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ABSTRACT

This paper proposes rational Chebyshev graph filters to approximate
step graph spectral responses with arbitrary precision, which are of
interest in graph filter banks and spectral clustering. The proposed
method relies on the well-known Chebyshev filters of the first kind
and on a domain transform of the angular frequencies to the graph
frequencies. This approach identifies in closed-form the filter co-
efficients, hence it avoids the costs of solving a nonlinear problem.
Rational Chebyshev graph filters improve the control on the ripples
in the pass- and stop-band and on the transition decay. Numerical ex-
periments show the proposed approach approximates better ideal step
responses than competing alternatives and reaches the performance of
the ideal filters in compressive spectral clustering.

Index Terms— Graph filters, graph signal processing, spectral
clustering.

1. INTRODUCTION

Graph filters are mathematical operators employed to process and
learn from network data [1,2]. They serve as the main building block
for graph wavelets [3], graph neural networks [4], and distributed
processing over networks [5,6]. Graph filters are also an integral part
of graph filter banks [7-10] and spectral clustering [11, 12]. Their
primary role is to shape the signal’s spectrum while retaining a linear
complexity. This is accomplished with two main implementations:
the finite impulse response (FIR) form [13, 14], which implements a
polynomial frequency response; and the autoregressive moving av-
erage (ARMA) [15] form, which implements a rational frequency
response.

Filters implementing rational responses are of interest when we
need to approximate accurately an ideal step function with a nar-
row transition band [8, 12]. While FIR filters are also a valid option,
they suffer capturing the abrupt transition between the pass- and stop-
band. Rational filters capture these transitions better at expenses of
inverting a linear problem with iterative solvers [16, 17]. However,
designing rational filters is challenging because of their nonlinear
structure. The works in [15, 17, 18] propose Prony-inspired design
strategies to get the filter coefficients. These approaches apply to
any frequency response but require solving an iterative least-squares
problem in the design phase. The latter translates into a cost overhead
and several combinations of filter orders should be tried to determine
the right orders. The same issues hold also for the approach in [19],
which rephrases the filter design as a sum-of-squares optimization
problem. Contrarily, the work in [16] proposes a Butterworth-like
design to find the filter coefficients in closed-form if the desired re-
sponse is an ideal step. Despite avoiding the design costs and the flat
pass-band response, Butterworth filters suffer also in narrow transi-
tion bands. Hence, if the cutoff frequency is close to a graph fre-
quency, as happens in graph filter banks and compressive spectral

clustering (CSC), the filter performance reduces to that of FIR filters.

To address the above limitations, we propose a design strategy
for rational graph filters based on the principles of Chebyshev filters
of the first kind [20]. We bring the latter design to the graph filter set-
ting through a variable transformation between the angular frequency
interval and the graph frequency interval in a form akin to Cheby-
shev FIR design [14]. Rational Chebyshev graph filters have the fol-
lowing features of interest. Compared with current rational designs,
they identify the coefficients in closed-form with controlled ripples
and width of the transition band. The proposed design identifies the
smallest order to meet the desired requirements; hence, bypassing
the search over different orders as done by state-of-the-art methods.
Compared with FIR graph filters, rational Chebyshev filters have a
sharper transition. Numerical comparisons show the proposed design
approximates an ideal low pass up to 6dB better that competing al-
ternatives, and it improves the CSC at the point of meeting the ideal
filter performance.

The rest of the paper is organized as follows. Section 2 contains
the preliminary material and formulates our problem. Section 3 dis-
cusses the Chebyshev graph filters of the first kind to design low-pass
responses. Section 4 focuses on designing different frequency re-
sponses via graph frequency transformations. Section 5 contains the
numerical results and Section 6 the paper conclusions.

2. PROBLEM FORMULATION

Basics of GSP. We consider an undirected graph G = (V, £) com-
prising a set of N nodes V = {1,..., N} and a set of M edges £.
The structure of this graph is captured by the adjacency matrix A
such that A;; > 0 if there is an edge connecting nodes {4, j} and
A;; = 0 otherwise. Undirected graphs are also represented by the
Laplacian matrix L, which we use as a generic variable to denote
both the discrete and the normalized Laplacian. Since L is sym-
metric and positive semi-definite, it can always be decomposed as
L = UAU" where U is the matrix containing the eigenvectors of
L and A = diag(Xo, ..., An—1) is the diagonal matrix containing
the eigenvalues 0 = Ag < A1 < ... < Any—1 on the main diagonal.
Along with the graph, we are interested in processing graph sig-
nals, which are defined as a mapping from the vertex set to the set of
real numbers x : V — R. We represent the graph signal in the vector
form & = [z1,...,xn]" where entry z; is the signal value at node
7. By exploiting the Laplacian eigendecomposition, we can project
the signal as & = U"a which is known as the graph Fourier trans-
form (GFT). Vector & contains the signal Fourier coefficients and the
inverse transform is denoted by = Ux. The eigenvalues of L are
referred to as the graph frequencies; smaller valued eigenvalues rep-
resent lower frequencies since the corresponding eigenvectors vary
less over the graph [1]. The GFT allows processing signal « in the
spectral domain by altering its Fourier coefficients . The tool for



spectral processing is the graph filter, which is defined in the spectral
domain by the diagonal matrix h(A) = diag(h(Xo),...,h(An=1))
in which the ith diagonal entry h(\;) denotes the filter response at
frequency A;. The filtered signal has the GFT ¢ = h(A)&, which by
the inverse GFT becomes y = Uh(A)U"x := H(L)x with graph
filtering matrix H(L) = Uh(A)U"™.

Rational filters. While we can define h(A) as the desired shape —an
ideal low/band/high-pass response for spectral clustering [11, 12] or
filter banks [8,9,21]- the latter requires computing the eigendecom-
position of L which has a cost of order O(N?). To reduce this cost,
we can specify an analytic desired response 4" () in the graph fre-
quency variable A and approximate A" () by a graph filter that can
be implemented with a lower cost. One way of doing so is to consider
graph filters with the rational transfer function

() _ e ba)
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where scalars {a, } and {b,} are the filter coefficients and (P, Q) the
filter orders. Because of their rational transfer function, filters in the
form (1) can approximate the desired response h* () better than FIR
filters (the numerator of (1)) [17].

By exploiting the inverse GFT and substituting variable \ with
the Laplacian variable L, we can write the filter output in the vertex
domain as

(I + ZP: apLP)y = (iquq)m = P(L)y=Q(L)x (2)

p=1 q=0

where P(L) := I—|—ZII::1 apL? and Q(L) := ZqQ:O bgL? are FIR
filters of orders P and @), respectively. To get the output y we need
to solve the linear system in (2). We can do the latter via iterative
methods such as gradient descent [16] or conjugate gradients [17]
with a computational cost of order O(M (PT + Q)), and where T is
the number of iterations of the descent algorithm. Notice that while
we can solve (2) in its direct form, better numerical properties and
faster convergence can be achieved if we rephrase (2) in the cascade
or in the parallel form [15, 16]. In the numerical results, we shall use
the parallel form because of its faster convergence.

When approximating the desired response h* (), the coefficients
of the rational filters are obtained by minimizing the error
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over a grid in the graph frequency interval [0, Amax]. Since (3) is non-
linear in the denominator coefficients a,, Prony’s non-equivalent ver-
sions have been used as a proxy [17]. However, the latter lead only to
a coarse approximation of A*(\) which can be improved by iterative
design methods at expenses of complexity (i.e., solving a sequence
of least-squares problems). A search for different order tuples (P, Q)
needs also to be done to meet the desired approximation error in the
pass- and stop-band. The cost of the least square design and order
search is also present when approximating h*(\) with a FIR filter
(setting P = 01in (3)) [22]. Instead, Chebyshev FIR filters and But-
terworth rational filters [16] avoid the design costs since they obtain
the filter coefficients in closed-form [14].

Paper objective. The goal of this paper is to propose a closed-form
design for rational graph filters [cf. (1)] when the desired response
is an ideal step function such as that encountered in spectral clus-
tering and graph filter banks. We do so by leveraging the analogy
between rational graph filters and Chebysheyv filters of the first kind

(Chy1) [20]. The proposed design relies on a change of variable to
map the angular frequency interval [0, 7], where conventional Ch;
filters are defined, to the graph frequency interval [0, Amax], Where
graph filters are defined, akin to the variable transformation used for
Chebyshev FIRs [14].

3. CHEBYSHEV GRAPH FILTER OF THE FIRST KIND

In this section, we detail the design of low pass Chebyshev graph
filters of the first kind. The latter will serve as the basis for designing
other step filters in the next section.

Recall a Chebyshev polynomial of degree K in the variable x is
defined as

| cos(Karccos(x)
Tk (z) = { cOS}(I(KaI‘CCOSh(;’))
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Chebyshev polynomials can also be obtained via the recursion
Tk(x) = 22Tk—1(x) — Tk—2(x) with initialization To(z) = 1
and 7' (z) = . Denote then by w the continuous angular frequency
and recall an order K low-pass Chebyshev filter of the first kind is
defined by its square-magnitude gain response

1
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where ¢ is the ripple factor, w. the angular cutoff frequency, and the
filter specifications are given in the interval [0, 7] due to symmetry
[20]. By changing the domain of the angular frequencies w € [0, 7]
to graph frequencies A € [0, Amax] via the transformation of variable
w = wA/Amax, We can represent the rational Ch; in the graph fre-
quency variable A as

1
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where A\ = Amawe/m transforms the cutoff frequency'. Subse-
quently, we can decompose the transfer function (6) as hcn, (A) =

R’ (s)h'(—s) to identify the poles needed for the design. The rational
function h’(s) contains k poles {sy} that allow factorizing h’(s) as

K-—1 s
B'(s) = h ok 7
(s) okI:[OS_Sk ©)

with constant

R e K even
ho = { 1 K odd ®
The poles can be obtained in closed-form as
Sk = —x\dinh(%arcsinhé)sin {%} o
1 1 2 1
+ j)\ccosh(?arcsinhg)cos {%]
fork = 0,..., K — 1. By exploiting the relationship between vari-

ables s and ), i.e., s = jA with 3 = /—1, we have the rational
Chebyshev graph filter of the first kind

hen (A) = ' (GAR (=5 N). (10)

"Notice that if we were to define hcp, (A) w.r.t. h(w) and not its squared
gain, we would have a square root on the right-hand side of (6). The latter
would imply computing the square root of a filtering matrix prior to inversion.
Further, defining the graph filter w.r.t. the squared gain allows a direct use of
the Ch; design strategy in Algorithm 1.



Algorithm 1 Low-pass Ch; graph filter design.

Algorithm 2 High-pass Ch; graph filter design.

1: Set the filter specifications: Ap, As, Jp, Js;
2: Compute the discrimination factor §

5= {L —0)" ~ 1]1/2.
52— k

3: Compute the selectivity factor o = A\, /As;
4: Set the filter order K as

)

Set A\c = Xpande = [(1—6,) % — 1]1/2;

: Compute the poles sy, from (9);

: Compute the gain hg from (8);

: Compute h'(s) and h'(—s) from (7);

: Compute the graph filter response hcn, (A) from (10);

Design. Given the equivalence between the rational Ch; graph fil-
ter (10) and the squared gain of the conventional Ch; filter (5), we
can obtain the coefficients defining hch, (A) in closed-form following
Algorithm 1. The user provides the pass-band frequency A, the stop-
band frequency s, and the ripple bounds d, and ;. Step 4 identifies
the minimum order K that satisfies the imposed requirements. This
order is used to find the K complex conjugate poles [cf. (9)] and the
graph filter response as per (10).

Differently from Prony’s method [17], the rational Chebyshev
design in Algorithm 1 has controlled ripples in the pass- and stop-
band and a closed-form set of coefficients. Prony’s method is how-
ever more versatile and not limited to sharp desired responses. The
difference in terms of reduced design complexity holds also when
comparing the rational Ch; filter with the least-square design of FIR
filter [22]. Contrarily, the Chebyshev polynomial design [14] pro-
vides also closed-form coefficients, but it does not have controlled
ripples and suffers from the Gibbs phenomenon. The rational But-
terworth design [16] avoids the Gibbs phenomenon by forcing a flat
response, but it pays the latter in transition band sharpness. Conse-
quently, a higher order Butterworth filter is required, which incurs
a higher computational cost. The rational Ch; filter does not suffer
from the latter and keeps the filter order and cost low.

As it follows from (5), we define the design requirements of the
conventional Ch; w.r.t. the squared magnitude response. These re-
quirements can be achieved by implementing the transfer function
h(w) [20]. In other words, this implies that in conventional Ch; fil-
ters we work with squared Chebyshev polynomials T3 (w/wc) dur-
ing design but implement only the transfer function h(w) (i.e., the
square root of (5)). Contrarily, (6) and (10) show that in graph fil-
ters we need to implement directly a filter having squared Chebyshev
polynomials T# (w/w.). This is a critical aspect to get as output the
filtering operation designed by Algorithm 1. In turn, this implies the
effective rational order is 2K, therefore, it doubles the computational
effort. The latter can be reduced by relaxing the requirements (hence
K) during design.

4. GRAPH FREQUENCY TRANSFORMATIONS

Given the low-pass design in Algorithm 1, we can transfer this ap-
proach to designing band-pass and high-pass filters through trans-
forming graph frequency variables. Without loss of generality, we
detail here the design of high-pass filters.

1: Set the filter specifications: Xp, :\S, Sp, Ss;

2: Design a low-pass graph filter using Algorithm 1 with A, = 1,
A = XP/S\S and §, = Sp, 8 = O

3: Obtain the high-pass graph filter frequency response hcn, (5\) as

heny, (A) = R/ (s)h/(—s) for s = Ap/jA

K js A K1 js by

with constant hg in (8).
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Fig. 1: Illustration of a high-pass graph filter obtained by transform-
ing the low-pass counterpart via Algorithm 2. The high-pass filter
requirements are , = d; = 0.01; A\, = 1.575, A\ = 1.425.

Denote by 5\p the pass graph frequency of the high-pass filter
and by X the stop graph frequency. Let also Sp and &, be the ripple
requirements of the high-pass filter in the pass- and stop-band, re-
spectively. With the details in Algorithm 2, we first design a low-pass
filter [cf. Alg 1] with the transformed requirements in step 2. Then,
denoting by A the graph frequency variable for the high-pass filter
and transforming the graph frequency variables as

A= Ap/dA (1

we can project the designed low-pass frequency response h() in step
2 onto the high-pass frequency response h(:\) that satisfies the re-
quirements in step 1. We illustrate an example in Fig.1. This straight-
forward variable transformation comes however with its price. The
high-pass filter will have now polynomials in both the numerator and
denominator parts. Hence, a high-pass rational Chebysheyv filter re-
quires solving a linear system of the form P(L)y = Q(L)x, while
the low-pass Ch; has Q = I. Therefore, the computational cost of
the high-pass filter is higher since we need to perform the FIR pre-
filtering Q(L)x .

5. NUMERICAL RESULTS

This section evaluates the rational Chebyshev graph filters by means
of numerical results in approximating an ideal low-pass and per-
forming compressive spectral clustering [12]. The proposed design
method is compared with competing alternatives that provide the
filter coefficients in closed-form, namely the Chebyshev FIR [14],
the Jackson-Chebyshev FIR [12], and the rational Butterworth graph
filter [16]. In these numerical results, we made use of the GSP-
BOX [23].

Approximation accuracy. First, we evaluate the design strategy in
Algorithm 1 to approximate an ideal low-pass filter in the interval
[0, 2] with cut-off Ac = 1. For the rational Chebyshev filter, we set
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Fig. 2: Average SE per graph frequency as a function of the filter
order K € 2, 48] for the rational Ch; design [cf. Alg. 1], the Cheby-
shev FIR filter [14], Jackson-Chebyshev FIR filter [12], and the ratio-
nal Butterworth filter [16].

Ap = 0.95, A\; = 1.05 and evaluate different orders K (the value of €
[step 5, Alg. 1] has been grid searched for each order).

In Fig. 2, we show the average squared error (SE) in dB over the
500 graph frequency grid points of the interval [0, 2] as a function
of order K. The rational Ch; design outperforms the FIR counter-
parts and shows substantial benefits especially for low orders K. This
result corroborates the well-known potential of rational Chebyshev
functions in approximating sharp responses. Following our observa-
tion in Section 3 that the effective order of the rational Ch; filter is
2K, we remark the rational Ch; still shows a lower SE for K > 5;
i.e., the rational Ch; of order K = 5 outperforms other alternatives
with orders much higher than ten. The main component contributing
to this performance gap is in the error in the transition band where
rational Ch; filters decay substantially faster than the other alterna-
tives. The performance of the Butterworth and JCh-FIR is worse than
the Chebyshev FIR because they force a flat response in pass-band at
expenses of a lower decay in transition band.

Compressive Spectral Clustering (CSC). We now use the rational
Ch; filters to substitute the Jackson-Chebyshev FIR in CSC [12].
Since we can control the sharpness in the transition band, our ratio-
nale is that Ch; filters will improve the CSC performance. The main
steps of CSC are summarized in Algorithm 3. Graph filters are used
in step 5 (Hy(L)) to filter random signals and in step 8 (G(L)) to
interpolate the indicators from the low to the higher dimension. We
focus at substituting H, (L) with a Ch; rational filter®.

We considered a stochastic block model (SBM) graph composed
of N = 1000 nodes divided among C' = 10 communities. We mea-
sured the ability of the different CSC methods to identify the com-
munities of the SBM under different connectivity levels. The graph
connectivity is dictated through a parameter e measuring the ratio be-
tween inter- and intra-cluster edge formation probabilities. A larger
e represents a more difficult setting. We measured the clustering per-
formance through the adjusted rand similarity index (ARI) between
the SBM ground truth and the obtained communities; higher values
indicate better performance [24]. The results are approximated over
15 different graph realizations.

Fig. 3 shows the ARI difference between the CSC methods using
the rational Ch; implemented with the parallel form [15, 16] and the
JCh-FIR. The order of the rational filter is K = 11 —identified with a
transition bandwidth of 10% around each \j, and ripple requirements
of at most 0.05— while for the JCh-FIR the order is K = 50 [12]. We
observe rational filters improve up to 4% the clustering performance

%In principle, rational graph filters can also substitute G'(L) in step 8. We
have observed the filter sharpness does not play an important role here as it
does in step 5. Since using the Ch; in step 8 requires running two iterative
algorithms (one for the Ch; filter output and one ofr solving the quadratic
problem), we considered G/(L) to be the JCh-FIR filter suggested in [12].

Algorithm 3 Compressive spectral clustering [12].

1: Set the number of clusters C' and parameters n = 2Clog(C),
d = 4log(n), and v = 1073;

2: Estimate eigenvalue A\ of the Laplacian L via eigencount;

3: Generate a graph filter H (L) that approximates an ideal low-
pass with cutoff frequency Ac = Ag;

4: Generate d zero-mean random Gaussian graph signals with vari-
anced ': R=[r1,72,...,74]" € RN,

5: Filter all signals in R with H}, (L) and define the feature vector
fi € R for node i as

5 T T
fi = [(H(L)R) 6] /||, (H(L)R) " 8i,
with §; being a Dirac vector;
6: Generate a random binary sampling matrix M € R™*" and keep
only n feature vectors
(Fiooo fal " = Mfr,. fN]
7: Run k-means on the reduced features with Euclidean distance
Dij = Ifi = fill2s
to obtain k (one per cluster) reduced indicator vectors c§ € R";

8: Interpolate each reduced indicator vector c; by solving the opti-
misation problem

argmin || Mz — ¢j||5 + vz ' G(L)z
zERN

to obtain the k indicator vectors é; € RY for all nodes.
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Fig. 3: ARI difference between the CSC with rational Chebyshev
filters of order K = 11 and the CSC with polynomial Jackson-
Chebyshev filters of order K = 50 [12]. The results are measured
for different connectivity coefficient € of the SBM graph and shown
for different running iterations of the conjugate gradients.

if the conjugate gradient algorithm is run long enough to approximate
the inverse. This implies that benefits in CSC can be achieved by a
slight increase of computational complexity (still linear in the graph
dimensions) induced by running the conjugate gradient in step 5 of
Algorithm 3. The performance gap is larger for intermediate values
of e (around 0.1) which yields graphs with defined community struc-
tures but also with several inter-cluster links. In our opinion, values
of € around 0.1 are most indicative of the algorithmic performance
since lower values of ¢ lead to well-defined and easy-to-identify clus-
ters while larger values destroy the clustering structure of the graph.

Finally, in Fig. 4 we compare the recovery performance of the
CSC using the rational Ch; with the conventional spectral cluster-
ing [11] and the CSC where filters H},(L) and G(L) are the ideal
filters defined in the Laplacian spectrum. We observe CSC with
the proposed filter achieves the same result as using the ideal filter
without needing the eigendecomposition. This yields two main in-
sights. First, using the rational Ch; filter in CSC only in step 5 of
Algorithm 3 achieves similar performance as using the optimal filter;
hence, it suggests the importance of a sharper filter in step 5 compared
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Fig. 4: Recovery performance of different clustering algorithms as
a function of the SBM graph connectivity e. The figure compares
the conventional spectral clustering with the CSC using the proposed
rational Ch; filter and with the CSC that uses ideal filters.

to step 8. Second, to meet the performance of the spectral clustering,
an effort in CSC should be put in the sampling part of k—means.

6. CONCLUSION

This paper introduced a design method for rational graph filters based
on Chebyshev filters of the first kind. The key to this design is based
on a transformation of variables between angular frequencies and
graph frequencies. Compared with state-of-the-art designs of ratio-
nal graph filters, the proposed approach identifies the minimum filter
order that meets the desired requirements and provides the filter co-
efficients in closed-form. The proposed rational Chebyshev graph
filters are useful when the desired frequency response has an ideal
step-function such as the ideal low-pass and high-pass. The latter are
of interest in graph filter banks and compressive spectral clustering.
Numerical results confirm the proposed design leads to sharper fil-
ters which improve the clustering performance by up to 4% without
significantly affecting the computational cost. The transformation of
variables used in this work for Chebyshev filters of the first kind can
be directly used to design graph filters that follow the principles of El-
liptic or Bessel filters, which performance evaluation is left for future
work.
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