<]
TUDelft

Delft University of Technology

Prazi
from package-based to call-based dependency networks

Hejderup, Joseph; Beller, Moritz; Triantafyllou, Konstantinos; Gousios, Georgios

DOI
10.1007/s10664-021-10071-9

Publication date
2022

Document Version
Final published version

Published in
Empirical Software Engineering

Citation (APA)

Hejderup, J., Beller, M., Triantafyllou, K., & Gousios, G. (2022). Prazi: from package-based to call-based
dependency networks. Empirical Software Engineering, 27(5), Article 102. https://doi.org/10.1007/s10664-
021-10071-9

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1007/s10664-021-10071-9
https://doi.org/10.1007/s10664-021-10071-9
https://doi.org/10.1007/s10664-021-10071-9

Empirical Software Engineering (2022) 27:102
https://doi.org/10.1007/510664-021-10071-9

®

Check for
updates

PRAZI: from package-based to call-based dependency
networks

Joseph Hejderup' © . Moritz Beller? © . Konstantinos Triantafyllou® -
Georgios Gousios'

Accepted: 19 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Modern programming languages such as Java, JavaScript, and Rust encourage software
reuse by hosting diverse and fast-growing repositories of highly interdependent packages
(i.e., reusable libraries) for their users. The standard way to study the interdependence
between software packages is to infer a package dependency network by parsing manifest
data. Such networks help answer questions such as “How many packages have dependencies
to packages with known security issues?” or “What are the most used packages?”. How-
ever, an overlooked aspect in existing studies is that manifest-inferred relationships do not
necessarily examine the actual usage of these dependencies in source code. To better model
dependencies between packages, we developed PRAZI, an approach combining manifests
and call graphs of packages. PRAZI constructs a dependency network at the more fine-
grained function-level, instead of at the manifest level. This paper discusses a prototypical
PRAZI implementation for the popular system programming language Rust. We use PRAZI
to characterize Rust’s package repository, CRATES.IO, at the function level and perform
a comparative study with metadata-based networks. Our results show that metadata-based
networks generalize how packages use their dependencies. Using PRAZI, we find packages
call only 40% of their resolved dependencies, and that manual analysis of 34 cases reveals
that not all packages use a dependency the same way. We argue that researchers and prac-
titioners interested in understanding how developers or programs use dependencies should
account for its context—not the sum of all resolved dependencies.

Keywords Package repository - Dependency network - Package manager -
Software ecosystem - Network analysis - Call graphs

Communicated by: Romain Robbes

Work largely conducted while the authors, Moritz Beller and Georgios Gousios, were researchers at TU
Delft, The Netherlands.

P4 Joseph Hejderup
j-i.hejderup @tudelft.nl

Extended author information available on the last page of the article.

Published online: 30 May 2022 A Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10071-9&domain=pdf
http://orcid.org/0000-0002-3334-2133
https://orcid.org/0000-0003-4852-0526
https://orcid.org/0000-0002-8495-7939
mailto: j.i.hejderup@tudelft.nl

102 Page2of42 Empir Software Eng (2022) 27:102

1 Introduction

Converting information between different well-known formats, accessing external storage,
manipulating information such as numbers, locations, and dates, or integrating with popu-
lar online services are examples of essential operations that developers need to handle in
software projects. Unlike the standard library of programming languages, these essential
operations change over time as a result of evolving technologies (e.g., shift from XML to
JSON) or provide support to niche user communities (e.g., interfaces to Twitter API or Ama-
zon AWS SDK). In addition to a standard library, modern programming languages such
as Java, JavaScript, C#, and Rust also host public repositories for developers to contribute
essential operations in the form of reusable libraries (also known as packages). A package
manager such as MAVEN, NPM, NUGET, and CARGO enables developers to discover and
import packages from repositories in their workspace.

To be modular, a package should perform a well-defined task, developed with sim-
ple interfaces, and be pluggable (composable) with other packages (Schlueter 2013;
Abdalkareem et al. 2019). The manifest file such as Rust’s CARGO.TOML and NPM’s
package.json in every package makes libraries composable: developers declare in the
manifest how others can import their library and also if it utilizes external libraries by spec-
ifying dependencies on other existing packages. As packages can depend on one another
through manifests, package repositories implicitly form a complex network, known as a
Package Dependency Network (PDN) (Decan et al. 2018a; Hejderup 2015; Kikas et al.
2017).

In light of repository-wide incidents such as the 1eft -pad package removal (Schlueter
2017), the hiding of a bitcoin wallet stealer in the legitimate event-stream pack-
age (Baldwin 2018), and malicious typosquatting packages in PyPI (Dunn 2017),
researchers are conducting network analysis of package repositories for risk assess-
ment (Zimmermann et al. 2019; Decan et al. 2018a; Kikas et al. 2017), sustainability
evaluation (Valiev et al. 2018; Decan et al. 2019), license violations (Duan et al. 2017),
and for detecting breaking changes (Mezzetti et al. 2018; Chen et al. 2020; Mujahid et al.
2020). Constructing a PDN for such analyses typically involves mining available manifests
in a repository and then resolving dependency constraints in each manifest using a specific
resolver (i.e., variations of semver) to infer relationships between packages (Kikas et al.
2017; Hejderup 2015).

Inferring networks solely from package manifests yields an incomplete representation
of package repositories. Manifests only describe metadata of package dependencies and
thus miss information on actual source code reuse, making network analysis prone to
false positives. For example, a project might have redundant dependencies to packages
whose functionality is not used anymore. Without knowing how packages actually use
external libraries, Ponta et al. (2018) and Zapata et al. (2018)’s work on vulnerability
checking packages demonstrates that metadata-based analysis have limited actionability,
making it difficult for developers to understand how vulnerabilities in external libraries
affect their code. Increasingly, package repository workgroups such as the Rust Ecosystem
WG! are also calling for more comprehensive network analysis of package repositories to
support code-centric analysis for more effective identification of critical yet unstable pack-
ages (Zhang et al. 2020a; Bogart et al. 2016). One such example is the Libz Blitz (Brian
et al. 2020) initiative where community members come together and contribute to poorly

Thttps://github.com/rust-lang-nursery/ecosystem-wg

@ Springer

https://web.archive.org/web/20201201224020/https://github.com/rust-lang-nursery/ecosystem-wg

Empir Software Eng (2022) 27:102 Page 3 0f 42 102

maintained yet critical packages in CRATES.IO as an effort to stabilize highly reused code
in the repository.

This work proposes code-centric dependency network analysis by inferring dependency
relationships at the function call level. Call graphs capture how functions between packages
use each other and thus naturally lend themselves to this objective. We coin networks gener-
ated from call graphs Call-based Dependency Networks (CDNs). To generate a CDN from
a package repository, we devise PRAZI, an approach that generates call graphs of packages
and then merges them into a single network with functions embedding package qualifiers.
The result is a more fine-grained dependency network that improves over current PDN
analyses by examining the actual package dependencies in use.

We implement PRAZI for CRATES.IO to demonstrate the feasibility of our approach.
Unlike repositories hosting analyzable binaries such as MAVEN CENTRAL, CRATES.IO
requires large-scale compilation of the repository to produce binaries for call graph gen-
eration. The resulting CDN comprises 90% of all compilable packages, achieving a
near-complete representation of CRATES.10. Then, inspired by Kikas et al. (2017)’s PDN
study, we characterize and derive new insights on the evolution of CRATES.10. We also
compare CDNs against PDNs derived from conventional metadata to understand their dif-
ferences and similarities for dependency network analyses. Lastly, we manually investigate
34 direct and transitive package relationships to understand how reliably a CDN represents
actual use of dependencies in the source code.

Our results find that one in two function calls in CRATES.IO are a call from a package
to a dependency, suggesting high code reuse. On average, we find that a package calls at
least one function in 78.8% of its direct dependencies and at least one function in 40%
of its transitive dependencies, suggesting that more than half of all transitive dependencies
of packages are potentially not called. When looking at APIs, packages have three times
more indirect (i.e., transitive) callers than direct callers. On average, a package has two
new function calls every six months. Moreover, the number of calls from a package to its
dependencies increases by 6.6 new direct calls and 12.2 indirect calls every six months.
Reachability analysis reveals that a majority of packages in CRATES.IO have no or limited
reachability. Only a handful packages (i.e., 0.37% of packages in 2020) are reachable by
more than 10% of CRATES.10. Among the most central packages, the most reachable func-
tion can reach up to 30% of all packages in CRATES.1I0. The high indirect use of APIs in
transitive dependencies of packages could constitute an important but missing confound-
ing variable in API studies and manifest as an important threat to security and stability in
practice.

The metadata-based networks and call-based networks report similar results for anal-
ysis involving direct package relationships. However, notable differences exist between
the studied networks when transitive dependencies and when analyzing the most depen-
dent packages. Metadata networks report twice the number of transitive dependencies than
our studied CDN. Our findings in the manual analysis indicate that the high variance is a
result of transitive dependencies not being indirectly reachable (utilized) from the package.
A package uses a subset of its direct dependencies—not all available functionality. Thus,
analysis of transitive dependencies is not generalizable but contextual. Two packages that
depend on the same library and have two different use cases are likely to use their transitive
dependencies differently. Thus, dependency checkers, such as GITHUB’s Dependabot?

2https://dependabot.com/

@ Springer

https://web.archive.org/web/20201201220347/https://dependabot.com/

102 Page 4 of 42 Empir Software Eng (2022) 27:102

and Rust’s cargo- audit?, should consider augmenting their recommendations with call
graph information to help developers make more informed decisions and reduce false
positives. As a step towards inferring networks from the source code of package reposito-
ries, PRAZI can enable both researchers and practitioners to estimate complex patterns of
relationships between packages and their functions.

In summary, this work makes the following contributions:

— An approach to create call-based package dependency networks (CDNs) called PRAZI.

— An open-source implementation for generating CDN of Rust’s CRATES.IO.

— Anempirical study describing the structure, evolution, and fragility of CRATES.IO from
a package and function view.

— A comparison of network analyses using PRAZI CDN, metadata network, and compile-
validated network.

— Two datasets for replication: CDNs for CRATES.IO and dataset of all generated call
graphs.

For the reproducibility of our approach, generated CDNs, and study, we have made
the source code, the processing scripts and our data publicly available in a replication
package (Hejderup et al. 2021).

2 Background
2.1 Related Work

Analyzing package repositories from a network perspective has become an important
research area in light of numerous incidents such as the removal of the left-pad
package in NPM and recent moves to emulate such problems on package dependency net-
works (Kikas et al. 2017; Kula et al. 2018a; Decan et al. 2019; Zerouali et al. 2018). The
aftermath of the 1eft -pad incident (Schlueter 2017) in 2016 raised questions on how the
removal of a single 11 LOC package downloaded over 575,000 times could break the build
for large groups of seemingly unrelated packages in NPM. To understand how certain pack-
ages exhibit such a large degree of influence in package repositories, Kikas et al. (2017)’s
network analysis of three package repositories—NPM, CRATES.IO, and RubyGems—
uncovered that package repositories have scale-free network properties (Albert and Barabasi
2002). As a result of a large number of end-user applications depending on a popular set
of packages (such as the babel compiler), these popular yet distinct packages become
hubs in package dependency networks. Packages that act as hubs are not isolated packages;
they also depend on small and common utility packages such as 1eft-pad that appear
as transitive dependencies for end-users. By reversing the direction of package dependency
networks, Kikas et al. (2017) identify that utility packages are highly central in package
dependency networks with the power to affect more than 30% of all packages in the studied
repositories.

In a comprehensive study of the evolution of package repositories, Decan et al. (2019)
observe that three out of seven studied repositories have superlinear growth of transitive
relationships, forming and strengthening new network hubs over time. Half of the packages

3https://github.com/RustSec/cargo-audit

@ Springer

https://web.archive.org/web/20201201224403/https://github.com/RustSec/cargo-audit

Empir Software Eng (2022) 27:102 Page 5 of 42 102

in CRATES.IO, NPM, and, NuGet had in 2017 at least 41, 21, and 27 transitive dependencies,
nearly two times more than their respective number in 2015. Although Decan et al. (2019)
finds that the number of dependencies a developer declares in an application remains stable
over time, the increasing number of transitive relationships in package repositories is still an
active phenomenon after the 1eft -pad incident. Apart from understanding the structure
and evolution of package repositories, researchers have also studied known security vulner-
abilities (Decan et al. 2018a; Zimmermann et al. 2019), maintainability (Valiev et al. 2018;
Cogo et al. 2019; Zerouali et al. 2018), software reuse (Abdalkareem et al. 2017, 2019), and
more recently breaking changes (Mezzetti et al. 2018; Mujahid et al. 2020) from a network
perspective. Zimmermann et al. (2019) report that 40% of NPM include a package with a
known vulnerability, suggesting that NPM forms a large attack surface for hackers to exploit.
Despite developer awareness on using trivial and simple packages after the left-pad
incident, Abdalkareem et al. (2019) still find a prevalent number of applications depending
on trivial packages: 10% of NPM and 6% of PyPI applications on GITHUB depends on at
least one package with less than 35 LOC.

Network analysis of packages commonly makes use of metadata from package mani-
fests to calculate the impact and severity of measured variables. Ponta et al. (2018)’s work
on building a security dependency checker using call graphs highlights the limitations of
using metadata and the importance of studying package dependencies with a contextual
lens. Typically, a subset of an API is vulnerable—not the entire package—and how clients
interact with API’s is also highly contextual. Zapata et al. (2018) observed through manual
analysis that 75% of 60 warned JavaScript projects did not invoke the reported vulnerabil-
ity. As an alternative to vulnerability detection through call graphs, Chinthanet et al. (2020)
explores the idea of building hierarchical structures of applications and their dependencies
for Node.js. To pitch for code-centric instead of metadata-based representations of package
repositories, Hejderup et al. (2018) propose dependency networks based on function calls
which we concretize in this work.

By embedding function call relationships into package dependency networks, we aim to
also bridge the gap between API and package repository research. Notably, PRAZI could
resolve the limitation of studying immediate API calls by including chains of API calls (i.e.,
transitive calls) such as in Robbes et al. (2012)’s work on determining the ripple effects
on deprecated APIs in the Smalltalk ecosystem. Similarly, combining qualitative studies
such as looking into deprecation (Sawant et al. 2018a, c), breakages (Bogart et al. 2016;
Raemaekers et al. 2017; Xavier et al. 2017), and migration patterns (Nguyen et al. 2019;
Zhong et al. 2010) with network analyses could provide an additional empirical dimension
in such studies. In support of this, Zhang et al. (2020b)’s need-finding study calls for tooling
that supports API designers with data-driven recommendations, for example, on when to
deprecate an API.

2.2 Rust Programming Language

Rust is a relatively new (first stable release 1.0 in 2015)* systems programming language
that aims to combine the speed of C with the memory safety guarantees of a garbage-
collected language such as Java. Rust is also unique because its package management
system (CARGO) was designed from the ground-up to be part of the language environ-
ment (Katz 2016). CARGO not only manages dependencies but prescribes a build process

“https://blog rust-lang.org/2015/05/15/Rust-1.0.html

@ Springer

https://web.archive.org/web/20180416152826/https://blog.rust-lang.org/2015/05/15/Rust-1.0.html

102 Page 6 of 42 Empir Software Eng (2022) 27:102

. «depends onx
5) 5
Lib 1

Lib 2 App
v0.2 v3.2 v1.0

(a) State of the art: Package-based Dependency Networks.

«calls»

App
v1.0

Lib 2
v0.2

(b) Our proposal: Call-based Dependency Networks.

Fig. 1 Different granularities of dependency networks

and a standardized repository layout which helps facilitate the creation of automated large-
scale analyses such as PRAZI. Every CARGO package contains a file called Cargo. toml,
specifying dependencies on external packages. Moreover, with CRATES.IO, there is one
central place where all Rust packages (so-called “crates”) live. As of 13 August 2020,
CRATES.IO is the fifth most fast-growing package repository hosting over 44,745 packages
and averaging 60 new packages per day.’

2.3 Call-based Dependency Networks

We distinguish two kinds of dependency networks, shown in Fig. 1: i) coarse-grained
Package-based Dependency Networks shown in Fig. 1a, similar to what dependency res-
olution tools (e.g., CARGO or MAVEN) build internally or what researchers have used in
the past, and ii) fine-grained Call-based Dependency Networks shown in Fig. 1b, which we
advocate in this paper.

Figure 1a models an example of an end user application App, which directly depends on
Lib1 and transitively depends on Lib2. In such a PDN, each node represents a versioned
package. An edge connecting two nodes denotes that one package imports the other, for
example App 1.0 dependson Libl 3.2.

Figure 1b consists of three individual call graphs for App, Lib1, and Lib2. Each of
these call graphs approximate internal function calls in a single package. Every node rep-
resents a function by its name. The edges approximate the calling relationship between
functions, e.g., from main () to foo () within App in Fig. 1b. However, the function

Shttp://www.modulecounts.com/

@ Springer

https://web.archive.org/web/20201201224023/http://www.modulecounts.com/

Empir Software Eng (2022) 27:102 Page 7 of 42 102

identifiers bear no version, nor do they have globally unique identifiers (e.g., there are two
intern () functions in Fig. 1b). We merge these two graph representations to produce a
CDN:

Definition 1 A Call-based Dependency Network (CDN) is a directed graph G = (V, E)
where:

1.V is a set of versioned functions. Each v € V is a tuple (id, ver), where id is a
unique function identifier and ver is a float value depicting the version of the package
in which id resides.

2. E isaset of edges that connect functions. Each (v, v,) € E represents a function call
from v to vy.

Applying the above definitions, the function used () in Fig. 1b becomes a node with
the fully qualified identifier (Lib2: :used, 0.2) € V. The dependency between App
and Lib1 is represented as ((App: : foo, 0.1), (Libl::bar, 3.2))€ E.

CDNss offer a white-box view of the more coarse-grained PDNs. In particular, we can
see that unused () is never called. If unused () was affected by a vulnerability, we can
deduce from Fig. 1b that we should not issue a security warning for App, since it does not
use the affected functionality. In contrast to the CDN, the PDN in Fig. 1 by its nature cannot
provide such a fine-grained precision level.

3 PRAzI: Generating CDNs from Package Repositories

In this section, we describe a generic approach, PRAZI, to systematically construct CDNs for
package repositories. PRAZI can be applied to any programming environment that features
i) a way of expressing dependency information between packages, and ii) tooling to generate
call graphs for a package.

PRAZI constructs a CDN in a two-phase process illustrated in Fig. 2. In the first phase,
Call Graph Generation (step [1],[2], and [3]), PRAZI generates a static dataset of annotated
call graphs from packages in a repository. In the second phase, Temporal Network Genera-
tion (step |4| and), PRAZI first generates an intermediate package dependency network by
resolving dependencies between packages at a user-provided timestamp ¢, and then unifies
the call graphs of resolved packages into one temporal call-based network, the C D N;.

3.1 Call Graph Generation

Local Mirror Package managers keep an updatable index of package repositories to lookup
available packages and their versions. PRAZI uses such indices to extract and download
available packages in step |1] in order to create local mirrors of repositories (i.e., clones
of repositories). A minimal local mirror needs to contain the manifest and publication (or
creation) timestamp for each version of a package.

Package Call Graphs A call graph is a data representation of relationships between func-
tions in a program and serves as a high-level approximation of its runtime behavior (Ryder
1979; Ali and Lhotdk 2012). From a static analysis perspective, a call graph is useful
for investigating and understanding interprocedural communication between code elements
(i.e., how functions exchange information). In PRAZI, we view a call graph as a partial graph

@ Springer

102 Page 8 of 42 Empir Software Eng (2022) 27:102

[10 tcrates::Liblvl.5::bar

/ *
((do::crates’:Libivi.s: intern &?
5 é v1.5 v0.2
¥’
((do::crates::Lib2<2>: :used
a -
(]

A s
y

RN
B ;-
7 [U SR
L8 Libl::intern io:: i
Lib2::used

T

|

I TN
_ ! (Ho::crateq::Liblvi.5::intern]

Call Graphs ' ¥

1 ((Ho::crates::Lib2ve.2::used]

| a

i

|

|

i

|

[N

O
don

Call graph
generator

(Go::crates:Lib2ve.2::used]
N

R
[io::crates::Lib2v0.2::intern]

Un/fication jo::crates::Lib3ve.1::foo

[jo::crates::Liblvl.5::bar]
™

[Local Mirror Creation] @ <>

. EN
Source Manifest [jo::cratesd:Liblvl.5::intern]

i B ' ¥
i Maven \/ i [jo::crates::Lib2ve.2::used | CDNI‘

(AN
'

4
[jo::crates::Lib2v@.2::intern]

jo::crates::Lib3ve.1::foo

Fig.2 Generic approach to generate CDNs from package repositories

of a resulting CDN. We increase the scope of a call graph from a single package (i.e., pro-
gram) to a package and its dependencies. We denote inter-package function relationships as
the actual specific code resources that packages use between each other (i.e., a dependency
relationship at the function granularity) and are first-class citizens in CDN analyses. The
call from Libl: :bar to Lib2: :used in |2| exemplifies an inter-package function rela-
tionship. PRAZI requires nodes in call graphs to have function identifiers with fully resolved
return types and arguments.

In the presence of dynamic features, such as virtual dispatch or reflection, there are
implications to the precision and soundness of call graphs that indirectly also affect gener-
ated CDNs. Theoretically, it is impossible to have both a precise and sound call graph of a
program. Thus, PRAZI uses soundy call graph algorithms that follow a best-effort approach
for the resolution of most language features (Livshits et al. 2015). Precise yet unsound call
graph algorithms could miss actual inter-package function calls, making certain dependency
analyses (e.g., security) of CDNs incomplete. Examples of soundy call graph algorithms
for typed languages include subclasses of Class Hierarchy Analysis (CHA) (Tip and Pals-
berg 2000; Sundaresan et al. 2000) and Points-to analyses (Steensgaard 1996; Shapiro and
Horwitz 1997; Emami et al. 1994) such as k-CFA (Shivers 1991). In the case of untyped

@ Springer

Empir Software Eng (2022) 27:102 Page 9 of 42 102

languages such as Python or JavaScript, a middle-ground is hybrid approaches combining
both dynamic analysis and static analysis such as Alimadadi et al. (2015)’s Tochal or Salis
et al. (2021)’s PyCG.

Annotating Call Graphs To prepare call graphs for unification, we need to rewrite function
identifiers in each package call graph so that they are globally unique. Without annotating
function identifiers, inconsistencies can arise from packages that have identical namespaces
and multiple versions of the same package in a dependency tree. PRAZI solves these issues
by annotating the function names, return types, and argument types in function signatures
with three components: i) repository name, ii) package name, and iii) static or dynamic (i.e.,
constraint) package version.

For each function signature in a call graph of a package version, PRAZI maps each type
identifier found in the signature to the package that declares it. There are three potential
mappings of a type identifier to a package that do not reside in the standard library of the
language:

— Local, resulting in an annotated qualifier with the repository name, and its package
name and version as exemplified in io: :crates: :Liblvl.5: :bar.

— Dependency with a static version, resulting in an annotated qualifier with the
repository name, and the name and version of the dependency.

— Dependency with a dynamic version, resulting in an annotated qualifier with the
repository name and name of the dependency. However the version is missing as
exemplified in io: :crates: :Lib2<?>::usedin .

The first two mappings denote a resolved type annotation, and the last one is an unre-
solved type annotation. Function identifiers with unresolved type annotations have their
dynamic versions resolved to a specific version at dependency resolution time (i.e., at the
Temporal Network Generation phase). Finally, PRAZI splits the annotated call graph into
two sections, one immutable section containing resolved function signatures, and another
section containing unresolved function signatures. The annotated call graphs are then stored
in a dataset. The final dataset should contain all downloaded packages that include creation
timestamp, manifest file, and annotated call graph with global identifiers.

3.2 Temporal Network Generation

Retro-active Dependency Resolution To study the evolution of the relationships between
packages in a repository, we perform retroactive dependency resolution |4| that generates
a concrete dependency network valid at a given timestamp 7. The use of dynamic versions
in package manifests complicates network generation of package repositories. During reso-
lution time of package dependencies, a dynamic version instructs the dependency resolver
to fetch the most recent version within its allowed version boundary, making the relation-
ship between packages contemporary. Package A depending on the dynamic version 1.x of
package B that satisfies any version with a leading /. (e.g., 1.0, 1.8, or 1.20.2) in Fig. 3a
exemplifies a dynamic version. Given that Package B releases version 1.1 at#; and 1.2 at #,
(t1 < 1) in Fig. 3b. At ¢, where t; <t < t, a dependency resolver will select version 1.1.
However, at t > 1, it will select version 1.2, highlighting the temporal changes in package
relationships.

Given a timestamp 7, PRAZI creates a subset mirror; of our local mirror (i.e., copy
of the CRATES.IO index) containing packages and versions with a creation timestamp 7.
satisfying 7. < t. Then, for each package version manifest file in mirror;, we resolve its

@ Springer

102 Page 10 0f 42 Empir Software Eng (2022) 27:102

e e N

B A - B
v1.1 v3.0 time v1.2@t2

(a) Package A depends on B version 1.* (b) Full dependency resolution tree with time.

Fig.3 Retro-active dependency resolution

dependencies using a dependency resolver. Dependency resolvers are usually integrated into
package managers and are available as independent libraries.

Call Graph Unification The unification is a two-phase process. In the first phase, we build
a resolved dependency tree for each package version in mirror; and then perform a level-
order traversal of each tree to merge call graphs of child nodes with their parent nodes.
The output is a unified call graph of statically dispatched function calls for each package
version in mirror;. In the merge phase of a parent and a child call graph, we complete the
unresolved function identifiers in the parent call graph with the resolved version available
in the child node. The function io: :crates: :Lib2v0.2: :used in |5] replaces the
unresolved function io: :crates: :Lib2<?>: :used in|3| with v0.2.

In the second phase, we need to deal with dynamically dispatched functions and local-
ize call targets across package boundaries. To illustrate this process, we introduce the
following scenario: Package A depends on package B and package C. Both B and C
depend on the library serde. Furthermore, B has a class Foo that implements the func-
tion serialize () in the Serialize interface of serde. C has a function called
bar () that takes a Serialize-like object as an argument and invokes the dynamically-
dispatched serialize () call on the object.

Before merging the call graphs (i.e. first phase), bar () is only aware of call targets
that are within C. In this example, there are no call targets available (i.e., there is no func-
tion implementing serialize () in C). Thus, in the second phase, we search for other
compatible function implementations across packages that are available after merging their
call graphs. Here, we would create a call target from bar () in C to the serialize ()
implementation in Foo in B. It is possible that A may never pass an object of Foo from B
to function foo () in C in practice. However, the second phase is necessary to ensure that
dynamically dispatched functions remain sound after merging all call graphs together.

After constructing a package-level call graph for each package version in mirror;, we
merge all partial call graphs into a single CDN. The process consists of aggregating all
package-level call graphs and then merging them to remove duplicate nodes and edges. The
result is a CDN corresponding to the package repository at the given timestamp ¢.

4 Implementing PRAZI for CRATES.I0

We implement PRAZI for CRATES.IO, the official package repository for Rust. Unlike main-
stream package repositories such as MAVEN CENTRAL, PyPI, NPM, and NuGet, CRATES.10

@ Springer

Empir Software Eng (2022) 27:102 Page 11 of 42 102

do not host pre-built binaries but the source code of its packages. To generate call graphs for
Rust packages, we need to first perform a large-scale compilation of CRATES.IO and then
extract call graphs from generated binaries. Attempting to reproduce the build of a piece
of software is known to be challenging (Sulir and Porubén 2016), Tufano et al. (2017)’s
compilation of 219,395 Apache snapshots yielded a success rate of 38%, and Martins et al.
(2018)’s compilation of 353,709 Github Java projects yielded a success rate of 56%. An
overall low success rate could potentially endanger representative studies of CRATES.IO.

In the remainder of this section, we describe key implementation choices and results
from our large-scale compilation of CRATES.IO.

Creating a local mirror We clone a snapshot of CRATES.IO’s official git-based index® at
revision 6c550c8 (14th February 2020) containing 35,896 packages, 208,023 releases,
and 1,151,001 dependency relationships. By validating the dependency specification in the
index for invalid names or dependency constraints, we can save resources by avoiding
building broken releases. We identify 1,506 releases from 201 packages having dependen-
cies that do not match existing packages, and 5,667 releases from 4,427 packages having
dependencies with unsolvable constraints (i.e., no available versions for the constraint).

The documentation hosting service for CRATES.IO, Docs . rs,’ provides Rust users API
documentation for every published package release. In addition to automatically generating
documentation for package releases, Docs . rs also documents the build log and compile
status publically. We create a web scraper that extracts the build status on Docs . rs for
each release in our dataset. In total, we found that 43,893 indexed releases belonging to
10,154 packages have build failures, amounting to 20% of CRATES.I0. In addition to the
CRATES.IO index, we use Docs . rs as externally validated metadata source in our study.

After subtracting build failures and invalid dependency specifications, our final index
amounts to 156,484 releases from 29,480 packages. Lastly, we use the official API at https://
crates.io/api/v1/crates to download all packages and their creation timestamp (not available
in the index).

Choosing a Call Graph Generator There are two approaches for constructing a call graph
from a Rust program, the higher-level LLVM analysis,® and the lower-level MIR analy-
sis (Matsakis 2016). Rust functions and its calls are either of monomorphized (i.e., static
dispatch) or virtualized (i.e., dynamic dispatch) nature. From the documentation’ and a
comprehensive benchmark (Triantafyllou 2019), we can learn that there are two monomor-
phized features, macros!® and generic functions, and two virtualized features,
trait Obj ects,!! and function pointers,12 that dispatch functions in Rust.

As part of the output in compilation of Rust programs, we can use the optionally
generated LLVM IRs!3 to build call graphs using the LLVM call graph generator'* or

Shttps://github.com/rust-lang/crates.io-index

7https://github.com/rust-lang/docs.rs

8https://llvm.org/docs/Passes.html

9https://doc.rust-lang.org/book/ch03-03-how-functions-work.html
10https://doc.rust-lang.org/stable/reference/macros. html#trait-objects
Mhttps:/doc.rust-lang.org/stable/reference/types.html
2https://doc.rust-lang.org/book/ch19-05-advanced-functions-and-closures.html
Bhttps://doc.rust-lang.org/rustc/command-line-arguments. html#-emit-specifies-the-types-of-output-files-to-
generate

http:/llvm.org/doxygen/CallGraph_8h_source.html

@ Springer

https://crates.io/api/v1/crates
https://crates.io/api/v1/crates
http://web.archive.org/web/20180224105846/https://github.com/rust-lang/crates.io-index
https://web.archive.org/web/20201201224058/https://github.com/rust-lang/docs.rs
https://web.archive.org/web/20180517123938/https://llvm.org/docs/Passes.html
http://web.archive.org/web/20201201224110/https://doc.rust-lang.org/book/ch03-03-how-functions-work.html
http://web.archive.org/web/20201201220221/https://doc.rust-lang.org/stable/reference/macros.html
http://web.archive.org/web/20201201220211/https://doc.rust-lang.org/stable/reference/types.html
http://web.archive.org/web/20201201220224/https://doc.rust-lang.org/book/ch19-05-advanced-functions-and-closures.html
http://web.archive.org/web/20201201220255/https://doc.rust-lang.org/rustc/command-line-arguments.html
http://web.archive.org/web/20201201220255/https://doc.rust-lang.org/rustc/command-line-arguments.html
http://web.archive.org/web/20201201220252/http://llvm.org/doxygen/CallGraph_8h_source.html

102 Page 12 0f 42 Empir Software Eng (2022) 27:102

Table 1 Build statistics

Build #Releases #Packages Time (hrs)
CRATES.IO index 208,023 35,896 —
Docs.rs 156,484 (-24.78%) 29,480 (-17.87%) —
rust-callgraphs 142,301(-9.06%) 23,767 (-19.38%) 10 days

cargo-call-stack (Aparicio 2019). Due to the absence of Rust-specific type infor-
mation in LLVM IRs,'> call graph generators can only resolve monomorphized features
and cannot provide complete type information needed in PRAZI. By analyzing at the MIR
level instead of the LLVM level, rust-callgraphs'® offers a more feature-complete
call graph by implementing a CHA algorithm and is our choice for building CDNs. In addi-
tion to monomorphized features, it can resolve function calls dispatched through Trait
Objects, making it a more soundy choice over the LLVM-based call graph generators.
Although rust -callgraphs does not support function pointers, itis a negligi-
ble trade-off as the documentation!” state that function pointers are mostly useful
for calling C code from Rust.

For annotating call graphs, the metadata in call graph nodes contains package informa-
tion and access identifiers. Moreover, the complementary type hierarchy output contains
complete type information for creating resolved function identifiers. We also keep the edge
metadata that includes dispatch information (i.e., static, dynamic, or macro) in the annotated
call graphs.

Large-Scale Compilation of CRATES.I0 Some Rust packages depend on external sys-
tem libraries such as libavcodec or libxml2 to successfully compile. Know-
ing which external libraries to install for compiling such packages is a manual and
tedious process. Luckily, the Rust infrastructure team maintains a Docker image,
rust-lang/crates-build-env, that bootstraps a Rust build environment pre-
installed with community curated systems libraries, increasing the chances for suc-
cessful compilations. We use Rustwide, an API for spawning Rust build con-
tainers, and configure it to use rustc 1.42.0-nightly compiler together with
rust-callgraphs’s compiler plugin. After compilation, we use the analyzer compo-
nent in rust-callgraphs to generate and store the call graphs in our dataset.

We set up a compilation pipeline on four build servers running 34 docker containers to
compile packages and build call graphs. It took 10 days to complete it. Table 1 shows the
compilation results in comparison with index entries and Docs . rs results. Overall, our
call graph corpus (CG Corpus) has a call graph for 90% of all compilable versions (70% of
all indexed versions) and at least one version for 80% of all packages built by Docs . rs.
The high success rate showcases the practical feasibility of PRAZI for CRATES.IO.

Dependency Resolution For each CARGO.TOML manifest in our downloaded dataset,
we extract dependencies intended for source code use. These include library depen-
dencies (i.e., [dependencies]), platform-specific dependencies (i.e., [target]),

Dhttps://github.com/rust-lang/rust/issues/59412
16https://github.com/ktrianta/rust-callgraphs
Thttps://rust-lang.github.io/unsafe-code-guidelines/layout/function-pointers.html

@ Springer

http://web.archive.org/web/20201201224720/https://github.com/rust-lang/rust/issues/59412
https://github.com/ktrianta/rust-callgraphs
https://web.archive.org/web/20210426093903/https://rust-lang.github.io/unsafe-code-guidelines/layout/function-pointers.html

Empir Software Eng (2022) 27:102 Page 13 of 42 102

and also enabled optional dependencies in [features]. Both Kikas et al. (2017)
and Decan et al. (2019) do not take into account both enabled optional dependencies and
platform-specific dependencies, considering only library dependencies when analyzing
CRATES.IO.

The CARGO.TOML manifest supports specifications of dependencies using the semver
schema (Preston-Werner 2013). A version is a three-part version number: major version,
minor version, and patch version. An example of a version is 1.0.0. An increase in the major
number denotes incompatible changes, an increase in the minor number denotes backward-
compatible changes, and an increase in the patch number denotes small bug fixes. With the
support of range operators (i.e., dynamic version) in dependency specifications such as caret
(e.g., A1.0.0), tilde (i.e., ~ 1.0.0), wildcard (e.g., 1.x), and ranges (e.g., > 1.0.0. <= 2.0.0),
the dependency resolver in CARGO will attempt to resolve the latest version satisfying the
constraint. When multiple constraints of the same dependency appear in the dependency
tree, CARGO first attempts to find the most recent version satisfying all constraints. For
example, for the two constraints, 1og 0.4.* and 1og 0.4.4, the dependency resolver will
resolve 1log 0.4.4. However, for example, if the resolver has to resolve log 0.4.* and
log 0.5.*, there is no single compatible version that matches both constraints. Instead, the
resolver will include two versions of the same dependency (e.g., Log 0.4.4 and 1og 0.5.5)
through name mangling to avoid conflicts (Katz 2016). The resolution strategy of having
multiple versions of the same dependency is similar to NPM.!3

To emulate dependency resolution in Rust, we use the native Rust-implementation of
the semver library for use in Python by invoking its native implementation through FFI
(Foreign Function Interface) bindings. Thus, we resolve dependencies and their constraints
using the same library as the CARGO package manager. For every timestamp ¢ in the CDN
generation process, we set the resolution to solve the latest version available at ¢ satisfying
the constraint.

5 Structure and Evolution of the CRATES.10 CDN

We address three research questions to contrast the similarities and differences when using
three different network sources (i.e., metadata, compile-validated metadata, and control-
flow data) for characterizing the structure and evolution of CRATES.IO. In addition to
comparing the networks, we also investigate how reliably package-based dependency
networks mirror the use of dependencies in the source code.

5.1 Research Questions
RQ1: What are the network characteristics of CRATES.10?

We characterize the calling relationship between packages in CRATES.IO, and then iden-
tify various influential packages featuring a high number of callers and callees within the
networks. Specifically, we describe our data corpus and the degree distribution to gain
an overall understanding of the direct relationship between functions for a large package
repository such as CRATES.IO.

18http:/mpm.github.io/npm-like-im-5/npm3/dependency-resolution.html

@ Springer

https://web.archive.org/web/20210426093903/http://npm.github.io/npm-like-im-5/npm3/dependency-resolution.html

102 Page 14 0f 42 Empir Software Eng (2022) 27:102

RQ2: How does CRATES.10 evolve?

The frequent number of new package releases and the adoption of semver range opera-
tors in dependency specifications make the relationship between packages highly temporal
in CRATES.I0. We capture these dynamics using both a package-level perspective and the
more fine-grained, function-level perspective. In comparison to previous studies (Kikas
et al. 2017; Decan et al. 2019), we use three different sources, namely metadata, compile-
validated metadata, and control-flow data, to understand their differences and similarities
for package-based dependency analysis.

As all our snapshots deviate from a normal distribution according to Shapiro-Wilk (p <
0.01 < «), we use the non-parametric Spearman correlation (p) coefficient for correlation
analysis. Using Hopkins’s guidelines (Hopkins 1997), we interpret 0 < |p| < 0.3 as no,
03 < |p| < 0.5 as a weak, 0.5 < |p| < 0.7 as a moderate, and 0.7 < [p| < 1 as
strong correlation We answer the following sub-RQs using a package-level and call-level
perspective:

RQ2.1: How do package dependencies and dependents evolve?
RQ2.2: How does the use of external APIs in packages evolve?
RQ2.3: How prevalent is function bloat in package dependencies?
RQ2.4: How fragile is CRATES.IO to function-level changes?

For deciding on reasonable time points for evolution studies of package repositories, we
include a guideline with analysis in Appendix A.

RQ3: How reliable are dependency networks? A dependency network approximates how
packages use each other in a repository. Both metadata-based networks and call-based net-
works have trade-offs and limitations that affect how reliable they estimate actual package
relationships. To understand how accurate these networks are in practice, we perform a
manual analysis of 34 random cases where a metadata-based and call-based dependency
network infers relationships differently. The cases involve both direct and transitive package
relationships.

5.2 RQ1: Descriptive Analysis
5.2.1 Summary of Datasets

Before investigating the calling relationship among packages in CRATES.IO, we first
describe our datasets of generated call graphs (i.e., CG Corpus) and our largest CDN dated
February 2020 in Table 2. After removing all function calls to the standard libraries of Rust,
the call graph corpus has over 121 million functions and 327 million function calls from
142,301 compiled releases. When merging call graphs into a CDN, we generate a com-
pact representation with over 44 million functions and 216 million function calls, a sizeable
reduction of 2.5 and 1.5 times of the CG Corpus (i.e., functions and calls), respectively.
Table 2 also breaks down function calls into their dispatch type, namely macro, static,
and dynamic calls. Notably, nearly 80% of all edges in the CG Corpus are of a dynamic
dispatch type, followed by static dispatch (18%) and macro invocations (2%). The high
number of dynamically dispatched calls in the network indicates that CRATES.IO has a large
pool of possible target implementations to virtual functions—not necessarily magnitude

@ Springer

Empir Software Eng (2022) 27:102 Page 15 of 42 102

Table2 Summary of datasets

CG Corpus CDN Feb’20
Functions 121,825,729 44,190,643
... public access 46,236,696 20,157,155
... private access 75,589,033 24,033,488
Call edges 327,535,934 216,239,360
Intra-Package Calls 169,579,315 102,136,956
. macro invocation 693,148 356,329
. static dispatch 28,570,266 20,650,000
... dynamic dispatch 140,315,901 83,130,627
Inter-Package Calls 157,956,619 114,102,404
. macro invocation 7,183,797 2,178,547
. static dispatch 29,650,173 13,319,367
... dynamic dispatch 121,122, 649 98,604,490

more function calls than statically dispatched calls. When comparing the access modifiers
between functions, we can see that 40% of all functions inside CRATES.IO are publicly
consumable. Also, we can see that calling functions in external packages is widespread in
CRATES.I0; half of all the function calls invoke a function from an external package (i.e.,
inter-package call). Unlike the other two dispatch forms, 91% of all macro dispatched calls
exclusively target macros defined in external packages. Overall, the high number of declared
public functions and the large degree of inter-package calls indicate that code reuse in the
form of functions between packages is a prevalent practice in CRATES.IO.

Function reuse is prevalent; 40% of functions are public and 49% of call edges target
a dependency.

5.2.2 Function Call Distribution

Figure 4 presents the degree distribution for all function calls grouped by their dispatch
type, and Fig. 5 is a narrowed-down version looking at only inter-package function calls.

Static Dispatch Dynamic Dispatch Macros

107 —e— In-degree 108 —e— In-degree 10° —e— In-degree
¥~ Out-Degree —¥— Out-Degree —¥— Out-Degree

10°

Number of nodes
Number of nodes
5
Number of nodes
g

102

10° 10 102 10° 10* 10° 10° 10t 102 10° 10° 10° 10° 10t 102 10° 10* 10°
Degree Degree Degree

Fig.4 Degree distribution of all function calls

@ Springer

102 Page 16 of 42 Empir Software Eng (2022) 27:102

Static Dispatch Dynamic Dispatch Macros

—e— In-degree —e— In-degree —e— In-degree
—¥— Out-Degree

—¥— Out-Degree —¥— Out-Degree

10¢

Number of nodes

Number of nodes
5

Number of nodes

10° 10 107 10° 10° 10° 10° 10t 107 10° 10° 10° 10° 10t 102 10% 10° 10°
Degree Degree Degree

Fig.5 Degree distribution of inter-package function calls

The out-degree of a function is the number of function calls to other unique functions (i.e.,
number of caller-callee relationships). The in-degree of a function is the number of callers
to a function across CRATES.IO (i.e., number of callee-caller relationships). Given a func-
tion a () in a package, the out-degree looks at what calls a () makes. The in-degree looks at
which functions in CRATES.IO call a () . As mentioned earlier, inter-package calls are only
function calls between packages (i.e., pruning all internal calls). The out-degree distribution
for dynamic dispatch represents the number of possible target functions in a virtual method
table,!® and, for static- and macro dispatch, the number of function calls. The in-degree
distribution presents the aggregated number of callers for a function (i.e., callee) and imple-
mentations of virtual functions for dynamic dispatch, respectively. Overall, we can observe
a long tail for both the in-degree and the out-degree of each dispatch mechanism, suggest-
ing that the CRATES.10 CDN is a scale-free network with the presence of a few nodes that
are highly connected to other nodes in the network (i.e., hubs). Finally, Tables 3, 4 and 5
describe the top 5 functions with the highest in-degree and out-degree calls per dispatch
type. The top 5 list is an aggregation of functions per package. For example, the serde
package in Table 4 has over 300 serialization functions with an in-degree similar to 264,281.
Thus, we present the top 5 functions as the top most called function(s) per package. In the
following, we describe key results for each of the three dispatch forms.

Static dispatch The median out-degree for statically dispatched function call is 1 call
(mean: 2.25) in both cases and at the 99th percentile being 15 calls (13 calls for inter-
package calls). When comparing the out-degree between statically dispatched calls in
Figs. 4 and 5, we can notice that there are 1865 functions (0.012%) that call more than
100 other internal functions in Fig. 4. The highest number of calls made by a single func-
tion in both plots is to 1625 local functions and 116 external functions, respectively. The
relatively high number of internal function calls among the outliers seems un-realistic at
a first glance. Upon manual inspection of the source code of the only two packages hav-
ing functions with an out-degree greater than 1000 (see Table 3), namely epoxy?® and
sv-parser-syntaxtree?!, we identify that this is the result of generic instantiations
for creating bindings to the 1 ibepoxy (an OpenGL function pointer manager) and tokens
for parsing SystemVerilog files.

https://alschwalm.com/blog/static/2017/03/07/exploring-dynamic-dispatch-in-rust/
20nttps://docs.rs/crate/epoxy/0.1.0/source/
2l https://docs.rs/crate/sv-parser-syntaxtree/0.6.0/source/

@ Springer

https://web.archive.org/web/20201112013908/https://alschwalm.com/blog/static/2017/03/07/exploring-dynamic-dispatch-in-rust/
https://docs.rs/crate/epoxy/0.1.0/source/
https://docs.rs/crate/sv-parser-syntaxtree/0.6.0/source/

Empir Software Eng (2022) 27:102 Page 17 of 42 102

Table 3 The top 5 functions with most statically-dispatched calls

Outdegree Indegree

Package Function # Package Function #

epoxy loadwith 1,625 serde missing_field 264,281
sv-parser-syntaxtree next, into_iter 1,243 log max_level 162,747
python-syntax __reduce 821 veell set 125,287
rustpython-parser __reduce 720 serde_json from_str 73,171
mallumo-gls load_with 712 futures and_-then 65,043

The median in-degree for statically dispatched function calls are 1 (mean: 3.6) and the
99th quantile is 24. When omitting all internal calls and considering only inter-package
calls, the median is 2 (mean: 24) and the 99th quantile is 208. There are three functions
having over 100,000 external calls in Table 3, serde for serialization, 1og for logging,
and vcell for memory management. While the first two are the most downloaded and
depended upon packages in CRATES.IO, vcell stands out for only having nearly 300
dependent packages. After inspection of the source code of those packages for the spe-
cific set call, we could identify extensive implementations of low-level drivers to interface
various microcontrollers such as the Cortex-M and STM32 series.

Dynamic dispatch We use vtable to refer to all implementations of a virtual function
of a Trait object. In practice, each Trait object points to compatible Trait Implementa-
tions (having a vtable with function and other member implementations). The median
number of function targets in a vtable is 9 (mean: 42 (all), 32 (inter-package)) both
function targets and only inter-package function targets. The main deviation is at the
99th percentile, the outdegree for all function targets is 800, two times higher than
when only considering inter-package function targets. The highest out-degree function
in Table 4 is match_trie in the package hyperbuild v0.0.10, a HTML mini-
fication library, having a vtable with 15,460 function targets. The function takes
as an argument a trie: &dyn ITrieNode<Vs> Trait, invoking get_child and
get_value of the Trait ITrieNode. The Trait is implemented for all forms of HTML
entities, explaining this high outdegree value. In total, there are 38,352 (< 0.94%)
functions that populate a vtable with more than 1000 function targets. Similarly, we
can observe 11,906 (<0.36%) inter-package function calls with over 1000 function
targets.

The median in-degree for implementing a virtual (i.e. trait) function is 3 (mean: 53) and
the 99th percentile is 608. When only considering inter-package relationships, the median
is 3 (mean: 64) and the 99th percentile is 8§75. As shown in Table 4, the most commonly
implemented trait function stems from serializer packages such as deserialize_any
in serde, from_str in serde_json and deserialize_identifier in toml.
In addition to serialization functions, we can also observe that 42,737 functions
implement the trait function token in yup-oauth2 for user authentication with
OAuth 2.0.

Macro dispatch When comparing the out-degree for both all and inter-package calls,
we can observe a similar trend between them: the median is 1 (mean: 1.7) and the 99th
quantile is 6, suggesting that macro-dispatched calls are largely inter-package calls. This

@ Springer

(2022) 27:102

Empir Software Eng

102 Page 18 of 42

81T7ST ojuT-3sed Q105-ddo 0Ly 9ZTTeTISSop qIpM
LEL'TY us3(03 gymeo-dnk 996°€ 9421 'LATI edy
LEL6S ISTITIUSPT ©ZT[LTISDSOP POPOJUA[IN~OPIAS SH0‘9 ssequoxl ‘oseq o3l won
188°89C I3STWOIF uosf-op1os L1659 osequwoxj ‘eseq o3 uowrwod-wiay
9L6°L0S Aue 9z TTeTI9Sap opIas 09%°ST STI3 yDjEW prqradAy
uonoung a3eyoeq # uonoung a3eyoeq
90139pu] Qa139pInQ

s[1es paydjedsip-A[eorwreukp jsowr yim suonouny ¢ doj oy, §3|qel

pringer

A's

Page 19 0f 42 102

(2022) 27:102

Empir Software Eng

€90°cy poylsw Aue 9z I TRTISSOP 03 PIRMIOT opIas L1 dew Adu
8Y9°Ly ixoeay J[qeyoen LT ejep-osied 90IN0S~931)"9JIAIP
19149 i TeuxsjuT OT3e}s AzZe " oneis-Aze| L1 Juswbes yaed uks
8V8°LL isberzato rdwur—- s3eniq 81 aTnpow T63 Sue-15uny
018°50T ibot Sop 61 Juswbas-yjed won
uonounj ageyoeq # uonoun,j ageyoeq
Sa13apu 92139pINQ

s[Tes paydjedsip-ooewn jsouwr yyim suonouny ¢ doj oy, §ajqer

pringer

A's

102 Page 20 of 42 Empir Software Eng (2022) 27:102

resonates with our observations for macro-dispatched calls in Table 2. Looking at func-
tions calling the most number of macros in Table 5, we can observe that the outdegree
generally is relatively low in comparison to the other two dispatch types. The function
path_segement in item makes in total 19 macro calls, the highest in CRATES.10. The
median in-degree is 7 (mean: 146) and the 99th quantile is 1427. When only considering
inter-package calls, the median is 12 (mean: 391) and the 99th quantile is 6433. We can
observe comparable numbers to the in-degree with the other two dispatch types in Table 5.
With over 200,000 functions in CRATES.IO calling log!, it is the most called macro
followed by __impl bitflags! and __lazy static_internal!. Generally, we can
observe that the top most called macros belong to popular packages in CRATES.IO that are
known to simplify logging (1og), generate bit flag structures (bitflags), and wrapping
error messages (quick-error).

The median function in CRATES.IO makes one static call, one macro call and has a
vtable with nine function targets. The median function is also dependent upon by
one static call, one macro call, and implemented by three functions.

CRATES.IO is a scale-free network, indicating the presence of a handful of functions or
hubs that are highly connected to other functions in the repository

5.3 RQ2: Evolution
5.3.1 RQ2.1: How do package dependencies and dependents evolve?

Figures 6 and 7 present the number of direct and transitive package relationships split by
network type over time. Each sub-plot also features line plots showing the mean with a circle
for each snapshot. By using three different network representations, we can understand and
contrast the differences between the three approximations of dependency relationships.

Direct dependencies Direct dependencies refer to the dependencies that a developer spec-
ifies in a package manifest. For each network group in Figure 6a, we see a marginal growth
in the median number of direct dependencies over time. The median number of dependen-
cies for a package grew from two to three between 2015-2020 for the CRATES.I0 index
network as an example. The median is also similar in the other two networks. Although
there are notable differences in the overall spread in the formative years of CRATES.IO, the
growth curve is relatively comparable between the networks. The correlation between the
number of direct dependencies between the three networks (normalized) yields a signifi-
cantly strong p = 0.89 between 2017 and 2020 (2015-2017: p = 0.71), indicating that the
networks approximate each other.

When comparing the mean between the CDN and the CRATES.IO index network, we
find the average package call at least one function in 78.8%22 of its direct dependencies. As
the CRATES.I0 index network has a higher overall spread than the Docs . rs network, and

22after normalizing the networks (i.e., inner join of common packages in all three networks)

@ Springer

Empir Software Eng (2022) 27:102 Page 21 of 42 102

100
12 Il cratesio Il cratesio
[docsrs [docsrs
I praezi I praezi

10

Number of direct deps

Number of transitive deps
(log)
>

Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Feb Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Feb
15 '15 16 '16 '17 '17 '18 '18 19 '19 '20 15 15 16 '16 '17 '17 '18 '18 19 '19 '20
(a) (b)

Fig.6 The evolution of package dependencies on two metadata-based networks, CRATES.IO and Docs . rs,
and one call-based network, PRAZI

the Docs. rs network has a higher overall spread than the CDN, we can derive that the
CRATES.IO network represents an upper-bound and the CDN a lower-bound on the number
of direct dependencies. With 75% of all packages having less than six direct dependencies,
the results are overall similar to the findings of Decan et al. (2019) and Kikas et al. (2017).

Package maintainers use 2 to 3 direct dependencies and are unlikely to increase their
use over time. The three networks have comparable results.

Transitive dependencies Transitive dependencies represent the indirect dependencies of
a package after resolving its specified dependencies. In comparison to the direct depen-
dencies, in Fig. 6b, we can observe an initial superlinear growth, followed by a period of
stabilization (since 2018) for the three networks. The median number of transitive depen-
dencies in 2015 is 5 for the CRATES.IO index network and 1 for the other two networks.
The median number of transitive dependencies grew with a delta of 5 additional packages
for the CDN, 9 for the Docs . rs network, and 12 for the CRATES.IO index network in five
years. While we can find a similar continuing growth trend to Fig. 6a, we observe higher
degrees of dispersions between the CDN and the other two networks. The third-quartile in
nearly all CDN snapshots is the same or below the median of the other two networks. Thus,
half the packages in the CRATES.I0 index network and Docs . rs network report a higher
number of transitive dependencies than 75% of packages in the CDN. When normalizing
the networks and comparing the mean between the CDN and the CRATES.IO index network

@ Springer

102 Page 22 of 42 Empir Software Eng (2022) 27:102

10000 100000
I cratesio N ¢ I cratesio
I docsrs “) I docsrs

I praezi

I praezi »
[
‘ 24 5 ;? 10000

1000 :‘ ¢

1000

100

Number of direct dependents
(log)
=)
o
n > >
-
Number of total dependents
(log)

ikl ’

Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Feb Jun Dec Jun Dec Jun Dec Jun Dec Feb
15 '15 '16 '16 '17 '17 '18 18 19 19 '20 16 '16 17 17 18 18 19 19 '20
(a) (b)

Fig. 7 The evolution of package dependents on two metadata-based networks, CRATES.IO and Docs.rs,
and one call-based network, PRAZI

in 2020, we find the average package call at-last one function in 40%23 of all resolved tran-
sitive dependencies. The discrepancy indicates substantial differences between call-based
and metadata-based networks in network analyses; CDNs will overall report a notably lower
number of transitive dependencies than the metadata-based ones.

Finally, the correlation between the number of transitive dependencies between the three
networks (normalized) is generally strong, with an average p = 0.84 between 2017 and
2020 (2015-2017: p = 0.70). In other words, the more resolved transitive dependencies a
package has, the more transitive dependencies it will call (and vice versa). However, we
identify a moderate average correlation p = 0.62 between the number of direct depen-
dencies (i.e., either metadata-based or call-based) and the number of call-based transitive
dependencies in 2017-2020. In 2015-2017, we observe a general weaker correlation, with
p = 0.47. Thus, two packages with the same number of direct dependencies are likely to
have different number of transitive dependencies.

The average dependency tree of resolved packages has nearly grown thrice (5 to 17
transitive dependencies) in 5 years. Substantial differences exist between the networks;
packages are not calling 60% of their resolved transitive dependencies.

Direct dependents In addition to dependencies, dependents measure the number of con-
sumers a package has. In the context of this study, we consider a consumer as an internal
consumer (i.e., a package making use of another package within CRATES.IO). Figure 7a
presents the number of dependents over time. Irrespective of the network, we can see that

23See footnote 22

@ Springer

Empir Software Eng (2022) 27:102 Page 23 of 42 102

the median number of consumers per package remains unchanged at one over time. Simi-
larly, we can also find the interquartile ranges of the networks to be identical from June 2017
and onwards. In that period, the top 25% packages have at least three or more consumers.
The correlation between the number of direct dependents for the three networks (normal-
ized) yields a strong p = 0.81 between 2017 and 2020 (2015-2017: p = 0.75), indicating
(similar to direct dependencies) that the networks closely approximate each other.

When comparing the mean over time, we see a steady growth of the number of direct
dependents for all three networks. The growth pattern is a result of a few commonly used
packages (e.g., serde and 1og) having the largest share of consumers in CRATES.IO (see
also Fig. 5). The outliers in the boxplot represents the top-most used packages for each
network. Here, we can observe notable differences in the range and number of outliers
between the networks. The number of top dependent packages in June 2018 is 651 for the
CDN, 1245 for the Docs . rs network, and 1680 for the CRATES.1I0 index network. There
are 2.5x more top-dependent packages for CRATES.IO than in the CDN. When comparing
the top-most dependent packages in each network, the most consumed package has 566
dependents in CDN, 1735 in the Docs . rs network, and 2305 in the CRATES.IO index
network. Although the gap between the outliers in the networks reduces over time (i.e., from
2.5x to 1.8x in 2020), there are notable differences between the networks when analyzing
the top-most dependent packages in CRATES.IO.

Overall, the results are similar to the findings of both Decan et al. (2019) and Kikas et al.
(2017), suggesting that an average CRATES.IO package has a relatively constant and low
degree of consumers in general. While the networks seem comparable and interchangeable
at large, there is a notable discrepancy between the outliers (i.e., topmost used packages
in CRATES.I0) in metadata-based networks and call-based networks in earlier snapshots,
potentially yielding differences in network analyses of top dependent packages.

The average number of consumers of a package remains at one over time. Similar to
direct dependencies, the networks approximate each other (except for top-dependent
packages).

Total dependents Figure 7b shows the total number of dependents per package. The total
number of dependents include both direct and transitive dependents. We omit both June
and December 2015 as these snapshots only have 19 and 47 transitive dependents in the
CDN, respectively. Except for June 2016, the median number of total dependents remains
constant at two for the three networks. Thus, in addition to the one median direct consumer
in Fig. 7a, packages also have one median transitive consumer. When looking at the top
25% consumed packages, the number of total dependents ranges from 8 or more consumers
for the CRATES.IO index network and 7 or more consumers for the remaining networks.
There is also a slight increase in the overall range at two occurrences for the CDN (Feb’17,
Dec’19) and one occurrence for the Docs . rs network (Dec’17) and the CRATES.I0 index
network (Dec’19). When comparing the mean and outliers between the networks, we find a
similar growth pattern and gap to Fig. 7a.

Similar to transitive dependencies, we also find a general strong correlation between
the number of transitive dependents between the three networks (normalized) (o = 0.77),
and also a moderate correlation between the number of direct dependents and transitive
dependents (p = 0.54).

@ Springer

102 Page 24 of 42 Empir Software Eng (2022) 27:102

Overall, we see that the total number of dependents remains stable over time with a
few cases of gradual increase. Moreover, we see that the distributions of dependents are
generally much lower in comparison to the transitive dependency relationships in Fig. 6b.
Thus, the results indicate that an average package in CRATES.IO has a handful stable number
of consumers.

The average package also has one transitive consumer that remains unchanged over
time. Similar to direct top-most dependent packages; indirect consumers are using
them to a much higher degree than previously.

5.3.2 RQ2.2: How does the use of external APIs in packages evolve?

Figure 8 describes the evolution of the number of direct and transitive inter-package (i.e.,
API) calls per package for dependencies on the left-hand side and dependents on the right-
hand side. When looking at the number of calls to dependencies over time, we make two
major observations. First, the number of direct and transitive calls to dependencies has an
initial superlinear growth, followed by a period where the growth slows down from Decem-
ber 2018 and onwards. From December 2016 to December 2019, the number of direct calls
grew from 21 (transitive: 24) to 70 (transitive: 116), a three-fold increase in three years.
On average, we also see a growth of 6.6 new function calls to direct dependencies and 12.2
new indirect calls to transitive dependencies every six months. Second, we can see that the
median number of transitive calls overtakes the median number of direct calls in December
2018. Our findings unveil that the amount of calls to indirect APIs are comparable in num-
bers to calls of direct APIs. Recent snapshots further indicate that packages invoke more

I direct Il direct

[transitive [transitive
1000
1000

=) >
k<] kel
@ L]
= ® 100
© 100 ©
c =
2 S
© ks
c c
2 2
— ha
s} S
s s
[[
e Qo
E g
z 10 2 10

1 1

Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Feb Jun Dec Jun Dec Jun Dec Jun Dec Feb
15 15 '16 16 '17 17 '18 18 19 '19 '20 6 16 17 17 18 18 19 "9 '20
Dependencies Dependents

Fig.8 The evolution of the number of functions calls to dependencies and dependents

@ Springer

Empir Software Eng (2022) 27:102 Page 25 of 42 102

indirect APIs than direct APIs. The transitive median API calls in December 2019 is 1.6x
larger than the median direct API calls.

The average API usage of transitive dependencies is both greater and comparative to
direct dependencies in recent years.

Similar to the total dependents in Fig. 7b, we also omit the two snapshots in 2015 due
to an insignificant number of transitive dependents. Generally, we can observe a continuous
growth of the number of direct and transitive consumers of package APIs over time. The
median number of consumer grew from 25 callers in 2015 to 38 callers in 2020, an average
growth of 1.6 new functions per year. The median of indirect consumers is larger than that
of direct consumers, growing from 55 callers in 2015 to 124 callers in 2020, an average of
8.75 new functions every six months. When comparing the growth pattern between direct
and transitive dependents, the gap between the median of direct dependents and transitive
dependents expands over time. Moreover, we also find that the interquartile ranges and
overall range is greater for transitive dependents than for direct dependents in all snapshots.
A package with transitive dependents is likely to have more indirect callers than direct
callers of their APIs. Notably, the median number of transitive dependent callers (median:
114) is three times larger than the median of direct dependent callers (median: 38) in 2020.
When also taking into account the findings of transitive dependency callers, our results
strongly indicate that indirect users of library APIs is both highly prevalent in CRATES.IO,
and comparable to direct users of library APIs. Despite the largely unchanged number of
direct and total dependents (See Fig. 7) over time, we see indications that developers are
increasingly using more APIs over time.

Packages with transitive consumers have three times more API callers stemming from
indirect consumers than direct consumers.

Below, we summarize the two perspectives of package relationships using both the
metadata-based results with function-based results:

Dependencies: Packages depend on an increasing number of transitive dependen-
cies over time. Package maintainers, however, are not declaring more dependencies.
Although there is an increase of new direct and indirect API calls to dependencies over
time, roughly 60% of all resolved transitive dependencies are not called.

Dependents: The number of total dependents, one direct and one transitive consumer,
remains constant over time. However, consumers have a growing number of callers
over time. For packages with transitive consumers, there is a higher number of calls
stemming from indirect callers than direct callers.

5.3.3 RQ2.3: How prevalent is function bloat in package dependencies?

Packages depending on a growing number of external packages are also likely to introduce
dependency conflicts. Conflicts arise when a dependency resolver is unable to eliminate the

@ Springer

102 Page 26 of 42 Empir Software Eng (2022) 27:102

co-existence of a package in a dependency tree due to version incompatibility. For exam-
ple, a resolver may arrive that there is no overlapping version when two packages in a
dependency tree depend on package A where the former specifies a version constraint 1.x
and the latter 2.x. Rust’s CARGO package manager avoids such conflicts by allowing mul-
tiple versions of the same package to co-exist in a dependency tree using name mangling
techniques (Katz 2016). A potential drawback of this strategy is the risk of bloating binaries
due to multiple copies of identical yet obfuscated functions.

As a proxy for function bloat in binaries, we calculate the percentage of co-existing func-
tions for all public functions in CRATES.I0. We denote a co-existing function as multiple
copies of identical function identifiers loaded from different versions of the same package
dependency. It is important to note that the measure is an estimation and does not guarantee
the semantic equivalence of functions. Before measuring the percentage of co-existing func-
tions, we first inspect the presence of co-existing functions in all CRATES.IO packages. On
average, we find packages having at least one co-existing function to be 5.4% of CRATES.I0
in Dec 2015-Dec 2017 and 28% of CRATES.I0 in Jun 2018-Feb 2020. There are no pack-
ages with co-existing functions in June 2015. Largely non-existent in the formative years of
CRATES.IO, we find that function co-existing among dependencies is relatively prevalent in
recent years.

Among packages having co-existing functions, Fig. 9 breaks down the percentage of co-
existing functions in dependencies of packages over time. We can observe that the median
fluctuates between 0.3% and 1.6% over time, indicating a constant yet insignificant amount
of function co-existence in packages. 75% of all packages range between 1 to 10% co-
existing functions in their dependencies, suggesting that a majority of packages have a small
amount of possible bloat in their binaries. Thus, bloating of binaries from co-existing depen-
dency functions are highly unlikely for packages with at least one co-existing function in
CRATES.IO.

Finally, we find a small minority (i.e., outliers) of packages with a high degree of possi-
ble function bloat between December 2018 and February 2020. The package reporting the

100%

10%

= i ;
% ¢
1% ‘
0.1% —
0.01% -

T T T T T T T T
Dec Jun Dec Jun Dec Jun Dec Jun Dec Feb
15 16 16 "7 "7 18 18 19 19 20

Percentage of function bloat in a package (log)

Fig.9 Percentage of co-existing functions (i.e., bloat) in CRATES.I0 packages

@ Springer

Empir Software Eng (2022) 27:102 Page 27 of 42 102

highest bloat of this time frame is downward with 67% bloat. However, it is an invalid out-
lier as it has a circular dependence on itself.>* Thereby, the two packages with highest bloat
is const-c-str-impl and mpris with 43% and 46% bloat, respectively. Upon manual
inspection of their respective dependency tree, we identify that the packages have a depen-
dence on multiple versions of proc_macro, quote, syn, and unicode_xid, common
libraries for creating procedural macros. For example, mpris indirectly uses four different
versions of syn and quote.?> We also make similar observations in three other out-
liers: js-object (33%), js-intern-proc-macro (41%), and mockers_derive
(43%). Further investigation could perhaps reveal whether the combination of certain pro-
cedural macros libraries are highly likely to always result in bloated dependency tree
configurations.

28% of all packages in CRATES.I0 have a co-existing function in their dependencies.
Among those packages, between 1-10% of imported functions from dependencies are
bloated.

5.3.4 RQ2.4: How fragile is CRATES.I0 to function-level changes?

Our goal is to identify packages that indirectly reach most of CRATES.IO and understand
the differences and similarities in using different networks for impact analyses of package
repositories. We use the local reaching centrality (Mones et al. 2012) to measure the reach
of individual packages in the CDN, compile-validated metadata (i.e., Docs . rs), and reg-
ular metadata (CRATES.IO) networks. With reach, we measure the fraction of CRATES.IO
packages that depend on a particular package (i.e., its transitive dependents).

Figure 10 presents the evolution of the reach of each package per network. When com-
paring the third-quartile between the snapshots, we can observe a gradual decrease in
reachability over time. The decrease is a result of new packages being added to the network
and at the same time not being widely used by other packages. The top 25% of the dis-
tribution of the CRATES.IO index network has a ten-fold decrease of 0.07% in June 2015
to 0.008% in June 2019. Both the CDN and Docs . rs distribution also follow a similar
pattern. In comparison to recent years, the higher reach of packages in the formative years
reflects the small network size. In the remaining 75% of packages, they have no or limited
reach of CRATES.IO irrespective of network choice, indicating that a majority of packages
do not exhibit any influence in CRATES.1I0. However, we can observe that the range and
number of outliers expand over time, indicating that there is an increasing number of pack-
ages that exhibit a degree of influence in CRATES.10. The number of outliers with greater
than 10% reachability grew from 19 (Docs . rs/CDN: 3) to 92 (Docs . rs: 80, CDN: 66)
packages as an example.

For each snapshot, we can see that the top-most outlier and the number of outliers is
lower than that of the metadata-based network in each network. The most reachable package
in June 2019 reaches 65% in the CRATES.IO index network, 61% in the Docs . rs network,
and 47% in the CDN network.

Upon inspection of the top 10 highest reaching outliers in each network, we see that
a similar set of packages such as 1ibc, log, lazy_static, and bitflags remains

24https://crates.io/crates/downwards
2Shttps://docs.rs/crate/mpris/2.0.0-rc2/source/Cargo.lock

@ Springer

https://crates.io/crates/downwards
http://web.archive.org/web/20201201224352/https://docs.rs/crate/mpris/2.0.0-rc2/source/Cargo.lock

102 Page 28 of 42 Empir Software Eng (2022) 27:102

Local reaching centrality

(2 (XY
’ * ¢
} l

100% —

10% —

1%

0.1% —

Package reach (log)

0.001% —|

0.0001% —

Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Feb
15 15 16 16 "7 "7 18 18 19 19 '20

Fig. 10 Distribution of Package Reachability

prominent over time across the networks. These packages are also among the most
directly called packages in Section 5.2.2. 1ibc, one of the most downloaded packages in
CRATES.IO, is the package exhibiting the highest all-time influence in CRATES.10. There
are also packages in decline: rustc-serialize, aserializer package, decreased in reach
from its peak of 17% in 2016 to 2% in 2020. A potential explanation for its decline could be
the adoption of serde, a rivaling serializer package, that grew its reach from 6% in 2016
to 42% in 2020.

We derive the ten most influential APIs by measuring the local reach centrality on func-
tions of the CDN for 2015, 2017, and 2020 in Table 6.2° Although 1ibc exhibit the highest
reach at the package-level, functions in 1og or serde exhibit higher influence than indi-
vidual functions in 1ibc. Moreover, we can see that 1ibc, 1og, and bitflags have
remained important since the inception of CRATES.I0. However, we can observe that the
most called function changes over time. For example, 1og reports three distinctly different
API functions. A possible explanation could be that new features or best practices over time
change the use of APIs. Finally, we can also see a new fast-growing entrant in 2020: serde
is second to 1og.

A large majority of packages in CRATES.IO have no or limited reachability; a handful
of packages are reachable from 47% of CRATES.I0, and single functions are reachable
from 30% of CRATES.IO.

26due to presentation reasons, we showcase for only three years

@ Springer

Page 29 of 42 102

(2022) 27:102

Empir Software Eng

%01 I3STWOII Q'()]::uosf-opias AR spuooes wnu € 170w %GT JuoosAks 1°2°0::9q1]
9%[] S3TuTry ewrog::Ixajing 70 1:nAx %S I SWTI3Ted0T +€°7°0::091] %G T suswTy 9sToaxd € 170w
%S LT mau: :I1s31Ing S0 eolr WB1'S ZEN23TIM 17 1::10p109)4q %t AxexqTT o7 Tdwod 0C°€0::993
%81 Iyowsu TEaIpPuew 9%66°S oT3els Azel 11°C°0::on818"AZR] %9 Bbo1 soxoew: :bot $°€°0::30]
%81 A37est 99°T0:0qI 9%€9 SZTTRTIISIP ¥T0'1::9p10s % oTTdwon: :pTINg 0T'¢'0::098
%81 Juoosis 99°7°0::0q1] %8 UIPTM [0 YIPIm-0podIun % sbe13aTq €'¢0:s3eIq
%IT 196 (pones Aze| %8 sberarquiT 1°0°1::s3epIq %9 TOAST XRWOTIels™ ¥'¢0::30]
%BET sberzaTquy— ['TIasBeg %I 196 11°C0::0ne1s~Aze] %9 Iydwsw 1°2°0::0q1
%YT JUSWS T973IXaU 01"]::9pIas %1 Iydouwasu €7 0::0q1] %9 mau: :pTIng 07°€°0::998
%0€ TeART XEW OI'F0:801 %91 Bot1— 8'¢0:80] %0l AzexqrTputy 9¢(0::3yuod-syd
yoeay uonoung afeyoed yoeoy uonoung afeyoed yoeoy uonoung ageyoeq

(LS8VT 9718) 0TOT 92

(¥00°9 :9218) L10T 9°d

(¥€S :9718) G10T 99

020T 99 PUB ‘£10T 99 ‘S10T 92 urt jusuodwod)sagdre] ay) ur S|V [eHUd SO 9 3|qel

pringer

A's

102 Page 30 of 42 Empir Software Eng (2022) 27:102

5.4 RQ3:Reliability

We identify two occurrences with significant differences between the studied networks,
namely transitive dependencies and outliers in the top-most dependent packages in RQ2.1.
These differences have practical implications on dependency analysis use cases. For exam-
ple, security-based dependency analysis such as cargo-audit would generally favor
soundness over precision. Failing to account for an actual dependency relationship could
lead to vulnerabilities being undetected. On the other hand, automated dependency updat-
ing such as GITHUB’s Dependabot would favor precision over soundness. False-positive
updates steal valuable time from developers (Beller et al. 2016; Mirhosseini and Parnin
2017). Thus, our goal in RQ3 is to obtain an understanding of how accurate and reli-
able metadata-based and call-based networks are in estimating actual relationships between
packages.

Selection As packages can have many transitive dependencies and have complex use cases,
manually mapping out how packages use each other in a dependency tree is a tedious and
error-prone task. Attempting to scale the analysis to the entire CRATES.IO is also impracti-
cal. Thus, we sample dependency relationships in packages where both the metadata-based
networks and the call-based networks report differently (e.g., between a package and a
dependency, the metadata-network reports an edge between them, and the call-based net-
work does not). We can then focus our manual investigation on whether call-based networks
are missing function calls due to limitations with static analysis or whether metadata-
based networks over-approximate unused dependencies. Moreover, analyzing a narrow set
of direct and transitive dependencies further reduces the overhead of manually tracking uses
of code elements across packages and their dependencies.

In the span of five workdays, we randomly sampled and reviewed 34 cases, 7 cases
involving direct relationships, and 27 cases involving transitive relationships.

Review Protocol We initiate the review by first finding import statements of the direct
library for the package under analysis and then track successive uses of imported items in
variable assignments and definitions such as functions (e.g., return type) and trait imple-
mentations. After mapping out all use scenarios that trace back to the original set of import
statements, we later can conclude whether a package reuses code from a dependency. The
procedures for direct and transitive dependencies are slightly different. For direct dependen-
cies, we investigate the entire package for any sign of reuse. For transitive dependencies, we
inspect the context of how a package reuses its direct dependency, and whether the specific
reuse of the direct dependency leads to reuse of the transitive dependency. Given the fol-
lowing example: Package Foo depends on Bar, and Bar depends on Baz. Foo also reuses
Bar, and Bar also reuses Baz. A function bar () in Bar calls baz () in Baz and foo ()
in Bar does not rely on external code. If Foo only calls foo (), then Foo only reuses Bar
and not Baz despite Bar reusing Baz. If Foo would call bar (), then there is an indirect
reuse of the transitive dependency Baz. A step-by-step review protocol is available in the
replication package.

Manual Analysis Table 7 tabulates the reasons for misclassification split by network
and number of use cases. Overall, the metadata-based network over-approximates the
dependency usage in 80% of the analyzed cases. Among direct dependencies where the
metadata-based networks over-approximate, we identify seven instances where a pack-
age did not import any item from the dependency relationship under analysis. Moreover,

@ Springer

Empir Software Eng (2022) 27:102 Page 31 of 42 102

Table 7 Manual inspection and classification of 34 dependency relationships between PRAZI and the
CRATES.IO index network

Categorization #Samples

i) Over-approximation in metadata-based networks 27

. no import statements 3

. import statement and no usage 4

. residesina#[cfg(...)] block 1

. derive macro libraries 2

. test dependency 1

. non-reachable transitive dependency 16
ii) Under-approximation in PRAZI

. importing a constant

7
1
. importing data type and usage 1
. importing data type in definitions 4

1

. handling C-function call

metadata-based networks cannot distinguish dependency usage in non-runtime or condition-
ally compiled sections of the source code. We found two cases; one case where a developer
uses a runtime dependency solely in test code and one conditional compilation case where
a dependency code runs only on Windows environments.

While CARGO has labels for build, test, optional, and platform-specific dependencies in
the manifest file, derive macro dependencies are not distinguishable from runtime depen-
dencies. A derive macro library performs code-generation at compile time. However, such
libraries do not provide runtime functionality and are closer to the role of being a build
dependency. We identify two such libraries, cfg-if and thiserror. Including such
dependencies influences the count of runtime dependencies; for example, depending on
the widely popular serde_derive?’ library would incorrectly add six dependencies to
the total count of runtime dependencies. Without no specific metadata label or heuristic, a
call-based dependency network avoids including such libraries.

The most prominent case with over-approximation by metadata-based networks are
non-reachable transitive dependencies. The context of how a package uses its direct depen-
dencies plays a central role in whether a package indirectly uses its transitive dependencies.
As an example, the package selfish uses nom v3.2.1 that then depends on regex
0.2.11. nom is a parser library and exports a set of regex parsers that uses the regex
library. Although selfish enables the regex feature in nom, it does not import any of the
regex parsers in nom, effectively making the regex library unused.

In the four cases where a developer imports type definitions from dependencies for
use in function declarations. One such example is the case of importing c_int in 1ibc
for function declarations in whereami wv1.1.1. Although a call graph does not track
data references, we could still mitigate this by tracking the type declarations in argument
and return types of functions in the call graph. PRAZI embeds full type qualifiers includ-
ing package information in functions belonging to call-based dependency networks (See
Section 3.1).

2Thttps://docs.rs/crate/serde_derive/1.0.106/source/Cargo.lock

@ Springer

https://docs.rs/crate/serde_derive/1.0.106/source/Cargo.lock

102 Page320f42 Empir Software Eng (2022) 27:102

Finally, we identify one instance where the call graph generator could not resolve a call
from subprocess v0.1.0 to the 1ibc function pipe (). Although there is a pipe
call without clear identifiers in the call graph, it is not via the 1 ibc library. Thus, there are
possible limitations with handling cross-language calls.

A call-based dependency network is more precise than a metadata-based network.
Data-only dependencies could affect its soundness.

6 Discussion

We center our discussion on two key aspects; differences and similarities between using
three different networks for network analyses and studying function relationships on a
network level.

6.1 Strengths and Weaknesses between Metadata and Call-based Networks

As package repositories do not test whether a package can build or not, developers can
by mistake or unknowingly publish broken versions to CRATES.IO. By verifying the build
of package releases, the Docs . rs network excludes package releases that do not have a
successful build record. When comparing the results of the network analyses in Figure 6
with CRATES.IO index network, overall, we find them to have comparable results except
in the formative years of CRATES.10. The diverging results in the initial years show that
a large number of releases are not reproducible and consumable, stressing the importance
of performing additional validation besides the correctness of packages manifests. Thereby,
we urge researchers to minimally validate package manifests with external information such
as publically available build and test data for network studies of package repositories.

When comparing the network analysis results in Fig. 6, we find notable similarities and
differences between metadata-based and call-based networks for CRATES.1I0. Except for
the formative years of CRATES.IO, the distributions of recent snapshots for direct depen-
dencies, direct dependents, and total dependents are mostly similar between the networks.
Thus, a network inferred from CRATES.I0 metadata closely approximates the presence of
function reuse relationships between packages without needing to construct and verify with
call graphs. Recent snapshots of CRATES.IO further indicate that recent package releases are
highly likely to be reproducible and compile as well. On the other hand, there are also signif-
icant differences between the networks, specifically for transitive dependencies and outliers
in dependent distributions. By taking into account that a developer does not make use of
all APIs available in a package, we identify a two-fold difference between call-based and
metadata-based networks. These differences also manifest among the most popular depen-
dent packages (i.e., outliers)—despite the networks reporting similar results for the average
dependent package.

Based on these similarities and differences, we conduct a manual analysis to understand
which network has a more accurate representation of package repositories. Our investigation
indicates that call-based dependency networks are more precise than metadata-based net-
works; the prominent finding is that the number of transitive dependencies a package uses
is highly contextual and moderately correlates with the number of declared dependencies.

@ Springer

Empir Software Eng (2022) 27:102 Page 33 of 42 102

From a statistical viewpoint, we identify a strong correlation between the number of depen-
dencies derived from a metadata-based network and the number of called dependencies.
In other words, the more resolved transitive dependencies a package has, the more transi-
tive dependencies it will call. On the other hand, we only observe a moderate correlation
between declared (direct) dependencies and called transitive dependencies, indicating that
the number of called transitive dependencies potentially varies for the same number of direct
dependencies. Based on our studied use cases, we find examples of packages only import-
ing non-core functionality from libraries or specific modules of packages that use individual
libraries by themselves. Despite limitations with data-only dependencies, we argue that cal-
culating the number of transitive dependencies should not be generalized to the sum of all
resolved dependencies. In line with previous work on the fine-grained analysis of known
security vulnerabilities, we also argue both researchers and practitioners interested in under-
standing how developers or programs use dependencies should account for its context—not
the number of compiled dependencies.

As a summary, we make the following recommendations based on the trade-offs and
costs for constructing a call-based dependency network:

— Direct dependencies: Given the relative proximity of results between a metadata-based
and call-based network, a metadata-based network is sufficient for use cases involv-
ing direct dependencies if precision is not crucial. The cost of building a call-based
dependency network would be overly expensive.

— Transitive dependencies: Where transitive dependencies are central in any analysis,
we recommend call-based dependency networks over metadata-based networks.

— Data-dependencies: Where data references are crucial to track or studying data-centric
packages in CRATES.I0, we recommend metadata-based dependency networks or use
additional (cheap) static analysis to identify data dependencies. Although metadata-
based networks are imprecise, they will not miss such relationships.

6.2 Transitive APl Usage

For studying the evolution, impact, and the decision-making of deprecation (Robbes et al.
2012; Sawant et al. 2018b) and refactorings (Kula et al. 2018b) of library APIs, datasets
such as fine-GRAPE (Sawant and Bacchelli 2017) provide valuable insights into how
a large number of clients in the wild make use of a few popular libraries. These datasets
extract API usage by mining direct invocation of library APIs (i.e., a client calling a pub-
lic API function). By analyzing the use of APIs in transitive dependencies of clients (i.e.,
indirect API use) in addition to direct dependencies, we find that there are more calls to
transitive dependencies than direct dependencies in recent years. Thus, the transitive rela-
tionship where either an intermediate client or library relays a call between a client and a
library could potentially present new confounding variables and implications to the evolu-
tion and decision-making of APIs. Although developers do not have control of transitive
package dependencies, they have the same execution rights and follow the same laws of
software evolution (Lehman 1980) as direct dependencies. Thus, API decisions in transitive
dependencies can equally impact clients as direct dependencies.

As package managers allow the same dependency (albeit different versions of them) to
co-exist in a client, our results in RQ2.4 show growing signs that more and more copies
of the same function identifier from multiple versions exist in a client. In cases where
such a function is dependent on the environment (e.g., a specific implementation of an
OpenSSL library), there is a potential risk for introducing unexpected incompatibilities.

@ Springer

102 Page 34 0f42 Empir Software Eng (2022) 27:102

Such problems that arise from the use of transitive dependencies can directly influence
the decision-making of APIs. For example, a user in PR #20 of IDnow SDK,?8 an iden-
tity verification framework, is persuading the maintainers to drop dependence on Sentry,
an application monitoring platform, due to the user having problems with Sentry as several
versions of that dependency exist in its application.

Given the increasing growth of indirect API calls and a slight increase of multiple copies
of the same function identifier appearing in clients, we call for researchers to also account
for the dynamics of dependency management—particularly transitive dependencies—when
studying the evolution and decision-making around APIs.

7 Threats to Validity

In this section, we discuss limitations and threats that can affect the validity of our study
and show how we mitigated them.

7.1 Internal validity

For CDN:s to closely mirror actual package reuse in CRATES.10, we only consider packages
specified under the # [dependencies] section and optionally-enabled packages as these
are consumable in the source code. As packages in # [dependencies] are also available
in the test portion of packages, developers could potentially specify packages for testing
purposes that do not attribute towards package reuse. We mitigate the risk of inferring test
specific calls by restricting the build of packages to compilation without further execution
steps such as tests.

The rust-callgraphs generator can resolve function invocations that involve static
and dynamic dispatch except for function pointer types. Although the documentation?
states that function pointers have a specific and limited purpose, we acknowledge that we
cannot make any claims around the completeness of generated CDNs due to the general
absence of ground truth for package repositories. When limiting the scope to the features
that the call graph generator supports, the generated CDNs represent an over-approximation
of function calls in CRATES.IO. It is an over-approximation as function targets in dynamic
dispatch may never be called by the end-user in practice (i.e., it is inexact). Using additional
analysis such as dynamic analysis to remove all unlikely function targets is error-prone
and could result in unsound inferences. Thus, we avoid considering both static (i.e., exact)
and dynamic (i.e., inexact) function calls as the same. Instead, we view the results of
dynamically dispatched calls from the perspective of virtual method tables (i.e., its concrete
representation during runtime).

Real-world constraints such as non-updated caches of the repository index, user-defined
dependency patches, and deviating semver specifications could influence the actual ver-
sion resolution of package dependencies. The selection of packages and their versions
for creating snapshots has additional implications on the representativeness of CRATES.IO
and its users. To mitigate the risk of making incoherent versions resolutions, we use the
exact resolver component implemented in CARGO, ensuring the same treatment of version
constraints.

28hyttps://github.com/idnow/de.idnow.ios.sdk/issues/20
Dhttps://doc.rust-lang.org/book/first-edition/trait-objects.html

@ Springer

http://web.archive.org/web/20201201224416/https://github.com/idnow/de.idnow.ios.sdk/issues/20
http://web.archive.org/web/20180416152826/https://doc.rust-lang.org/book/first-edition/trait-objects.html

Empir Software Eng (2022) 27:102 Page 350f 42 102

Kikas et al. (2017) report the highest package reach to be up to 30% in 2015 while our
CRATES.IO metadata network report over 60%, nearly twice the number. The difference
lies in the selection of packages when creating the networks: Kikas et al. (2017) build a
dependency tree for all available versions of a package valid at timestamp ¢ and we build
a tree for the single most recent version of a package at a timestamp ¢. As there is no
consensus on best practices for which packages and releases to include in a network, we take
a conservative approach that avoids including dormant and unused releases. For example,
we argue that it is rare that a user today would declare a dependence on version dating
back to 2017 when newer versions from 2019 exist. Kikas et al. (2017) would include such
versions.

7.2 External and reliability validity

We acknowledge that the results of network analysis are not generalizable to other package
repositories and only explain properties of CRATES.10. Due to differences in community
values (Bogart et al. 2016) and reuse practices of packages, we expect network analyses to
yield different results. However, based on Decan et al. (2018b) comparison of seven package
repositories, we believe certain repositories, for example, NPM and NUGET may share some
similarities with CRATES.IO than with CRAN and CPAN.

The PRAZI approach to constructing a CDN is general applicability as long as the pro-
gramming language has a resolver for package dependencies and a call graph generator.
However, the soundness of generated CDNs may vary depending on the programming lan-
guage. For example, CDNs generated for Java are more accurate and practical than CDNs
for Python due to limited call graph support. Therefore, evaluating trade-offs in terms of
precision and recall plays an important role in whether a study scenario is suitable for CDN
analysis.

8 Future Work

Our work opens an array of opportunities for future work in data-driven analysis of package
repositories, both for researchers and tool builders.

8.1 Enabling data-driven insights into code reuse with network analysis

As functions are not the only form of achieving code reuse, we aim to explore how we
can model reuse of interfaces, generics, class hierarchies, and wrapper classes as networks.
In a similar spirit to enabling data-driven insights of APIs, language designers can use
data-driven models to understand patterns and adoption of certain code reuse practices. As
Rust advocates developers to prefer using generics over trait objects and limit the use of
unsafe code constructs, language designers can verify such premises with feedback through
network- and data-driven analyses of package repositories.

Following Zhang et al. (2020a)’s need-finding study on data-driven API design, we
are investigating possibilities to mine program contexts and error-inducing patterns using
PRAZI to extract API usage patterns beyond syntactic features and frequencies. Insights
into involved API usage patterns can help library maintainers to make changes echo-
ing improvements that simplify code reuse and strengthening the stability of a package
repository.

@ Springer

102 Page 36 of 42 Empir Software Eng (2022) 27:102

8.2 Modeling socio-technical risks of package abandonment

Package repositories are successful in attracting developers to release new packages.
However, they are less successful in keeping these packages maintained on a long-term
perspective. As a result of developers abandoning packages due to shifting priorities,
unmaintained packages are increasingly jeopardizing the security and stability of package
repositories. Notably, the event-stream incident (Baldwin 2018) is emerging as a textbook
example of how the abandonment of a package turned itself into a bitcoin stealing appara-
tus affecting thousands of users. While survival analysis of packages can yield insights into
the stages of abandonment (Valiev et al. 2018), understanding the social-technical motives
behind developer abandonment could potentially help develop a risk control model that
package repository owners can exercise. As an example, when a package repository recog-
nizes the slowdown of development activities of popular yet central packages, they could
explore incentives such as monetary support, developer assistant in resolving long-running
bug reports, or discuss possible handover to a network of trustful developers. We are explor-
ing both quantitative and qualitative strategies on how to model and mitigate risks around
package abandonment using PRAZI.

9 Conclusions

In this work, we devise PRAZI, an approach combining manifests and call graphs of pack-
ages to infer dependency networks of package repositories at the function granularity. By
implementing PRAZI for Rust’s CRATES.10, we showcase the feasibility of compiling and
generating call graphs for 70% of all indexed releases. Then, we compare the CRATES.IO
CDN against a conventional metadata-based network and an enhanced corroborated ver-
sion with compile data in a study to understand their differences and similarities in network
analysis common to package repositories and derive new insights of CRATES.IO. By using
function call data, we find that packages do not indirectly call 60% of their transitive depen-
dencies. Packages that have transitive consumers are likely to have three times more calls
from indirect users than direct users. When we investigated the trends of function calls, we
observed that packages make 6.6 new direct and 12.2 new indirect calls to dependencies
every six months. A majority of packages in CRATES.IO have no or limited reachabil-
ity; the most reachable function in 2020—max-1evel () in package 1og—reaches 30%
of all CRATES.IO packages. When comparing the three studied networks, we find that
metadata-based networks closely approximates the CDN for analysis involving direct pack-
age relationships. Analysis of transitive package relationships and top-most dependent
packages, on the other hand, yield significantly different results for the studied networks.
A manual investigation of 34 cases reveals that a CDN is more precise as it accounts for
the context of how packages use each other. Thus, dependency checkers such as, Rust’s
cargo-audit and GITHUB’s Dependabot, can benefit from call graph analysis to gen-
erate more precise recommendations for developers on transitive dependencies. Overall,
PRAZI opens up new doors to precise network analysis of code reuse and APIs of package
repositories.

Acknowledgements The work in this paper was partially funded by NWO grant 628.008.001 (CodeFeedr)
and H2020 grant 825328 (FASTEN). Georgios Gousios is the main recipient of both funding grants.

@ Springer

Empir Software Eng (2022) 27:102 Page 37 of 42 102

Appendix
A Selecting a time window for dependency resolution

Instead of using a single fixed version at all times, version constraints allow developers to
use a time-constrained version that updates itself at new compilations. Nearly all depen-
dencies in CRATES.IO specify a dynamic version constraint—only 2.92% of all dependency
specifications in CRATES.IO use a single (immutable) version (Dietrich et al. 2019). Before
studying the evolution and structure of CRATES.10, we first decide the number of time
points and a time window between each time point. Although popular studies such as Kikas
et al. (2017) and Decan et al. (2019) use a time window of one year to study structural
changes, we, instead, determine a time window based on the frequency of structural changes
in CRATES.IO.

After resolving the dependency tree of a set of packages in CRATES.IO at a time ¢, we
then re-resolve it using six different time points (i.e., one day, one week, one month, three
months, six months, and one year) to find a time window where a large fraction of them
have a changed dependency tree. We perform this using a set of packages having at least one
non-optional dependency at the beginning of 2017 (5,252 package releases), 2018 (9,716
package releases), and 2019 (16,098 package releases).

Figure 11 shows the fraction of packages with a changed dependency tree (i.e., a tree
with at least one different version) over time. We observe a logarithmic trendline for each
year group; a high increase of packages with changed dependency between time points
before three months, and then it levels out. After one month, we already find that 40% of all
packages have a changed dependency tree due to new releases of 148 packages in 2017, 190
packages in 2018, and 240 packages in 2019. In all year groups, we find that the dependence
on libc triggers a new version resolution for most packages, followed by other popular

® 2019 @ 2018 2017

100% T
c
[e]
5
)
(7]
<
? 75% -+ 67.74%

62:90%
3 —
[0
5 67.48%
©
® 50%
(o]
=
(]
=
[§]
£ 1 4312%
2
@ 25% +
(o]
$ 3! D7
S 21639
[a MoV/%
G957
J—-'ZHH—O—OH—OW+O—H—O—H—H+HH—H+HHHH—OHH—H+O—H—H+H+HH+
0%
0 100 200 300

Elapsed Time (days)

Fi

g.11 Retroactive resolution of dependencies over a time period of one year in 2017, 2018, and 2019

@ Springer

102 Page 38 of 42 Empir Software Eng (2022) 27:102

packages such as quote, serde, and syn. A manual inspection of the release log for
1ibc® and serde’!, suggests a frequency of at least two releases per month.

Finally, we also observe that 26% of all packages in 2017 have an identical dependency
tree after one year. Among those unchanged packages, nearly all of them (2017: 83%, 2018:
93%, 2019: 90%) are outdated packages. With outdated, we mean that no recent releases for
those packages in more than one year. Although packages may be outdated, they still could
use flexible version constraints. In roughly one-third (2017: 31%, 2018: 34% 2019: 40%)
of all dependency constraints, the dependencies are outdated packages (i.e., there are no
recent releases). In the remaining cases (i.e., where more recent versions exist), the version
constraints cover old releases (e.g., depending on serde 2.x when 4.x exists), and less than
1% are fixed versions. For example, xml -attributes-derive: :0.1.0%2 depends
on older versions of syn, quote, and proc-macro2, and trie-root::0.11. 033
depends on an old version of hash-db.

Given these observations, we select a time window of one month and thus perform
dependency resolution every month per year.

40% of all CRATES.IO packages have at least one dependency resolving to a new
version after 30 days.

References

Abdalkareem R, Nourry O, Wehaibi S, Mujahid S, Shihab E (2017) Why do developers use trivial packages?
an empirical case study on npm. In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. ACM, pp 385-395

Abdalkareem R, Oda V, Mujahid S, Shihab E (2019) On the impact of using trivial packages: an empirical
case study on npm and pypi. Empir Softw Eng:1-37

Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Modern Phys 74(1):47

Ali K, Lhotdk O (2012) Application-only call graph construction. In: European Conference on Object-
Oriented Programming. Springer, pp 688-712

Alimadadi S, Mesbah A, Pattabiraman K (2015) Hybrid Dom-sensitive change impact analysis for javascript.
In: 29th European Conference on Object-Oriented Programming (ECOOP 2015), Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik

Aparicio J (2019) cargo-call-stack: Static, whole program stack analysis. https:/github.com/japaric/
cargo-call-stack

Baldwin A (2018) Details about the event-stream incident. https://blog.npmjs.org/post/180565383195/
details-about-the-event- stream-incident

Beller M, Bholanath R, McIntosh S, Zaidman A (2016) Analyzing The state of static analysis: A large-
scale evaluation in open source software. In: Proceedings of the 23rd IEEE International Conference on
Software Analysis, Evolution, and Reengineering. IEEE, pp 470481

Bogart C, Kistner C, Herbsleb J, Thung F (2016) How to break an API: Cost negotiation and community
values in three software ecosystems. In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, pp 109-120

Brian A, David T, Aaron T (2020) The rust libz blitz. https://blog.rust-lang.org/2017/05/05/1ibz-blitz.html

Chen L, Hassan F, Wang X, Zhang L (2020) Taming behavioral backward incompatibilities via cross-project
testing and analysis. In: IEEE/ACM International Conference on Software Engineering

3Ohttps://crates.io/crates/libc/versions

31 https://crates.io/crates/serde/versions
32https://docs.rs/crate/xml-attributes-derive/0. 1.0/source/Cargo.toml
3Bhttps://docs.rs/crate/trie-root/0.11.0/source/Cargo.toml

@ Springer

https://github.com/japaric /cargo-call-stack
https://github.com/japaric /cargo-call-stack
https://blog.npmjs.org/pos t/180565383195/details-about-the-event-stream-incident
https://blog.npmjs.org/pos t/180565383195/details-about-the-event-stream-incident
https://blog.rust-lang.org /2017/05/05/libz-blitz.html
https://crates.io/crates/libc/versions
https://crates.io/crates/serde/versions
https://docs.rs/crate/xml-attributes-derive/0.1.0/source/Cargo.toml
https://docs.rs/crate/trie-root/0.11.0/source/Cargo.toml

Empir Software Eng (2022) 27:102 Page 39 of 42 102

Chinthanet B, Ponta SE, Plate H, Sabetta A, Kula RG, Ishio T, Matsumoto K (2020) Code-based Vul-
nerability detection in node. js applications: How far are we? In: 2020 35Th IEEE/ACM international
conference on automated software engineering (ASE). IEEE, pp 1199-1203

Cogo FR, Oliva GA, Hassan AE (2019) An empirical study of dependency downgrades in the npm ecosystem.
IEEE Transactions on Software Engineering

Decan A, Mens T, Constantinou E (2018a) On the impact of security vulnerabilities in the npm package
dependency network. In: International Conference on Mining Software Repositories

Decan A, Mens T, Grosjean P (2018b) An empirical comparison of dependency network evolution in seven
software packaging ecosystems. Empirical Software Engineering

Decan A, Mens T, Grosjean P (2019) An empirical comparison of dependency network evolution in seven
software packaging ecosystems. Empir Softw Eng 24(1):381-416

Dietrich J, Pearce D, Stringer J, Tahir A, Blincoe K (2019) Dependency versioning in the wild. In: 2019
IEEE/ACM 16Th international conference on mining software repositories (MSR). IEEE, pp 349-359

Duan R, Bijlani A, Xu M, Kim T, Lee W (2017) Identifying open-source license violation and 1-day
security risk at large scale. In: Proceedings of the 2017 ACM SIGSAC Conference on computer and
communications security, pp 2169-2185

Dunn J (2017) Pypi python repository hit by typosquatting sneak attack. https://nakedsecurity.sophos.com/
2017/09/19/pypi-python-repository-hit-by-typosquatting-sneak-attack/

Emami M, Ghiya R, Hendren LJ (1994) Context-sensitive interprocedural points-to analysis in the presence
of function pointers. ACM SIGPLAN Not 29(6):242-256

Hejderup J (2015) In dependencies we trust: How vulnerable are dependencies in software modules? Master’s
thesis, Delft University of technology

Hejderup J, van Deursen A, Gousios G (2018) Software ecosystem call graph for dependency manage-
ment.In: Proceedings of the 40th International Conference on Software Engineering, New Ideas and
Emerging Results. ACM, pp 101-104

Hejderup J, Beller M, Triantafyllou K, Gousios G (2021) Prézi: From Package-based to Call-based
Dependency Networks. https://doi.org/10.5281/zenodo.4478981

Hopkins WG (1997) A new view of statistics. Will G. Hopkins

Katz Y (2016) Cargo: predictable dependency management. https://blog.rust-lang.org/2016/05/05/
cargo-pillars.html

Kikas R, Gousios G, Dumas M, Pfahl D (2017) Structure and evolution of package dependency networks.
In: Proceedings of the 14th International Conference on Mining Software Repositories, IEEE Press, pp
102-112

Kula RG, De Roover C, German DM, Ishio T, Inoue K (2018a) A generalized model for visualizing library
popularity, adoption, and diffusion within a software ecosystem. In: 2018 IEEE 25Th international
conference on software analysis, evolution and reengineering (SANER). IEEE, pp 288-299

Kula RG, Ouni A, German DM, Inoue K (2018b) An empirical study on the impact of refactoring activities
on evolving client-used apis. Inf Softw Technol 93:186-199

Lehman MM (1980) Programs, life cycles, and laws of software evolution. Proc IEEE 68(9):1060-1076

Livshits B, Sridharan M, Smaragdakis Y, Lhotdk O, Amaral JN, Chang BYE, Guyer SZ, Khedker UP, Mgller
A, Vardoulakis D (2015) In defense of soundiness: a manifesto. Commun ACM 58(2):44-46

Martins P, Achar R, Lopes CV (2018) 50K-c: a dataset of compilable, and compiled, java projects. In: 2018
IEEE/ACM 15Th international conference on mining software repositories (MSR). IEEE, pp 1-5

Matsakis N (2016) Introducing mir. https://blog.rust-lang.org/2016/04/19/MIR.html

Mezzetti G, Mgller A, Torp MT (2018) Type regression testing to detect breaking changes in node. js libraries.
In: 32nd European Conference on Object-Oriented Programming (ECOOP 2018), Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik

Mirhosseini S, Parnin C (2017) Can automated pull requests encourage software developers to upgrade out-
of-date dependencies? In: Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering. IEEE Press, pp 84-94

Mones E, Vicsek L, Vicsek T (2012) Hierarchy measure for complex networks. PloS one 7(3):e33799

Mujahid S, Abdalkareem R, Shihab E, McIntosh S (2020) Using others’ tests to identify breaking updates.
In: Proceedings of the 17th International Conference on Mining Software Repositories, pp 466476

Nguyen HA, Nguyen TN, Dig D, Nguyen S, Tran H, Hilton M (2019) Graph-based mining of in-the-wild,
fine-grained, semantic code change patterns. In: 2019 IEEE/ACM 41St international conference on
software engineering (ICSE). IEEE, pp 8§19-830

Ponta SE, Plate H, Sabetta A (2018) Beyond Metadata: Code-centric and usage-based analysis of known
vulnerabilities in open-source software. In: 2018 IEEE International conference on software maintenance
and evolution (ICSME). IEEE, pp 449-460

Preston-Werner T (2013) Semantic versioning. https://semver.org/

@ Springer

https://nakedsecurity.soph os.com/2017/09/19/pypi-python-repository-hit-by-typosquatting-sneak-attack/
https://nakedsecurity.soph os.com/2017/09/19/pypi-python-repository-hit-by-typosquatting-sneak-attack/
https://doi.org/10.5281/zenodo.4478981
https://blog.rust-lang.org /2016/05/05/cargo-pillars.html
https://blog.rust-lang.org /2016/05/05/cargo-pillars.html
https://blog.rust-lang.org /2016/04/19/MIR.html
https://semver.org/

102 Page 40 of 42 Empir Software Eng (2022) 27:102

Raemaekers S, van Deursen A, Visser J (2017) Semantic versioning and impact of breaking changes in the
maven repository. J Syst Softw 129:140-158

Robbes R, Lungu M, Réthlisberger D (2012) How do developers react to api deprecation? the case of
a smalltalk ecosystem. In: Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, pp 1-11

Ryder BG (1979) Constructing the call graph of a program. IEEE Trans Softw Eng (3):216-226

Salis V, Sotiropoulos T, Louridas P, Spinellis D, Mitropoulos D (2021) Pycg: Practical Call graph generation
in pytho. In: 2021 IEEE/ACM 43Rd international conference on software engineering (ICSE). IEEE, pp
1646-1657

Sawant AA, Bacchelli A (2017) Fine-grape: fine-grained api usage extractor-an approach and dataset to
investigate api usage. Empir Softw Eng 22(3):1348-1371

Sawant AA, Aniche M, van Deursen A, Bacchelli A (2018a) Understanding developers’ needs on depreca-
tion as a language feature. In: 2018 IEEE/ACM 40Th international conference on software engineering
(ICSE). IEEE, pp 561-571

Sawant AA, Aniche M, van Deursen A, Bacchelli A (2018b) Understanding developers’ needs on deprecation
as a language feature. In: Proceedings of the 40th International Conference on Software Engineering,
ICSE ’18. ACM, New York, pp 561-571

Sawant AA, Robbes R, Bacchelli A (2018c) On the reaction to deprecation of clients of 4+ 1 popular java
apis and the jdk. Empir Softw Eng 23(4):2158-2197

Schlueter I (2013) Unix philosophy and node.js. https://blog.izs.me/2013/04/unix-philosophy-and-nodejs/

Schlueter I (2017) The npm blog — kik, left-pad, and npm. http://blog.npmjs.org/post/141577284765/
kik-left-pad-and-npm

Shapiro M, Horwitz S (1997) Fast and accurate flow-insensitive points-to analysis. In: Proceedings of the
24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp 1-14

Shivers O (1991) Control-flow analysis of higher-order languages. PhD thesis, Carnegie Mellon University

Steensgaard B (1996) Points-to analysis in almost linear time. In: Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pp 3241

Sulir M, Porubin J (2016) A quantitative study of Java software buildability. In: Proceedings of the 7th
International Workshop on Evaluation and Usability of Programming Languages and Tools. ACM, pp
17-25

Sundaresan V, Hendren L, Razafimahefa C, Vallée-Rai R, Lam P, Gagnon E, Godin C (2000) Practical
virtual method call resolution for Java, vol 35. ACM

Tip F, Palsberg J (2000) Scalable propagation-based call graph construction algorithms. In: Proceedings
of the 15th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pp 281-293

Triantafyllou K (2019) A benchmark for rust call-graph generators. https://users.rust-lang.org/t/
a-benchmark-for-rust-call- graph-generators/34494

Tufano M, Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshyvanyk D (2017) There and back
again: Can you compile that snapshot?J Softw Evol Process 29(4)

Valiev M, Vasilescu B, Herbsleb J (2018) Ecosystem-level determinants of sustained activity in open-source
projects: a case study of the pypi ecosystem. In: Proceedings of the 2018 26th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, pp 644-655

Xavier L, Brito A, Hora A, Valente MT (2017) Historical And impact analysis of api breaking changes:
A large-scale study. In: 2017 IEEE 24Th international conference on software analysis, evolution and
reengineering (SANER). IEEE, pp 138-147

Zapata RE, Kula RG, Chinthanet B, Ishio T, Matsumoto K, Thara A (2018) Towards Smoother library migra-
tions: A look at vulnerable dependency migrations at function level for npm javascript packages. In: 2018
IEEE International conference on software maintenance and evolution (ICSME). IEEE, pp 559-563

Zerouali A, Constantinou E, Mens T, Robles G, Gonzélez-Barahona J (2018) An empirical analysis of tech-
nical lag in npm package dependencies. In: International Conference on Software Reuse. Springer, pp
95-110

Zhang T, Hartmann B, Kim M, Glassman EL (2020a) Enabling data-driven api design with community
usage data: A need-finding study. In: Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, pp 1-13

Zhang T, Hartmann B, Kim M, Glassman EL (2020b) Enabling data-driven api design with community
usage data: A need-finding study. In: Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, pp 1-13

@ Springer

https://blog.izs.me/2013/0 4/unix-philosophy-and-nodejs/
http://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
http://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
https://users.rust-lang.or g/t/a-benchmark-for-rust-call-graph-generators/34494
https://users.rust-lang.or g/t/a-benchmark-for-rust-call-graph-generators/34494

Empir Software Eng (2022) 27:102 Page 41 of 42 102

Zhong H, Thummalapenta S, Xie T, Zhang L, Wang Q (2010) Mining api mapping for language migration.
In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume,
vol 1, pp 195-204

Zimmermann M, Staicu CA, Tenny C, Pradel M (2019) Small world with high risks: a study of security
threats in the npm ecosystem. In: 28Th USENIX security symposium (USENIX security, vol 19, pp 995—
1010

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Joseph Hejderup is a Ph.D. student at the Delft University of Tech-
nology, the Netherlands. His primary research interest is to make
package management systems more intelligent, safe, and robust using
program analysis and empirical methods. He is the main author of
Prizi, a technique that constructs fine-grained dependency networks
using call graphs. He holds an M.Sc. from the Delft University of
Technology, the Netherlands.

Moritz Beller is a researching Software Engineer at Facebook. His
interest lies in creating and empirically evaluating tools that help
developers be more productive. The focus of his research has been
largely in the domains of Testing and Continuous Integration. Moritz
holds a PhD cum laude, the highest distinction, from Delft Univer-
sity of Technology, The Netherlands, and an M.Sc. with distinction
from Technical University of Munich, Germany. More on https://
www.inventitech.com.

@ Springer

https://www.inventitech.com
https://www.inventitech.com

102 Page 42 of 42 Empir Software Eng (2022) 27:102

Konstantinos Triantafyllou is a Ph.D. student at the University
of Athens, Greece. His primary research interest is in static analy-
sis, working on developing complete, precise and scalable analyses
that aid software engineers in the development of secure and robust
software. He holds an M.Sc. from ETH Zurich, Switzerland.

Georgios Gousios is a research engineer at Facebook and an asso-
ciate professor at the Delft University of Technology, The Nether-
lands (on leave). He works in the fields of software analytics, software
ecosystems, oftware processes, and machine learning for software
engineering. He is the main author of the GHTorrent data collection
and curation framework and various widely used tools and datasets.

Affiliations

2

Joseph Hejderup' © . Moritz Beller? © . Konstantinos Triantafyllou® -

Georgios Gousios'

Moritz Beller
mmb@fb.com

Konstantinos Triantafyllou
kotriant@di.uoa.gr

Georgios Gousios
g.gousios @tudelft.nl

I Delft University of Technology, Delft, The Netherlands
2 Facebook, Inc., Menlo Park, CA, USA
University of Athens, Athens, Greece

@ Springer

http://orcid.org/0000-0002-3334-2133
https://orcid.org/0000-0003-4852-0526
https://orcid.org/0000-0002-8495-7939
mailto: mmb@fb.com
mailto: kotriant@di.uoa.gr
mailto: g.gousios@tudelft.nl

	Präzi: from package-based to call-based dependency networks
	Abstract
	Introduction
	Background
	Related Work
	Rust Programming Language
	Call-based Dependency Networks

	Präzi: Generating CDNs from Package Repositories
	Call Graph Generation
	Local Mirror
	Package Call Graphs
	Annotating Call Graphs

	Temporal Network Generation
	Retro-active Dependency Resolution
	Call Graph Unification

	Implementing Präzi for Crates.io
	Creating a local mirror
	Choosing a Call Graph Generator
	Large-Scale Compilation of Crates.io
	Dependency Resolution

	Structure and Evolution of the Crates.io CDN
	Research Questions
	RQ1: What are the network characteristics of Crates.io?
	RQ2: How does Crates.io evolve?
	RQ3: How reliable are dependency networks?

	RQ1: Descriptive Analysis
	Summary of Datasets
	Function Call Distribution
	Static dispatch
	Dynamic dispatch
	Macro dispatch

	RQ2: Evolution
	RQ2.1: How do package dependencies and dependents evolve?
	Direct dependencies
	Transitive dependencies
	Direct dependents
	Total dependents

	RQ2.2: How does the use of external APIs in packages evolve?
	RQ2.3: How prevalent is function bloat in package dependencies?
	RQ2.4: How fragile is Crates.io to function-level changes?

	RQ3: Reliability
	Selection
	Review Protocol
	Manual Analysis

	Discussion
	Strengths and Weaknesses between Metadata and Call-based Networks
	Transitive API Usage

	Threats to Validity
	Internal validity
	External and reliability validity

	Future Work
	Enabling data-driven insights into code reuse with network analysis
	Modeling socio-technical risks of package abandonment

	Conclusions
	Appendix:
	A Selecting a time window for dependency resolution
	References
	Affiliations

