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Abstract

In this research, the effect of Chiral Induced Spin Selectivity is studied by means of a transport calcula-
tion on a model of a chiral molecule between two gold contacts. The method consists of two main parts:
optimizing the geometry of the entire system, being the molecule and the contacts, and performing the
transport calculation on the system, which yields the density of states and the transmission over the
energy range of -0.5 to 0.0 Hartree.

The geometry optimization is performed in two ways: in the first approach the entire system is opti-
mized under the constraints that the y- and z-coordinates of the atoms of the contacts are frozen, in
the second approach the atoms of the contacts are completely frozen on their initial positions. The first
approach did not conserve the periodic structure of the gold lattice. The second approach yielded a
geometrically optimized system with correct contacts.

The transport calculation is performed on the three systems, being the non-optimized system, the sys-
tem optimized by the first method and the system optimized by the second method. There was no spin
selectivity found: the density of states as well as the transmission are exact copies for the two spin ori-
entations, which is the consequence of a spin-restricted transport calculation.
The density of states for the three systems are similar. The highest occupied molecular orbital as well
as the lowest unoccupied molecular orbital were found to be situated just below and above the Fermi
energy of the contacts, respectively, which is consistent with literature.
The transmission of the three systems show greater variation. The systems with optimized geometries
have a constant transmission close to zero around the Fermi energy of the contacts. The non-optimized
system has a fluctuating transmission above zero around this energy.

Based on these findings, a spin-unrestricted transport calculation including a spin-orbit ZORA-key is
proposed. In order to speed up calculations, it is also recommended to apply the Wide Band Limit.

ii



Contents

1 Introduction 1

2 Theory 2
2.1 Overview Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.2 Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.3 Spin-Orbit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Many-body problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 The Born-Oppenheimer Approximation and the Independent Particle Model . . . . . 4
2.2.2 Hartree-Fock Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.4 Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Chiral Induced Spin-Selectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Chiral molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Helicene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Models and Results 11
3.1 Geometry Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Input Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Transport Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Self-energy Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 DOS and Transmission Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Conclusions and Discussion 16

A Geometry Optimization Scripts 17
A.1 Method 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
A.2 Method 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

B Self-Energy Calculation Script 26

C Transport Calculation Script 30

References 34

iii



1 Introduction

In this research, the effect of Chiral Induced Spin Selectivity (CISS) will be studied by performing a trans-
port calculation on a model of a chiral molecule sandwiched between two gold contacts. The method
consists of two main parts: optimizing the geometry of the system, being the molecule and the contacts,
and performing the transport calculation on the system.

Experimental evidence has shown that an electric current passing through ordered films of chiral organic
molecules on a surface can lead to remarkably high spin polarization, an effect which has been named
CISS [1][2][3]. The spin polarization (P ) is defined as

P = j↑− j↓
j↑+ j↓

,

where j↑,↓ are the currents associated with each spin. This was an unexpected finding since spin-selective
electron transport was previously only found in magnetic materials or materials that have large spin-orbit
coupling; two properties that organic chiral molecules do not posses.

The fundamental property of spin has both important theoretical implications and practical applications,
which make it essential in our understanding of phenomena like magnetism or many-body physics. Ap-
plications of spin include devices like MRI scanners, spin transistors or spin quantum computers. The
effect of CISS opens exciting possibilities, such as the use of chiral molecules in spintronics applications,
and it provides a better understanding of spin-selective processes in biology - it may even help to explain
how weak magnetic fields affect navigation by birds and fish [1].

In the chapter Theory, a short overview of the theory of quantum mechanics will be given, as well as the
basics of the mathematical description and analysis of a many-body problem. The effect of CISS shall be
explained additionally. Next, the chapter Models and Results contains the simulation that explores the
effect of CISS and the results obtained from them. Finally, the main conclusions and some discussion
points will be presented in the chapter Conclusions and Discussion.

This research has been performed as part of the Bachelor Applied Physics program of the Delft University
of Technology.
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2 Theory

In this chapter the theory underlying the CISS effect in a computer simulation is given: this theory forms
the background of the model of, and the calculations on, a helicene molecule between two contacts. First
an overview of the theory of quantum mechanics is given, with emphasis on the meaning of spin and the
mechanism of the spin-orbit interaction. The mathematical description and the analysis of a many-body
problem is included in the second section. The third section includes the explanation of the CISS effect
itself.

2.1 Overview Quantum Mechanics

Quantum mechanics is a physical theory that describes the behavior of matter and energy with interac-
tions of quanta (e.g. an electron or a photon) on an atomic and subatomic scale. To describe the evolution
of the state of a mechanical system, vectors are introduced. These vectors describe the state of the par-
ticles in the system, and live in the so-called Hilbert space, a complex vector space in which an inner
product is defined. They are represented by a ket-vector:

∣∣ψ〉
.

2.1.1 Schrödinger equation

The time evolution of the state of a system is governed by the time-dependent Schrödinger equation
(TDSE). For a spinless particle of mass m in a potential V (r) this equation reads:

iħ ∂

∂t
|Ψ(r, t )〉 =− ħ2

2m
∇2 |Ψ(r, t )〉+V (r) |Ψ(r, t )〉 . (1)

Here, ħ is the Planck’s constant, ∂
∂t the partial derivative with respect to the time t and ∇2 the Laplace

operator. This equation can be shortened by introducing the Hamiltonian operator, Ĥ . This operator is
Hermitian 1. The equation then takes the following form:

iħ ∂

∂t
|Ψ(r, t )〉 = Ĥ |Ψ(r, t )〉 . (2)

The solution of the TDSE is simple when the state of the system at t = 0 is known. This state can be
written as a linear combination of the eigenstates of the Hamiltonian, e.g. |Ψ(r,0)〉 = ∑

j c j
∣∣ψ j

〉
with the∣∣ψ j

〉
satisfying the condition Ĥ

∣∣ψ j
〉 = ε j

∣∣ψ j
〉

where the c j are constants and the ε j are the energies.The
solution of the TDSE is then given by the following equation:

|Ψ(r, t )〉 =∑
j

c j e−iε j t/ħ ∣∣ψ j
〉

. (3)

The Schrödinger equation forms the backbone of quantum mechanics, and can be used to describe nu-
merous different properties of particles, including spin. [4]

2.1.2 Spin

When speaking of spin in classical mechanics, the angular momentum associated with motion about the
center of mass is meant; for example the daily rotation of the earth about the north-south axis. The stan-
dard form of angular momentum is the orbital angular momentum, defined as L = r×p. Here, r is the
position vector of the particle, and p is the momentum vector. In quantum mechanics, elementary parti-
cles have in addition an intrinsic form of the angular momentum, defined as the spin S.

Every elementary particle has a specific value of the spin; photons have spin 1, electrons have spin 1/2,
and so on. In this research, we deal with spin-1/2 electrons. Particles with a half-integer spin quantum
number are called fermions, hence electrons belong to this class. Fermions can have two different spin

1The operator Â is Hermitian when it satisfies the equation:
〈

f
∣∣Â

∣∣g〉
= (

〈
g
∣∣Â†

∣∣ f
〉

)∗ for all f (x) and g (x), with ∗ the complex
conjugate, and † the Hermitian conjugate
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orientations, which are represented by a spin-up ket
∣∣ 1

2
1
2

〉
and a spin-down ket

∣∣ 1
2 − 1

2

〉
. The numbers in-

side these kets are the quantum number for spin, s, and the so-called magnetic quantum number, ms ,
respectively.

When a measurement of the spin of an unpolarized single particle takes place, there is an equal proba-
bility of finding it in the spin-up state or spin-down state. This can be understood by noticing that before
measurement, the orientation of the spin is both up and down; the measurement forces the particle to
choose a state. [5]

2.1.3 Spin-Orbit Interaction

An electron orbiting the nucleus is a moving charged particle. From the field of electrodynamics we know
that a moving charge induces a magnetic field. Now, an electron orbiting a proton will be considered. Two
reference frames can be used: from the electron point of view, the proton is circling around it, while from
the proton point of view, the electron is the one that moves. In each case, the moving charge sets up a
magnetic field B. The reference frame of the electron will be used.

The electron has a magnetic dipole moment, µ, which is proportional to its spin, according to µ = γS.
Here, γ is the so-called gyro-magnetic ratio, which is the ratio of the magnetic moment to the angular
momentum. Due to the magnetic field created by the moving proton, a torque τ=µ×B is exerted on this
magnetic moment. This torque tends to align parallel to the field.

The (potential) energy associated with the torque is given by Ĥ = − µ · B. Here, B is proportional to the
orbital angular momentum L, and as explained above the magnetic moment is proportional to the spin.
This means that the energy is proportional to the inner product of the spin and the angular momentum,
thus we arrive at the spin-orbit interaction within an atom. The official derivation is described in [4], in
the chapter covering the Dirac Equation. The result is the following equation:

ĤSO ∝ 1

r

δV

δr
S ·L. (4)

Simply stated, the spin-orbit interaction is due to the magnetic field generated by the proton that exerts a
torque on the magnetic dipole moment of the electron. [5][6]
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2.2 Many-body problem

When dealing with a large number of particles in physics, the problem usually becomes too complicated
to be solved exactly. The complexity of the problem is directly clear from the Hamiltonian for N electrons
and K nuclei, which reads, in atomic units:

H =
N∑

i=1

p2
i

2m
+

K∑
n=1

P 2
n

2Mn
+ 1

2

N∑
i , j=1,i 6= j

e2∣∣ri − r j
∣∣ − N∑

i=1

K∑
n=1

Zne2

|ri −Rn |
+ 1

2

K∑
n,m=1,n 6=m

Zn Zme2

|Rn −Rm | , (5)

with pi the momentum of electron i , m its mass, and ri its position vector; and for the nuclei the Pn the
momentum of nucleus n, Mn its mass, Rn its position vector and finally Zn its atomic number. In this
equation, the first part describes the kinetic energy of the electrons, the second part the kinetic energy of
the nuclei, followed the repulsion between the electrons, the Coulomb attraction between electrons and
nuclei, and finally the Coulomb repulsion between nuclei. [7]

Several important approximations must be made in order to simplify a many-body problem. Two inde-
pendent particle models will be discussed in this chapter, namely the Hartree-Fock theory and the Density
Functional Theory.

2.2.1 The Born-Oppenheimer Approximation and the Independent Particle Model

The Born-Oppenheimer (BO) approximation is the assumption that the nuclei stand still, since the elec-
trons move so rapidly that the motion of the nuclei, which are much heavier, can be neglected. The BO
Hamiltonian for the electrons reads:

HBO =
N∑

i=1

p2
i

2m
+ 1

2

N∑
i , j=1,i 6= j

e2∣∣ri − r j
∣∣ − N∑

i=1

K∑
n=1

Zne2

|ri −Rn |
+C . (6)

Compared to the complete many-body Hamiltonian, this equation is much simpler. The constant C
comes from the last term in eq. (5) which is the Coulomb repulsion between the nuclei.

Another assumption, called the Independent Particle Model, is that the interaction of the particles is in-
corporated in an average potential field due to both the nuclei and the other electrons. After these two
assumptions, eq. (5) reduces to the following equation:

HI P =
N∑

i=1

[
p2

i

2m
+V (ri )

]
. (7)

This equation may look less complex, yet the difficulty resides in the term V (ri ) which not only depends on
the positions of the nuclei Ri , but also on either the occupied eigenstates (Hartree-Fock) or on the electron
density (Density Functional Theory). This means that the orbitals must be determined self-consistently.
[7][8]

2.2.2 Hartree-Fock Theory

The Hartree-Fock theory assumes that the wave function of the many-body problem can be approximated
by a single Slater determinant (for fermions) which is the exact solution for a problem of non-interacting
electrons. The wave function for N particles with the variable xi = (ri , si ) representing the position vector
and spin, respectively, then takes the following form:

ΨAS(x1, ...,xN ) = 1p
N !

∣∣∣∣∣∣∣
ψ1(x1) ... ψN (x1)

...
...

...
ψ1(xN ) ... ψN (xN )

∣∣∣∣∣∣∣ . (8)

The wave function is then automatically anti-symmetric, a property which is required for fermions.
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In a variational procedure, the single-particle orbitals are varied in order to minimize the expectation
value for the energy, which is given as:

〈E〉 = 〈ΨAS|H |ΨAS〉 , (9)

under the condition that the orbitals ψi (x) remain orthonormal. This procedure eventually leads to the
Hartree-Fock equation:

Fψk = εkψk , (10)

with

Fψk =
[
−1

2
∇2 −∑

n

Zn

|r−Rn |
]
ψk (x)+

N∑
l=1

∫ ∣∣ψl (x′)
∣∣2 1

|r− r′|ψk (x)d x ′−
N∑

l=1

∫
ψ∗

l (x′)
1

|r− r′|ψk (x′)ψl (x)d x ′. (11)

Here, F is the so-called Fock operator. In this equation, the first term is the kinetic energy and the second
is the electrostatic interaction between the electrons and nuclei. The next line contains the so-called
Hartree potential, which is the electrostatic energy of the electrons in the field generated by the total
electron density. The last line contains the exchange energy.
This equation is nonlinear, thus it must be solved by an iterative procedure to obtain self-consistency:
the set of orbitals that give rise to the same set after solving eq. (11) are called the self-consistent orbitals.
The self-consistent procedure starts with a first estimate of the orbitals, and successive iterations are per-
formed with new orbitals until the self-consistency condition is reached.

The anti-symmetry of the electronic wave functions is exactly incorporated in this theory, and therefore
there is no self-interaction: the Hartree potential term includes self-interaction (when l = k in the sum-
mation) but the exchange energy term cancels it precisely when again l = k. [7][8][9]

2.2.3 Density Functional Theory

While the Hartree-Fock method is based on complicated many-electron wave functions, the Density Func-
tional Theory (DFT) is based on the electron density instead. This has as great advantage that the electron
density can be described by one or two (if spin is included) functions depending on the spatial coordi-
nates and is therefore a lot easier to handle compared to the N single particle wave functions.

The Hohenberg-Kohn theorems form the basis of DFT and relate to any system consisting of electrons
which are moving under influence of an exchange correlation potential. The theorems are stated as fol-
lows: [10]

1. The exchange correlation potential, and hence the total energy, is a unique functional of the elec-
tron density n(r)

2. There exists an exchange correlation potential for which the ground state energy and density are
exact.

These theorems lead, after some manipulations, to the Kohn-Sham Hamiltonian, which reads:

HKS =−1

2
∇2 −∑

n

Zn

|r−Rn |
+

∫
n(r′)

1

|r− r′|d 3r ′+Vxc[n](r). (12)

Here, n(r) is the electron density, which is constructed from the Kohn-Sham orbitals, HKSψk (r) = εkψk (r),
via:

n(r) = ∑
kocc

∣∣ψk (r)
∣∣2, (13)

5



where the sum is over the lowest N (the occupied) orbitals. The first term in eq. (12) is the kinetic en-
ergy, the second is the external energy. The third term is the Hartree potential, which is the electrostatic
energy of the electrons in the field generated by the total electron density. The last term is the exchange-
correlation potential.

In the equation for the Kohn-Sham Hamiltonian, the form of the exchange-correlation potential Vxc[n](r)
is not known. However, there exists a potential for which the ground state energy and density are exact,
according to the Hohenberg-Kohn theorems. Approximations to it are for example the Local Density Ap-
proximation (LDA) or the Generalised Gradients Approximations (GGA’s). The LDA is the simplest form
of the potential and is exact for an homogeneous electron gas. The GGA’s work better when the electron
density has strong spatial variation. The LDA potential at position r only depends on the density at that
position; in the GGA’s, the potential is also influenced is by the variation in the density.

The problem of the DFT is the presence of self-interacting terms due to the Hartree potential. In the HF
theory, these terms were not present as they were compensated. In order to get rid of this problem in DFT,
the HF exchange term can be included in the exchange-correlation potential. This is done in the so-called
’hybrid functionals’. These, however, are very time-consuming. [8][11]

2.2.4 Green’s Functions

In this paragraph, the mathematical concept of Green’s functions will be discussed. These functions com-
pletely describe the state of a quantum-mechanical system and enable us to describe systems which are
coupled to environments, in contrast to using the eigenfunctions and eigenvalues of the Hamiltonian that
can only be obtained for isolated systems. First the equilibrium Green’s functions are discussed, and then
the extension to non-equilibrium situations will take place.

The definition of the Green’s function G(z) with z ∈C of a closed system described by Hamiltonian H is as
follows:

G(z) = 1

z1−H
, (14)

where 1 is a unit operator. For a closed system, the Hamiltonian is Hermitian.

The eigenfunctions of the Hamiltonian are
∣∣ψn

〉
. Since the unit operator can be written as1=∑

n

∣∣ψn
〉〈
ψn

∣∣
and the Schrödinger equation H

∣∣ψn
〉 = En

∣∣ψn
〉

holds, the Green’s function can be expanded in eigen-
functions of the Hamiltoninan:

G(z) =∑
n

∣∣ψn
〉 1

z −En

〈
ψn

∣∣ . (15)

In this equation, z can be any complex number. If z is chosen to be close to, but above the real axis (i.e. z
is a positive imaginary number), the so-called retarded Green’s function is obtained:

GR (ε) = lim
η↓0

1

ε1−H + iη
, (16)

where ε is the real part of z and iη the imaginary part. From the retarded Green’s function, the Density of
States, or DOS, of a system can be obtained. The imaginary part of the retarded Green’s function can be
derived by using complex function theory which yields:

Im
(
GR (ε)

)=−π∑
n

∣∣ψn
〉
δ(ε−En)

〈
ψn

∣∣ . (17)

By taking the trace of this, we obtain the DOS:

DOS(E) =− 1

π
Tr

(
Im

(
GR (E)

))
. (18)

In this research, we deal with systems coupled to environments, e.g. a molecule coupled to a lead. This
means the Hamiltonian is no longer Hermitian, so the Green’s function has to be extended to a non-
equilibrium situation. There it is assumed that the equation (18) remains valid in the non-equilibrium
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regime.

As an example, we consider an atom near a bulk contact, where the atom has a single energy level Ea .
The full Hamiltonian of this system is H = HB +HA +HT , where the first part is the bulk Hamiltonian, the
second part the Hamiltonian of the atom and the third part the Hamiltonian of the coupling between the
atom and the bulk contact. In matrix form:

H =
(

HA −τ
−τ† HB

)
. (19)

Here, the HA and HB are sub-matrices and τ is the coupling between atom and bulk. The Green’s function
of this system can also be written in matrix form:

G(z) =
(
G A A†

A GB

)
, (20)

where the sub-matrices all depend on z.

The Green’s function satisfies equation (14) so we can write:(
z −HA −τ
−τ† z −HB

)(
G A A†

A GB

)
=

(
1A 0
0 1B

)
. (21)

When equations for the upper and lower left block are extracted and solved,

(z −HA)G A −τA =1A (22)

−τ†G A + (z −HB )A = 0, (23)

we obtain as Green’s function for the atom the following equation:

G A(z) = 1

z1A −HA −Σ , (24)

where
Σ= τgBτ

† (25)

and

gB = 1

z1B −HB
, (26)

e.g. the Green’s function of the environment. The Σ is called the self-energy, which captures the effect of
the environment on the atom - our system: the real part of the self-energy shifts the discrete energy levels
of our system and the imaginary part of it broadens the levels into a Lorentzian peak. [12][8][13]

7



2.3 Chiral Induced Spin-Selectivity

In this chapter, the physical phenomenon of chiral induced spin-selectivity (CISS) will be illustrated.
Shortly stated, CISS is the spin polarization that occurs when an electric current passes through a chi-
ral molecule.

2.3.1 Chiral molecules

A classic example of chirality are the human hands: our hands are non-superimposable mirror images
of each other, meaning that the mirror image of one of the hands does not overlap the original. When
speaking of chirality in chemistry, molecules which support two distinct geometries are meant: the orig-
inal molecule and its mirror image which cannot be brought to coincide with the original. The original
molecule and its mirror image are called enantiomers. The following image may clarify the difference
between chiral and achiral molecules.

Figure 1: A chiral and an achiral molecule. Molecule (a) is an example of a chiral molecule. The mirror image of the molecule
cannot be superimposed on the original molecule. The mirror image of molecule (b), on the other hand, can be superimposed on

the original, thus is an achiral molecule. [14]

An important property of chiral molecules is that a pair of enantiomers rotate plane-polarized light (light
waves that are vibrating in the same, parallel, direction) to an equal degree, but in the opposite direction.
Molecules that influence the polarization of light are called optically active.

2.3.2 Helicene

An example of a chiral molecules are so-called helicenes. These are helically-shaped molecules consisting
of benzene rings or other aromatics; n-helicene is a molecule with n rings. See the following image for an
overview.

Figure 2: An overview of the construction of 4,5 and 6-helicene from benzene rings. [15]

In this research, a thiolated 4-helicene molecule is used in the model, meaning that the outermost H-
atoms are replaced by S-atoms, to ensure a good bond with the Au-atoms from the contacts.
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2.3.3 Polarization

Two types of polarization are described here: in addition to the well-known polarization of photons by
chiral molecules, the electron spin can also be polarized by chiral molecules, a phenomenon which is
known as CISS.

Experiments on the rotation of light polarization by chiral molecules start off with a light source, where
the waves vibrate in all directions. A filter with small slits, called the polarizer, polarizes the light waves,
so only plane-polarized light comes out. This plane-polarized light travels through a tube filled with an
optically active sample, which rotates the plane of polarized light. This can be explained by the fact that
the speed of light in this sample is different for right circularly polarized and left circularly polarized light.
By using an analyzer, which is a rotatable filter, the rotation angle can be observed. See the following
image for an overview.

Figure 3: A classic set-up for measuring the rotation angle, with 1) the light source, 2) unpolarized light waves, 3) the polarizer, 4)
plane-polarized light waves, 5) tube filled with optically active sample, 6) the rotation of the plane of the polarized light and 7) the

rotatable analyzer. [16]

As explained in the previous section, enantiomers rotate the plane-polarized light to an equal degree, but
in opposite directions: when the rotation angle is positive, the molecule is called dextrorotatory; when
the rotation angle is negative, the molecule is called levorotatory.

Chiral molecules do not only rotate the polarization photon beams, but also rotate electron spin in a
similar manner. [17]
Now we take a helix-shaped molecule as an example. This molecule has a chiral electrostatic potential.
As an electron moves along the axis of the helical charge distribution, it experiences a magnetic field B:

B = v

c2 ×Echiral. (27)

Here, v is the velocity of the moving electron, c is the speed of light and Echi r al is the electric field acting
on the electron while it moves through the chiral molecule. This electric field is generated by the nuclei
and electrons that make up the chiral molecule, and perhaps a bias field when the molecule is placed in
between two contacts. [1]
The magnetic moment µ of the electron, which is due to its spin, will be influenced by this magnetic field.
Depending on the handedness of the helix, the ground state of the electron is either the spin-up or the
spin-down state. Therefore, spin filtering takes place: one of the two spin-states is favored over the other.

2.3.4 Examples

The effect of CISS has been studied extensively in experiments. Two of these studies will be described in
this paragraph, as an example.

Photoelectron transmission measurements through an absorbed monolayer of double stranded DNA (ds-
DNA) molecules on a gold substrate were done by Göhler et al. [3] When the substrate is irradiated with
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X-rays, photoelectrons are ejected from the metal and then pass through monolayer. A Mott polarime-
ter measures the spin polarization of the transmitted photoelectrons as it separates the electron beam
into spin-up and spin-down components. Spin polarizations exceeding 60% at room temperature were
measured, where the spin polarization is defined by the following equation:

P = j↑− j↓
j↑+ j↓

, (28)

where j↑,↓ are the currents associated with each spin. It was also found that spin polarization occurs when
the X-rays were not polarized, and that it depended on both the length of the DNA in the monolayer and
its organization.

Conductance measurements through an adsorbed monolayer of double-stranded DNA (dsDNA) oligomers
were done by Xie et al. [2]. The experimental setup consists of a permanent magnet, on which a nickel
substrate resides. The permanent magnet determines whether only spin-up or spin-down electrons pass
through the system. The nickel surface functions as the bottom electrode. The dsDNA oligomers are
bound on one end to the nickel surface. The outer ends are chemically bound to gold nanoparticles,
which make up the top electrode. An Atomic Force Microscope (AFM) is used to measure the current be-
tween the nickel substrate and the tip of the AFM. The electric potential was varied between -3 to +3 V.
See the following image for an overview of the setup.

Figure 4: The experimental setup used in reference [2].

The result of the experiments were that the conductance is significantly different for the two spin orien-
tations. The molecule’s conductance depended on both the orientation of the permanent magnet and on
the length of the dsDNA oligomers.
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3 Models and Results

In this research, a conductance measurement through a thiolated 4-helicene molecule placed between
two Au-contacts is simulated by means of the Amsterdam Density Functional (ADF) program from the
Software for Chemistry and Material (SCM) [18]. The simulation takes place in two main steps. In the
first step, the geometry of both the helicene molecule and the Au-contacts is optimized. This geometry
optimization is done in two different ways. Secondly, a transport calculation is performed on both the
geometrically optimized systems, and on the non-optimized system: the density of states (DOS) and the
electron transmission of the molecule are calculated. The results of the three transport calculations are
then discussed and compared.

3.1 Geometry Optimization

3.1.1 Input Coordinates

Before a geometry optimization can be performed, a rough estimate of the coordinates of the system must
be found. The Graphical User Interface (GUI) of SCM provides an excellent tool for this.

The geometry of the Au-contacts is based on the provided examples green_BDT and green_Au [19][20].
The coordinates of the gold are copied from these scripts and placed in a xyz-file which is loaded into the
GUI. There is chosen for gold as the material for the contacts since both the DOS and the transmission of
gold are relatively constant around the Fermi energy (the chemical potential at temperature T = 0), which
is approximately -2.0 Hartree. [21][20].

The geometry of the helicene molecule is based on one of the scripts from M. Rebergen’s Master Thesis
[17]. This helicene molecule is convenient for this research as it clearly shows a helical shape, indicating
the molecule is chiral, and it contains S-atoms, which ensures a proper binding with the gold contacts.
Again, the coordinates are copied and placed in a xyz-file which is also loaded in the GUI.

In the GUI, the molecule is both shifted and rotated and the contacts are shifted in only the x-direction,
until the molecule fits well between the contacts. See also the following figure:

Figure 5: System ‘1: the thiolated 4-helicene molecule between two gold contacts in pre-optimizated configuration. [18]

Then, by exporting the coordinates, a rough estimate of the coordinates of the entire system is found.

3.1.2 Optimization

The geometry optimization is done in two different ways. In the first method, the geometry of the sys-
tem is optimized under the constraints that the y- and z-coordinates of the Au atoms are fixed, and the
thiolated helicene molecule is free to move. The second method uses a different approach: the atoms of
the contacts are completely frozen on their initial positions, and the thiolated helicene molecule is free to
move. During optimization, the atomic coordinates are varied in an attempt to find an energy minimum
[22]. This is an iterative procedure; when the computation has converged, the coordinates of the last cycle
are used as output to construct the images as shown in the following two sections.
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Method 1 After the first geometry optimization, the system has the configuration as shown in figure 6.
This figure shows that indeed the atoms of the gold contacts could only move in the x-direction; there is
no question of rotations or translations of the contacts. However, the contacts do not have a crystalline
structure anymore; the distances between the gold atoms within the contacts are not the same. Since
the transport calculation only works with a crystalline structure of the contacts, the contacts are replaced
with the original contacts. The configuration of the system after this replacement is shown in figure 7.
This configuration will be referred to as System 2.

Figure 6: The thiolated 4-helicene molecule between two
gold contacts in optimized configuration. The gold

contacts do not have a crystalline structure. [18]

Figure 7: System 2: The thiolated 4-helicene molecule
between two gold contacts in optimized configuration,

with the gold contacts replaced by the ones in the
pre-optimized configuration. [18]

The script of this geometry optimization is included in the Appendix A.1.

Method 2 In this second approach the system is optimized under the constraints that the two contacts are
frozen to their initial positions. The lattice structure of the contacts will therefore be retained, ensuring
a feasible transport calculation. The system in optimized configuration is shown in the following figure.
This configuration will be referred to as System 3.

Figure 8: System 3: The thiolated 4-helicene molecule between two gold contacts in optimized configuration. [18]

The script of this geometry optimization is included in the Appendix A.2.

3.2 Transport Calculation

In this part, the DOS, see eq. (18), and the electron transmission of the 4-helicene molecule between the
gold electrodes is calculated by using the ADF program green [18]. The transport calculation consists of
two main parts: first, the effect of the contacts on the molecule is calculated, which is contained in the
self-energies of the contacts, see eq. (25), and secondly the DOS and electron transmission of the molecule
are calculated. This is done for the three configurations of the system: the non-optimized system, the
optimized system via method 1 and the optimized via method 2.
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3.2.1 Self-energy Calculation

As previously mentioned, the gold contacts are based on the contacts from green_BDT and green_Au, with
only 3 layers of 3x3 = 9 gold atoms, so in total 27 atoms each. Ideally, the contacts are semi-infinite. Since
one cannot model systems of infinite size, approximations are made: the contacts consist of so many
layers that the atoms on one side are not influenced by whatever is attached to the other side. The cal-
culation of the self-energies of the contacts is therefore a bulk calculation: one needs to ensure that the
Hamiltonians of the contacts are bulk Hamiltonians. [23]

Since the self-energies of the contacts are independent of both the type of molecule and its coordinates
that is put between them, the result obtained can be reused when a change in the configuration of the
molecule takes place.

The starting point of the calculation of the self-energy of the gold contacts is the following geometry:

Figure 9: The geometry of a single gold contact used in the calculation of the self-energy. [20]

In this figure, each colour indicates a different principal layer, being FLTR the left-, the bulk- and the right
layer. Each principal layer in turn consists of three atomic layers. Both the construction of this geometry
and the self-energy calculation is covered in the script Self-Energy Calculation provided in the Appendix
B [20]. This script consists of 4 parts, which are described as follows:

Part 1: Atomic Layer Construction The geometry of an atomic layer is build up atom by atom by using the
already existing files Au.5p and Au.5p.dirac. An atomic layer contains 3x3 = 9 gold atoms. Since relativistic
effects are relevant for gold atoms, the Relativistic Scalar ZORA (Zero Order Regular Approximation) is
used. The configuration of the atoms in this layer is such that both a top-, bridge-, and hollow-site binding
with another atom - such as a sulfur atom - is possible. See also the following figure:

Figure 10: A sulphur atom adsorbed on the hollow site of the atomic layer. [18]

The hollow-site binding is the most favourable one as it is the most stable as compared to the other bind-
ings [24].

Part 2: Principal Layer Construction Next, a principal layer of gold is build up by stacking three atomic
layers. The principal layer is displayed in the following image:

Figure 11: The principle layer as constructed in part 4. [18]

In this part of the script, the file called layer.t21 is created.
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Part 3: Bulk Layer Construction Finally, three principal layers of gold are stacked in order to acquire the
geometry displayed in figure (9). Now, the bulk.t21-file is created, which is the input file for the self-energy
calculation.

Part 4: Self-Energy Calculation By using a green calculation, the self-energy of both the left and the right
contact is computed with the key called SURFACE. This is done for every energy for which the DOS and
transmission have to be calculated; the energy range is given by the key EPS. The calculation of the self-
energy of the left contact uses the center and the right fragment. The calculation of the self-energy of the
right contact uses the center and the left fragment. The output are two files, left.kf and right.kf, being the
self-energy of the left contact and of the right contact, respectively.

3.2.2 DOS and Transmission Calculation

Calculation Now that the self-energies of the contacts are obtained, the DOS and transmission of the
molecule can be calculated. The script for this calculation is included in Appendix C and is based on
the script of the green_BDT example [19]. For all three configurations of the system the same script is
used, but with various atom coordinates of course. It is based on the non-self-consistent Green’s function
method, which is an approximation of the NEGF method (see Chapter 2.2.4).

First, the isolated molecule with the x y z-coordinates as obtained in the geometry optimization is con-
structed by performing a single-point calculation2, creating a molecule.t21-file. Next, the molecule is
sandwiched between the gold contacts, by using the fragment of the principal layer as obtained in the
self-energy calculation of the contacts (the layer.t21-file). The so-called extended molecule is created,
again by performing a single-point calculation. This output is placed in the fock.t21-file. From the self-
energies of the contacts and the fock.t21-file, the DOS and transmission is calculated by the ADF program
green.

Results The results of the DOS and transmission calculations for one of the two spin orientations are
shown in figure 12 and 13, respectively. Since the results of the two spin states were exact copies, the DOS
and transmission of the other spin orientation are not presented. The figures were obtained by using the
program MATLAB [25]. In the DOS figure, the DOS, D(E), is plotted against the energy E . In the trans-
mission figure, the transmission, T (E), is plotted against the energy as well. System 1 corresponds to the
non-optimized geometry, system 2 corresponds to the optimized geometry via the first method, and sys-
tem 3 corresponds to the optimized geometry via the second method.

The DOS graphs of the three systems do not show much difference with respect to each other. The density
of states is small and approximately constant between -0.26 Hartree, so just below the Fermi energy of the
contacts, and -0.08 Hartree, so just above this energy. Below around -0.26 Hartree, the density of states
forms a broad peak. At around -0.06 Hartree a sharper, but smaller, peak is visible.

The transmission figure displays that the three systems show different transmission behaviour. The non-
optimized geometry (system 1) deviates the most from the other two geometries, which are both opti-
mized. Around the Fermi energy of the contacts, the transmission is close to zero and almost constant for
system 2 and 3. For system 1, the transmission still shows fluctuation above zero around the Fermi energy
of the contacts.

2ADF provides different run types, one of them being the SinglePoint: the Self Consistent Field solution is computed for the input
geometry [22]. Examples of self-consistent calculations are the DFT and HF theory as discussed in the chapter Theory.
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Figure 12: The Density of States D(E) [Hartree−1] plotted against the energy [Hartree] for the three different systems. System 1
corresponds to the non-optimized geometry, system 2 to the first optimized geometry and system 2 to the second optimized

geometry. Graph created in MATLAB [25].

Figure 13: The transmission T (E) [-] plotted against the energy [Hartree] for the three different systems. System 1 corresponds to
the non-optimized geometry, system 2 to the first optimized geometry and system 2 to the second optimized geometry. Graph

created in MATLAB [25].
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4 Conclusions and Discussion

In the master thesis of Rebergen it has been demonstrated that spin polarization occurred in the models
of a thiolated 4-helicene molecule between two golden contacts [17]. However, in our results we could
not demonstrate this polarization. Both the density of states and the transmission for the two different
spin orientations were found to be exact copies of each other. This can be explained by the fact that in
the transport calculation, nothing was specified about the restriction on the spin, and that the relativistic
scalar ZORA was used instead of the relativistic spin-orbit ZORA [personal communication Jos Thijssen].
Furthermore the calculations had long run times since we did not use the so-called Wide Band Limit (see
[26]) in order to speed them up.

The density of states of the three different systems is very similar; there is little variation visible in the
three graphs. The Highest Occupied Molecular Orbital (HOMO) combined with lower orbitals form a
broad peak in the density of states graph. The HOMO is situated just below the Fermi energy of the con-
tacts, at around -0.26 Hartree, which is consistent with literature [27]. The Lowest Unoccupied Molecular
Orbital (LUMO) is also visible in the graphs for the density of states: it is the sharper and smaller peak
situated above the Fermi energy of the contacts, at around -0.06 Hartree.

The transmission of the three systems shows greater variation. Especially the difference between the non-
optimized geometry and the two optimized ones stands out. Around the Fermi energy of the contacts, the
transmission is close to zero and approximately constant for the optimized systems. This is consistent
with the density of states which is almost zero around the Fermi energy; when no or few electrons are
present around a certain energy level, the electron transmission automatically drops as well. For the non-
optimized geometry, the transmission still shows fluctuations above zero around the Fermi energy of the
contacts. This indicates the impurities in the non-optimized system, and the improvement through the
performed geometry optimizations.

In conclusion, for further research, it is recommended to apply the so-called Wide Band Limit in order to
speed up the calculations. To investigate the effect of spin polarization in chiral molecules, one should
perform a spin-unrestricted transport calculation by using the key UNRESTRICTED, as well as using the
spin-orbit ZORA instead of the scalar ZORA.
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A Geometry Optimization Scripts

A.1 Method 1

$ADFBIN/ adf <<eor
T i t l e y−z−Constraints_Helicene

# There i s no symmetry in the system
SYMMETRY NOSYM

# Configuration of the system ; coordinates in xyz−format , unit Angstrom .
ATOMS

1 Au −11.41117700 −6.66261200 0.00000000
2 Au −11.41117800 −4.16413300 −1.44249800
3 Au −11.41117800 −4.16413300 1.44249800
4 Au −11.41117800 −1.66565300 −2.88499600
5 Au −11.41117800 −1.66565300 0.00000000
6 Au −11.41117800 −1.66565300 2.88499600
7 Au −11.41117800 0.83282600 −1.44249800
8 Au −11.41117800 0.83282600 1.44249800
9 Au −11.41117800 3.33130600 0.00000000
10 Au −9.05558900 −4.99695900 0.00000000
11 Au −9.05558900 −2.49848000 −1.44249800
12 Au −9.05558900 −2.49848000 1.44249800
13 Au −9.05558900 0.00000000 −2.88499600
14 Au −9.05558900 0.00000000 0.00000000
15 Au −9.05558900 0.00000000 2.88499600
16 Au −9.05558900 2.49848000 −1.44249800
17 Au −9.05558900 2.49848000 1.44249800
18 Au −9.05558900 4.99695900 0.00000000
19 Au −6.70000000 −3.33130600 0.00000000
20 Au −6.70000000 −0.83282600 −1.44249800
21 Au −6.70000000 −0.83282600 1.44249800
22 Au −6.70000000 1.66565300 −2.88499600
23 Au −6.70000000 1.66565300 0.00000000
24 Au −6.70000000 1.66565300 2.88499600
25 Au −6.70000000 4.16413300 −1.44249800
26 Au −6.70000000 4.16413300 1.44249800
27 Au −6.70000100 6.66261200 0.00000000
28 Au 11.41117800 4.16413300 1.44249800
29 Au 11.41117800 4.16413300 −1.44249800
30 Au 11.41117700 6.66261200 0.00000000
31 Au 11.41117800 1.66565300 2.88499600
32 Au 11.41117800 −0.83282600 −1.44249800
33 Au 9.05558900 4.99695900 0.00000000
34 Au 11.41117800 1.66565300 −2.88499600
35 Au 11.41117800 −0.83282600 1.44249800
36 Au 11.41117800 1.66565300 0.00000000
37 Au 11.41117800 −3.33130600 0.00000000
38 S −4.70000000 0.00000000 0.00000000
39 S 4.70000000 0.00000000 0.00000000
40 Au 6.70000100 −6.66261200 0.00000000
41 Au 6.70000000 −4.16413300 −1.44249800
42 Au 6.70000000 −4.16413300 1.44249800
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43 Au 6.70000000 −1.66565300 −2.88499600
44 Au 6.70000000 −1.66565300 0.00000000
45 Au 6.70000000 −1.66565300 2.88499600
46 Au 6.70000000 0.83282600 −1.44249800
47 Au 6.70000000 0.83282600 1.44249800
48 Au 6.70000000 3.33130600 0.00000000
49 Au 9.05558900 −4.99695900 0.00000000
50 Au 9.05558900 −2.49848000 −1.44249800
51 Au 9.05558900 −2.49848000 1.44249800
52 Au 9.05558900 0.00000000 −2.88499600
53 Au 9.05558900 0.00000000 0.00000000
54 Au 9.05558900 0.00000000 2.88499600
55 Au 9.05558900 2.49848000 −1.44249800
56 Au 9.05558900 2.49848000 1.44249800
57 C 3.98953912 −1.57283209 0.46556843
58 C 3.84179542 −1.31486749 −0.86926863
59 C 2.86980455 −1.75249889 1.27011413
60 C 2.55422697 −1.25444789 −1.40860089
61 C 1.60495816 −1.59813549 0.77354805
62 C 1.43006145 −1.15498419 −0.53783399
63 C 2.32633965 −1.38639749 −2.79496668
64 C 1.07379568 −1.33648859 −3.29762650
65 C 0.18254797 −0.69807759 −1.11826255
66 C −0.03745295 −1.04477829 −2.47659288
67 C −0.88460388 0.00915171 −0.44371432
68 C −0.70448321 0.85822241 0.65820930
69 C −1.78604267 1.30361751 1.35656767
70 C −1.33731274 −1.01548009 −3.00769203
71 C −2.20059157 −0.15766099 −0.94449996
72 C −3.08367615 0.93548501 1.00062926
73 C −2.39536074 −0.64609709 −2.24560618
74 C −3.29478703 0.20446611 −0.14789025
75 H 0.28514938 1.16839221 0.96400214
76 H 4.71061388 −1.16675399 −1.49402462
77 H 3.00100497 −2.02587749 2.30810790
78 H 3.16356536 −1.53259479 −3.46154986
79 H 0.91849833 −1.52094629 −4.35156435
80 H −1.63929661 1.95619161 2.20575600
81 H −1.50293858 −1.29106249 −4.03981200
82 H −3.39406067 −0.72582719 −2.64968388
83 H −3.92607270 1.21683611 1.61512875
84 H 0.75639511 −1.82540739 1.40424856

END

# Keep the y and z coordinates of the contacts frozen during optimization
CONSTRAINTS

COORD 1 2 −6.662612
COORD 2 2 −4.164133
COORD 3 2 −4.164133
COORD 4 2 −1.665653
COORD 5 2 −1.665653
COORD 6 2 −1.665653
COORD 7 2 0.832826
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COORD 8 2 0.832826
COORD 9 2 3.331306
COORD 10 2 −4.996959
COORD 11 2 −2.49848
COORD 12 2 −2.49848
COORD 13 2 0.000000
COORD 14 2 0
COORD 15 2 0
COORD 16 2 2.49848
COORD 17 2 2.49848
COORD 18 2 4.996959
COORD 19 2 −3.331306
COORD 20 2 −0.832826
COORD 21 2 −0.832826
COORD 22 2 1.665653
COORD 23 2 1.665653
COORD 24 2 1.665653
COORD 25 2 4.164133
COORD 26 2 4.164133
COORD 27 2 6.662612
COORD 28 2 4.164133
COORD 29 2 4.164133
COORD 30 2 6.662612
COORD 31 2 1.665653
COORD 32 2 −0.832826
COORD 33 2 4.996959
COORD 34 2 1.665653
COORD 35 2 −0.832826
COORD 36 2 1.665653
COORD 37 2 −3.331306
COORD 38 2 0
COORD 39 2 0
COORD 40 2 −6.662612
COORD 41 2 −4.164133
COORD 42 2 −4.164133
COORD 43 2 −1.665653
COORD 44 2 −1.665653
COORD 45 2 −1.665653
COORD 46 2 0.832826
COORD 47 2 0.832826
COORD 48 2 3.331306
COORD 49 2 −4.996959
COORD 50 2 −2.49848
COORD 51 2 −2.49848
COORD 52 2 0
COORD 53 2 0
COORD 54 2 0
COORD 55 2 2.49848
COORD 56 2 2.49848
COORD 1 3 0
COORD 2 3 −1.442498
COORD 3 3 1.442498
COORD 4 3 −2.884996
COORD 5 3 0
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COORD 6 3 2.884996
COORD 7 3 −1.442498
COORD 8 3 1.442498
COORD 9 3 0
COORD 10 3 0
COORD 11 3 −1.442498
COORD 12 3 1.442498
COORD 13 3 −2.884996
COORD 14 3 0
COORD 15 3 2.884996
COORD 16 3 −1.442498
COORD 17 3 1.442498
COORD 18 3 0
COORD 19 3 0
COORD 20 3 −1.442498
COORD 21 3 1.442498
COORD 22 3 −2.884996
COORD 23 3 0
COORD 24 3 2.884996
COORD 25 3 −1.442498
COORD 26 3 1.442498
COORD 27 3 0
COORD 28 3 1.442498
COORD 29 3 −1.442498
COORD 30 3 0
COORD 31 3 2.884996
COORD 32 3 −1.442498
COORD 33 3 0
COORD 34 3 −2.884996
COORD 35 3 1.442498
COORD 36 3 0
COORD 37 3 0
COORD 38 3 0
COORD 39 3 0
COORD 40 3 0
COORD 41 3 −1.442498
COORD 42 3 1.442498
COORD 43 3 −2.884996
COORD 44 3 0
COORD 45 3 2.884996
COORD 46 3 −1.442498
COORD 47 3 1.442498
COORD 48 3 0
COORD 49 3 0
COORD 50 3 −1.442498
COORD 51 3 1.442498
COORD 52 3 −2.884996
COORD 53 3 0
COORD 54 3 2.884996
COORD 55 3 −1.442498
COORD 56 3 1.442498

END
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BASIS
type DZ

END

R e l a t i v i s t i c Scalar ZORA

#Exchange−Correlation potential approximated by the Local Density Approximation .
XC

LDA VWN
END

# I n i t i a l i z e Cartesian geometry optimization
GEOMETRY

Optim Cartesian
Branch new

END

eor

rm TAPE21 l o g f i l e
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A.2 Method 2

$ADFBIN/ adf <<eor
T i t l e x−y−z−Constraints_Helicene

# There i s no symmetry in the system
SYMMETRY NOSYM

# Configuration of the sytem ; coordinates in xyz−format , unit Angstrom .
ATOMS

1 Au −11.4111770 −6.6626120 0.0000000
2 Au −11.4111780 −4.1641330 −1.4424980
3 Au −11.4111780 −4.1641330 1.4424980
4 Au −11.4111780 −1.6656530 −2.8849960
5 Au −11.4111780 −1.6656530 0.0000000
6 Au −11.4111780 −1.6656530 2.8849960
7 Au −11.4111780 0.8328260 −1.4424980
8 Au −11.4111780 0.8328260 1.4424980
9 Au −11.4111780 3.3313060 0.0000000
10 Au −9.0555890 −4.9969590 0.0000000
11 Au −9.0555890 −2.4984800 −1.4424980
12 Au −9.0555890 −2.4984800 1.4424980
13 Au −9.0555890 0.0000000 −2.8849960
14 Au −9.0555890 0.0000000 0.0000000
15 Au −9.0555890 0.0000000 2.8849960
16 Au −9.0555890 2.4984800 −1.4424980
17 Au −9.0555890 2.4984800 1.4424980
18 Au −9.0555890 4.9969590 0.0000000
19 Au −6.7000000 −3.3313060 0.0000000
20 Au −6.7000000 −0.8328260 −1.4424980
21 Au −6.7000000 −0.8328260 1.4424980
22 Au −6.7000000 1.6656530 −2.8849960
23 Au −6.7000000 1.6656530 0.0000000
24 Au −6.7000000 1.6656530 2.8849960
25 Au −6.7000000 4.1641330 −1.4424980
26 Au −6.7000000 4.1641330 1.4424980
27 Au −6.7000010 6.6626120 0.0000000
28 Au 11.4111780 4.1641330 1.4424980
29 Au 11.4111780 4.1641330 −1.4424980
30 Au 11.4111770 6.6626120 0.0000000
31 Au 11.4111780 1.6656530 2.8849960
32 Au 11.4111780 −0.8328260 −1.4424980
33 Au 9.0555890 4.9969590 0.0000000
34 Au 11.4111780 1.6656530 −2.8849960
35 Au 11.4111780 −0.8328260 1.4424980
36 Au 11.4111780 1.6656530 0.0000000
37 Au 11.4111780 −3.3313060 0.0000000
38 Au 6.7000010 −6.6626120 0.0000000
39 Au 6.7000000 −4.1641330 −1.4424980
40 Au 6.7000000 −4.1641330 1.4424980
41 Au 6.7000000 −1.6656530 −2.8849960
42 Au 6.7000000 −1.6656530 0.0000000
43 Au 6.7000000 −1.6656530 2.8849960
44 Au 6.7000000 0.8328260 −1.4424980
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45 Au 6.7000000 0.8328260 1.4424980
46 Au 6.7000000 3.3313060 0.0000000
47 Au 9.0555890 −4.9969590 0.0000000
48 Au 9.0555890 −2.4984800 −1.4424980
49 Au 9.0555890 −2.4984800 1.4424980
50 Au 9.0555890 0.0000000 −2.8849960
51 Au 9.0555890 0.0000000 0.0000000
52 Au 9.0555890 0.0000000 2.8849960
53 Au 9.0555890 2.4984800 −1.4424980
54 Au 9.0555890 2.4984800 1.4424980
55 S −4.7000000 0.0000000 0.0000000
56 S 4.7000000 0.0000000 0.0000000
57 C 3.9895391 −1.5728321 0.4655684
58 C 3.8417954 −1.3148675 −0.8692686
59 C 2.8698046 −1.7524989 1.2701141
60 C 2.5542270 −1.2544479 −1.4086009
61 C 1.6049582 −1.5981355 0.7735481
62 C 1.4300615 −1.1549842 −0.5378340
63 C 2.3263397 −1.3863975 −2.7949667
64 C 1.0737957 −1.3364886 −3.2976265
65 C 0.1825480 −0.6980776 −1.1182626
66 C −0.0374530 −1.0447783 −2.4765929
67 C −0.8846039 0.0091517 −0.4437143
68 C −0.7044832 0.8582224 0.6582093
69 C −1.7860427 1.3036175 1.3565677
70 C −1.3373127 −1.0154801 −3.0076920
71 C −2.2005916 −0.1576610 −0.9445000
72 C −3.0836762 0.9354850 1.0006293
73 C −2.3953607 −0.6460971 −2.2456062
74 C −3.2947870 0.2044661 −0.1478903
75 H 0.2851494 1.1683922 0.9640021
76 H 4.7106139 −1.1667540 −1.4940246
77 H 3.0010050 −2.0258775 2.3081079
78 H 3.1635654 −1.5325948 −3.4615499
79 H 0.9184983 −1.5209463 −4.3515644
80 H −1.6392966 1.9561916 2.2057560
81 H −1.5029386 −1.2910625 −4.0398120
82 H −3.3940607 −0.7258272 −2.6496839
83 H −3.9260727 1.2168361 1.6151288
84 H 0.7563951 −1.8254074 1.4042486

END

# Keep the x , y and z coordinates of the contacts the same .
CONSTRAINTS

ATOM 1 −11.4111770 −6.6626120 0.0000000
ATOM 2 −11.4111780 −4.1641330 −1.4424980
ATOM 3 −11.4111780 −4.1641330 1.4424980
ATOM 4 −11.4111780 −1.6656530 −2.8849960
ATOM 5 −11.4111780 −1.6656530 0.0000000
ATOM 6 −11.4111780 −1.6656530 2.8849960
ATOM 7 −11.4111780 0.8328260 −1.4424980
ATOM 8 −11.4111780 0.8328260 1.4424980
ATOM 9 −11.4111780 3.3313060 0.0000000
ATOM 10 −9.0555890 −4.9969590 0.0000000
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ATOM 11 −9.0555890 −2.4984800 −1.4424980
ATOM 12 −9.0555890 −2.4984800 1.4424980
ATOM 13 −9.0555890 0.0000000 −2.8849960
ATOM 14 −9.0555890 0.0000000 0.0000000
ATOM 15 −9.0555890 0.0000000 2.8849960
ATOM 16 −9.0555890 2.4984800 −1.4424980
ATOM 17 −9.0555890 2.4984800 1.4424980
ATOM 18 −9.0555890 4.9969590 0.0000000
ATOM 19 −6.7000000 −3.3313060 0.0000000
ATOM 20 −6.7000000 −0.8328260 −1.4424980
ATOM 21 −6.7000000 −0.8328260 1.4424980
ATOM 22 −6.7000000 1.6656530 −2.8849960
ATOM 23 −6.7000000 1.6656530 0.0000000
ATOM 24 −6.7000000 1.6656530 2.8849960
ATOM 25 −6.7000000 4.1641330 −1.4424980
ATOM 26 −6.7000000 4.1641330 1.4424980
ATOM 27 −6.7000010 6.6626120 0.0000000
ATOM 28 11.4111780 4.1641330 1.4424980
ATOM 29 11.4111780 4.1641330 −1.4424980
ATOM 30 11.4111770 6.6626120 0.0000000
ATOM 31 11.4111780 1.6656530 2.8849960
ATOM 32 11.4111780 −0.8328260 −1.4424980
ATOM 33 9.0555890 4.9969590 0.0000000
ATOM 34 11.4111780 1.6656530 −2.8849960
ATOM 35 11.4111780 −0.8328260 1.4424980
ATOM 36 11.4111780 1.6656530 0.0000000
ATOM 37 11.4111780 −3.3313060 0.0000000
ATOM 38 6.7000010 −6.6626120 0.0000000
ATOM 39 6.7000000 −4.1641330 −1.4424980
ATOM 40 6.7000000 −4.1641330 1.4424980
ATOM 41 6.7000000 −1.6656530 −2.8849960
ATOM 42 6.7000000 −1.6656530 0.0000000
ATOM 43 6.7000000 −1.6656530 2.8849960
ATOM 44 6.7000000 0.8328260 −1.4424980
ATOM 45 6.7000000 0.8328260 1.4424980
ATOM 46 6.7000000 3.3313060 0.0000000
ATOM 47 9.0555890 −4.9969590 0.0000000
ATOM 48 9.0555890 −2.4984800 −1.4424980
ATOM 49 9.0555890 −2.4984800 1.4424980
ATOM 50 9.0555890 0.0000000 −2.8849960
ATOM 51 9.0555890 0.0000000 0.0000000
ATOM 52 9.0555890 0.0000000 2.8849960
ATOM 53 9.0555890 2.4984800 −1.4424980
ATOM 54 9.0555890 2.4984800 1.4424980

END

BASIS
type DZ

END

R e l a t i v i s t i c Scalar ZORA

#Exchange−Correlation potential approximated by the Local Density Approximation .
XC
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LDA VWN
END

# I n i t i a l i z e Cartesian geometry optimization
GEOMETRY

Optim Cartesian
Branch new

END

eor

rm TAPE21 l o g f i l e
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B Self-Energy Calculation Script

The following script is based on [20].

# ! / bin/sh

# PART 1 : Atomic Layer Construction

cp $ADFHOME/examples/ adf / green_Al /Au. 5p .
cp $ADFHOME/examples/ adf / green_Al /Au. 5p . dirac .

$ADFBIN/ dirac < Au. 5p . dirac
mv TAPE12 t12 . r e l

$ADFBIN/ adf −n1 << eor
CREATE Au f i l e =Au. 5p
RELATIVISTIC Scalar ZORA

COREPOTENTIALS t12 . r e l
End

XC
LDA SCF VWN

END
eor
mv TAPE21 t21 . Au

$ADFBIN/ adf << eor
TITLE Gold atom
ATOMS

Au 0.000000 0.000000 0.000000
END
RELATIVISTIC Scalar ZORA
FRAGMENTS

Au t21 . Au
END
XC

LDA SCF VWN
END
eor
mv TAPE21 Au . t21

# PART 2 : Principal Layer Construction

$ADFBIN/ adf << eor
TITLE Principal layer
ATOMS

Au −2.355588 −6.662612 0.000000
Au −2.355589 −4.164133 −1.442498
Au −2.355589 −4.164133 1.442498
Au −2.355589 −1.665653 −2.884996
Au −2.355589 −1.665653 0.000000
Au −2.355589 −1.665653 2.884996
Au −2.355589 0.832826 −1.442498

26



Au −2.355589 0.832826 1.442498
Au −2.355589 3.331306 0.000000
Au 0.000000 −4.996959 0.000000
Au 0.000000 −2.498480 −1.442498
Au 0.000000 −2.498480 1.442498
Au 0.000000 0.000000 −2.884996
Au 0.000000 0.000000 0.000000
Au 0.000000 0.000000 2.884996
Au 0.000000 2.498480 −1.442498
Au 0.000000 2.498480 1.442498
Au 0.000000 4.996959 0.000000
Au 2.355589 −3.331306 0.000000
Au 2.355589 −0.832826 −1.442498
Au 2.355589 −0.832826 1.442498
Au 2.355589 1.665653 −2.884996
Au 2.355589 1.665653 0.000000
Au 2.355589 1.665653 2.884996
Au 2.355589 4.164133 −1.442498
Au 2.355589 4.164133 1.442498
Au 2.355588 6.662612 0.000000

END
SYMMETRY NOSYM
RELATIVISTIC Scalar ZORA
FRAGMENTS

Au Au . t21
END
XC

LDA SCF VWN
END
eor
mv TAPE21 layer . t21

# PART 3 : Bulk Layer Construction

$ADFBIN/ adf << eor
TITLE Bulk gold
ATOMS

Au −9.422355 −11.659571 0.000000 f = l e f t
Au −9.422356 −9.161092 −1.442498 f = l e f t
Au −9.422356 −9.161092 1.442498 f = l e f t
Au −9.422356 −6.662612 −2.884996 f = l e f t
Au −9.422356 −6.662612 0.000000 f = l e f t
Au −9.422356 −6.662612 2.884996 f = l e f t
Au −9.422356 −4.164133 −1.442498 f = l e f t
Au −9.422356 −4.164133 1.442498 f = l e f t
Au −9.422356 −1.665653 0.000000 f = l e f t
Au −7.066767 −9.993918 0.000000 f = l e f t
Au −7.066767 −7.495439 −1.442498 f = l e f t
Au −7.066767 −7.495439 1.442498 f = l e f t
Au −7.066767 −4.996959 −2.884996 f = l e f t
Au −7.066767 −4.996959 0.000000 f = l e f t
Au −7.066767 −4.996959 2.884996 f = l e f t
Au −7.066767 −2.498479 −1.442498 f = l e f t
Au −7.066767 −2.498479 1.442498 f = l e f t
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Au −7.066767 0.000000 0.000000 f = l e f t
Au −4.711178 −8.328265 0.000000 f = l e f t
Au −4.711178 −5.829785 −1.442498 f = l e f t
Au −4.711178 −5.829785 1.442498 f = l e f t
Au −4.711178 −3.331306 −2.884996 f = l e f t
Au −4.711178 −3.331306 0.000000 f = l e f t
Au −4.711178 −3.331306 2.884996 f = l e f t
Au −4.711178 −0.832826 −1.442498 f = l e f t
Au −4.711178 −0.832826 1.442498 f = l e f t
Au −4.711179 1.665653 0.000000 f = l e f t
Au −2.355588 −6.662612 0.000000 f =center
Au −2.355589 −4.164133 −1.442498 f =center
Au −2.355589 −4.164133 1.442498 f =center
Au −2.355589 −1.665653 −2.884996 f =center
Au −2.355589 −1.665653 0.000000 f =center
Au −2.355589 −1.665653 2.884996 f =center
Au −2.355589 0.832826 −1.442498 f =center
Au −2.355589 0.832826 1.442498 f =center
Au −2.355589 3.331306 0.000000 f =center
Au 0.000000 −4.996959 0.000000 f =center
Au 0.000000 −2.498480 −1.442498 f =center
Au 0.000000 −2.498480 1.442498 f =center
Au 0.000000 0.000000 −2.884996 f =center
Au 0.000000 0.000000 0.000000 f =center
Au 0.000000 0.000000 2.884996 f =center
Au 0.000000 2.498480 −1.442498 f =center
Au 0.000000 2.498480 1.442498 f =center
Au 0.000000 4.996959 0.000000 f =center
Au 2.355589 −3.331306 0.000000 f =center
Au 2.355589 −0.832826 −1.442498 f =center
Au 2.355589 −0.832826 1.442498 f =center
Au 2.355589 1.665653 −2.884996 f =center
Au 2.355589 1.665653 0.000000 f =center
Au 2.355589 1.665653 2.884996 f =center
Au 2.355589 4.164133 −1.442498 f =center
Au 2.355589 4.164133 1.442498 f =center
Au 2.355588 6.662612 0.000000 f =center
Au 4.711179 −1.665653 0.000000 f = r i g h t
Au 4.711178 0.832826 −1.442498 f = r i g h t
Au 4.711178 0.832826 1.442498 f = r i g h t
Au 4.711178 3.331306 −2.884996 f = r i g h t
Au 4.711178 3.331306 0.000000 f = r i g h t
Au 4.711178 3.331306 2.884996 f = r i g h t
Au 4.711178 5.829785 −1.442498 f = r i g h t
Au 4.711178 5.829785 1.442498 f = r i g h t
Au 4.711178 8.328265 0.000000 f = r i g h t
Au 7.066767 0.000000 0.000000 f = r i g h t
Au 7.066767 2.498479 −1.442498 f = r i g h t
Au 7.066767 2.498479 1.442498 f = r i g h t
Au 7.066767 4.996959 −2.884996 f = r i g h t
Au 7.066767 4.996959 0.000000 f = r i g h t
Au 7.066767 4.996959 2.884996 f = r i g h t
Au 7.066767 7.495439 −1.442498 f = r i g h t
Au 7.066767 7.495439 1.442498 f = r i g h t

28



Au 7.066767 9.993918 0.000000 f = r i g h t
Au 9.422356 1.665653 0.000000 f = r i g h t
Au 9.422356 4.164133 −1.442498 f = r i g h t
Au 9.422356 4.164133 1.442498 f = r i g h t
Au 9.422356 6.662612 −2.884996 f = r i g h t
Au 9.422356 6.662612 0.000000 f = r i g h t
Au 9.422356 6.662612 2.884996 f = r i g h t
Au 9.422356 9.161092 −1.442498 f = r i g h t
Au 9.422356 9.161092 1.442498 f = r i g h t
Au 9.422355 11.659571 0.000000 f = r i g h t

END
SYMMETRY NOSYM
RELATIVISTIC Scalar ZORA
FRAGMENTS

l e f t layer . t21
center layer . t21
r i g h t layer . t21

END
XC

LDA SCF VWN
END
eor
mv TAPE21 bulk . t21

# PART 4 : Sel f−Energy Calculation

$ADFBIN/green << eor
SURFACE bulk . t21

FRAGMENTS center r i g h t
END
EPS −0.5 0 1000
ETA 1e−6
eor
mv SURFACE l e f t . kf

$ADFBIN/green << eor
SURFACE bulk . t21

FRAGMENTS center l e f t
END
EPS −0.5 0 1000
ETA 1e−6
eor
mv SURFACE r i g h t . kf
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C Transport Calculation Script

The following script is based on [19].

$ADFBIN/ adf << eor

TITLE Helicene

#Coordinates of the molecule
ATOMS

S −4.7000000 0.0000000 0.00000000
H −3.9260727 1.21683611 1.61512875
H −3.39406067 −0.72582719 −2.64968388
C −3.29478703 0.20446611 −0.14789025
C −3.08367615 0.93548501 1.00062926
C −2.39536074 −0.64609709 −2.24560618
C −2.20059157 −0.15766099 −0.94449996
C −1.78604267 1.30361751 1.35656767
H −1.63929661 1.95619161 2.205756
H −1.50293858 −1.29106249 −4.039812
C −1.33731274 −1.01548009 −3.00769203
C −0.88460388 0.00915171 −0.44371432
C −0.70448321 0.85822241 0.6582093
C −0.03745295 −1.04477829 −2.47659288
C 0.18254797 −0.69807759 −1.11826255
H 0.28514938 1.16839221 0.96400214
H 0.75639511 −1.82540739 1.40424856
H 0.91849833 −1.52094629 −4.35156435
C 1.07379568 −1.33648859 −3.2976265
C 1.43006145 −1.15498419 −0.53783399
C 1.60495816 −1.59813549 0.77354805
C 2.32633965 −1.38639749 −2.79496668
C 2.55422697 −1.25444789 −1.40860089
C 2.86980455 −1.75249889 1.27011413
H 3.00100497 −2.02587749 2.3081079
H 3.16356536 −1.53259479 −3.46154986
C 3.84179542 −1.31486749 −0.86926863
C 3.98953912 −1.57283209 0.46556843
S 4.7000000 0.0000000 0.00000000
H 4.71061388 −1.16675399 −1.49402462

END
SYMMETRY NOSYM
RELATIVISTIC Scalar ZORA
BASIS

type DZP
core Large
createOutput None

END
XC

LDA SCF VWN
END

eor
mv TAPE21 molecule . t21
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$ADFBIN/ adf << eor

#The molecule sandwiched between the contacts . The l e f t , molecule and r i g h t fragments
#are created .
TITLE Helicene_leads

ATOMS
Au −11.4111770 −6.6626120 0.00000000 f = l e f t
Au −11.4111780 −4.1641330 −1.44249800 f = l e f t
Au −11.4111780 −4.1641330 1.44249800 f = l e f t
Au −11.4111780 −1.6656530 −2.88499600 f = l e f t
Au −11.4111780 −1.6656530 0.00000000 f = l e f t
Au −11.4111780 −1.6656530 2.88499600 f = l e f t
Au −11.4111780 0.8328260 −1.44249800 f = l e f t
Au −11.4111780 0.8328260 1.44249800 f = l e f t
Au −11.4111780 3.3313060 0.00000000 f = l e f t
Au −9.0555890 −4.9969590 0.00000000 f = l e f t
Au −9.0555890 −2.4984800 −1.44249800 f = l e f t
Au −9.0555890 −2.4984800 1.44249800 f = l e f t
Au −9.0555890 0.0000000 −2.88499600 f = l e f t
Au −9.0555890 0.0000000 0.00000000 f = l e f t
Au −9.0555890 0.0000000 2.88499600 f = l e f t
Au −9.0555890 2.4984800 −1.44249800 f = l e f t
Au −9.0555890 2.4984800 1.44249800 f = l e f t
Au −9.0555890 4.9969590 0.00000000 f = l e f t
Au −6.7000000 −3.3313060 0.00000000 f = l e f t
Au −6.7000000 −0.8328260 −1.44249800 f = l e f t
Au −6.7000000 −0.8328260 1.44249800 f = l e f t
Au −6.7000000 1.6656530 −2.88499600 f = l e f t
Au −6.7000000 1.6656530 0.00000000 f = l e f t
Au −6.7000000 1.6656530 2.88499600 f = l e f t
Au −6.7000000 4.1641330 −1.44249800 f = l e f t
Au −6.7000000 4.1641330 1.44249800 f = l e f t
Au −6.7000010 6.6626120 0.00000000 f = l e f t
S −4.7000000 0.0000000 0.00000000 f =molecule
H −3.9260727 1.21683611 1.61512875 f =molecule
H −3.39406067 −0.72582719 −2.64968388 f =molecule
C −3.29478703 0.20446611 −0.14789025 f =molecule
C −3.08367615 0.93548501 1.00062926 f =molecule
C −2.39536074 −0.64609709 −2.24560618 f =molecule
C −2.20059157 −0.15766099 −0.94449996 f =molecule
C −1.78604267 1.30361751 1.35656767 f =molecule
H −1.63929661 1.95619161 2.205756 f =molecule
H −1.50293858 −1.29106249 −4.039812 f =molecule
C −1.33731274 −1.01548009 −3.00769203 f =molecule
C −0.88460388 0.00915171 −0.44371432 f =molecule
C −0.70448321 0.85822241 0.6582093 f =molecule
C −0.03745295 −1.04477829 −2.47659288 f =molecule
C 0.18254797 −0.69807759 −1.11826255 f =molecule
H 0.28514938 1.16839221 0.96400214 f =molecule
H 0.75639511 −1.82540739 1.40424856 f =molecule
H 0.91849833 −1.52094629 −4.35156435 f =molecule
C 1.07379568 −1.33648859 −3.2976265 f =molecule
C 1.43006145 −1.15498419 −0.53783399 f =molecule
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C 1.60495816 −1.59813549 0.77354805 f =molecule
C 2.32633965 −1.38639749 −2.79496668 f =molecule
C 2.55422697 −1.25444789 −1.40860089 f =molecule
C 2.86980455 −1.75249889 1.27011413 f =molecule
H 3.00100497 −2.02587749 2.3081079 f =molecule
H 3.16356536 −1.53259479 −3.46154986 f =molecule
C 3.84179542 −1.31486749 −0.86926863 f =molecule
C 3.98953912 −1.57283209 0.46556843 f =molecule
S 4.7000000 0.0000000 0.00000000 f =molecule
H 4.71061388 −1.16675399 −1.49402462 f =molecule
Au 6.7000000 −4.1641330 −1.44249800 f = r i g h t
Au 6.7000000 −4.1641330 1.44249800 f = r i g h t
Au 6.7000000 −1.6656530 −2.88499600 f = r i g h t
Au 6.7000000 −1.6656530 0.00000000 f = r i g h t
Au 6.7000000 −1.6656530 2.88499600 f = r i g h t
Au 6.7000000 0.8328260 −1.44249800 f = r i g h t
Au 6.7000000 0.8328260 1.44249800 f = r i g h t
Au 6.7000000 3.3313060 0.00000000 f = r i g h t
Au 6.7000010 −6.6626120 0.00000000 f = r i g h t
Au 9.0555890 4.9969590 0.00000000 f = r i g h t
Au 9.0555890 −4.9969590 0.00000000 f = r i g h t
Au 9.0555890 −2.4984800 −1.44249800 f = r i g h t
Au 9.0555890 −2.4984800 1.44249800 f = r i g h t
Au 9.0555890 0.0000000 −2.88499600 f = r i g h t
Au 9.0555890 0.0000000 0.00000000 f = r i g h t
Au 9.0555890 0.0000000 2.88499600 f = r i g h t
Au 9.0555890 2.4984800 −1.44249800 f = r i g h t
Au 9.0555890 2.4984800 1.44249800 f = r i g h t
Au 11.4111770 6.6626120 0.00000000 f = r i g h t
Au 11.4111780 4.1641330 1.44249800 f = r i g h t
Au 11.4111780 4.1641330 −1.44249800 f = r i g h t
Au 11.4111780 1.6656530 2.88499600 f = r i g h t
Au 11.4111780 −0.8328260 −1.44249800 f = r i g h t
Au 11.4111780 1.6656530 −2.88499600 f = r i g h t
Au 11.4111780 −0.8328260 1.44249800 f = r i g h t
Au 11.4111780 1.6656530 0.00000000 f = r i g h t
Au 11.4111780 −3.3313060 0.00000000 f = r i g h t

END
SYMMETRY NOSYM
RELATIVISTIC Scalar ZORA
FRAGMENTS

l e f t layer . t21
molecule molecule . t21
r i g h t layer . t21

END
XC

LDA SCF VWN
END

eor

mv TAPE21 fock . t21
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#The calculat ion of the DOS and transmission .
$ADFBIN/green << eor
DOS fock . t21
TRANS fock . t21
EPS −0.5 0 1000
ETA 1e−6
LEFT l e f t . kf

FRAGMENT l e f t
END
RIGHT r i g h t . kf

FRAGMENT r i g h t
END
NOSAVE DOS_B, TRANS_B
eor
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