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Abstract

Describing phylogenetic trees or networks with a polynomial is a tool to distinguish between them. In this
thesis, a new polynomial for describing rooted binary internally labeled phylogenetic networks and trees is
introduced based on the research of P. Liu [1] and J. Pons et al.[2]. Two different cases are considered, one
where the reticulation nodes have distinct labels 1; and one where the reticulation nodes have the same
label A. There are a few conjectures stated about the uniqueness of the polynomial and the relation of the
polynomial with the primary subtrees and their monomial. Also the folding and unfolding of a network is
described. Furthermore, an algorithm is provided with which a tree can be made out of different monomials.
With use of the lemma that states when a tree can be folded to a network, it can be determined if the tree can
be folded to a network.
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Introduction

A phylogenetic network is a graph which shows the evolutionary relationships between for example different
species. It is possible for an animal or plant to breed with an individual of another species, resulting in a new
species, we call this process hybridisation. Hybridisation leads to a node in the network with in-degree two
and out-degree one, which is called a reticulation node. When no hybridisation or other processes where
lineages combine take place, we speak of a phylogenetic tree.

In this thesis, a polynomial for describing a phylogenetic network is introduced. With this, one can compare
two networks. Also the distance between networks could be measured. The research done in this thesis is
based on the research that P. Liu [1] and J. Pons et al. [2] have done before. In his research P. Liu has introduced
a distinguishing polynomial that is a complete isomorphism invariant for trees, which is known as the Liu
polynomial. J. Pons et al. generalized the Liu polynomial for trees to define a polynomial invariant for rooted
phylogenetic networks. Also, a new class of phylogenetic networks, seperable networks, are introduced and
their extension of the Liu polynomial characterizes this class completely.

This thesis is structured as follows. In Chapter 2, the mathematical notation that is throughout the thesis
is introduced, among other things, a rooted binary internally labeled phylogenetic network is defined as a
rooted directed acyclic graph with no parallel arcs and with two labeling functions, a bijective one for the
leaves and a surjective one for the reticulation nodes. Then in Chapter 3, a new polynomial for describing
rooted binary internally labeled phylogenetic networks will be defined. The process of unfolding a rooted
binary internally labeled phylogenetic network to a rooted binary internally labeled phylogenetic tree, and
its reverse, folding a tree to recover the network will be stated in Chapter 4 in two different algorithms. After
that, primary subtrees, which are subtrees S of a tree T with the same root as T and at each node either all
children or none are part of the subtree, will be introduced and discussed in Chapter 5, also the polynomial
of a primary subtree which consists of only one term will be defined as a monomial. Finally, an algorithm to
find a tree from a set of monomials will be described in Chapter 6. Finally, a conclusion will be drawn and
recommendations for further research will be stated in the discussion.



Definitions

The mathematical notation that is going to be used, will be introduced in this section.

Let X ={x1, x2,..., X} denote a non-empty finite set, for which each x;, j € {1,2,..., n} is an irreducable poly-
nomial in Z[x1, X2,..., X,]. The labels of the leaves, in the networks used, are these x;, j €{1,2,..., n}. To start,
a phylogenetic network will be defined.

Definition 1. A rooted binary phylogenetic network N = (V, E) on X, or simply a phylogenetic network on X, is
arooted directed acyclic graph with no parallel arcs satisfying the following conditions:

(i) any node with out-degree zero (a leaf) has in-degree one, and the set of nodes with out-degree zero,
denoted by L(IV), is identified with X via a bijection ¢ : L(N) — X;

(ii) therootis the only node with in-degree zero, and has out-degree two;

(iii) any other node has either in-degree one and out-degree two (a tree node), or in-degree two and out-
degree one (a reticulation node).

Now that it is clear what a phylogenetic network is, it will be defined when a phylogenetic network is
internally labeled.

Definition 2. A rooted binary internally labeled phylogenetic network N = (V, E) on X, is a rooted binary phy-
logenetic network with a surjective labeling function / on the set of reticulation nodes R(IN):

lR(N) - {AI;AZ»---;Ar}
These 1;, i €{1,2,...,r} are irreducible polynomials in Z[x;, X2, ..., X5, A1, A2,..., A].
Not only will networks be discussed, also a look will be taken on trees, which brings us to the next definition.

Definition 3. A rooted binary internally labeled phylogenetic tree T = (V, E) on X, is a rooted directed acyclic
graph with no parallel arcs satisfying the following conditions:

(i) any node with out-degree zero (a leaf) has in-degree one, and the set of nodes with out-degree zero,
denoted by L(NV), is identified with X via surjection ¢ : L(N) — X;

(ii) the root is the only node with in-degree zero, and it can have out degree one (an elementary node), or
two (a tree node);

(iii) any other node has either in-degree one and out-degree two (a tree node) or in-degree one and out-
degree one (also an elementary node);

(iv) if E(N) denotes the set of elementary nodes of N, then there is alabeling function / : E(N) — {A1,A2,...,A,}.

Note that in a tree, leaves and elementary nodes with the same label can occur multiple times unlike in net-
works. Next, we will define when two networks are isomorphic. In order to do this, we use the notation
(V,E, ¢) for a phylogenetic network and (V, E, ¢, I) for an internally labeled phylogenetic network.
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Definition 4. Two phylogenetic networks Ny = (V1, Eq, 1) and N» = (Va, E», 2) on X are isomorphic (N7 = N»)
if there exists a bijection f : V; — V, such that ¢ (x) = @2 (f(x)) for all x € L(Vy), and (u, v) € E; if and only if
(f(w), f(v) € Ey.

Definition 5. Two internally labeled phylogenetic networks N = (V1, E1, ¢1,11) and Ny = (Va, Ez, 2, 12) on X
are isomorphic (IV; = N») if there exists a bijection f : V; — V, such that ¢;(x) = ¢2(f(x)) for all x € L(IVy),
I1(x) =L (f(x)) for all x € R(N7) and (u, v) € E; if and only if (f(w), f(v)) € E>.



Polynomial

In this chapter, a polynomial for describing a phylogenetic network will be introduced.

3.1. Reticulation nodes with distinct labels
Let N be an internally labeled phylogenetic network with bijective labelling function [ of the reticulations.
Then, consider

p:V(N)— Z[x1,%X2,...,Xp, A1, A2, ..o, A, Y]
to be defined recursively as follows. Let u € V(IV), then:
e ifuisaleaf, p(u) =p(w);
e if u is an internal tree node whose children are v;, v, then p(u) = y+ p(v1) p(v2);
¢ otherwise, i.e. if # has only one child v, then p(u) = () + p(v)

Finally, the polynomial of the network p(IV) is equal to p(p), where p is the root of N.

We refer to the polynomial as defined above as the new polynomial. The polynomial which is devised by
Pons et al. is considered as the Pons polynomial. The Pons polynomial is similar to the new polynomial, the
difference with the new polynomial is found in the last part of the definition. Where in the new polynomial,
the polynomial of u with only one child v is defined as p(u) = I(u) + p(v), Pons has defined this as p(u) =
I(w) p(v). Now we determine the new polynomial for two networks from Figure 3.1 which are inspired by the

Figure 3.1: Two networks

networks from [2] for which the Pons polynomial is equal (Appendix B).
For network N, the polynomial at all nodes will be described. The polynomial for network NN, is obtained the
same way. To start, the polynomial at the leaves is going to be determined, they have label x;, j=1,2,3,4, so
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that is their polynomial. Then,

plug) =x1x2+Y,

pA) =x1x2+y+A1, pA2) = A2+ x3,

pA3)=A2+ A3+ x3, PAg) =x1X20+ Y+ A1+ Ay,

plug) = y+(x1x2+y+ A1) A2+ A3+ x3), plug) =y+x1x0+y+A1+A4) (A2 + A3+ x3),

plus) =y+x1x2+y+ M +A) A2 +x3), pu) =(y+ax2+y+A1+A) A2 + A3+ x3)) (¥ + (X1 X2+ Y+ A1 + Ag) A2+ X3)) + ¥

and finally,
p(\N1) =pu1) =y+(+x1x2+ y+ A1) A2+ A3+ x3)) (Y + (X1 X2+ Y+ A1+ Aa) A2+ Az +Xx3)) (Y + (1 X2+ Y+ A1+ Ag) Ao +
x3))+¥).

For network Ny, the polynomial

pN2) =p(u) =y+(y+ (x1x2+y+ A1+ A3) (A2 + x3)) (¥ + (X1 X2 + Y+ A1+ A3) (X3 + A2 + Aa)) (¥ + (x1X2 + Yy + A1) (w3 +
A2+ A4)) +y) is obtained.

When the obtained polynomials are expanded (Appendix A) and subtracted from eachother, the result (Ap-
pendix A) is unequal to zero so the polynomials are different.

3.2. Reticulation nodes with the same label

For phylogenetic networks, it is also interesting to look at the case when the labels of the reticulation nodes
are all the same.

When we consider an internally labeled phylogenetic network N with non-unique labels of the reticulation
nodes, so all the reticulation nodes have label A. Then, consider

p:V(N)—Z[x1,%2,...,Xn, A, Y]
to be defined recursively as follows. Let u € V(IV), then:
o if uisaleaf, p(u) = p(w);
e if u is an internal tree node whose children are vy, vz, p(u) = y+ p(v1) p(v2);
¢ otherwise, i.e. if « has only one child v, then p(u) =1+ p(v)

When looking at the networks from Figure 3.1 and replacing the 1; with A, the polynomials

pP(IND=pu) =y+(y+xrx2 + A+ ) RA+x3) (¥ + (X122 + 241+ Y) 2A+ x3)) (¥ + (X1 X2 + 21 + Y) (A + x3)) + y) and
pN2) =pu) =y+ Y+ @12 +22+ ) A+ 13N (¥ + (X1 X2+ 21+ ) A+ x3) (¥ + (X1 X2+ A + ¥) (2A + x3)) + ) are
obtained for networks N} and N>.

When these polynomials are expanded (Appendix A) and subtracted, the result equals Ax; X,y — Ax3y+Ay?,
which is obviously not equal to zero, so the polynomials are still different. In Chapter 5, it will be discussed
how this difference can be interpreted.



Folding and Unfolding

In this chapter, the unfolding and folding algorithms will be introduced. Furthermore, the uniqueness of
folding and unfolding will be discussed.

4.1. Unfolding a phylogenetic network

To start, the set R;;,;, (IN) will be introduced. This is the set of reticulation nodes of a rooted binary internally
labeled phylogenetic network N, such that none of its descendants are reticulation nodes theirselves. In each
repetition of the algorithm, the set R,,;,(N) will be updated.

4.1.1. Unfolding algorithm
Let N be a rooted binary internally labeled phylogenetic network, and let R,,;,(IN) be as described above.
Then:

1. take u € Ryin(N), let v, v2 be its parents;

2. delete the edge (vy, u);

3. duplicate the rooted binary internally labeled phylogenetic tree that is rooted at u;
4. add an edge from v, to the copied u, i.e. the u which has no incoming edge;

5. update the set Ry, (IN);

(@) if Rypin(N) # @, go to the first step.

(b) if Ryyin(N) = @, the network is completely unfolded, the result is a rooted binary internally labeled
phylogenetic tree.

We define U(N, u) as the result of the unfolding at node u of network NV and U(N) as the completely unfolded
network. When there is more than one node in R,;;,(N) say u; and uy, the order of unfolding does not matter,
i.e. UU(N, ), u2) = UWU(N, uz), up). 2]

4.1.2. Examples of unfolding

In this part, the network from Figure 4.1(a) will be unfolded using the algorithm above, resulting in the tree

from Figure 4.1(c).

Starting with the algorithm, it can be seen that R,;, = {12}, thus we take A,. Now, the edge (us,A,) will be

deleted (marked purple in Figure 4.1(a)). Then, the tree rooted at A, is copied, this copy is marked green in

Figure 4.1(b). Next, an edge between the copy of A, and us is added (marked in Figure 4.1(b)). An

update on Ry,;, is performed, resulting R;,;,; = {A1}. This is not empty so another repetion of the algorithm

needs to be done. First, we delete the edge (u3,1;) (marked purple in Figure 4.1(b)). Then, the tree rooted

at A; is copied (marked green in Figure 4.1(c)). Finally, the edge from us to the copy of 1, is added, marked
in Figure 4.1(c). Updating R,;, results in the empty set thus the network is completely unfolded.

The unfolded networks from Figure 3.1 are shown in Figure 4.2, these will be used in Chapter 5.
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Figure 4.1: Unfolding a network to a tree

1

Tl T Tl To T1 T ZT1 T Tl T
Figure 4.2: Unfoldings of N1 and N>

4.2, Folding a phylogenetic network

Let E(M) be the set of elementary nodes of a (partially) unfolded network M. Now we define an order in this
set. Let u, v € E(M), then u <g v if and only if there exist v/, v’ € E(M) with I(x) = [(1') and I(v) = [(v') and u
is a descendant of v, i.e. there is a path from v to u. The set of elementary nodes that are maximal under this
order is called E,, 4 (M). [2] We define the subnetwork with the node u as the root as M (u)

4.2.1. Folding algorithm
Let M be a (partially) unfolded rooted binary internally labeled phylogenetic network, and let E,;; 4 (M) be as
described above. Then:

1. consider the nodes u, v € Ej; 4 (M) such that I(u) = I[(v) and M(u) = M(v) and let w be the parent of v;
2. delete both M(v) and the edge (w, v);

3. add an edge from w to u, a reticulation node is formed;

4. update the set Ejqx(M);

(@) if E;pax # @, g to the first step.

(b) if E;ax (M) = @, the (partially) unfolded network is completely folded, the result is a rooted binary
internally labeled phylogenetic network.

Note that M can be arooted binary internally labeled phylogenetic tree the first time you start at the first step,
after that it is not a tree anymore, since there is at least one reticulation node. We define F(M, u) as the result
of the folding at node u of network M and F (M) as the result of the algorithm with input M. Also, just as with
unfolding, the order of folding does not matter.

4.2.2. Examples of folding

In this part, the tree from Figure 4.3(a) will be folded using the algorithm above, resulting in the network from
Figure 4.3(c). Suppose that I(u) = [(v) = A1 and [(1)) = (V") = A,.

Starting with the algorithm, E,,,, = {1, v} and us is the parent of v. Now, the subnetwork M(v) and the edge
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Figure 4.3: Folding a tree to a network

(us, v) (purple in Figure 4.3(a)) will be deleted. Then, the edge (u3, 1) ( in Figure 4.3(b)) is added and
the reticulation node will be named the same as its label. Next, the set E,, is updated and becomes{u’, v'}.
Starting at step one again, the node us is the parent of v'. Then the subnetwork M(v’) and the edge (us, ')
(purple in Figure 4.3(b)) are deleted. Finally, the edge (us, u') ( in Figure 4.3(c)) is added and we name
the new reticulation node equal to its label. Now, if the set Ej; 4« is updated, it is equal to the empty set, thus
the tree is completely folded.

4.3. Uniqueness of folding and unfolding

As seen in the paper from Pons et al. ([2]), an internally labeled phylogenetic network can be unfolded such
that the obtained internally labeled phylogenetic tree is unique for the network. So that the tree can be folded
back to the network. This is stated in the following theorem which can be found in that paper.

Theorem 1. [2] Let N be a rooted binary internally labeled phylogenetic network. Then
N=F(U(N))

Note that the elementary nodes of the unfolded network correspond with the reticulation nodes of the orig-
inal network. Since the subnetwork under each reticulation node of a network is considered twice when
defining its polynomial, this results in the following.

Observation 1. The polynomial of a rooted binary internally labeled phylogenetic network N is equal to the
polynomial of its unfolding U(N), i.e. p(IN) = p(U(N)).

Something similar has been found for the Pons polynomial ([2]).
Now, it is interesting to see when a rooted binary internally labeled phylogenetic tree can be folded to an
rooted binary internally labeled phylogenetic network. This is stated in the next lemma.

Lemma 1. If arooted binary internally labeled phylogenetic tree with distinct labels can be folded to a rooted
binary internally labeled phylogenetic network, then for eachlabel A;,i =1,2,..., r, the number of elementary
nodes with label A; is equal to 2+ the number of ancestor elementary nodes with distinct label A; , with i # j.

Proof. When there is only one A, say 1;, then a folding operation can only be done if there are 2 elementary
nodes u, v with label A1 and M (u) = M (v). Otherwise, the folding cannot be done, i.e. the number of elemen-
tary nodes with label 1; must equal 2 to be able to fold.

Now suppose that there are multiple different ;. If the nodes with these labels are not ancestors of eachother,
then all these A; are in Ej,,4, and the order of the folding does not matter. It can be seen as repeating the fold-
ing of one label A;. In this case, again, all the labels 1; must be present twice to be able to fold.

Now, let multiple different A; be ancestors of eachother. Then the label of the elementary node closest to the
root, must be present twice to be able to fold. Then when the folding operation is done, a copy of everything
below (including other elementary nodes) is deleted. So with every folding step, a copy of every elemen-
tary node with the same label is deleted. This means that to be able to fold all the elementary nodes, the
label needs to be present as many times as a folding operation deletes a copy plus two, which is equal to the
amount of different labels as ancestor plus two. O

It is useful to know when a tree can be folded back to a network. For example, when looking at Figure 4.4 from
[2], these three trees have the same Pons polynomial, but they cannot be all folded to a network by Lemma 1,
so they cannot be unfoldings from networks with the same Pons polynomial.
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Primary subtrees and distance between
networks

In this chapter, primary subtrees, their relation with the polynomial of a network and the difference and
distance between two networks will be discussed. In this chapter, only the networks and trees with one label
for all the reticulation nodes and elementary nodes will be considered.

5.1. Primary subtrees
When looking at an internally labelled phylogenetic tree which is an unfolded internally labelled phylogenetic
network, we can describe primary subtrees in the following way.

Definition 6. A primary subtree S of a tree T is a rooted subtree of T, such that S shares the same root with T
and any leaf node of T is either a leaf node of S or a descendant of aleaf node of S. Let St be the set of all the
primary subtrees of tree T.[1]

Now that primary subtrees are defined, we can define the monomial for a primary subtree.

n xﬁj

Definition 7. The monomial for a primary subtree S of atree T, is a polynomial of the form q(S) = A% y" ] 1%

where:
* a+y+). ;.’:1 B; equals the number of leaves of the primary subtree S;
¢ a equals the number of leaves of the primary subtree S that are elementary nodes in the tree T;

* each f; equals the number of leaves of the primary subtree S that are leaves labeled x; in the tree T,
similarly, Z?:I B equals the number of leaves of the primary subtree S that are also leaves in the tree T;

» vy are the number of leaves of the primary subtree S that are tree nodes in the tree T

Note that the a, §; and y could also be equal to zero.
Also note that the monomials can be determined for networks with distinct A. Then A, becomes }L?", with

i=1,2,...,r and monomial becomes ¢q(S) = y”(l_[;:1 A?i)(l_l;lzl xfj). The total number of leaves of the primary
subtree S equals y+(X_, a;) + (Z;Ll B;) and the interpretation of the «; is similar to the interpretation of the
B;j. In Figure 5.1 a tree T and two of its primary subtrees Sy, S, are shown. The primary subtree in Figure

5.1(b) has monomial g(S;) = A?x; x4, the primary subtree in Figure 5.1(c) has monomial g(S,) = Axlxg X3Y.

5.2. Relation between primary subtrees and the polynomial of a network
In the paper of Liu [1], a polynomial for unlabeled rooted trees is defined. In this section, a few conjectures
are stated for the new polynomial which are similar to what Liu proved for unlabeled rooted trees.

Conjecture 1. p(T) =3 scs, 4(S). i.e. the sum of all the monomials of primary subtrees S of a rooted binary
internally labeled phylogenetic tree T is equal to the polynomial of the tree.

10
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Ty A r1

ug us
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51 52

Figure 5.1: A tree and two of its primary subtrees

From Conjecture 1, the following would follow directly;

Conjecture 2. Let T be a rooted binary internally labeled phylogenetic tree. Suppose p(T) has m terms and
a, a, ..., a, are the corresponding coefficients, then T has Z;’il a; primary subtrees.

Conjecture 2 tells us that the coefficient before every term of the polynomial is equal to the number of primary
subtrees with that polynomial. The following conjecture states that equal polynomials are from equal trees
and the other way around.

Conjecture 3. Let T7 and T» be two rooted binary internally labeled phylogenetic trees. T; = T> if and only if
p(11) = p(13).

Since Observation 1 told us that the polynomial of a network is equal to the polynomial of its unfolding and
since the unfolding of a network is a tree, from Conjecture 3 it follows that the polynomial of a network is
unique. This is stated in the following conjecture.

Conjecture 4. Let N; and N, be two rooted binary internally labeled phylogenetic networks. Ny = N> if and
only if p(N1) = p(N2).

5.2.1. Difference between two networks

From Conjecture 4 it can be seen that the difference between two networks can be seen in the difference of
their primary subtrees. Now, we take a look at the difference between N; and N, from Figure 3.1 and we use
the unfoldings of these networks from Figure 4.2, but then with one label A. The difference of these polyno-
mials was Ax; xoy — Ax3y+Ay?, in Appendix A the corresponding monomials are bold. In Figure 5.2, primary
subtrees with monomial Ax; x, y are shown. In Figure 5.3 and Figure 5.4, the primary subtrees with monomial
Ax3y and Ay? are shown. Indeed, it is seen that the primary subtrees of the unfolded networks correspond
with the terms of the polynomial and that the coefficient is equal to the number of primary subtrees with the
same monomial.

5.2.2. Distance between two networks

Now that we have seen the difference between two networks, it is useful to assign a number to this, to create
an order in the differences. We introduce two different ways to measure the distance between two networks.
For both of the distances, the first step is to subtract the two different polynomials from the networks from
each other resulting a polynomial of the form p=Y.1", a;q(S) .

Now we define the first distance D, (N, M) as the sum of the absolute values of the coefficients of p(N) — p(M),
ie. D1(N,M)=X"la;l.

We define the second distance D, (N, M) as the square root of the sum of the coefficients of p(N) — p(M)

squared, i.e. D2 (N, M) = g’il a?.

Note that it does not matter which polynomial is subtracted from the other since the coefficients will be
squared or the absolute value will be taken so the sign of the coefficient does not matter.

For the networks Ny and N, from Figure 3.1, the obtained differences are D (N;,No) =1+1+1 =3 and

Dy (N1, No) =/ (1)2+(=1)2+(1)2 = V3.
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Figure 5.2: Primary subtrees of N7 and N, with monomial Ax;x2y
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Figure 5.3: Primary subtrees of N7 and N> with monomial Ax3y
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Figure 5.4: Primary subtrees of N1 and N with monomial Ay?



Algorithm

In this chapter, an algorithm to make an unfolded network from the sum of monomials will be introduced.

Assume that there are several different trees found and that those trees share the same root node. Then,
the monomial of all these trees can be found. With the algorithm described in this chapter, it is possible to
rewrite the polynomial such that the unfolded network it describes can be found. After using the algorithm,
the list needs to be rewritten to a polynomial. We start with replacing all the square brackets with round
brackets and deleting all the commas, when there are two opening brackets next to each other, y+ is written
in between.

Data: list with only entry the sum of monomials, i.e. polynomial
Result: list which can be rewritten to a factorized polynomial
while polynomial #0 do
Factorise polynomial minus y;
if result is a factor ab then
delete the polynomial and insert [a],[b] at the place of the deleted polynomial;
[a] becomes the polynomial;
else
if current entry is not the last then
‘ next entry is polynomial;
else
| polynomial=0.
end
end
end

Algorithm 1: From sum of monomials to list
In Appendix B, this algorithm is used on the expanded polynomial of N, from Figure 3.1. The resulting lists
are as follows;
Start: [423x3 X3 +8A% X3 X3 x3+5Ax3 X3 X543 x5 X3 +20A* x5 X5+40A3 x§ x5 x3+12A3 X2 x5 y+25 A% X2 x5 X3 +24A? X3 X5 X3y +
5/1xf x§x§’+15/1xf x§x§y+3xfx§ x§y+32/15x1 X2 +641% x1 X2 X3+401% x1 X2 y+40)L3 X1 X2 x§+80/13 X1 xZX3y+12/13x1 X y2+
8/12xfx§y+8itzx1x2x§’ + 50/12x1x2x§y+247L2x1xzx3y2 + 10Axfx§x3y+ 10Ax; x2x§y+ 15Ax; x2x§y2 +3xfx§x§y+
3x1x2X3 Y +16A%+321° 0343215 y+201% x5 +6411 x5 y+20A* Y2 +26 1% x1 X2 y+4A3 x5 +40A3 x2 y+40A3 x3 2 +423 3 +
33A%x1X2X3Y + 1642 X1 x2 % + 8A2 X3 y + 2502 X5 y* + 8A%x3y> + 10Ax1 X2X5 y + 20Ax1 Xpx3 % + 5AX; y* + 5Ax5y° +
6x1 25 Y% + x5y +20A%y + 2643 x5y + 2643y + 8A2x2y + 3347 x3 )% +8A% Yy + 5Ax1 %2 )% + 10Ax3 y* + 10Ax3)° +
3x102x3y% +3x5 2 +8A2 Y2 + Ax1 X2y +5Ax3 Y2 +5A Y3 + X1 X0 X3y +3x3 Y3 + 222y + 2Ax3y + AYP + X3 + Y2 + Y2 + Y]
Iteration 1: [[Ax] X2 +X] X2 X3+ 212 +2 A x5 + Ay+x3y+yl, (472 xfxg +4/1x% x§x3 +x% x% x% +12A3 %, 30 + 1222 x1 Xp. X3+
81A%x; X2 y+3Ax) x2x§ +8Ax1 X2 X3y +2x) x2x§y+8/14 +813x3+ 12/13y+27L2x§ +1212 xgy+4/12 y2 +41x1 x2y+37tx§y+
AAX3Y* +2X1X2X3Y + X5 Y* +6A%y +3Ax3y +AAy? +2x3)° + Y2 + Y]]
Iteration 2: [[[A+x3], [x1X2+2A+ Y]], [AA% X2 X2 +4 A2 X5 x3+2 X5 x5+12 A3 X1 X2+ 122 X Xp X3+8A% X1 X y+3A X1 Xp. X5+
BAX1 X2 X3y +2X1%%5 y +8A% +8A3 03+ 1223y + 212 x5 + 1202 X3y +4A% y? +4Ax1 Xo Y +3Ax5 y +4Ax3 Y% +2X1 Xp X3 Y +
x%y2 +6A2y+3Ax3y +4Ay? +2x3Y% + ¥2 + Y]]

15
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Iteration 3:[[[A+x3], [x1 X2+ 24+ Y11, [[2A X1 X2 + X1 X2 X3 +4AA% 420 x5 +2AY+ X3V + Y], [2AX1 X2+ X1 X2 X3 +2A%2 4 Axs+
24y +x3y +ylll

Iteration 4: [[[A+ x3], [x1 X2 + 24+ V1], [[[2A + x3], [X1 X2 + 24 + Y11, [2A X1 X2 + X1 X2 X3 +2A2% + Ax3 +2Ay+x3y+ylll
Iteration 5:[[[A + X3], [x1 X2 + 24 + Y11, [[[2A + x3], [X1 X2 + 24+ Y11, [[X1 X2 + A + y1, [2A + x3]]1]

When rewriting this last step, we obtain; (y+(y+(A+x3) (X1 X2+ 24+ ) (¥ +(y+ (2A+x3) (X1 X2+ 24+ ) (¥ + (X1 X2+
A+ )24+ x3)))).

With this polynomial it is possible to find U(N,) from Figure 4.2 with each A; replaced by A. For every y, a
tree node is made, if the polynomial minus y results in a factor, with each of the factors as the polynomial of a
child. For every A an elementary node is made and for each x; a leaf is made. Note that the leaves are the last
ones made and that a tree node is only made if the polynomial minus y results in a factor. In Figure 6.1 some
of the steps for the polynomial above are worked out.

y+(y + (Y + A+ 2122) (2 + 23))
(y+ A+ 23)(y + 2A + 2122).

y+ (y+ 22+ z122) (A + x3)

y+ (y+ X+ z122) (2N + 23)
Y+ 2\ + x129 A+ 23

A Y+ 2\ + z1290 y+ A+ 122

T3

Y+ 2122

Figure 6.1: Finding U(N3) from the obtained polynomial



Conclusion

In this thesis, a new polynomial for describing a rooted binary internally labeled phylogenetic network was
introduced for networks with reticulation nodes with distinct labels A; and for networks with reticulation
nodes with the same label A, which was inspired by the paper from Pons et al. [2].

Then, two different algorithms were defined for unfolding rooted binary phylogenetic networks and fold-
ing rooted binary phylogenetic trees. A look was taken at the uniqueness of folding and unfolding and it was
found that the polynomial of a rooted binary internally labeled phylogenetic network is equal to the polyno-
mial of its unfolding, which is actually a rooted binary internally labeled phylogenetic tree. Lemma 1 tells us
when a rooted binary internally labeled phylogenetic tree can be folded to a rooted binary internally labeled
network, which is useful to determine whether different trees could be folded to the same network.

Next, primary subtrees and monomials were defined and their relation with the polynomial of a network
was observed. This leaded to four conjectures about the relation between monomials and the polynomial of
a tree and the uniqueness of the polynomials of trees and networks. Then, the difference between two net-
works was observed by the different primary subtrees. Also, the distance between two networks was defined
in two different ways.

Finally, an algorithm was made with which it is possible to find an unfolded network back from the sum
of monomials. When a few primary subtrees with the same root node are known, it is possible to find out if
these can form a rooted binary internally labeled tree. If they can form a tree, Lemma 1 provides a necessary
condition for whether the tree can be folded to a rooted binary internally labeled phylogenetic network.

17



Discussion

In this thesis, a few conjectures were stated in Chapter 5 which are not proven yet. For further research it is
useful to prove these conjectures, since for the difference and distance between networks and for the algo-
rithm, they are assumed to be true. It is likely that they could be proven by adjusting the proofs in the paper
from Liu [1].

Furthermore, it is interesting to see what happens when a look is taken at rooted binary networks (so net-
works without internal labels). In that case, reticulation nodes are allowed, but they are not labeled so only
the leaves are labeled. In that case, it is suggested that the polynomial for a node u with only one child v is
defined as p(u) = y+ p(v). Is the polynomial still unique or are there different networks with the same poly-
nomial?

In this research, elementary nodes were not allowed in the rooted binary internally labeled networks. What
would the effect of allowing them be on the polynomial? When they are labeled in the same way as the retic-
ulation nodes, would the folding and unfolding operations still be possible and is it then still true that the
folding of the unfolding of a network equals the network?

18
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In this Appendix, the expanded polynomials of the networks N} and N, from Figure 3.1 are stated. The sub-
script of p shows if distinct 1; or one A is used.

_ ,3,3,3 3.3 2 3.3 2 3.3, 12 3.3 3.3, 12, 3313 3,392
pa; (N1) = X7%5 X3 +3X7 X5 X3 Az +2X7 X5 X543 + 3X7 X5 X3 A5 + 4X7 X5 X3 A2 A3 + X7 X5 X3 A5 + X7 X5 A5 + 2X7 X5 A543

+ X35 Ao + 3X5 X505y + 3X5 X551 + 2X5 X5 x5 g + 9XT x5 X5 Y Ao + 6x5 x5 X5 YAz + 9xE x5 X5 A1 Az

+ 62X x5 A1 A3 + 6X5 x5 X5 Ao Ay + 4x5 X5 X5 A3 g + 9X2 X5 x3 Y A3 + 12X5 x5 x3 Y Ao A3 + 3% X5 X3y A5
+9x2 X2 x3 M A3 + 12x3 x5 301 Ao A3 + 35 X5 X3 A1 A2 + 6x5 x5 X345 0g + 8% x5 x3 A2 A3y + 2% X5 X3 A5 A4
+3X2 X2 A3 +6x2 X2 yAG A3 +3x2 X2 YA A3 + 3x2 X2 M A3 + 62 X3 A1 A5 A3 + 3x2 X2 A1 Ao A3 + 22 X5 A3 Ny
+4x2 X2 A5 N3 0 + foxgﬂtgﬂtg/u + Sx%xgxgy +6X2 X2 X3y A0 + 4X5 X5 X3y A3 + 3X2 X5 yAS + 4X2 x5y Ao A3
+ xfx%y)t% + 3x1x2x§y2 + 6x1x2x§‘y/11 + 4x1x2x§'y/14 + lexzxg'ﬁ + 4x1x2x§/11)L4 + xlxzxg/li
+9x1x2x§y2/12 +6x1x2x§y2/13 + 18x1x2x§yﬂtlﬂlz + 12x1x2x§y/11)L3 + 12x1x2x§y/12/14 +8x; xgxgyﬂtg/h
+9x7 xgxg/lfﬂtg + 6x1x2x§/1%/13 + 12x1x2x§/11/12)L4 + 8x1x2x§/11/13)L4 + 3x1x2x§/12/1§ + 2x1x2x§/13/1§
+ 9)61)62)63_)/2/1% + llexe;gyz/lg/lg + 3)61)62)63_}/21% + 18)61)62)63_)/1113 + 24)61)62)63_)/1112/13

+ 6)61)62)63)//111% + 12x1x2x3y7L§)L4 + 16x1x2x3y12/13/14 + 4JC1XZX3_)/A§A4 + 9)61)62)63/1%/1%

+ 12x1x2x3/1%/127L3 + 3X1)CZX3A%A§ + 12x1x2x3/117L§7L4 + 16.X1XZX3/11/1213A4 + 4JC1XQX3A,1/1§/14

+ 3x1x2xg/1§/1?1 + 4.X,'1.X,'2.X,'3/12/13A§ + xlxgxﬂtgiti + 3x1x2y27Lg + 6x1xzy27L§7Lg + 3x1xzy27Lg)L§

+ 6x1x2y/11/lg + 12x1xzy/11/1§/13 + 6x1x2y)L1/12/1§ + 4x1x2y/13)L4 + 8x1xzy/1§/13/14 + 4x1x2y)L2/1§/14
+3X1 024743 + 631 22 AS A5 A3 + 3x1 02 AT A0 A5 + 41 X2 M1 A3 g + 831 X2 A1 A5 A3 Ay + 421 X2 A1 A2 A5 A4

+ xlxg/lg/li + 2x1x2/1§)L3)L§ + X xzﬂlg/lg/lﬁ + 6x1x2x§y2 + 6x1x2x§y/11 + 4x1x2x§y/14 +12x; xgxgyz/lz
+8x1 xgxgyz/lg +12x1X2x3 A1 A2 + 8X1 X2 X3 Y A1 A3 + 8X1 X2 X3 Y A2 As + 5X1 X2 X3 Y A3 s + 6x1x2y2/1§

+ 8x1x2y2)L213 + 2x1x2y2)L§ + 6x1x2y/11/1§ +8x1x2yA1A2A3 + 2x1x2y/11)L§ + 4x1x2y/l§/14

+5x1x2y 234 + xlxgylgh + xgy3 + 3x§y2/11 + 2x§y2/14 + 3x§y/1f + 4x§y7L1A4 + xgy/li + xgﬁ

+ 2x§)l%/14 + xgll/li + 3x§y3/12 + 2x§y3/13 + 9x§y2/11/12 + 6x§y2/11/13 + 6x§y2/127L4 + 4x§y27L3}L4
+9X5YA3 g + 6x5 YAT A3 + 1225 YA Aoy + 8x5 YA Ag Ay + 3X5 Y A2 A% + 25y A3 A3 + 3x5A3 A,

+ 2x§)L?/13 + 6x§/1%/12/14 + 4x§)tf)tgﬂt4 + 3x§/11/12/1‘21 + 2)692)/11%3,)@21 + 3x3y3/1§ + 4x3y3/12/13 + X3y3/l§

+ QX3y2/11/1§ + 12x3y2/11/1213 + 3X3y2/11/1§ + 6x3y2/1%/14 + 8x3y2/12/13/14 + 2x3y2)L§/14 + 9x3y/1%/1§
+12x3yA Ao A3 + 3x3YATA5 + 1203y A A5 g + 163y A1 A As Ay + 43y A1 A5 Ay + 3x3yA5A5
+4x3YA2 A3 A% + X3 YASAS + 3234345 + 4x3A3 Ao A3 + X3 AT A3 + 623474544 + 81342 A2 A3 A + 2X3A5A5 0
+3x3 M ASAS + 4x3 A1 AaAsAS + X3 M ASAS + 1P A3 +21° A5 A3 + Y3403 + 312 M A3 + 62114345
+3Y2 N1 A2A5 + 2P A3 Ay + 4Y* A5 A3 A4 + 27 Ao A3 A4 + 3YAIAS + 6YAGAS A3 + 3yA2 A0A3 + 4y Ay A3 A,
+8YMAS A3 AL + 4Y A1 A A5 A0 + YASAG + 2YA5A3A5 + YA2A5A5 + A3A3 + 230503 + A3 A0 A5 + 24545
AN AS A3 A + 203 Ao A5 A + M ASAS + 201 A5 A3 A5 + A1 Ap A5 A5 + 3X1 X2 X3 +3X1 X2 Y% A2 + 21 X2 VP Ag
+ 3x§y3 + 6x§y2}L1 + 4x§y2}L4 + 3x§y/1% + 4x§y7tlit4 + xgy/l?1 + 6x3y37Lg + 4x3y3/13 + 12x3y2/11/12

+ 8x3y2/11/13 + 8x3y2/12/14 + 5x3y2/13/14 + 6x3y/1%/12 + 4x3y/l§)Lg +8x3yA1 A2 + 5x3yA1A3M4

+ ZX3y/12/Lzl + x3y/13/1ﬁ + 3y3/1§ +4Y3 Aoz + y3/1§ + 6y2/11/1§ +8y2 A1 A23 + 2y2/11)L§ + 4y2/1§/14
+5Y* Ao A3 Ay + Y2 A5 + 3YA2 A5 + 4y A3 Ao A3 + YATAS + 4y A A5 A4 + 5y A Ao Az g + YA A5 A4

+ yﬂ%li + yxlgxlgﬂti + X1X2X3) + X1 X2V A2 + X1 X2y A3 + ?;xgy3 + 3x3y2/11 + 2x3y2)L4 + 3y3/12 + 2y3/13
+3Y2 M Ao + 2P A A3 + 2 Aoy + VP Az Ag + X372 + X3y A1 + ¥ + VP Ao + VP Az + yM Ao+ Y Az + Y2+ y
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pa,(N2) = X3 X363 +3X3 53 X5 A0 + 223 X3 X5 A +3X3 265 X35 + 43 x5 x3 A2 A + X265 X35 + 5 X545 + 225 x5 A5 A4
+ x‘;’xg/lg/li + Sxfxgxgy + Bx%xgxg’ﬂll + foxgxg/lg + Qxfxgxgy/lg + Gx%xgxgyﬂu + 9x§x§x§A1/12
+6X2x5 X3 N1 Ay + 6XT X5 X5 Ao As + X2 X2 x5 A3y + 9X7 x5 X3y A5 + 12X5 %5 X3y Ao Ay + 3X% x5 X3y A5
+9x2 x5 x3M A3 + 12x5 x5 301 Ao Ay + 35 X5 X3 A1 A5 + 67 x5 X345 A3 + 8% x5 x3 Ao A3 Ay + 25 X5 X3 A3 A5
+3x2 X5 YA3 + 62 x5 yAG A + 3X2 x5 YA A% + 3X2 x5 M A3 + 62 x5 M1 A5 g + 32 x5 A1 A2 A5 + 22 X3 A3 A3
+4X2 XN + 22 X3 Ao A3 A3 + 3X2 X5 x5y + 6X5 x5 X3y Ao + 4X2 X5 X3y Ag + 3XT x5 YAS + 4xT x5 Y Aoy
+ xfx%y)ti + 3x1x2x§y2 + 6x1x2x§y/11 + 4x1x2x§y/13 + 3x1x2x§%% + 4x1x2x§’/11}L3 + xlexgﬂé
+9x1x2x§y2/12 +6x1x2x§y2/14 + 18x1xzx§y/11)L2 + 12x1x2x§y/11A4 + 12x1x2x§y/12/13 +8x1x2x§y13/14
+ 9x1x2x§/1%/12 + 6x1x2x§/1%/14 + 12x1x2x§/11/12/13 + 8x1x2x§/11/13/14 + 3x1x2x§/12/1§ + 2x1x2x§/1§/14
+9x; xgxgyz/lg + 12x1x2x3y2/12/14 + B»xlxgxgyzﬂtf1 +18x; xzxgy/llﬂlg +24x1x2Xx3Y A1 A2 Ay
+6x7 xgxgyxllﬂti +12x; xzxgyﬂtgﬂlg +16x1 X2 X3 Y A2 A3 s + 4x1x2x3y)L3)Li +9x7 xgxg/l%/lg
+ 12x1x2x3/1§/12)L4 + 3x1x2x3ﬁ/li + 12x1x2x3/11)L313 +16x1 X2 x3A1 A2 A3A4 +4X7 xgxg/ll/lg/li
+ 3)61)62)63/1%/1% + 4X1XZX3/12A§A4 + xleX3A§Ai + 3)61)62_}/2&; + 6)61)62}/2&%14 + 3)61)62}/2121421
+ 6x1x2y/11/13 + 12x1x2y/11/1§/14 + 6X1nyﬂ1A2/1£ + 4X1ny/llgAg + 8x1x2y/1§/13/14 + 4X1nylgﬂ,3/1421
+ 3X1XZA%A3 + 6x1x27L%/1§/14 + 3X1.X,'2/1%/12/1i + 4X1.X,'2/1113A3 + 8X1X211A§ﬂ,3/14 + 4X1.X,'2/11/12/131421
+ xlxg/lg/lg + 2x1x2/1§/l§)L4 + xlxgﬂtg/lg/lﬁ + 6x1x2x§y2 + 6x1x2x§y/11 + 4x1x2x§y/13 + 12x1x2x3y2/12
+ 8x1x2x3y2/14 +12x1x0 X3y A1 Ao + 8X1 X2 X3 Y A1 Ag + 8X1 X2 X3 Y A2 A3 + 5X1 X0 X3 Yy A3 Ay + 6x1xzy2/1§
+8x; x2y2)L27L4 +2x1 xzyzﬂtﬁ + 6x1x2y/11/1§ +8x1 X2y A A2 Ay + .’leny/h/Lz1 + 4x1x2y/1§/13
+5x1 02y Ao s Ay + X1 X2 A3A5 + X513 + 313 Y2 A1 + 2X5 Y% A3 + 35 YA + 4xSyAi A + X yAS + A3
+ 2x§)t%/13 + xgﬂtl/lg + 3x§y3/12 + 2x§y3/14 + 9x§y2/11/12 + 6x§y2/11/14 + 6x§y2/12)L3 + 4x§y2)L3)L4
+9X5YA3 0 + 6x5 YAT Ay + 1225y A1 Ao A3 + 8x5 YA Ag Ay + 3X5 A2 A5 + 225 A5 A4 + 3X5A A0
+2X5 03 Ay + 6X5A5 A0 A + 4X5 AT A3 g + 3X5 M1 A0 A5 + 2X5 A A5 A4 + 3x3° A5 + 4x3 Y Ao Ay + x3y° S
+ 9)(,'3_)/2/111% + 12)(,'3)/2/1112&4 + 3)(,'3_)/2/111421 + 6)63_)/2/1%/13 + 8X3y212/13/14 + ZX3y2A3/1£ + 9.X3y/1%/1§
+ 12x3y/1%/12/14 + 3)@3/]@7& + 12x3y/11/1513 +16x3 A1 A2 A3y + 4x3y7Ll)LgAi + 3x3y/1§/1§
+4x3Y Ao A5 Ag + X3YASA2 +3x3A3A5 + 423 A3 Ao Ay + X3ATA% + 623420513 + 8x3A2 Ao A3y +2x3A5 A3 A2
+3x3 M ASAS + 4x3 A1 Ao AS Ay + X3 M ASAS + P43 + 2)° A5 A4 + Y3205 + 3P A3 + 62014504
+31P M AL +2Y° A3 A3 + 42 A5 N304 + 2Y° Ao AsAZ + 3y A2 A3 + 6yA3 A5 A4 + 3YA2 Ao A3 + 4y A1 A3 A3
+8YMIAG A3 Ay + 4YA Ao A3 A3 + YASAS + 2YASA3 A0 + YA ASAS + A3A3 + 2434504 + A3 4245 + 245303
AP NI A3 A0 + 202 Ao A3 A5 + M ASAS + 2 A5A3 g + M A2 A3 A% +3X1 X2 %3 Y% + 321 X217 Ao + 221 X2 Y2 Ay
+ 3x§y3 + 6x§yzﬂl + 4x§y2A3 + 3x§y/1f + 4x§y11/13 + x§y/1§ + 6x3y312 + 4x3y3/14 + 12x3y2/11/12
+ 8)63)/2/11A4 + 8)63_)/2/12/13 + SX3y2/13/14 + 6)03,_}01%/12 + 4)@_)/1%&4 + 8)C3yA1/12/13 + 5X3y/11/1314
+ 2x3y/12/1§ + xgy/1§/14 + Sys/lg + 4y37L2/14 + y3/1§ + 6y2/117L§ + 8y2/L1/12/14 + ZyZAIAﬁ + 4y2/1§/13
+5Y* AaAsAs + Y2 AsAG + 3YA2 A5 + 4yASAa Ay + YATAT + 4y M A5 A3 + 5y A1 A2 A3 Ag + YA1 A3AS
+ y/lg/lg + y/12/1§/14 + X1X2X3) + X1 X2 Y A2 + 3363y3 + 3x3y2/11 + 2x3y2/13 + 3y3)L2 + 2y3/14 + 3y2/11)Lg
+ 2y2/11/14 + 2y2)Lz)L3 + y2/13/14 + xg,y2 + X3yA1 + X3y A3 + y3 + yz/lz + YA Ao + YA2A3 + y2 +y
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3.3,2 3,3,2 3.3 3.3 3.3, 92_ 3.3 192 5.3 392
Pa; (N1 — pa, (N2) = 2x7 X5 X5 A3 = 2X7 Xy X3 Ag +4X7 X5 X3 A2 A3 —4X7 X5 X3 A2 Ag+ X7 X5 X3 A3 — X7 X5 X3 A5 +2X7 X5 A5 A3

3.372 3.31 92 _ 3.3y 42 2.2.3 2.2.3 2.2 2 2.2 2 2.2 2
=2x7 X5 A5 s+ X7 X5 Ao A5 — X7 X5 Ao Ay — 2X7 X5 X5 A3 +2X7 X5 X3 Mg +6X7 X5 X5 Yy A3 — 6X7 X5 X5 Y A4 +6x7 X5 X311 A3

—6Xx5 X3 N1 Ay — 6XTX5 X3 Ao A + 6x5 X3 x5 Aa Ay + 12X X2 x3 Y A2 A3 — 12X X5 X3y A2 A + 3X5 X5 X3y A3
—3x2 x5 x3yA5 + 12x3 x5 x3M1 Ao A3 — 12x5 x5 X301 Ao Ay + 3x5 X5 X341 A5 — 32 x5 x3 M1 A — 6x7 x5 X353

+ 65 x5 X345 g + 2X5 x5 X3 A5\ — 262 X5 X3 A3 A5 + 6X7 x5 YAS A3 — 65 x5 YA5Ag +3X5 x5 Y Ao A5 — 3x3 x5 y Ao AS
+6x5 X5 M A5 A3 — 6XF x5 A A5 Ag +3X5 x5 A1 Ao A5 — 3x3 x5 A1 Ao A% — 2X2 X3 A3 N3 + 2X2 X5 A3 g + 2X5 x5 Ao A5 Mg
— 22 X2 A A3 A3 + 4X2 X5 x3yAg — AX3 x5 X3y Aa + 4X° X2 yAa A3 — Ax5 X5 Aoy + X2 X YAS — X2 x5y A2

- 4x1x2x§y/13 + 4x1xzx§y/14 - 4x1x2x§%1/13 + 4x1x2x§)Ll)L4 — xlxzxg’/lg + xlxgxg:’/LZ1 + 6x1x2x§y213

- 6x1x2x§y2/14 + 12x1x2x§y/11/13 - 12x1x2x§y/11)L4 - 12x1x2x§yﬂtg/13 + 12x1x2x§y/12/14 + 6x1x2x§/1§/13
- 6x1x2x§/1%/14 - 12x1x2x§)L1/12/13 + 12x1x2x§/11/12/14 - 3x1x2x§)L2)L§ +3x1 xzxgxlzﬂti - 2x1x2x§/1§/14

+ 2x1x2x§)L3)Li + 12x1x2x3y2/12/13 - 12x1x2x3y2/12/14 + 3x1x2x3y2/1§ -3x JCZJC3J/2/LZ1 +24x1 X231 A2 A3
—24x1x2x3 YA A2 +6x1x2x3y/11/1§—6x1x2x3y)L1)li— 12x1x2x3y)L§)13+12x1x2x3y/l§/14 +4x1x2x3y)l§/14
- 4X1)C2)C3y/13/1§ + 12)61)62)631%/12/13 - 12x1x2x3/1%7L214 +3)C1X2X3/1%/1§ - 3X1XZX3/1§/1§ - 12)61)62)6311&%/13
+ 12)C1JC2.X3AIA§/14 + 4X1XZX3/11/1§A4 - 4X1XZX3A113/1§ - 3X1XZX3/1§/1§ + 3X1XZJC3/1§AAZ1 - 4X1XZX3A2A§/14
+ 4X1XQX3A,2A,3/1§ + 6x1x2y2/1§/13 - 6x1x2y27L§/14 + 3x1x2y27L2/1§ - 3x1x2y2}L27Li + 12x1x2y/11}L§7Lg

- 12x1xzy/11/1§/14 + 6x1x2y)L1/12/1§ - 6x1 xgy/h/lzﬂti - 4x1x2y)L§)L3 +4x; xgy/lg/h + 4x1x2y)L2/1§/14

— 4x1 0y A2 A3 A5 + 6x1 X2 A2 A5 A3 — 621 X2 AT A5 A4 + 3x1 X243 A0 A3 — 321 X2 A3 A2 A5 — 4x1 X2 A1 A3 A3

+4X1 X2 A1 A3 Ag +4x1 Xp A Ap A3 g — 41 X2 A1 A2 A3 A5 — X1 X AGAS + X1 X2 A3 A% — 221 X2 A3 A5 A4 + 231 Xp A5 A3 AS
- 4x1x2x§y/13 + 4x1x2x§yﬂt4 + 8x1x2x3y2)L3 - 8x1x2x3y27L4 +8x1X2x3 A1 A3 — 8x1X2X3 Y A1 Ay
—8x1x2x3y 423 +8x1x2x3y12/14+8x1x2y2/12/13—8x1x2y2/12/14+2x1x2y2)L§—2x1x2yzﬂi+8x1x2yﬂtllg/13
—8x1xXy M A2 Ay + 2x1x2y7LM§ - Zaclxgyﬂq/l?l - 4x1x2y/1§/13 + 4x1x2yl§)14 + xlxgy/1§/14 - xlxgy/lg/li
—2X3Y* A3 + 263 VP Ay — 43 yM A3 +4x5 y A1 Ag — X3 Y A5 + X5 yAS — 2303 A3 + 2x3 A7 g — 3 M A3 + X3 A1 A5
+2x5Y3 03 = 265 P Ay + 6x5 Y2 M A3 — 635 P A1 Ay — 6X5 Y Ao Az + 65 Y Aoy + 635y A2 A3 — 635 yAT A4
—12x5yA1 Aodg + 125 YA Aoy — 3X5 Y A2 A% + 35 YA A3 — 2x5 yA5Ag + 2X5 yA3AS + 2X5A3 A3 — 2X5A3 A4
—6X5A5 A0 A3 +6X2A2 Ao Ay — 33 A1 Ao A3 +3X5 A1 Ao A% = 2x5 A A5 Ag +2X5 M AsAG +4x3Y° Apds — 4x3 13 Ao Ay
+ x3y3/1§ - xgygﬂli + 12x3y2/11/12/13 - 12x3y2/11/12)L4 +3x3y2)L1/1§ - 3x3y2)L1/Lzl - 6x3y2)L§)Lg +6x3y2/1§/14
+ 2x3y2/1§/14 - 2x3y2)L3/Lz1 + 12x3y/1%/12)L3 - 12x3y7L§/12/14 + 3x3y/1§/1§ - 3.763_)01%/1?1 - 12x3y)LlA§/13
+12x3 A1 A5 Ay + 4x3 A1 A5 A4 — 4x3y A1 A3 A% — 3X3YASAS + 3x3YA5A5 — 4x3 YA A3 A4 + 4x3y A2 A3 A%
+4x3A 3 A3 — 4323 A0 Ay + x3A3A5 — x3A30% — 6x3A5A503 + 62345 A5y + 203454544 — 2x3A% A3 A7

= 3x3 M A3A5 + 3301 4515 — 4x3 M1 Ao A5y + 4x3 A1 Ao A3 AS + 2Y° A543 — 27 A5 g + Y Ao AS — P AoAS

+6 2 MASA3 — 62 A1 4504 + 3Y2 M1 A0A3 — 32 A1 4245 — 2Y° A3 A3 + 2Y* A3 Ag + 22 Ao A5y — 2y* Ao A3 AS
+6YAIAS A3 — 6YAZAS N + 3YAIALAS — BYAI Ao A% — Ay ASAs + 4YA A3 Ag + 4y A1 Ao A5y — 4y A1 Ap A3 s
—YAAZ + YAIAE =2y A3 N3N + 2y A5 A3 A% + 2A3 A5 A3 — 23 A5 A + A3 A0 A5 — A3 A% — 202 A3 03 + 24545 A4
+2A3 A0 A5 Ay — 2A3 A0 A3A2 — MAIAS + MASAZ — 201 A5 A3 g + 241 A5 A3A5 + 2X1 X217 A3 — 2X1 X2 Y Ay

- 4x§y2/13 + 4x§y2/14 - 4x§y)t1/13 + 4x§y/11/14 - xgyxlg + x%y/Lz1 +4x3y° A3 — 4x3)° Ay +8x3° A1 A3

- 8x3y2/11/14 - 8x3y2)L2)L3 + 8x3y2/12)L4 +4x3yﬂtf/13 - 4x3y/1%/14 —8x3YyA1A2A3+8x3y A1 A2 A4 — 2x3y/12/1§
+2X3YA0A] — X3y A5 A4 + X3YA3AS + 41  AoA3 — 4y Aoy + VP A5 — P23 + 82 A1 423 — 8y A1 Aoy
+2Y° M A = 2Y° M AG — 4YP A5 A3 +4Y* A5 Ay + Y2 A3 Ag — Y2 A3 A% + 4yA2 Ao A3 — 4yAG Ao Ay + YARAS — yASAS
— 4y A5 A3 +4Y M ASAg+ YA A5 Aq — YAI A3 AL — YASAS + YASAS — YA2ASAs + Y A2 A3 AG +x1 X2y A3 —2X3 Y% A3
+ 2)(,'3)/2/14 + 2_)/3/13 - 2)/3/14 + 2_)/2/11/13 - 2y2/'llﬂ4 - 2_)/2/12/13 + ZyZAZ/Ll - X3y13 + y2/13 + y/ll/lg - yﬂ,gﬂ,g

pA(ND) = 4335 + 8A% S o xz + 5/1xfx§x§ + xfxg’xg +20A% x5 x5 + 4003 X3 x5 x3 + 123 x5 x5y + 25/12x%x§x§

+240% 53 x5 X3y + S)foxgxg + 15/1xfx§x§y + 3xfx§x§y +321° X1 X + 644" x1 X2 X3 + 404" x1 X2y

+ 40)L3x1x2x§ + 80)[3x1x2x3y + 12)13x1 )ng2 + 8/12xfx§y + SAlexgxg + 50)L2x1x2x§y + 24/12x1x2x3y2
+10Ax3 x5 %3y + 10AX1 X255y + 1541 X265 ¥ + 3% X5 x5y +3x1 X263 ¥ + 16A° + 3217 13 +321° y + 2011 x5
+ 64/14x3y+ 20/14y2 +2613x1x2y+4/13x§ + 40/13x§y+40/13x3y2 +4/13y3 + 33/12x1x2x3y+ 1612x1x2y2
+ 8)L2x§y + 25)L2x§y2 +81%x3y°% + 10/1x1x2x§y +20Ax1 X2 X3 + 5)Lx§y2 + 57Lx§y3 +6x] x2x§y2 + xgy3
+20/L4y+26/13x3y+26/13y2+8A2x§y+3312x3y2+8/12y3+57Lx1x2y2+10/1x§y2+10/1x3y3+3x1x2x3y2
+3x§y3 +8A2 )2 424X, X2y +5Ax3Y° +5AY° + X1 X2 X3y +3X3)° + 202y + Axzy + 242 + X312 + VP + P+ y
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PA(N) = 403 X355 + 8AZ X35 X3 + BAXS x5 X5 + X3 653 x5 + 2001 x5 x5 + 4043 X x5 x5 + 12A° X2 x5 y + 2502 %2 x5 x5

+240% X3 X5 X3y + S)foxgxg + 15/1x%x§x§y + Bxfxgxgy +321° X1 X + 644" x1 X2 X3 + 404" x1 X2y

+ 40)L3x1x2x§ + 80A3x1x2x3y + 12)13x1 )ng2 + 8/12x%x§y + 8)L2x1x2x§ + 50)L2x1x2x§y + 24/12x1x2x3y2
+10Ax3 x5 %3y + 10AX1 X265y + 1541 X265 ¥ + 3% X5 X5y +3x1 X263 ¥ + 16A° + 3217 x3+321° y + 2011 x5
+ 64/14x3y+ 20}L4y2 +267L3x1x2y+4/13x§ + 40/13x§y+40/13x3y2 +4/13y3 +330%x XoX3y+ 1612x1x2y2
+ 8}L2x§’y + 25}L2x§y2 +81%x3y°% + 10/1x1x2x§y +20Ax1 X2 X3 + 57Lx§y2 + 57Lx§y3 +6x] X2x?2’y2 + x§y3
+20/L4y+26/13x3y+26/13y2+8A2x§y+3312x3y2+8/12y3+57Lx1x2y2+10/1x§y2+10/1x3y3+3x1x2x3y2
+3x§y3 +8A2y2 4 Axy X2y +5Ax3y2 +54Y% + X1 X0 X3y +3x3y° + 202y + 2433y + A2 + 132 + YR+ Y2 4y
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B

Maple code
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¥ Distinct labels
pub:=x1x2+y

pub:=xI1x2+y (1.1
Y Pons polynomial
poll == 1p u6
poll =11 (x 1x2+y) (1.1.1)
pol2=22x3
pol2:==A2x3 (1.1.2)
poul:=y+p oll-A 3p ol
pou3=A1(x Ix2+y)A2x3A3+y (1.1.3)
poud :=y+A3p ol2-A 4-p oll
poud =A1 (x Ix2+y)A2x 3A3A4+y (1.1.4)
pousS=y+A4p oll-p ol
pouS=A1(x Ix2+y)A2x3A4+y (1.1.5)

p ou2 :=y+p oud-p oud
pou:= (A1 (x Ix2+y)A2x3A3A4+y) (Al (x Ix2+y)A2x 314 (1.1.6)

+y) +y
p_oul :=y+p ou2-p_ou3
poul = (A1 (x Ix2+y)WA2x3A3A4+y) (Al (xIx2+y)A2x 314 (1.17)
+y)+y) (AL (x Ix2+y)A2x3A3+y)+y
expand(p_oul)
X Px P PO A AT AL +3x Px Px YA LA ATASL (1.1.8)
F3x Ix 2x BPAL AL AT AL +x PPATLACATASL
bx Px Px PyA LA A A4 +x Px Px FyA A2 A3 4
bx Px Px Py A LA A 304+ 2x Ix 2x PPAT AT A3 4
F2x Ix 2x PRALA D A3A L +2x Ix 2x PPAT A A3 4
bx PPALCA AT A4+ x PPATAT L3NS
bx PVPALA A3 4+x Ix2x 3 A IL2A 304
+x Ix 2x 3V AIA2A3+x Ix2x 3 A1A2A 4
+x 3V AIA2A3A44+xIx2x3yA1A2A3+x3) A 1423
X3V AIA2A44+x 3V A 122234+ +) "+
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Y My polynomial
pnl2=2422+x3
pal2=A2+x3 1.2.1)
pnll =414+ p u6
poall =x Ix 2+y+ A1 1.2.2)

V¥ Polynomial for the left network
pnll3==A7A3+p n

pnll3=A3+A12+x3 (1.2.1.1)
pnll4d:=A4+p nll
pnlld=x Ix2+y+A1+A14 (1.2.1.2)
p_nlu3 :=y+p nll-p nll3
pnlu3:=(xIx2+y+A1)(A3+A2+x3)+y (1.2.1.3)
p nlud :=y+p nll3-p nll4
pnlud:=(A3+2A22+x3)(x Ix24+y+A1+Ar14)+y (1.2.14)
p_nlu5 ==y +p nll4-p nl2
pnlus=(A2+x3) (x Ix2+y+AI1+214)+y (1.2.1.5)
p nlu2 =y + p nlu5-p nlu4
pnlu2:=((A3+A24+x3)(x Ix2+y+A1+A4)+y) ((L2 (1.2.1.6)

+x3) (x Ix24+y+A1+A4)+y)+y

p_nlul :=y+p nlu2-p nlu3

pnlul = (((A3+A2+x3) (xIx2+y+A1+214)+y) ((12 1.2.1.7)
+x3) (x Ix24+y+A1+A4)+y)+y) ((xIx2+y+211) (A3
+A24+x3)+y)+y

V¥ Polynomial for the right network
p nrl3:= A3+ p nll

pnrl3=xIx2+y+AI1+A3 (1.2.2.1)
p nrld = A 4+ p nl2

pnrd:=A4+212+x3 (1.2.2.2)
p nru3 =y -+ p nri3-p nl2
prwul3=A2+x3) (x Ix2+y+AI1+213)+y (1.2.2.3)
p nrud ==y +p nri3-p nri4
pruwud:=(x Ix24+y+A1+A13)(A4+A2+x3)+y (1.2.24)

p nrubd:=y+p nrli4d-p nll
prmuS=(xIx2+y+A1)(A4+A2+x3)+y (1.2.2.5)
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p_nru2 ==y + p nrud-p nrud

pruuli=((x Ix2+y+2A1+23)(A4+A22+x3)+y) ((x Ix2+y (1.2.2.6)
+A1) (A4+A2+x3)+y)+y

p_nrul ==y + p nru2-p nru3

prwul = (((xIx2+y+A1+A3)(A4+A12+x3)+y) ((x 1x2 (1.2.2.7)
+y+A1) (A4+A2+x3)+y)+y) ((A2+x3) (x Ix2+y
+AI+A3)+y)+y

e;alb(p_nlu] =p nrul)

Jalse 1.2.3)
pr = expand(p_nrul) :
pl == expand(p_nlul) :
| pl—pr:
¥ One label
pub :=x1lx2+y
pub:=x1Ix2+y 2.1
Y Pons Polynomial
p oll == Ap u6
poll =A(x Ix2+y) (2.1.1)
p ol2 = Ax 3
p ol2=Ax 3 (2.1.2)
p oul =y+p oll-Ap ol
poud =N (x Ix 2+y)x 3+ @2.13)
p oud =y+ Ap ol2-A-p oll
p_oud = A (x Ix2+y)x 3+y 2.14)
p oud=y+Ap oll-p ol
pous=N (x Ix 2+y)x 3+y @.1.5)
p ou :=y+p oud-p oud
p_oul = (7\,4 (x Ix2+y)x 3+ y> <k3 (x Ix2+y)x 3 —I—y) +y (2.1.6)
poul :=y+p ouZ-p ou3
4 3 3
p_oul = ( (7\, (x Ix2+y)x 3 +y) (k (x Ix2+y)x 3 +y) + y) (k (x Ix 2 (2.1.7)
+y)x 3+ y) +y
expand(p_oul)
10 3 3 3, ,,10 2 2 3 5,10 32,410 33
A xIPx2x 3430 x I'x 22x 3y+30 x Ix2x 3y +A x 3y (2.1.8)
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7 7 6 7

+2A x_l2 x_22 x_32y +4Ahx Ix2 )c_32y2 + A x_12 x_22 x_32y +2A x_32 y3
6 6 4 4

+2Ax Ix2 x_32 y2 + A x_32 y3 +Ax Ix2x3 y2 +Ax3 y3
3 3

+2A x_]x_2x_3y2 + 7L3x_]x_2x_3y +2A x_3y3 + 7\,3x_3y2 —I—y3 +y2 +y

Y My polynomial
pnl2:=A+x3
ponl2=\+x 3 @22.1)
pnll =A+p u6
pnll =x Ix2+A+y 2.2.2)
VY left
p nll3==A+p nl2
poall3=2A+x 3 22.1.1)
p_nll4d = A+ p nll
pnlld:=x 1x2+2\A+y 2.2.1.2)
p nlu3 :=y+p nll-p nll3
pnlu3 = (x Ix2+A+y) (2A+x3) +y (2.2.1.3)
p nlud :=y+p nll3-p nll4
pnlud = (2h+x3) (x Ix24+2A+y) +y 2.2.14)
p nlus =y+p nll4-p ni2
pnlus=(A+x3)(x Ix2+2A+y)+y (2.2.1.5)
p nlu2 =y + p nlu5-p nlu4
pnlu2:=((2A+x3) (x Ix 2+2X+y)+y) ((A+x3) (x Ix 2+21 (2.2.1.6)
+y) +y) +y
p_nlul ==y +p nlu2-p nlu3
pnlul == (((2A+x3) (x Ix2+2%+y) +y) ((A+x3) (x Ix2+21 (22.1.7)
+y)+y)+y) ((x Ix 2+1+y) (2A+x3) +y) +y

V right
p nri3 == A+ p nll
pnrl3:=xI1x2+2A+y (2.2.2.1)
p nrl4d == A+ p nl2
pnrld:=2A+x 3 (2.2.2.2)

p nru3 =y +p nri3-p nl2
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prwud3=(A+x3)(x Ix2+2A+y)+y 2.2.2.3)
p nrud ==y +p nri3-p nri4

pud =2 +x3) (x Ix 2+2A+y) +y 2.2.24)
p nruS:=y+p nrl4d-p nll
prwuSi=(x Ix2+A+y) (2A+x3)+y (2.2.2.5)

p_nru2 ==y + p nrud-p nrud

pru2i=((2A+x3) (x Ix 2+2A+y)+y) ((x Ix2+A+y) (2A (2.2.2.6)
+x3)+y)+y

p nrul ==y +p nru2-p nru3

prwul = (((2A+x3) (x Ix2+2r+y)+y) ((x Ix2+Ar+y) (21 (227
+x3)+y)+y) (A+x3) (x Ix2+21+y) +y) +y

e;alb(p_nlu] =p nrul)

false (2.2.3)

pr = expand(p_nrul) :
pl = expand(p nlul) :
pl—pr

Ax Ix2y—Ax 3y+A y2 2.2.4)

Y Algorithm

factor(pr — )
<x_2 X IAM+x Ix2x 3+2 7»2 +2Ax 3+Ay+x 3y+ y) (4 7\,2 )c_]2 x_22 (2.3.1)

b arx Px Px3+x Px 22x P+ 120x Ix 2+ 12x Ix 2x 3
+8 kzx_l x2y+3Aix 1 x_2x_32 +8Ax Ix 2x 3y+2x Ix 2 x_32y +8 2t
F8 X 3+ 2y 2 P 120 3y + 40 P+ 4hx Ix 2y
+37»x_32y+47\.x_3y2+2x_]x_2x_3y+x_32y2+ 6k2y+3kx_3y+4ky2
+2x 37+ +y)
prl = (x_2x_] Ax Ix2x 3+2 z +2Ax 3+ Ay+x 3y —I—y) :
2= (4070 x Px P+ ahx Px Px 3+x Px Px P+ 120x 1x 2
F 12N Ix 2x 3+ 8N x Ix 2y +3Ax Ix 2x 3+ 8Ax Ix 2x 3y
tox Ix2x Fy+8at 48 s 3+ 120y 20 P+ 1207 % 3y + 4072
+4Ax Ix 2y+ 37Lx_32y+47»x_3y2+2x_]x_2x_3y+x_32y2—|-67»2y+37ux_3y

+47»y2—|-2x_3y2—|-y2+y) :
a = factor(prl — y)

a=A+x3)(x Ix2+2A+y) 2.3.2)
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factor(pr2 — y)
(2x 2x IM+x Ix 2x 3+4X +2Ax 3+ 20y +x 3v+y) (2x 2x 12 (2.3.3)

+x_1x_2x_3+27u2+kx_3+27&y+x_3y+y)

pr2l == (2x_2x_1k+x_1x_2x_3 +47u2+2kx_3+27uy+x_3y +y) :
pr22 == (2x_2x_1 A+x Ix 2x 3+ 2 +Ax 3+ 27»y+x_3y—|—y) :
b = factor(pr2l — y)

b= 2A+x3) (x Ix2+21+y) (2.3.4)
¢ = factor(pr22 — y)

ci=(xIx2+A+y) (21A+x_3) (2.3.5)
p=((cty)(b+y)+y)(aty) +y
pi=(((2A+x3) (x Ix2+2%A+y)+y) ((x Ix2+A+y) (21A+x 3) +y) (2.3.6)

+y) (A +x3) (x Ix2+2X+y)+y) +y
evalb(expand(p) = pr)
true 2.3.7)
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