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Abstract

Tidal inlet systems are often highly valuable and sometimes even unique ecosystems. However, field
measurements show that tidal inlet systems are sensitive to changing exogenous conditions, such as rising
sea levels. This thesis aims to investigate to what extent the adjacent sea influences the stability and
equilibrium state of the tidal inlet. A one-dimensional idealised model is used to model the interaction
between the sea and the inlet. The water motion is forced by the tide and the inlet is assumed to be
narrow and short. At equilibrium, an increasingly sloping bottom is found in the sea and a constantly
sloping bottom in the inlet. This equilibrium bottom profile seems to be in reasonable agreement with
observations. The sea-inlet bottom profile is less stable than the inlet bottom profile, nevertheless, the
sea-inlet bottom profile is still asymptotically linear stable. Moreover, the results in this thesis suggest
that for one-dimensional idealised models consisting solely of a tidal inlet, the correct seaward boundary
condition is a properly chosen fixed entrance depth. For a two-dimensional semi-infinite sea, it is shown
that a Perfectly Matched Layer is a convenient method to incorporate the Sommerfeld radiation condition
and that the narrow tidal inlet cannot be modelled as a point source forcing in the two-dimensional sea
domain.
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Chapter 1

Introduction

1.1 Morphodynamics

Who has not built a sandcastle on the beach? You pick a nice spot, just before the waterline,
and start digging. Once a big wave forms, you hope that your caste is large enough to survive
the impending wave. Yes, it survived and you keep on digging. When you are finally done (is
a sandcastle ever done?) the water line is miles away from your handmade structure and you
get bored. You start swimming and once you come back, your almighty castle is swallowed
by the sea and you are left with only a shadow of your former masterpiece. The next day,
you come back to rebuild your empire but you cannot find the remains and conclude that it
is gone.

This example nicely illustrates the interaction between the beach, the waves and the tides. Predicting
what happens to the sandcastle in a day or two is not too difficult, but how about predicting what
the beach looks like in one, ten or a hundred years? Or, how the sea level rise affects the seabed and
shorelines? Morphodynamics is the study of the interaction between and the response of the seabed
topology and the fluid hydrodynamics1 (Wright and Thom, 1977). It is the study of oceanic landscape
changes due to erosion and sedimentation. The seabed morphodynamics is affected by the wind, waves,
currents, tides, storms, local bed slope and human activities, to name a few.

Morphodynamic models are used to study the landscape changes of coastal systems. In this thesis, we
focus on process-based morphodynamic models, however several model types have been proposed (see
Section 1.3 for an overview of these model types). A process-based morphodynamic model usually consists
of three modules: a hydrodynamic module, a sediment transport module and a bed evolution module.
In the first module, the water motion is resolved for a given bed topology. In the second module, the
sediment transport is calculated using the known hydrodynamics and in the last module, the calculated
sediment transport is used to update the bed topology. The new bed topology is utilized in the first
module to calculate the water motion again. This is known as the morphodynamic loop and is illustrated
in Figure 1.1.

In this thesis, tidal inlet systems are studied and, in particular, their morphodynamic evolution towards
equilibrium. In the next section, tidal inlet systems are introduced and their importance is highlighted.

1.2 Tidal inlet systems

About 12% of the world’s coastline can be characterized as barrier islands separated by tidal inlets
(Glaeser, 1978). Examples include the Dutch, German and Danish Wadden coast (Ehlers, 1988), the

1The term morphodynamics is not uniquely defined. In other scientific realms, the term morphodynamics may have a
different notion associated to it (Syvitski et al., 2010, p. 1).
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2 Chapter 1. Introduction

Figure 1.1: The morphodynamic loop. Courtesy of Ter Brake (2011).

United States’ east coast (Hayes, 1980) and the barrier coast of New Zealand (Hicks et al., 1999). Tidal
inlets are typically found along sandy coasts (Glaeser, 1978).

Tidal inlets can be defined as semi-enclosed coastal bodies of water where the water motion is predom-
inately driven by tides. A schematic representation of a tidal inlet system is shown in Figure 1.2. For
example, one could think of the Ameland inlet system, where the barrier islands are Terschelling and
Ameland respectively, see also Figure 3.2. A tidal inlet system, in principle, consists of three main com-
ponents: a sea, an inlet (strait) and a basin. During flood tide, seawater flows, mostly via the seaward
marginal flood channels (located in between the barrier islands and the ebb-tidal delta), through the
inlet into the basin. At the entrance of the basin, a shallow flood-delta is formed and inside the basin,
a complex network of channels and shoals is often present. In general, the depth of the fractal channel
structure decreases towards the beach (Hayes, 1980). During ebb tide, water flows out of the basin,
through the inlet into the sea again. The seawards current creates a deep ebb channel in the sea which
transitions into a large, shallow, ebb-tidal delta. The basin is either semi-enclosed by land or surrounded
by watersheds and a coast as depicted in Figure 1.2.

Tidal inlets systems are often highly valuable and sometimes even unique ecosystems (De Vriend et al.,
2002). They act as breeding and nursery grounds for fish and as resting and feeding grounds for many
other species, including migratory birds (De Jonge et al., 1993). Tidal inlet systems are also important
for the stability of the surrounding shoreline since tidal inlets strongly influence the sediment budget of
the coast (FitzGerald, 1988). Moreover, tidal inlets attract a host of human activities, such as navigation,
recreation, fishing, sand mining, land reclamation and mineral extraction (De Vriend et al., 2002).

1.3 Morphodynamic model types

Due to the complexity and vast variety of tidal inlets and the processes observed within them, a multitude
of approaches have been employed to study tidal inlets. De Vriend (1996) proposed the following
classification of the various model approaches:

� Data-based models use measurements only to describe the observed phenomena.

� Empirical relationships and empirical models use statistical relationships between different state
variables, derived from the analysis of field data.

� Semi-empirical long-term models describe the dynamic interaction between large elements of the
system, using empirical relationships to represent the effects of smaller-scale processes.

� Process-based models are mathematical models based on first physical principles.
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Figure 1.2: Sketch of an idealised tidal inlet system and the dominant physical processes. Adaptation based on
De Swart and Zimmerman (2009)
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� Formally integrated long-term models or idealised models are derived from the process-based models
by formal integration over time (and space), with possible empirical or parametric closure relations
and simplified geometries.

Mathematical modelling using conservation laws belongs to the latter two classes. Process-based models
use complex state-of-the-art model formulations. These models have successfully been used to predict
the formation of channels and shoals in tidal inlets (Roelvink, 2006). However, these complex process-
based models cannot be used to perform sensitivity or bifurcation analysis since even a single model run
towards morphodynamic equilibrium is very time-consuming. Furthermore, the complex process-based
models are too complicated to determine which physical processes are responsible for the simulated
behaviour. Formally integrated long-term models retain only those processes that are relevant for the
studied phenomena. As a result, idealised models cannot be used to simulate the exact evolution of any
specific tidal inlet. Instead, idealised models are the perfect tool to gain insight into which processes are
responsible for the commonly observed phenomena within tidal inlets. In this thesis, an idealised model
approach is adopted.

1.4 Current research

Motivated by the method of formal averaging described by Krol (1990) and the numerical results of Van
Dongeren and De Vriend (1994), Schuttelaars and De Swart (1996) developed an idealised one-dimensional
morphodynamic model for a short, semi-enclosed, tidal embayment. The water motion is forced by the
tide at the seaward side and a fixed depth is prescribed at the entrance of the embayment. It was found
that the system has a unique morphodynamic equilibrium for all parameter values. The morphodynamic
equilibria found were consistent with observed bottom profiles in the short embayments of the Dutch
Wadden Sea (De Swart and Blaas, 1998). Later, Schuttelaars and De Swart (2000) have extended this
model to include longer embayments and the derived bottom profiles were overall in good agreement with
field observations.

However, what these idealised models fail to address is the interaction of the embayment with the
adjacent sea. In these idealised models, simple boundary conditions at the basin entrance are imposed,
but it is important to study to what extent the processes occurring in the adjacent sea influence the
hydrodynamics and, therefore, the morphodynamics of the embayment. In Van Leeuwen (2002) the sea-
basin interaction is investigated using a two-dimensional complex morphodynamic model. The geometry
consists of a rectangular sea, that is connected via a small strait to a rectangular basin. It was found that
the alongshore travelling tidal wave has a significant influence on the residual flow patterns in the basin.
In Ter Brake (2011) a different approach is adopted, using the one-dimensional idealised model. Instead
of extending the domain into the sea, the effect of imposing different seaward boundary conditions is
investigated. It was found that changing the seaward boundary condition strongly influenced the shape
and number of possible equilibrium bottom profiles.

Although the interaction between the adjacent sea and the basin has been studied, many of the dynamics
are still poorly understood in terms of physical mechanisms and the exact implications for idealised
morphodynamic models remains unclear. Hence, further research into this interaction is called for, which
leads to the main research questions of this thesis:

Q1 : How does the adjacent sea affect the stability and equilibrium state of the tidal inlet system?

Q2 : What are the correct seaward boundary conditions for one-dimensional idealised models consisting
solely of an embayment?

Q3 : Can a narrow tidal inlet be modelled as a point source forcing in a two-dimensional semi-infinite
sea domain?
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1.5 Thesis structure

To be able to answer the research questions posed in the previous section, the following research approach
and thesis structure are adopted. In Chapter 2, the shallow water equations, which govern the fluid flow
in coastal areas, are derived by formally integrating the full three-dimensional Navier-Stokes equations. In
Chapter 3, a detailed derivation of the morphodynamics of a one-dimensional idealised tidal embayment
is presented. This chapter follows along the lines of Schuttelaars and De Swart (1996). In Chapter 4, the
morphodynamics of a one-dimensional sea-basin system is analysed. To this end, the boundary at the
entrance of the basin is replaced by a boundary located inside the sea, far away from the inlet entrance.
The different sea dynamics are parametrised within the context of this one-dimensional model. Lastly
in Chapter 5, the morphodynamics of a two-dimensional semi-infinite sea and a one-dimensional basin
are analysed. The narrow embayment is modelled as a point source forcing in the two-dimensional sea
domain.





Chapter 2

Derivation of the shallow water
equations

In this chapter, the shallow water equations are derived. The three-dimensional shallow water equations
are derived from the three-dimensional Navier-Stokes equations. The three-dimensional shallow water
equations are integrated over the depth to obtain the two-dimensional shallow water equations. Finally,
the one-dimensional shallow water equations are derived from the two-dimensional shallow water equations
by averaging over the channel width.

2.1 Derivation of the three-dimensional water equations

In this section, the unsteady Reynolds Averaged Navier-Stokes (RANS) equations, which govern fluid
flow, are derived using Reynolds decomposition. Then the three-dimensional shallow water equations are
derived from the RANS equations under the assumption of shallow water.

2.1.1 The unsteady Reynolds Averaged Navier-Stokes equations

The flow is assumed to be incompressible, i.e., the effects of density differences are ignored. The in-
compressible continuity equation is used to represent the conservation of mass and the Navier-Stokes
equations are used to represent the conservation of momentum. The incompressible continuity equation
and the Navier-Stokes equations in convective form are respectively given by





∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.1.1a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+ f∗w − fv = −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
, (2.1.1b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
, (2.1.1c)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
− f∗u = −1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
− g, (2.1.1d)

where u, v and w are the flow velocities in the three Cartesian dimensions, ρ is the fluid density, p is
the pressure, ν is the kinematic viscosity and g is the gravitational acceleration, which is assumed to be
constant. Furthermore, f = 2Ω sinϕ is the Coriolis parameter and f∗ = 2Ω cosϕ is the reciprocal Coriolis
parameter with Ω the angular velocity of earth and ϕ the geographic latitude, which is positive in the
northern hemisphere and negative in the southern hemisphere. The variables u, v, w and p are functions
of the three Cartesian dimensions and time, i.e. they depend on x, y, z and t. For the present form of
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8 Chapter 2. Derivation of the shallow water equations

Figure 2.1: Temporal and spatial scales of typical oceanic processes. Adaptation based on Burchard (2002).

the Coriolis force to be valid, the local Cartesian coordinate system has to be orientated such that the
positive x, y and z axis point eastward, northward and upward respectively.

The current form of the equations allows turbulent flow to occur. Turbulent flow is characterised by
chaotic changes in pressure and velocity at a wide range of length and time scales. The temporal and
spatial length scales for typical processes in the ocean are shown in Figure 2.1. A small perturbation
of the initial condition is sufficient to cause significantly different flow due to the highly complex flow
patterns exhibited by turbulent flow. We are not interested in simulating these turbulent fluctuations,
instead, we are interested in the statistically averaged flow. To this end, Reynolds decomposition is used.
Following Pedlosky (1987), it is assumed that there exists an average1, denoted with 〈 · 〉, such that the
flow u can be decomposed into a mean part 〈u〉, which represents the large-scale flow, and a fluctuating
part u′, which represents the smaller-scale turbulent flow:

u = 〈u〉+ u′,

such that the average of the fluctuating part vanishes, i.e.,

〈u′〉 = 0.

The following four properties should hold for this averaging procedure

〈〈u〉〉 = 〈u〉, 〈u+ v〉 = 〈u〉+ 〈v〉, 〈〈u〉v〉 = 〈u〉〈v〉,
〈
∂u

∂s

〉
=

∂

∂s
〈u〉, (2.1.2)

where s can be any of the spatial variables or the temporal variable. Averaging the continuity equation
(2.1.1a) and using the Reynolds decomposition shows that the averages satisfy the continuity equation

∂〈u〉
∂x

+
∂〈v〉
∂y

+
∂〈w〉
∂z

= 0. (2.1.3)

1The only average that satisfies the four properties given in equation (2.1.2) is the ensemble average, the average over
infinitely many realisations for each x, y, z and t. However using the ergodic assumption, stationary and homogeneous
turbulence, the ensemble average may be replaced by a spatial or temporal average (Burchard, 2002, p. 17).
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The x component of the Navier-Stokes equations can be written in conservative form by adding the
continuity equation (2.1.1a) multiplied with u and using the product rule backwards. The conservative
form of the conservation of momentum in the x dimension, equation (2.1.1b), is found to be

∂u

∂t
+

∂

∂x

(
u2
)

+
∂

∂y
(uv) +

∂

∂z
(uw) + f∗w − fv = −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
. (2.1.4)

Applying the averaging procedure to this equation and substitution of the Reynolds decomposition for
each variable yields

∂〈u〉
∂t

+
∂

∂x
〈u〉2 +

∂

∂y
〈u〉〈v〉+

∂

∂z
〈u〉〈w〉+ f∗〈w〉 − f〈v〉

= −1

ρ

∂〈p〉
∂x

+ ν

(
∂2〈u〉
∂x2

+
∂2〈u〉
∂y2

+
∂2〈u〉
∂z2

)
− ∂

∂x

〈
u′2
〉
− ∂

∂y
〈u′v′〉 − ∂

∂z
〈u′w′〉.

The unsteady Reynolds averaged equations are obtained after expanding the convective derivatives, using
the averaged continuity equation (2.1.3) and rewriting the viscous diffusive terms as

∂〈u〉
∂t

+ 〈u〉∂〈u〉
∂x

+ 〈v〉∂〈u〉
∂y

+ 〈w〉∂〈u〉
∂z

+ f∗〈w〉 − f〈v〉

= −1

ρ

∂〈p〉
∂x

+
∂

∂x

(
ν
∂〈u〉
∂x
− 〈u′2

〉)
+

∂

∂y

(
ν
∂〈u〉
∂y
− 〈u′v′〉

)
+

∂

∂z

(
ν
∂〈u〉
∂z
− 〈u′w′〉

)
.

After averaging the momentum equations, six terms still depend on the unknown turbulent fluctuations,
namely

〈
u′2
〉
,
〈
v′2
〉
,
〈
w′2
〉
, 〈u′v′〉, 〈u′w′〉 and 〈v′w′〉. These unknown terms are called the Reynolds

stresses. Thus there are three equations for nine unknowns. The discrepancy between the number of
unknowns and the number of equations is known as the Turbulence Closure Problem.

It is possible to derive partial differential equations for the Reynolds stresses from the conservation of mo-
mentum equations, the so-called Reynold Stress Equations. The problem is that when deriving the Reyn-
old Stress Equations new unknowns arise, like the third moment fluctuating terms 〈u′v′w′〉, 〈u′2v′〉, 〈u′v′2〉
etcetera. New equations for these new terms can be derived, but the number of unknowns grows faster
than the number of equations. Thus at some point, a closing hypothesis is needed, in which the highest
moment fluctuating terms are parametrised in terms of the lower-order terms, in order to obtain a closed
set of equations.

Here a First-Order Closure is chosen, where the Reynolds stresses are directly parametrised in terms
of the mean flow variables. Turbulent flow consists of eddies, which consist of smaller eddies and so on
until the eddies are small enough for the energy to be dissipated by the viscosity of the fluid. In light of
this energy cascade, it seems reasonable to assume that turbulence acts as energy dissipation and can be
parametrised as additional viscosity. Hence

〈
u′2
〉

= −2Ah
∂〈u〉
∂x

,
〈
v′2
〉

= −2Ah
∂〈v〉
∂y

,
〈
w′2
〉

= −2Av
∂〈w〉
∂z

,

〈u′v′〉 = −Ah

(
∂〈u〉
∂y

+
∂〈v〉
∂x

)
, 〈u′w′〉 = −Av

∂〈u〉
∂z
−Ah

∂〈w〉
∂x

, 〈v′w′〉 = −Av
∂〈v〉
∂z
−Ah

∂〈w〉
∂y

.

Here, Ah, Av are respectively the horizontal and vertical eddy viscosity coefficients. This is the so-called
eddy viscosity parametrisation of the Reynolds stresses. A distinction is made between the horizontal and
vertical eddy viscosity coefficient because the turbulent motion is, in general, much larger in the horizontal
dimension than in the vertical dimension (Cushman-Roisin and Beckers, 2009). The eddy viscosity terms
generally depend on the expected turbulence, time and location. Even though the turbulent fluctuations
are not explicitly resolved, this system of equations is used successfully to reproduce observed geophysical
flows and provides a simple way to close the system of equations with minimal increase in computation
time (Pedlosky, 1987; Vreugdenhil, 1994).

Substitution of the eddy viscosity parametrisation and using the averaged continuity equation (2.1.3)
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gives

∂〈u〉
∂t

+ 〈u〉∂〈u〉
∂x

+ 〈v〉∂〈u〉
∂y

+ 〈w〉∂〈u〉
∂z

+ f∗〈w〉 − f〈v〉

= −1

ρ

∂〈p〉
∂x

+
∂

∂x

(
(ν +Ah)

∂〈u〉
∂x

)
+

∂

∂y

(
(ν +Ah)

∂〈u〉
∂y

)
+

∂

∂z

(
(ν +Av)

∂〈u〉
∂z

)
.

An effective eddy viscosity coefficient that captures both the viscosity effects of the fluid itself and the
viscosity due to the turbulent fluctuations is defined as

Ah = ν +Ah and Av = ν +Av.

The right angled brackets are omitted for notational convenience but it should be understood that the
average operator still applies in the remainder of this thesis. The derivation of the momentum equations
for the y and z direction is similar to that of the x direction and is omitted for brevity. The Reynolds
averaged continuity equation and the unsteady Reynolds Averaged Navier-Stokes equations are given by




∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.1.5a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+ f∗w − fv = −1

ρ

∂p

∂x
+

∂

∂x

(
Ah

∂u

∂x

)
+

∂

∂y

(
Ah

∂u

∂y

)
+

∂

∂z

(
Av

∂u

∂z

)
, (2.1.5b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −1

ρ

∂p

∂y
+

∂

∂x

(
Ah

∂v

∂x

)
+

∂

∂y

(
Ah

∂v

∂y

)
+

∂

∂z

(
Av

∂v

∂z

)
, (2.1.5c)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
− f∗u = −1

ρ

∂p

∂z
+

∂

∂x

(
Ah

∂w

∂x

)
+

∂

∂y

(
Ah

∂w

∂y

)
+

∂

∂z

(
Av

∂w

∂z

)
− g. (2.1.5d)

Comparing the unsteady Reynolds Averaged Navier-Stokes equations to the incompressible Navier-Stokes
equations (2.1.1b–d) shows that only the viscosity terms are altered. Furthermore, it should be noted
that all the variables are replaced with their respective Reynolds average.

2.1.2 The three-dimensional shallow water equations

The Reynolds Averaged Navier-Stokes equations are simplified for large-scale geophysical flow using
scaling analysis. Thereafter, the three-dimensional shallow water equations are derived in the case of
shallow water.

Dominating horizontal flow

It can be the case that not all terms in an equation are equally important. That is to say, there are
terms which are ‘larger’ than the other terms in an equation. There can be one largest term or several
similarly large terms. Considering only the largest terms in an equation results in a new equation. This
new equation is often a simpler version of the original equation and is called a balance, as the sides of this
simpler equation should cancel against each other. The balance with the largest magnitude is called the
leading order balance or dominant balance. Not all balances are allowed and finding a dominant balance
can be a difficult task if the equation contains many terms.

For geophysical flow, the flow and length scales found in the horizontal plane, that is in the x and y
directions, are comparable. The flow and length scale found in the vertical direction, z, are fundamentally
different by, respectively, the presence of the gravity term in equation (2.1.5d) and the boundedness of
the vertical domain by the seabed and free surface. Thus, a horizontal length scale L, vertical length
scale H, horizontal flow velocity U and a vertical flow velocity W are introduced.

Using the characteristic scales, the scaling of the Reynolds averaged continuity equation (2.1.5a) is given
by

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0.

U

L

U

L

W

H
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The dominant balance of the continuity equation for geophysical flow can now be determined. There are
three cases to consider:

1. U/L � W/H: Then the leading order balance is given by ∂w/∂z = 0. Thus the vertical flow is
constant in z, i.e. w = w(x, y). Water cannot flow through the seabed or sea surface, hence water
cannot come from or escape via these boundaries. It follows that the water needed to supply this
vertical flow needs to come from the sides. However, the horizontal water motion is assumed to be
small and can, therefore, not supply this mainly vertical flow of water. Thus, this case is infeasible.

2. U/L ∼W/H: For this case the dominant balance is given by ∂u/∂x+ ∂v/∂y + ∂w/∂z = 0. Thus
the dominant balance is a three-way balance. This balance is very general and this case is feasible.

3. U/L�W/H: The leading order balance is given by ∂u/∂x+∂v/∂y = 0. Thus, the water flow in one
horizontal direction is compensated by the water flow in the perpendicular horizontal direction. This
case is feasible as long as the bottom variations are small compared to the water depth. However,
for coastal areas, the seabed changes over the whole water depth H. The kinematic boundary
condition (2.2.3), which is explained in the next section, then implies the balance W ∼ UH/L,
since ∂h/∂t is very small (as the bed changes on a very long time scale). This balance contradicts
our assumption that W � UH/L, which makes this case infeasible.

In conclusion, the only feasible dominant balance for significantly changing bottom profiles is case 2,
which can be rewritten as

W ∼ H

L
U.

For geophysical flow, the horizontal length scale L is much larger than the vertical length scale H. Hence
the water can be considered shallow, in the sense that the ratio of the vertical length scale H to the
horizontal length scale L is small, i.e. H/L� 1. Using that the water is shallow, it follows that

W � U.

Thus for shallow water, the flow is mainly horizontal.

The three-dimensional shallow water equations

For shallow water, the flow in the vertical dimension w is small, as shown in the previous section. An order
of magnitude analysis of the momentum equation in the z dimension (2.1.5d) shows that the dominant
balance is given by the hydrostatic balance:

∂p

∂z
= −ρg.

For a detailed derivation of the hydrostatic balance, we refer to Pedlosky (1987, p. 59). Furthermore
Cushman-Roisin and Beckers (2009) show that the reciprocal Coriolis term is negligible when compared
to the other terms in the horizontal momentum conservation equation and can be omitted. The dominant
balances result in the three-dimensional shallow water equations:





∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.1.6a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −1

ρ

∂p

∂x
+

∂

∂x

(
Ah

∂u

∂x

)
+

∂

∂y

(
Ah

∂u

∂y

)
+

∂

∂z

(
Av

∂u

∂z

)
, (2.1.6b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −1

ρ

∂p

∂y
+

∂

∂x

(
Ah

∂v

∂x

)
+

∂

∂y

(
Ah

∂v

∂y

)
+

∂

∂z

(
Av

∂v

∂z

)
, (2.1.6c)

∂p

∂z
= −ρg. (2.1.6d)

Thus the assumption that the water is shallow, as is the case in coastal areas, allows equation (2.1.5d)
to be reduced to equation (2.1.6d).
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2.2 Derivation of the depth-averaged equations

In this section, the depth-averaged equations are derived by integrating their three-dimensional counter-
parts over the water depth. First, the continuity equation is integrated over the water depth, followed by
the depth integration of the momentum equations. Lastly, the two-dimensional shallow water equations
are presented.

2.2.1 Geometry, forcing and boundary conditions

Geometry

In Figure 2.2 a cross-sectional view of the water column is shown. The free surface is given by z = H + ζ
with ζ the deviation of the free surface from the reference height H. The erodible bed is located at z = h.

z = H

ζ

z = 0
h

H

Figure 2.2: Cross-sectional view of a vertical water column.

Tidal forcing

The water motion inside the domain is driven by the tides. A tidal wave consists of many frequencies or
constituents, but the most important and well-known frequency is the semidiurnal tidal constituent. The
semidiurnal tide has a period of 12 hours and 25 minutes and is responsible for the majority of the ebb
and flood behaviour observed on beaches. Henceforth, the semidiurnal tidal constituent is prescribed for
the free surface at the boundary of the domain of interest:

ζ = A cosσt on ∂Ω, (2.2.1)

where A is the amplitude of the semidiurnal tide, σ the angular frequency of the semidiurnal tide and
∂Ω is part of the domain boundary.

Kinematic boundary conditions

The water column has two boundaries, one at the top of the water column (at the interface between water
and air) and one at the bottom of the water column (at the interface between water and the seabed).
The boundary at the top of the water column is considered first.

The boundary between water and air is a free-surface boundary where a kinematic boundary condition
is prescribed. A kinematic boundary condition states that fluid particles on the free surface always
remain part of the free surface. Consider a water parcel at the interface between water and air with
coordinates xp, yp and zp. The kinematic boundary condition states that the height of the water parcel
zp is fully dependent on the free surface height at the water particle location H + ζ(xp, yp, t), hence
zp = H + ζ(xp, yp, t). A more convenient way to express the kinematic boundary condition is found by
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taking the material derivative (D/Dt) of zp = H + ζ(xp, yp, t), which can be taken since the equality is
valid for all x, y and t. Furthermore, dropping the subscript p, as the equation holds for all fluid parcels
at the surface, results in

w =
∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
at z = H + ζ. (2.2.2)

Similarly, a kinematic boundary condition is prescribed at the bottom since the seabed is assumed to
be dynamic, albeit at very long time scales. Taking the material derivative of the kinematic boundary
condition at the seabed yields the boundary condition

w =
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
at z = h. (2.2.3)

Dynamic boundary conditions

Similar to the kinematic boundary conditions, dynamic boundary conditions have to be prescribed at
the sea surface and seabed.

Bed shear stresses Let τbed,x denote the shear stress that acts on the plane tangential to the seabed,
in the x direction. The shear stress of a Newtonian fluid at the seabed is given by

τbed,x = µ
∂u

∂n
=⇒ τbed,x

ρ
= ν∇u · n,

where µ is the dynamic viscosity, ν is the kinematic viscosity and the vector n is normal to the seabed.
During the derivation of the Reynolds Averaged Navier-Stokes equations the kinematic viscosity ν was
replaced by the effective horizontal and vertical eddy viscosity coefficients Ah,Av respectively. It follows
that

τbed,x

ρ
=



Ah

∂u
∂x

Ah
∂u
∂y

Av
∂u
∂z


 ·



−∂h∂x
−∂h∂y

1


 = −Ah

∂u

∂x

∂h

∂x
−Ah

∂u

∂y

∂h

∂y
+Av

∂u

∂z
at z = h, (2.2.4)

where the normal at the seabed points into the fluid domain. A similar result can be derived for τbed,y,
the shear stress that acts on the plane tangential to the seabed, in the y direction.

Dimensional analysis shows that the bottom shear stress depends quadratically on the flow velocity. Thus
the bottom shear stresses are parametrised using the quadratic bottom stress law:

τbed,x

ρ
= Cd

√
u2

b + v2
b ub and

τbed,y

ρ
= Cd

√
u2

b + v2
b vb.

See for example Burchard et al. (2011). Here, Cd is a drag coefficient which is typically taken as 0.0025
and ub, vb are the horizontal components of the flow velocity at the seabed.

Lorentz linearisation When considering water motion forced by a dominant frequency, the nonlinear
bottom shear stresses give rise to solutions consisting of a fundamental frequency and higher harmonics.
To simplify the equations the quadratic terms can be linearised which suppresses the higher harmonics.
In 1922, Lorentz proposed a linearisation of the quadratic bottom shear stress such that the mean
energy dissipation in both systems is the same. Terra et al. (2005) have experimentally verified Lorentz
linearisation and found good agreement with the theory for the Helmholtz mode in an almost enclosed
basin. The Helmholtz mode, or pumping mode, is a simple mode for basins that are short compared to
the tidal wavelength, in which the sea level elevation is uniform inside of the embayment and co-oscillates
with the sea at the inlet. Lorentz linearisation of the quadratic friction terms results in

τbed,x

ρ
= r̂ub and

τbed,y

ρ
= r̂vb, (2.2.5)
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where the friction coefficient r̂ has to be determined such that the amount of energy dissipated in the
linearised model is the same as in the original quadratic model. For periodic flow, Vreugdenhil (1994,
p. 57) has given an explicit expression for r̂:

r̂ =
8

3π
CdU,

where U is the characteristic flow velocity, which can be determined from equation (2.2.17).

Wind shear stresses The stresses τwind,x and τwind,y denote the shear stresses that act on the plane
tangential to the sea surface, in the x and y dimension respectively. The shear stress due to the wind at
the sea surface in the x direction reads

τwind,x

ρ
= −Ah

∂u

∂x

∂ζ

∂x
−Ah

∂u

∂y

∂ζ

∂y
+Av

∂u

∂z
at z = H + ζ. (2.2.6)

An analogue result can be derived for τwind,y. Often the wind shear stress is parametrised with a quadratic
dependence on the wind speed at 10 meters above sea level as

τwind,x

ρ
=
ρa

ρ
CD

√
U2

10 + V 2
10 U10 and

τwind,y

ρ
=
ρa

ρ
CD

√
U2

10 + V 2
10 V10.

Here, U10, V10 are the horizontal components of the average wind velocity 10 meters above sea level and
CD is a drag coefficient, which generally depends on wind velocity.

Zero wind shear stress The wind flowing over the water surface generates wind-driven flows. In this
thesis, we focus on tidal-driven flows and not on wind-driven flows. Hence, the wind shear stresses are
assumed to vanish:

τwind,x = τwind,y = 0. (2.2.7)

2.2.2 Depth-averaged conservation of mass

As explained in section 2.1.2, the continuity equation (2.1.6a) is used to represent the conservation of
mass and is restated here:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0.

Integrating the incompressible flow condition over the height of the water column H + ζ − h gives

∫ H+ζ

h

∂u

∂x
+
∂v

∂y
+
∂w

∂z
dz = 0.

The three terms can be integrated separately since integration is a linear operator. Invoking the funda-
mental theorem of calculus yields

∫ H+ζ

h

∂u

∂x
dz +

∫ H+ζ

h

∂v

∂y
dz +

[
w
]H+ζ

h
= 0. (2.2.8)

Leibniz’s integration rule has to be employed to exchange the order of integration and differentiation
for variable domains of integration. For a general function f(x, y, z, t) and limits of integration a(x) and
b(x), Leibniz’s integral rule states that

∂

∂x

(∫ b

a

f dz

)
=

∫ b

a

∂f

∂x
dz + f

∣∣
b

∂b

∂x
− f

∣∣
a

∂a

∂x
.

Solving for the term that first differentiates and then integrates gives the desired form of Leibniz integral
rule ∫ b

a

∂f

∂x
dz =

∂

∂x

(∫ b

a

f dz

)
+ f

∣∣
a

∂a

∂x
− f

∣∣
b

∂b

∂x
. (2.2.9)
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Using the rewritten Leibniz integral rule given by equation (2.2.9) for terms one and two in the integrated
incompressible flow equation (2.2.8), noting that H is constant and combining the boundary terms results
in

∂

∂x

(∫ H+ζ

h

u dz

)
+

∂

∂y

(∫ H+ζ

h

v dz

)
+

[
u
∂h

∂x
+ v

∂h

∂y
− w

]

h

−
[
u
∂ζ

∂x
+ v

∂ζ

∂y
− w

]

H+ζ

= 0.

The depth-averaged velocities are defined as

ū =
1

H + ζ − h

∫ H+ζ

h

u dz and v̄ =
1

H + ζ − h

∫ H+ζ

h

v dz. (2.2.10)

Using the kinematic boundary conditions, given by equations (2.2.2) and (2.2.3), for the boundary terms,
substituting the depth-averaged velocities and rearranging results in the two-dimensional depth-averaged
mass conservation equation:

∂ζ

∂t
− ∂h

∂t
+

∂

∂x

[
(H + ζ − h)ū

]
+

∂

∂y

[
(H + ζ − h)v̄

]
= 0. (2.2.11)

2.2.3 Depth-averaged conservation of momentum

The horizontal momentum equations are depth-averaged by integrating over the depth of the corresponding
conservative form of the equations. Only the averaging of the x momentum equation is considered as the
averaging of momentum in the y dimension follows analogously.

Conservative form

The evolution of u as given by equation (2.1.6b) of the three-dimensional shallow water equations can be
written in conservative form by adding the product of the continuity equation (2.1.6a) with u and using
the product rule backwards. The conservative form of the conservation of momentum in the x dimension,
equation (2.1.6b), is found to be

∂u

∂t
+

∂

∂x

(
u2
)

+
∂

∂y
(uv)+

∂

∂z
(uw)−fv = −1

ρ

∂p

∂x
+

∂

∂x

(
Ah

∂u

∂x

)
+
∂

∂y

(
Ah

∂u

∂y

)
+
∂

∂z

(
Av

∂u

∂z

)
. (2.2.12)

Integration of the LHS

Integrating the Left-Hand Side (LHS) of the momentum equation for u, equation (2.2.12), employing the
rewritten form of Leibniz integral rule (2.2.9), using the fundamental theorem of calculus and rearranging
gives

∫ H+ζ

h

∂u

∂t
+

∂

∂x

(
u2
)

+
∂

∂y
(uv) +

∂

∂z
(uw)− fv dz

=
∂

∂t

(∫ H+ζ

h

u dz

)
+

∂

∂x

(∫ H+ζ

h

u2 dz

)
+

∂

∂y

(∫ H+ζ

h

uv dz

)
− f

∫ H+ζ

h

v dz

+ u
∣∣
h

[
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
− w

]

h

− u
∣∣
H+ζ

[
∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
− w

]

H+ζ

.

The terms in the square brackets are zero due to the kinematic boundary conditions, see equations (2.2.2)
and (2.2.3).

The velocities are decomposed into a depth-averaged mean part and a fluctuating part, similar to Reynolds
decomposition that was used during the derivation of the Reynolds Averaged Navier–Stokes equations,
but then with the averaging carried out over space instead of time. The depth-averaged mean part,
denoted with an overbar, is the same as the depth-average and is already defined in equation (2.2.10). It
should be noted that the depth-averaged mean part itself is independent of the depth and as such can



16 Chapter 2. Derivation of the shallow water equations

be taken outside of the depth integral. The fluctuating part is denoted with a tilde and is defined as the
difference between the quantity itself and its mean part. For example for u the fluctuation is defined as
ũ = u− ū. For these fluctuating parts, it holds that the depth integral vanishes, thus for u we have

∫ H+ζ

h

ũ dz = 0.

Using the decompositions u = ū+ ũ and v = v̄ + ṽ, we obtain

∂

∂t

(∫ H+ζ

h

u dz

)
+

∂

∂x

(∫ H+ζ

h

u2 dz

)
+

∂

∂y

(∫ H+ζ

h

uv dz

)
− f

∫ H+ζ

h

v dz =
∂

∂t

[
(H + ζ − h)ū

]

+
∂

∂x

[
(H + ζ − h)ū2 +

∫ H+ζ

h

ũ2 dz

]
+

∂

∂y

[
(H + ζ − h)ūv̄ +

∫ H+ζ

h

ũṽ dz

]
− (H + ζ − h)fv̄.

Again a closure problem is encountered. Similar to the Reynolds stresses, the integral terms are paramet-
rised as additional viscosity terms. However, instead of the symmetric parametrisation taken earlier the
following asymmetric form is chosen:

∫ H+ζ

h

ũ2 dz = −Ãh(H + ζ − h)
∂ū

∂x
and

∫ H+ζ

h

ũṽ dz = −Ãh(H + ζ − h)
∂ū

∂y
,

in line with Nihoul (1975, p. 47), simplifying the analysis considerably.

Application of the product rule, using the two-dimensional depth-averaged conservation of mass equation
(2.2.11) to cancel some terms and substitution of the additional viscosity terms results in

∂

∂t

[
(H + ζ − h)ū

]
+

∂

∂x

[
(H + ζ − h)ū2 +

∫ H+ζ

h

ũ2 dz

]
+

∂

∂y

[
(H + ζ − h)ūv̄ +

∫ H+ζ

h

ũṽ dz

]

− (H + ζ − h)fv̄ (2.2.13)

= (H + ζ − h)

(
∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
− fv̄

)
− ∂

∂x

(
Ãh(H + ζ − h)

∂ū

∂x

)
− ∂

∂y

(
Ãh(H + ζ − h)

∂ū

∂y

)
.

Integration of the RHS

The hydrostatic balance can be used to find an explicit expression for the pressure under the assumption
that the water density ρ is independent of the depth z. Integrating the hydrostatic balance (2.1.6d)
and using that the pressure at the sea surface is atmospheric pressure pa yields the hydrostatic pressure
relationship

p = pa + ρg(H + ζ − z). (2.2.14)

The atmospheric pressure pa is assumed to be constant at the sea surface.

Integrating the Right-Hand Side (RHS) of equation (2.2.12), substituting the hydrostatic pressure re-
lationship (2.2.14), invoking Leibniz’s integral rule, applying the fundamental theorem of calculus and
rearranging yields

∫ H+ζ

h

−1

ρ

∂p

∂x
+

∂

∂x

(
Ah

∂u

∂x

)
+

∂

∂y

(
Ah

∂u

∂y

)
+

∂

∂z

(
Av

∂u

∂z

)
dz

= −(H + ζ − h)g
∂ζ

∂x
+

∂

∂x

(∫ H+ζ

h

Ah
∂u

∂x
dz

)
+

∂

∂y

(∫ H+ζ

h

Ah
∂u

∂y
dz

)

+

[
Ah

∂u

∂x

∂h

∂x
+Ah

∂u

∂y

∂h

∂y
−Av

∂u

∂z

]

h

−
[
Ah

∂u

∂x

∂ζ

∂x
+Ah

∂u

∂y

∂ζ

∂y
−Av

∂u

∂z

]

H+ζ

.

The Lorentz linearised bottom stresses (2.2.4) are parametrised in terms of the depth-averaged velocities
to obtain a closed system of equations, hence

τbed,x

ρ
= r∗ū and

τbed,y

ρ
= r∗v̄, (2.2.15)
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Table 2.1: Characteristic values of the Ameland inlet system. Courtesy of Ter Brake (2011).

Channel Tide Parameters

L = 1.9 · 104 m σ = 1.4 · 10−4 rad s−1 f = 10−4 rad s−1

H = 12 m A = 0.84 m g = 9.81 m s−2

U = 0.19 m s−1 r∗= 4 · 10−4 m s−1

Âh = 10 m2 s−1

where it is assumed that the difference between the friction velocity and the depth-averaged velocity can
be captured with a new friction coefficient r∗. Assuming that the horizontal eddy viscosity is uniform
over the depth and substituting the adjusted bottom stress (2.2.15) and wind stress (2.2.6) gives

− (H + ζ − h)g
∂ζ

∂x
+

∂

∂x

(
Ah(H + ζ − h)

∂ū

∂x

)
+

∂

∂y

(
Ah(H + ζ − h)

∂ū

∂y

)
+
τwind,x

ρ
− τbed,x

ρ

= −(H + ζ − h)g
∂ζ

∂x
+

∂

∂x

(
Ah(H + ζ − h)

∂ū

∂x

)
+

∂

∂y

(
Ah(H + ζ − h)

∂ū

∂y

)
− r∗ū. (2.2.16)

At the last line, the explicit relations for the bottom stress (2.2.5) and wind stress (2.2.7) have been
substituted, as discussed in section 2.2.1.

Combining LHS and RHS

Combing the results of the previous two paragraphs, i.e. equations (2.2.13) and (2.2.16), and dividing by
the water depth yields the depth-averaged conservation of momentum equation for ū:

∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
−fv̄ = −g ∂ζ

∂x
+

1

H + ζ − h

[
−r∗ū+

∂

∂x

(
Âh(H+ζ−h)

∂ū

∂x

)
+
∂

∂y

(
Âh(H+ζ−h)

∂ū

∂y

)]
,

where a new eddy viscosity coefficient has been defined as

Âh = Ah + Ãh.

Scaling analysis

To simplify the momentum equation, the order of magnitude of each term is computed to investigate if
there are any small terms which may be neglected. The order of magnitude of each term can be computed
using its characteristic scales and values.

The water motion at the boundary of the domain is forced by the semidiurnal tidal constituent with
amplitude A and angular frequency σ, see equation (2.2.1). It follows from the two-dimensional depth-
averaged conservation of mass equation (2.2.11) and from the tidal forcing (2.2.1) that the dominant
balance is

σA ∼ HU

L
, (2.2.17)

This balance implies that the characteristic scale for the flow velocity is given by U ∼ σAL/H. Fur-
thermore, using the balance given by equation (2.2.17) and the dispersion relation for shallow water,
λ =
√
gH/σ, it follows that

g

σU

∂ζ

∂x
∼ gA

σUL
∼
(
λ

L

)2

.

The scale of each term in the depth-averaged momentum equation is divided by σU to obtain dimensionless
quantities that are easier to compare. Both the scaling and the order of magnitude are shown below the
corresponding term of the momentum equation:
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∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
− fv̄ = −g ∂ζ

∂x
− 1

H + ζ −h

[
r∗ū− ∂

∂x

(
Âh(H + ζ −h)

∂ū

∂x

)
− ∂

∂y

(
Âh(H + ζ −h)

∂ū

∂y

)]
.

1
U

σL

U

σL

f

σ

λ2

L2

r∗

σH

Âh

σL2

Âh

σL2

1 0.07 0.07 0.7 16 0.2 2 · 10−4 2 · 10−4

The order of magnitudes have been computed using the characteristic values shown in Table 2.1. The
pressure term is rather large and this property is exploited in section 3.2.2. Furthermore, the eddy
viscosity terms are significantly smaller than the other terms. Hence, the eddy viscosity terms can be
neglected. It should be noted that the above analysis is not valid at the boundaries and it is possible
that the eddy viscosity terms play an important role there. Since we are only interested in the behaviour
of the flow in the main part of the domain this analysis is justified.

To ensure that the bottom friction is finite a small constant h0 is introduced in the denominator of the
bottom friction term. The two-dimensional depth-averaged conservation of momentum equations are
then given by





∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
− fv̄ = −g ∂ζ

∂x
− r∗ū

H + ζ − h+ h0
, (2.2.18a)

∂v̄

∂t
+ ū

∂v̄

∂x
+ v̄

∂v̄

∂y
+ fū = −g ∂ζ

∂y
− r∗v̄

H + ζ − h+ h0
. (2.2.18b)

2.2.4 The two-dimensional shallow water equations

Combing the result of the depth-averaged conservation of mass with the result of the depth-averaged
conservation of momentum, i.e. equations (2.2.11) and (2.2.18a-b), yields the two-dimensional shallow
water equations:





∂ζ

∂t
− ∂h

∂t
+

∂

∂x

[
(H + ζ − h)ū

]
+

∂

∂y

[
(H + ζ − h)v̄

]
= 0, (2.2.19a)

∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
− fv̄ = −g ∂ζ

∂x
− r∗ū

H + ζ − h+ h0
, (2.2.19b)

∂v̄

∂t
+ ū

∂v̄

∂x
+ v̄

∂v̄

∂y
+ fū = −g ∂ζ

∂y
− r∗v̄

H + ζ − h+ h0
. (2.2.19c)

Here, the overbar ·̄ denotes the depth-averaged quantity. The first equation (2.2.19a) represents the
conservation of mass and the last two equations (2.2.19b–c) represent the conservation of momentum in
the x and y directions respectively.
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2.3 Derivation of the cross-sectionally-averaged equations

In this section, the depth-averaged equations are integrated over the width of the domain to obtain the
one-dimensional cross-sectionally-averaged equations.

2.3.1 Geometry and boundary conditions

Geometry

A sketch of the channel geometry is shown in Figure 2.3. The x-axis is directed along the channel and
B1(x) and B2(x) are the lower and upper boundary of the channel respectively.

Figure 2.3: Top view of the channel geometry.

Impermeable wall boundary conditions

The boundary of the channel is stationary and impermeable, thus the fluid cannot flow through the edge
of the channel. This is equivalent to requiring that there is no flow perpendicular, or normal, to the
boundary. Hence at the first boundary of the embayment B1, we have

ū · n = 0 =⇒
[
ū
v̄

]
·
[
dB1

dx
−1

]
= 0 =⇒ ū

dB1

dx
− v̄ = 0 at y = B1, (2.3.1)

where the boundary normal is chosen to point away from the fluid.

Similarly, at the second boundary B2 an impermeable boundary condition gives

− ūdB2

dx
+ v̄ = 0 at y = B2. (2.3.2)

2.3.2 Width and depth-averaged conservation of mass equation

Starting with the two-dimensional depth-averaged conservation of mass equation (2.2.11) and integrating
from B1(x) to B2(x), i.e. integrating over the width of the channel which can vary depending on the
position inside the channel x, yields

∫ B2

B1

∂ζ

∂t
− ∂h

∂t
+

∂

∂x

[
(H + ζ − h)ū

]
+

∂

∂y

[
(H + ζ − h)v̄

]
dy = 0.

The four terms can be integrated separately since integration is a linear operator. Differentiation with
respect to t and integration can be exchanged since the limits of integration do not depend on t. For the
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term with the partial derivative w.r.t. x the rewritten form of Leibniz integral rule given by equation
(2.2.9) is used and for the last term the fundamental theorem of calculus is applied. Then, we obtain

∂

∂t

(∫ B2

B1

ζ dy

)
− ∂

∂t

(∫ B2

B1

h dy

)
+

∂

∂x

(∫ B2

B1

(H + ζ − h)ū dy

)

+

[
(H + ζ − h)

(
ū
dB1

dx
− v̄
)]

B1

−
[
(H + ζ − h)

(
ū
dB2

dx
− v̄
)]

B2

= 0.

The width-averaged quantities are defined as

ζ̂ =
1

B2 −B1

∫ B2

B1

ζ dy, ĥ =
1

B2 −B1

∫ B2

B1

h dy, ˆ̄u =
1

B2 −B1

∫ B2

B1

ū dy. (2.3.3)

Using the with-averaged ζ̂ and ĥ and substituting the two impermeable boundary conditions given by
equations (2.3.1) and (2.3.2) yields that

∂

∂t

[
(B2 −B1)ζ̂

]
− ∂

∂t

[
(B2 −B1)ĥ

]
+

∂

∂x

(∫ B2

B1

(H + ζ − h)ū dy

)
= 0.

In order to further simplify the equation, especially the nonlinear term, all the width dependent variables
are split into a width-independent mean part and a width-fluctuating part denoted with the superscript
ζ̂ and ζ̃ respectively for ζ. The mean width part is already defined by equation (2.3.3). The fluctuating

part is defined by ζ̃ = ζ − ζ̂. For the fluctuating part it follows that

∫ B2

B1

ζ̃ dy = 0.

Using ζ = ζ̂ + ζ̃, h = ĥ+ h̃ and ū = ˆ̄u+ ˜̄u then for the last term it follows that

∫ B2

B1

(H + ζ − h)ū dy = (B2 −B1)(H + ζ̂ − ĥ)ˆ̄u+

∫ B2

B1

(ζ̃ − h̃)˜̄u dy,

since the mean of the fluctuating terms vanishes.

If the flow along the x axis is fairly uniform and if the channel is approximately rectangular, then the width
variations are small and the product of two fluctuations is even smaller. However, these assumptions are
not always justified and these assumptions represent the inherent difference between the two-dimensional
and the one-dimensional description of the flow.

By omitting the covariance term, the cross-sectionally-averaged conservation of mass equation is obtained:

∂

∂t

[
(B2 −B1)ζ̂

]
− ∂

∂t

[
(B2 −B1)ĥ

]
+

∂

∂x

[
(B2 −B1)(H + ζ̂ − ĥ)ˆ̄u

]
= 0. (2.3.4)

If the channel has a constant width such that the difference B2−B1 is independent of x, then the equation
can be further simplified to

∂ζ̂

∂t
− ∂ĥ

∂t
+

∂

∂x

[
(H + ζ̂ − ĥ)ˆ̄u

]
= 0. (2.3.5)

2.3.3 Width and depth-averaged conservation of momentum equation

The conservative form of the depth-averaged conservation of momentum equation is found by combining
the LHS of equation (2.2.13) with the RHS of equation (2.2.16) and using that the viscous terms are small.
Moreover, Pedlosky (1987, p. 78) has shown that the rotational effects can be neglected for a narrow
channel. A channel is considered narrow, if the channel width B is much smaller than the length of the
channel L and if the channel width is much smaller than the Rossby deformation radius R =

√
gH/f

(Cushman-Roisin and Beckers, 2009, p. 252), i.e. B � L,R.
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The two-dimensional depth-averaged conservation of momentum equation for ū in conservative form is
given by

∂

∂t

[
(H + ζ − h)ū

]
+

∂

∂x

[
(H + ζ − h)ū2

]
+

∂

∂y

[
(H + ζ − h)v̄ū

]
= −(H + ζ − h)g

∂ζ

∂x
+ r∗ū. (2.3.6)

Integration of the LHS over the width of the channel and invoking Leibniz integral rule and the fundamental
theorem of calculus yields

∫ B2

B1

{
∂

∂t

[
(H + ζ − h)ū

]
+

∂

∂x

[
(H + ζ − h)ū2

]
+

∂

∂y

[
(H + ζ − h)v̄ū

]}
dy =

∂

∂t

(∫ B2

B1

(H + ζ − h)ū dy

)

+
∂

∂x

(∫ B2

B1

(H + ζ − h)ū2 dy

)
+

[
(H + ζ − h)ū

(
ū
dB1

dx
− v̄
)]

B1

−
[
(H + ζ − h)ū

(
ū
dB2

dx
− v̄
)]

B2

.

The terms in the square brackets are zero due to the requirement that there is no flow perpendicular to
the boundary, see the impermeable boundary conditions given by equation (2.3.1) and equation (2.3.2).

For the resulting terms the width decompositions ζ = ζ̂ + ζ̃, h = ĥ + h̃, ū = ˆ̄u + ˜̄u and v̄ = ˆ̄v + ˜̄v are
introduced

∂

∂t

(∫ B2

B1

(H+ζ−h)ū dy

)
+
∂

∂x

(∫ B2

B1

(H+ζ−h)ū2 dy

)
=

∂

∂t

[
(B2−B1)(H+ ζ̂− ĥ)ˆ̄u+

∫ B2

B1

(ζ̃− h̃)˜̄u dy

]

+
∂

∂x

[
(B2 −B1)(H + ζ̂ − ĥ)ˆ̄u2 + (H + ζ̂ − ĥ)

∫ B2

B1

˜̄u2 dy + 2ˆ̄u

∫ B2

B1

(ζ̃ − h̃)˜̄u dy +

∫ B2

B1

(ζ̃ − h̃)˜̄u2 dy

]
.

If the flow along the x direction is reasonably uniform and if the channel is almost rectangular, then
the width fluctuations are small and the product of two width fluctuations is even smaller. Hence, the
covariance terms can be omitted. However, the assumptions about the uniformity of the flow and the
channel geometry cannot be shown from first principles and represent the inherent difference between
the two-dimensional and the one-dimensional description of the flow. Nevertheless, the covariance terms
are neglected. Application of the product rule gives

∂

∂t

[
(B2 −B1)(H + ζ̂ − ĥ)ˆ̄u

]
+

∂

∂x

[
(B2 −B1)(H + ζ̂ − ĥ)ˆ̄uˆ̄u

]
= (B2 −B1)(H + ζ̂ − ĥ)

(
∂ ˆ̄u

∂t
+ ˆ̄u

∂ ˆ̄u

∂x

)

+ ˆ̄u

(
∂

∂t

[
(B2 −B1)ζ̂

]
− ∂

∂t

[
(B2 −B1)ĥ

]
+

∂

∂x

[
(B2 −B1)(H + ζ̂ − ĥ)ˆ̄u

])
. (2.3.7)

The last term is zero due to the conservation of mass equation (2.3.4).

Integrating the RHS of equation (2.3.6) over the channel width and using the width decomposition gives

∫ B2

B1

−(H + ζ − h)g
∂ζ

∂x
+ r∗ū dy (2.3.8)

= −(B2 −B1)(H + ζ̂ − ĥ)g
∂ζ̂

∂x
− (H + ζ̂ − ĥ)g

∫ B2

B1

∂ζ̃

∂x
dy − g

∫ B2

B1

(ζ̃ − h̃)
∂ζ̃

∂x
dy + (B2 −B1)r∗ ˆ̄u.

Similar to our earlier remarks, for one-dimensional fairly uniform flow the fluctuations are small and the
covariance terms are neglected.

Combining the previous two results, i.e. equations (2.3.7) and (2.3.8), dividing by the sea depth and
introducing the constant h0 to ensure finite bottom friction yields the one-dimensional cross-sectionally-
averaged conservation of momentum equation for variable channel width:

∂ ˆ̄u

∂t
+ ˆ̄u

∂ ˆ̄u

∂x
= −g ∂ζ̂

∂x
− r∗ ˆ̄u

H + ζ̂ − ĥ+ h0

. (2.3.9)
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2.3.4 The one-dimensional shallow water equations

Combing the result of the cross-sectionally-averaged conservation of mass (2.3.5) with the result of the
cross-sectionally-averaged conservation of momentum (2.3.9) yields the one-dimensional shallow water
equations:





∂ζ̂

∂t
− ∂ĥ

∂t
+

∂

∂x

[
(H + ζ̂ − ĥ)ˆ̄u

]
= 0, (2.3.10a)

∂ ˆ̄u

∂t
+ ˆ̄u

∂ ˆ̄u

∂x
= −g ∂ζ̂

∂x
− r∗ ˆ̄u

H + ζ̂ − ĥ+ h0

. (2.3.10b)

Here, the overbar ·̄ denotes the depth-averaged quantity and the hat ·̂ denotes the width-averaged quantity.
The first equation (2.3.10a) represents the conservation of mass and the second equation (2.3.10b) the
conservation of momentum.



Chapter 3

The morphodynamics of an idealised
tidal embayment

In this chapter, the idealised tidal embayment is introduced. The hydro-morphodynamic equations are
presented in detail and simplified for the chosen characteristic values. The basin equilibrium bed profile
is derived under the assumption of diffusively dominated transport and its asymptotic stability is proven.
Then the temporal evolution of the basin bed is investigated and the numerical and analytical eigenvalues
are compared. This chapter follows along the lines of Schuttelaars and De Swart (1996).

3.1 The one-dimensional idealised tidal embayment

In this section, the geometry of the one-dimensional idealised basin is introduced. Thereafter the equations
that govern the transport of sediment are discussed and the corresponding boundary and initial conditions
are given.

3.1.1 Geometry

The interaction between the motion of water, the transport of sediment and the seabed is studied in a
semi-enclosed basin. In shallow embayments the main driver of horizontal sediment transport is the tide,
hence these basins are called tidal embayments. A short, narrow, rectangular basin is considered with
width B and length L, as shown in Figure 3.1a. The basin is short compared to the tidal wavelength and
narrow compared to the Rossby deformation radius. The free surface is found at z = ζ + H with H a
reference depth and the erodible bottom is given by z = h, see Figure 3.1b.

A brief description is presented of the processes governing the morphodynamics of the seabed. In the
next sections, these processes and equations are described in more detail. The water inside of the basin is
governed by the shallow water equations. This results in an equation for the free surface ζ and for the flow
velocity u. The water flow whirls up sediment from the seabed which increases the suspended sediment
concentration C. The suspended sediment is transported by advective and diffusive processes. Finally,
the suspended sediment is deposited on the seabed h by gravitational forces. The seabed h changes due
to the exchange of sediment with the water column. These processes and variables are illustrated in
Figure 3.1b as well.

23
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(a) Top view of the rectangular em-
bayment.

u

x

z

C

erosion

⇒

deposition⇒

ζ

h

H

(b) Cross-sectional view of a vertical water column.

Figure 3.1: Geometry of the one-dimensional idealised model. The log velocity profile shown is derived in Appendix
A.1.

3.1.2 Hydrodynamics

The cross-sectionally-averaged shallow water equations are used to describe the motion of water. The
cross-sectionally-averaged shallow water equations for narrow channels of constant width are





∂ζ

∂t
− ∂h

∂t
+

∂

∂x

[
(H + ζ − h)u

]
= 0, (3.1.1a)

∂u

∂t
+ u

∂u

∂x
= −g ∂ζ

∂x
− r∗u

H + ζ − h+ h0
, (3.1.1b)

see equations (2.3.10a–b) in Chapter 2 respectively. Here, ζ is the width-averaged free surface elevation, h
is the width-averaged bottom profile and u is the cross-sectionally-averaged water velocity. Furthermore,
H is a reference depth, g the gravitational acceleration, r∗ a friction coefficient and h0 is a small constant.
The first equation represents the conservation of mass and the second equation the conservation of
momentum.

3.1.3 Suspended sediment transport

The amount of sediment in the water column changes due to advective and diffusive transport processes
as well as due to the exchange of sediment particles with the seabed. The equation that governs the
transport of suspended sediment reads

∂C

∂t
+
∂uC

∂x
− κh

∂2C

∂x2
− ∂

∂x

[
κh
ωs

κv
β
∂h

∂x
C

]
= αu2 − ω2

s

κv
βC. (3.1.2)

We refer to Ter Brake (2011) for a detailed derivation of the suspended sediment transport equation. Here,
C is the depth-integrated and width-averaged concentration of suspended sediment, i.e. C is the amount
of sediment stored in a water column of unit horizontal area. Moreover, κh is a constant horizontal
diffusion coefficient, κv is a constant vertical diffusion coefficient, ωs is a constant settling velocity, α is a
constant erosion parameter and β is the deposition parameter which depends on the depth as

β =
1

1− e−ωs/κv(ζ+H−h+h0)
. (3.1.3)

The physical interpretation of each term in the suspended sediment transport equation is given below:

�
∂C
∂t : This term represents the rate of change of the depth-integrated and width-averaged suspended

sediment concentration.
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�
∂uC
∂x : This term is the divergence of the advective sediment transport. It represents the sediment

transport caused by the differences in the sediment advection rate. Sediment advection is the
transport of suspended sediment due to the flow of water.

� κh
∂2C
∂x2 : This term is the divergence of the diffusive sediment transport. It represents the sediment

transport caused by the differences in the sediment diffusion rate. Sediment diffusion is the natural
tendency of suspended sediment to move from a region of high concentration to a region of low
concentration.

�
∂
∂x

[
κh

ωs

κv
β ∂h∂xC

]
: This term is the divergence of the topologically induced diffusive sediment trans-

port. It represents the sediment transport caused by the differences in the topologically induced
sediment diffusion rate. This term originates from the fact that the depth-integrated concentration
is considered instead of the three-dimensional sediment concentration. This term can be explained
as follows. If two adjacent water columns contain the same amount of sediment but are different in
depth, then an equal amount of sediment is distributed over a larger volume in the deeper water
column, resulting in a lower sediment concentration than in the shallower water column. Hence,
there is a concentration gradient towards the deeper water column. This concentration gradient
gives rise to a net sediment flux towards deeper areas.

� αu2: This term represents the addition of sediment to the water column due to the whirling up of
sediment from the seabed.

�

ω2
s

κv
βC: This term represents the deposition of sediment from the water column to the seabed.

3.1.4 Bottom evolution

The seabed changes due to bedload fluxes, which represents the sliding, rolling and hopping of sediment
along the bed, and due to the exchange of sediment particles with the water column. The equation that
governs the evolution of the seabed reads

ρs(1− p)
(
∂h

∂t
+
∂Sb

∂x

)
= −αu2 +

ω2
s

κv
βC. (3.1.4)

The bottom evolution equation can be derived from the conservation of mass in the sediment layer, see
e.g. Appendix A.2. Here, ρs is the density of the sediment particles, p is the porosity of the sediment
layer and Sb is the volumetric bedload flux which represents the sliding, rolling and hopping of sediment
along the bed in the active layer.

The sediment particles are either in suspension or deposited along the bed, hence the right-hand side of
the bottom evolution equation (3.1.4) is exactly opposite to the right-hand side of the suspended sediment
concentration equation (3.1.2).

A parametrisation of the volumetric bedload flux is given by

Sb = ŝ
|u|b
ubc

(
u

|u| − µ∗
∂h

∂x

)
,

see for example Van Rijn (1993). Here, b > 1 is a constant, µ∗ is a bed slope correction coefficient (to
model the preferred downhill transport), uc is the critical erosion velocity and ŝ is a parameter that is a
function of the sediment properties.

3.1.5 Boundary and initial conditions

A semidiurnal tide is prescribed at the entrance of the embayment for the free surface, as the main driver
of horizontal sediment transport is the tide. Thus

ζ = A cosσt at x = 0. (3.1.5)

Here, A is the amplitude of the semidiurnal tide and σ is the angular frequency of the semidiurnal tide.
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Water cannot be transported through the landward boundary at the end of the embayment, x = L. This
leads to the requirement that

(H + ζ − h)u = 0 at x = L.

The suspended sediment concentration is split into two parts: a tidally averaged part 〈C〉 and time
fluctuating part C ′ as follows C = 〈C〉+ C ′ with 〈C ′〉 = 0. The solid boundary at x = L prohibits the
tidal averaged or net flow of sediment, i.e.

〈
uC
〉
− κh

∂〈C〉
∂x
− κh

ωs

κv
β
∂h

∂x
〈C〉 = 0 at x = L.

Since the sediment transport equation is singularly perturbed for 0 < κh � 1, it is expected that a
boundary layer, a region where the solution changes rapidly, forms. To make sure that no unphysical
boundary layers form for the fluctuating part, the boundary condition should be chosen such that it is
in line with the κh = 0 case. Henceforth

C ′(x, t, κh) = C ′(x, t, κh = 0) at x = 0 and x = 1.

The seabed at the entrance of the embayment should not change in time. Hence, the boundary condition
at the entrance is

∂h

∂t
= 0 at x = 0.

During ebb tide, the water level falls and the water line retracts. During flood tide, the water level rises
and the water line advances. The landward boundary is located in the middle of these two extremes and
we require that the tidally averaged transport vanishes at the landward boundary. Therefore

〈F 〉 = 0 at x = L,

where the tidal averaged flux 〈F 〉 is given by equation (3.2.13).

Normally, initial conditions are necessary in order to solve time-dependent partial differential equations.
However, because the water motion is forced by the (periodic) tide at the entrance of the embayment
(3.1.5) and because we are not interested in the transient behaviour, we search for periodic solutions on
the short tidal time scale for ζ, u, C for a known bottom profile h. Hence, only an initial condition for
the seabed is necessary (Schuttelaars, 1997, p. 24).

3.2 Simplifying the hydro-morphodynamic equations

In this section, the hydro-morphodynamic equations are nondimensionalized and simplified using the
characteristic values of the Ameland inlet system.

3.2.1 Nondimensionalization

The hydro-morphodynamic equations are nondimensionalized by introducing the characteristic scale and
the nondimensional quantity, denoted with an asterisk, of each variable as follows

x = Lx∗,

t =
1

σ
t∗,

h = Hh∗,

ζ =
HU

σL
ζ∗,

u = Uu∗,

C =
ακvU

2

ω2
s

C∗.
(3.2.1)

Here, L is a horizontal length scale, H a vertical length scale, U a horizontal flow velocity scale and σ a
frequency scale. The scaling of the amplitude of the tide follows from the balance between the first and
last term in the conservation of mass equation. The concentration scale follows from the approximate
balance between the deposition and the whirling up of sediment in the suspended sediment transport
equation.



3.2. Simplifying the hydro-morphodynamic equations 27

Conservation of mass

Substitution of the characteristic scales in the conservation of mass equation (3.1.1a) yields

HU

L

∂ζ∗

∂t∗
− σH ∂h∗

∂t∗
+
HU

L

∂

∂x∗

[(
1 +

U

σL
ζ∗ − h∗

)
u∗
]

= 0.

Dividing by HU/L and defining ε = U/(σL) results in the nondimensional conservation of mass equation

∂ζ∗

∂t∗
− 1

ε

∂h∗

∂t∗
+

∂

∂x∗
[
(1 + εζ∗ − h∗)u∗

]
= 0. (3.2.2)

Conservation of momentum

Introducing the characteristic scales in the conservation of momentum equation (3.1.1b) gives

σU
∂u∗

∂t∗
+
U2

L
u∗
∂u∗

∂x∗
= −gHU

σL2

∂ζ∗

∂x∗
− r∗U

H

u∗

1 + U
σLζ

∗ − h∗ + h∗0
.

This equation is divided by σU , then introducing ε = U/(σL), Λ = gH/(σ2L2) and the non-dimensional
friction coefficient r = r∗/(σH), the conservation of momentum equation in nondimensional form is
obtained

∂u∗

∂t∗
+ εu∗

∂u∗

∂x∗
= −Λ

∂ζ∗

∂x∗
− r u∗

1 + εζ∗ − h∗ + h∗0
. (3.2.3)

Suspended sediment transport

Substituting the characteristic scales in the suspended sediment transport equation (3.1.2) gives

σακvU
2

ω2
s

∂C∗

∂t∗
+
ακvU

3

ω2
sL

∂u∗C∗

∂x∗
− ακhκvU

2

ω2
sL

2

∂2C∗

∂(x∗)2
− ακhHU

2

ωsL2

∂

∂x∗

[
β
∂h∗

∂x∗
C∗
]

= αU2(u∗)2 − αU2βC∗.

Dividing by αU2 and defining a = σκv/ω
2
s , ε = U/(σL), κ = κh/(σL

2) and γ = ωsH/κv, the dimensionless
suspended concentration equation is found

a

{
∂C∗

∂t∗
+ ε

∂u∗C∗

∂x∗
− κ
(
∂2C∗

∂(x∗)2
+ γ

∂

∂x∗

[
β
∂h∗

∂x∗
C∗
])}

= (u∗)2 − βC∗. (3.2.4)

Bottom evolution

The nondimensional variables are introduced in the bottom evolution equation (3.1.4) as

ρs(1− p)
{
σH

∂h∗

∂t∗
+
ŝU b

Lubc

∂

∂x∗

[
|u∗|b

(
u∗

|u∗| −
µ∗H

L

∂h∗

∂x∗

)]}
= −αU2(u∗)2 + αU2βC∗.

Dividing by ρs(1 − p)σH and defining δs = αU2
/(
ρs(1 − p)σH

)
, δb = ŝU b

/(
σHLubc

)
and µ = µ∗H/L

gives
∂h∗

∂t∗
+ δb

∂

∂x∗

[
|u∗|b

(
u∗

|u∗| − µ
∂h∗

∂x∗

)]
= −δs

(
(u∗)2 − βC∗

)
. (3.2.5)

3.2.2 Scaling analysis and averaging

In order to apply scaling analysis, the characteristic values corresponding to the characteristic scales need
to be chosen. Here, the Ameland inlet system is considered as it is one of the most natural tidal inlet
systems along the Dutch coast (Van der Vegt, 2006, p. 8). No major human interferences affected this
inlet system, thus it can be considered in morphodynamic equilibrium (Ter Brake, 2011, p. 6). Figure 3.2
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Figure 3.2: Bathymetry of the Dutch Wadden Sea. The Ameland inlet system is located between Terschelling
and Ameland as indicated by the bold text. Adaptation based on Cheung et al. (2007).

shows a schematic representation of the bathymetry of the Dutch Wadden Sea and it shows the location
of the Ameland inlet system.

The characteristic scales of the Ameland inlet system together with the resulting nondimensional para-
meters are shown in Table 3.1. The nondimensional parameters, which were defined during the nondi-
mensionalization, are summarised below:

ε =
U

σL
,

γ =
ωsH

κv
,

Λ =
gH

σ2L2
,

δs =
αU2

ρs(1− p)σH
,

r =
r∗

σH
,

δb =
ŝU b

σHLubc
,

a =
σκv

ω2
s

,

µ =
µ∗H

L
.

κ =
κh

σL2
,

(3.2.6)

From Table 3.1, it follows that the bedload parameter δb is much smaller than the suspended load
parameter δs, i.e. δb � δs. From the nondimensional bottom evolution equation (3.2.5), it follows that
the leading order rate of change of the bottom scales with the larger suspended load parameter δs, hence
∂h∗/∂t∗ ∼ δs. Thus the term 1/ε ∂h∗/∂t∗ found in the conservation of mass equation (3.2.2) scales with
1/ε ∂h∗/∂t∗ ∼ δs/ε ∼ 10−3. The other terms in the conservation of mass equation (3.2.2) are order one
and, hence, this term can safely be neglected. The nondimensional conservation of mass equation (3.2.2)
therefore reduces to

∂ζ

∂t
+

∂

∂x

[
(1 + εζ − h)u

]
= 0. (3.2.7)

Furthermore, in Table 3.1 can be seen that Λ � 1. When comparing Λ to the other terms in the
nondimensional conservation of momentum equation (3.2.3) it is found that this is the only large term.
Hence this is the dominant term and, therefore, the conservation of momentum equation (3.2.3) reduces
to

∂ζ

∂x
= 0. (3.2.8)
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Table 3.1: Characteristic values of the Ameland inlet system. The dimensionless parameters are summarised in
equation (3.2.6). Courtesy of Schuttelaars (1997); Ter Brake (2011).

Channel Sediment Dimensionless

L = 1.9 · 104 m
B = 2 · 103 m
H = 12 m

Tide

σ = 1.4 · 10−4 rad s−1

A = 0.84 m
U = 0.19 m s−1

Constant

g = 9.81 m s−2

r∗= 4 · 10−4 m s−1

α = 0.005 kg s m−4

ωs = 0.015 m s−1

κv = 0.1 m2 s−1

κh= 102 m2 s−1

ρs = 2650 kg m−3

d = 1.3 · 10−4 m

p = 0.4

ŝ = 3 · 10−6 m s−1

uc = 0.3 m s−1

µ∗= 2

b = 3

ε ∼ 7.1 · 10−2

Λ ∼ 1.7 · 101

r ∼ 2.4 · 10−1

a ∼ 6.2 · 10−2

κ ∼ 2.0 · 10−3

γ ∼ 1.8

δs∼ 6.8 · 10−5

δb∼ 2.4 · 10−8

µ ∼ 1.3 · 10−3

Observations show that the main driver of horizontal sediment transport is the tide. Waves mostly
influence the vertical transport of sediment and this process can be incorporated into the model by
enhancing the erosion parameter α. The free surface ζ prescribed at the entrance of the embayment
is therefore periodic and by equation (3.2.8) it directly follows that the free surface in the rest of the
domain is periodic. The flow velocity u that depends on the free surface via equation (3.2.7) therefore
also has the same periodicity. From equation (3.2.4) it follows that the suspended sediment transport is
forced by the flow velocity u, thus C is periodic but also has a residual component. Since the equations
are nondimensionalized the tidal periodic functions are transformed into 2π-periodic functions. Since
δs � δb, the leading order nondimensional bottom evolution equation reads

∂h∗

∂t∗
= −δs

(
(u∗)2 − βC∗

)
. (3.2.9)

As explained above, u∗ and C∗ are 2π-periodic functions. Since the bottom evolves slowly in time due to
the presence of the small parameter δs and since the RHS is order one periodic, the method of averaging
can be applied for each fixed spatial coordinate1 (Verhulst, 1990). Thus the bottom evolves so slowly
that it can be considered constant on the fast 2π time scale and averaging over the fast time is justified
(Schuttelaars, 1997; Ter Brake, 2011). Moreover, Krol (1990, p. 75) has shown, for a system very similar
to ours, that the method of averaging can be applied to obtain accurate results on a long time scale. The
error is order O(δs) on a 1/δs time scale. The bottom evolution equation averaged over the fast time
scale is given by

∂h∗

∂t∗
= −δs

〈
(u∗)2 − βC∗

〉
, (3.2.10)

where 〈 · 〉 denotes the 2π tidal average.

The whirling up and settling down of the sediment is perfectly balanced by the horizontal transport of
sediment as described by the concentration equation (3.2.4). Substitution of the concentration equation
into the averaged bottom evolution equation results in

∂h∗

∂t∗
= −δsa

∂

∂x∗

[
ε
〈
u∗C∗

〉
− κ
(

∂

∂x∗
〈
C∗
〉

+ γβ
∂h∗

∂x∗
〈
C∗
〉)]

, (3.2.11)

since the term
〈
∂C∗/∂t

〉
vanishes as C∗ is 2π-periodic and since ∂h∗/∂x∗ can be taken out of the

averaging procedure. This follows because h∗ only changes significantly on the morphological time scale.

The asterisk superscript, denoting that a variable is nondimensional and order one, is omitted from now

1that is, for ordinary differential equations
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on. To summarise, the leading order nondimensional hydro-morphodynamic equations are given by





∂ζ

∂t
+

∂

∂x

[
(1 + εζ − h)u

]
= 0, (3.2.12a)

∂ζ

∂x
= 0, (3.2.12b)

a

{
∂C

∂t
+ ε

∂uC

∂x
− κ
(
∂2C

∂x2
+ γ

∂

∂x

[
β
∂h

∂x
C

])}
= u2 − βC, (3.2.12c)

∂h

∂t
= −∂〈F 〉

∂x
, (3.2.12d)

where the tidally averaged flux 〈F 〉 is given by

〈F 〉 = δsa

[
ε
〈
uC
〉
− κ
(
∂〈C〉
∂x

+ γβ
∂h

∂x
〈C〉
)]
. (3.2.13)

Here, ε〈uC〉 represents advective transport, κ ∂〈C〉/∂x diffusive transport and κγβ ∂h/∂x 〈C〉 topologi-
cally induced diffusive transport.

The characteristic scales as given by equation (3.2.1) are substituted into the dimensional boundary
conditions given in section 3.1.5. Identifying the nondimensional variables as defined in equation (3.2.6),
yield the nondimensional boundary conditions:

ζ = cos t at x = 0, (3.2.14a)

(1 + εζ − h)u = 0 at x = 1, (3.2.14b)

ε
〈
uC
〉
− κ
(
∂〈C〉
∂x

+ γβ
∂h

∂x
〈C〉
)

= 0 at x = 1, (3.2.14c)

C ′(x, t, κ) = C ′(x, t, κ = 0) at x = 0, x = 1, (3.2.14d)

∂h

∂t
= 0 at x = 0, (3.2.14e)

〈F 〉 = 0 at x = 1. (3.2.14f)

3.3 Diffusively dominated transport

In this section, the model is solved in the case when diffusive transport dominates the advective and
topologically induced transport mechanisms. Thus there is no advective transport, ε = 0, and no
topologically induced diffusive transport, γ = 0.

3.3.1 Solving the model

The simplifications made in the scaling analysis section allow analytical solutions to be determined. The
nondimensional conservation of momentum equation (3.2.12b) together with the free surface boundary
condition (3.2.14a) imply that

ζ(x, t) = cos t.

Substituting this into the nondimensional conservation of mass equation (3.2.12a), solving for the flow
velocity u and using the boundary condition (3.2.14b) with ε = 0 results in

u(x, t) =
x− 1

1− h sin t. (3.3.1)

We assume that the deposition parameter is given by β = 1 instead of the depth-dependent relation
given by equation (3.1.3), as this simplifies the resulting bottom evolution equation considerably. The
tidally averaged flux 〈F 〉 as given by equation (3.2.13) only depends on the tidally averaged sediment
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concentration. Thus the suspended sediment transport equation (3.2.12c) with ε = 0 and γ = 0 is tidally
averaged and this yields

− aκ∂
2〈C〉
∂x2

=
1

2

(
x− 1

1− h

)2

− 〈C〉. (3.3.2)

From Table 3.1, it follows that aκ� 1. Thus this ordinary differential equation is singularly perturbed,
which allows a boundary layer to form. It is expected that the second derivative of the averaged concen-
tration is small throughout the domain and thus no boundary layers form. This assumption has to be
checked a posteriori. A perturbation method is used to find an approximate solution for this problem.
For an introduction to perturbation techniques, see for example Holmes (2013). We assume that 〈C〉
exhibits a regular expansion with respect to aκ:

〈C〉 = 〈C0〉+ aκ〈C1〉+ (aκ)2〈C2〉+ . . . (3.3.3)

This regular expansion is substituted into the averaged sediment equation (3.3.2) and the solution of the
leading order balance is given by

〈C0〉 =
1

2

(
x− 1

1− h

)2

. (3.3.4)

This solution is regular on the entire domain and also satisfies boundary condition (3.2.14c), thus this
is a valid solution on the entire domain. The leading order tidally averaged flux under the assumption
of no advective transport, ε = 0, and no topological induced diffusive transport, γ = 0, is given by
〈F 〉 = −δsaκ ∂〈C0〉/∂x. Substitution of the leading order sediment concentration (3.3.4) into the leading
order sediment flux yields

〈F 〉 = −δs
aκ

2

∂

∂x

(
x− 1

1− h

)2

. (3.3.5)

Substitution of the leading order sediment flux (3.3.5) into equation (3.2.12d) yields an explicit evolution
equation for the bottom profile:

∂h

∂t
= δs

aκ

2

∂2

∂x2

(
x− 1

1− h

)2

.

The morphological time scale τ = aκδst is introduced to simplify the equation. The bottom evolution
equation for h(τ, x) on the morphodynamic time scale becomes

∂h

∂τ
=

1

2

∂2

∂x2

(
x− 1

1− h

)2

. (3.3.6)

At equilibrium, the bed no longer changes in time, thus ∂h/∂τ = 0. The equilibrium bed profile that
satisfies both boundary conditions is the simple linear bed profile:

heq = x. (3.3.7)

3.3.2 Linear stability analysis

The linear equilibrium bed profile is perturbed to investigate its stability. The small perturbation on top
of the equilibrium bed profile is denoted with h̃(x, τ) and satisfies the boundary conditions h̃(x = 0, τ) = 0
and 〈F̃ 〉(x = 1, τ) = 0, i.e. the averaged perturbed flux vanishes at x = 1. The linear equilibrium bed
profile is given by equation (3.3.7). The perturbed bottom profile h = heq + h̃ is substituted into the
bottom evolution equation (3.3.6) and the resulting equation is linearised by ignoring the higher order
terms in the Taylor series to obtain

∂h̃

∂τ
=

∂2

∂x2

(
h̃

1− x

)
.

The same result can be obtained using the Fréchet derivative, see e.g. Van Groesen and Molenaar (2007,
p. 89) for a definition of the Fréchet derivative. Separation of variables shows that this equation allows
solutions of the type

h̃(x, τ) = g(x)eωτ ,
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where the eigenvalue ω and g(x) are determined by the non-trivial solutions of the eigenvalue problem:

d2

dx2

(
g

1− x

)
= ωg. (3.3.8)

Using the transformations z = 1− x and ψ(z) = g/z, the equation can be written as a Sturm-Liouville
eigenvalue problem:

d2ψ

dz2
= ωzψ. (3.3.9)

The homogeneous boundary conditions transform into dψ
dz (z = 0) = 0 and ψ(z = 1) = 0, as we are

not interested in the trivial solution. The first boundary condition can be derived by substituting
the perturbed bottom profile h = heq + h̃ into the flux given by equation (3.3.5), applying the same
transformations as above and evaluating the expression at z = 0.

Since the weight function σ(z) = z is zero at z = 0 it follows that this is a irregular Sturm-Liouville
eigenvalue problem and the usual results do not directly apply (Haberman, 2005, p. 163). Note that the
eigenvalue problem can be written as

Lψ = ωzψ,

where L ≡ d2/dz2 is a linear operator. For any functions u and v that satisfy the homogeneous boundary
conditions, it follows using integration by parts twice and using the homogeneous boundary conditions
that ∫ 1

0

vLu dz =

∫ 1

0

uLv dz,

i.e. the linear operator L with the corresponding boundary conditions is self-adjoint. We show that
eigenfunctions corresponding to different eigenvalues are orthogonal with respect to the weight σ(z) = z.
Let ωn and ωm be two eigenvalues with corresponding eigenfunctions ψn and ψm. The eigenvalues and
eigenfunctions satisfy

Lψn = ωnzψn and Lψm = ωmzψm, (3.3.10)

with homogeneous boundary conditions. The operator L is self-adjoint and therefore it holds that

∫ 1

0

ψmLψn dz =

∫ 1

0

ψnLψm dz.

Using that ψn and ψm are eigenfunctions, i.e. using equation (3.3.10), and bringing everything to one
side, reveals that

(ωn − ωm)

∫ 1

0

ψnψmz dz = 0. (3.3.11)

Thus if the eigenvalues are different, ωn 6= ωm, then ψn and ψm are orthogonal with respect to the inner
product with weight σ(z) = z. Furthermore by taking the complex conjugate of eigenvalue problem
(3.3.10), it follows that ωn is also an eigenvalue with corresponding eigenfunction ψn:

Lψn = ωnzψn.

The eigenfunction ψn also satisfies the homogeneous boundary conditions. Since (3.3.11) holds for any
pair of eigenvalues and eigenfunctions, it also holds for the complex conjugate eigenvalue and eigenfunction.
Hence

(ωn − ωn)

∫ 1

0

ψnψnz dz = 0.

Since ψnψnz = |ψn|2z ≥ 0 and since the eigenfunctions are not identically zero, it follows that ωn = ωn.
Thus all the eigenvalues ω are real.

As all the coefficients of the Sturm-Liouville equation (3.3.9) are real, it follows that eigenfunctions can
always be chosen real.

There are three cases left for ω to consider: ω < 0, ω = 0 and ω > 0. If ω = 0 then all the solutions of
the Sturm-Liouville equation are linear functions. Application of the homogeneous boundary conditions



3.3. Diffusively dominated transport 33

shows that this case always results in the trivial solution. For ω 6= 0, eigenvalue problem (3.3.9) is
multiplied with ψ and integrated over the domain. The resulting equation is solved for the eigenvalue
ω. By using integration by parts and the homogeneous boundary conditions, the Rayleigh Quotient is
found:

ω = −
∫ 1

0
(∂ψ∂z )2 dz
∫ 1

0
ψ2z dz

.

Since the eigenfunctions are real, it follows that (∂ψ∂z )2 ≥ 0, ψ2z ≥ 0. Furthermore, since the eigenfunctions
are not identically zero, it follows that all eigenvalues are negative: ω < 0, as ω = 0 is already excluded.

We note that the Sturm-Liouville equation, (3.3.9), is a generalised Airy differential equation. Using the

transformation ξ̂ = 3
√
ωz the equation can be written in the standard Airy differential equation form

where a linear combination of the Airy functions is a solution. However, the solution in terms of the Airy
functions turns out to be inconvenient. Instead, we apply the transformation ξ = 3

√−ωz to obtain

d2ψ

dξ2
+ ξψ = 0,

where ξ ≥ 0 since ω < 0 and z ≥ 0. Define φ(ξ) = ψ(ξ)/
√
ξ, then the second order differential equation

becomes
√
ξ
d2φ

dξ2
+

1√
ξ

dφ

dξ
+

(
ξ
√
ξ − 1

4

1

ξ
√
ξ

)
φ = 0.

Finally, using the coordinate transformation η = 2
3ξ
√
ξ and multiplying with η, results in Bessel’s

differential equation:

η2 d
2φ

dη2
+ η

dφ

dη
+

(
η2 − 1

9

)
φ = 0.

The orders of the Bessel function are found from the equation ν2 = 1
9 and, therefore, the orders of the

Bessel functions are ν = ± 1
3 . The solution of Bessel’s differential equation is

φ(η) = AJ 1
3
(η) +BJ− 1

3
(η),

where Jν is the Bessel function of order ν. Transforming back to ψ(z) yields the desired form of the
solution:

ψ(z) = A
√
zJ 1

3

(
2

3

√
−ωz3/2

)
+B
√
zJ− 1

3

(
2

3

√
−ωz3/2

)
,

where the factor 6
√−ω has been absorbed into the coefficients A and B, which is allowed since ω is a

nonzero constant.

Application of boundary condition dψ
dz (z = 0+) = 0 shows that A = 0 since the derivative of the second

term vanishes at 0+. The second boundary condition ψ(z = 1) = 0 now implies that

J− 1
3

(
2

3

√
−ω
)

= 0, (3.3.12)

since for non-trivial solutions B 6= 0. That is, all the eigenvalues ω are directly related to the zeros of
the Bessel function of order −1/3.

Transforming back to h̃ shows that the small perturbations on top of equilibrium bed profile (3.3.6) satisfy

h̃(x, τ) = B(1− x)3/2J− 1
3

(
2

3

√
−ω(1− x)3/2

)
eωτ ,

where ω can be determined from equation (3.3.12). Since ω < 0, it follows that all the perturbations
of the equilibrium bed profile decay in time, thus the equilibrium bed profile heq = x is asymptotically
linear stable.
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3.3.3 Temporal evolution towards equilibrium

The nonlinear equation (3.3.6) is solved numerically to investigate the temporal evolution of the bottom
profile. A Finite Element Method (FEM) is used for the spatial discretization, the θ-scheme is used for the
temporal discretization and the resulting nonlinear system is solved with the Newton-Raphson method,
see Appendix B.1 for a derivation and validation of the numerical schemes. The FEM discretization uses
linear elements and n = 1000 spatial nodes. The temporal discretization uses θ = 1/2 and time step
∆t = 10−3.

The landwards no-flux boundary

Implementing the nonlinear no-flux boundary condition (3.2.14f) at the end of the embayment is not a
trivial task, since the nonlinear partial differential equation (3.3.6) and the condition itself become singular
whenever h→ 1. Previous approaches found in literature are not fully satisfactory. Van Dongeren and
De Vriend (1994) used the implied condition that the velocity is zero at x = 1 for a slightly different
model. As pointed out by the authors, at the landward side the bottom profile did not evolve towards
the analytical equilibrium bottom profile but instead contained an unphysically sharp drop at the right
boundary. In Schuttelaars and De Swart (1996); Van Leeuwen (2002) the no-flux boundary condition was
replaced by a homogeneous Neumann condition. This produced better results but still, the numerical
solution contained a small unphysical corner at the landward side, which lead to a small discrepancy
between the equilibrium solution and numerical solution at the landward side.

A numerical scheme is derived in Appendix B.1 that uses the no-flux boundary condition (3.2.14f).
However, using this boundary condition it is found that the discretization matrix becomes singular. To
overcome this problem, the Dirichlet boundary condition h = 1 at x = 1 is used instead. The vanishing
water transport boundary condition (3.2.14b) implies that whenever h = 1, the velocity u should be finite
at x = 1 and not necessarily that u = 0 as is the case if h 6= 1. It was shown in Appendix B.1.2 that when
using the Dirichlet boundary condition, the natural no-flux boundary condition is automatically applied
at the previous grid node using our FEM discretization. Thus the no-flux boundary condition is still
satisfied when using the Dirichlet boundary condition, albeit at a grid cell before the actual boundary.
Below, the used Dirichlet boundary condition is derived from the no-flux condition when an additional
constraint is imposed.

Dirichlet condition The no-flux boundary condition is subjected to an additional constraint to derive
a simpler numerical boundary condition. Expanding the derivatives of the no-flux boundary condition
(3.3.5) and simplifying this result yields the condition:

〈F 〉 ∝
(x− 1)

(
1− h+ ∂h

∂x (x− 1)
)

(1− h)3
= 0 at x = 1.

To obtain an unambiguous boundary condition an extra condition is imposed. Namely that the no-flux
boundary condition should still be consistent when applied at any x ≤ 1 arbitrarily close to 1:

〈F 〉 ∝
(x− 1)

(
1− h+ ∂h

∂x (x− 1)
)

(1− h)3
= 0 at x ≤ 1.

Note that at morphodynamic equilibrium the flux vanishes in the whole domain and this condition is
certainly satisfied.

Then for any x < 1 it follows that x− 1 < 0 and that h < 1 such that 1− h > 0. The no-flux boundary
condition reduces to

1− h+
∂h

∂x
(x− 1) = 0 for x < 1.

This condition shows in the limit x→ 1 that h should satisfy:

h = 1 at x = 1.
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Figure 3.3: Evolution of an initially nearly flat bottom towards the linear equilibrium bottom profile (3.3.7) in
the diffusively dominated transport case. The bottom profile is shown at τ1 = 0, τ2 = 0.1, τ3 = 0.2, τ4 = 0.35,
τ5 = 0.45 and τ6 = 1.2. The numerical solution is computed with n = 1000 spatial nodes and time step ∆t = 10−3.

This result is consistent with the linear equilibrium bottom profile at x = 1, is physically justified as the
seabed should be continuous when going from the edge of the basin (x < 1) to the unmodelled beach
(x > 1) and is supported by the scaling of the nondimensional model.

Nearly flat bottom initially

Figure 3.3 shows the evolution of an initially nearly flat bed towards the linear equilibrium bottom profile
(3.3.7). Initially, at τ1, the bottom profile is given by h = x50. This can be interpreted as an excavated
basin which is continuous at the landward side, x = 1. Some time later, at τ2 and τ3, the sediment is
distributed fairly evenly along the basin. The time stamps τ4 and τ5 show that most sediment is deposited
at the landward side. Finally, at τ6, the rest of the basin is filled with sediment such that the linear
equilibrium profile is obtained, as predicted by equation (3.3.7).

The steady linear bottom profile is acquired after approximately 30,000 years for the parameter values
given in Table 3.1. Observations show that the bottom in tidal embayments typically evolves in the order
of 20 years (Schuttelaars, 1997, p. 22). Hence, the time scale to reach equilibrium as predicted by the
model is extremely long. This extremely long time scale can be explained by the fact that the basin is
initially almost empty. Then the slow diffusive transport needs to transport all the sediment from the
seaward side into the long and narrow basin. Moreover, the time scales reported by observations only
indicate the time scales at which bathymetric changes occur and are not suitable to describe the time
scales needed to reach equilibrium. Hence, the evolution towards the linear equilibrium profile from the
initially nearly flat bottom is expected to take a very long time.

Furthermore, the evolution from the nearly flat bottom profile towards the linear equilibrium bottom
profile (3.3.7) suggests that the linear bottom profile is not only asymptotically linear stable, as proven
in Section 3.3.2, but is also globally stable.

Comparison between eigenvalues

The ten largest eigenvalues of the continuous operator (3.3.8), the roots of the Bessel function, and of
the discretized operator (B.1.7) are shown in Figure 3.4. Both operators are linearised around the linear
equilibrium profile (3.3.7). It can be seen that the ten largest eigenvalues of both operators are in good
agreement. The smallest eigenvalues of the discretized operator for n = 1000 nodes do not agree with
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Figure 3.4: The ten largest eigenvalues of the continuous operator (3.3.8) and the discretized operator or matrix
(B.1.7) when linearised around the linear equilibrium profile (3.3.7). The eigenvalues of the continuous operator
are exactly the roots of the Bessel function J−1/3

(
2
3

√
−ω

)
, see equation (3.3.12). The eigenvalues of the discrete

operator are obtained after correcting for the factor ∆x resulting from the FEM discretization. The eigenvalues
of the discretized operator are shown as light grey dots and are computed with n = 1000 nodes.

those of the continuous operator (not shown here). However, in the limit of ∆x→ 0, all the eigenvalues of
the discretized operator approach those of the continuous operator, indicating that the numerical problem
approaches the analytical problem and, therefore, indicating that the numerical solution approaches the
analytical solution.



Chapter 4

The morphodynamics of a
one-dimensional idealised sea-basin
system

In this chapter, the one-dimensional idealised sea-basin system is introduced. The geometry of the
sea-basin system is presented and a novel approach to model the sea-basin interaction is explained. Then
the equations that govern the morphodynamics of the sea-basin system are discussed. Two methods are
used to solve these hydro-morphodynamic equations and their results are compared. Lastly, the temporal
evolution and stability of the sea-basin system are investigated.

4.1 The one-dimensional idealised sea-basin system

The seawards boundary condition used in Chapter 3 assumes a fixed depth at the entrance of the
embayment. The embayment is nondimensionalized using this depth and the same fixed depth is present
in the computed equilibrium profiles. To allow other equilibrium entrance heights to occur and to
investigate the behaviour of the bottom profile at the entrance of the basin, the seaside boundary is
replaced by a boundary at sea, far away from the entrance of the basin.

The geometry of the nondimensionalized sea-basin system is shown in Figure 4.1. The one-dimensional
spatial domain is split into two parts: a sea domain and a basin domain. The sea domain ranges from
x = 0 to x = xi, the interface between the sea and the basin, and the basin domain starts at x = xi and
stops at x = 1.

The state vector, containing the free surface ζ, the along-channel flow velocity u, the averaged concentra-
tion 〈C〉 and the bottom profile h, is defined as

Ψ = (ζ, u, 〈C〉, h). (4.1.1)

The state vector in the sea consists of a basic state Ψb
s , which is the solution when the entrance to the

basin is blocked, and a response state Ψr
s, which is the response in the sea domain when the entrance to

the basin is opened. Similarly, in the basin the basic state is Ψb
b, which is the solution when the entrance

to the basin is closed, and the response state is Ψr
b, which is the response in the basin when the entrance

is opened.

If the basin is closed off, then there is no forcing acting on the basic basin state Ψb
b. Furthermore, since

the hydro-morphodynamic equations and boundary conditions are homogeneous, it follows that the free
surface inside the basin remains flat, the water in the basin is at rest and there is no suspended sediment
inside the basin. The basic basin bed can be chosen arbitrarily. To simplify the forthcoming analysis,
the basic basin bed is assumed to vanish. Thus we have for the basic basin state that Ψb

b = 0. However,

37
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x = 0 x = xi

x = 1

Ψb
s

Ψb
s + Ψr

s

Ψr
b

Sea Basin

Figure 4.1: Cross-sectional view of the sea-basin system. The seaside solid line is the bed profile of the basic sea
state Ψb

s , which is Dean’s profile (4.1.2) with d = 0.97. The dashed line indicates the bottom profile in response
to opening the basin.

one could also assume, for example, that the basic basin bed is flat and the height is chosen such that
the bed is continuous at the basin entrance, as is shown in Figure 4.1.

Assuming that the wave breaking process of offshore waves results in chaotic turbulent fluctuations, Dean
argues that these fluctuations are destructive forces which change the bed slope until an equilibrium
beach profile is reached. Assuming that the dominant destructive force is wave energy dissipation per
volume, Dean (1991) has shown that the equilibrium bottom profile is given by

hD(x) = 1− (1− dx)2/3, (4.1.2)

where d is a scaling parameter. We require that the bottom profile of the basic sea state, i.e. when the
basin is closed off, is given by Dean’s bed profile, that is hb

s = hD.

The idea is to first determine the basic state inside the sea Ψb
s and in the basin Ψb

b that satisfy the
constraints given above and then determine the response in the sea Ψr

s and in the basin Ψr
b when the basin

is opened such that the hydro-morphodynamic equations (3.2.12a–d) are satisfied. Figure 4.1 summarises
the set-up of the sea basin system.

4.1.1 The hydro-morphodynamic equations

On both domains, the hydro-morphodynamic equations (3.2.12a–d) need to be satisfied together with
boundary conditions (3.2.14a–f). We again assume diffusively dominated transport, thus ε = γ = 0, and
the simple constant deposition parameter β = 1. The suspended sediment transport equation (3.2.12c)
is tidally averaged. The simplified hydro-morphodynamic equations, valid on the whole domain, are then
given by





∂ζ

∂t
+

∂

∂x

[
(1− h)u

]
= 0, (4.1.3a)

∂ζ

∂x
= 0, (4.1.3b)

−aκ∂
2〈C〉
∂x2

=
〈
u2
〉
− 〈C〉, (4.1.3c)

∂h

∂τ
= −∂〈Fdiff〉

∂x
+ fsH(xi − x), (4.1.3d)

where the averaged and scaled diffusive flux is given by

〈Fdiff〉 = −∂〈C〉
∂x

. (4.1.4)

Here, τ = δsaκt is the morphological time scale, fs is a source term which is added to parametrise the
vastly different dynamics inside the sea, xi the location of the sea basin interface and H(xi − x) is the
Heaviside step function which ensures that the hydro-morphodynamic equations inside the basin are
unaltered.
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The source term fs is unknown and has to be determined such that Dean’s equilibrium bottom profile is
the equilibrium seabed solution of the hydro-morphodynamic equations in the sea if the entrance to the
basin is closed off.

4.2 Solving the one-dimensional idealised sea-basin system

The sea-basin system is solved using two different methods. In the first method, the domain is split into
two parts. The corresponding hydro-morphodynamic equations are solved on each part separately and
are then matched at the interface. The second method considers the hydro-morphodynamic equations on
the whole domain. Using the source term fs determined with the first method, a solution is constructed
that is valid on the whole domain.

4.2.1 Method 1: Splitting the domain

The scaled domain is split into two parts, a sea domain ranging from x = 0 to x = xi and a basin domain
located between x = xi and x = 1, as illustrated in Figure 4.1. First, the basic state inside of the sea
Ψb

s is determined from which an explicit expression for the source term fs can be found. The basic state
inside in the basin is assumed to vanish for simplicity, i.e. Ψb

b = 0, and is therefore already known. Then
the response systems in the basin and sea are formulated and solved simultaneously using the matching
conditions at the interface.

Solving the basic sea state

Substitution of the total sea state Ψs = Ψb
s + Ψr

s into the hydro-morphodynamic equations (4.1.3a–d)
and requiring that the basic state does not depend on the response state, i.e. it interacts with itself only,
yields a system of equations for the basic sea state Ψb

s :





∂ζb
s

∂t
+

∂

∂x

[(
1− hb

s

)
ub

s

]
= 0, (4.2.1a)

∂ζb
s

∂x
= 0, (4.2.1b)

−aκ∂
2
〈
Cb

s

〉

∂x2
=
〈
(ub

s )2
〉
−
〈
Cb

s

〉
, (4.2.1c)

0 = −
∂
〈
F b

s,diff

〉

∂x
+ fs, (4.2.1d)

where the source term fs is added to incorporate the complex dynamics in the sea and the averaged
diffusive flux is given by

〈
F b

s,diff

〉
= −∂

〈
Cb

s

〉

∂x
. (4.2.2)

Furthermore, it has been taken into account that ∂hb
s /∂τ = 0 as Dean’s profile is time independent.

The boundary conditions are given by equations (3.2.14a–f) but with x = 1 replaced by x = xi, the sea
basin interface. Thus, the entrance of the basin represents a closed wall for the basic sea state.

Solving this system of equations is highly similar to solving the systems of equations given in Section
3.3.1 except that the bottom profile is known a priori, namely Dean’s bottom profile (4.1.2). Hence, the
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solving procedure is omitted. The basic sea state Ψb
s solution is given by

ζb
s (x, t) = cos t, (4.2.3a)

ub
s (x, t) =

x− xi

(1− dx)2/3
sin t, (4.2.3b)

〈
Cb

s

〉
(x) =

1

2

(x− xi)
2

(1− dx)4/3
, (4.2.3c)

hb
s (x) = 1− (1− dx)2/3. (4.2.3d)

To allow Dean’s profile (4.1.2) to be the equilibrium solution of the bottom evolution equation in the sea
domain the source term has to be chosen as

fs(x) = − 1

(1− dx)4/3
− 8d(x− xi)

3(1− dx)7/3
− 14d2(x− xi)

2

9(1− dx)10/3
. (4.2.4)

The coupled response systems

The response states of the sea and basin need to be solved simultaneously, contrary to the basic sea
state that could be solved in isolation, due to their interaction at the interface. First, the sea response
system is introduced, after which the basin response system and the corresponding interface conditions
are presented.

The response sea equations Substitution of the total sea state Ψs = Ψb
s + Ψr

s into the hydro-
morphodynamic equations (4.1.3a–d) and subtracting the basic sea state equations (4.2.1a–d) results in
a set of equations which the response sea state Ψr

s should satisfy and reads:





∂ζr
s

∂t
+

∂

∂x

[(
1− hb

s − hr
s

)
ur

s − hr
su

b
s

]
= 0, (4.2.5a)

∂ζr
s

∂x
= 0, (4.2.5b)

−aκ∂
2
〈
Cr

s

〉

∂x2
= 2
〈
ub

s u
r
s

〉
+
〈
(ur

s)
2
〉
−
〈
Cr

s

〉
, (4.2.5c)

∂hr
s

∂τ
= −

∂
〈
F r

s,diff

〉

∂x
. (4.2.5d)

The seawards boundary conditions are determined in a similar fashion and read

ζr
s = 0 at x = 0, (4.2.6a)

hr
s = 0 at x = 0. (4.2.6b)

The response basin equations The total basin state is equal to the response state Ψr
b since the

basic basin state is chosen zero. Hence, the response basin state Ψr
b satisfies the hydro-morphodynamic

equations (4.1.3a–d) without extra interaction terms:





∂ζr
b

∂t
+

∂

∂x

[(
1− hr

b

)
ur

b

]
= 0, (4.2.7a)

∂ζr
b

∂x
= 0, (4.2.7b)

−aκ∂
2
〈
Cr

b

〉

∂x2
=
〈
(ur

b)2
〉
−
〈
Cr

b

〉
, (4.2.7c)

∂hr
b

∂τ
= −

∂
〈
F r

b,diff

〉

∂x
. (4.2.7d)
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The boundary conditions at the landwards side are

(1− hr
b)ur

b = 0 at x = 1, (4.2.8a)

∂
〈
Cr

b

〉

∂x
= 0 at x = 1, (4.2.8b)

〈
F r

b,diff

〉
= 0 at x = 1. (4.2.8c)

Interface conditions Integrating the first three hydro-morphodynamic equations (4.1.3a–c) from x−i
to x+

i and using that all the terms are finite yields three interface conditions, namely continuity of
surface height, continuity of water transport and continuity of diffusive sediment transport, respectively.
The continuity of sediment concentration, the last interface condition, follows by integrating the tidally
averaged concentration equation (4.1.3c) with respect to x and then integrating the resulting equation
once more from x−i to x+

i . The four interface conditions read

ζb
s + ζr

s = ζr
b at x = xi, (4.2.9a)

(1− hb
s − hr

s)(u
b
s + ur

s) = (1− hr
b)ur

b at x = xi, (4.2.9b)

∂
〈
Cb

s

〉

∂x
+
∂
〈
Cr

s

〉

∂x
=
∂
〈
Cr

b

〉

∂x
at x = xi, (4.2.9c)

〈
Cb

s

〉
+
〈
Cr

s

〉
=
〈
Cr

b

〉
at x = xi. (4.2.9d)

Solving the coupled response systems

The conservation of momentum in the sea (4.2.5b) together with boundary condition (4.2.6a) imply

ζr
s (x, t) = 0.

Using the conservation of momentum in the basin (4.2.7b) and the continuity of the free surface at the
interface (4.2.9a) yield

ζr
b(x, t) = cos t.

The velocity in the basin is obtained using the conservation of mass in the basin (4.2.7a) and the condition
of zero mass flux at the landward side (4.2.8a):

ur
b(x, t) =

x− 1

1− hr
b

sin t. (4.2.10)

The basic sea state is known (4.2.3a–d) and the mass flux at the interface (4.2.9b) is continuous. Then,
from the conservation of mass equation (4.2.5a), the velocity in the sea is found as

ur
s(x, t) =

x−xi

(1−dx)2/3
hr

s + xi − 1

(1− dx)2/3 − hr
s

sin t.

It is assumed that 〈Cr
b〉 exhibits a regular expansion with respect to aκ, see equation (3.3.3). Substitution

of the response basin velocity (4.2.10) into equation (4.2.7c) shows that the leading order solution is
given by

〈
Cr

b

〉
=

1

2

(
x− 1

1− hr
b

)2

.

Similarly, from the averaged sediment concentration equation in the sea (4.2.5c), the leading order
suspended sediment concentration is determined to be

〈
Cr

s

〉
=
− 1

2
(x−xi)

2

(1−dx)4/3
(hr

s)
2 + (x−xi)

2

(1−dx)2/3
hr

s + (xi − 1)(x− xi) + 1
2 (xi − 1)2

(
(1− dx)2/3 − hr

s

)2 .
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Substituting the leading order sediment concentration into the bottom evolution equation (4.2.7d) and
results in the bottom evolution equation in the basin on the morphological time scale:

∂hr
b

∂τ
=

1

2

∂2

∂x2

(
x− 1

1− hr
b

)2

. (4.2.11)

The leading order sea response sediment concentration 〈Cr
s 〉 is substituted into the sea response bottom

evolution equation (4.2.5d) to obtain the response sea bottom evolution equation on the morphological
time scale:

∂hr
s

∂τ
=

∂2

∂x2

(− 1
2

(x−xi)
2

(1−dx)4/3
(hr

s)
2 + (x−xi)

2

(1−dx)2/3
hr

s + (xi − 1)(x− xi) + 1
2 (xi − 1)2

(
(1− dx)2/3 − hr

s

)2

)
. (4.2.12)

Steady state An analytical answer can be obtained for the equilibrium bottom profile. At steady state
∂hr

b/∂t = 0 and from equation (4.2.11) and boundary condition (4.2.8b), it follows that ∂〈Cr
b〉/∂x = 0 in

the entire basin. Using equation (4.2.3c) it can be readily computed that ∂〈Cb
s 〉/∂x = 0. Thus interface

condition (4.2.9c) simplifies to

∂
〈
Cr

s

〉

∂x
= 0 at x = xi. (4.2.13)

At steady state the bottom profile of the sea response is also constant in time and thus ∂hr
s/∂t = 0.

Integrating the bottom evolution equation for the response seabed (4.2.12) twice, using the ABC formula
to solve the resulting quadratic equation in hr

s and using boundary conditions (4.2.6b) and (4.2.13) yields

hr
s(x) = (1− dx)2/3

(
1 +

x− 1√
(x− xi)2 + (1− x2

i )(1− dx)4/3

)
. (4.2.14)

The continuity of sediment interface condition (4.2.9d) implies continuity of the bed:

hb
s + hr

s = hr
b at x = xi. (4.2.15)

Using that ∂hr
b/∂t = 0, the bottom evolution equation in the basin can be integrated twice and application

of boundary conditions (4.2.8c) and (4.2.15) results in the equilibrium bed profile in the basin:

hr
b(x) = 1 +

x− 1√
1− x2

i

. (4.2.16)

This equilibrium basin bed profile (4.2.16) is linear in x. This is the same spatial dependency as the
equilibrium basin bed profile (3.3.7) of Chapter 3, when solely an idealised basin was considered.

Furthermore, the equilibrium basin entrance height can be determined from the equilibrium basin bed
profile and is given by

heq(xi) = 1 +
xi − 1√
1− x2

i

. (4.2.17)

It is remarkable that the equilibrium entrance height is independent of d, the parameter that determines
the basin entrance height when the basin is closed off. The relation between the equilibrium entrance
height and the interface location xi is plotted in Figure 4.2.

4.2.2 Method 2: The entire domain

Instead of splitting the domain into two parts one can also consider the system of equations on the whole
domain. An explicit expression for fs can be derived by similar means as method 1.

The to be solved hydro-morphodynamic equations are given by equations (4.1.3a–d), the boundary
conditions by equations (3.2.14a–f) and the source term by equation (4.2.4).
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Figure 4.2: The entrance height heq(xi) as a function of the interface location xi according to equation (4.2.17).

Solving the first part of this system is similar to what was done in section 3.3.1 and is omitted. The first
part of the solution is

ζ(x, t) = cos t, (4.2.18a)

u(x, t) =
x− 1

1− h sin t, (4.2.18b)

〈C〉(x) =
1

2

(
x− 1

1− h

)2

. (4.2.18c)

The bottom profile on the morphological time scale τ = δsaκt satisfies the equation

∂h

∂τ
=

1

2

∂2

∂x2

(
x− 1

1− h

)2

+ fsH(xi − x). (4.2.19)

At steady state the last equation can be integrated twice and using boundary conditions (3.2.14e) and
(3.2.14f) yields an equilibrium bottom profile that is valid in the sea and basin domain:

heq(x) = 1 +
x− 1√

1− x2
i + (x−xi)2

(1−dx)4/3
H(xi − x)

. (4.2.20)

4.2.3 Comparison between the two methods

In the basin, i.e. x > xi, it follows that the Heaviside step functions vanishes and the equilibrium bottom
profile (4.2.20) reduces to the equilibrium bottom profile (4.2.16) determined using method 1.

Similarly, in the sea it holds that x < xi and it can be shown that equilibrium bottom profile (4.2.20) is
equivalent to the sum of the basic sea bottom profile (4.2.3d) and the sea response profile (4.2.14).

Thus the two methods produce the same result. The first method is more elaborate but provides more
insight into the physical processes, while the second method is more straightforward to apply if the forcing
is known.

4.2.4 Linear stability analysis

The equilibrium bed profile (4.2.20) is perturbed to investigate its stability. The small perturbation on
top of the equilibrium bed profile is denoted with h̃(x, τ). The perturbed bottom profile h = heq + h̃ is
substituted into the bottom evolution equation (4.2.19) and the resulting equation is linearised by only
retaining the first-order terms of the Taylor expansion to obtain

∂h̃

∂τ
=

∂2

∂x2

[(
1− xi +

(x− xi)
2

(1− dx)4/3
H(xi − x)

)3/2
h̃

1− x

]
.
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Figure 4.3: Evolution of Dean’s profile (A.3.1) towards the equilibrium bottom profile (4.2.20) for diffusively
dominated transport. The bottom profile is shown at τ1 = 0, τ2 = 0.013, τ3 = 0.05 and τ4 = 0.2. The vertical
dotted grey line indicates the interface xi = 0.75 and the scaling parameter is d = 1. The numerical solution is
computed with n = 1000 spatial nodes and time step ∆t = 10−3.

Separation of variables shows that this equation allows solutions of the form

h̃(x, τ) = g(x)eωτ .

The corresponding eigenvalue problem is given by

∂2

∂x2

[(
1− xi +

(x− xi)
2

(1− dx)4/3
H(xi − x)

)3/2
g

1− x

]
= ωg.

No closed form expression for the eigenvalues could be found. The eigenvalues of the discretized operator
are therefore obtained numerically in the next section. The stability of the equilibrium bottom profile
can also be determined using these eigenvalues.

4.2.5 Temporal evolution towards equilibrium

The temporal behaviour of the bottom can be investigated by numerically solving the response evolution
equations (4.2.11) and (4.2.12) determined with method 1 or by numerically solving the total bottom
evolution equation (4.2.19) from method 2. Here, the latter approach is taken as this case reduces to
solving the diffusively dominated transport equation with additional source terms. Hence, the same
numerical schemes can be used as in Section 3.3.3. Thus, a Finite Element Method is used for the spatial
discretization, the θ-scheme for the temporal discretization and the nonlinear system is solved using
the Newton-Raphson method, see Appendix B.1 for a derivation. The FEM discretization uses linear
elements and n = 1000 spatial nodes. The temporal discretization uses θ = 1/2 and time step ∆t = 10−3.

Dean’s profile initially

The source term fs is chosen such that when the entrance of the basin is closed, Dean’s bottom profile is
the equilibrium solution. Thus a logical choice of the initial bottom profile in the sea is Dean’s profile.
In the basin, the nearly flat bottom is prescribed such that it is continuous at the entrance of the basin.
At the interface between the sea and the basin the bottom profile is smoothed such that the derivatives
are also continuous, see Appendix A.3 for the derivation.
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Figure 4.4: Evolution of an initially nearly flat bottom towards the equilibrium bottom profile given by equation
(4.2.20) for diffusively dominated transport. The bottom profile is shown at τ1 = 0, τ2 = 0.1, τ3 = 0.4, τ4 = 0.65,
τ5 = 1 and τ6 = 10. The vertical dotted grey line indicates the interface xi = 0.75 and the scaling parameter is
d = 1. The numerical solution is computed with n = 1000 spatial nodes and time step ∆t = 10−3.

The seabed response to opening the basin is shown in Figure 4.3. At τ1 the initial bottom profile can be
seen, it consists of Dean’s equilibrium bottom profile in the sea and the nearly flat bottom in the basin
(see equation (A.3.1)). Most of the deposited sediment at the entrance of the basin is washed towards
the landward boundary at τ2. At τ3 this process continues until the equilibrium bed profile (4.2.20) is
reached at τ4.

Furthermore, it can be seen that the equilibrium response to opening the basin is moderate in the sea
domain and substantial inside the basin. In the basin the linear equilibrium bottom profile (3.3.7) is
retrieved again, as was the case in the model with solely the basin (see Section 3.3.3). This could have
been expected as the equations inside of the basin are unaltered (see equations (4.1.3a–d) for x > xi).
Moreover, the sea basin interaction at the interface results in a new equilibrium entrance height. The
equilibrium entrance height can be calculated using equation (4.2.17).

Nearly flat bottom initially

In Figure 4.4, the evolution of an excavated tidal inlet is shown. Initially, the bottom profile is given
by h = x50 at τ1. At τ2 and τ3, sediment is transported away from the basin entrance leaving a deep
cross-basin channel and sediment is deposited at the landward side. Time stamps τ4 and τ5 show how the
bottom evolves towards the equilibrium bottom profile (4.2.20) given by τ6, which is the same equilibrium
bed profile obtained with Dean’s profile initially.

To investigate if the eroded sediment from the basin entrance is the same sediment that is deposited at
the landwards side, the evolution of the spatially varying total sediment transport is needed. The total
sediment transport of the tidal inlet reads

〈Ftot〉 = −∂〈C〉
∂x
−
∫ x

xi

fs(x̃)H(xi − x̃) dx̃. (4.2.21)

The total sediment transport can be derived from equation (4.1.3d). The temporal evolution of the
total sediment transport of the nearly flat bottom initially is displayed in Figure 4.5. Positive sediment
transport denotes that sediment is transported in the positive x direction or landwards. Since there is
a positive local maximum at the basin entrance xi initially, it follows that indeed the sediment from
the entrance of the basin is transported towards the landward side. Furthermore, since the sediment
transport is positive everywhere, it shows that all sediment deposited inside the tidal inlet originated
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Figure 4.5: Contour plot of the evolution of the total sediment transport 〈Ftot〉 (4.2.21) for the nearly flat bottom
initially. This is a so-called Hovmöller diagram for the total sediment transport 〈Ftot〉 with on the x-axis the
along the basin coordinate and on the y-axis the morphological time τ . The vertical dotted grey line indicates
the interface xi = 0.75.

from the seaward boundary. Moreover, the total sediment transport vanishes first at the landwards side,
showing that here the equilibrium profile is attained first, and the vanishing sediment transport slowly
spreads to the rest of the basin, showing that the basin is filled from the landward side towards the
seaward side as is observed in Figure 4.4.

Eigenvalues

In Figure 4.6, the ten largest eigenvalues of the discretized operator of the sea-basin system are shown.
The eigenvalues are depicted as light grey circles. The discretized operator is linearised around the
equilibrium profile (4.2.20). The roots of the Bessel function show the analytical eigenvalues of solely
the basin system from Chapter 3. Since the largest eigenvalue of the sea-basin system is larger than
the largest eigenvalue of the basin, it follows that the sea-basin system is less stable. Nevertheless, the
sea-basin system is still asymptotically linear stable near the equilibrium profile as all the eigenvalues are
negative.
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Figure 4.6: The ten largest eigenvalues of the discretized operator or matrix (B.1.7) when linearised around
equilibrium profile (4.2.20). The eigenvalues are shown as light grey dots. The eigenvalues of the discrete operator
are obtained after correcting for the factor ∆x resulting from the FEM discretization and are computed with
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Chapter 5

The morphodynamics of a
two-dimensional idealised sea-basin
system

In this chapter, the morphodynamics of a two-dimensional semi-infinite sea and a one-dimensional basin
are analysed. The geometry of the sea-basin system is introduced and the governing morphodynamic
equation presented. These equations are solved by splitting the equations into two parts: a basic part and
a response part. A Perfectly Matched Layer is used to incorporate the Sommerfeld radiation condition
and the sea response system is analysed.

5.1 The two-dimensional idealised sea-basin system

The seawards boundary condition used in Chapter 3 assumes a fixed depth at the entrance of the
embayment. This fixed depth is also present in the computed equilibrium profiles. To allow other
equilibrium entrance heights to occur and to investigate the behaviour of the bottom profile at the
entrance of the basin, the seaward boundary is replaced by a boundary at sea, far away from the entrance
of the basin. In this section, the sea is modelled as a two-dimensional semi-infinite domain, contrary to
the one-dimensional model used in Chapter 4. The modelling approach and solution procedure are fairly
similar to Chapter 4.

The geometry of the sea-basin system is depicted in Figure 5.1. The coast runs along the line x = 0
and the rectangular basin is centred at y = 0 with width 2b. Far away from the basin, a Kelvin wave
is prescribed, which models the alongshore running tidal wave. The alongshore running Kelvin wave is
derived in Section 5.2.1. The sea-basin interaction generates waves which radiate into the sea. These
radiated waves are the subject of Section 5.2.2.

Analytically, these radiated waves should travel towards infinity. However, since a finite numerical domain
is used, a boundary condition at the end of this computational domain has to be imposed. The general
structure of these radiated waves can be quite complex and as a result, these waves do not satisfy simple
boundary conditions. To this end, an approach similar to the Perfectly Matched Layer (PML) is used.
A PML is an extra layer before the actual boundary where friction is introduced into the system. The
friction inside this layer is chosen such that the waves enter the PML without reflecting and such that
the waves are fully suppressed when they reach the actual boundary. As such, the actual prescribed
boundary condition at the end of the PML does not influence the rest of the computational domain, as
analytically desired. Thus a spatially dependent friction coefficient r̂(x, y) is introduced. To be consistent
with Chapter 4, the friction inside the domain of interest is assumed to vanish. Hence, the friction
coefficient is zero everywhere except near the seaward boundary where the friction is slowly ‘turned on’

49
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Figure 5.1: Top view of the geometry of the sea-basin system. The tidal wave forcing is depicted as the Kelvin
wave and the waves generated due to the sea-basin interaction as the radiated wave.

to suppress the spurious reflections. Hence, the system without friction is solved in the domain of interest
and friction is only introduced to comply with the analytic boundary conditions.

The two-dimensional hydro-morphodynamic equations are derived, nondimensionalized and scaled in
e.g. Ter Brake (2011). The nondimensionalization process and scaling analysis are very similar to the
one-dimensional case described in Chapter 3. The nondimensional parameters, introduced to nondimen-
sionalize the hydro-morphodynamic equations, are given by

ε =
U

σL
,

κ =
κh

σL2
,

f̂ =
f

σ
,

γ =
ωsH

κv
,

Λ =
gH

σ2L2
,

δs =
αU2

ρs(1− p)σH
,

r̂ =
r∗

σH
,

δb =
ŝU b

σHLubc
,

a =
σκv

ω2
s

,

µ =
µ∗H

L
.

(5.1.1)

The characteristic values of the North Sea and the corresponding nondimensional parameters are presented
in Table 5.1. This table shows that nearly all processes are equally important in the sea domain.
Nevertheless, it is assumed that the dominated transport phenomenon is diffusive transport.

The water motion and bottom evolution in the two-dimensional semi-infinite sea are described by the depth-
averaged, nondimensionalized, diffusively dominated, simplified, two-dimensional hydro-morphodynamic
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Table 5.1: Characteristic values of the North Sea. The dimensionless parameters are summarised in equation
(5.1.1).

Sea Sediment Dimensionless

L = 9 · 105 m
H = 40 m

Tide

σ = 1.4 · 10−4 rad s−1

A = 0.84 m
U = 2.12 m s−1

Constant

f = 10−4 rad s−1

g = 9.81 m s−2

r∗= 4 · 10−4 m s−1

α = 0.005 kg s m−4

ωs = 0.015 m s−1

κv = 0.1 m2 s−1

κh= 102 m2 s−1

ρs = 2650 kg m−3

d = 1.3 · 10−4 m

p = 0.4

ŝ = 3 · 10−6 m s−1

uc = 0.3 m s−1

µ∗= 2

b = 3

ε ∼ 1.7 · 10−2

f̂ ∼ 7.1 · 10−1

Λ ∼ 2.5 · 10−2

r̂ ∼ 7.1 · 10−2

a ∼ 6.2 · 10−2

κ ∼ 8.8 · 10−7

γ ∼ 6

δs∼ 2.5 · 10−3

δb∼ 2.1 · 10−7

µ ∼ 8.9 · 10−5

equations and read:




∂ζ

∂t
+

∂

∂x

[
(1− h)u

]
+

∂

∂y

[
(1− h)v

]
= fb, (5.1.2a)

∂u

∂t
− f̂v = −Λ

∂ζ

∂x
− r̂u

1− h, (5.1.2b)

∂v

∂t
+ f̂u = −Λ

∂ζ

∂y
− r̂v

1− h, (5.1.2c)

−aκ
(
∂2〈C〉
∂x2

+
∂2〈C〉
∂y2

)
=
〈
u2
〉

+
〈
v2
〉
− 〈C〉, (5.1.2d)

∂h

∂τ
= −∂

〈
F 1

diff

〉

∂x
− ∂

〈
F 2

diff

〉

∂y
+ fs, (5.1.2e)

where the components of the diffusive flux are respectively given by

〈
F 1

diff

〉
= −∂〈C〉

∂x
and

〈
F 2

diff

〉
= −∂〈C〉

∂y
.

Furthermore, τ = δsaκt is the morphological time scale and fb, fs are source terms added to the system to
represent the inflow and outflow of the basin and to parametrise the unmodelled sea dynamics respectively.
See Section 2.2 for a derivation of the depth-averaged two-dimensional shallow water equations. The
purpose of the source terms fb, fs is elaborated on below.

The basin is still modelled as a one-dimensional embayment. The one-dimensional basin domain needs
to be coupled with the two-dimensional sea. For this, a source term fb is used in the sea domain. The
exact form of fb is described in Section 5.2.2. The dynamics in the basin are still described by the
one-dimensional hydro-morphodynamic equations (4.2.7a–d).

The complex dynamics in the sea are parametrised with the additional source term fs. This source
term captures the unmodelled physical processes like wave-induced sediment transport, wave breaking,
alongshore currents, littoral drift etcetera. As a first step, the source term fs is chosen such that the
equilibrium bottom profile is flat when the basin entrance is closed off. This is the simplest case and
allows a few equations to be solved analytically.

5.2 Solving the two-dimensional idealised sea-basin system

Similar to Chapter 4, the state vector (4.1.1) in the sea and basin are split into a basic part and a response
part. The state vector in the sea consists of a basic state Ψb

s , which is the solution when the entrance to
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the basin is blocked, and a response state Ψr
s, which is the response in the sea domain when the entrance

to the basin is opened. Similarly, in the basin the basic state is Ψb
b, which is the solution when the

entrance to the basin is closed, and the response state is Ψr
b, which is the response in the basin when the

entrance is opened.

Since the equations and the forcing are homogeneous, it is assumed that the basic basin state vanishes
Ψb

b = 0 for simplicity.

5.2.1 Solving the basic sea state equations

Substituting the total sea state Ψs = Ψb
s + Ψr

s into the hydro-morphodynamic equations (5.1.2a–e) and
requiring that the basic sea state balances with itself only (as the response sea state Ψr

s is not present
when the basin is closed off) results in the basic sea state equations:





∂ζb
s

∂t
+

∂

∂x

[(
1− hb

s

)
ub

s

]
+

∂

∂y

[(
1− hb

s

)
vb

s

]
= 0, (5.2.1a)

∂ub
s

∂t
− f̂vb

s = −Λ
∂ζb

s

∂x
− r̂ub

s

1− hb
s − hr

s

, (5.2.1b)

∂vb
s

∂t
+ f̂ub

s = −Λ
∂ζb

s

∂y
− r̂vb

s

1− hb
s − hr

s

, (5.2.1c)

−aκ
(
∂2
〈
Cb

s

〉

∂x2
+
∂2
〈
Cb

s

〉

∂y2

)
=
〈
(ub

s )2
〉

+
〈
(vb

s )2
〉
−
〈
Cb

s

〉
, (5.2.1d)

∂hb
s

∂τ
= −

∂
〈
F b,1

s,diff

〉

∂x
−
∂
〈
F b,2

s,diff

〉

∂y
+ fs, (5.2.1e)

These equations are simplified by retaining the dominant terms only. Following Cushman-Roisin and
Beckers (2009, p. 251), it is assumed that there is no cross-shore velocity, i.e. ub

s = 0. Furthermore,
the bottom friction terms are neglected and the basic sea bottom profile hb

s is flat and constant. The
simplified basic sea state equations are obtained as:





∂ζb
s

∂t
+

∂

∂y

[(
1− hb

s

)
vb

s

]
= 0, (5.2.2a)

f̂vb
s = Λ

∂ζb
s

∂x
, (5.2.2b)

∂vb
s

∂t
= −Λ

∂ζb
s

∂y
, (5.2.2c)

−aκ
(
∂2
〈
Cb

s

〉

∂x2
+
∂2
〈
Cb

s

〉

∂y2

)
=
〈
(vb

s )2
〉
−
〈
Cb

s

〉
, (5.2.2d)

0 = −
∂
〈
F b,1

s,diff

〉

∂x
−
∂
〈
F b,2

s,diff

〉

∂y
+ fs, (5.2.2e)

Taking the temporal derivative of equation (5.2.2c), using equation (5.2.2a) and using that hb
s is constant

results in the classical wave equation for vb
s parallel to the y-axis:

∂2vb
s

∂t2
= Λ(1− hb

s )
∂2vb

s

∂y2
.

The wave speed is given by c =
√

Λ(1− hb
s ). The solution consists of two waves travelling in the positive

and negative y direction respectively:

vb
s (x, y, t) = V1(x, y − ct) + V2(x, y + ct).

From equation (5.2.2c) the solution of free surface ηb
s can be obtained:

ζb
s (x, y, t) =

√
1− hb

s

Λ
V1(x, y − ct)−

√
1− hb

s

Λ
V2(x, y + ct).
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Application of equation (5.2.2b) and using that V1 and V2 balance with themselves only, as either one
could vanish, results in Ordinary Differential Equations (ODEs) with constant coefficients:

∂V1

∂x
=
f̂

c
V1 and

∂V2

∂x
= − f̂

c
V2.

The solution of the ODEs are

V1(x, y, t) = V̂1(y − ct)ex/R and V2(x, y, t) = V̂2(y + ct)e−x/R

where R ≡
√

Λ(1− hb
s )/f̂ is the Rossby radius of deformation. In the northern hemisphere f > 0. Hence,

for the first wave the amplitude decreases exponentially with negative x and for the second wave, the
amplitude increases exponentially with negative x. Thus the only physical solution is V1. The general
solution of the hydrodynamic equations (5.2.2a–c) is given by

ζb
s =

√
1− hb

s

Λ
V̂1(y − ct)ex/R,

ub
s = 0,

vb
s = V̂1(y − ct)ex/R.

These kinds of waves are known as Kelvin waves and only exist in the presence of a boundary. Kelvin
waves decay exponentially in the cross-shore direction, i.e. away from the coast along the negative x-axis,
and travel undistorted at the speed of gravity waves c =

√
Λ(1− hb

s ) in the alongshore direction. A
Kelvin wave is the first type of tidal wave in a region with boundaries. Thus, a Kelvin wave can be used
to model the behaviour of the tide.

The hydrodynamics are forced by the nondimensionalized tide far away from the tidal inlet. The boundary
condition reads

ζb
s = cos t ex/R at y = −B.

To be consistent with the one-dimensional sea-basin system, it is required that B = λm for integer m,
where λ = 2πc is the tidal wavelength. This condition ensures that at x = y = 0, the free surface of the
Kelvin wave is given by cos t.

Application of the boundary condition results in the solution of the water motion in the undisturbed sea:

ζb
s = cos(y/c− t)ex/R, (5.2.3a)

ub
s = 0, (5.2.3b)

vb
s =

√
Λ

1− hb
s

cos(y/c− t)ex/R, (5.2.3c)

similar to Buchwald (1971, p. 501), who also prescribed a harmonic Kelvin wave to model the tidal wave.

The leading order suspended sediment concentration can now be determined from the suspended sediment
equation (5.2.2d) and yields

〈Cb
s 〉 =

Λ

2(1− hb
s )
e2x/R.

The averaged suspended sediment concentration violates the vanishing diffusive transport boundary
condition at the coast, i.e. at x = 0. However, it is more realistic that there is a nonzero sediment flux
here, as the actual tidal wave also exchanges sediment with the coast.

According to the bottom evolution equation (5.2.2e), the source term has to be chosen as

fs = − 2Λ

(1− hb
s )R2

e2x/R.
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5.2.2 The response equations

The response sea state equations

Substituting the total sea state Ψs = Ψb
s + Ψr

s into the hydro-morphodynamic equations (5.1.2a–e) and
subtracting the basic sea state equations (5.2.1a–e) results in the response sea state equations for Ψr

s:





∂ζr
s

∂t
+

∂

∂x

[(
1− hb

s − hr
s

)
ur

s − hr
su

b
s

]
+

∂

∂y

[(
1− hb

s − hr
s

)
vr

s − hr
sv

b
s

]
= fb, (5.2.4a)

∂ur
s

∂t
= −Λ

∂ζr
s

∂x
− r̂ur

s

1− hb
s − hr

s

, (5.2.4b)

∂vr
s

∂t
= −Λ

∂ζr
s

∂y
− r̂vr

s

1− hb
s − hr

s

, (5.2.4c)

−aκ
(
∂2
〈
Cr

s

〉

∂x2
+
∂2
〈
Cr

s

〉

∂y2

)
= 2
〈
ub

s u
r
s

〉
+
〈
(ur

s)
2
〉

+ 2
〈
vb

s v
r
s

〉
+
〈
(vr

s)
2
〉
−
〈
Cr

s

〉
, (5.2.4d)

∂hr
s

∂τ
= −

∂
〈
F r,1

s,diff

〉

∂x
−
∂
〈
F r,2

s,diff

〉

∂y
, (5.2.4e)

where the rotational effects due to the Coriolis force are neglected.

The solution of the basic sea state hydrodynamics (5.2.3a–c) is periodic with the tidal time scale and,
hence, it is expected that the hydrodynamic responses of the basin and the sea are periodic. Thus the
source term fb modelling the interaction between the sea and the basin is periodic. Moreover, the narrow
one-dimensional embayment is modelled as a point source forcing in the two-dimensional semi-infinite sea
domain since the embayment width is very small compared to the length scales found in the sea. Hence,
the source term is parametrised as

fb = <
{
Qδ(x)e−iωt

}
,

where <{ · } denotes taking the real part of a complex number, Q is the complex magnitude of the basin
discharge, δ(x) the two-dimensional Dirac delta function and ω the tidal frequency.

The boundary conditions that the response sea state satisfies are

√
r

(
∂

∂r
+

1

c

∂

∂t

)
ζr
s = 0 for r →∞, (5.2.5a)

ur
s = 0 at x = 0, (5.2.5b)

〈Cr
s 〉 = 0 for r →∞, (5.2.5c)

∂

∂x
〈Cr

s 〉 = 0 at x = 0, (5.2.5d)

hr
s = 0 for r →∞, (5.2.5e)

〈F r,1
s,diff〉 = 0 at x = 0. (5.2.5f)

The response basin state equations

The total basin state is equal to the response basin state Ψr
b since the basic basin state is assumed to

vanish. Hence, the response basin state Ψr
b satisfies the hydro-morphodynamic equations (4.1.3a–d):





∂ζr
b

∂t
+

∂

∂x̂

[(
1− hr

b

)
ur

b

]
= 0, (5.2.6a)

∂ζr
b

∂x̂
= 0, (5.2.6b)

−aκ∂
2
〈
Cr

b

〉

∂x̂2
=
〈
(ur

b)2
〉
−
〈
Cr

b

〉
, (5.2.6c)

∂hr
b

∂τ
= −

∂
〈
F r

b,diff

〉

∂x̂
, (5.2.6d)
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where x̂ is the nondimensional along-basin variable, i.e. x̂ = 0 is at the basin entrance and x̂ = 1 is the
landward boundary of the basin.

The boundary conditions at the landwards side are

(1− hr
b)ur

b = 0 at x̂ = 1, (5.2.7a)

∂
〈
Cr

b

〉

∂x̂
= 0 at x̂ = 1, (5.2.7b)

〈
F r

b,diff

〉
= 0 at x̂ = 1. (5.2.7c)

The matching conditions

The basin state and the sea state have to be matched at the basin entrance. Hence, matching conditions
are needed. The following matching conditions are proposed.

The seabed is continuous at the interface, thus

hs = hb at x = 0 and − b < y < b.

The total flux through a semicylinder centred at the origin should equal the total flux through the
rectangular basin entrance:

∫ 3π/2

π/2

(1− hs)(us · n)r dϕ = 2b(1− hb)ub at at x = 0 and − b < y < b.

where n is the cylinder unit normal vector, 2b is the nondimensionalized width of the basin and r is the
radial and ϕ the angular coordinate of a polar coordinate system. The seabed should be continuous at
the interface, thus hs = hb. The basin entrance is very small with respect to the sea domain, which led to
the point source parametrisation of the source function fb. Taking the limit r → 0 yields the condition

lim
r→0

r(us · n) =
2b

π
ub at x = 0 and − b < y < b. (5.2.8)

The third matching condition states that the basin-width-averaged surface heights are equal. This leads
to the condition

ζb =
1

2b

∫ b

−b
ζs dy at x = 0 and − b < y < b. (5.2.9)

The last matching condition states that the diffusive flux is continuous across the interface:

∂

∂x
〈Cs〉 =

∂

∂x
〈Cb〉 at x = 0 and − b < y < b.

5.2.3 The Helmholtz equation

In this section, it is shown that the hydrodynamic sea response equations (5.2.4a–c) can be rewritten as
a single Helmholtz-type equation assuming a periodic time dependency.

It is assumed that the bottom profiles hb
s and hrs are known and constant on the fast tidal time scale.

The hydrodynamic response equations (5.2.4a–c) allow harmonic solutions of the form:

ζr
s (x, y, t) = <

{
ηr

s(x, y)e−iωt
}
, ur

s(x, y, t) = <
{
U r

s (x, y)e−iωt
}
, vr

s(x, y, t) = <
{
V r

s (x, y)e−iωt
}
.

Hence, ηr
s is the complex spatial dependency of ζr

s and U r
s , V

r
s are the complex spatial dependencies of

urs , v
r
s respectively.
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Substitution of the periodic time dependencies into the momentum equations (5.2.4b–c) yields two explicit
relations between the flow velocities and the free surface:

U r
s =

Λ

iω
(
1 + i r̂

ω(1−hb
s−hr

s)

) ∂η
r
s

∂x
and V r

s =
Λ

iω
(
1 + i r̂

ω(1−hb
s−hr

s)

) ∂η
r
s

∂y
. (5.2.10)

Substitution of the explicit relations in the conservation of mass equation (5.2.4a) results in a Helmholtz
equation:

∂

∂x

[
Λ(1− hb

s − hr
s)

1 + i r̂
ω(1−hb

s−hr
s)

∂ηr
s

∂x

]
+

∂

∂y

[
Λ(1− hb

s − hr
s)

1 + i r̂
ω(1−hb

s−hr
s)

∂ηr
s

∂y

]
+ ω2ηr

s = iω
∂

∂y

[
hr

sV
b
s

]
+ iωQδ(x), (5.2.11)

where it has been used that the cross-shore velocity vanishes, i.e. ub
s = 0 see equation (5.2.3b), and the

alongshore basic sea velocity has been written in complex form according to

vb
s (x, y, t) = <

{
V b

s (x, y)e−iωt
}
.

Thus using equation (5.2.3c), it follows that the complex alongshore velocity is given by

V b
s =

√
Λ

1− hb
s

ex/R+iy/c. (5.2.12)

The Helmholtz equation (5.2.11) can generally not be solved analytically and solving it numerically is
difficult due to the finite numerical domain, where numerical boundary conditions have to be imposed
at the seaward boundary. In the next section, an analytic solution is derived in case the parameters are
constant. Using this analytical solution the numerical seaward boundary condition can be tested.

5.2.4 Analytical solution and Perfectly Matched Layer

In this section, a Helmholtz equation is derived that is analytically solvable, contrary to the Helmholtz
equation (5.2.11) which is generally not analytically solvable. This analytically solvable Helmholtz
equation is actually a special case of Helmholtz equation (5.2.11) for constant parameter values and
no basic sea state or when the sea response bed vanishes. Using this analytical solution, the Perfectly
Matched Layer method is tested.

Analytical radiation damping

Similar to Section 5.2.2, the water motion in a two-dimensional semi-infinite sea is solved with periodic
point source forcing. However contrary to that section, the parameters are assumed to be constant and
there is no Kelvin wave running alongshore. Hence, there is no basic state inside the sea. Since the
forcing is circularly symmetric, the parameter values are constant and there is no symmetry-breaking
basic sea state, it follows that the water motion is circularly symmetric. Hence, the water motion in the
semi-infinite sea forced by a periodic point source is governed by the circularly symmetric, nondimensional,
viscous, diffusively dominated, shallow water equations in polar coordinates:





∂ζs
∂t

+
1

r

∂

∂r

[
r(1− hs)us

]
=

1− hs

πr
δ(r) cosωt, (5.2.13a)

∂us

∂t
= −Λ

∂ζs
∂r
− r̂us

1− hs
, (5.2.13b)

see equations (A.4.5a–b) respectively. Here, us is the radial velocity component, hs is the bottom height
and r is the radial coordinate. The source term is scaled such that the depth-averaged flux through the
semicircle centred at the origin in the limit of r → 0 is normalized:

lim
r→0

∫ 3π/2

π/2

(us · n)r dϕ = 1, (5.2.14)
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where n is the unit vector that points radially outwards at the surface of the semicircle.

The parameters are assumed to be constant, hence the seabed hs is constant in time and space. Taking
the temporal derivative of equation (5.2.13a) and using equation (5.2.13b) shows that the system of
equations can be reduced to the circularly symmetric, damped wave equation in polar coordinates with
periodic point source forcing:

∂2ζs
∂t2

= Λ
(
1− hs

)1

r

∂

∂r

(
r
∂ζs
∂r

)
− r̂

1− hs

∂ζs
∂t

+
ω(1− hs)

πr
δ(r)

(
− sinωt+

r̂

ω(1− hs)
cosωt

)
. (5.2.15)

This equation allows periodic solutions of the form:

ζs(r, t) = <
{
η(r)e−iωt

}
and us(r, t) = <

{
U(r)e−iωt

}
, (5.2.16)

Substitution into the damped polar wave equation (5.2.15) yields the polar Helmholtz equation:

1

r

∂

∂r

(
r
∂η

∂r

)
+ k2η =

iω

πΛ

(
1 + i

r̂

ω(1− hs)

)
δ(r)

r
, (5.2.17)

where the wave number

k2 =
ω2

c2

(
1 + i

r̂

ω(1− hs)

)
,

and the wave speed c =
√

Λ(1− hs) have been defined. The Helmholtz equation (5.2.11) of Section 5.2.2
reduces to the polar Helmholtz equation, if we assume that all the parameters are constant and there
is no basic sea state, i.e. set all the basic sea state variables to zero, or in the special case where the
response seabed is zero: hr

s = 0. Then the equation is converted to polar coordinates, the solution is
assumed to be circularly symmetric and the resulting equation multiplied with

1 + i r̂
ω(1−hb

s−hr
s)

Λ(1− hb
s − hr

s)
.

Expanding the derivatives, multiplying with r2 and using the substitution ξ = kr yields Bessel’s differential
equation for ξ > 0:

ξ2 ∂
2η

∂ξ2
+ ξ

∂η

∂ξ
+ ξ2η = 0.

The order of the Bessel functions is ν = 0. Two linearly independent solutions of Bessel’s differential
equation are the Bessel function of the first kind J0(ξ) and the Bessel function of the second kind Y0(ξ).

However, a more convenient basis is the linear combination of the Hankel function of the first kind H
(1)
0 (ξ)

and the Hankel function of the second kind H
(2)
0 (ξ). Transforming back to the solution in terms of r

yields

η(r) = AH
(1)
0 (kr) +BH

(2)
0 (kr).

The waves are generated at the origin and should scatter outwards, away from the origin. Hence, the
energy radiated from the origin should scatter towards infinity and there should be no waves coming
from infinity towards the origin. To this end, the Sommerfeld radiation condition is used which reads

lim
r→∞

√
r

(
∂

∂r
− ik

)
η = 0, (5.2.18)

due to the choice of the time dependency, i.e. e−iωt, in equation (5.2.16). Application of the Sommerfeld
radiation condition and the asymptotic expansions of the Hankel functions for large arguments shows
that B = 0.

Integrating the polar Helmholtz equation (5.2.17) over a small semicircle or substituting equation (5.2.16)
into equation (5.2.13b) and using the normalized flux condition (5.2.14), shows that the second boundary
condition is given by

lim
r→0

r
∂η

∂r
=

iω

πΛ

(
1 + i

r̂

ω(1− hs)

)
.
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Application of the second boundary condition yields the solution of the polar Helmholtz equation:

η(r) =
ω

2Λ

(
1 + i

r̂

ω(1− hs)

)
H

(1)
0 (kr). (5.2.19)

Using equation (5.2.13b) the corresponding complex flow field is found:

U(r) =
ik

2
H

(1)
1 (kr). (5.2.20)

In case there is no friction present in the system, i.e. r̂ = 0, the complex free surface reduces to

η(r) =
ω

2Λ
H

(1)
0 (kr),

which is in compliance with literature, see for example Buchwald (1971, p. 504) or Mei et al. (2005,
p. 213). Furthermore, if there is no friction then it follows that k is real and using relation (5.2.16) shows
that the free surface is given by

ζs(r, t) =
ω

2Λ

(
J0(kr) cosωt+ Y0(kr) sinωt

)
.

and the radial velocity by

us(r, t) =
k

2

(
−Y1(kr) cosωt+ J1(kr) sinωt

)
.

Perfectly Matched Layer

The analytical free surface solution (5.2.19) of the polar Helmholtz equation (5.2.17) satisfying the
Sommerfeld radiation condition (5.2.18) does not satisfy simple boundary conditions on a finite domain.
Thus an approach similar to a Perfectly Matched Layer is adopted. Before the actual boundary, a layer
is introduced where the friction increases. This friction dampens out incoming waves and allows simple
boundary conditions to be prescribed at the end of the finite domain, as these boundary conditions do
not influence the domain due to the friction layer.

The exact form of the friction coefficient in the PML is problem specific and has to be determined on a
per case basis. Several friction coefficient formulations have been tested. The best results for our problem
are found with a friction coefficient of the from:

r̂(r) = αr

(
r − rp

rb − rp

)2

H(r − rp), (5.2.21)

where αr is a friction strength parameter, rp is the start of the Perfectly Matched Layer domain and rb

is the actual boundary.

The general Helmholtz equation (5.2.11) is discretized in Appendix B.2 using linear triangular elements.
If we assume that the parameters are constant and there is no basic sea state, or if we assume that the
response seabed vanishes, then this equation is equivalent to polar Helmholtz equation (5.2.17) for which
the analytical solution is known. Hence the PML method can be validated.

The analytical solution (5.2.19) and numerical solution of Helmholtz equation (5.2.17) are shown in Figure
5.2. The analytical solution is obtained for r̂ = 0 and the numerical solution uses the friction coefficient
formulation given by equation (5.2.21). The numerical solution is obtained for a semicircular domain,
however, since the solution is circularly symmetric, it follows that the solution along one line is sufficient.
Here, the line x = 0 is chosen. In Figure 5.2, it can be seen that in the internal domain, the analytic and
numeric solution are almost indistinguishable. In the PML, the numeric solution quickly decays to zero.
Hence, the PML is a convenient way to numerically satisfy the Sommerfeld radiation condition.
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Figure 5.2: Analytic ηex (continuous) and numeric η (dashed) surface height in the sea. The friction coefficient
r̂, given by equation (5.2.21), is also shown. The vertical grey dashed lines indicate the boundary between the
interior domain and the PML and ={·} denotes taking the imaginary part of a complex number. The parameter
values used are ω = 1, Λ = 2.5 · 10−2, αr = 5, rp = 0.75, rb = 2.5 and n = 130617.

5.2.5 Solving the sea response system

In this section, the sea response equations (5.2.4a–e) are solved. As a first step, only the influence of the
basin is taken into account and the morphodynamic evolution of the basin is neglected. The sea response
equations are solved using the so-called morphodynamic loop methodology. The morphodynamic loop is
depicted in Figure 1.1. First, the water motion is resolved. Then the sediment transport is computed
using the known water motion. The seabed is updated for the given sediment transport. The new seabed
changes the water motion again and hence we have a loop.

If the basin is closed off, the seabed is flat and given by hb
s . The idea is to determine what happens once

the basin entrance opens. Hence, initially the response sea bed profile vanishes: hr
s = 0. This implies

that the term iω ∂
∂y

[
hr

sV
b
s

]
vanishes in the Helmholtz equation (5.2.11). The Helmholtz equation is then

circularly symmetric and the circularly symmetric, analytical free surface solution is given by equation
(5.2.19). The analytical and numerical solutions are plotted in Figure 5.2. It should be noted that the
analytical solution is valid up to a multiplicative factor, due to the assumed normalized basin flux. In
Appendix A.5, the solution using the matching conditions is presented. In general, when hr

s 6= 0, then
the free surface solution has to be determined numerically, as is done in Appendix B.2.

Once the free surface ηr
s is known, then the complex horizontal flow velocities can be determined using

equation (5.2.10). Since the response seabed is still zero, the analytical solution of the free surface can be
used to compute the analytical solution of the flow velocities and these are given by equation (5.2.20). The
circularly symmetric, analytical and numerical solutions are shown in Figure 5.3. For nonzero response
seabed, the flow fields need to be determined numerically, see Appendix B.2.3.

From equation (5.2.22), it follows that the leading order suspended sediment concentration is given by
〈
Cr

s

〉
=
〈
(ur

s)
2
〉

+ 2
〈
vb

s v
r
s

〉
+
〈
(vr

s)
2
〉

=
1

2

(
U r

s Ū
r
s

)
+

1

2

(
V b

s V̄
r
s + V̄ b

s V
r
s

)
+

1

2

(
V r

s V̄
r
s

)
, (5.2.22)

where the bar denotes the complex conjugated quantity and the vanishing cross-shore velocity has been
used. Thus

〈
Cr

s

〉
can be computed directly once U r

s and V r
s are known. For hr

s = 0, the suspended
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Figure 5.3: Analytic Uex (continuous) and numeric U (dashed) radial velocity components in the sea. The vertical
grey dashed lines indicate the boundary between the interior domain and the PML. The friction coefficient is
given by equation (5.2.21). The parameter values used are ω = 1, Λ = 2.5 · 10−2, αr = 5, rp = 0.75, rb = 2.5 and
n = 130617.

sediment concentration can be found analytically by substituting equations (5.2.20) and (5.2.12) into
equation (5.2.22) and this yields

〈Cr
s 〉 =

1

8
|k|2
∣∣H(1)

1 (kr)
∣∣2 +

1

2

√
Λ

1− hb
s

ex/R sinϕ<
{
ike−iy/cH

(1)
1 (kr)

}
,

and if there is no friction present in the system, i.e. r̂ = 0, then this result reduces to

〈Cr
s 〉 =

1

8
k2
(
J2

1 (kr) + Y 2
1 (kr)

)
+

1

2

√
Λ

1− hb
s

ex/R sinϕ
(
− cos(y/c)Y1(kr) + sin(y/c)J1(kr)

)
. (5.2.23)

The analytical sediment concentration (5.2.23) and the numerical sediment concentration determined
using the PML are shown in Figure 5.4. It can be seen that the response sediment concentration oscillates
for negative y. The oscillations are due to the basic sea state interaction, as can be seen from the second
term in equation (5.2.23).

The evolution of the response bottom is found using equation (5.2.4e) and is given in coordinate invariant
form by

∂hr
s

∂τ
= ∇2〈Cr

s 〉.

For the vanishing response seabed and friction coefficient, the analytical leading order change of the
bottom near the tidal inlet is given by

∂hr
s

∂τ
=

1

r

∂

∂r

(
r
∂〈Cr

s 〉
∂r

)
=

2

π2r4
+O

(
ln2 r

)
. (5.2.24)

Thus, the bottom evolves very rapidly near the entrance of the basin.
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Figure 5.4: Analytic 〈Cex〉 (continuous) and numeric 〈C〉 (dashed) suspended sediment concentrations in the sea
along the line x = 0. The vertical grey dashed lines indicate the boundary between the interior domain and the
PML. The friction coefficient is given by equation (5.2.21). The parameter values used are ω = 1, Λ = 2.5 · 10−2,
αr = 5, rp = 0.75, rb = 2.5 and n = 130617.

The point source parametrisation

The leading order bottom evolution equation (5.2.24) shows that the bottom near the tidal inlet evolves
too quickly to be able to solve this equation numerically or analytically. Thus, the current approach
to model the sea-basin system by patching together a two-dimensional sea to an infinitely narrow one-
dimensional basin does not work. To obtain a finite mass flux, an infinite velocity at the basin entrance
is required. This locally infinite velocity whirls up a locally infinite amount of sediment and that leads
to a very rapid bottom evolution near the tidal inlet. Hence, the effects of the narrow basin cannot be
modelled as a point source forcing in the two-dimensional semi-infinite sea. It follows that other modelling
techniques are needed and some of those are discussed in the further research section.





Conclusion

In this thesis, the morphodynamic interaction between an embayment and the adjacent sea has been
studied. The one-dimensional, idealised, rectangular, tidal embayment is assumed to be short compared
to the tidal wavelength and narrow compared to the Rossby radius of deformation and the channel length.
The water motion is driven by the tide, which is prescribed at the seaward side, and the suspended
sediment transport is dominated by diffusive transport processes. The tidal time scale is much shorter
than the morphodynamic time scale, which allowed the to two time scales to be decoupled and justified
the averaging over the short tidal time scale to study the long-term behaviour on the morphodynamic
time scale.

When solely the embayment is considered with a fixed depth imposed at the entrance of the embayment
(Chapter 3), a constantly sloping equilibrium profile is obtained with a spatially uniform along-basin
velocity profile. It has been proven that the linear equilibrium bottom profile is asymptotically linear
stable with respect to one-dimensional perturbations. A simplified no-flux boundary condition is derived,
which is straightforward to implement and physically justified. The temporal evolution of the bottom
has been investigated using this simplified no-flux boundary condition and the stability properties of the
analytical and numerical problems are shown to be similar when linearised around the constantly sloping
bottom, indicating that the numerical solution convergences to the analytical solution.

A novel approach is used to model the interaction between the embayment and the adjacent sea within a
one-dimensional model (Chapter 4). An additional degree of freedom was added to the system to allow
Dean’s equilibrium bottom profile to be the sea equilibrium bottom profile, when the basin entrance
is closed off. Subsequently, the system of equations is solved when the basin entrance is opened. At
equilibrium, the bottom profile of the sea-basin system consisted of an increasingly sloping bottom in the
sea and a constantly sloping bottom in the basin (Q1 ). The sea-basin equilibrium bottom profile turned
out to be less stable than the basin equilibrium profile, although it was still asymptotically linear stable
(Q1 ). The increasingly sloping bottom seemed to be in reasonable agreement with the coastal width-
averaged bottom profiles reported by Ataei et al. (2015). An explicit relation between the equilibrium
basin entrance height and the model parameters has been determined and it was shown that the basin
entrance height only depends on the distance between the seaward boundary and the basin entrance.
The tendency of the sea-basin system for the enhanced erosion near the basin entrance is explained using
the total sediment transport. Furthermore, the linear equilibrium basin bottom profile provides evidence
that the fixed basin entrance height is the correct boundary condition for models consisting of only an
embayment. However, this boundary condition does not allow for the temporal evolution of the basin
entrance height which is observed in nature and using this model. Nevertheless, for a properly chosen
scaling of the entrance height, this effect is negligible (Q2 ).

The novel approach is applied to a system that consists of a one-dimensional basin and a two-dimensional
semi-infinite sea (Chapter 5). The basin acted as a point source forcing in the two-dimensional sea
domain. When the basin is closed off, the seabed is assumed to be flat. Once the basin opened, the
morphodynamic equations are solved. A Perfectly Matched Layer is shown to be a convenient way to
numerically incorporate the Sommerfeld radiation condition. Furthermore, it is shown that the point
source parametrisation led to an unphysically quick bottom evolution near the tidal inlet. Thus, the
narrow basin cannot be modelled as a point source forcing in the two-dimensional semi-infinite sea domain
(Q3 ).
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Further research

The sea-basin interaction and equilibrium bottom profile have been studied using a one-dimensional
model. However, the dynamics in the sea are not one-dimensional and are much better described by
a two-dimensional model, as is done in Chapter 5. We have shown that the basin influence cannot be
parametrised as a point source forcing in the two-dimensional sea. Further research could use this model
and investigate if a finite basin width or other interpretations of the infinite quantities could resolve the
singular behaviour near the basin entrance. It could be investigated to what degree the results of the
one-dimensional model remain valid for the two-dimensional model. Furthermore, it is expected that if
the grid around the entrance is refined enough, some resemblance of the ebb-tidal delta could be found.

The one-dimensional bottom profile found in the sea-basin system could be compared to width-averaged
seabed observations, to investigate if even a relatively simple one-dimensional model can already be used
to make useful predictions.

During the derivation of the hydro-morphodynamic equations several simplifying assumptions have been
made which should be checked in more detail. For example the influence of wind-driven flows on the
suspended sediment concentration, the effect of wave breaking on the suspended sediment concentration,
the overall erosion and deposition formulations, the erosion and deposition parameter values, the effect of
using the full three-dimensional sediment concentration and velocity profile instead the depth-integrated
formulation (as the horizontal suspended sediment transport would be skewed towards the bottom due
to a relatively high sediment concentration near the seabed and decent flow velocities) and the influence
of the moving landward boundary by reformulating the model as a proper moving boundary problem.
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Appendix A

Miscellaneous derivations

A.1 The log velocity profile

We consider the flow in a straight, rectangular, open channel that is driven by a pressure gradient. The
x coordinate is directed along the channel. The x component of the three-dimensional shallow water flow
is given by

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −1

ρ

∂p

∂x
+

∂

∂x

(
Ah

∂u

∂x

)
+

∂

∂y

(
Ah

∂u

∂y

)
+

∂

∂z

(
Av

∂u

∂z

)
,

see equation (2.1.6b) and the corresponding section for a derivation. Assuming irrotational, fully developed
flow directed along the x dimension that only depends on the depth u = u(z), the above equation reduces
to

∂

∂z

(
Av

∂u

∂z

)
− 1

ρ

∂p

∂x
= 0.

The term in the brackets can be interpreted as a shear stress. Thus

Av
∂u

∂z
=
τ

ρ
. (A.1.1)

The equation becomes
∂

∂z

(
τ

ρ

)
=

1

ρ

∂p

∂x
.

At the bottom of the channel, the shear stress divided by the density should be the square of the shear
velocity or friction velocity and at the free surface the shear stress should vanish, hence the boundary
conditions are

τ

ρ
= u2

∗ at z = 0 and
τ

ρ
= 0 at z = H + ζ.

The pressure gradient is assumed to be independent of the water depth. Integrating the equation and
using the above boundary conditions results in

τ

ρ
= u2

∗

(
1− z

H + ζ

)
.

A parabolic profile is assumed for the vertical eddy viscosity parameter:

Av = κu∗

(
1− z

H + ζ

)
z.

Here, κ is the von Kármán constant, usually taken as 0.4.
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Using equation (A.1.1) with the parabolic eddy viscosity profile and integrating over the depth results in
the log velocity profile:

u(z) =
u∗
κ

ln

(
z

z0

)
,

where z0 is the surface roughness parameter. This result is equivalent with the velocity profile presented
in Van Rijn (1993, p. 7.59) for a flat bed.

A.2 The bottom evolution equation

Consider a control volume V from x1 to x2 with width B and height H. The total amount of deposited
sediment inside the control volume V can change due to sediment fluxes through the boundaries of the
control volume and due to sources and sinks in the body of the control volume. The volumetric bedload
transport Sb represents the sliding, rolling and hopping of sediment along the bed, the sediment sink is
the whirling up of sediment and the sediment source is the deposition of sediment. Thus the conservation
of mass in the sediment layer implies that

d

dt

(∫

V
ρs(1− p)Bhdx

)
= ρs(1− p)B

(
Sb

∣∣
x1
− Sb

∣∣
x2

)
−
∫

V
αBu2 dx+

∫

V

ω2
s

κv
BβC dx,

where ρs is the density of the sediment particles and p is the porosity of the sediment layer.

The control volume V does not depend on time, thus the time derivative can be taken into the integral.
Furthermore, the width B is assumed to be a nonzero constant and can be eliminated. Rewriting the
flux difference in integral form and taking everything to the LHS yields

∫

V

{
ρs(1− p)

(
∂h

∂t
+
∂Sb

∂x

)
+ αu2 − ω2

s

κv
βC

}
dx = 0.

This equation holds for any control volume V, thus it follows that the integrand is zero. Rewriting the
integrand yields the bottom evolution equation

ρs(1− p)
(
∂h

∂t
+
∂Sb

∂x

)
= −αu2 +

ω2
s

κv
βC.

A parametrisation of the volumetric bedload flux is given by

Sb = ŝ
|u|b
ubc

(
u

|u| − µ∗
∂h

∂x

)
,

see for example Schuttelaars (1997); Ter Brake (2011). Here, b > 1 is a constant, µ∗ is a bed slope
correction coefficient (to model the preferred downhill transport), uc is the critical erosion velocity and ŝ
is a parameter that is a function of the sediment properties.

A.3 The smoothed bottom profile

The bottom profile consisting of Dean’s bottom profile and the nearly flat bed is given by

h(x) =

{
1− (1− dx)2/3, if x < xi,

1− (1− dxi)
2/3
[
1− (x−xi

1−xi
)m
]
, if x > xi.

Here, m is a scale parameter. At the interface the first derivative is discontinuous. Near the interface the
bed can be approximated by

hi(x) =

{
1− (1− dx)2/3 + 2d

3 3√1−xid
(x− xi), if x < xi,

1− (1− dxi)
2/3, if x > xi,
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as can be derived by retaining the first-order Taylor terms only. A smooth local bed can be obtained by
computing the convolution with a smoothing function. The chosen smoothing function is g(x) = 1

2γ e
−γ|x|

with γ a parameter that determines the smoothness. The prefactor is chosen such that the integral of
the smoothing function is normalized. By combing Dean’s profile, the convolution hi(x) ∗ g(x) and the
nearly flat bed profile, the smoothed bottom profile is obtained

h(x) =


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2/3
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1−xi
)m
]
, if x > xi + δ,

(A.3.1)

where δ is a small constant. In this thesis, the following values are taken: γ = 500 and δ = 0.01.

A.4 The shallow water equations in cylindrical coordinates

In this section, the shallow water equations in cylindrical coordinates are derived. The derivation is rather
concise as the derivation is similar to the derivation in Cartesian coordinates carried out in Chapter 2.

A.4.1 Three-dimensional water equations

The incompressible continuity equation and the incompressible Navier-Stokes equations are used to
represent the conservation of mass and momentum respectively. In cylindrical coordinates, these equations
are respectively given by
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where ur is the radial flow velocity component, uϕ is the angular flow velocity component, uz the vertical
flow velocity component, ρ is the fluid density, p is the pressure, ν is the kinematic viscosity and g is
the gravitational acceleration, which is assumed to be constant. The Coriolis terms are neglected. The
variables are all functions of the three cylindrical coordinates (r, ϕ, z) and time t.

Using Reynolds decomposition and the fact that the water is shallow, it follows that the mean flow
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variables satisfy the equations
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Here, Ah is a horizontal eddy viscosity coefficient.

A.4.2 Depth-averaging

Kinematic boundary conditions

At the interface between water and air, a kinematic boundary condition is prescribed. The water parcels
at the free surface can never leave the free surface and thus z = H + ζ(r, ϕ, t). Taking the material
derivative (D/Dt) and using that for the angular velocity it holds that ∂ϕ/∂t = uϕ/r gives

uz =
∂ζ

∂t
+ ur

∂ζ
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+
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r

∂ζ

∂ϕ
at z = ζ +H.

Similarly, at the interface between the water and the seabed, a kinematic boundary condition is used.
This results in
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+
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r

∂h
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at z = h.

Depth-averaging the conservation of mass equation

Integrating the continuity equation (A.4.2a) over the depth and using that the depth does not depend
on the radial distance r yields
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h

∂

∂r
(rur) dz +

1

r

∫ H+ζ

h

∂uϕ
∂ϕ

dz +
[
uz
]H+ζ

h
= 0.

Using Leibniz integral rule (2.2.9) results in

1

r

∂

∂r

(
r

∫ H+ζ

h

ur dz

)
+

1

r

∂

∂ϕ

(∫ H+ζ

h

uϕ dz

)
+

[
ur
∂h

∂r
+
uϕ
r

∂h

∂ϕ
− uz

]

h

−
[
ur
∂ζ

∂r
+
uϕ
r

∂ζ

∂ϕ
− uz

]

H+ζ

= 0.

The averaged radial velocity and averaged angular velocity are defined as

ūr =
1

H + ζ − h

∫ H+ζ

h

ur dz and ūϕ =
1

H + ζ − h

∫ H+ζ

h

uϕ dz.

Using the averaged velocities and the kinematic boundary conditions one finds

∂ζ

∂t
− ∂h

∂t
+

1

r

∂

∂r

[
r(H + ζ − h)ūr

]
+

1

r

∂

∂ϕ

[
(H + ζ − h)ūϕ

]
= 0.
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Depth-averaged conservation of momentum equations

Using the hydrostatic balance, integrating the conservation of momentum equations over the water depth
and using that the eddy viscosity coefficients are much smaller than the bottom friction yields





∂ūr
∂t

+ ūr
∂ūr
∂r

+
ūϕ
r

∂ūr
∂ϕ
− ū2

ϕ

r
= −g ∂ζ

∂r
− r∗ūr
H + ζ − h+ h0

, (A.4.3a)

∂ūϕ
∂t

+ ūr
∂ūϕ
∂r

+
ūϕ
r

∂ūϕ
∂ϕ

+
ūrūϕ
r

= −g
r

∂ζ

∂ϕ
+

r∗ūϕ
H + ζ − h+ h0

, (A.4.3b)

where the small constant h0 is introduced to ensure that the Lorentz linearised bottom friction terms are
finite.

A.4.3 Circularly symmetric

Assuming that the flow is circularly symmetric, it follows that all the variables are independent of the
angle ϕ, i.e. the variables are uniform in ϕ, and thus ∂/∂ϕ = 0. Furthermore, the angular velocity uϕ is
assumed to be small. It follows that the one-dimensional shallow water equations are given by





∂ζ

∂t
− ∂h

∂t
+

1

r

∂

∂r

[
r(H + ζ − h)ūr

]
= 0, (A.4.4a)

∂ūr
∂t

+ ūr
∂ūr
∂r

= −g ∂ζ
∂r
− r∗ūr
H + ζ − h+ h0

. (A.4.4b)

Nondimensionalization and simplifying

The characteristic scales are substituted into equations (A.4.4a–b) to nondimensionalize the equations.
Then using the characteristic values typical of the sea, the following dominant balances are obtained:





∂ζ

∂t
+

1

r

∂

∂r

[
r(1 + εζ − h)ūr

]
= 0, (A.4.5a)

∂ūr
∂t

= −Λ
∂ζ

∂r
− r̂ūr

1 + εζ − h+ h0
, (A.4.5b)

where the variables ζ, h, ūr, r and t are order one and the nondimensional parameters are given by
ε = U/(σL), Λ = gH/(σ2L2) and r̂ = r∗/(σH). Here, U is a characteristic velocity scale, σ the
semidiurnal angular frequency scale, L a length scale, H is a depth scale and r∗ a friction scale.

A.5 Application of the matching conditions

If instead of the normalized flux boundary condition (5.2.14) the basin flux matching condition (5.2.8) is
used, then the free surface solution of Helmholtz equation (5.2.17) without friction is given by

ζs(r, t) =
ωbub|x=0

πΛ

(
J0(kr) cosωt+ Y0(kr) sinωt

)
.

Using the Taylor expansion and that b � 1 shows the leading order free surface matching condition
(5.2.9) is given by

ζb =
ωbub|x=0

πΛ

(
cosωt+

2

π

[
ln

(
kb

2

)
+ γ − 1

]
sinωt

)
+O

(
b2
)
,

where γ is the Euler–Mascheroni constant.





Appendix B

Numerical implementation

All numerical schemes and code are written and implemented by the author in Julia (Bezanson et al.,
2012).

B.1 The diffusively dominated transport equation

A Finite Element Method (FEM), the θ-method and the Newton–Raphson method are used to numerically
solve the following nonlinear partial differential equation resulting from diffusively dominated transport
in a tidal embayment:

∂h

∂τ
=

1

2

∂2

∂x2

(
x− 1

1− h

)2

+ fs, (B.1.1)

see equation (3.3.6) and the corresponding section for a derivation. Here, the source function fs(x, τ) is
added for generality. The boundary conditions are h(x = 0) = 0 and 〈F 〉(x = 1) = 0, where the averaged
flux 〈F 〉 is given by equation (3.3.5).

B.1.1 The Galerkin equations

We derive the weak form of equation (B.1.1). The bottom evolution equation (B.1.1) is multiplied with
a test function ϕ(x) and the resulting equation is integrated over the spatial domain. Using integration
by parts and using the boundary conditions results in the following weak formulation:

(W1) :





Find h ∈ C1
(
(0, T ], H1(0, 1)

)
with h(x = 0) = 0 such that:

d

dτ

∫ 1

0

ϕhdx =

∫ 1

0

−1

2

dϕ

dx

∂

∂x

(
x− 1

1− h

)2

dx+

∫ 1

0

ϕfs dx,

for all ϕ ∈ H1(0, 1), ϕ(0) = 0.

Here, H1(Ω) = {u ∈ L2(Ω) |ux1
, . . . , uxn

∈ L2(Ω)} is the Sobolev space that contains square integrable
functions with square integrable partial derivatives and L2(Ω) = {u : Ω → R |

∫
Ω
|u|2 dΩ < ∞} is the

square integrable Lebesgue space. The notation u(t,x) ∈ C1
(
(0, T ], H1(Ω)

)
denotes that u is continuous

on (0, T ] and for each time t ∈ (0, T ] it holds that u(t,x) is in H1(Ω).

To obtain a finite system of equations, it is assumed that the solution can be written as a sum of chosen
basis functions ϕj(x) as follows: h =

∑n
j=1 hj(τ)ϕj(x), where the coefficients hj(τ) need to be determined.

Furthermore, it is assumed that the test functions in the weak formulation are from the same set of
functions as the chosen basis functions, therefore ϕ(x) = ϕi(x). Substitution into weak form W1 results
in the Galerkin equations:

n∑

j=1

∫ 1

0

ϕiϕj dx
dhj
dτ

=

∫ 1

0

−1

2

dϕi
dx

∂

∂x

(
x− 1

1−∑n
j=1 hjϕj

)2

dx+

∫ 1

0

ϕifs dx.
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The nonlinear Galerkin equations can be written in matrix vector form as

M
dh

dτ
= F (h, τ), (B.1.2)

where we have defined

h = [h1 h2 . . . hn]T, Mij =

∫ 1

0

ϕiϕj dx,

Fi(h, τ) =

∫ 1

0

−1

2

dϕi
dx

∂

∂x

(
x− 1

1−∑n
j=1 hjϕj

)2

dx

︸ ︷︷ ︸
Si(h)

+

∫ 1

0

ϕifs dx

︸ ︷︷ ︸
fi

.
(B.1.3)

B.1.2 The steady-state problem

Before considering the time-depended problem, first, the conceptually simpler steady-state problem is
solved. At steady state, the solution does not change anymore, thus dh/dτ = 0 and hj(τ) = hj . Hence,
the following system of nonlinear equations is solved:

F (h) = 0. (B.1.4)

This nonlinear system of equations is solved using the Newton-Raphson method (Vuik et al., 2018). Using
the multidimensional Taylor expansion of F (h) at h−, it follows that

F (h− + δh) = F (h−) +
∂F

∂h
(h−)δh+O

(
δh2

)
, (B.1.5)

where h− is the previous computed iterate, δh is a new variable which represents the change in h and
∂F
∂h (h−) is the Jacobi matrix which is given by

∂Fi
∂hj

(h−) =

∫ 1

0

−dϕi
dx

d

dx

(
(x− 1)2ϕj

(1−∑n
p=1 h

−
p ϕp)3

)
dx. (B.1.6)

As stated in equation (B.1.4), we want to find an h such that F (h) = 0. Instead of solving for the root of
F (h), we solve for the root of the linear approximation of F (h) given by equation (B.1.5) by neglecting
the higher-order terms. Henceforth, the following linear system is solved for δh:

∂F

∂h
(h−)δh = −F (h−). (B.1.7)

To ensure convergence, even for poor initial guesses, relaxed Newton-Rapson iterations are used with
relaxation parameter ω. For 0 < ω ≤ 1, the next iterate is given by

h = h− + ωδh.

If ω = 1 then the original Newton-Raphson method is recovered. The value of ω is determined using
Algorithm 1.

Algorithm 1 The ω algorithm

1: ω ← 1
2: while max(h− + ωδh) > 1 do
3: ω ← ω

2
4: end while

The element matrix of ∂F
∂h (h−) and element vectors of Si(h

−) and fi are derived next, see equation
(B.1.3) and equation (B.1.6) respectively for their definitions. Since the integral over the whole spatial



B.1. The diffusively dominated transport equation 77

domain can be split into a sum of the integrals over the elements ek = (xk, xk+1) that partition the
domain, it follows that

∂Fi
∂hj

(h−) =

∫ 1

0

−dϕi
dx

d

dx

(
(x− 1)2ϕj

(1−∑p h
−
p ϕp)3

)
dx =

nel∑

k=1

∫

ek

−dϕi
dx

d

dx

(
(x− 1)2ϕj

(1−∑p h
−
p ϕp)3

)
dx =

nel∑

k=1

∂F ek
i

∂hj
(h−),

Si(h
−) =

∫ 1

0

−1

2

dϕi
dx

d

dx

(
x− 1

1−∑p h
−
p ϕp

)2

dx =

nel∑

k=1

∫

ek

−1

2

dϕi
dx

d

dx

(
x− 1

1−∑p h
−
p ϕp

)2

dx =

nel∑

k=1

Seki (h−),

fi =

∫ 1

0

ϕifs dx =

nel∑

k=1

∫

ek

ϕifs dx =

nel∑

k=1

feki.

Linear basis functions are used that satisfy ϕi(xj) = δij . The linear basis functions can be written as

ϕi(x) = αi + βix on ek. The integrals in
∂F

ek
i

∂hj
(h−) and Seki (h−) can be evaluated analytically and for the

integral found in feki a Newton-Cotes quadrature is used. From a physical point of view, the bed height
cannot be higher than the water height and thus we require h < 1. For h−i < 1 we have for the integrals
that

∂F ek
i

∂hj
(h−) =

∫

ek

−βi
d

dx

(
(x− 1)2ϕj

(1− (h−k ϕk + h−k+1ϕk+1))3

)
dx = βi

{
(xk − 1)2

(1− h−k )3
δjk −

(xk+1 − 1)2

(1− h−k+1)3
δjk+1

}
,

Seki (h−) =

∫

ek

−1

2
βi

d

dx

(
x− 1

1− (h−k ϕk + h−k+1ϕk+1)

)2

dx =
1

2
βi

{(
xk − 1

1− h−k

)2

−
(
xk+1 − 1

1− h−k+1

)2}
,

feki =

∫

ek

ϕifs dx
NC≈ xk+1 − xk

2

(
f(xk)δik + f(xk+1)δik+1

)
.

It follows that on element ek = (xk, xk+1), the only nonzero basis functions are ϕk and ϕk+1, the basis
functions corresponding to the vertices of element ek. Thus only if i, j ∈ {k, k+1}2 there are contributions
towards element ek. For linear basis functions on ek it holds that βi = ∓1/(xk+1 − xk) for i ∈ {k, k + 1}.
We find for h−i < 1 that the element matrix and element vectors are given by

∂F ek

∂h
(h−) =




∂F
ek
k

∂hk

∂F
ek
k

∂hk+1

∂F
ek
k+1

∂hk

∂F
ek
k+1

∂hk+1


 =

1

xk+1 − xk



− (xk−1)2

(1−h−
k )3

(xk+1−1)2

(1−h−
k+1)3

(xk−1)2

(1−h−
k )3

− (xk+1−1)2

(1−h−
k+1)3


 ,

Sek(h−) =

[
Sekk
Sekk+1

]
=

1

2(xk+1 − xk)

{(
xk − 1

1− h−k

)2

−
(
xk+1 − 1

1− h−k+1

)2}[−1

1

]
,

fek =

[
fekk
fekk+1

]
=
xk+1 − xk

2

[
fs(xk)

fs(xk+1)

]
.

Only at the landward boundary at x = 1, it can be the case that h = 1. Thus on element k = n− 1, we
can have h−n = 1. Then we can write h−n−1ϕn−1 + h−nϕn = 1 + γ(x− 1) for some γ > 0. Substitution of
this expression into the element integrals yields

∂F
en−1

i

∂hj
(h−) =

∫

en−1

βi
d

dx

(
ϕj

γ3(x− 1)

)
dx =

{
0, if ϕj = ϕn−1 = γ̂(x− 1)

±∞, if ϕj = ϕn = 1 + γ̃(x− 1)
,

S
en−1

i (h−) =

∫

en−1

−1

2
βi

d

dx

(
1

γ2

)
dx = 0.

Whenever h−n = 1, the following element matrix and vector are obtained

∂F en−1

∂h
(h−) =



∂F

en−1
k

∂hn−1

∂F
en−1
n−1

∂hn

∂F
en−1
n

∂hn−1

∂F
en−1
n

∂hn


 =

[
0 ∞
0 −∞

]
,

Sen−1(h−) =

[
S
en−1

n−1

S
en−1
n

]
=

[
0

0

]
.
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The current discretization does not allow the natural boundary condition 〈F 〉 = 0 at x = 1. On the
one hand, if h 6= 1 at x = 1, then the last column of the element matrix ∂F en−1

∂h vanishes resulting in

a zero column in the matrix ∂F
∂h of linear system (B.1.7) that we wanted to solve. On the other hand,

when h = 1 at x = 1, then the element matrix ∂F en−1

∂h contains infinite entries which do not cancel in the

matrix ∂F
∂h of linear system (B.1.7). In both cases, the matrix ∂F

∂h is singular and, thus, the boundary
condition 〈F 〉 = 0 at x = 1 is not allowed using the current discretization.

Instead, the Dirichlet boundary condition h = 1 at x = 1 is used, since the seabed should not contain a
jump at the landward side. This simplified boundary condition is derived in Section 3.3.3. This Dirichlet
boundary condition resolves our problem since whenever hn = 1 then δhn = 0. Hence the last column of
∂F
∂h does not influence the solution and can be eliminated. Furthermore, since δhn = 0 does not influence
the other nodes, it follows that the no-flux natural boundary condition is automatically applied at the
previous node xn−1. In the limit of ∆x → 0, it holds that xn−1 goes to xn = 1 and thus the original
boundary condition is recovered.

Method of manufactured solutions: Steady state

To verify the derivation and the FEM implementation, the numerical solution is compared to the exact
solution. Often no closed-form solution exists and the only way to solve the problem is using numerical
means. However, the method of manufactured solutions can be used to resolve this issue. An exact solution
is chosen which satisfies both boundary conditions. This solution is substituted into the differential
equation and the source term is chosen such that the chosen solution is the solution.

The chosen manufactured solution that satisfies both boundary conditions is

hm(x) = 1 +
x− 1√

1 + b
(
(1− x)m − 1

) ,

with m ∈ N\{1} and b < 1. Substituting the manufactured solution into equation (B.1.1) with ∂h/∂τ = 0
shows that the source function is given by

fs(x) = −1

2
bm(m− 1)(1− x)m−2.

To investigate the order of convergence the mean absolute error (mae), the root mean squared error
(rmse) and the maximum error (max) are introduced

‖e‖mae =
1

n

n∑

i=1

|ei|,

‖e‖rmse =

√√√√ 1

n

n∑

i=1

|ei|2,

‖e‖max = max
{
|ei|, i = 1, . . . , n

}
,

(B.1.8)

where the error is defined as ei = hi − hm(xi).

The manufactured solution, the numerical approximation and the corresponding error for b = 0.99 and
m = 3 are shown in Figure B.1. The numerical solution uses n = 30 nodes. In Figure B.1a it can be
seen that the numerical solution computed with 30 nodes already approximates the analytical solution
rather well. Figure B.1b shows that when the grid spacing ∆x is halved the error ‖e‖ decreases four
times, hence ‖e‖ = O(∆x2). This is in line with the theoretical rate of convergence for linear elements
(Van Kan et al., 2014, p. 158).

In Figure B.2, the analytical solution, the numerical solution and the corresponding error are shown
for b = 0.99 and m = 2. It can be seen that the numerical solution with 30 nodes does not accurately
describe the analytical solution yet. Moreover, observe that the error only decreases with order O(∆x)



B.1. The diffusively dominated transport equation 79

0.00 0.25 0.50 0.75 1.00

−0.5

0.0

0.5

1.0

x

h

exact
numeric

(a) The solution

10−5 10−4 10−3 10−2 10−1

10−10

10−8

10−6

10−4

10−2

∆x2

∆x

‖e
‖

mae
rmse
max

(b) The error

Figure B.1: (a) Analytical (solid black) and numerical (dotted grey) nondimensional bottom profiles for b = 0.99
and m = 3. The numerical solution is computed with n = 30 nodes. (b) Convergence of the error measured in
the norms defined in equation (B.1.8).
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Figure B.2: (a) Analytical (solid black) and numerical (dotted grey) nondimensional bottom profiles for b = 0.99
and m = 2. The numerical solution is computed with n = 30 nodes. (b) Convergence of the corresponding error
measured in the norms defined in equation (B.1.8).
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here, while the theoretical convergence rate for linear elements is order O(∆x2), as was found with the
previous manufactured solution. It is expected that the slower convergence is caused by the nonvanishing
source function fs at the right boundary for m = 2. For higher values of m, the error decreases with
order O(∆x2).

B.1.3 The time-dependent problem

The resulting time-dependent equation is solved using the θ-method (Vuik et al., 2018). Using the
θ-method to discretise equation (B.1.2) in time yields

M
hn+1 − hn

∆τ
= θF (hn+1, τn+1) + (1− θ)F (hn, τn),

with θ ∈ [0, 1]. For θ = 0 forward Euler is obtained, while for θ = 1 backward Euler is acquired. Thus the
θ-method can be seen as a linear combination of the forward and backward Euler methods. For θ = 1/2
the scheme is called the Crank–Nicolson method, which is second-order accurate in time.

Continuing our somewhat unusual but mathematically convenient notation, we define the wanted quantity
as h = hn+1, the solution from the previous time step as h(1) = hn, the new time as τ = τn+1 and the
previous time as τ (1) = τn. The nonlinear equation can be written in the standard form as follows:

F(h, τ) ≡ θF (h, τ) + (1− θ)F
(
h(1), τ (1)

)
− 1

∆τ
M
(
h− h(1)

)
= 0. (B.1.9)

Again, the Newton-Raphson method is used to solve the nonlinear system. Neglecting the higher-order
terms in the Taylor expansion of equation (B.1.9) and solving for the root of the resulting linear function
shows that the following linear system needs to be solved:

∂F
∂h

(h−, τ)δh = −F(h−, τ),

where h− is the previous iterate of h. The next iterate is then found using a relaxed Newton-Raphson
step:

h = h− + ωδh.

The value of ω is determined using Algorithm 1. Once the solution for a given previous time step h(1)

has sufficiently converged, we set h(1) = h and the process repeats itself. The solution has sufficiently
converged whenever ‖δh‖max < 10−8.

By direct computation, it follows that

∂Fi
∂hj

(h−, τ) = θ
∂Fi
∂hj

(h−, τ)− 1

∆τ
Mij .

The term ∂Fi

∂hj
(h−) has already been computed in equation (B.1.6).

The only element matrix that needs to be derived is that of Mij as the other element matrices and vectors
have already been derived for the steady-state problem. From equation (B.1.3), it follows that

Mij =

∫ 1

0

ϕiϕj dx =

nel∑

k=1

∫

ek

ϕiϕj dx =

nel∑

k=1

Mek .

Using the Holand & Bell theorem in R1 we can evaluate the element integral to obtain

Mek =

∫

ek

ϕiϕj dx =
(xk+1 − xk)

6
(1 + δij),

and the element matrix is therefore given by

Mek =

[
Mek
kk Mek

k+1

Mek
k+1k Mek

k+1k+1

]
=

(xk+1 − xk)

6

[
2 1
1 2

]
.
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Figure B.3: (a) Evolution of the analytical (solid black) and numerical (dashed grey) nondimensional bottom
profiles for b = 0.99, m = 3, α = 2, n = 30 and time step ∆t = 10−3. The solutions are shown at τ1 = 0, τ2 =
0.02, τ3 = 0.15 and τ4 = 2 and are almost almost indistinguishable. (b) Convergence of the error measured in the
norms defined in equation (B.1.8).

Method of manufactured solutions: Time dependent

Similar to the steady-state case, a manufactured solution is used to test the numerical implementation
of the derived schemes. The chosen time-dependent manufactured solution is

hm(x, τ) = 1 +
x− 1√

1 + be−ατ
(
(1− x)m − 1

) , (B.1.10)

with α > 0. Substitution into the time-dependent PDE shows that the source function is given by

fs(x, τ) =
1

2
be−ατ

(
α(x− 1)

(
(1− x)m − 1

)
(
1 + be−ατ

(
(1− x)m − 1

))3/2 −m(m− 1)(1− x)m−2

)
. (B.1.11)

In this thesis the Crank–Nicolson method is used, which corresponds to choosing θ = 1/2. The error
theoretically scales with ‖e‖ = O(∆t2 + ∆x2) for θ = 1/2. Whenever ∆t = O(∆x), it follows that
‖e‖ = O(∆x2).

Figure B.3 shows how the numerical and analytical bottom profiles evolve in time and, moreover, that
the error indeed scales with ‖e‖ = O(∆x2) as theoretically predicted. The bottom profile is initially
given by the steady-state manufactured solution with b = 0.99 and m = 3, and evolves towards the linear
equilibrium bottom profile (3.3.7).

B.2 The Helmholtz equation

In this section, the discretized Helmholtz equation is derived. The Helmholtz equation, which was derived
under the assumption of periodic flow and includes the effects of viscosity and of a variable bottom, is
given in coordinate invariant form by

∇ ·
[

Λ(1− hb
s − hr

s)

1 + i r̂
ω(1−hb

s−hr
s)

∇ηr
s

]
+ ω2ηr

s = iω∇
[
hr

sU
b
s

]
+ fs, (B.2.1)

see equation (5.2.11). Here, fs is a source term added for generality. There is no water flow through the
coast, hence the normal flow vanishes at the coastal boundary. Thus ur

s · n = 0 at x = 0 which implies
using equation (5.2.10) that ∂ηr

s/∂n = 0 at x = 0. For the seaward boundary, it is assumed that there are
only outgoing waves, hence a Sommerfeld type boundary condition is prescribed (see equation (5.2.18)
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for the analytical Sommerfeld radiation condition at infinity). For a fixed bottom without friction, a
simple numerical non-reflective boundary condition is of the form

∂ηr
s

∂n
− ikηr

s = 0 on Γ1, (B.2.2)

with k = ω/c and Γ1 is the semicircular seaward boundary. However, as pointed out by Ihlenburg (1998,
p. 8), this numerical boundary condition is only satisfied approximately by the analytical solution:

ηr
s = O

(
1√
R

)
,

∂ηr
s

∂n
− ikηr

s = O
(

1√
R

)
, R→∞.

Thus, a numerical solution satisfying boundary condition (B.2.2) does not converge to the true analytical
solution satisfying the Sommerfeld radiation condition but, instead, to the exact solution satisfying
boundary condition (B.2.2). Viscosity is added to the Helmholtz equation such that the seawards
boundary is easier to implement. Because, if the waves generated in the centre of the domain dampen
out quickly, then the boundary condition at the seaward side does not influence these waves. The used
numerical boundary condition reads

∂ηr
s

∂n
− iω

√
1 + i r̂

ω(1−hb
s−hr

s)

Λ(1− hb
s − hr

s)
ηr

s = Hb on Γ2,

where on the RHS the function Hb is added for generality.

B.2.1 The Galerkin equations

Multiplying the Helmholtz equation (B.2.1) with a test function ϕ(x), integrating over the spatial domain
and application of integration by parts and the boundary conditions results in the weak form:

(W2) :





Find ηr
s ∈ H1(Ω) such that:∫

Ω

−∇ϕ ·
(

Λ(1− hb
s − hr

s)

1 + i r̂
ω(1−hb

s−hr
s)

∇ηr
s

)
+ ω2ϕηr

s dΩ +

∫

Γ2

iω

√
Λ(1− hb

s − hr
s)

1 + i r̂
ω(1−hb

s−hr
s)

ϕηr
s dΓ

=

∫

Ω

iωϕ∇ · (hr
sU

b
s ) + ϕfs dΩ +

∫

Γ2

− Λ(1− hb
s − hr

s)

1 + i r̂
ω(1−hb

s−hr
s)

HbϕdΓ,

for all ϕ ∈ H1(Ω).

To obtain a finite system of equations it is assumed that η =
∑n
j=1 ηjϕj(x) and ϕ = ϕi. Substitution

into the linear weak formulation of Helmholtz equation results in the Galerkin Equations:

n∑

j=1

ηj

Sij︷ ︸︸ ︷(∫

Ω

− Λ(1− hb
s − hr

s)

1 + i r̂
ω(1−hb

s−hr
s)

∇ϕi · ∇ϕj + ω2ϕiϕj dΩ +

∫

Γ2

iω

√
Λ(1− hb

s − hr
s)

1 + i r̂
ω(1−hb

s−hr
s)

ϕiϕj dΓ

)

=

∫

Ω

iωϕi∇ · (hr
sU

b
s ) + ϕifs dΩ +

∫

Γ2

− Λ(1− hb
s − hr

s)

1 + i r̂
ω(1−hb

s−hr
s)

Hbϕi dΓ

︸ ︷︷ ︸
fi

,

where Sij and fi have been defined.

B.2.2 Linear triangular elements

Since the elements partition the domain and the boundary elements partition the boundary, it follows
that

Sij =

nel∑

k=1

Sekij +

nbel∑

k=1

Sbekij and fi =

nel∑

k=1

feki +

nbel∑

k=1

f beki .
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Linear triangular elements are used. The linear elements can be written as ϕi(x) = αi + βix+ γiy and
therefore ∇ϕi · ∇ϕj = βiβj + γiγj . The node indices of element ek are denoted with k1, k2 and k3. The
node indices of boundary element bk are denoted with k1 and k2. Using Holand & Bell’s theorem and
Newton-Côtes quadratures it follows that

Sekij =

∫

ek

− Λ(1− hb
s − hr

s)

1 + i r̂
ω(1−hb

s−hr
s)

∇ϕi · ∇ϕj + ω2ϕiϕj dΩ
NC&HB

≈ −(βiβj + γiγj)
|∆e|

6

∑

p∈{k1,k2,k3}

Λ
(
1− hb

s (xp)− hr
s(xp)

)

1 + i
r̂(xp)

ω(1−hb
s (xp)−hr

s(xp))

+ ω2 |∆e|
24

(1 + δij),

Sbekij =

∫

bek

iω

√
Λ(1− hb

s − hr
s)

1 + i r̂
ω(1−hb

s−hr
s)

ϕiϕj dΓ
NC
≈ iω

‖xk2 − xk1‖
2

∑

p∈{k1,k2}

√√√√Λ
(
1− hb

s (xp)− hr
s(xp)

)

1 + i
r̂(xp)

ω(1−hb
s (xp)−hr

s(xp))

δipδjp,

feki =

∫

ek

iωϕi∇ · (hr
sU

b
s ) + ϕifs dΩ

NC
≈ |∆e|

6

∑

p∈{k1,k2,k3}

(
iωhr

s(xp)
(
Ub

s (xp)βp + V b
s (xp)γp

)
+ δipfs(xp)

)
,

f beki =

∫

bek

− Λ(1− hb
s − hr

s)

1 + i r̂
ω(1−hb

s−hr
s)

Hbϕi dΓ
NC
≈ −‖xk2 − xk1‖

2

∑

p∈{k1,k2}

Λ
(
1− hb

s (xp)− hr
s(xp)

)

1 + i
r̂(xp)

ω(1−hb
s (xp)−hr

s(xp))

Hb(xp)δip.

The element matrix is formed by letting i, j ∈ {k1, k2, k3}2, the boundary element matrix is formed by
letting i, j ∈ {k1, k2}2, the element vector is formed by letting i ∈ {k1, k2, k3} and the boundary element
vector by i ∈ {k1, k2}.
If the source function is fs = iωQδ(x) as is the case in equation (5.2.11), then the above derivation of
the element vector is not correct. Instead, it follows that

∫

ek

ϕifs dΩ =

{
iωQϕi(0), if 0 ∈ ek,
0, else.

Thus, we need to determine if the point source is located inside an element. Let the vertices of element
ek be given by xk1 , xk2 and xk3 . A point a is located inside element ek, if

∣∣∆(xk1 ,xk2 ,a)
∣∣+
∣∣∆(a,xk2 ,xk3)

∣∣+
∣∣∆(xk1 ,a,xk3)

∣∣ =
∣∣∆(xk1 ,xk2 ,xk3)

∣∣,

where
∣∣∆(xk1 ,xk2 ,xk3)

∣∣ denotes the area of the triangle with vertices xk1 , xk2 and xk3 . Round off errors
spoil the exact equality. Hence a small parameter ε is added to the RHS. The condition becomes

∣∣∆(xk1 ,xk2 ,a)
∣∣+
∣∣∆(a,xk2 ,xk3)

∣∣+
∣∣∆(xk1 ,a,xk3)

∣∣ ≤
∣∣∆(xk1 ,xk2 ,xk3)

∣∣+ ε.

B.2.3 The velocity field

Once the free surface ηr
s is known then the velocity fields can be found using the equations:

U r
s =

Λ

iω
(
1 + i r̂

ω(1−hb
s−hr

s)

) ∂η
r
s

∂x
and V r

s =
Λ

iω
(
1 + i r̂

ω(1−hb
s−hr

s)

) ∂η
r
s

∂y
. (B.2.3)

see equation (5.2.10). Here, we focus on U r
s but the FEM discretization of V r

s goes analogously. Multiply-
ing equation (B.2.3) with ϕ(x) and integrating over the domain yields the weak form:





Find U r
s ∈ H0(Ω) such that:∫

Ω

U r
sϕdΩ =

∫

Ω

Λ

iω
(
1 + i r̂

ω(1−hb
s−hr

s)

)ϕ∂η
r
s

∂x
dΩ,

for all ϕ ∈ H0(Ω).
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Assuming that ϕ(x) = ϕi(x) and U r
s =

∑n
j=1 U

r
s,jϕj(x) yields the Galerkin equations:

n∑

j=1

U r
s,j

∫

Ω

ϕiϕj dΩ

︸ ︷︷ ︸
Sij

=

∫

Ω

Λ

iω
(
1 + i r̂

ω(1−hb
s−hr

s)

)ϕ∂η
r
s

∂x
dΩ

︸ ︷︷ ︸
fi

.

The integral over the whole domain is the same as the sum over the elements. Assuming linear triangular
elements, it follows that

Sekij =

∫

ek

ϕiϕj dΩ =
|∆e|
24

(1 + δij),

feki =

∫

ek

Λ

iω
(
1 + i r̂

ω(1−hb
s−hr

s)

)ϕ∂η
r
s

∂x
dΩ ≈ |∆e|

6

Λ

iω
(
1 + i r̂(xi)

ω(1−hb
s (xi)−hr

s(xi))

)
∑

p∈{k1,k2,k3}

ηr
s(xp)βp.
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