltage sequence

V_wft_mean
Mean value of the windowed FT
of the phase voltage

V_wft_min
Minimum value of the windowed
FT of the phase voltage

V_2_mean/V_1_mean
Ratio of negative sequence voltage
to positive sequence voltage
mean values

V_0_mean/V_1_mean
Ratio of zero sequence voltage
to positive sequence voltage
mean values

4.1.6. Features from the Current signal

In contrast with the features extracted by the voltage signals, the extraction of features from the current was
not only done by using the sliding window FT, but also the original signal. First, in a similar way to the feature
extraction from voltage, the mean value of the phase currents I_wft_mean of the segmented signal and the en-
ergy of the transient FT for the third harmonic I_wft_harmonic_energy of the segmented current signal both
in descending order are used for the sorted features model. Also, in both these models, the mean value of the
symmetrical components’ currents I_0_mean, I_1_mean, I_2_mean is used again. For the per-phase model,
similar to the voltage, the mean I_wft_mean and the minimum value I_wft_min of the per-phase segmented
current and the energy of the transient FT for the third harmonic I_wft_harmonic_energy of the segmented
current signal duration are used. For the symmetrical model, again two ratios of the symmetrical components
segmented current mean values I_2_mean/I_1_mean and I_0_mean/I_1_mean are used, as the corresponding
voltage ones.

However, there are two additional features that do not correspond to any of the voltage features. Firstly,
based on the current sinusoidal signal, the peak-peak value I_peak_peak of the segmented duration is used in
the per-phase model. Secondly, from the mean values of the segmented current signal the I_wft_comparison
feature is developed as shown in the equation 4.6 and used in both sorted and symmetrical models. This has
been derived based on a similar current feature in [2] where the root mean square values were used, instead
of the sliding FT magnitude of the fundamental component.

I _w f t_compar i son = 2∗ I _w f t_mean_1

I _w f t_mean_2
− I _w f t_mean_2

I _w f t_mean_3
− I _w f t_mean_3

I _w f t_mean_1
(4.6)
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This feature is expected to have a value I _w f t_compar i son >> 0 when there is a single-phase fault, since
the I_wft_mean_1 is predominantly the higher component among the others. Concurrently, if there is a two-
phase fault we expect both I_wft_mean_1 and I_wft_mean_2 to have high values and the I_wft_mean_3 quite
lower one, so the value of the feature should be I _w f t_compar i son << 0. Lastly, a value I _w f t_compar i son ≈
0 corresponds to a three-phase fault (or no fault) since all the magnitudes should have approximately the
same values. Table 4.3 sums up the features derived from the current signals.

Table 4.3: Description of features derived from the current signal

Feature Description

I_wft_mean_1
I_wft_mean_2
I_wft_mean_3

Maximum, middle and minimum
order of the mean value of the
windowed FT of the phase current

I_wft_harmonic_energy_1
I_wft_harmonic_energy_2
I_wft_harmonic_energy_3

Maximum, middle and minimum order for
the energy of the third harmonic windowed
FT component of the phase current

I_wft_harmonic_energy
Energy of the third harmonic
windowed FT component of
the phase current

I_0_mean
I_1_mean
I_2_mean

Mean value of the windowed FT
of the zero, positive, negative
current sequence

I_wft_mean
Mean value of the windowed FT
of the phase current

I_wft_min
Minimum value of the windowed FT
of the phase current

I_2_mean/I_1_mean
Ratio of negative sequence current
to positive sequence current
mean values

I_0_mean/I_1_mean
Ratio of zero sequence current
to positive sequence current
mean values

I_peak_peak
Peak to peak value of the phase
current signal

I_wft_comparison
Metric based on the ratios between
the mean values of the windowed FT
for the phase currents

4.1.7. Features from the combination of Voltage and Current signals

For the sorted and per-phase features models, impedance-, reactance- and resistance-based features are de-
veloped. More precisely, for the first model, the average of each components’ segmented part Z_wft_mean,
X_wft_mean, R_wft_mean and then sorted in a descending order. For the second model, also the average
and the minimum value Z_wft_min, X_wft_min, R_wft_min are calculated and used, whereas in symmetrical
model the mean value of the active power P_ft_mean of the fault’s segmented part is used.

In order to form these features, the per-period FT of the voltage and current signals are used, as men-
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tioned above, so the impedance, reactance and resistance are calculated as in the equations 4.1, 4.2 and 4.3
correspondingly. The active power is simply calculated by the per-period fundamental magnitudes of all the
phases’ voltages and currents, as in the equation 4.7.

P_ f t =Va ∗ Ia +Vb ∗ Ib +Vc ∗ Ic (4.7)

Table 4.4 sums up the features derived from the combination of voltage and current signals.

Table 4.4: Description of features derived from the combination of voltage and current signal

Feature Description

Z_mean_1
Z_mean_2
Z_mean_3

Maximum, middle and minimum
order of the mean value for the
impedance

X_mean_1
X_mean_2
X_mean_3

Maximum, middle and minimum
order of the mean value for the
reactance

R_mean_1
R_mean_2
R_mean_3

Maximum, middle and minimum
order of the mean value for the
resistance

Z_mean
X_mean
R_mean

Mean value of the windowed FT
for the impedance, reactance
and resistance

Z_min
X_min
R_min

Minimum value of the windowed FT
for the impedance, reactance
and resistance

P_ft_mean
Mean value of the active power
calculated based on windowed FT
of phase currents and voltages

4.2. Model Development

In the previous section, the development of the three different models from feature set perspective was pre-
sented. Table 4.5 sums up the features developed for each model separately. There is still room for the final
development for each of these models. First, the final feature set that represents better the dataset and the
classification models has to be selected for each one of them. This is called feature selection. Filter methods
such as analysis of variance (ANOVA) and mutual information are going to be used in order to evaluate the
feature selection process. Second, there must be a hyper-parameter tuning. As mentioned in the chapter be-
fore, since the data need to be separated non-linearly, a radial basis function kernel is used to transfer the data
points into higher dimensions where they could be separated. As a result, there are two hyper-parameters,
namely C and γ, which their values need to be determined, so each model can operate properly. Finally,
cross-validation is used to validate the performance of the models, after the fitting procedure and before
tested on the very last unseen data. This is a good way, to evaluate the generalization of a model whilst in the
fitting stage, so it can be adjusted accordingly before being evaluated by the test set.

Feature selection, hyper-parameter tuning and cross-validation constitute all parts of high importance
for the model development. In order to acquire in the end a sufficiently generalized model though, it is better
if these procedures are performed simultaneously and hence, a pipeline framework is created to help with
that with a search all over the parameter’s values. This way each of these steps do not target a locally op-
timal solution that would add more bias in the model but rather a more general solution, since each step
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would influence the next one to perform well. Otherwise, if all these procedures would be executed sepa-
rately in sequence, the following procedures would depend on the finalised results of the previous ones that
possibly would not lead their optimal solution. In the following parts of this section, feature selection, hyper-
parameter tuning and cross-validation are further explained.

Table 4.5: Summary of features developed for each model

Model 1 Model 2 Model 3

V_wft_mean_1 V_wft_min V_0_mean
V_wft_mean_2 V_wft_mean V_1_mean
V_wft_mean_3 I_wft_max V_2_mean
I_wft_mean_1 I_wft_mean I_0_mean
I_wft_mean_2 V_wft_harmonic_energy I_1_mean
I_wft_mean_3 I_wft_harmonic_energy I_2_mean
V_0_mean I_peak_peak V_2_mean/V_1_mean
V_1_mean Z_mean V_0_mean/V_1_mean
V_2_mean Z_min I_2_mean/I_1_mean
I_0_mean X_mean I_0_mean/I_1_mean
I_1_mean X_min I_wft_comparison
I_2_mean R_mean P_ft_mean
V_wft_harmonic_energy_1 R_min
V_wft_harmonic_energy_2
V_wft_harmonic_energy_3
I_wft_harmonic_energy_1
I_wft_harmonic_energy_2
I_wft_harmonic_energy_3
I_2_mean/I_1_mean
I_wft_comparison
Z_mean_1
Z_mean_2
Z_mean_3
X_mean_1
X_mean_2
X_mean_3
R_mean_1
R_mean_2
R_mean_3

4.2.1. Feature Selection

Feature selection is the procedure of reducing the number of the features when building a predictive model,
keeping the most important ones, hence improving the generalisability and reducing the variance of a model.
According to Pal et al [48], the SVM classification accuracy is affected by the number of input variables. In par-
ticular, the accuracy of such a model is substantially reduced by using additional features and hence higher
dimensions. This problem is called “curse of dimensionality” and also can lead to overfitting, so an under-
whelming generalization of the model [49]. Therefore, since the performance of a SVM classification model
depends on the dimensionality and the size of the dataset, the feature selection’s importance is growing.
Added to the accuracy of the classification, feature selection leads to a lower computational cost and implic-
itly to a more interpretable model.

As depicted in figure 4.4, there are various feature selection techniques [50]. First they can be categorized
into supervised and unsupervised methods, based on the use or not of target variables. Unsupervised feature
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Figure 4.4: Feature selection techniques

selection techniques use correlation in order to remove redundant attributes with unlabeled data, whereas
supervised techniques remove the irrelevant variables taking into account the labeled data. The supervised
feature selection techniques are further distinguished into filter, wrapper and intrinsic methods [50], [49].
The filter methods use statistical techniques such as ANOVA and mutual information, to evaluate the rela-
tionship between each feature and the target and then based on that they rank the importance of the features
[51]. The wrapper methods develop different subsets of input feature space and evaluate their performance
based on a specific ML algorithm which attempts to be fitted on the given dataset in order to find the best
performing combination of features [51]. Some of these techniques are the forward feature selection, the
backward feature elimination and the recursive feature elimination. Lastly, the intrinsic methods use algo-
rithms that include feature importance ranking during their training. These algorithms could be ML models
like decision trees, linear models, random forest or regularization methods like LASSO and Ridge regression
[52].

For the three classification models presented before, large feature sets were developed and especially for
the first model 29 features, to capture the essence of the data. Thus, the feature selection is essential in order
to lower the dimensions of the input and at the same time let the models have a better performance. For the
feature selection in this project the filter methods are being used, ANOVA and mutual information, because
they are faster, less prone to overfitting and can be easily implemented in the cross-validation.

These two techniques have some specific characteristics that differ from each other. ANOVA is used to
check if independent groups have means that are statistically different from each other based on the null hy-
pothesis that they are all equal. The F-statistic is used to measure the significance of ANOVA which equals
to the ratio of the variance between sample means to the variance within samples [53]. A high F-score corre-
sponds to a feature that discriminates classes well in the sample set. Mutual information is a statistical test
that measures the mutual dependence between two random variables, by quantifying how much information
can be acquired from a random variable when observing another one variable of the data set [54]. Similar to
ANOVA, a high value of the mutual information indicates low uncertainty and hence high dependence of the
class on the certain feature.

4.2.2. Hyper-parameter tuning

Hyper-parameter tuning or optimization is called the task performed during the model development where
the optimal values for the hyper-parameters of a specific model are chosen. More specifically, for a SVM
model with radial basis function kernel, the parameters need to be configured are C and γ. As mentioned in
chapter 3, C is the regularization parameter and when is too high, the model penalizes highly the misclassifi-
cations, which means that it takes into more account the outliers, so it is overfitting. Parameter γ determines
how much a data point influences the general model. When its value is too low, the hyperplane boundary is
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too general, since it is unable to capture the complexity of the data, so the misclassifications increase. In the
opposite, when its value is too large, there is going to be a very complex and curvy hyperplane which leads to
overfitting again. Therefore, the values of C and γ is highly related to the existing data set that is going to train
the SVM model, and there has to be achieved a balance between bias and variance [55].

There are two ways of searching for the hyper-parameters’ values. One is the grid search where the search
space is defined with exact values forming a grid. The other way is the random search where the search space
is simply a bounded space with sample points randomly selected from it. The former includes exhaustive
search, however there has to be a good choice over the search points. The later is only affected by the bound-
aries of the space so it can lead to better solutions than the former one, but it is more time consuming. In
this project, a grid search is used, since there is already some essence captured for the search space from the
values being used by Ranganathan [2]. The values inspected during the grid search for C are 1, 10, 100, 1000,
10000 and for γ are 0.0001, 0.001, 0.01, 0.1, 1.

4.2.3. Cross-validation

Cross-validation provides the ability to train and validate the model in separate snippets the whole data set,
whereas in a static train-validate set split only a small proportion of the data set is used for the validation.
Subsequently, the evaluation on the different validation sets makes the training of the model more reliable
and efficient as well, compared to the static train-validate set split. In particular, a k-fold cross-validation
splits the current dataset into k equal sets and every time k −1 sets constitute the training set and the rest of
it the validation set. In this project, a nested cross-validation is being used which includes an outer and an
inner cross-validation with k = 5. The outer split aims to test the model selected each time with a different

Figure 4.5: Nested 5-fold cross-validation diagram
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test set and is responsible for the final evaluation. Hence excluding possibilities of a over- or under-performance
due to the specific set conditions or leaking information. The inner split is where the feature and hyper-
parameter selection is done, with the grid search. So, at that point the validation set is very useful into check-
ing the accuracy of each set of parameters, rank them accordingly and then select the best ones. In figure 4.5
the diagram of the nested 5-fold cross-validation is shown.

4.3. Results

In this section the model development process for each model is presented, where the steps are all the same
for every one. The final macro f1-score of each model derives from the average for each test fold. The hy-
perparameters’ values come from the closest value of the grid search to the average value for each test fold.
In a similar way, the feature selection number is done in the same way, while the exact features selected are
the most frequent selected out of all the folds. For example, features that are selected in all the five folds are
ranked first, then the ones that are selected in four out of five folds and so on. Thus, from this ranking the
suitable number of features is chosen as said above. The two models based on the different feature selec-
tion methods are presented and following that a final comparison is done amongst the whole models. The
original set here is the data set excluding the final test set which is being used in the next chapter for the final
evaluation in order to ensure that there is no data leakage to that test set. The cross-validation ensures that all
the models are validated in the whole set through different folds. The results shown in this chapter concern
the classification model regarding only the stable faults, consists of the first part of the model development
for this thesis and it could be the basis for the development of the classification model including the unstable
faults in the chapter 5.

4.3.1. Results for the Model 1 with Features in Order

The results for the model 1 can be seen in table 4.6. For both the feature selection methods the model
was trained at the same training and validation data sets. The final mean macro f1-score is quite close for
both the feature selection methods, whereas the average value of the hyper-parameter γ and the number of
features selected is exactly the same. However, the rank of the features is not the same at these two occa-
sions. The most important features with both the ANOVA and the mutual information is I _w f t_mean_3 and
V _w f t_mean_1. These features are quite differentiating components, because they are crucial for distin-
guishing a two-phase from a three-phase fault. After those, V _0_mean is essential for the ANOVA method
only and I _w f t_compar i son the mutual information method only. The latter can provide straightforward
results regarding the fault type. Then features coming from the sequence components are significant for
both the feature selection methods such as I _1_mean, I _2_mean, I _2_mean/I _1_mean showing that they
are significant for the fault classification and features directly from the windowed FT such as I _w f t_mean_2

Table 4.6: Results for model with features in order

Method ANOVA Mutual Info
f1-score 0.976 0.973
C 100 1000
γ 0.01 0.01
features 11 11
feature rank I_wft_mean_3 I_wft_mean_3

V_wft_mean_1 V_wft_mean_1
V_0_mean I_wft_comparison
I_1_mean I_1_mean
I_2_mean I_2_mean
I_2_mean/I_1_mean I_2_mean/I_1_mean
I_wft_mean_2 I_wft_mean_2
V_wft_mean_2 V_wft_mean_2
V_2_mean V_0_mean
I_wft_mean_1 V_2_mean
I_wft_harm_energy_3 I_wft_harm_energy_2
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and V _w f t_mean_2. In the end, both have a selection of a feature based on the third harmonic.

4.3.2. Results for the Model 2 with Per-Phase Features
The results for the model 2 can be seen in table 4.7. For both the feature selection methods the model was
trained at the same training and validation data sets. Here there are the exactly same results regarding the
average of macro f1-score. The average of the hyper-parameters’ values differ on both C and γ. More partic-
ular, C with the ANOVA technique is on the upper boundary and γ with the mutual information technique is
on the lower boundary. This is not a good indication for the generalization of the model and both can lead to
overfitting. The number of features is less with the mutual information and all the features selected in with
that, they are selected also by ANOVA with different rank though. The highest importance features selected
by ANOVA concern first the current and then the voltage windowed FT. More specifically, the maximum and
average value of the current windowed FT and the minimum and average value of the voltage windowed FT.
However with the mutual information the mean value of voltage windowed FT, then the minimum impedance
and finally the peak-peak current value. Although this method leads to a selection of 3 features, which in gen-
eral increase the generalization of a model, there is a concern whether this number is too low for the model
for learning sufficient information from only these features.

Table 4.7: Results for model with per-phase features

Method ANOVA Mutual Info
f1-score 0.984 0.984
C 10000 1000
γ 0.001 1
features 7 3
feature rank I_wft_max V_wft_mean

I_wft_mean Z_min
V_wft_min I_peak_peak
V_wft_mean
I_peak_peak
Z_mean
Z_min

4.3.3. Results for the Model 3 with Symmetrical Features
The results for the model 3 can be seen in table 4.8. As before, both the feature selection methods the model
are trained at the same training and validation data sets. Here for both the feature selection techniques the
results regarding the average macro f1-score are the same. The hyperparameter γ is the same however hyper-
parameter C is greater for the mutual information. The number of features selected is less with the ANOVA.
All the features selected based on the ANOVA, they were selected also by mutual information but with differ-
ent ranking. The only additional feature selected by mutual information technique is I _w f t_compar i son
which is also the selected as the most important one. This can provide a straightforward value that cor-
responds to each different class of fault. On the other hand, P_ f t_mean is the most significant feature
based on ANOVA, however it is also ranked second by mutual information. I _2_mean/I _1_mean and then
I _0_mean/I _1_mean are the most important features for ANOVA, whereas I _1_mean and then V _2_mean
are the following most important features for mutual information. The former set can provide a value be-
tween 0 and 1 and based on the combination of those could be a good differentiation factor. In general,
features derived from the sequence components can be more interpretable since they are already used in the
current practices. Given that the positive sequence voltage and current are available, they provide the basis
and a magnitude to compare with the other variables.
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Table 4.8: Results for model with symmetrical features

Method ANOVA Mutual Info
f1-score 0.980 0.980
C 10 100
γ 0.1 0.1
features 8 9
feature rank P_ft_mean I_wft_comparison

I_2_mean/I_1_mean P_ft_mean
I_0_mean/I_1_mean I_1_mean
V_0_mean V_2_mean
I_2_mean I_2_mean
I_0_mean I_2_mean/I_1_mean
V_1_mean I_0_mean/I_1_mean
I_1_mean V_0_mean

I_0_mean

4.3.4. Comparison of the three models

The review of the final models selected is given in the table 4.9. First the model with the highest macro f1-
score is the one with per-phase features both with ANOVA and mutual information. Second, for each model
macro f1-score with the two different feature selection techniques are the same or quite close. More precisely,
only for the model with the sorted features the feature selection techniques do not end up to the exactly same
result, but a bit different. Third, only the per-phase model with the mutual information leads to a significant
lower number of features selected compared to ANOVA. Fourth, the sorted features model seems to lack in
performance compared to the other two models by around 5-10% lower average macro f1-score value from
the other models. This is not exclusively the only reason of selecting a model, however at those high percent-
ages this is an essential drawback to take into consideration. Finally, the hyperparameter’s C values differ in
every case, as values from 10 to 10000 are chosen and for γ the values chosen are 1, 0.1, 0.01 and 0.001. The
ones where C = 10000 and γ = 1 are the most concerning, namely the per-phase features with ANOVA and
mutual information, as these consist of the upper and lower boundary of the search space, respectively. After
investigating the behaviour of the first case when the upper limit of the search space is extended to 100000,
for some folds indeed the new limit is selected. This implies a peculiar behaviour of the training model in
selecting the highest values of C that could lead to overfitting and subsequently not a good performance with
unseen data. Similar response there is for the other model when the search space for γ includes the value 10,
which leads to the same considerations regarding the generelization of such a model. This model also selects
3 features, which brings doubts regarding the ability of acquiring the sufficient internal information of the
model based only on a few features.

Table 4.9: Final models

Sorted features Per-phase features Symmetrical features

Method ANOVA Mutual Info ANOVA Mutual Info ANOVA Mutual Info

f1-score 0.976 0.973 0.984 0.984 0.980 0.980

C 100 1000 10000 1000 10 100

γ 0.01 0.01 0.001 1 0.1 0.1

features
number

11 11 7 3 8 9
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Moreover, for the sorted features model, the way of decoupling the phase information is forced based on
the values ranking which is not the purest way for for making the model phase invariant. For example, using
minimum, maximum and medium values, the medium one loses the sense as what reflects on. It could be
the medium, but sometimes is closer to the minimum and sometimes to the maximum. On the other hand,
the features of symmetrical model are developed that way so there is a natural phase symmetry, assuring the
model is symmetrical under permutation of the phases A->B->C->A. Also, as mentioned before in the section
4.1.1, for the per-phase model there is need for the historical data to be suitably labeled with exact phase
information regarding the fault state. Since Alliander currently does not use such labels, for the purpose of
this model the labels were created manually. However for practical reasons this requirement for labeling,
halts the use of this specific model. Furthermore, an argument in favour of the symmetrical features model
is that the features used are more explainable compared to the others, since their values can indicate better
the derivation of the result. The symmetrical components are already being used by Alliander for the current
classification model, so there is more familiarity with these components and can be more easily interpreted
and trusted.

All these arguments lead to the selection of the third model and more specifically the one with ANOVA
feature selection technique among the six developed models, since the selection of less features is a good
indication for generalization, while the lack in performance is not that significant. Morevover, among the
other models the symmetrical features model can provide more explainable features. Therefore, under the
umbrella of stable faults, this model could replace the current fault classification model. The advantage over
the current Alliander classification is that the procedure can exploit the huge amount of data stored in the
database by the SASensors which provides potential of further improvement, since the data only keeps on
increasing. The Alliander classification model for the stable faults (single-, two- and three-phase) is still more
accurate, with 8 misclassifications over the whole dataset for the stable faults given consisted of 315 entries.
The performance of Alliander’s algorithm corresponds to macro f1-score around 0.986 for the three classes
of stable faults which is better than the model selected here. So the focus must be in a further development
of the classification model here, in order to additionally include the unstable faults and then evaluate the
entire performance. This is discussed in the chapter 5. Compared to the model developed by Ranganathan
[2], the performance seems to be similar, however the model developed in this chapter is more explainable
and subsequently more trustworthy for Alliander to use in practice. The conclusion here is that this model
cannot yet effectively fully replace the current fault classification alone, since the inclusion of unstable faults
need to be further investigated. However, this explainable fault classification model is a solid foundation of
the extended model for all the types of fault, developed and presented in chapter 5.

4.4. Summary

In this section, the development of the three different classification models with explainable features for sta-
ble faults and two different feature selection techniques was discussed. The motivation behind the analysis
shown before is to develop and select a simple and explainable SVM model based on the historical data ex-
isted which can classify future stable faults into single-, two- and three-phase faults with high accuracy. The
major achievement of this chapters work is having the basis needed for the extension of this fault classifica-
tion model for only stable faults, into a fault classification and location model that can handle all the types of
fault, as will be shown in chapter 5.

Essential for this project was the explainability which can derive from the features used. Thus this model
can help in interpreting the classifier’s results, due to the specific ML model and the features used. The fea-
tures were carefully created that way, so the result could be understandable by Alliander, by exploring their
values. Finally, based on the analysis presented in this chapter, a part of another research question could be
answered.

What are the methods to evaluate the machine learning model’s performance on classifying the faults? The
metric used for the evaluation of the ML classification models’ performance is the macro f1-score. It is a
trade-off between precision and recall, so it can represent the entire performance of the classifier. The use
of a nested cross-validation, makes the evaluation more objective as the model can be validated in different
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sets of the whole dataset and not only in a single split that cannot lead to proper insights. For each of the six
models the final score derives from the average value of the five macro f1-scores for each fold and based on
that they seem to perform quite well in classifying types of stable faults.



5
Development of Model for Unstable Faults

The goal here is to refine the current Alliander stability thresholds and explore ways the current practice can
be improved. In this proposed new method the initially labeled unstable faults which have at least one stable
period and can provide a reliable fault loop-impedance, will pass through the automatic model. An estima-
tion of the fault location could be available directly to the control room and thus the isolation of the faulty
section could be faster. Subsequently, the interruption of the power supply is less which is a result that the
operators aim for.

5.1. Model Development

As mentioned before, the real faults differ from the ideal ones, both from stability perspective as well as from
the presence of more than one type of faults in a fault signal. The stability concerns the waveform of the
signal and how close it is to the pure sine waveform. This influences the calculation of the loop-impedance/-
reactance in the end, since this is based on the fundamental components and thus there has to be a certainty
about the fault waveform. It is essential to end up in a reliable loop-impedance/-reactance so subsequently
the derived location estimation is as accurate as possible. The current algorithm of Alliander suggests that
if the thresholds given in table 2.2 are met, then the fault is classified as unstable and no loop-impedance/-
reactance is sent to the control room. However, after manual inspection by experts some faults labeled as
unstable, are in reality stable faults with a location that could be derived also from the loop-impedance/-
reactance. This indicates that the current stability thresholds are conservative and a refinement of them
is required, so the most serious stable part of a fault is recognized. That way the calculation of the loop-
impedance/-reactance could be reliable, as it depends on the fault type. In general, the majority of unstable
faults are single-phase faults, so using zero sequence components would be appropriate for that. However,
for the waveforms with more than one fault types, two-phase and three-phase faults have to be included and
since the zero-sequence is not predominant in these types, different ways need to be explored. So, for the
case of a multi-phase fault, the phase-phase signals are used. That way the effect of the zero-sequence com-
ponent distortions are canceled out and the check for instability is more reliable.

Due to the existence of different type of faults in one single entry and the need to develop a model that
includes the unstable faults, the segmentation algorithm here needs to be altered. In particular, the multi-
variate input segmentation method is being used which was described in chapter 3 with three break points.
So, two segments can be formed, one starting from the first point to the second point and one from the second
point to the third one. If each of these parts consists of one period or none, then the result is considered to
only consist of one part. The model developed and selected for the stable faults in chapter 5 needs to be
adapted and retrained. Thus, it is used as a basis for the more general model developed in this chapter in
order to encompass all the faults including the unstable ones. The new model developed has broader range,
since it does not consist only of the ML model. Figure 5.1 shows this new model. In the rest of this section the
model is further analysed.

45
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Figure 5.1: Updated parts on the current restoration process

First of all, the ML model now provides intermediate results regarding the fault type of each segmented
part and not the final result. For each signal one or two segmented parts enter the ML model where the out-
put is the type of fault for each part separately. The fault type could be single-phase, two-phase, three-phase
or self-extinguishing fault. For this reason, a manual labeling was performed for each segmented period in
order for the training and testing of the ML model. The main problem of the model developed in chapter 4
and in [2] is that event recordings that consist of more than one fault types, normally detect the most serious
type, however there is no alternative on that if the stability rules do not hold. For example, the signal given
in figure 5.2 is labeled as a single-phase fault. Visually, it seems like a two phase fault, however that part of
the signal is unstable. So, in order to find a reliable fault loop-impedance/-reactance, the single-phase part is
checked and indeed it can be characterised as stable. The way the models of chapter 4 and [2] are developed,
this fault would be considered as two-phase fault or as fully unstable fault. Hence the development of the
model in this chapter it could be considered as an acceptable procedure since the target values were only
these four specific categories, with the unstable label to come after the stability rules model, as it is being
explained below.

Following that, for each part the set of stability thresholds is being checked period per period, except for
the segments that are labeled as self-extinguishing faults. Regarding the rest of the types, if there is at least
one stable period along the segmented part for the permanent faults then the fault is considered stable and
the type of this part remains the same as from the ML model. Otherwise the part is labeled as an unstable
fault.

Next the final decision over the whole signal has to be done. When there is only one segmented part then
the decision is simply the final label of that part after the stability check. When there are two segmented parts
then the decision is a bit more complicated, so there are some rules on that. The table 5.1 provides these
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Figure 5.2: Example of a stable single-phase fault that also has unstable two-phase fault part

rules. In that table, the label self-extinguishing indicates the possibility of a self-extinguishing fault at a spe-
cific segment, as such training labels were used also for segments with not any of the other stable fault labels.
Basically, as said before the most serious stable fault is promoted even when the other part is a suspected
self-extinguishing or unstable fault. When there is one suspected self-extinguishing and one unstable fault,
the unstable is the final result. The unstable fault is more serious than the self-extinguishing fault, since the
power supply is disrupted and a restoration need to be done. Self-extinguishing fault does not require a direct
fault location, that’s why is not promoted over unstable fault. When both parts have the same type of fault,
then the final fault is going to be the same, but the exact part selected is the one that provides the lowest fault
loop-impedance/-reactance.

The attempt to find the final fault type of a signal aims to the further estimation of fault location. As
said before, a possible fault location is going to help the quicker fault section isolation and restoration. The
loop-impedance/-reactance is calculated for each stable period using the correct equation from the table 2.3
depending on the fault type. Then for each part the fault loop-impedance/-reactance has to be selected. The
concept is similar to the one proposed by Gu and Provoost [3] and in particular, consists of the minimum
value of the loop-impedance/-reactance out of the whole stable part. That way the possibility of calculat-
ing a wrong impedance due to the transients at the end of the fault, is diminishing. Each part has now the
loop-impedance/-reactance calculated. If there is only one segmented part, then this is the one that leads
to the final fault loop-impedance/-reactance. If there are two segmented parts, then the choice of the part is
done as explained before based on table 5.1 and if the faults are the same, the lowest between the two loop-
impedances/-reactances is the final one.

The difference with the current algorithm that Alliander uses, is that the fault classification is done with
ML based technique whereas Alliander uses the criteria shown in table 2.1 and the stability thresholds are less
conservative. These new stability rules are developed and shown in the section 5.2. The fault classification is
done with a more automatic way taking advantage of the historic data stored by the SASensor and since the
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Table 5.1: Set of rules for the final fault type when there are two segments

First part Second part Final result

single-phase single-phase single-phase
single-phase two-phase two-phase
single-phase three-phase three-phase
single-phase self-extinguishing single-phase
single-phase unstable single-phase

two-phase two-phase two-phase
two-phase three-phase three-phase
two-phase self-extinguishing two-phase
two-phase unstable two-phase

three-phase three-phase three-phase
three-phase self-extinguishing three-phase
three-phase unstable three-phase

self-extinguishing self-extinguishing self-extinguishing
self-extinguishing unstable unstable

unstable unstable unstable

data recordings only are increasing, such a fault classification model has the potential to get even better in
the future. For the stability part, a per-period analysis is still being used since the importance of that task’s
result does not let a lot of space to deviate from that. More precisely, if even one well defined stable period
can provide a reliable fault loop-impedance/-reactance calculation, it benefits the estimation of the fault
location. As the target is to find as more as possible these kind of faults that otherwise would be labeled as
unstable, makes exploration of each single period essential. Figure 5.3 depicts with yellow color the part of
the current procedure that is altered with the new suggested model.

Figure 5.3: Updated parts on the current restoration process
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5.2. Development of Features for Stability

5.2.1. Feature Development
The stability classification of a signal comes from the waveform. The current and voltage waveforms ideally
should be pure sinewaves, without any distortion. This means that the Fourier transform (FT) should contain
no harmonic components. The fundamental component of the FT of the current and the voltage is used for
shaping the symmetrical components and the impedance/reactance. Then, it is significant to make sure that
the waveforms are pure enough, so they provide a reliable loop-impedance/-reactance which subsequently
leads to an accurate fault location. This directs the attention for developing features that can measure the
“distance” between the real signal and its corresponding ideal sinewave. Consequently, the issue is how to
create an ideal sinewave which corresponds to the real signal. This is done in two ways so there is a com-
pliment of the ideality. One way is by taking the fundamental component of the FT of the signal and then
transform it back to the time as a sine. The other way is by applying a median filter with 7-points window
to the real signal, so to smoothen out sudden momentary huge distortions like peaks due to restrikes and
transients.

Regarding the first metric, the real signal is compared with the corresponding ideal one point-point. This
ideal signal corresponds to the inverse FT of the real signal where only the fundamental frequency compo-
nent exists. In particular for each period that consists of Ns = 80 points, the root mean square error r mse is
calculated as such:

r mse =
√√√√ 1

Ns

Ns∑
n=1

(r eali − i deali )2 (5.1)

Then, this magnitude in order to be scaled down to per unit, so there is a uniform comparison, is divided
by the maximum value of that same period for the ideal signal (max i deal ). Thus, the metric r mse_max is
formed as such:

r mse_max = r mse

max i deal
(5.2)

This value is expected to be close to zero for the stable faults, as such a signal should have normally no differ-
ence to the corresponding pure sinusoidal signal. This metric is used for the zero-sequence and phase-phase
current and voltage signal.

The metric where the median filter is applied is shaped as such:

r ati o = med f i l ter _ f t_ f und ament al

r eal_ f t_ f und ament al
(5.3)

More precisely, for this criterion first the median filter with 7-points window is applied to the real signal. That
corresponds to the replacement of each sample point’s value by the median value derived by the 7-points
window around that sample point, so the values of 3 points before, the current value and the values of 3
points after that. Then the magnitude of the fundamental frequency component of that new signal is divided
by the magnitude of the fundamental frequency component of the real signal for each period. The antici-
pated value of a stable period is around 1 per unit, since the median filter should make only slight difference
in a sinusoidal waveform without huge sudden increase or decrease of their value. Subsequently the use
of the sliding window FT for calculating the impedances or the symmetrical components it is more reliable
and trustworthy. This metric is also applied in the zero-sequence and phase-phase current and voltage signal.

Figures 5.4 and 5.5 depict the differences over a current signal in one period before and after applying
a 5-point and a 7-point median filter, respectively, so to compare them. Visually, it seems that the 7-point
median filter brings the initial signal in a closest form to an ideal sine wave. Hence, the difference between
the signals before and after the application of the 7-point median filter is greater than the one of the 5-point
median filter. Subsequently, the 7-point median filter penalizes more the existence of disturbances and thus
the instability. The resulted FT for that window regarding the real current signal has fundamental magnitude
633A and angle −81deg. Regarding the real signal after applying the 7-point median filter has fundamental
magnitude 607A and angle −87deg. Regarding the real signal after applying the 5-point median filter has
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fundamental magnitude 627A and angle −83deg. So, the 7-point median filter leads to a value for the feature
r ati o equal to 606.73/632.75 = 0.958, whereas the 5-point median filter leads to a value for r ati o equal to
627/633 = 0.991. This should correspond to an unstable period of fault, thus a value in a longer distance from
r ati o = 1 would be more appropriate and in particular the one of the 7-point median filter. For comparison,
the FT for that window regarding the real current signal without the two peaks is calculated and results to a
fundamental magnitude 594A and an angle −89deg. This indicates that applying the median filter of 7 points
to the real signal of this case, a signal which is close to the more ideal form of that particular signal is reached
than when the 5-point median filter is applied.

(a) Current signal before and after a 5-point median filter is applied (b) Difference between the current signal before and after a 5-point
median filter is applied

Figure 5.4: Current signal with some disturbances and 5-point median filter applied

(a) Current signal before and after a 7-point median filter is applied
(b) Difference between the current signal before and after a 7-point

median filter is applied

Figure 5.5: Current signal with some disturbances and 7-point median filter applied

On the other hand, applying a 7-point median filter to a pure sinusoidal signal would have minimal im-
pact on its waveform and subsequently to the FT magnitude and angle derived. In particular, for the current
signal shown in figure 5.6, there is a small difference at the two peaks and the FT fundamental magnitude
deviates a bit between the real signal and the signal after the median filter, with values 600A and 599A, re-
spectively. The resulted value for the feature r ati o in that case is 599/600 = 0.998 and it should indicate a
stable period of fault. A 5-point and lower median filter would have in that occasion same or better response,
but it is discarded due to the previously discussed behaviour. A 9-point or greater median filter would flatten
even more the peaks, that’s why the final choice is the 7-point median filter.



5.2. Development of Features for Stability 51

(a) Current signal before and after a 7-point median filter is applied (b) Difference between the current signal before and after a 7-point
median filter is applied

Figure 5.6: Ideal current signal and 7-point median filter applied

5.2.2. Feature Evaluation

The goal with the refinement of the stability metrics is to correctly classify stable faults that would be charac-
terised as unstable faults based on the Alliander rules. The most trustworthy element that could be used as
evaluation is the final loop-impedance/-reactance. In the historic data provided, the fault loop-impedance
is given for each data entry calculated based on the result of the Alliander classification algorithm. This can
be noted as the real fault loop-impedance since the resulted location from this is verified as an acceptable
one. The reason of this is that for the unstable faults that afterwards they were identified as stable ones based
on the offline inspection, it was noticed that the loop-impedance calculated by Alliander FaultFinder ini-
tially, could lead to accurate results. So it can be used as the real fault loop-impedance as it provides a very
good indication for the evaluation. Therefore comparing the result of the model developed with the real fault
loop-impedance can help with evaluating the stability thresholds eventually. Ideal situation would be to have
as much as possible correctly classified with fault loop-impedance close to the real one. At the same time,
faults which the fault loop-impedance deviates more than the acceptable limits they should be classified as
unstable faults. Therefore, the chosen evaluation is going to be held based on how close to the real fault loop-
impedance is the calculated one for the faults initially labeled as unstable.

The process of the stability thresholds model tuning and evaluation is done manually based on the un-
stable faults training set (solid blue box in figure 3.1) as mentioned in chapter 3. In this set there exist some
faults that after the offline inspection of their waveform, they were identified as possible stable faults, so
there would be an indication at the number of reclassified as stable faults expected. Also, in this set there
are some self-extinguishing faults. For the training of the ML model the single-, two-, three-phase and self-
extinguishing faults are used (green and orange solid boxes in figure 3.1). To deploy this model with one or
two segments for a certain faulty event, a manual labeling is held per segment, based on the real label of the
whole event. That means that in the case of one segment existing, the label corresponds to the real one and
in the case of two segments existing, at least one of them it should be the same as the real label and the other
is assigned manually. As mentioned above, the last label self-extinguishing refers to the self-extinguishing
faults as a definition, but also to the faults that do not belong to any of the other three classes. The relaxation
of the definition here is an assumption based on the fact that self-extinguishing faults are the least serious
class of faults, with no immediate actions needed. The unstable segments and subsequently faults are being
derived after the stability check.

First an appropriate ML model is selected and stays fixed. This concerns the fault classification, so then
the suitable stability rules applied since they are fault type dependant. For each fault initially labeled as un-
stable by Alliander, the final fault type and loop-impedance is calculated. If the type is still unstable the value
of the impedance is a default one and there is no meaning on comparing it with the real one. The faults which
are classified now as single-, two- or three-phase faults though, their predicted loop-impedance need to be
evaluated. The metrics preferred for the evaluation of the results are root mean square error (RMSE), mean
absolute error (MAE) and the 90th percentile of the absolute error as explained in chapter 3 and the number
of initially unstable faults of the training data set reclassified as stable faults.
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The evaluation of these criteria and their values is not a straightforward procedure. Since these values
concern per period characteristic, there are no available labels for each one of those, that would allow a su-
pervised ML model to be applied. The manual labeling is a very time-consuming process with around 200
periods at minimum per signal which also would insert bias to the model, as there are no clear waveform
stability margins in the theory. The unsupervised ML and in particular clustering, at first glance may seem
like an suitable solution. There is no requirement for target values and that makes the building of such a
model quite easier. However, the thresholds to be defined here have fine margins, such as 10−2 and a clus-
tering method seems in the end to be not appropriate as well. The way it works, creating clusters based on
particular characteristics is very good for the big picture, but whenever comes to the exact values that shape
the margins, it is not simple to trust that. Certain formulation of the way the distances are taken and the
threshold of those distances need to be done in order to have safer conclusions. Since even that does not
assure either totally the results of that, the clustering is not used for the evaluation of the stability criteria.

Therefore, the training of the stability rules model is the one noted next. Since r mse and r ati o ideally
would have values 0 and 1 respectively, there must be a search space around those values. After exploring
the respective r mse values of stable faults, the search space for both current and voltage should be between
0.2 and 0.5. At the same manner, r ati o values for both voltage and current had to be in the window [0.9,
1.1], however the first changes were noticed at 0.95 and 1.01, so in the end the search space shrank down to
[0.94, 1.02]. So, the tuning of these values was held by a sensitivity analysis where different combinations of
the thresholds’ values inside the search space would be applied. Then for each combination a set of error
metrics would be calculated. More precisely, the RMSE, MAE and 90th percentile for both the single-phase
and multi-phase faults of the validating data set of the reclassified as stable faults and the number of these
reclassified stable faults. In the end, the choice of the appropriate set of stability thresholds is going to be
based on the requirements existing regarding the error values and the expected number of stable faults. The
last one is based on the indication of possible stable fault after manual inspection by an expert from Alliander.
In the next section, the results for the stability rules model and their evaluation are further discussed.

5.2.3. Stability Rules Model Results

The results of the ML model used for the stability evaluation are shown in figure 5.2. As explained before

Table 5.2: ML classification model used during the stability model training

Model Symmetrical features

C 1000

γ 0.001

features 7

features selected I_0_mean
I_1_mean
I_2_mean
V_2_mean
V_0_mean/V_1_mean
I_2_mean/I_1_mean
I_0_mean/I_1_mean

first a ML classification model is selected based on a feature selection, hyper-parameter tuning and nested
cross-validation using only the data with type single-, two-, three-phase and self-extinguishing. The data for
the initial unstable faults are used as validation set, so there could be a evaluation of their results in the end.
The symmetrical features model is used, as this was the one selected in chapter 4, based on the explainability
and performance. Both feature selection techniques ANOVA and mutual information lead to the same fea-
ture set. The need for creating and training another model and not using the exact same one, is because now
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a different segmentation technique is used which changes a bit the nature of data entering the classification
model. Also, the classes are increasing since the self-extinguishing faults are included. The unstable faults
are included too now, but at the classification model they do not represent a separate class, they are labeled
based on the type of the fault among the classes single-, two-, three-phase and self-extinguishing faults ac-
cordingly and not as unstable faults explicitly.

Based on that classification model, after that the initially labeled unstable faults are passing through the
stability check model so their stability is evaluated. Then the final fault type and location are calculated based
on the criteria of the two segmented sections and the minimum loop-impedance/-reactance. For different
sets of values for the stability features the RMSE, MAE and 90th percentile of the classified stable faults by the
new model and the number of those is calculated. In particular, as said in chapter 3 the impedance/reactance
values calculated by Alliander are compared with the corresponding predicted impedance/reactance values
by the proposed model. Table 5.3 shows the values used for r mse and r ati o for each set and table 5.4 presents
the results for each of those. The thresholds are the same for the zero sequence and the phase-phase wave-
forms. As said before for the r mse it was expected a low value close to zero and for the r ati o a value close to
1, hence these specific values for each feature.

Table 5.3: Thresholds for different sets of stability rules for both zero sequence and phase-phase current and voltage waveforms

Zero sequence and phase-phase
current

Zero sequence and phase-phase
voltage

RMSE Ratio RMSE Ratio

1 I_rmse ≤ 0.2 0.94 ≤ I_ratio ≤ 1.02 V_rmse ≤ 0.2 0.94 ≤ V_ratio ≤ 1.02

2 I_rmse ≤ 0.3 0.94 ≤ I_ratio ≤ 1.02 V_rmse ≤ 0.3 0.94 ≤ V_ratio ≤ 1.02

3 I_rmse ≤ 0.3 0.95 ≤ I_ratio ≤ 1.02 V_rmse ≤ 0.3 0.94 ≤ V_ratio ≤ 1.02

4 I_rmse ≤ 0.3 0.94 ≤ I_ratio ≤ 1.02 V_rmse ≤ 0.3 0.95 ≤ V_ratio ≤ 1.02

5 I_rmse ≤ 0.3 0.94 ≤ I_ratio ≤ 1.01 V_rmse ≤ 0.3 0.94 ≤ V_ratio ≤ 1.02

6 I_rmse ≤ 0.3 0.94 ≤ I_ratio ≤ 1.02 V_rmse ≤ 0.3 0.94 ≤ V_ratio ≤ 1.01

7 I_rmse ≤ 0.3 0.94 ≤ I_ratio ≤ 1.02 V_rmse ≤ 0.3 0.95 ≤ V_ratio ≤ 1.01

8 I_rmse ≤ 0.3 0.94 ≤ I_ratio ≤ 1.01 V_rmse ≤ 0.3 0.95 ≤ V_ratio ≤ 1.01

9 I_rmse ≤ 0.3 0.94 ≤ I_ratio ≤ 1.01 V_rmse ≤ 0.3 0.95 ≤ V_ratio ≤ 1.02

10 I_rmse ≤ 0.3 0.95 ≤ I_ratio ≤ 1.01 V_rmse ≤ 0.3 0.95 ≤ V_ratio ≤ 1.02

11 I_rmse ≤ 0.4 0.94 ≤ I_ratio ≤ 1.01 V_rmse ≤ 0.3 0.95 ≤ V_ratio ≤ 1.02

12 I_rmse ≤ 0.4 0.95 ≤ I_ratio ≤ 1.01 V_rmse ≤ 0.3 0.95 ≤ V_ratio ≤ 1.02

13 I_rmse ≤ 0.3 0.94 ≤ I_ratio ≤ 1.01 V_rmse ≤ 0.4 0.95 ≤ V_ratio ≤ 1.02

14 I_rmse ≤ 0.3 0.95 ≤ I_ratio ≤ 1.01 V_rmse ≤ 0.4 0.95 ≤ V_ratio ≤ 1.02

15 I_rmse ≤ 0.3 0.94 ≤ I_ratio ≤ 1.01 V_rmse ≤ 0.5 0.95 ≤ V_ratio ≤ 1.02

16 I_rmse ≤ 0.3 0.95 ≤ I_ratio ≤ 1.01 V_rmse ≤ 0.5 0.95 ≤ V_ratio ≤ 1.02

Ideally the choice of feature set values would be the one with the lowest RMSE, MAE and 90th percentile
for both single- and multi-phase faults and the highest number of stable faults detected. However there is no
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such a combination, so there must be a trade-off among these metrics. Since the multi-phase initially unsta-
ble faults are only 5, there are no significant deviations of the error and the value for MAE is lower than the
error margin of 0.05Ω. So the focus is on the single-phase faults errors. Set 1 that has the lowest MAE, 90th
percentile and the second lowest RMSE, leads to the lowest number of reclassified stable faults. On the other
hand, set 15 that leads to the highest number of reclassified stable faults, corresponds to the second highest
RMSE, MAE and 90th percentile. Hence the solution should be something in between.

Table 5.4: RMSE, MAE, 90th percentile values and number of stable faults for the different sets of stability thresholds for both zero
sequence and phase-phase waveforms

Single-phase faults Multi-phase faults
Number of
reclassified
stable faults

RMSE
[Ω]

MAE
[Ω]

90th
percentile

[Ω]
RMSE

[Ω]
MAE
[Ω]

90th
percentile

[Ω]

1 0.553 0.213 0.689 0.013 0.009 0.016 30

2 0.491 0.233 0.754 0.075 0.049 0.106 34

3 0.661 0.296 1.050 0.075 0.049 0.106 33

4 0.491 0.233 0.754 0.075 0.049 0.106 34

5 0.491 0.233 0.754 0.075 0.049 0.106 34

6 0.491 0.233 0.754 0.075 0.049 0.106 34

7 0.491 0.233 0.754 0.075 0.049 0.106 34

8 0.491 0.233 0.754 0.075 0.049 0.106 34

9 0.491 0.233 0.754 0.075 0.049 0.106 34

10 0.661 0.296 1.050 0.075 0.049 0.106 33

11 1.069 0.434 1.321 0.075 0.049 0.106 35

12 0.621 0.283 1.050 0.075 0.049 0.106 33

13 0.891 0.313 0.707 0.075 0.049 0.106 39

14 0.988 0.370 0.906 0.075 0.049 0.106 38

15 2.172 0.750 1.633 0.075 0.049 0.106 47

16 2.227 0.805 2.097 0.075 0.049 0.106 46

As mentioned in chapter 2, it must be taken into consideration that 1Ω is the error limit acceptable for a
single-phase fault and 0.05Ω for a multi-phase fault. For the multi-phase faults since there is no earth com-
ponents involved the corresponding error in kilometers is 0.1Ω/km and leads to error in distance of 500m.
However for the single-phase faults there is not a single value that corresponds to the kilometers, since the ca-
ble type influences the result. Usually the value corresponding to the distance in kilometers for single-phase
faults is around 0.4− 0.7Ω/km depending on the type and the caliber of the cable used which leads to an
error in distance around 1.5km. For both the types of faults, all the sets have MAE within these boundaries.
However, for the RMSE and 90th percentile this is not the case. RMSE is more sensitive in outliers’ errors and
here it is important to asses these situations which lead to high errors. 90th percentile shows the error coming
from the validating data set, neglecting the highest 10% that usually represents outliers. In that context, the



5.2. Development of Features for Stability 55

sets 3, 10, 11, 12, 14, 15 and 16 are not selected since the have either RMSE or 90th percentile value of the
single-phase faults that are out of the acceptable boundary. Since the set 13 can lead to the highest number
of reclassified stable faults, while having RMSE and 90th percentile lower than 1, this is the final choice. In
particular, the RMSE for single-phase faults is 0.891Ω, the MAE is 0.313Ω and the 90th percentile is 0.712Ω.
The number of reclassified stable faults with that set is 39, whereas the expected possible stable faults are 33
and that means also some additional faults were found to be stable. Figure 5.7 presents the distribution of
the single-phase errors for the different threshold sets, enhancing the argument for the specific threshold set
choice. For better visualization, the error distribution of set 3 is not shown as it is the same with the one of set
10 and in the same way the error distribution of sets 4, 5, 6, 7, 8, 9 are not presented since they are the same
with the one of set 2. The final results of the stability thresholds were given in table 5.5.

Figure 5.7: Boxplots for the single-phase error distribution of different stability threshold sets
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Table 5.5: Stability rules for the updated model

Signal
Fault type

Single-phase Two-phase Three-phase

phase-phase voltage -
Vpp_rmse <= 0.4

0.95 <= Vpp_ratio <= 1.02
Vpp_rmse <= 0.4

0.95 <= Vpp_ratio <= 1.02

phase-phase current -
Ipp_rmse <= 0.3

0.94 <= Ipp_ratio <= 1.01
Ipp_rmse <= 0.3

0.94 <= Ipp_ratio <= 1.01

zero-sequence voltage
V0_rmse <= 0.4

0.95 <= V0_ratio <= 1.02
- -

zero-sequence current
I0_rmse <= 0.3

0.94 <= I0_ratio <= 1.01
- -

It is worth mentioning that setting these thresholds for the stability model a better stability identification
in multi-phase faults can be achieved compared to the Alliander’s current algorithm and the model devel-
oped by Ranganathan [2]. More precisely, figure 5.8 depicts a two-phase fault that was identified as unstable
by Alliander’s algorithm and could not pass through the Ranganathan’s stability rules because they are only
applied to single-phase faults. The stability rules developed in this thesis can correctly identify this two-phase
fault and provide an absolutely accurate loop-reactance. Moreover, figure 5.9 shows an example of a fault that
has a developed stable part of more than ten periods which was then self-extinguished. This corresponds to a
very rare occasion, since normally self-extinguishing faults do not develop a stable part of that many periods.
However the location of that fault could be found based on the stable part, for repairing the cable and hence
for not letting a future fault to be developed there. This fault was identified as unstable by both Alliander’s and
Ranganathan’s algorithms. Here it is classified as a single-phase fault with absolute error of 0.781Ω regarding
the loop-impedance which is clearly below the acceptable boundaries.

(a)

(b)

Figure 5.8: Example of a two-phase fault labeled as unstable by Alliander and correctly classified based on the new stability rules (a) full
signal (b) zoomed signal
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(a)

(b)

Figure 5.9: Example of an unstable fault labeled as unstable by Alliander and classified as stable single-phase fault based on the new
stability rules (a) full signal (b) zoomed signal

5.3. Results of the Entire Model

In this section the classification model selection is presented and then the evaluation of the final results after
the stability model are discussed. The classification model is the means of the fault type identification of
each partition, before the stability check. After that, the fault loop-impedance/-reactance is calculated and
compared to the corresponding real one.

5.3.1. Classification Model Selection

Similar to the procedure in chapter 4, for the proper model selection, feature selection, hyper-parameter tun-
ing and nested cross-validation is used at the same time. The final classification model selected is provided
in table 5.6. This final model is trained on the whole training data set (green, orange and blue solid boxes)
and evaluated on the test set (green, orange and blue lined boxes) as they are presented in figure 3.1. More
precisely, the test set consists of a random 20% of the whole data set regarding the real stable and the self-
extinguishing faults plus 6 extra initially unstable faults, 3 initially unknown faults and 8 faults which were
misclassified from Alliander’s current algorithm. That way there could be a comparison with the performance
between the proposed model and the current classification algorithm used by Alliander. These data are hid-
den from the beginning of the procedure from the first part in chapter 4, even though the data is not entirely
the same, so there is no possibility of any information leakage to the model. The values of hyper-parameters
come from the closest value of the grid search to the average value for each test fold and the feature selection
comes from the most frequent selected features out of all the folds at the average number of features selected
every fold. Then the feature set is further decreased by features that are highly correlated with other features,
since it was noticed that the testing f1-score afterwards was not affected by that and hence inserting more
generalization to the model. Both ANOVA and mutual information are explored during the feature selection
procedure, but ANOVA is the technique that leads to the final model selection. The performance score shown
corresponds to the average of the macro f1-score for 5 folds on the validation set.

5.3.2. Results of the Model for Fault Classification and Fault Location

Here the model scheme shown in figure 5.1 is evaluated. For the fault classification the model in table 5.6 is
selected and is tested on the hidden data. The macro f1-score on the testing set is 0.979 for the sections classi-
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Table 5.6: Final ML fault classification model selected

Model Symmetrical features

F1-score 0.956

C 1000

γ 0.01

features 7

features selected I_0_mean
I_1_mean
I_2_mean
V_2_mean/V_1_mean
V_0_mean/V_1_mean
I_2_mean/I_1_mean
I_0_mean/I_1_mean

fication and it is a very good result for the identification of each section fault type. Then for the stability rules
the values given in table 5.5 are used. Based on those and the selection rules in table 5.1, the final fault type
and location are derived. Table 5.7 shows the confusion matrix where the final fault type results in the end are
compared with the true fault types after the manual inspection. Table 5.8 depicts the confusion matrix where
the fault type results from the Alliander’s current algorithm proposed by Gu and Provoost [3] are compared
with the true fault types after the manual inspection. Here the faults labeled by this algorithm as unknown
are excluded from the table. Table 5.9 consists of the error metrics results for fault location among the stable
faults and figure 5.10 shows the distribution of the error for both single- and multi-phase stable faults. From
these metrics for the stable faults they are excluded the faults that their given loop-impedance is calculated
on single-phase basis but the prediction concerned a loop-reactance calculated based on multi-phase equa-
tions and the single-phase faults in which there was no loop impedance available, since they were initially
declared as unknown. The full list of the digital fault recording (DFR) file names with the true fault type, the
labels from the two algorithms and the result regarding the fault loop-impedance value for each of the two
algorithms are given in table B.1 in Appendix B.

Table 5.7: Confusion matrix with the evaluation of the final test set based on the proposed algorithm results

Predicted value
single two three self-ext unstable

True
value

single 33 1 0 0 0
two 0 24 1 0 0

three 0 0 15 0 0
self-ext 3 0 0 83 4

unstable 0 0 0 0 2

Table 5.8: Confusion matrix with the evaluation of the final test set based on the Alliander’s current algorithm results

Alliander value
single two three self-ext unstable

True
value

single 27 0 0 0 4
two 2 23 0 0 0

three 0 0 15 0 0
self-ext 6 0 0 84 0

unstable 0 0 0 0 2
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Table 5.9: RMSE, MAE, 90th percentile values for the final test set

Single-phase faults Multi-phase faults

RMSE
[Ω]

MAE
[Ω]

90th
percentile

[Ω]
RMSE

[Ω]
MAE
[Ω]

90th
percentile

[Ω]

0.322 0.152 0.555 0.015 0.007 0.016

(a) Boxplot for the single-phase error distribution

(b) Boxplot for the multi-phase error distribution

Figure 5.10: Boxplots for the error distributions for the faults in the test set

From the confusion matrix for the predicted values, one could depict a large number of self-extinguishing
faults and that’s because they outnumbered by a lot all the other type of faults in the possessed dataset. The
misclassifications labeled as unstable faults are not serious since this type of faults are a matter of further
investigation. The misclassifications labeled as single-phase faults are more serious since a loop-impedance
is sent immediately to the control room for depicting the location. However, these may lead to the correct
location either way for repairing the cable locally and preventing a future stable fault developing. Regard-
ing the unstable faults, since a huge amount of them was previously used for the training of the stability
model, only two were left out and indeed they were correctly classified. Regarding the misclassifications of a
single-phase and a two-phase fault, only the former is concerning as the fault loop-impedance given is cal-
culated with the single-phase fault equation. That way the predicted outcome has lower value of reactance
and impedance magnitude, as expected since it is a two-phase fault. The latter can be evaluated for the value
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of loop-impedance that leads to and it is indeed very close to the real one. The values of RMSE, MAE and
90th percentile are indicating that the loop-impedance calculation from the model is quite accurate as they
are within the acceptable margins of 1Ω and 0.05Ω for single-phase and multi-phase faults respectively. The
boxplots for the error distribution of both single-phase and multi-phase faults points out that the majority
of the results is within the desired limits, as well. As a consequence, the location of the fault would be also
within the acceptable margins in terms of kilometers, which as mentioned before is around 1.5km and 500m
for single-phase and multi-phase faults, respectively.

5.3.3. Discussion
The models developed here for the fault type classification and location that include both stable and unstable
faults seem to work sufficiently well based on the results in the previous section. As mentioned in chapter 3,
with the current Alliander’s model only 8 stable faults are misclassified out of the whole data set. To better
compare, these 8 stable faults are included in the test set. The proposed model can classify correctly the 2
two-phase faults and the 3 out of the 6 self-extinguishing faults. There can be a comparison of the general
performance for the proposed and current model which are shown in the confusion matrices in tables 5.7
and 5.8 correspondingly based on the true fault labels. The proposed model leads to a weighted f1-score of
95.1% whereas the current algorithm 93.3% (excluding the 3 faults labeled as unknown).

The great importance of this model rises into the unstable faults classification. The rules applied in this
model, let it correctly classify faults which after the offline inspection it is observed that they can provide a
reliable fault loop-impedance and initially were classified as unstable faults by the current Alliander’s algo-
rithm. An accurate loop-impedance of these initially unstable faults is sent to the control room and it is going
to lead to an accurate fault location. Thus, the locations are provided for more faults, helping into minimizing
the total restoration time. This constitutes the best advantage of this model over the current model used by
Alliander.

In particular, in the testing data set there exist 6 samples initially labeled as unstable faults by the current
algorithm from which 4 are in the end single-phase faults and 2 are still unstable. Moreover, there are 3 en-
tries which were classified as unknown faults by Alliander’s algorithm that in reality are single-phase faults.
All these faults were classified correctly by the fault classification and location scheme developed in this the-
sis which as said before leads to the decrease in the overall restoration time. One example for each case is
shown below. Figure 5.11 presents a single-phase fault that was labeled unstable by Alliander’s algorithm and
by the proposed fault classification scheme is classified as single-phase fault. Figure 5.12 shows an unstable
fault that was labeled unstable by the current model and it is still classified as unstable. Finally, figure 5.13
depicts a single-phase fault initially labeled as unknown by Alliander and then classified as single-phase fault
by the proposed model. In Appendix A the rest of the faults belonging to the test set are plotted that initially
were labeled as unstable or unknown faults.

Compared to the fault classification model developed by Ranganathan in [2], the model has quite simi-
lar performance on the random unseen data it was tested regarding the weighted f1-score (95%) which can at
least show that both models are equally good on that. As mentioned before the model developed in this thesis
has more explainable and interpretable features that makes it more trustworthy to use in practice by Allian-
der. Additionally as shown in the previous section where tuning the stability model, it can certainly identify
and locate accurately two-phase and three-phase faults whereas the model proposed by Ranganathan can-
not.
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(a)

(b)

Figure 5.11: Single-phase fault labeled as unstable by Alliander’s algorithm and classified as single-phase fault by the proposed fault
classification scheme (a) full signal (b) zoomed signal

(a)

(b)

Figure 5.12: Unstable fault that is still classified as unstable by the proposed fault classification scheme (a) full signal (b) zoomed signal
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(a)

(b)

Figure 5.13: Single-phase fault labeled as unknown by Alliander’s algorithm and classified as single-phase fault by the proposed fault
classification scheme (a) full signal (b) zoomed signal

5.4. Summary

In this section, the development of the model that classifies and locates faults both stable and unstable ones
was presented. In order to do that first a refinement of the stability thresholds was held which were evaluated
based on the accuracy of the loop-impedance calculated in the end. The entire model is built consisted of
the fault type classification, the stability check and the selection of part with the lowest loop-impedance. The
results showed that the model is accurate enough and since can recognize better the unstable faults, it has
the potential to replace the current Alliander fault location model. Finally, based on the analysis executed in
this chapter, further research questions could be answered.

How can the unstable faults that can provide fault location be better distinguished from the ones that do
not? In this chapter the development of new stability rules is done. The results showed that using these
thresholds to evaluate the stability of a fault waveform, leads to a better distinction of faults that can provide
a sufficiently accurate loop-impedance or -reactance (within the acceptable error margins) and hence a re-
liable fault location estimation. Otherwise these faults would be labeled as unstable faults and there would
not be any possible fault location sent to the control room.

What are the methods to determine the best time period for the fault loop-impedance calculation for ac-
curate fault location estimation? The model developed in this chapter includes also the calculation of the
fault loop-impedance/-reactance. That means that the model can determine the best time period to calcu-
late it. This is done after the fault type classification and the stability check. Similar to the stability check
and to the same step at the current model of Alliander, the analysis is per period. For each segmented part,
the impedance or reactance is calculated for the stable parts and then the period with the lowest impedance
or reactance value based on the fault type is calculated. If a fault consists of one segmented section then
this would be the final loop-impedance value, otherwise the suitable one of the two based on the rules that
showed is selected.
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Conclusion

The focus of this thesis was first to develop a machine learning (ML) model for the fault classification with
explainable features that could recognize accurately the type of the fault in the distribution system. The
fault type classification is an important step, before the estimation of the fault location and subsequently
the restoration of the system. The fault location estimation is done based on the loop-impedance/-reactance
comparison that the fault would give and from the simulation of the network. This loop-impedance/-reactance
calculation is fault type dependent and thus a wrong type result would lead to a wrong fault location. So, it all
comes to the ability to estimate the location of a fault quickly and accurately in order for the faulty section to
get isolated and the power supply to get restored.

The explainability though is something that would not be considered a lot before, however in this thesis
has great significance. In this thesis the ways of how a model can be explainable and interpretable are dis-
covered and the suitable ones are selected. The artificial intelligence (AI) models are highly penetrated in all
kinds of applications in industry. There are a lot of applications of critical importance that could not afford
to turn into a black-box and not understand or even trust the result. So, the introduction of explainability in
this thesis, shows how a ML fault classification model could be more interpretable so the operators trust the
results of it.

Under these requirements different sets of explainable features were investigated so to form an appro-
priate and quite accurate classification model for the stable faults. Compared to a previous ML-based clas-
sification model, this model has similar accuracy and outperforms in terms of explainability. However, the
classification model of Alliander works accurately also for the stable faults and it is explainable out of na-
ture. The main issue comes from the unstable faults classification as the current rules seem too conservative.
So, the thesis further focuses on incorporating the self-extinguishing and unstable faults recognition in the
model, refining the stability rules.

Hence, a more general model is created which consists of a ML classification model and a per period sta-
bility check model. The model is extended into finding the final loop-impedance which would be compared
with a simulation impedance, leading to a possible fault location. The evaluation of the stability thresholds
developed is done based on the loop-impedance result compared to the corresponding ones given by Allian-
der. After that the whole model can be built and evaluated in a similar way. The results show that indeed the
model developed can recognize efficiently the type of the faults, including self-extinguishing and unstable
faults, and to classify correctly as stable faults previously labeled unstable faults. This is the main outcome
and advantage of this model over the current Alliander one. Also, the performance of the model over the ac-
curate loop-impedance/-reactance calculation are very promising.

6.1. Research Questions

The main research question for this thesis project is:

63
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How can modern signal processing and machine learning techniques be used to construct an accurate and
explainable fault classification scheme in the distribution network?

The sub-questions that have been answered during the course of this thesis and summarize the key find-
ings are:

1. Which explainability approaches exist for a machine learning model and how to evaluate them?

Based on the literature review held in chapter 2, the explainability can be categorized in three levels.
The first is the pre-modeling explainability which mostly concerns the dataset and the feature engi-
neering. Second, the explainability in the model that derives either out of its nature such as the Linear
Model, Decision Tree (DT), kNN or a build-in hybrid model. Third, the post-modeling explainability
which again can be distinguished in separate categories. It can be a model-agnostic or a model-specific
explainability and global or local explainability. Model-agnostic is usually a black-box with specific for-
mulation unrelated to the model that can give some explanations, whereas model-specific explainabil-
ity is a model related that interferes in it. Global explainability is about the interpratation of the general
response of the model whereas local refers to a single or a specific number of results. In the end the
pre-modeling explainability is used for this project and in particular the feature engineering is focused
only in explainable features. The choice of a model more explainable would come at expense of the
accuracy since they are less powerful, thus this was not the approach followed. The post-modeling ex-
plainability was not selected because it is yet quite vague in its results, since different methods lead to
different results.

The evaluation of explainability/interpretability can be done by experts as an application level evalu-
ation, by people non-experts in big scale but with less important tasks as a human level evaluation or
by using an already certified explainable model as a proxy such as DT with a few levels in a function
level evaluation. The choice of evaluation in this thesis was the application level evaluation based on
experts which led accordingly the development of explainable features.

2. What explainable features could be extracted for the fault classification?

In this thesis was very essential the development of explainable features. As seen by the literature review
in chapter 2, in the majority of the classification models for faults in the transmission and the distribu-
tion system, the feature extraction is based on the Wavelet Transform (WT). However this affects the ex-
plainability of the model, frequency domain information (detailed coefficient) cannot provide precise
frequency information. Hence that makes WT features less interpretable. So other more explainable
techniques were explored and selected such as the Fourier Transform (FT), the sliding FT or the sig-
nal itself. Even though these provide poorer time-frequency resolution, within each window they can
lead in a precise frequency content information. Using Short-time FT and more specifically the fun-
damental frequency component, that makes the per-period magnitude and phase of each waveform
available. Subsequently that helps into shaping the symmetrical components, impedance, reactance
and resistance, that could lead to interpretable features. These features were created using the average,
minimum or maximum value of these components for the specific segmented part. Also in the case
of the features developed based on the third harmonic magnitude’s of current or voltage the energy is
used. In chapter 4 the explainable feature sets developed can be seen.

3. How can the unstable faults that can provide fault location be better distinguished from the ones that do
not?

One of the most significant goals of this thesis project was to refine the stability rules for the unstable
faults, since the existing ones are conservative. All the faults that can provide a reliable fault location
estimation based on the loop-impedance, ideally should pass through the automatic procedure of find-
ing this location. So, with the existed rules quite some faults of this kind are labeled as unstable and
they cannot send a fault location to the control room. Locating unstable faults without any indication is
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quite more time-consuming taking into consideration the importance of time, when the power supply
stops.

In chapter 5 new stability rules were developed. The results showed that using these thresholds more
faults are classified as stable even though they were labeled as unstable based on Alliander current
rules. This is an important finding of this thesis, since more of these unstable faults are sending a fault
location estimation to the control room, thus the time needed for restoration of the network and the
customer minutes lost would be shorter.

4. What are the methods to evaluate the machine learning model’s performance on classifying the faults?

This question concerns the performance of the fault type classification model that used Support Vector
Machine (SVM). In chapter 4 the model works only for the stable faults where only one segmented part
exists and the metric used for its evaluation is the macro f1-score which is a trade-off between preci-
sion and recall. Due to the use of a nested cross-validation, the evaluation is more objective since the
model is validated in different sets in the end which it would not see in a straight split of training and
validation set. So, the final result for the performance of each model comes from the average macro
f1-score value on the different test set for all the five folds. Based on that all the models developed in
chapter 4 had a quite good performance.

Regarding the fault classification and location scheme developed in chapter 5, the use of ML is sim-
ply in the fault classification model. The ML model there is similar to the model with the symmetrical
features in chapter 4, however the data used is different since the derived segmented parts could be
even two. Again nested cross-validation is used and macro f1-score to evaluate and reach to the proper
model selection, there is though a hold out of a test set that is used for the fault location evaluation.
The performance of the ML model in classifying fault types is quite accurate and that is very promising
since that influences the fault loop-impedance/-reactance calculation afterwards.

5. What are the methods to determine the best time period for the fault-loop impedance calculation for ac-
curate fault location estimation?

This question refers to the fault location which is the end goal of such model. In order to make that
possible for all the kind of faults, the ML classification model alone is not sufficient, as the ones in
chapter 4. That’s why the loop-impedance correct calculation depends on the stability rules and the
fault type. But the stability rules are also fault type dependent. So, an appropriate model is developed
in chapter 5. It includes the fault type classification, the stability check and the selection of a suit-
able fault loop-impedance. The stability check and the fault loop-impedance calculation are done in a
per-period analysis as in the current model of Alliander. For each segmented section and for their par-
ticular stable periods, the impedance and reactance are calculated for single-phase and multi-phase
faults, respectively. The method to get the best time period for the fault loop-impedance is to select
the period with the lowest impedance or reactance value correspondingly. Then if a fault consists of
one segmented section then this would be the final loop-impedance value, otherwise the suitable one
of the two based on the rules that showed is selected. The final calculated values were compared with
the corresponding values from Alliander’s current algorithm. Using the metrics root mean squred error
(RMSE), mean absolute error (MAE) and 90th percentile the results were evaluated based on the error
limits given. The results show that this model offers sufficiently accurate performance in ending up to
the fault loop-impedance.

6.2. Future Research

The models developed and subsequently the outcome reached by this thesis was based on a number of limi-
tations presented in separate areas throughout the study. In this section, these limitations are acknowledged
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and possible avenues for future research are presented.

Opposite to what most of the reviewed literature does, real-world fault data recordings from a distribu-
tion system are used for developing the models here. This inevitably corresponds to a limited number of
reliable real fault data to explore and build the classification ML and the stability model. The existence of a
larger sample space of faults available to investigate, would ensure broader range of real data for the models
to trained and validated on which leads to the capture of greater variety of characteristics prevailed in the
fault waveforms. Additionally, the fact that in the reviewed literature the majority of the papers are dealing
with synthetic data that are quite purer than the real-world ones, creates a gap between the techniques used
there and the techniques needed by a real application. So, the proposed methods based on synthetic data
need to be investigated on how applicable are if the input is the real data. First, Alliander database is getting
larger as more faults are stored, so it would be desirable in the future to retrain the models with the new ex-
tended dataset. Second, the exploitation of the powerful tool called Real Time Digital Simulator (RTDS) for
creating synthetic data would be very helpful into extending the dataset suitably. With the RTDS the data
created would have the closest to the real faults form achieved and thus the information providing would be
very useful for training and validating the models.

Since the explainability and the interpretability of the results are essential for the development of the clas-
sification models in this project, the complexity and hence the accuracy of the model selected was limited.
The ML technique selected here was the Support Vector Machine (SVM) which provides a sufficient a trade-
off between explainability and classifying performance. As explainability and interepretability of AI and ML
models is an emerging topic, if a suitable technique of post-modeling explainability arise that would let a
more complex model to be picked up, such as a deep learning (DL) based one, that would possibly be able
to exploit better the information gained from the dataset of faults given. Therefore, techniques as Convo-
lutional Neural Networks (CNN) or Recurrent Neural Networks (RNN) that can better spot and handle the
physical characteristics of waveforms as an image and a time-series respectively, would be worth exploring.

Regarding the development of the new stability rules again the existence of a larger and reliable num-
ber of faults labeled as either only initially or fully unstable would let the model to be trained, validated and
eventually tested in more fault data recordings. Moreover, most of the unstable fault entries existing concern
single-phase faults since they occur in higher frequency than the multi-phase faults. That leads into develop-
ing a stability check model mainly based on the unstable single-phase faults, ending up in the same rules for
the zero sequence and the phase-phase signals for the single-phase and multi-phase samples respectively.
The availability of a greater amount of multi-phase faults would make possible the exploration of a separate
set of rules, that could may be even result in more real stable multi-phase faults to be recognized correctly.
So, again creating appropriate synthetic data with the help of RTDS would help into having a better trained
model. Furthermore, the development of an optimization process to find the exact combination of the val-
ues for each stability feature would be more accurate. An alternative approach could be explored based on
unsupervised learning techniques with a solid framework. This could focus on all the per-period stability
characteristics of the fault data which is infeasible to manually develop labels for.

As mentioned before, self-extinguishing faults are faults that after some periods of fault existing, extin-
guish by themselves without any circuit breaker (CB) closing. That means that no immediate action is needed,
however its location is good to be known so preventive measures and maintenance applied there and hence
not a stable fault is developed later. In the full model developed in chapter 5 this class of faults is included in
the training and testing stages and it seems that the model there works sufficiently into distinguishing self-
extinguishing faults. Nevertheless in the rare occasion of such a fault with a developed stable part before, the
model does not work as it should because it recognizes this part as a stable fault and the section rules are
developed in a way to promote it over the self-extinguishing label. The existence of stable part that the model
recognizes, it leads to a fault location that would be the correct one. Under that thought, perhaps a separate
model for the distinction between the permanent faults and the self-extinguishing faults that after that would
also investigate the possible existence of stable part. That way, this kind of self-extinguishing faults would not
classified incorrectly as permanent ones.

In this thesis, the performance metrics used for the classification model was the multi-label f1-score and
for the fault loop-impedance/-reactance the RMSE, MAE and 90th percentile. Because f1-score serves as a
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trade-off of precision and recall metrics, f1-score was chosen as suitable for evaluating with the same weight
the type of misclassification (false positive or false negative). For the fault loop-impedance/-reactance results
the combination of three metrics was based on having a good reflection on the average value of errors in dif-
ferent ways, with these specific metrics that seem from the literature to be appropriate. For both the cases,
there is room to investigate more metrics that could be more suitable to evaluate the corresponding model.

Finally, this thesis was focused on what extent the signal processing and machine learning techniques
would help into classifying and locating accurately faults in the distribution network. The computation time
minimization was not under the scope of this project, however since it is considered for practical implemen-
tation, it could be useful to explore any improvement in terms of run time. The optimization of the code is
one aspect that could be explored and the segmentation technique, a data preprocessing method that needs
time. In particular, the segmentation algorithm could be further investigated by either building a different
cost function, either by replacing it with a totally different technique that is not based on the signal deviation,
either by replacing suitably the model so the segmentation could be discarded.
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A
Supplementary Figures

(a) Scatter plot of the reactance/km for a three-phase fault (b) Scatter plot of the impedance/km for a single-phase fault

Figure A.1: Reactance/km and impedance/km for three- and single-phase fault respectively per distance of a fault from the substation.
This concerns an example based on real observations of a specific substation. The greater the distance the further from the substation
is the location, which means that the cables are become smaller in diameter, thus they have higher resistance than before. As it can be

observed, the reactance/km has quite a constant value at around 0.08Ω/km that remain unaffected by the distance. In contrast, the
impedance/km deviates more between the values 0.4−0.8Ω/km and at the furthest point rises to the highest values, as the cable has

lower diameter
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74 A. Supplementary Figures

(a)

(b)

Figure A.2: Single-phase fault labeled as unstable by Alliander’s algorithm and classified as single-phase fault by the proposed fault
classification scheme (a) full signal (b) zoomed signal

(a)

(b)

Figure A.3: Single-phase fault labeled as unstable by Alliander’s algorithm and classified as single-phase fault by the proposed fault
classification scheme (a) full signal (b) zoomed signal
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(a)

(b)

Figure A.4: Single-phase fault labeled as unstable by Alliander’s algorithm and classified as single-phase fault by the proposed fault
classification scheme (a) full signal (b) zoomed signal

(a)

(b)

Figure A.5: Unstable fault labeled as unstable by Alliander’s algorithm and classified as unstable fault by the proposed fault
classification scheme (a) full signal (b) zoomed signal
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(a)

(b)

Figure A.6: Single-phase fault labeled as unknown by Alliander’s algorithm and classified as single-phase fault by the proposed fault
classification scheme (a) full signal (b) zoomed signal

(a)

(b)

Figure A.7: Single-phase fault labeled as unknown by Alliander’s algorithm and classified as single-phase fault by the proposed fault
classification scheme (a) full signal (b) zoomed signal
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Table B.1: Labels and impedance values for each data sample belonging to the final test set

DFR file name
True fault

type

Current
algorithm’s

label

Proposed
algorithm’s

label

Current
algorithm’s
impedance

Proposed
algorithm’s
impedance

AMV_010V145_20190502_144308.dfr single-ph single-ph single-ph (3.932+1.809j) (3.932+1.809j)
EDM_133_20190320_161428.dfr single-ph single-ph single-ph (14.1+8.316j) (14.312+8.215j)
EDM_137_20180110_043646.dfr single-ph single-ph single-ph (4.859+2.703j) (4.952+2.775j)
GRD_11_20190726_231807.dfr single-ph single-ph single-ph (20.121+10.652j) (20.121+10.652j)
HAS1_2.10_20200525_1304067.dfr single-ph single-ph single-ph (10.104+5.394j) (9.19+5.571j)
HHWN_106_20190607_205722.dfr single-ph single-ph single-ph (2.467+1.327j) (2.467+1.327j)
HMM_156_20200817_134211.dfr single-ph single-ph single-ph (7.651+4.975j) (7.069+4.817j)
HRNH_138_20180528_165157.dfr single-ph single-ph single-ph (29.698+10.929j) (29.252+10.971j)
IJM_156_20191220_124400.dfr single-ph single-ph single-ph (31.891+12.819j) (31.891+12.819j)
LEIN_V104_20190728_085715.dfr single-ph single-ph two-ph (11.732+4.431j) (1.13+0.553j)
LEIN_V109_20180727_222558.dfr single-ph single-ph single-ph (5.977+2.718j) (5.977+2.718j)
MNZL_1_20191227_174137.dfr single-ph single-ph single-ph (4.942+1.94j) (4.942+1.94j)
NK1_2.14_20181113_152647.dfr single-ph single-ph single-ph (1.279+0.422j) (1.279+0.422j)
OHK_1.18_20180220_034301.dfr single-ph single-ph single-ph (42.253+12.494j) (41.896+12.305j)
OWD_19_20180614_235805.dfr single-ph single-ph single-ph (6.024+3.501j) (6.012+3.473j)
OWD_19_20180615_010031.dfr single-ph single-ph single-ph (5.888+3.381j) (5.888+3.381j)
RDW_010V203_20180710_021313.dfr single-ph single-ph single-ph (13.256+7.302j) (12.75+7.595j)
RDW_010V203_20210125_225629.dfr single-ph single-ph single-ph (6.73+3.693j) (6.73+3.693j)
RW_010V116_20190913_124456.dfr single-ph single-ph single-ph (24.769+12.274j) (24.769+12.274j)
SCH1_138_20190418_093922.dfr single-ph single-ph single-ph (1.773+0.879j) (1.773+0.879j)
SCH1_177_20200809_164556.dfr single-ph single-ph single-ph (5.76+3.071j) (5.76+3.071j)
SK_3_20180108_140918.dfr single-ph single-ph single-ph (5.153+4.227j) (5.153+4.227j)
SK_3_20180221_141257.dfr single-ph single-ph single-ph (3.189+1.696j) (3.192+1.603j)
SK_3_20180814_202229.dfr single-ph single-ph single-ph (6.108+2.992j) (5.907+2.961j)
SK_3_20181024_104728.dfr single-ph single-ph single-ph (3.189+1.27j) (3.189+1.27j)
SK_3_20190524_075328.dfr single-ph single-ph single-ph (28.803+12.856j) (28.803+12.856j)
WHS_010V270_20180930_013556.dfr single-ph single-ph single-ph (2.505+3.18j) (2.505+3.18j)
ALPV_V0102_20210218_122712.dfr two-ph two-ph two-ph (0.264+0.05j) (0.264+0.05j)
AMV_010V133_20131014_223930.dfr two-ph two-ph two-ph (2.436+0.502j) (2.376+0.508j)
BGM_1.13_20180503_145635.dfr two-ph two-ph two-ph (1.832+0.986j) (1.832+0.986j)
BGM_2.18_20180203_032422.dfr two-ph two-ph two-ph (2.039+0.527j) (2.064+0.526j)
DK_11_20180310_193352.dfr two-ph two-ph two-ph (1.43+0.455j) (1.43+0.455j)
DK_22_20190603_113141.dfr two-ph two-ph two-ph (3.649+0.663j) (3.685+0.655j)
EDM_010V201_20200626_101142.dfr two-ph two-ph two-ph (0.144+0.078j) (0.15+0.078j)
EDM_137_20180420_024922.dfr two-ph two-ph two-ph (1.564+0.748j) (1.56+0.745j)
EDM_144_20140715_090706.dfr two-ph two-ph two-ph (1.086+0.459j) (1.074+0.448j)
HAS1_2.09_20180802_104815.dfr two-ph two-ph two-ph (0.531+0.666j) (0.531+0.666j)
HMM_144_20190125_102140.dfr two-ph two-ph two-ph (0.5+0.3j) (0.512+0.245j)
IJM_145_20200810_011134.dfr two-ph two-ph two-ph (0.561+0.156j) (0.556+0.156j)
LEI_RU_2_010V269_20180531_131719.dfr two-ph two-ph two-ph (0.205+0.087j) (0.205+0.087j)
LEI_ZW_124_20170616_220612.dfr two-ph two-ph three-ph (1.011+0.55j) (1.01+0.546j)
LEI_ZW_128_20200812_081739.dfr two-ph two-ph two-ph (1.144+0.518j) (1.144+0.518j)
LMR_2.17_20200721_171531.dfr two-ph two-ph two-ph (0.992+0.42j) (0.992+0.42j)
NK1_2.10_20190324_032617.dfr two-ph two-ph two-ph (0.513+0.359j) (0.513+0.359j)
NRD_147_20200821_102156.dfr two-ph two-ph two-ph (0.392+0.166j) (0.419+0.143j)
OWD_14_20181002_100655.dfr two-ph two-ph two-ph (1.994+0.431j) (1.994+0.431j)
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TEX_010V145_20160201_042343.dfr two-ph two-ph two-ph (1.083+0.309j) (1.036+0.301j)
WOM_3_20190805_021058.dfr two-ph two-ph two-ph (3.526+0.53j) (3.526+0.53j)
WV_9_20180103_205324.dfr two-ph two-ph two-ph (0.341+0.147j) (0.341+0.147j)
ZVH1_158_20150424_071500.dfr two-ph two-ph two-ph (0.971+0.734j) (0.975+0.728j)
DTN_16_20190728_215010.dfr three-ph three-ph three-ph (0.037+0.016j) (0.037+0.016j)
HAS1_2.11_20180717_105041.dfr three-ph three-ph three-ph (0.704+0.755j) (0.736+0.697j)
HAS1_2.11_20190731_134839.dfr three-ph three-ph three-ph (0.747+0.747j) (0.744+0.76j)
HMM_137_20190318_093228.dfr three-ph three-ph three-ph (0.8+0.488j) (0.767+0.484j)
LEIN_V120_20180703_055926.dfr three-ph three-ph three-ph (0.325+0.167j) (0.321+0.162j)
LEI_ZW_202_20180728_064056.dfr three-ph three-ph three-ph (0.701+0.324j) (0.701+0.324j)
NRD_144_20190625_060913.dfr three-ph three-ph three-ph (0.85+0.387j) (0.875+0.364j)
OHK_1.17_20201103_103619.dfr three-ph three-ph three-ph (2.872+1.081j) (2.871+1.072j)
PSW_10_20200127_121533.dfr three-ph three-ph three-ph (0.606+0.315j) (0.606+0.315j)
RW_010V116_20200627_011901.dfr three-ph three-ph three-ph (1.839+0.348j) (1.839+0.348j)
SCH1_139_20180702_151226.dfr three-ph three-ph three-ph (1.992+0.903j) (1.985+0.896j)
SCH1_139_20181128_205005.dfr three-ph three-ph three-ph (1.222+0.59j) (1.222+0.59j)
SK_3_20200922_013409.dfr three-ph three-ph three-ph (0.248+0.131j) (0.252+0.126j)
WOR_14_20200705_133003.dfr three-ph three-ph three-ph (0.661+0.106j) (0.677+0.098j)
WSP_139_20201212_161344.dfr three-ph three-ph three-ph (0.229+0.072j) (0.229+0.072j)
AH_2.04_20181029_161149.dfr self-ext self-ext self-ext (6.247+22.367j) -
AH_2.13_20200419_172903.dfr self-ext self-ext self-ext (5.467+24.072j) -
ALKB_106_20200604_084437.dfr self-ext self-ext self-ext (298.255+40.055j) -
ALPC2_V0206_20210130_212530.dfr self-ext self-ext self-ext (280.648+84.431j) -
ALPC2_V0206_20210130_212546.dfr self-ext self-ext self-ext (192.096+64.449j) -
AMV_010V133_20180610_010507.dfr self-ext self-ext self-ext (24.527+32.577j) -
BGM_1.06_20190501_124457.dfr self-ext self-ext self-ext (45.424+52.931j) -
BGM_1.06_20210225_001534.dfr self-ext self-ext self-ext (20.623+28.528j) -
BGM_1.06_20210225_001643.dfr self-ext self-ext self-ext (22.379+14.605j) -
BGM_1.06_20210225_001650.dfr self-ext self-ext self-ext (26.269+39.736j) -
DK20_020V112_20180225_083634.dfr self-ext self-ext self-ext (50+50j) -
DK_22_20190208_040828.dfr self-ext self-ext self-ext (233.965+188.647j) -
DTN_13_20190621_142431.dfr self-ext self-ext self-ext (11.629+27.7j) -
DTN_18_20200312_081832.dfr self-ext self-ext self-ext (12.119+28.04j) -
ELT_203_20180610_022144.dfr self-ext self-ext self-ext (55.816+79.921j) -
ELT_205_20201117_114002.dfr self-ext self-ext self-ext (194.869+126.638j) -
HBY_1.07_20180918_161840.dfr self-ext self-ext self-ext (14.229+15.647j) -
HMM_138_20191211_162710.dfr self-ext self-ext self-ext (461.466+145.349j) -
HTM_2.02_20190219_164807.dfr self-ext self-ext self-ext (69.291+67.335j) -
HTM_2.02_20190220_192658.dfr self-ext self-ext self-ext (17.525+37.247j) -
HTM_2.02_20190221_051950.dfr self-ext self-ext self-ext (18.911+40.664j) -
HTM_2.02_20190222_000124.dfr self-ext self-ext self-ext (19.358+43.335j) -
HTM_2.02_20190223_105907.dfr self-ext self-ext self-ext (20.315+43.679j) -
HTM_2.02_20190223_163956.dfr self-ext self-ext self-ext (14.057+35.518j) -
HTM_2.02_20190224_231640.dfr self-ext self-ext self-ext (14.375+37.439j) -
HTM_2.02_20190307_011511.dfr self-ext self-ext self-ext (19.831+29.324j) -
HTM_2.02_20190307_094507.dfr self-ext self-ext self-ext (69.428+72.297j) -
HTM_2.13_20190215_001501.dfr self-ext self-ext self-ext (73.444+49.598j) -
HTM_2.13_20190302_054932.dfr self-ext self-ext self-ext (39.782+55.461j) -
HTM_2.13_20190302_142927.dfr self-ext self-ext self-ext (60.813+50.83j) -
HTM_2.19_20200119_100055.dfr self-ext self-ext self-ext (140.927+80.125j) -
HTM_2.19_20200128_001253.dfr self-ext self-ext self-ext (50+50j) -
HTM_2.25_20201205_205228.dfr self-ext self-ext self-ext (104.349+110.673j) -
LEIN_V109_20190726_190420.dfr self-ext self-ext self-ext (18.218+16.3j) -
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LEI_vzw_2_20200429_223951.dfr self-ext self-ext unstable (50+50j) -
LMR_1.07_20180729_024729.dfr self-ext self-ext self-ext (136.87+104.071j) -
LMR_1.07_20180805_043150.dfr self-ext self-ext self-ext (131.005+117.219j) -
LMR_1.07_20180805_043321.dfr self-ext self-ext self-ext (186.218+167.222j) -
LMR_1.07_20180805_043415.dfr self-ext self-ext self-ext (219.366+145.075j) -
LMR_1.09_20180621_162131.dfr self-ext self-ext self-ext (92.004+99.387j) -
LMR_1.09_20210822_142612.dfr self-ext self-ext unstable (8.701+5.439j) -
LMR_1.09_20210822_142619.dfr self-ext self-ext unstable (7.489+4.734j) -
LMR_2.07_20200625_171053.dfr self-ext self-ext self-ext (21.285+15.499j) -
LMR_2.08_20200602_122818.dfr self-ext self-ext self-ext (25.523+26.109j) -
LMR_2.17_20181111_053152.dfr self-ext self-ext self-ext (65.342+39.476j) -
LMR_2.17_20181225_204004.dfr self-ext self-ext self-ext (88.201+110.163j) -
MNZL1_010V109_20191015_153659.dfr self-ext self-ext self-ext (152.05+180.901j) -
MNZL1_010V113_20190221_111641.dfr self-ext self-ext self-ext (447.473+54.035j) -
MNZL1_010V113_20190317_000304.dfr self-ext self-ext self-ext (302.431+99.07j) -
MNZL1_010V129_20201231_212604.dfr self-ext self-ext self-ext (75.024+61.705j) -
NK1_2.18_20191004_071652.dfr self-ext self-ext self-ext (8.29+32.754j) -
NK1_2.18_20191004_200827.dfr self-ext self-ext self-ext (16.744+61.242j) -
NK1_2.18_20200316_110920.dfr self-ext self-ext self-ext (50+50j) -
NK1_2.18_20201008_185847.dfr self-ext self-ext self-ext (12.957+55.881j) -
NK1_2.18_20201008_185903.dfr self-ext self-ext self-ext (13.892+54.912j) -
NK1_2.18_20201008_185913.dfr self-ext self-ext self-ext (21.483+82.454j) -
NK1_2.18_20201101_021358.dfr self-ext self-ext self-ext (42.287+108.324j) -
NK1_2.18_20201109_060902.dfr self-ext self-ext self-ext (561.114+223.086j) -
NK1_2.18_20201109_061333.dfr self-ext self-ext self-ext (6.876+45.301j) -
NK1_2.18_20201109_061829.dfr self-ext self-ext self-ext (16.585+217.656j) -
OHK_1.13_20200817_005230.dfr self-ext self-ext self-ext (109.581+180.189j) -
OWD_17_20191127_081433.dfr self-ext self-ext self-ext (85.885+88.187j) -
PSW_18_20180308_084900.dfr self-ext self-ext self-ext (50+50j) -
RDW_010V203_20210125_225624.dfr self-ext self-ext self-ext (71.385+70.235j) -
RW_010V106_20191011_181810.dfr self-ext self-ext self-ext (200.72+104.581j) -
SK_3_20180511_173257.dfr self-ext self-ext self-ext (26.213+44.361j) -
TEX_010V137_20180205_212740.dfr self-ext self-ext self-ext (60.319+33.899j) -
TEX_010V137_20180207_075124.dfr self-ext self-ext self-ext (111.495+110.149j) -
TEX_010V137_20180211_033100.dfr self-ext self-ext self-ext (252.664+146.686j) -
TEX_010V137_20180211_054803.dfr self-ext self-ext self-ext (88.594+87.12j) -
VAAR_2.12_20180320_120125.dfr self-ext self-ext self-ext (31.226+56.8j) -
WV_7_20180819_020422.dfr self-ext self-ext self-ext (109.77+159.18j) -
WV_7_20180819_020430.dfr self-ext self-ext self-ext (200.554+256.272j) -
WWF_010V113_20180421_015242.dfr self-ext self-ext self-ext (50+50j) -
WWF_010V113_20180601_180825.dfr self-ext self-ext self-ext (50+50j) -
WWF_010V113_20180712_102521.dfr self-ext self-ext self-ext (50+50j) -
WWF_010V113_20180728_084433.dfr self-ext self-ext self-ext (50+50j) -
WWF_010V113_20180816_062251.dfr self-ext self-ext self-ext (50+50j) -
WWF_010V113_20180823_143627.dfr self-ext self-ext self-ext (50+50j) -
WWF_010V113_20180921_205558.dfr self-ext self-ext self-ext (50+50j) -
WWGB_2.55_20180914_122430.dfr self-ext self-ext self-ext (85.243+82.381j) -
WWGB_2.75_20211201_045224.dfr self-ext self-ext unstable (8.879+5.897j) -
WWGB_2.77_20180321_131946.dfr self-ext self-ext self-ext (49.245+113.862j) -
ZBM1_2.15_20190130_131019.dfr self-ext self-ext self-ext (32.285+32.843j) -
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HBY20_106_20180101_190026.dfr two-ph single-ph two-ph - (0.246+0.983j)
SCH1_139_20180108_174247.dfr two-ph single-ph two-ph (2.591+1.976j) (0.328+0.173j)
VAAR_2.12_20180320_120118.dfr self-ext single-ph single-ph (4.681+3.098j) (5.45+3.878j)
VAAR_2.12_20180320_120121.dfr self-ext single-ph self-ext (50+50j) -
VAAR_2.12_20180328_190957.dfr self-ext single-ph single-ph (50+50j) (4.867+3.054j)
VAAR_2.12_20180328_190959.dfr self-ext single-ph self-ext (50+50j) -
VAAR_2.12_20180328_191003.dfr self-ext single-ph self-ext (50+50j) -
VAAR_2.12_20180328_191012.dfr self-ext single-ph single-ph (4.461+2.58j) (4.461+2.58j)
DNT_tr5_20210429_123938.dfr single-ph unstable single-ph (4.63+2.793j) (5.644+2.869j)
HBY_1.09_20191211_201702.dfr single-ph unknown single-ph - (27.479+12.286j)
LEIN_V110_20211115_133704.dfr single-ph unstable single-ph (1.64+0.88j) (1.64+0.88j)
LMR_1.09_20210414_111304.dfr single-ph unstable single-ph (20.304+10.153j) (20.304+10.153j)
OHK_1.10_20180602_200508.dfr single-ph unknown single-ph - (28.44+17.356j)
OHK_1.10_20180622_130824.dfr single-ph unknown single-ph - (31.834+14.652j)
ZUI2_KA01_20210101_102033.dfr single-ph unstable single-ph (6.769+4.821j) (6.769+4.821j)
ALPC2_V0206_20210130_212604.dfr unstable unstable unstable (4.486+3.972j) -
CON2_10_312_20211109_084204.dfr unstable unstable unstable (174.665+77.102j) -
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