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Abstract

Flowsheets are the most important building blocks to define and communicate the struc-
ture of chemical processes. Gaining access to large data sets of machine-readable chemi-
cal flowsheets could significantly enhance process synthesis through artificial intelligence.
A large number of these flowsheets are publicly available in the scientific literature and
patents but hidden among innumerable other figures. Therefore, an automatic program is
needed to recognize flowsheets. In this paper, we present a deep convolutional neural net-
work (CNN) that can identify flowsheets within images from literature. We use a transfer
learning approach to initialize the CNN’s parameter. The CNN reaches an accuracy of
97.9% on an independent test set. The presented algorithm can be combined with publi-
cation mining algorithms to enable an autonomous flowsheet mining. This will eventually
result in big chemical process databases.

Keywords: Flowsheet, Data Mining, Image Classification, Deep Learning, Transfer
Learning

1. Introduction

In recent years, machine learning (ML) has emerged as a popular method to solve complex
problems in various domains. This popularity has predominantly been driven by (i) the
increase of computational power, (ii) the improvement of ML algorithms, and (iii) the
availability of big data (LeCun et al., 2015). Chemical engineering has already seen many
successful applications of ML (Schweidtmann et al., 2021; Venkatasubramanian, 2018).
However, literature on the structural synthesis of chemical processes through ML is scarce
(c.f. (d’Anterroches & Gani, 2005; Zhang et al., 2018; Oeing et al., 2021)). While a variety
of promising ML methods exist, big chemical process data is missing (Schweidtmann
et al., 2021; Weber et al., 2021). We argue that this lack of structured chemical process
data is hindering further progress of ML developments for chemical process synthesis.

The topological information about chemical processes is usually communicated through
flowsheets. Flowsheets are technical drawings describing the unit operations connectivity
of a process. There exists at least one flowsheet for every chemical process. Eventhough
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most flowsheets are only available in internal company reports, a large number of flow-
sheets are also publicly available in scientific publications and patents. These flowsheets
are mostly depicted on figures in PDF documents. However, searching for the flowsheet
figures in scientific publications and patents can be as difficult as looking for a needle in
a haystack. In particular, a manual search through the enormous amount of available lit-
erature would not only be a slow and labor-intense process, but it would also be prone to
errors. Therefore, an algorithm is needed that autonomously recognizes flowsheet images.

In the previous literature, information extraction from scientific literature has mostly fo-
cused on text mining using natural language processing (Hong et al., 2021; Nasar et al.,
2018). In the context of chemistry for example, Swain & Cole (2016) developed the Chem-
DataExtractor which extracts chemical identifiers, spectroscopic attributes, and chemical
property attributes from scientific literature. Furthermore, information extraction from
scholarly images has been performed in the past. The majority of research on the classifica-
tion of scientific images has been conducted on biomedical literature pushed by the yearly
ImageCLEF challenge (c.f. (Pelka et al., 2020)). Furthermore, a few works exist in chem-
istry on information extraction from images. This works mostly focus on the recognition
and digitization of structural formulas (Tharatipyakul et al., 2012; Beard & Cole, 2020).
Another example for chemical image analysis is the ImageDataExtractor which mines mi-
croscopy images to extract information about the particle sizes and shapes (Mukaddem
et al., 2019). However, to the best of our knowledge, image classification has not been
applied to chemical process design literature and there exists no previous algorithm that
identifies chemical flowsheet images.

In this work, we propose an algorithm that recognizes flowsheet images from chemical en-
gineering journal articles. The proposed algorithm will contribute to our long-term vision
to build a database of chemical processes. In Section 2., we provide a brief background on
Convolutional Neural Networks (CNNs). In Section 3., we present our methods, data set,
and pre-processing. In Section 4., we evaluate the performance of the proposed flowsheet
image classification model and discuss the results. Finally, we conclude our findings in
Section 5.

2. Deep Convolutional Neural Networks

Inspired by the biological visual system (O’Shea & Nash, 2015), deep CNNs have been
proposed as a computational method to bridge the gap between the capabilities of humans
and machines for high-level tasks such as image classification, text recognition, and speech
recognition (LeCun et al., 2015). The powerful performance of deep CNNs in advanced
tasks is achieved through the layout of the framework, which generally consists of three
parts: Convolutional layers, pooling layers, and fully-connected layers. Convolutional
layers contain a set of learnable filters that will convolve over the inputs to extract the
underlying features. Intuitively, simple features such as edges, corners, and blotches will
be detected in the early convolutional layers. Ultimately, more complex patterns such as
’unit operations’ will appear with further layers. Pooling layers are usually periodically
inserted between two convolutional layers to reduce the spatial dimension and the number
of parameters. Average pooling and max pooling are the most common choices. Fully-
connected neural network layers play the role of mapping the learned “distributed feature
representation” to the sample label space, namely, making a classification. Additionally,
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to introduce nonlinearity into the output, activation functions such as sigmoid, ReLu, and
hyperbolic tangent are usually included after convolutional or fully-connected layers. Fur-
thermore, the size of the training data is an important factor for the performance of the
deep CNNs and data-labeling is often expansive. Therefore, the concept of transfer learn-
ing emerged in recent years. In transfer learning, the CNN is first trained with a sufficiently
big data set from one domain of interest. Afterward, the data set of the classification task
from another domain of interest is used to fine-tune the CNN.

3. Method

The flowsheet recognition algorithm aims to identify flowsheets among a large number of
images. We train a deep CNN for the recognition algorithm based on manually labeled
images mainly from scientific journal articles.

3.1. Data Set

At present, no public data set of flowsheet images exists. To create a training data set,
we automatically mine figures of scientific journal articles. First, we retrieve a list of all
DOIs for a given journal ISSN from the crossref API. Then, the PDFs of the correspond-
ing journal articles are downloaded through publisher APIs. Subsequently, all figures are
extracted from the PDFs using the Python package PyMuPDF. The describe procedure is
applied to the journals “Theoretical Foundations of Chemical Engineering” and “Frontiers
of Chemical Science and Engineering” to generate an initial dataset. Subsequently, the ex-
tracted images are manually reviewed and labeled as being a flowsheet or not. In addition
to the figures from scientific journal articles, we also add flowsheet images retrieved from
a google search to our data set. In total, our data set contains about 1,000 flowsheet images
and about 13,000 other images from scientific publications.

3.2. Data Augmentation and Oversampling

As a result of the data mining from journal articles, the data set is imbalanced. In particu-
lar, there exist far fewer flowsheet images than other images. This imbalance can cause the
classifier to develop a bias towards the majority class. To overcome this issue, oversam-
pling has been used in previous studies (Johnson & Khoshgoftaar, 2019). We oversample
the flowsheet images by a factor of 13 to balance the data set. As this large oversampling
factor can cause overfitting, we also employ a data augmentation technique (Shorten &
Khoshgoftaar, 2019). Each copy of a flowsheet image is augmented by stretching it along
the horizontal and vertical axis independently by a random factor between 0.7 and 1.2.
Other common data augmentation techniques such as shifting, rotation, and shearing were
dismissed because they are expected to destroy some key features of flowsheet images. For
example, flowsheets usually include horizontal and vertical lines making image rotation
pointless. The images of the negative “other” class are not augmented because of abundant
data availability.

3.3. Model Training

The CNN architecture for the flowsheet recognition is based on the VGG16 network by
Simonyan & Zisserman (2014). The network includes 13 convolutional layers, 5 max
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pooling layers, and 3 fully-connected layers. Since our data set is limited, we use a transfer
learning approach. In particular, we use the publicly available VGG16 network that has
been pre-trained on the ImageNet data set including tens of millions of images and 1,000
categories. To adapt the network to the use case of this work, we reduced the number of
nodes in the output layer to two. The training is conducted using the PyTorch framework
which is built on the Torch library. The model takes in images with a resolution of 224
× 224 pixels. We randomly divide our data set into training (70%), validation (15%), and
test (15%) data set. The model is trained on the training data in batches of 150 images.
The validation set was used to validate the training progress and tune the hyperparameters
of the model. The independent test data set is used for the final performance evaluation.
Notably, the test set is truly independent as it does not contain any augmented images from
the training or validation sets.

4. Results and Discussions

The most important performance metrics for classifiers is the accuracy as defined in Eq. 1.
In the light of class imbalance, we also evaluate the precision (Eq. 2) and recall (Eq. 3):

Accuracy =
TN + TP

TP + FP + TN + FN
, (1)

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

where TP denotes true positive, TN denotes true negative, FP denotes false positive
and FN denotes false negative. The training history is shown in Fig. 1. The classifier
reaches a satisfying accuracy already after the first epoch. This good initial performance
can be explained by the use of a pre-trained model. After the second epoch of training, the
classifier shows a validation accuracy of over 98%. The training process was ended after 10
epochs. In training runs with more epochs no further improvement was experienced. The
final training accuracy after 10 epochs is 98.1% while the validation accuracy is 98.2%.
Notably, we do not observe any overfitting behavior in the training process.

Overall, the flowsheet recognition algorithm shows a promising performance on the inde-
pendent test set. The confusion matrix on the test set is shown in Table 1. Of all predictions
on the test set, 97.9% were correct. Furthermore, the precision is 80.7% and lower than
the recall with 94.4%. The high recall shows that almost all flowsheet images are retrieved
while the number of false negative flowsheets is very low. Furthermore, the fairly low
precision could be explained by the class imbalance. The data set contains about thirteen
times more images of the class “other”. If only a small fraction of the class “other” is
misclassified, these images already make up a great share of the flowsheet predictions.

Finally, the runtime of the image classification is investigated. The evaluation of an image
by the trained CNN takes about 7 milliseconds on average on a personal computer. This
short evaluation time allows for an online application that autonomously mines flowsheets
from literature.
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Figure 1: Training history of the CNN.

Table 1: Confusion matrix for the flowsheet recognition algorithm on the test set.
Actual flowsheet Actual other

Predicted flowsheet 151 36
Predicted other 9 1,976

5. Conclusions

We propose an image classification algorithm that can recognize flowsheet images. The
algorithm consists of a deep CNN which classifies images with a high accuracy of 97.9%.
In order to train the CNN, we mined about 1,000 flowsheet images from scientific liter-
ature and online search engines. Moreover, the transfer learning improved the prediction
accuracy. The proposed tool can be used to automatically identify flowsheet images from
scientific literature or other sources within a few milliseconds. In a preliminary study
we applied our mining algorithm to the journal “Computers & Chemical Engineering”
and identified more than 1500 flowsheets. Future work will digitize the flowsheet images
to identify process topologies. This will eventually result in an open-source knowledge
graph database providing chemical processes in a structured format. We believe that this
database has a tremendous value for future process design because it allows the search and
optimization over existing processes. In addition, our database will eventually serve as a
training database for advanced ML algorithms able to design novel processes.

References
Beard, Edward J., & Cole, Jacqueline M. 2020. ChemSchematicResolver: A Toolkit to

Decode 2D Chemical Diagrams with Labels and R-Groups into Annotated Chemical
Named Entities. Journal of Chemical Information and Modeling, 60(4), 2059–2072.

d’Anterroches, Loı̈c, & Gani, Rafiqul. 2005. Group contribution based process flowsheet
synthesis, design and modelling. Fluid Phase Equilibria, 228-229(Feb.), 141–146.

Hong, Zhi, Ward, Logan, Chard, Kyle, Blaiszik, Ben, & Foster, Ian. 2021. Challenges and
Advances in Information Extraction from Scientific Literature: a Review. JOM, Oct.

1571



L. Schulze Balhorn et al.

Johnson, Justin M., & Khoshgoftaar, Taghi M. 2019. Survey on deep learning with class
imbalance. Journal of Big Data, 6(27).

LeCun, Yann, Bengio, Yoshua, & Hinton, Geoffrey. 2015. Deep learning. Nature,
521(May), 436–444.

Mukaddem, Karim T., Beard, Edward J., Yildirim, Batuhan, & Cole, Jacqueline M. 2019.
ImageDataExtractor: A Tool To Extract and Quantify Data from Microscopy Images.
Journal of Chemical Information and Modeling, 60(5), 2492–2509.

Nasar, Zara, Jaffry, Syed Waqar, & Malik, Muhammad Kamran. 2018. Information ex-
traction from scientific articles: a survey. Scientometrics, 117(3), 1931–1990.

Oeing, Jonas, Henke, Fabian, & Kockmann, Norbert. 2021. Machine Learning Based
Suggestions of Separation Units for Process Synthesis in Process Simulation. Chemie
Ingenieur Technik, Sept.

O’Shea, Keiron, & Nash, Ryan. 2015. An introduction to convolutional neural networks.
arXiv preprint arXiv:1511.08458.

Pelka, Obioma, Friedrich, Christoph M, Garcı́a Seco de Herrera, Alba, & Müller, Henning.
2020 (Sept.). Overview of the ImageCLEFmed 2020 Concept Prediction Task: Medical
Image Understanding. In: Proceedings of the CLEF 2020-Conference and labs of the
evaluation forum.

Schweidtmann, Artur M., Esche, Erik, Fischer, Asja, Kloft, Marius, Repke, Jens-Uwe,
Sager, Sebastian, & Mitsos, Alexander. 2021. Machine Learning in Chemical Engi-
neering: A Perspective. Chemie Ingenieur Technik, Oct.

Shorten, Connor, & Khoshgoftaar, Taghi M. 2019. A survey on Image Data Augmentation
for Deep Learning. Journal of Big Data, 6(60).

Simonyan, Karen, & Zisserman, Andrew. 2014. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

Swain, Matthew C., & Cole, Jacqueline M. 2016. ChemDataExtractor: A Toolkit for
Automated Extraction of Chemical Information from the Scientific Literature. Journal
of Chemical Information and Modeling, 56(10), 1894–1904.

Tharatipyakul, Atima, Numnark, Somrak, Wichadakul, Duangdao, & Ingsriswang, Su-
pawadee. 2012. ChemEx: information extraction system for chemical data curation.
BMC Bioinformatics, 13(17).

Venkatasubramanian, Venkat. 2018. The promise of artificial intelligence in chemical
engineering: Is it here, finally? AIChE Journal, 65(2), 466–478.

Weber, Jana M., Guo, Zhen, Zhang, Chonghuan, Schweidtmann, Artur M., & Lapkin,
Alexei A. 2021. Chemical data intelligence for sustainable chemistry. Chemical Society
Reviews.

Zhang, Tong, Sahinidis, Nikolaos V., & Siirola, Jeffrey J. 2018. Pattern recognition in
chemical process flowsheets. AIChE Journal, 65(2), 592–603.

1572




