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Abstract

Describing phylogenetic trees or networks with a polynomial is a tool to distinguish between them. In this
thesis, a new polynomial for describing rooted binary internally labeled phylogenetic networks and trees is
introduced based on the research of P. Liu [1] and J. Pons et al.[2]. Two different cases are considered, one
where the reticulation nodes have distinct labels λi and one where the reticulation nodes have the same
label λ. There are a few conjectures stated about the uniqueness of the polynomial and the relation of the
polynomial with the primary subtrees and their monomial. Also the folding and unfolding of a network is
described. Furthermore, an algorithm is provided with which a tree can be made out of different monomials.
With use of the lemma that states when a tree can be folded to a network, it can be determined if the tree can
be folded to a network.
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1
Introduction

A phylogenetic network is a graph which shows the evolutionary relationships between for example different
species. It is possible for an animal or plant to breed with an individual of another species, resulting in a new
species, we call this process hybridisation. Hybridisation leads to a node in the network with in-degree two
and out-degree one, which is called a reticulation node. When no hybridisation or other processes where
lineages combine take place, we speak of a phylogenetic tree.
In this thesis, a polynomial for describing a phylogenetic network is introduced. With this, one can compare
two networks. Also the distance between networks could be measured. The research done in this thesis is
based on the research that P. Liu [1] and J. Pons et al. [2] have done before. In his research P. Liu has introduced
a distinguishing polynomial that is a complete isomorphism invariant for trees, which is known as the Liu
polynomial. J. Pons et al. generalized the Liu polynomial for trees to define a polynomial invariant for rooted
phylogenetic networks. Also, a new class of phylogenetic networks, seperable networks, are introduced and
their extension of the Liu polynomial characterizes this class completely.
This thesis is structured as follows. In Chapter 2, the mathematical notation that is throughout the thesis
is introduced, among other things, a rooted binary internally labeled phylogenetic network is defined as a
rooted directed acyclic graph with no parallel arcs and with two labeling functions, a bijective one for the
leaves and a surjective one for the reticulation nodes. Then in Chapter 3, a new polynomial for describing
rooted binary internally labeled phylogenetic networks will be defined. The process of unfolding a rooted
binary internally labeled phylogenetic network to a rooted binary internally labeled phylogenetic tree, and
its reverse, folding a tree to recover the network will be stated in Chapter 4 in two different algorithms. After
that, primary subtrees, which are subtrees S of a tree T with the same root as T and at each node either all
children or none are part of the subtree, will be introduced and discussed in Chapter 5, also the polynomial
of a primary subtree which consists of only one term will be defined as a monomial. Finally, an algorithm to
find a tree from a set of monomials will be described in Chapter 6. Finally, a conclusion will be drawn and
recommendations for further research will be stated in the discussion.
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2
Definitions

The mathematical notation that is going to be used, will be introduced in this section.
Let X = {x1, x2, . . . , xn} denote a non-empty finite set, for which each x j , j ∈ {1,2, . . . ,n} is an irreducable poly-
nomial in Z[x1, x2, . . . , xn]. The labels of the leaves, in the networks used, are these x j , j ∈ {1,2, . . . ,n}. To start,
a phylogenetic network will be defined.

Definition 1. A rooted binary phylogenetic network N = (V ,E) on X , or simply a phylogenetic network on X , is
a rooted directed acyclic graph with no parallel arcs satisfying the following conditions:

(i) any node with out-degree zero (a leaf ) has in-degree one, and the set of nodes with out-degree zero,
denoted by L(N ), is identified with X via a bijection ϕ : L(N ) → X ;

(ii) the root is the only node with in-degree zero, and has out-degree two;

(iii) any other node has either in-degree one and out-degree two (a tree node), or in-degree two and out-
degree one (a reticulation node).

Now that it is clear what a phylogenetic network is, it will be defined when a phylogenetic network is
internally labeled.

Definition 2. A rooted binary internally labeled phylogenetic network N = (V ,E) on X , is a rooted binary phy-
logenetic network with a surjective labeling function l on the set of reticulation nodes R(N ):

l : R(N ) → {λ1,λ2, . . . ,λr }

These λi , i ∈ {1,2, . . . ,r } are irreducible polynomials in Z[x1, x2, . . . , xn ,λ1,λ2, . . . ,λr ].

Not only will networks be discussed, also a look will be taken on trees, which brings us to the next definition.

Definition 3. A rooted binary internally labeled phylogenetic tree T = (V ,E) on X , is a rooted directed acyclic
graph with no parallel arcs satisfying the following conditions:

(i) any node with out-degree zero (a leaf ) has in-degree one, and the set of nodes with out-degree zero,
denoted by L(N ), is identified with X via surjection ϕ : L(N ) → X ;

(ii) the root is the only node with in-degree zero, and it can have out degree one (an elementary node), or
two (a tree node);

(iii) any other node has either in-degree one and out-degree two (a tree node) or in-degree one and out-
degree one (also an elementary node);

(iv) if E(N ) denotes the set of elementary nodes of N , then there is a labeling function l : E(N ) → {λ1,λ2, . . . ,λr }.

Note that in a tree, leaves and elementary nodes with the same label can occur multiple times unlike in net-
works. Next, we will define when two networks are isomorphic. In order to do this, we use the notation
(V ,E ,ϕ) for a phylogenetic network and (V ,E ,ϕ, l ) for an internally labeled phylogenetic network.

2



3

Definition 4. Two phylogenetic networks N1 = (V1,E1,ϕ1) and N2 = (V2,E2,ϕ2) on X are isomorphic (N1 ≃ N2)
if there exists a bijection f : V1 → V2 such that ϕ1(x) = ϕ2( f (x)) for all x ∈ L(N1), and (u, v) ∈ E1 if and only if
( f (u), f (v)) ∈ E2.

Definition 5. Two internally labeled phylogenetic networks N1 = (V1,E1,ϕ1, l1) and N2 = (V2,E2,ϕ2, l2) on X
are isomorphic (N1 ≃ N2) if there exists a bijection f : V1 → V2 such that ϕ1(x) = ϕ2( f (x)) for all x ∈ L(N1),
l1(x) = l2( f (x)) for all x ∈ R(N1) and (u, v) ∈ E1 if and only if ( f (u), f (v)) ∈ E2.



3
Polynomial

In this chapter, a polynomial for describing a phylogenetic network will be introduced.

3.1. Reticulation nodes with distinct labels
Let N be an internally labeled phylogenetic network with bijective labelling function l of the reticulations.
Then, consider

p : V (N ) →Z[x1, x2, . . . , xn ,λ1,λ2, . . . ,λr , y]

to be defined recursively as follows. Let u ∈V (N ), then:

• if u is a leaf, p(u) =ϕ(u);

• if u is an internal tree node whose children are v1, v2, then p(u) = y + p(v1)p(v2);

• otherwise, i.e. if u has only one child v , then p(u) = l (u) + p(v)

Finally, the polynomial of the network p(N ) is equal to p(ρ), where ρ is the root of N .
We refer to the polynomial as defined above as the new polynomial. The polynomial which is devised by
Pons et al. is considered as the Pons polynomial. The Pons polynomial is similar to the new polynomial, the
difference with the new polynomial is found in the last part of the definition. Where in the new polynomial,
the polynomial of u with only one child v is defined as p(u) = l (u) + p(v), Pons has defined this as p(u) =
l (u)p(v). Now we determine the new polynomial for two networks from Figure 3.1 which are inspired by the

x1 x2

u6
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λ2λ1

u3

λ3 λ4

u4 u5

u2

u1

x1 x2

u6
x3

λ2λ1

u3

λ3 λ4

u4 u5

u2

u1

N1 N2

Figure 3.1: Two networks

networks from [2] for which the Pons polynomial is equal (Appendix B).
For network N1, the polynomial at all nodes will be described. The polynomial for network N2 is obtained the
same way. To start, the polynomial at the leaves is going to be determined, they have label x j , j = 1,2,3,4, so
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3.2. Reticulation nodes with the same label 5

that is their polynomial. Then,

p(u6) = x1x2 + y,

p(λ1) = x1x2 + y +λ1, p(λ2) =λ2 + x3,

p(λ3) =λ2 +λ3 + x3, p(λ4) = x1x2 + y +λ1 +λ4,

p(u3) = y + (x1x2 + y +λ1)(λ2 +λ3 + x3), p(u4) = y + (x1x2 + y +λ1 +λ4)(λ2 +λ3 + x3),

p(u5) = y + (x1x2 + y +λ1 +λ4)(λ2 + x3), p(u2) = (y + (x1x2 + y +λ1 +λ4)(λ2 +λ3 + x3))(y + (x1x2 + y +λ1 +λ4)(λ2 + x3)) + y

and finally,
p(N1) = p(u1) = y +(y +(x1x2 + y +λ1)(λ2 +λ3 +x3))((y +(x1x2 + y +λ1 +λ4)(λ2 +λ3 +x3))(y +(x1x2 + y +λ1 +λ4)(λ2 +
x3)) + y).

For network N2, the polynomial
p(N2) = p(u1) = y + (y + (x1x2 + y +λ1 +λ3)(λ2 + x3))((y + (x1x2 + y +λ1 +λ3)(x3 +λ2 +λ4))(y + (x1x2 + y +λ1)(x3 +
λ2 +λ4)) + y) is obtained.
When the obtained polynomials are expanded (Appendix A) and subtracted from eachother, the result (Ap-
pendix A) is unequal to zero so the polynomials are different.

3.2. Reticulation nodes with the same label
For phylogenetic networks, it is also interesting to look at the case when the labels of the reticulation nodes
are all the same.
When we consider an internally labeled phylogenetic network N with non-unique labels of the reticulation
nodes, so all the reticulation nodes have label λ. Then, consider

p : V (N ) →Z[x1, x2, . . . , xn ,λ, y]

to be defined recursively as follows. Let u ∈V (N ), then:

• if u is a leaf, p(u) =ϕ(u);

• if u is an internal tree node whose children are v1, v2, p(u) = y + p(v1)p(v2);

• otherwise, i.e. if u has only one child v , then p(u) =λ+ p(v)

When looking at the networks from Figure 3.1 and replacing the λi with λ, the polynomials
p(N1) = p(u1) = y + (y + (x1x2 +λ+ y)(2λ+ x3))((y + (x1x2 + 2λ+ y)(2λ+ x3))(y + (x1x2 + 2λ+ y)(λ+ x3)) + y) and
p(N2) = p(u1) = y + (y + (x1x2 + 2λ+ y)(λ+ x3))((y + (x1x2 + 2λ+ y)(2λ+ x3))(y + (x1x2 +λ+ y)(2λ+ x3)) + y)) are
obtained for networks N1 and N2.
When these polynomials are expanded (Appendix A) and subtracted, the result equals λx1x2 y −λx3 y +λy2,
which is obviously not equal to zero, so the polynomials are still different. In Chapter 5, it will be discussed
how this difference can be interpreted.



4
Folding and Unfolding

In this chapter, the unfolding and folding algorithms will be introduced. Furthermore, the uniqueness of
folding and unfolding will be discussed.

4.1. Unfolding a phylogenetic network
To start, the set Rmi n(N ) will be introduced. This is the set of reticulation nodes of a rooted binary internally
labeled phylogenetic network N , such that none of its descendants are reticulation nodes theirselves. In each
repetition of the algorithm, the set Rmi n(N ) will be updated.

4.1.1. Unfolding algorithm
Let N be a rooted binary internally labeled phylogenetic network, and let Rmi n(N ) be as described above.
Then:

1. take u ∈ Rmi n(N ), let v1, v2 be its parents;

2. delete the edge (v2,u);

3. duplicate the rooted binary internally labeled phylogenetic tree that is rooted at u;

4. add an edge from v2 to the copied u, i.e. the u which has no incoming edge;

5. update the set Rmi n(N );

(a) if Rmi n(N ) ̸= ;, go to the first step.

(b) if Rmi n(N ) = ;, the network is completely unfolded, the result is a rooted binary internally labeled
phylogenetic tree.

We define U (N ,u) as the result of the unfolding at node u of network N and U (N ) as the completely unfolded
network. When there is more than one node in Rmi n(N ) say u1 and u2, the order of unfolding does not matter,
i.e. U (U (N ,u1),u2) = U (U (N ,u2),u1). [2]

4.1.2. Examples of unfolding
In this part, the network from Figure 4.1(a) will be unfolded using the algorithm above, resulting in the tree
from Figure 4.1(c).
Starting with the algorithm, it can be seen that Rmi n = {λ2}, thus we take λ2. Now, the edge (u5,λ2) will be
deleted (marked purple in Figure 4.1(a)). Then, the tree rooted at λ2 is copied, this copy is marked green in
Figure 4.1(b). Next, an edge between the copy of λ2 and u5 is added (marked orange in Figure 4.1(b)). An
update on Rmi n is performed, resulting Rmi n = {λ1}. This is not empty so another repetion of the algorithm
needs to be done. First, we delete the edge (u3,λ1) (marked purple in Figure 4.1(b)). Then, the tree rooted
at λ1 is copied (marked green in Figure 4.1(c)). Finally, the edge from u3 to the copy of λ1 is added, marked
orange in Figure 4.1(c). Updating Rmi n results in the empty set thus the network is completely unfolded.
The unfolded networks from Figure 3.1 are shown in Figure 4.2, these will be used in Chapter 5.
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4.2. Folding a phylogenetic network 7
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Figure 4.1: Unfolding a network to a tree
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Figure 4.2: Unfoldings of N1 and N2

4.2. Folding a phylogenetic network
Let E(M) be the set of elementary nodes of a (partially) unfolded network M . Now we define an order in this
set. Let u, v ∈ E(M), then u ≤E v if and only if there exist u′, v ′ ∈ E(M) with l (u) = l (u′) and l (v) = l (v ′) and u
is a descendant of v , i.e. there is a path from v to u. The set of elementary nodes that are maximal under this
order is called Emax (M). [2] We define the subnetwork with the node u as the root as M(u)

4.2.1. Folding algorithm
Let M be a (partially) unfolded rooted binary internally labeled phylogenetic network, and let Emax (M) be as
described above. Then:

1. consider the nodes u, v ∈ Emax (M) such that l (u) = l (v) and M(u) = M(v) and let w be the parent of v ;

2. delete both M(v) and the edge (w, v);

3. add an edge from w to u, a reticulation node is formed;

4. update the set Emax (M);

(a) if Emax ̸= ;, go to the first step.

(b) if Emax (M) = ;, the (partially) unfolded network is completely folded, the result is a rooted binary
internally labeled phylogenetic network.

Note that M can be a rooted binary internally labeled phylogenetic tree the first time you start at the first step,
after that it is not a tree anymore, since there is at least one reticulation node. We define F (M ,u) as the result
of the folding at node u of network M and F (M) as the result of the algorithm with input M . Also, just as with
unfolding, the order of folding does not matter.

4.2.2. Examples of folding
In this part, the tree from Figure 4.3(a) will be folded using the algorithm above, resulting in the network from
Figure 4.3(c). Suppose that l (u) = l (v) =λ1 and l (u′) = l (v ′) =λ2.
Starting with the algorithm, Emax = {u, v} and u3 is the parent of v . Now, the subnetwork M(v) and the edge
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Figure 4.3: Folding a tree to a network

(u3, v) (purple in Figure 4.3(a)) will be deleted. Then, the edge (u3,u) (orange in Figure 4.3(b)) is added and
the reticulation node will be named the same as its label. Next, the set Emax is updated and becomes{u′, v ′}.
Starting at step one again, the node u5 is the parent of v ′. Then the subnetwork M(v ′) and the edge (u5, v ′)
(purple in Figure 4.3(b)) are deleted. Finally, the edge (u5,u′) (orange in Figure 4.3(c)) is added and we name
the new reticulation node equal to its label. Now, if the set Emax is updated, it is equal to the empty set, thus
the tree is completely folded.

4.3. Uniqueness of folding and unfolding
As seen in the paper from Pons et al. ([2]), an internally labeled phylogenetic network can be unfolded such
that the obtained internally labeled phylogenetic tree is unique for the network. So that the tree can be folded
back to the network. This is stated in the following theorem which can be found in that paper.

Theorem 1. [2] Let N be a rooted binary internally labeled phylogenetic network. Then

N = F (U (N ))

Note that the elementary nodes of the unfolded network correspond with the reticulation nodes of the orig-
inal network. Since the subnetwork under each reticulation node of a network is considered twice when
defining its polynomial, this results in the following.

Observation 1. The polynomial of a rooted binary internally labeled phylogenetic network N is equal to the
polynomial of its unfolding U (N ), i.e. p(N ) = p(U (N )).

Something similar has been found for the Pons polynomial ([2]).
Now, it is interesting to see when a rooted binary internally labeled phylogenetic tree can be folded to an
rooted binary internally labeled phylogenetic network. This is stated in the next lemma.

Lemma 1. If a rooted binary internally labeled phylogenetic tree with distinct labels can be folded to a rooted
binary internally labeled phylogenetic network, then for each labelλi , i = 1,2, . . . ,r , the number of elementary
nodes with label λi is equal to 2+ the number of ancestor elementary nodes with distinct label λ j , with i ̸= j .

Proof. When there is only one λ, say λ1, then a folding operation can only be done if there are 2 elementary
nodes u, v with label λ1 and M(u) = M(v). Otherwise, the folding cannot be done, i.e. the number of elemen-
tary nodes with label λ1 must equal 2 to be able to fold.
Now suppose that there are multiple differentλi . If the nodes with these labels are not ancestors of eachother,
then all these λi are in Emax and the order of the folding does not matter. It can be seen as repeating the fold-
ing of one label λi . In this case, again, all the labels λi must be present twice to be able to fold.
Now, let multiple different λi be ancestors of eachother. Then the label of the elementary node closest to the
root, must be present twice to be able to fold. Then when the folding operation is done, a copy of everything
below (including other elementary nodes) is deleted. So with every folding step, a copy of every elemen-
tary node with the same label is deleted. This means that to be able to fold all the elementary nodes, the
label needs to be present as many times as a folding operation deletes a copy plus two, which is equal to the
amount of different labels as ancestor plus two.

It is useful to know when a tree can be folded back to a network. For example, when looking at Figure 4.4 from
[2], these three trees have the same Pons polynomial, but they cannot be all folded to a network by Lemma 1,
so they cannot be unfoldings from networks with the same Pons polynomial.
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Figure 4.4: Three trees with the same Pons polynomial



5
Primary subtrees and distance between

networks

In this chapter, primary subtrees, their relation with the polynomial of a network and the difference and
distance between two networks will be discussed. In this chapter, only the networks and trees with one label
for all the reticulation nodes and elementary nodes will be considered.

5.1. Primary subtrees
When looking at an internally labelled phylogenetic tree which is an unfolded internally labelled phylogenetic
network, we can describe primary subtrees in the following way.

Definition 6. A primary subtree S of a tree T is a rooted subtree of T , such that S shares the same root with T
and any leaf node of T is either a leaf node of S or a descendant of a leaf node of S. Let ST be the set of all the
primary subtrees of tree T .[1]

Now that primary subtrees are defined, we can define the monomial for a primary subtree.

Definition 7. The monomial for a primary subtree S of a tree T , is a polynomial of the form q(S) =λαyγ
∏n

j =1 x
β j

j ,

where:

• α+γ+
∑n

j =1β j equals the number of leaves of the primary subtree S;

• α equals the number of leaves of the primary subtree S that are elementary nodes in the tree T ;

• each β j equals the number of leaves of the primary subtree S that are leaves labeled x j in the tree T ,
similarly,

∑n
j =1β j equals the number of leaves of the primary subtree S that are also leaves in the tree T ;

• γ are the number of leaves of the primary subtree S that are tree nodes in the tree T .

Note that the α,β j and γ could also be equal to zero.
Also note that the monomials can be determined for networks with distinct λ. Then λα becomes λαi

i , with

i = 1,2, . . . ,r and monomial becomes q(S) = yγ(
∏r

i =1λ
αi
i )(

∏n
j =1 x

β j

j ). The total number of leaves of the primary

subtree S equals γ+ (
∑r

i =1αi ) + (
∑n

j =1β j ) and the interpretation of the αi is similar to the interpretation of the
β j . In Figure 5.1 a tree T and two of its primary subtrees S1,S2 are shown. The primary subtree in Figure
5.1(b) has monomial q(S1) =λ2x1x4 y , the primary subtree in Figure 5.1(c) has monomial q(S2) =λx1x2

2 x3 y .

5.2. Relation between primary subtrees and the polynomial of a network
In the paper of Liu [1], a polynomial for unlabeled rooted trees is defined. In this section, a few conjectures
are stated for the new polynomial which are similar to what Liu proved for unlabeled rooted trees.

Conjecture 1. p(T ) =
∑

S∈ST q(S). i.e. the sum of all the monomials of primary subtrees S of a rooted binary
internally labeled phylogenetic tree T is equal to the polynomial of the tree.

10
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λ
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(c)(b)(a)

Figure 5.1: A tree and two of its primary subtrees

From Conjecture 1, the following would follow directly;

Conjecture 2. Let T be a rooted binary internally labeled phylogenetic tree. Suppose p(T ) has m terms and
a1, a2, . . . , am are the corresponding coefficients, then T has

∑m
i =1 ai primary subtrees.

Conjecture 2 tells us that the coefficient before every term of the polynomial is equal to the number of primary
subtrees with that polynomial. The following conjecture states that equal polynomials are from equal trees
and the other way around.

Conjecture 3. Let T1 and T2 be two rooted binary internally labeled phylogenetic trees. T1 ≃ T2 if and only if
p(T1) = p(T2).

Since Observation 1 told us that the polynomial of a network is equal to the polynomial of its unfolding and
since the unfolding of a network is a tree, from Conjecture 3 it follows that the polynomial of a network is
unique. This is stated in the following conjecture.

Conjecture 4. Let N1 and N2 be two rooted binary internally labeled phylogenetic networks. N1 ≃ N2 if and
only if p(N1) = p(N2).

5.2.1. Difference between two networks
From Conjecture 4 it can be seen that the difference between two networks can be seen in the difference of
their primary subtrees. Now, we take a look at the difference between N1 and N2 from Figure 3.1 and we use
the unfoldings of these networks from Figure 4.2, but then with one label λ. The difference of these polyno-
mials was λx1x2 y −λx3 y +λy2, in Appendix A the corresponding monomials are bold. In Figure 5.2, primary
subtrees with monomial λx1x2 y are shown. In Figure 5.3 and Figure 5.4, the primary subtrees with monomial
λx3 y and λy2 are shown. Indeed, it is seen that the primary subtrees of the unfolded networks correspond
with the terms of the polynomial and that the coefficient is equal to the number of primary subtrees with the
same monomial.

5.2.2. Distance between two networks
Now that we have seen the difference between two networks, it is useful to assign a number to this, to create
an order in the differences. We introduce two different ways to measure the distance between two networks.
For both of the distances, the first step is to subtract the two different polynomials from the networks from
each other resulting a polynomial of the form p =

∑m
i =1 ai q(S) .

Now we define the first distance D1(N , M) as the sum of the absolute values of the coefficients of p(N )−p(M),
i.e. D1(N , M) =

∑m
i =1|ai |.

We define the second distance D2(N , M) as the square root of the sum of the coefficients of p(N )− p(M)

squared, i.e. D2(N , M) =
√∑m

i =1 a2
i .

Note that it does not matter which polynomial is subtracted from the other since the coefficients will be
squared or the absolute value will be taken so the sign of the coefficient does not matter.
For the networks N1 and N2 from Figure 3.1, the obtained differences are D1(N1, N2) = 1 + 1 + 1 = 3 and

D2(N1, N2) =
√

(1)2 + (−1)2 + (1)2 =
p

3.
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Figure 5.2: Primary subtrees of N1 and N2 with monomial λx1x2 y
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6
Algorithm

In this chapter, an algorithm to make an unfolded network from the sum of monomials will be introduced.

Assume that there are several different trees found and that those trees share the same root node. Then,
the monomial of all these trees can be found. With the algorithm described in this chapter, it is possible to
rewrite the polynomial such that the unfolded network it describes can be found. After using the algorithm,
the list needs to be rewritten to a polynomial. We start with replacing all the square brackets with round
brackets and deleting all the commas, when there are two opening brackets next to each other, y+ is written
in between.

Data: list with only entry the sum of monomials, i.e. polynomial
Result: list which can be rewritten to a factorized polynomial
while polynomial ̸= 0 do

Factorise polynomial minus y;
if result is a factor ab then

delete the polynomial and insert [a],[b] at the place of the deleted polynomial;
[a] becomes the polynomial;

else
if current entry is not the last then

next entry is polynomial;
else

polynomial=0.
end

end
end

Algorithm 1: From sum of monomials to list

In Appendix B, this algorithm is used on the expanded polynomial of N2 from Figure 3.1. The resulting lists
are as follows;
Start: [4λ3x3

1 x3
2+8λ2x3

1 x3
2 x3+5λx3

1 x3
2 x2

3+x3
1 x3

2 x3
3+20λ4x2

1 x2
2+40λ3x2

1 x2
2 x3+12λ3x2

1 x2
2 y+25λ2x2

1 x2
2 x2

3+24λ2x2
1 x2

2 x3 y+
5λx2

1 x2
2 x3

3+15λx2
1 x2

2 x2
3 y+3x2

1 x2
2 x3

3 y+32λ5x1x2+64λ4x1x2x3+40λ4x1x2 y+40λ3x1x2x2
3+80λ3x1x2x3 y+12λ3x1x2 y2+

8λ2x2
1 x2

2 y +8λ2x1x2x3
3 +50λ2x1x2x2

3 y +24λ2x1x2x3 y2 +10λx2
1 x2

2 x3 y +10λx1x2x3
3 y +15λx1x2x2

3 y2 +3x2
1 x2

2 x2
3 y +

3x1x2x3
3 y2+16λ6+32λ5x3+32λ5 y+20λ4x2

3 +64λ4x3 y+20λ4 y2+26λ3x1x2 y+4λ3x3
3 +40λ3x2

3 y+40λ3x3 y2+4λ3 y3+
33λ2x1x2x3 y + 16λ2x1x2 y2 + 8λ2x3

3 y + 25λ2x2
3 y2 + 8λ2x3 y3 + 10λx1x2x2

3 y + 20λx1x2x3 y2 + 5λx3
3 y2 + 5λx2

3 y3 +
6x1x2x2

3 y2 + x3
3 y3 + 20λ4 y + 26λ3x3 y + 26λ3 y2 + 8λ2x2

3 y + 33λ2x3 y2 + 8λ2 y3 + 5λx1x2 y2 + 10λx2
3 y2 + 10λx3 y3 +

3x1x2x3 y2 + 3x2
3 y3 + 8λ2 y2 +λx1x2 y + 5λx3 y2 + 5λy3 + x1x2x3 y + 3x3 y3 + 2λ2 y + 2λx3 y +λy2 + x3 y2 + y3 + y2 + y]

Iteration 1: [[λx1x2 +x1x2x3 +2λ2 +2λx3 +λy +x3 y + y], [4λ2x2
1 x2

2 +4λx2
1 x2

2 x3 +x2
1 x2

2 x2
3 +12λ3x1x2 +12λ2x1x2x3 +

8λ2x1x2 y +3λx1x2x2
3 +8λx1x2x3 y +2x1x2x2

3 y +8λ4 +8λ3x3 +12λ3 y +2λ2x2
3 +12λ2x3 y +4λ2 y2 +4λx1x2 y +3λx2

3 y +
4λx3 y2 + 2x1x2x3 y + x2

3 y2 + 6λ2 y + 3λx3 y + 4λy2 + 2x3 y2 + y2 + y]]
Iteration 2: [[[λ+x3], [x1x2+2λ+y]], [4λ2x2

1 x2
2+4λx2

1 x2
2 x3+x2

1 x2
2 x2

3+12λ3x1x2+12λ2x1x2x3+8λ2x1x2 y+3λx1x2x2
3+

8λx1x2x3 y +2x1x2x2
3 y +8λ4 +8λ3x3 +12λ3 y +2λ2x2

3 +12λ2x3 y +4λ2 y2 +4λx1x2 y +3λx2
3 y +4λx3 y2 +2x1x2x3 y +

x2
3 y2 + 6λ2 y + 3λx3 y + 4λy2 + 2x3 y2 + y2 + y]]

15
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Iteration 3:[[[λ+ x3], [x1x2 +2λ+ y]], [[2λx1x2 + x1x2x3 +4λ2 +2λx3 +2λy + x3 y + y], [2λx1x2 + x1x2x3 +2λ2 +λx3 +
2λy + x3 y + y]]]
Iteration 4: [[[λ+ x3], [x1x2 + 2λ+ y]], [[[2λ+ x3], [x1x2 + 2λ+ y]], [2λx1x2 + x1x2x3 + 2λ2 +λx3 + 2λy + x3 y + y]]]
Iteration 5:[[[λ+ x3], [x1x2 + 2λ+ y]], [[[2λ+ x3], [x1x2 + 2λ+ y]], [[x1x2 +λ+ y], [2λ+ x3]]]]
When rewriting this last step, we obtain; (y +(y +(λ+x3)(x1x2 +2λ+ y))(y +(y +(2λ+x3)(x1x2 +2λ+ y))(y +(x1x2 +
λ+ y)(2λ+ x3)))).
With this polynomial it is possible to find U (N2) from Figure 4.2 with each λi replaced by λ. For every y , a
tree node is made, if the polynomial minus y results in a factor, with each of the factors as the polynomial of a
child. For every λ an elementary node is made and for each xi a leaf is made. Note that the leaves are the last
ones made and that a tree node is only made if the polynomial minus y results in a factor. In Figure 6.1 some
of the steps for the polynomial above are worked out.
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λλ

u

λ λ

u u

u

u
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λ
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λ
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(y + (2λ+ x3)(y + 2λ+ x1x2))

Figure 6.1: Finding U (N2) from the obtained polynomial



7
Conclusion

In this thesis, a new polynomial for describing a rooted binary internally labeled phylogenetic network was
introduced for networks with reticulation nodes with distinct labels λi and for networks with reticulation
nodes with the same label λ, which was inspired by the paper from Pons et al. [2].

Then, two different algorithms were defined for unfolding rooted binary phylogenetic networks and fold-
ing rooted binary phylogenetic trees. A look was taken at the uniqueness of folding and unfolding and it was
found that the polynomial of a rooted binary internally labeled phylogenetic network is equal to the polyno-
mial of its unfolding, which is actually a rooted binary internally labeled phylogenetic tree. Lemma 1 tells us
when a rooted binary internally labeled phylogenetic tree can be folded to a rooted binary internally labeled
network, which is useful to determine whether different trees could be folded to the same network.

Next, primary subtrees and monomials were defined and their relation with the polynomial of a network
was observed. This leaded to four conjectures about the relation between monomials and the polynomial of
a tree and the uniqueness of the polynomials of trees and networks. Then, the difference between two net-
works was observed by the different primary subtrees. Also, the distance between two networks was defined
in two different ways.

Finally, an algorithm was made with which it is possible to find an unfolded network back from the sum
of monomials. When a few primary subtrees with the same root node are known, it is possible to find out if
these can form a rooted binary internally labeled tree. If they can form a tree, Lemma 1 provides a necessary
condition for whether the tree can be folded to a rooted binary internally labeled phylogenetic network.
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8
Discussion

In this thesis, a few conjectures were stated in Chapter 5 which are not proven yet. For further research it is
useful to prove these conjectures, since for the difference and distance between networks and for the algo-
rithm, they are assumed to be true. It is likely that they could be proven by adjusting the proofs in the paper
from Liu [1].

Furthermore, it is interesting to see what happens when a look is taken at rooted binary networks (so net-
works without internal labels). In that case, reticulation nodes are allowed, but they are not labeled so only
the leaves are labeled. In that case, it is suggested that the polynomial for a node u with only one child v is
defined as p(u) = y + p(v). Is the polynomial still unique or are there different networks with the same poly-
nomial?

In this research, elementary nodes were not allowed in the rooted binary internally labeled networks. What
would the effect of allowing them be on the polynomial? When they are labeled in the same way as the retic-
ulation nodes, would the folding and unfolding operations still be possible and is it then still true that the
folding of the unfolding of a network equals the network?
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Polynomials
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In this Appendix, the expanded polynomials of the networks N1 and N2 from Figure 3.1 are stated. The sub-
script of p shows if distinct λi or one λ is used.

pλi (N1) = x3
1 x3

2 x3
3 + 3x3

1 x3
2 x2

3 λ2 + 2x3
1 x3

2 x2
3λ3 + 3x3

1 x3
2 x3λ

2
2 + 4x3

1 x3
2 x3λ2λ3 + x3

1 x3
2 x3λ

2
3 + x3

1 x3
2λ

3
2 + 2x3

1 x3
2λ

2
2λ3

+ x3
1 x3

2λ2λ
2
3 + 3x2

1 x2
2 x3

3 y + 3x2
1 x2

2 x3
3λ1 + 2x2

1 x2
2 x3

3λ4 + 9x2
1 x2

2 x2
3 yλ2 + 6x2

1 x2
2 x2

3 yλ3 + 9x2
1 x2

2 x2
3λ1λ2

+ 6x2
1 x2

2 x2
3λ1λ3 + 6x2

1 x2
2 x2

3λ2λ4 + 4x2
1 x2

2 x2
3λ3λ4 + 9x2

1 x2
2 x3 yλ2

2 + 12x2
1 x2

2 x3 yλ2λ3 + 3x2
1 x2

2 x3 yλ2
3

+ 9x2
1 x2

2 x3λ1λ
2
2 + 12x2

1 x2
2 x3λ1λ2λ3 + 3x2

1 x2
2 x3λ1λ

2
3 + 6x2

1 x2
2 x3λ

2
2λ4 + 8x2

1 x2
2 x3λ2λ3λ4 + 2x2

1 x2
2 x3λ

2
3λ4

+ 3x2
1 x2

2 yλ3
2 + 6x2

1 x2
2 yλ2

2λ3 + 3x2
1 x2

2 yλ2λ
2
3 + 3x2

1 x2
2λ1λ

3
2 + 6x2

1 x2
2λ1λ

2
2λ3 + 3x2

1 x2
2λ1λ2λ

2
3 + 2x2

1 x2
2λ

3
2λ4

+ 4x2
1 x2

2λ
2
2λ3λ4 + 2x2

1 x2
2λ2λ

2
3λ4 + 3x2

1 x2
2 x2

3 y + 6x2
1 x2

2 x3 yλ2 + 4x2
1 x2

2 x3 yλ3 + 3x2
1 x2

2 yλ2
2 + 4x2

1 x2
2 yλ2λ3

+ x2
1 x2

2 yλ2
3 + 3x1x2x3

3 y2 + 6x1x2x3
3 yλ1 + 4x1x2x3

3 yλ4 + 3x1x2x3
3λ

2
1 + 4x1x2x3

3λ1λ4 + x1x2x3
3λ

2
4

+ 9x1x2x2
3 y2λ2 + 6x1x2x2

3 y2λ3 + 18x1x2x2
3 yλ1λ2 + 12x1x2x2

3 yλ1λ3 + 12x1x2x2
3 yλ2λ4 + 8x1x2x2

3 yλ3λ4

+ 9x1x2x2
3λ

2
1λ2 + 6x1x2x2

3λ
2
1λ3 + 12x1x2x2

3λ1λ2λ4 + 8x1x2x2
3λ1λ3λ4 + 3x1x2x2

3λ2λ
2
4 + 2x1x2x2

3λ3λ
2
4

+ 9x1x2x3 y2λ2
2 + 12x1x2x3 y2λ2λ3 + 3x1x2x3 y2λ2

3 + 18x1x2x3 yλ1λ
2
2 + 24x1x2x3 yλ1λ2λ3

+ 6x1x2x3 yλ1λ
2
3 + 12x1x2x3 yλ2

2λ4 + 16x1x2x3 yλ2λ3λ4 + 4x1x2x3 yλ2
3λ4 + 9x1x2x3λ

2
1λ

2
2

+ 12x1x2x3λ
2
1λ2λ3 + 3x1x2x3λ

2
1λ

2
3 + 12x1x2x3λ1λ

2
2λ4 + 16x1x2x3λ1λ2λ3λ4 + 4x1x2x3λ1λ

2
3λ4

+ 3x1x2x3λ
2
2λ

2
4 + 4x1x2x3λ2λ3λ

2
4 + x1x2x3λ

2
3λ

2
4 + 3x1x2 y2λ3

2 + 6x1x2 y2λ2
2λ3 + 3x1x2 y2λ2λ

2
3

+ 6x1x2 yλ1λ
3
2 + 12x1x2 yλ1λ

2
2λ3 + 6x1x2 yλ1λ2λ

2
3 + 4x1x2 yλ3

2λ4 + 8x1x2 yλ2
2λ3λ4 + 4x1x2 yλ2λ

2
3λ4

+ 3x1x2λ
2
1λ

3
2 + 6x1x2λ

2
1λ

2
2λ3 + 3x1x2λ

2
1λ2λ

2
3 + 4x1x2λ1λ

3
2λ4 + 8x1x2λ1λ

2
2λ3λ4 + 4x1x2λ1λ2λ

2
3λ4

+ x1x2λ
3
2λ

2
4 + 2x1x2λ

2
2λ3λ

2
4 + x1x2λ2λ

2
3λ

2
4 + 6x1x2x2

3 y2 + 6x1x2x2
3 yλ1 + 4x1x2x2

3 yλ4 + 12x1x2x3 y2λ2

+ 8x1x2x3 y2λ3 + 12x1x2x3 yλ1λ2 + 8x1x2x3 yλ1λ3 + 8x1x2x3 yλ2λ4 + 5x1x2x3 yλ3λ4 + 6x1x2 y2λ2
2

+ 8x1x2 y2λ2λ3 + 2x1x2 y2λ2
3 + 6x1x2 yλ1λ

2
2 + 8x1x2 yλ1λ2λ3 + 2x1x2 yλ1λ

2
3 + 4x1x2 yλ2

2λ4

+ 5x1x2 yλ2λ3λ4 + x1x2 yλ2
3λ4 + x3

3 y3 + 3x3
3 y2λ1 + 2x3

3 y2λ4 + 3x3
3 yλ2

1 + 4x3
3 yλ1λ4 + x3

3 yλ2
4 + x3

3λ
3
1

+ 2x3
3λ

2
1λ4 + x3

3λ1λ
2
4 + 3x2

3 y3λ2 + 2x2
3 y3λ3 + 9x2

3 y2λ1λ2 + 6x2
3 y2λ1λ3 + 6x2

3 y2λ2λ4 + 4x2
3 y2λ3λ4

+ 9x2
3 yλ2

1λ2 + 6x2
3 yλ2

1λ3 + 12x2
3 yλ1λ2λ4 + 8x2

3 yλ1λ3λ4 + 3x2
3 yλ2λ

2
4 + 2x2

3 yλ3λ
2
4 + 3x2

3λ
3
1λ2

+ 2x2
3λ

3
1λ3 + 6x2

3λ
2
1λ2λ4 + 4x2

3λ
2
1λ3λ4 + 3x2

3λ1λ2λ
2
4 + 2x2

3λ1λ3λ
2
4 + 3x3 y3λ2

2 + 4x3 y3λ2λ3 + x3 y3λ2
3

+ 9x3 y2λ1λ
2
2 + 12x3 y2λ1λ2λ3 + 3x3 y2λ1λ

2
3 + 6x3 y2λ2

2λ4 + 8x3 y2λ2λ3λ4 + 2x3 y2λ2
3λ4 + 9x3 yλ2

1λ
2
2

+ 12x3 yλ2
1λ2λ3 + 3x3 yλ2

1λ
2
3 + 12x3 yλ1λ

2
2λ4 + 16x3 yλ1λ2λ3λ4 + 4x3 yλ1λ

2
3λ4 + 3x3 yλ2

2λ
2
4

+ 4x3 yλ2λ3λ
2
4 + x3 yλ2

3λ
2
4 + 3x3λ

3
1λ

2
2 + 4x3λ

3
1λ2λ3 + x3λ

3
1λ

2
3 + 6x3λ

2
1λ

2
2λ4 + 8x3λ

2
1λ2λ3λ4 + 2x3λ

2
1λ

2
3λ4

+ 3x3λ1λ
2
2λ

2
4 + 4x3λ1λ2λ3λ

2
4 + x3λ1λ

2
3λ

2
4 + y3λ3

2 + 2y3λ2
2λ3 + y3λ2λ

2
3 + 3y2λ1λ

3
2 + 6y2λ1λ

2
2λ3

+ 3y2λ1λ2λ
2
3 + 2y2λ3

2λ4 + 4y2λ2
2λ3λ4 + 2y2λ2λ

2
3λ4 + 3yλ2

1λ
3
2 + 6yλ2

1λ
2
2λ3 + 3yλ2

1λ2λ
2
3 + 4yλ1λ

3
2λ4

+ 8yλ1λ
2
2λ3λ4 + 4yλ1λ2λ

2
3λ4 + yλ3

2λ
2
4 + 2yλ2

2λ3λ
2
4 + yλ2λ

2
3λ

2
4 +λ3

1λ
3
2 + 2λ3

1λ
2
2λ3 +λ3

1λ2λ
2
3 + 2λ2

1λ
3
2λ4

+ 4λ2
1λ

2
2λ3λ4 + 2λ2

1λ2λ
2
3λ4 +λ1λ

3
2λ

2
4 + 2λ1λ

2
2λ3λ

2
4 +λ1λ2λ

2
3λ

2
4 + 3x1x2x3 y2 + 3x1x2 y2λ2 + 2x1x2 y2λ3

+ 3x2
3 y3 + 6x2

3 y2λ1 + 4x2
3 y2λ4 + 3x2

3 yλ2
1 + 4x2

3 yλ1λ4 + x2
3 yλ2

4 + 6x3 y3λ2 + 4x3 y3λ3 + 12x3 y2λ1λ2

+ 8x3 y2λ1λ3 + 8x3 y2λ2λ4 + 5x3 y2λ3λ4 + 6x3 yλ2
1λ2 + 4x3 yλ2

1λ3 + 8x3 yλ1λ2λ4 + 5x3 yλ1λ3λ4

+ 2x3 yλ2λ
2
4 + x3 yλ3λ

2
4 + 3y3λ2

2 + 4y3λ2λ3 + y3λ2
3 + 6y2λ1λ

2
2 + 8y2λ1λ2λ3 + 2y2λ1λ

2
3 + 4y2λ2

2λ4

+ 5y2λ2λ3λ4 + y2λ2
3λ4 + 3yλ2

1λ
2
2 + 4yλ2

1λ2λ3 + yλ2
1λ

2
3 + 4yλ1λ

2
2λ4 + 5yλ1λ2λ3λ4 + yλ1λ

2
3λ4

+ yλ2
2λ

2
4 + yλ2λ3λ

2
4 + x1x2x3 y + x1x2 yλ2 + x1x2 yλ3 + 3x3 y3 + 3x3 y2λ1 + 2x3 y2λ4 + 3y3λ2 + 2y3λ3

+ 3y2λ1λ2 + 2y2λ1λ3 + 2y2λ2λ4 + y2λ3λ4 + x3 y2 + x3 yλ1 + y3 + y2λ2 + y2λ3 + yλ1λ2 + yλ1λ3 + y2 + y
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pλi (N2) = x3
1 x3

2 x3
3 + 3x3

1 x3
2 x2

3λ2 + 2x3
1 x3

2 x2
3λ4 + 3x3

1 x3
2 x3λ

2
2 + 4x3

1 x3
2 x3λ2λ4 + x3

1 x3
2 x3λ

2
4 + x3

1 x3
2λ

3
2 + 2x3

1 x3
2λ

2
2λ4

+ x3
1 x3

2λ2λ
2
4 + 3x2

1 x2
2 x3

3 y + 3x2
1 x2

2 x3
3λ1 + 2x2

1 x2
2 x3

3λ3 + 9x2
1 x2

2 x2
3 yλ2 + 6x2

1 x2
2 x2

3 yλ4 + 9x2
1 x2

2 x2
3λ1λ2

+ 6x2
1 x2

2 x2
3λ1λ4 + 6x2

1 x2
2 x2

3λ2λ3 + 4x2
1 x2

2 x2
3λ3λ4 + 9x2

1 x2
2 x3 yλ2

2 + 12x2
1 x2

2 x3 yλ2λ4 + 3x2
1 x2

2 x3 yλ2
4

+ 9x2
1 x2

2 x3λ1λ
2
2 + 12x2

1 x2
2 x3λ1λ2λ4 + 3x2

1 x2
2 x3λ1λ

2
4 + 6x2

1 x2
2 x3λ

2
2λ3 + 8x2

1 x2
2 x3λ2λ3λ4 + 2x2

1 x2
2 x3λ3λ

2
4

+ 3x2
1 x2

2 yλ3
2 + 6x2

1 x2
2 yλ2

2λ4 + 3x2
1 x2

2 yλ2λ
2
4 + 3x2

1 x2
2λ1λ

3
2 + 6x2

1 x2
2λ1λ

2
2λ4 + 3x2

1 x2
2λ1λ2λ

2
4 + 2x2

1 x2
2λ

3
2λ3

+ 4x2
1 x2

2λ
2
2λ3λ4 + 2x2

1 x2
2λ2λ3λ

2
4 + 3x2

1 x2
2 x2

3 y + 6x2
1 x2

2 x3 yλ2 + 4x2
1 x2

2 x3 yλ4 + 3x2
1 x2

2 yλ2
2 + 4x2

1 x2
2 yλ2λ4

+ x2
1 x2

2 yλ2
4 + 3x1x2x3

3 y2 + 6x1x2x3
3 yλ1 + 4x1x2x3

3 yλ3 + 3x1x2x3
3λ

2
1 + 4x1x2x3

3λ1λ3 + x1x2x3
3λ

2
3

+ 9x1x2x2
3 y2λ2 + 6x1x2x2

3 y2λ4 + 18x1x2x2
3 yλ1λ2 + 12x1x2x2

3 yλ1λ4 + 12x1x2x2
3 yλ2λ3 + 8x1x2x2

3 yλ3λ4

+ 9x1x2x2
3λ

2
1λ2 + 6x1x2x2

3λ
2
1λ4 + 12x1x2x2

3λ1λ2λ3 + 8x1x2x2
3λ1λ3λ4 + 3x1x2x2

3λ2λ
2
3 + 2x1x2x2

3λ
2
3λ4

+ 9x1x2x3 y2λ2
2 + 12x1x2x3 y2λ2λ4 + 3x1x2x3 y2λ2

4 + 18x1x2x3 yλ1λ
2
2 + 24x1x2x3 yλ1λ2λ4

+ 6x1x2x3 yλ1λ
2
4 + 12x1x2x3 yλ2

2λ3 + 16x1x2x3 yλ2λ3λ4 + 4x1x2x3 yλ3λ
2
4 + 9x1x2x3λ

2
1λ

2
2

+ 12x1x2x3λ
2
1λ2λ4 + 3x1x2x3λ

2
1λ

2
4 + 12x1x2x3λ1λ

2
2λ3 + 16x1x2x3λ1λ2λ3λ4 + 4x1x2x3λ1λ3λ

2
4

+ 3x1x2x3λ
2
2λ

2
3 + 4x1x2x3λ2λ

2
3λ4 + x1x2x3λ

2
3λ

2
4 + 3x1x2 y2λ3

2 + 6x1x2 y2λ2
2λ4 + 3x1x2 y2λ2λ

2
4

+ 6x1x2 yλ1λ
3
2 + 12x1x2 yλ1λ

2
2λ4 + 6x1x2 yλ1λ2λ

2
4 + 4x1x2 yλ3

2λ3 + 8x1x2 yλ2
2λ3λ4 + 4x1x2 yλ2λ3λ

2
4

+ 3x1x2λ
2
1λ

3
2 + 6x1x2λ

2
1λ

2
2λ4 + 3x1x2λ

2
1λ2λ

2
4 + 4x1x2λ1λ

3
2λ3 + 8x1x2λ1λ

2
2λ3λ4 + 4x1x2λ1λ2λ3λ

2
4

+ x1x2λ
3
2λ

2
3 + 2x1x2λ

2
2λ

2
3λ4 + x1x2λ2λ

2
3λ

2
4 + 6x1x2x2

3 y2 + 6x1x2x2
3 yλ1 + 4x1x2x2

3 yλ3 + 12x1x2x3 y2λ2

+ 8x1x2x3 y2λ4 + 12x1x2x3 yλ1λ2 + 8x1x2x3 yλ1λ4 + 8x1x2x3 yλ2λ3 + 5x1x2x3 yλ3λ4 + 6x1x2 y2λ2
2

+ 8x1x2 y2λ2λ4 + 2x1x2 y2λ2
4 + 6x1x2 yλ1λ

2
2 + 8x1x2 yλ1λ2λ4 + 2x1x2 yλ1λ

2
4 + 4x1x2 yλ2

2λ3

+ 5x1x2 yλ2λ3λ4 + x1x2 yλ3λ
2
4 + x3

3 y3 + 3x3
3 y2λ1 + 2x3

3 y2λ3 + 3x3
3 yλ2

1 + 4x3
3 yλ1λ3 + x3

3 yλ2
3 + x3

3λ
3
1

+ 2x3
3λ

2
1λ3 + x3

3λ1λ
2
3 + 3x2

3 y3λ2 + 2x2
3 y3λ4 + 9x2

3 y2λ1λ2 + 6x2
3 y2λ1λ4 + 6x2

3 y2λ2λ3 + 4x2
3 y2λ3λ4

+ 9x2
3 yλ2

1λ2 + 6x2
3 yλ2

1λ4 + 12x2
3 yλ1λ2λ3 + 8x2

3 yλ1λ3λ4 + 3x2
3 yλ2λ

2
3 + 2x2

3 yλ2
3λ4 + 3x2

3λ
3
1λ2

+ 2x2
3λ

3
1λ4 + 6x2

3λ
2
1λ2λ3 + 4x2

3λ
2
1λ3λ4 + 3x2

3λ1λ2λ
2
3 + 2x2

3λ1λ
2
3λ4 + 3x3 y3λ2

2 + 4x3 y3λ2λ4 + x3 y3λ2
4

+ 9x3 y2λ1λ
2
2 + 12x3 y2λ1λ2λ4 + 3x3 y2λ1λ

2
4 + 6x3 y2λ2

2λ3 + 8x3 y2λ2λ3λ4 + 2x3 y2λ3λ
2
4 + 9x3 yλ2

1λ
2
2

+ 12x3 yλ2
1λ2λ4 + 3x3 yλ2

1λ
2
4 + 12x3 yλ1λ

2
2λ3 + 16x3 yλ1λ2λ3λ4 + 4x3 yλ1λ3λ

2
4 + 3x3 yλ2

2λ
2
3

+ 4x3 yλ2λ
2
3λ4 + x3 yλ2

3λ
2
4 + 3x3λ

3
1λ

2
2 + 4x3λ

3
1λ2λ4 + x3λ

3
1λ

2
4 + 6x3λ

2
1λ

2
2λ3 + 8x3λ

2
1λ2λ3λ4 + 2x3λ

2
1λ3λ

2
4

+ 3x3λ1λ
2
2λ

2
3 + 4x3λ1λ2λ

2
3λ4 + x3λ1λ

2
3λ

2
4 + y3λ3

2 + 2y3λ2
2λ4 + y3λ2λ

2
4 + 3y2λ1λ

3
2 + 6y2λ1λ

2
2λ4

+ 3y2λ1λ2λ
2
4 + 2y2λ3

2λ3 + 4y2λ2
2λ3λ4 + 2y2λ2λ3λ

2
4 + 3yλ2

1λ
3
2 + 6yλ2

1λ
2
2λ4 + 3yλ2

1λ2λ
2
4 + 4yλ1λ

3
2λ3

+ 8yλ1λ
2
2λ3λ4 + 4yλ1λ2λ3λ

2
4 + yλ3

2λ
2
3 + 2yλ2

2λ
2
3λ4 + yλ2λ

2
3λ

2
4 +λ3

1λ
3
2 + 2λ3

1λ
2
2λ4 +λ3

1λ2λ
2
4 + 2λ2

1λ
3
2λ3

+ 4λ2
1λ

2
2λ3λ4 + 2λ2

1λ2λ3λ
2
4 +λ1λ

3
2λ

2
3 + 2λ1λ

2
2λ

2
3λ4 +λ1λ2λ

2
3λ

2
4 + 3x1x2x3 y2 + 3x1x2 y2λ2 + 2x1x2 y2λ4

+ 3x2
3 y3 + 6x2

3 y2λ1 + 4x2
3 y2λ3 + 3x2

3 yλ2
1 + 4x2

3 yλ1λ3 + x2
3 yλ2

3 + 6x3 y3λ2 + 4x3 y3λ4 + 12x3 y2λ1λ2

+ 8x3 y2λ1λ4 + 8x3 y2λ2λ3 + 5x3 y2λ3λ4 + 6x3 yλ2
1λ2 + 4x3 yλ2

1λ4 + 8x3 yλ1λ2λ3 + 5x3 yλ1λ3λ4

+ 2x3 yλ2λ
2
3 + x3 yλ2

3λ4 + 3y3λ2
2 + 4y3λ2λ4 + y3λ2

4 + 6y2λ1λ
2
2 + 8y2λ1λ2λ4 + 2y2λ1λ

2
4 + 4y2λ2

2λ3

+ 5y2λ2λ3λ4 + y2λ3λ
2
4 + 3yλ2

1λ
2
2 + 4yλ2

1λ2λ4 + yλ2
1λ

2
4 + 4yλ1λ

2
2λ3 + 5yλ1λ2λ3λ4 + yλ1λ3λ

2
4

+ yλ2
2λ

2
3 + yλ2λ

2
3λ4 + x1x2x3 y + x1x2 yλ2 + 3x3 y3 + 3x3 y2λ1 + 2x3 y2λ3 + 3y3λ2 + 2y3λ4 + 3y2λ1λ2

+ 2y2λ1λ4 + 2y2λ2λ3 + y2λ3λ4 + x3 y2 + x3 yλ1 + x3 yλ3 + y3 + y2λ2 + yλ1λ2 + yλ2λ3 + y2 + y
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pλi (N1)−pλi (N2) = 2x3
1 x3

2 x2
3λ3−2x3

1 x3
2 x2

3λ4 +4x3
1 x3

2 x3λ2λ3−4x3
1 x3

2 x3λ2λ4 + x3
1 x3

2 x3λ
2
3−x3

1 x3
2 x3λ

2
4 +2x3

1 x3
2λ

2
2λ3

−2x3
1 x3

2λ
2
2λ4 + x3

1 x3
2λ2λ

2
3−x3

1 x3
2λ2λ

2
4−2x2

1 x2
2 x3

3λ3 +2x2
1 x2

2 x3
3λ4 +6x2

1 x2
2 x2

3 yλ3−6x2
1 x2

2 x2
3 yλ4 +6x2

1 x2
2 x2

3λ1λ3

− 6x2
1 x2

2 x2
3λ1λ4 − 6x2

1 x2
2 x2

3λ2λ3 + 6x2
1 x2

2 x2
3λ2λ4 + 12x2

1 x2
2 x3 yλ2λ3 − 12x2

1 x2
2 x3 yλ2λ4 + 3x2

1 x2
2 x3 yλ2

3

− 3x2
1 x2

2 x3 yλ2
4 + 12x2

1 x2
2 x3λ1λ2λ3 − 12x2

1 x2
2 x3λ1λ2λ4 + 3x2

1 x2
2 x3λ1λ

2
3 − 3x2

1 x2
2 x3λ1λ

2
4 − 6x2

1 x2
2 x3λ

2
2λ3

+ 6x2
1 x2

2 x3λ
2
2λ4 + 2x2

1 x2
2 x3λ

2
3λ4 −2x2

1 x2
2 x3λ3λ

2
4 + 6x2

1 x2
2 yλ2

2λ3 −6x2
1 x2

2 yλ2
2λ4 + 3x2

1 x2
2 yλ2λ

2
3 −3x2

1 x2
2 yλ2λ

2
4

+ 6x2
1 x2

2λ1λ
2
2λ3 −6x2

1 x2
2λ1λ

2
2λ4 + 3x2

1 x2
2λ1λ2λ

2
3 −3x2

1 x2
2λ1λ2λ

2
4 −2x2

1 x2
2λ

3
2λ3 + 2x2

1 x2
2λ

3
2λ4 + 2x2

1 x2
2λ2λ

2
3λ4

− 2x2
1 x2

2λ2λ3λ
2
4 + 4x2

1 x2
2 x3 yλ3 − 4x2

1 x2
2 x3 yλ4 + 4x2

1 x2
2 yλ2λ3 − 4x2

1 x2
2 yλ2λ4 + x2

1 x2
2 yλ2

3 − x2
1 x2

2 yλ2
4

− 4x1x2x3
3 yλ3 + 4x1x2x3

3 yλ4 − 4x1x2x3
3λ1λ3 + 4x1x2x3

3λ1λ4 − x1x2x3
3λ

2
3 + x1x2x3

3λ
2
4 + 6x1x2x2

3 y2λ3

− 6x1x2x2
3 y2λ4 + 12x1x2x2

3 yλ1λ3 − 12x1x2x2
3 yλ1λ4 − 12x1x2x2

3 yλ2λ3 + 12x1x2x2
3 yλ2λ4 + 6x1x2x2

3λ
2
1λ3

− 6x1x2x2
3λ

2
1λ4 − 12x1x2x2

3λ1λ2λ3 + 12x1x2x2
3λ1λ2λ4 − 3x1x2x2

3λ2λ
2
3 + 3x1x2x2

3λ2λ
2
4 − 2x1x2x2

3λ
2
3λ4

+ 2x1x2x2
3λ3λ

2
4 + 12x1x2x3 y2λ2λ3 − 12x1x2x3 y2λ2λ4 + 3x1x2x3 y2λ2

3 − 3x1x2x3 y2λ2
4 + 24x1x2x3 yλ1λ2λ3

−24x1x2x3 yλ1λ2λ4 +6x1x2x3 yλ1λ
2
3−6x1x2x3 yλ1λ

2
4−12x1x2x3 yλ2

2λ3 +12x1x2x3 yλ2
2λ4 +4x1x2x3 yλ2

3λ4

−4x1x2x3 yλ3λ
2
4 + 12x1x2x3λ

2
1λ2λ3 −12x1x2x3λ

2
1λ2λ4 + 3x1x2x3λ

2
1λ

2
3 −3x1x2x3λ

2
1λ

2
4 −12x1x2x3λ1λ

2
2λ3

+ 12x1x2x3λ1λ
2
2λ4 + 4x1x2x3λ1λ

2
3λ4 − 4x1x2x3λ1λ3λ

2
4 − 3x1x2x3λ

2
2λ

2
3 + 3x1x2x3λ

2
2λ

2
4 − 4x1x2x3λ2λ

2
3λ4

+ 4x1x2x3λ2λ3λ
2
4 + 6x1x2 y2λ2

2λ3 − 6x1x2 y2λ2
2λ4 + 3x1x2 y2λ2λ

2
3 − 3x1x2 y2λ2λ

2
4 + 12x1x2 yλ1λ

2
2λ3

− 12x1x2 yλ1λ
2
2λ4 + 6x1x2 yλ1λ2λ

2
3 − 6x1x2 yλ1λ2λ

2
4 − 4x1x2 yλ3

2λ3 + 4x1x2 yλ3
2λ4 + 4x1x2 yλ2λ

2
3λ4

− 4x1x2 yλ2λ3λ
2
4 + 6x1x2λ

2
1λ

2
2λ3 − 6x1x2λ

2
1λ

2
2λ4 + 3x1x2λ

2
1λ2λ

2
3 − 3x1x2λ

2
1λ2λ

2
4 − 4x1x2λ1λ

3
2λ3

+4x1x2λ1λ
3
2λ4 +4x1x2λ1λ2λ

2
3λ4−4x1x2λ1λ2λ3λ

2
4−x1x2λ

3
2λ

2
3 + x1x2λ

3
2λ

2
4−2x1x2λ

2
2λ

2
3λ4 +2x1x2λ

2
2λ3λ

2
4

− 4x1x2x2
3 yλ3 + 4x1x2x2

3 yλ4 + 8x1x2x3 y2λ3 − 8x1x2x3 y2λ4 + 8x1x2x3 yλ1λ3 − 8x1x2x3 yλ1λ4

−8x1x2x3 yλ2λ3 +8x1x2x3 yλ2λ4 +8x1x2 y2λ2λ3−8x1x2 y2λ2λ4 +2x1x2 y2λ2
3−2x1x2 y2λ2

4 +8x1x2 yλ1λ2λ3

− 8x1x2 yλ1λ2λ4 + 2x1x2 yλ1λ
2
3 − 2x1x2 yλ1λ

2
4 − 4x1x2 yλ2

2λ3 + 4x1x2 yλ2
2λ4 + x1x2 yλ2

3λ4 − x1x2 yλ3λ
2
4

− 2x3
3 y2λ3 + 2x3

3 y2λ4 − 4x3
3 yλ1λ3 + 4x3

3 yλ1λ4 − x3
3 yλ2

3 + x3
3 yλ2

4 − 2x3
3λ

2
1λ3 + 2x3

3λ
2
1λ4 − x3

3λ1λ
2
3 + x3

3λ1λ
2
4

+ 2x2
3 y3λ3 − 2x2

3 y3λ4 + 6x2
3 y2λ1λ3 − 6x2

3 y2λ1λ4 − 6x2
3 y2λ2λ3 + 6x2

3 y2λ2λ4 + 6x2
3 yλ2

1λ3 − 6x2
3 yλ2

1λ4

− 12x2
3 yλ1λ2λ3 + 12x2

3 yλ1λ2λ4 − 3x2
3 yλ2λ

2
3 + 3x2

3 yλ2λ
2
4 − 2x2

3 yλ2
3λ4 + 2x2

3 yλ3λ
2
4 + 2x2

3λ
3
1λ3 − 2x2

3λ
3
1λ4

−6x2
3λ

2
1λ2λ3 +6x2

3λ
2
1λ2λ4−3x2

3λ1λ2λ
2
3 +3x2

3λ1λ2λ
2
4−2x2

3λ1λ
2
3λ4 +2x2

3λ1λ3λ
2
4 +4x3 y3λ2λ3−4x3 y3λ2λ4

+ x3 y3λ2
3 − x3 y3λ2

4 + 12x3 y2λ1λ2λ3 −12x3 y2λ1λ2λ4 + 3x3 y2λ1λ
2
3 −3x3 y2λ1λ

2
4 −6x3 y2λ2

2λ3 + 6x3 y2λ2
2λ4

+ 2x3 y2λ2
3λ4 − 2x3 y2λ3λ

2
4 + 12x3 yλ2

1λ2λ3 − 12x3 yλ2
1λ2λ4 + 3x3 yλ2

1λ
2
3 − 3x3 yλ2

1λ
2
4 − 12x3 yλ1λ

2
2λ3

+ 12x3 yλ1λ
2
2λ4 + 4x3 yλ1λ

2
3λ4 − 4x3 yλ1λ3λ

2
4 − 3x3 yλ2

2λ
2
3 + 3x3 yλ2

2λ
2
4 − 4x3 yλ2λ

2
3λ4 + 4x3 yλ2λ3λ

2
4

+ 4x3λ
3
1λ2λ3 − 4x3λ

3
1λ2λ4 + x3λ

3
1λ

2
3 − x3λ

3
1λ

2
4 − 6x3λ

2
1λ

2
2λ3 + 6x3λ

2
1λ

2
2λ4 + 2x3λ

2
1λ

2
3λ4 − 2x3λ

2
1λ3λ

2
4

− 3x3λ1λ
2
2λ

2
3 + 3x3λ1λ

2
2λ

2
4 − 4x3λ1λ2λ

2
3λ4 + 4x3λ1λ2λ3λ

2
4 + 2y3λ2

2λ3 − 2y3λ2
2λ4 + y3λ2λ

2
3 − y3λ2λ

2
4

+ 6y2λ1λ
2
2λ3 − 6y2λ1λ

2
2λ4 + 3y2λ1λ2λ

2
3 − 3y2λ1λ2λ

2
4 − 2y2λ3

2λ3 + 2y2λ3
2λ4 + 2y2λ2λ

2
3λ4 − 2y2λ2λ3λ

2
4

+ 6yλ2
1λ

2
2λ3 − 6yλ2

1λ
2
2λ4 + 3yλ2

1λ2λ
2
3 − 3yλ2

1λ2λ
2
4 − 4yλ1λ

3
2λ3 + 4yλ1λ

3
2λ4 + 4yλ1λ2λ

2
3λ4 − 4yλ1λ2λ3λ

2
4

− yλ3
2λ

2
3 + yλ3

2λ
2
4 −2yλ2

2λ
2
3λ4 + 2yλ2

2λ3λ
2
4 + 2λ3

1λ
2
2λ3 −2λ3

1λ
2
2λ4 +λ3

1λ2λ
2
3 −λ3

1λ2λ
2
4 −2λ2

1λ
3
2λ3 + 2λ2

1λ
3
2λ4

+ 2λ2
1λ2λ

2
3λ4 − 2λ2

1λ2λ3λ
2
4 − λ1λ

3
2λ

2
3 + λ1λ

3
2λ

2
4 − 2λ1λ

2
2λ

2
3λ4 + 2λ1λ

2
2λ3λ

2
4 + 2x1x2 y2λ3 − 2x1x2 y2λ4

− 4x2
3 y2λ3 + 4x2

3 y2λ4 − 4x2
3 yλ1λ3 + 4x2

3 yλ1λ4 − x2
3 yλ2

3 + x2
3 yλ2

4 + 4x3 y3λ3 − 4x3 y3λ4 + 8x3 y2λ1λ3

−8x3 y2λ1λ4 −8x3 y2λ2λ3 + 8x3 y2λ2λ4 + 4x3 yλ2
1λ3 −4x3 yλ2

1λ4 −8x3 yλ1λ2λ3 + 8x3 yλ1λ2λ4 −2x3 yλ2λ
2
3

+ 2x3 yλ2λ
2
4 − x3 yλ2

3λ4 + x3 yλ3λ
2
4 + 4y3λ2λ3 − 4y3λ2λ4 + y3λ2

3 − y3λ2
4 + 8y2λ1λ2λ3 − 8y2λ1λ2λ4

+ 2y2λ1λ
2
3 − 2y2λ1λ

2
4 − 4y2λ2

2λ3 + 4y2λ2
2λ4 + y2λ2

3λ4 − y2λ3λ
2
4 + 4yλ2

1λ2λ3 − 4yλ2
1λ2λ4 + yλ2

1λ
2
3 − yλ2

1λ
2
4

−4yλ1λ
2
2λ3 +4yλ1λ

2
2λ4 + yλ1λ

2
3λ4− yλ1λ3λ

2
4− yλ2

2λ
2
3 + yλ2

2λ
2
4− yλ2λ

2
3λ4 + yλ2λ3λ

2
4 + x1x2 yλ3−2x3 y2λ3

+ 2x3 y2λ4 + 2y3λ3 − 2y3λ4 + 2y2λ1λ3 − 2y2λ1λ4 − 2y2λ2λ3 + 2y2λ2λ4 − x3 yλ3 + y2λ3 + yλ1λ3 − yλ2λ3

pλ(N1) = 4λ3x3
1 x3

2 + 8λ2x3
1 x3

2 x3 + 5λx3
1 x3

2 x2
3 + x3

1 x3
2 x3

3 + 20λ4x2
1 x2

2 + 40λ3x2
1 x2

2 x3 + 12λ3x2
1 x2

2 y + 25λ2x2
1 x2

2 x2
3

+ 24λ2x2
1 x2

2 x3 y + 5λx2
1 x2

2 x3
3 + 15λx2

1 x2
2 x2

3 y + 3x2
1 x2

2 x3
3 y + 32λ5x1x2 + 64λ4x1x2x3 + 40λ4x1x2 y

+ 40λ3x1x2x2
3 + 80λ3x1x2x3 y + 12λ3x1x2 y2 + 8λ2x2

1 x2
2 y + 8λ2x1x2x3

3 + 50λ2x1x2x2
3 y + 24λ2x1x2x3 y2

+10λx2
1 x2

2 x3 y +10λx1x2x3
3 y +15λx1x2x2

3 y2 +3x2
1 x2

2 x2
3 y +3x1x2x3

3 y2 +16λ6 +32λ5x3 +32λ5 y +20λ4x2
3

+ 64λ4x3 y + 20λ4 y2 + 26λ3x1x2 y + 4λ3x3
3 + 40λ3x2

3 y + 40λ3x3 y2 + 4λ3 y3 + 33λ2x1x2x3 y + 16λ2x1x2 y2

+ 8λ2x3
3 y + 25λ2x2

3 y2 + 8λ2x3 y3 + 10λx1x2x2
3 y + 20λx1x2x3 y2 + 5λx3

3 y2 + 5λx2
3 y3 + 6x1x2x2

3 y2 + x3
3 y3

+20λ4 y +26λ3x3 y +26λ3 y2 +8λ2x2
3 y +33λ2x3 y2 +8λ2 y3 +5λx1x2 y2 +10λx2

3 y2 +10λx3 y3 +3x1x2x3 y2

+ 3x2
3 y3 + 8λ2 y2 +2λx1x2 y2λx1x2 y2λx1x2 y + 5λx3 y2 + 5λy3 + x1x2x3 y + 3x3 y3 + 2λ2 y +λx3 yλx3 yλx3 y +2λy22λy22λy2 + x3 y2 + y3 + y2 + y
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pλ(N2) = 4λ3x3
1 x3

2 + 8λ2x3
1 x3

2 x3 + 5λx3
1 x3

2 x2
3 + x3

1 x3
2 x3

3 + 20λ4x2
1 x2

2 + 40λ3x2
1 x2

2 x3 + 12λ3x2
1 x2

2 y + 25λ2x2
1 x2

2 x2
3

+ 24λ2x2
1 x2

2 x3 y + 5λx2
1 x2

2 x3
3 + 15λx2

1 x2
2 x2

3 y + 3x2
1 x2

2 x3
3 y + 32λ5x1x2 + 64λ4x1x2x3 + 40λ4x1x2 y

+ 40λ3x1x2x2
3 + 80λ3x1x2x3 y + 12λ3x1x2 y2 + 8λ2x2

1 x2
2 y + 8λ2x1x2x3

3 + 50λ2x1x2x2
3 y + 24λ2x1x2x3 y2

+10λx2
1 x2

2 x3 y +10λx1x2x3
3 y +15λx1x2x2

3 y2 +3x2
1 x2

2 x2
3 y +3x1x2x3

3 y2 +16λ6 +32λ5x3 +32λ5 y +20λ4x2
3

+ 64λ4x3 y + 20λ4 y2 + 26λ3x1x2 y + 4λ3x3
3 + 40λ3x2

3 y + 40λ3x3 y2 + 4λ3 y3 + 33λ2x1x2x3 y + 16λ2x1x2 y2

+ 8λ2x3
3 y + 25λ2x2

3 y2 + 8λ2x3 y3 + 10λx1x2x2
3 y + 20λx1x2x3 y2 + 5λx3

3 y2 + 5λx2
3 y3 + 6x1x2x2

3 y2 + x3
3 y3

+20λ4 y +26λ3x3 y +26λ3 y2 +8λ2x2
3 y +33λ2x3 y2 +8λ2 y3 +5λx1x2 y2 +10λx2

3 y2 +10λx3 y3 +3x1x2x3 y2

+ 3x2
3 y3 + 8λ2 y2 +λx1x2 yλx1x2 yλx1x2 y + 5λx3 y2 + 5λy3 + x1x2x3 y + 3x3 y3 + 2λ2 y +2λx3 y2λx3 y2λx3 y +λy2λy2λy2 + x3 y2 + y3 + y2 + y



B
Maple code
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(1.1.7)(1.1.7)

(1.1.3)(1.1.3)

(1.1.1)(1.1.1)

(1.1.6)(1.1.6)

(1.1.2)(1.1.2)

(1.1)(1.1)

(1.1.8)(1.1.8)

(1.1.4)(1.1.4)

(1.1.5)(1.1.5)

Distinct labels

Pons polynomial
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(1.2.2.4)(1.2.2.4)

(1.2.1.2)(1.2.1.2)

(1.2.2.5)(1.2.2.5)

(1.2.1.3)(1.2.1.3)

(1.2.2)(1.2.2)

(1.2.2.1)(1.2.2.1)

(1.2.1.5)(1.2.1.5)

(1.2.2.3)(1.2.2.3)

(1.2.1)(1.2.1)

(1.2.1.4)(1.2.1.4)

(1.2.1.1)(1.2.1.1)

(1.2.1.6)(1.2.1.6)

(1.2.2.2)(1.2.2.2)

(1.2.1.7)(1.2.1.7)

My polynomial

Polynomial for the left network

Polynomial for the right network
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(2.1.6)(2.1.6)

(2.1.7)(2.1.7)

(1.2.3)(1.2.3)

(2.1.2)(2.1.2)

(2.1)(2.1)

(2.1.5)(2.1.5)

(1.2.2.7)(1.2.2.7)

(2.1.8)(2.1.8)

(2.1.4)(2.1.4)

(2.1.3)(2.1.3)

(2.1.1)(2.1.1)

(1.2.2.6)(1.2.2.6)

false
:
:

K :

One label

Pons Polynomial
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(2.2.2.1)(2.2.2.1)

(2.2.1.3)(2.2.1.3)

(2.2.1.6)(2.2.1.6)

(2.2.2)(2.2.2)

(2.2.1.4)(2.2.1.4)

(2.2.1.2)(2.2.1.2)

(2.2.1)(2.2.1)

(2.1.8)(2.1.8)

(2.2.1.1)(2.2.1.1)

(2.2.1.5)(2.2.1.5)

(2.2.2.2)(2.2.2.2)

(2.2.1.7)(2.2.1.7)

My polynomial

left

right
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(2.2.4)(2.2.4)

(2.2.2.3)(2.2.2.3)

(2.3.1)(2.3.1)

(2.2.2.4)(2.2.2.4)

(2.1.8)(2.1.8)

(2.2.2.5)(2.2.2.5)

(2.2.3)(2.2.3)

(2.3.2)(2.3.2)

(2.2.2.6)(2.2.2.6)

(2.2.2.7)(2.2.2.7)

false
:
:

K

K

Algorithm
K

:

:
K
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(2.3.6)(2.3.6)

(2.3.5)(2.3.5)

(2.3.4)(2.3.4)

(2.1.8)(2.1.8)

(2.3.7)(2.3.7)

(2.2.2.3)(2.2.2.3)

(2.3.3)(2.3.3)

K

:
:

K

K

true
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