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Abstract

Large amounts of data are continuously generated by individuals, apps, or dedicated devices. These
data can be aggregated to compute useful statistics from multiple sources using data aggregation pro-
tocols. However, oftentimes these data contain private information that must be protected from misuse.
Privacy-preserving protocols can help to compute the same statistics without revealing the private input
data to unauthorized parties. However, most privacy-preserving data aggregation schemes only work
in the honest-but-curious model, where participants do not deviate from the protocol. As a result, the
computed statistics cannot always be trusted. In particular, the aggregator, which is the party responsi-
ble for collecting the data is usually trusted with computing the correct result. However, a compromised
aggregator may decide to output any value of its choosing without anyone noticing. Schemes with pub-
lic verifiability help to counter malicious aggregators who try to falsify the final result by tampering with
the inputs of honest users. However, they do not consider cases where both the aggregator and a sub-
set of the users may be malicious, meaning they can deviate from the protocol and collude with each
other in order to output results of their choosing. In this work, we develop a privacy-preserving data ag-
gregation protocol to compute the sum of a set of private inputs such that a verifier can efficiently detect
tampering even in the face of a malicious aggregator and a subset of malicious users. We also provide
two extensions for better performance and for malicious user detection. We show that the scheme
achieves the desired properties of confidentiality, integrity, and authenticity. Finally, theoretical and
experimental evaluations show that its performance makes it feasible for real-world applications.
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Introduction

We live in a data-driven society, where large amounts of data are being constantly generated, pro-
cessed, and analyzed to better inform our societal and business decisions. However, in the age of
mass surveillance by governments [38] and increasing interest in personal data for political [15] or
economical [62] motives, it is of the utmost importance to protect sensitive data.

Privacy-preserving data aggregation protocols help with the problem of securely processing private
data, but they are not a one-size-fits-all solution. Every use case has different requirements, for ex-
ample, in terms of security, reliability, performance, and usability, that must be addressed in order to
make the adoption of these schemes more compelling and feasible in practice.

1.1. Data aggregation

Data aggregation is a process by which raw data is gathered from one or more sources and processed
for statistical analysis. Some examples of summarization functions include the sum, average, mini-
mum, maximum, standard deviation, and variance. Data aggregation enables us to make sense of the
increasingly larger amounts of data that are generated every day. Nonetheless, data aggregation is
not exactly a novel concept.

One of the earliest examples of data aggregation and, more generally, large-scale computing [70],
is represented by censuses. A census is a systematic procedure to acquire and record information
about the members of a population [4]. The first recorded census dates as far back as 3800 BC at the
times of the Babylonians [25], where teams of men were sent door to door with clay tablets to tally up
the number of men, women, children, livestock, and other goods. The main goals were to estimate
how much food was needed to feed the population, to count the number of men fit to join the military
service, and to establish a ceiling on how much the citizens could be taxed without starving them
[52]. Nowadays, the data collected by censuses are processed using modern computers and used
to calculate more fine-grained statistics about a demographic such as total population, geographic
distribution, average age, education level by age and gender, and many more. In the US, national
censuses are mandated by the constitution and their primary use is the apportionment of the seats in
the House of Representatives based on state population [12]. Furthermore, census information is used
for military and disaster planning in the event of disasters such as floods, hurricanes, and tornadoes.
They are also used for product development and marketing, for example, to identify foreign language
areas and place products and services tailored to people who speak a language other than English
[82].

Perhaps the most popular and pervasive example of the importance of data aggregation during
the past two years is given by the COVID-19 pandemic [17]. Since the beginning of the pandemic,
data about individual infections, recoveries, and deaths were continuously collected both at small and
large scales for epidemiological surveillance purposes. These data are aggregated to calculate several
important metrics such as the incidence of infection in a specific population at a given period of time
and have been used to better instruct government bodies on which policies to adopt to help combat
the spread [21, 42].

Another common usage of data aggregation is in smart grids. A smart grid is a modern power grid
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infrastructure that allows for bi-directional flows of electricity and information. It also features resilient,
automated power delivery and balancing mechanisms [29]. Metering data may be collected and aggre-
gated at regular intervals from smart meters, installed in each household, to compute statistics such
as the total power usage for a single household during some pre-established intervals or from entire
neighborhoods for billing or load-balancing purposes.

In the healthcare industry, smart devices have been increasingly used in the last few years to collect
various medical data from patients and store it in dedicated cloud repositories. These data are used
to continuously monitor the health status of a patient for better treatment [85]. Data aggregation is
often used in such scenarios to summarize the health data in a more succinct way and to reduce
redundancies in the data [85]. Another pivotal application of data aggregation in the healthcare domain
is combining data from multiple, similar medical cases for research purposes. The general goal is that
of building a more robust body of medical knowledge for faster diagnoses and more effective treatments
[23].

Data aggregation is also an important primitive for web analytics. Content-driven websites are
often interested in learning how visitors spend time on a website and what content was more popular.
Additionally, aggregating visitors by location, time of visit, time spent, and browsing devices is often
useful to construct user behavior and demographic profiles and tailor the website’s content accordingly
to maximize its effectiveness. Often, web analytics are collected using third-party services such as
Google Analytics or Adobe Analytics which can use the aggregated data from multiple websites to
create even larger and more accurate user profiles and sell these to advertisers or publishes to improve
the reach of their products [2].

Last but not least, the unprecedented and widespread adoption of mobile devices such as smart-
phones, sometimes possessing enough computation power to surpass even personal computers [87].
These devices are often equipped with embedded sensors such as GPS, accelerators, gyroscopes,
digital compasses, microphones, and cameras, from which heterogeneous data can be collected and
aggregated, enabling a variety of applications [83]. Participatory sensing is a novel paradigm that aims
at harnessing this distributed network of sensors for several purposes, including traffic monitoring and
geo-imaging [43], analyzing the roughness of a road and its noise level in order to build accurate cycling
maps for cyclists [80], or air pollution monitoring [60].

1.2. Protecting private information

While the benefits of data aggregation for our society and for businesses cannot be ignored, without
proper countermeasures, they often come at the cost of sacrificing the privacy of individual users.

Censuses have historically been controversial due to the privacy violations that might come from
abusing and misusing raw data. In the US, despite the countermeasures adopted in the past, such
as removing information that can directly identify citizens from the aggregate data or making the raw
data available only 72 years after the census, it is sometimes still possible to link anonymous records
to individual identities [14]. Indeed, aggregate data can only hide information about individual citizens
when it is computed from a large enough sample. Attributes such as gender, race, and salary may
be enough to uniquely identify citizens of a small town when, for example, only two black males with
different occupations live there. In order to overcome these issues, for the 2020 census, the Bureau
decided to adopt differential privacy as a means to protect the census data [11]. Differential privacy
[26] is a technique by which statistical noise is added to the raw data in such a way that privacy is
maintained while keeping the data useful.

Smart grids are also prone to privacy issues. While it may not be immediately obvious, metering
data contain privacy-sensitive information that, when collected over long periods of time, can be used
to build user profiles and gain insights that extend far beyond just simple power consumption reports.
Indeed, from metering data, it is possible to infer which types of devices are used, when they are
used, and whether an appliance, like a fridge, starts to become old [40]. This information can later
be used for targeted advertisements. It is also possible to guess when someone is not at home [34],
which can be misused by burglars. Incredibly, it is also possible to infer whether someone belongs to
a specific religious group. Indeed, a user that is also a devout Muslim may wake up at around 5 am for
their morning prayer, and a spike in energy consumption at around the same time, coupled with other
information such as their names, allows one to make a confident guess about their religion [34].

In the healthcare sector, patient data is particularly sensitive in light of the rise of Electronic Health
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Records (EHR) and ever more pervasive data collection and processing technologies [59]. Patient data
includes sensitive information about a person and their disease history and, as such, confidentiality of
such data is recognized as a patient’s right by most countries [46]. Indeed, health data is heavily reg-
ulated by compliance policies such as the Health Insurance Portability and Accountability Act (HIPAA)
[71] in the US and the General Data Protection Regulation (GDPR) [35] in Europe. Disclosure of pri-
vate medical information may cause healthcare institutions or individual medical professionals to incur
high regulatory fines [45]. Additionally, it may erode patients’ trust and lead them to harmful behaviors.
Indeed, as of 2013 between 15% and 17% of US adults had changed their behavior by switching doc-
tors, paying out-of-pocket despite being insured, giving incomplete information on medical history to
avoid listing embarrassing conditions, or even self-treating or self-medicating [59]. Moreover, disclosed
private medical data can be directly used against a patient, for example, by an insurance company to
deny coverage or increase the premium rates [73], or by an employer to deny employment [46]. Con-
sequently, it is of extreme importance to create medical data sharing and processing systems that can
protect patient data, withstand the burdens of regulatory compliance, and enrich our overall body of
medical knowledge for better treatments and faster diagnoses.

Despite data protection is so important and heavily regulated, breaches are still very common. In
fact, between 2009 and 2021, the number of data breaches in the US healthcare sector steadily in-
creased, resulting in the loss, theft, or disclosure of 314,063,186 healthcare records [41]. Hacking
incidents and unauthorized access were the main causes of most of the breaches. In 2015 alone, An-
them, Inc., an American health insurance provider, revealed that hackers had broken into some of the
company'’s servers and stolen up to 78.8 million records containing personally identifiable information,
which are now expected to be sold on the black market [72]. The massive data breach also resulted in
several lawsuits against the company, which were settled at the massive cost of $115 million [31].

There are, however, countermeasures that can limit the impact of these breaches or even prevent
them. Privacy-enhancing technologies (PET) are a collection of techniques and guidelines which aim at
increasing the control over personal data and protecting it from misuse [77]. Examples of PETs include
access control, tunnel encryption, and onion routing. Since we deal with data aggregation, a class of
PETs that is of particular interest to us is privacy-preserving data aggregation (PPDA) schemes. This is
a class of schemes that allows for the distributed computation of various data summarization functions
over a set of private data points held by multiple participants. The main goal of these schemes is that
they do not reveal the individual data points submitted during execution to anyone but the data owner
itself and other authorized parties. We discuss several examples of PPDA schemes in Chapter 3.

1.3. Current solutions

Many private data aggregation protocols, e.g. [28, 79, 51], assume an honest-but-curious model where
all participants follow the protocol but may try to infer private information they are not entitled to know.
Nonetheless, in many of these schemes, the aggregator is usually in charge of aggregating the sub-
mitted values as well as decrypting and publishing them. As a result, the aggregator has the power to
modify the aggregate or even output any arbitrary values of its choosing. This is a fair assumption in
many realistic scenarios. For example, in smart grids, if the aggregator is found to be tampering with
the submitted value it may cause huge reputational damages to the utility company and it may infringe
privacy regulations, such as GDPR. However, these consequences are contingent on tampering at-
tempts being detected. Many data aggregation schemes, like the ones we summarize in Section 3.1,
do not offer efficient methods to detect such tampering attempts unless they come from external actors
and, instead, they just assume that they will be eventually detected or that the consequences will deter
participants from acting maliciously. Incorrect statistics can, however, be dangerous.

In smart grids, if incorrect statistics about the power usage of a neighborhood are sent to the re-
sponsible control center, then power outages may occur. The Northeast blackout of 2003, was a
power outage that affected the Northeast and Midwest of the United States, as well as parts of Ontario
in Canada [18]. The outage lasted between 2 hours, in some places, to almost 2 days in New York
City and affected millions of people [22]. There are multiple causes that led to the blackout, ranging
from violations of established safety standards, human error, and software bugs. A common aspect
in the chain of events was the lack of situational awareness about the need to re-balance the power
distribution due to computer failures and incorrect telemetry readings [64].

When dealing with medical data, correctness is also of the utmost importance. Indeed, incorrect
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data can lead to incorrect diagnoses and may have catastrophic consequences for patients.

During the past decade, some authors have attempted to tackle this problem from various angles.
On the one hand, a possible cause of incorrect statistics is that of data poisoning injection attacks at
the hand of malicious users, where out-of-range values are submitted to skew the result in a specific
direction or to render it completely useless. These attacks are generally mitigated by having the ag-
gregator check whether each submitted value is in a valid range, for example, using zero-knowledge
proofs or other techniques as in [48, 44]. On the other hand, another cause of incorrect statistics is a
compromised aggregator that outputs an aggregation result that is different from the real one. A sim-
ple technique to counter this problem is to have each user sign their submitted value. However, this
incurs high verification costs as possibly thousands of signatures need to be verified in applications
with many users. A more common technique adopted in the literature is to make only the result of the
aggregation verifiable. However, many of the proposed solutions, like [5, 54], only assume a malicious
aggregator but they do not take into account the possibility that users may also be compromised. Two
recent papers [53, 63] tried to tackle the problem of performing data aggregation with public verifiability
in the presence of aggregators and users that are malicious both with respect to the confidentiality of
the inputs and integrity of the result. However, the solution proposed in [63] does not take collusions
between the aggregator and the users into account. Moreover, it works in a weaker model that requires
additional semi-trusted parties to help with the computation. The scheme proposed in [53] also suffers
from several drawbacks. Like [63], it relies on a semi-trusted third party which is a single point of failure
that, if compromised, undermines the whole premise of the scheme. Furthermore, it does not provide
any mechanism to detect which users act maliciously and the verification of the result can only be car-
ried on by a trusted party. Finally, it is still possible for the aggregator to collude with a user and forge
valid aggregation results by exploiting a vulnerability in the protocol.

1.4. Research question

The main goal of this thesis is to design a protocol to compute the sum of a set of private values without
revealing anything other than the sum itself. The parties involved in the protocol include a trusted
authority, a powerful aggregator, and a set of users that hold the data to be aggregated. We work
in the malicious model where a bounded subset of users may behave maliciously and collude with a
malicious aggregator in order to learn the private values of other users as well as to affect the integrity
and authenticity of the result. In other words, no party should be able to learn the private data of an
other participant nor tamper with it once it is submitted, and the aggregator should not be able to publish
a result that is not equal to the sum of the submitted data. The result of the aggregation can be publicly
verified by any party that holds that verification key. In this thesis, we focus on the sum because it
is the most common statistic for data aggregation and can be used as a primitive for more complex
techniques, for example, federated learning [7]. Our research question is the following.

How can a privacy-preserving data aggregation scheme with public verifiability achieve
confidentiality of the private inputs, integrity and authenticity of the aggregate statis-
tic, in the face of a malicious aggregator, multiple malicious users, and without rely-
ing on additional semi-trusted parties during aggregation?

1.5. Contributions

In this thesis, we propose a data aggregation protocol to compute the sum of a set of privately-held
values in a privacy-preserving and publicly-verifiable manner. More specifically, given a set of registered
users, each holding a private integer value, the protocol computes the sum of all values in such a way
that no party can learn the private value of another user. Only the final sum is revealed in the end.
Additionally, the protocol allows any party that holds the verification key to check, in constant time,
whether the result was computed from the values submitted by the registered users only, and that the
aggregate does not consist of any other value. To the best of our knowledge, our protocol is the first to
ensure confidentiality of the private values as well as integrity and authenticity of the aggregate in the
presence of a malicious aggregator and a bounded number of malicious and colluding users, without
relying on other semi-trusted parties. Note that data poisoning attacks from the users are outside of the
scope of this thesis. Additionally, we augment our main protocol with two extensions. The first extension
drastically improves the communication overhead at the cost of a weaker security model with non-
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adaptive user corruptions. The second extension allows the aggregator to identify users that behave
maliciously and that attempt to disrupt the correct execution of the protocol by causing the verification
to constantly fail. Finally, we provide theoretical evaluations of the security and performance of our
protocols as well as a practical analysis of their performance with a proof-of-concept implementation.

1.6. Outline

In Chapter 2, we discuss the essential mathematical and cryptographic concepts required to under-
stand our protocols. In Chapter 3, we lay out an overview of some related works. In Chapter 4, we
describe our main privacy-preserving and publicly-verifiable data aggregation protocol. In Chapter 5,
we proceed to present two extensions to the main protocol that provide better communication com-
plexity and detection of malicious users, respectively. In Chapter 6, we provide security analyses for
the main protocol and for the two extensions. In Chapter 7 we analyze the theoretical computational
and communicational complexity of the protocols as well as their experimental running time for each
participant. Finally, in Chapter 8, we provide a final discussion of our results.



Preliminaries

In this chapter, we provide an overview of the cryptographic techniques required to understand the
protocols presented in Chapter 4 and Chapter 5 as well as to understand the related literature. We
assume the reader is already familiar with some fundamental concepts of cryptography such as groups
and finite fields, number theory, and modular arithmetic, which can also be referenced in [81, 49].

2.1. Secret sharing

While encryption is useful to protect data from unauthorized access, it is only one piece of the puzzle
when it comes to data protection. One of the golden rules of cryptography is known as Kerckhoff’s
principle, which states that a cryptosystem should be secure even if everything about the system, with
the exception of the secret key, is public knowledge [32]. As such, keeping the secret keys safe seems
like another important step to effectively protect data. However, this raises the question: how can we
keep the secret keys safe? A common approach would be to simply store a secret key in a well-guarded
and inaccessible place. Unfortunately, this becomes a single point of failure because if the key were
to be lost or damaged, then decryption would be impossible afterward. Another solution would be to
split the key into several pieces, but this is non-trivial since naive solutions may not be secure and leak
information. This is where secret-sharing schemes come into play. They provide a way to split a secret
S into several shares, say n, such that no individual share reveals any information about the secret,
but when the shares are combined the original secret can be reconstructed. These are particularly
suited for applications in which a group of untrusting parties must cooperate to perform some action,
for example, opening a safe, but no individual party should have the authority to do so without the
collaboration of the other parties. There are two common methods to share a secret: additive secret
sharing and threshold secret sharing.

2.1.1. Additive secret sharing
A rather simple yet effective solution is additive secret sharing. Assume we want to split the secret .S
into n shares s; such that S can be recovered when all shares are combined together, that is:

i=1
In order to achieve this, we sample n — 1 random numbers sy, so, ..., s,_1 and then let
n—1
sn=95-Y s mod p. (2.2)

=1

As aresult, all shares must be combined to reconstruct S. All operations are performed over a finite field
of integers modulo a large prime p. It is common among many privacy-preserving data aggregation
schemes to choose S = 0, because the secret shares can be used as additive masks to conceal a
private value so that when n shares are added together, the masks cancel out revealing only the final
aggregate value.
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2.1.2. Threshold secret sharing
The other common method is to use a (k, n) threshold scheme. This is a more general method by which
the secret can be split into n shares such that when any k shares are combined, with & < n, then the se-
cret can be reconstructed. One of the most popular (&, n) threshold schemes is Shamir Secret Sharing
(SSS) [78], which is based on polynomial interpolation. If we have k points {(x1,41), ..., (zk, yx)}, with
x; # x;, then there exists a polynomial f(z) of degree k — 1 such that f(z;) = y;, for 1 <14 < k. Thus,
in order to split a secret S into n shares such that k& shares can reconstruct S, we pick a polynomial of
degree k — 1:

flx)=co+caz+ cox® 4+ -+ 12"t mod p, (2.3)

where p is a large prime, co = S, and each ¢; <$Z, is a random integer modulo p. Then, we can
create n shares s; = (z1, f(21)), 882 = (z2, f(x2),...,88, = (n, f(z)), and distribute them among
the participants in the protocol. When any subset of k share-holders want to find S, they can use their
shares to reconstruct the polynomial f(z) via polynomial interpolation. A common technique to achieve
this is by using Lagrange interpolation. First, we compute the Lagrange basis polynomials:

T — T
li(x) = | H . mod p, (2.4)
0<j<k—1m#j )
then the polynomial can be recomputed with:
k—1
f@)=> y;l;(z) mod p. (2.5)
j=0

Since we are usually interested in f(0) = .S, a more efficient formula to reconstruct the secret is given
by:
k—1 k—1 .
fO=>"y J[I —— modp. (2.6)

T —
7=0 m=0,m#j m J

To conclude, let us see why an adversary that gets hold of & — 1 secret shares cannot recover S. For
each possible secret S’ € [0,p — 1], there exists exactly one polynomial f'(x) of degree k — 1 with
f(0) = S"and f'(i) = y;, for 1 <i < k — 1. Each of these p polynomials is equally likely to be f(x),
which renders the scheme information theoretically secure.

2.2. Bilinear maps
A bilinear map, or pairing, is a function ¢ : G; x Gy — Gr such that, for all g; € G1,9, € G, and
a,b € Zy, it holds:

e(gt,95) = e(g1,92)*- (2.7)

A bilinear map associates pairs of elements from G; and G, with elements in G¢. In order to actually
make pairings useful, we further require that they are efficiently computable and that any e(g;, g2) is
a generator of G, which excludes degenerate bilinear maps in which e(g1,92) = 1, for every g; €
Gl, gs € Gos.

Bilinear maps are instantiated using elliptic curves over finite fields. The cyclic groups G1, G2, G
are assumed to be of the same prime order p, i.e. they have the same number of elements p. There
are three types of bilinear maps [33]:

» Type 1: when G; = Gg;
» Type 2: when G; # G, but there exists an efficiently computable homomorphism ¢ : Go — Gq;

» Type 3: when G; # G5 and there are no known efficiently computable homomorphisms ¢ : Gy —
G;.

One of the reasons why bilinear maps are useful for cryptographic protocols is because they permit
"cheating” at computing the Diffie-Hellman function in G. In other words, if we have g2, ¢°, ¢° € G, with
b, c € Z, secret, then we can efficiently compute §7°¢ = e(g®, g)* € Gr without first having to compute
g%. Bilinear maps have applications in many fields of cryptography, like identity-based encryption,

homomorphic signatures, and zero-knowledge proofs [86].
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2.3. Cryptographic hash functions

Hash functions are functions that map inputs of some arbitrary length to fixed-length outputs [49]. More
formally, they are functions H: {0,1}* — {0,1}". They are useful building blocks for digital signature
schemes. In cryptography, there are three increasingly stronger notions of security for hash functions
[81].

The first one is preimage resistance. A hash function is said to be preimage resistant if, given y
from the codomain of H, it is computationally infeasible to find any = in the domain of H such that
H(z) = y. A hash function for which this property holds is said to be one-way. More specifically, a
preimage-resistant hash function that produces I-bit outputs requires O(2!) time to find a preimage.

The second, stronger, security property is second preimage resistance. A hash function H is second
preimage resistant when, given z in the domain of H and H(x), it is computationally infeasible to find
another y in the domain of H such that H(y) = H(x).

The third, and strongest, security property required by cryptographic hash functions is collision
resistance. A hash function is said to be collision resistant if it is infeasible to find two distinct values x
and y such that H(z) = H(y). Note that, from the definition of a hash function is clear that its domain is
usually much larger than its codomain and, as such, by the pigeonhole principle, collisions are bound to
exist. Collision resistance is the strongest notion of security for hash functions because it also implies
the other two.

2.4. Homomorphic encryption

Homomorphic encryption is a cryptographic technique that enables computations directly on encrypted
data without having to first decrypt it. Homomorphic cryptosystems are heavily relied upon by algo-
rithms that perform computations on privacy-sensitive data. Given the encryptions £(my), £(ms) of
two messages m1, ms, a cryptosystem is said to be homomorphic if the following property holds:

E(m1) ® E(my) = E(my & m). (2.8)

In this formula, the symbols @ and & refer to two arbitrary, possibly different arithmetic operators. In
other words, applying the ® operator to the two ciphertexts results in a new ciphertext over the message
resulting from applying the @ operator to the two original messages.

There are two main classes of homomorphic cryptosystems: those that provide partial homomor-
phic encryption and those that provide fully homomorphic encryption. Partially homomorphic (PHE)
schemes only allow for a single operation over the encrypted day, whereas fully homomorphic (FHE)
schemes allow for multiple operations. Homomorphic schemes can be further split based on the number
of operations allowed. For example, the Boneh-Goh-Nissim (BGN) scheme [8] is both multiplicatively
and additively homomorphic. This, intuitively, means that we can perform both addition and multipli-
cation over encrypted data. However, while the scheme allows for an unlimited number of additions,
only one multiplication is permitted. These types of schemes are often referred to as somewhat homo-
morphic. The first FHE scheme to allow for an unbounded number of additions and multiplications and,
thus, for the evaluation of arbitrary arithmetic circuits, is due to [36]. While FHE is often considered
to be the Holy Grail of cryptography, most practical FHE schemes suffer from significant performance
limitations.

2.4.1. The Paillier cryptosystem

A popular example of a public-key cryptosystem that supports additively-homomorphic operations is
the Paillier cryptosystem [67]. While Paillier encryption is not used in our work, it is often used by other
related works and provides a simple, practical introduction to homomorphic encryption. A Paillier key
pair can be generated by sampling two random prime numbers p,q. The approximate size of each
prime number depends on the chosen security parameter . If K = 1024, then p and ¢ can be chosen to
have a bitlength of 512 bits each. Next, we compute n = pgand A =lcm(p—1,q—1). Abase g +$Z,
must be randomly chosen such that gcd(L(g* mod n2),n) = 1, where L is a function defined as:

z—1

L(z) = . (2.9)

n
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The public key is pk = (n, g), while the secret key is sk = . To encrypt a message m < n, we choose
a random integer r <—s Z;, and then compute:

Epp(m,r) =c=g™ " mod n’. (2.10)
On the other hand, to decrypt a ciphertext ¢, we compute:

L(c* mod n?)

D = = V-
sk(c) =m L(g* mod n?)

mod n. 2.11)

The Paillier cryptosystem is additively homomorphic because it holds

mi,.n ma, N mi1+mo

Epp(mi, 1) - Epr(ma,m2) = g™ ri - g™y =g (rire)" = Epr(my + ma, m172). (2.12)

The security of the Paillier cryptosystem relies on the hardness of the decisional composite residuosity
problem: given a composite integer n and an integer z, decide whether there exists an integer y such
that z = y» mod n2. There is no known polynomial-time algorithm to solve this problem. Furthermore,
due to the randomness included in each ciphertext, two encryptions of the same plaintext message will
produce two different ciphertexts, making the Paillier cryptosystem semantically secure [81].

2.5. Commitments

A commitment scheme is a cryptographic primitive that allows a party to commit to some message
m such that the commitment C(m) does not reveal the message itself. This is known as the commit
phase. The commitment can then be sent to other parties. Afterward, during the reveal phase, the
commitment can be opened by revealing the message m, along with some other information, such that
any party can verify whether the commitment actually matches the revealed message. A cryptographic
commitment should have two important properties:

+ Binding: given a commitment C(m) on a message m, it is hard to find another message m’ # m
such that C(m’) = C(m).
+ Hiding: given a commitment C(m) on a message m, it is hard to find m.

Additionally, we can define two notions of security for these properties.

+ Computational security: the property is maintained against polynomially-bounded adversaries.

 Information-theoretical security: the property is maintained even against adversaries that are
computationally unbounded.

While the second security notion is stronger, a commitment scheme cannot be both information-theoretically
binding and hiding at the same time.

2.5.1. Pedersen commitments
A popular example of a computationally binding and information-theoretically hiding commitment scheme
is given by Pedersen commitments [68], which work as follows. We assume a cyclic group G of large
prime order p with random generators g, h € G are publicly known. The committer then commits to a
message m € Z, by computing:

Cim,r)=h"¢g™, (2.13)

where r <s$Z, is a random value chosen by the committer. The committer then publishes C(m,r).
During the reveal phase, the committer publishes (m’, r') and anyone who possesses the commitment
can verify its validity by checking:

Clm,r) =" g™ (2.14)

The scheme is computationally binding because the committer needs to solve a discrete logarithm in
order to find another pair (m/, ') # (m, r) such that C(m,r) = C(m/,r’). There are currently no known
polynomial-time algorithms to solve a discrete logarithm on classical computers.

The scheme is information-theoretically hiding because given a commitment C(m, r), there are mul-
tiple pairs (m/,r’) € Z that generate the same commitment and all are equally likely to be the correct
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candidates. As such, even a computationally-unbounded adversary can never know which pair is the
correct one.

Pedersen commitments are relevant for us because their structure and properties are employed in
many data aggregation schemes with public verifiability, including the schemes presented in this thesis.
In these works, the generator  is often replaced with a random oracle and the properties of bilinear
maps are exploited during the reveal phase for reduced interactivity.

We conclude by noting that Pedersen commitments are additively homomorphic. In fact,

C(m177”1> . C(m27,’42) — hmgml .hT‘2gm/2 — hm+mgm1+m2 — C(m1 + ma, T + 7,2). (215)

This property is particularly useful in order to create signatures that can be aggregated together.

2.6. Diffie-Hellman key agreement
The Diffie-Hellman (DH) key agreement protocol [24] allows two parties A and B to generate public-
private key pairs (pka, ska) and (pkg, skg) and use them to agree on a shared private key k5.

The protocol works as follows. First, we assume the existence of a public cyclic group G of prime
order p along with a generator g. Each party then generates its asymmetric key pair. The secret key
is a random element x <—s Z, and the public key is g”. Thus, A obtains the key pair k4 = (z, ¢*) and
B obtains kg = (y, g¥). In order to agree on a new shared secret key k45, A and B share their public
keys with each other, and then they compute:

kag = (9")" = (9")" = g™ (2.16)

Following the approach presented in [7], we can further extend the protocol by introducing a secure
hash function H, for example, SHA-256 [37]. Then, the modified shared key becomes:

kg =H(kag) = H(g"). (2.17)

The reason for this modification is to ensure the shared key is a random string that can be used a seed
of a secure pseudo-random number generator.

2.7. Zero-knowledge proofs

Sometimes we are interested in proving that some statement is true without revealing any other infor-
mation other than the truth of the statement itself. For example, in an identification protocol, it might be
required for a party to prove that they know the secret key for a given public key, without revealing what
the secret key itself is. Zero-knowledge proofs (ZKP) solve this problem. They are two-party protocols
between a prover and a verifier in which the prover convinces the verifier of the truth of some statement.

A simple yet very popular example of a zero-knowledge proof is the Schnoor protocol, shown in
Figure 2.1. In parentheses, next to the name of the participant, we list the information known by the
corresponding participant. The protocol works as follows: given a cyclic group G of order p with gener-
ator ¢ and a group element h = ¢*, the Schnorr protocol can convince a verifier that the prover knows
the discrete logarithm of 4, i.e. z, without revealing x to the verifier.

In this work, to simplify reasoning about ZKPs, we adopt the notation of Camenisch and Stadler [13]
to succinctly express the objective of a ZKP. The general notation is as follows:

PR{(w) : L(z,w)}. (2.18)

In this notation, the witness w represents secret information, known to the prover but hidden from the
verifier, while = represents public information. £(z,w) is the predicate over z and w that the prover
intends to convince the verifier of without revealing any information about w. Following this notation,
the Schnorr protocol can be summarized as PK{(z) : h = ¢g*}.
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Prover(g, z) Verifier(h = g, g)
U =S Zp
a<+ g"
a
c+$7Zyp
C
T U+ cr
T
L ae

Figure 2.1: Interactive zero-knowledge protocol to prove knowledge of a discrete logarithm.

A ZKP should have three properties:

» Completeness: if the statement can be proven to be true and the prover and verifier follow the
protocol, the verifier always accepts.

» Soundness: a cheating prover has negligible probability of convincing a verifier that a false
statement is true.

» Zero-knowledge: the proof does not reveal any secret information to the verifier.

There are several classes of zero-knowledge proofs, including zk-SNARKSs and zk-STARKSs, which are
nowadays featured heavily, especially in blockchain technology. However, in this work, we focus on
two other types of protocols: sigma protocols and bulletproofs.

2.7.1. Sigma protocols

Many ZKPs follow the same underlying structure of the Schnorr protocol. The prover starts with an
announcement, the verifier replies with a challenge, and, finally, the prover concludes the protocol with
a response. Protocols that have this structure are called Sigma protocols and they can be used to
prove various statements pertaining to discrete logarithms, including compound statements. In fact,
more complex statements can be proven by combining multiple Sigma protocols together via compo-
sition. For example, via AND-composition it is possible to prove two statements at the same time
by running two Sigma protocols, one for each statement, in parallel with a common challenge. With
EQ-composition, which is a special case of AND-composition, it is possible to prove two statements
that share one or more witnesses, by running two Sigma protocols for each statement using the same
challenge, witness and random tape [76].

Sigma protocols can only be proven to be honest-verifier zero-knowledge, meaning that the zero-
knowledge property may only hold in the presence of a non-cheating verifier. In fact, a cheating verifier
may carefully choose the challenge in such a way that information about the secret witness is revealed
in the response. While this may seem like an important limitation, in practice, it can be overcome using
additional techniques like random oracles.

Zero-knowledge proof of equality between commitments
In Figure 2.2, we show a Sigma protocol that is used to prove that two different commitments share
the same committed value without revealing what the value is, i.e. we have commitments C(x,r;) and
C(z,r2) and want to prove that they are indeed committed to the same value . Formally, it proves the
relation:

PK{(z,y,2): S=gih{ NT = g5h3}. (2.19)

The protocol consists of two Okamoto protocols [66] that run in parallel and are combined using EQ-
composition because of the common witness z. Throughout this work, we refer to this protocol as
ZKPEq.
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Prover(gl, h17927 ha,z, Y, Z) Verifier(S = gfhlllv T= g;hg, g1, ha, g2, h2)

r1,72,73 (—$Zp
t1 g;l h?
to ggl h?
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c$$Zp
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S1 < 1r1 + xc
S2 < 12 + ycC
S3 <—r3 + zc
S1, 82,83

gi'h = 5

95" = Tt

Figure 2.2: Sigma protocol to prove equality between commitments (ZKPEq), i.e. PK{(z,y,2) : S = g¥hY AT = gZh3}.

Zero-knowledge proof of inequality to zero
In this section, we present a zero-knowledge proof of inequality to zero. The proof, shown in Figure 2.3,
can convince a verifier that neither of the exponents of a Pedersen-like commitment is 0. More formally,
it proves the relation:

PK{(z,y): S=h"¢ A #0Ay #0}. (2.20)

The ZKP for the case in which only one exponent is non-zero can be found in [76], along with proofs
of completeness, soundness, and zero knowledge. Here, instead, we present a ZKP for the case in
which both exponents are non-zero at the same time. We combine two separate Sigma protocols for
the single-exponent case, one for each exponent, via AND-composition by using a common challenge.
The main idea behind the proof is that it forces the prover to come up with the multiplicative inverses
of both exponents. However, this is only possible if they are non-zero since 0 has no multiplicative
inverse. Throughout this work, we refer to the following ZKP as ZKPNeqZero. We use the notation
Cit = (a,b,11,72,11,12) to refer to the tuple of messages that user «; sends out in round ¢ to perform an
iteration of ZKPNegZero.
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Figure 2.3: ZKP of inequality to zero of the exponents of a Pedersen commitment (ZKPNegZero).

2.7.2. Fiat-Shamir heuristic
One of the main downsides of Sigma protocols is that they require interactivity between the prover and
the verifier. The Fiat-Shamir heuristic [30] is a solution that can turn any interactive Sigma protocol into
a non-interactive one by relying on random oracles to generate the challenges. Thus, both the prover
and the verifier can generate the same challenge locally without interacting with each other. In practice,
secure hash functions are used as random oracles. However, one must still pay particular attention to
the information that is hashed in order to avoid cheating. In general, all public information as well as
the statement itself should be included in the hash.

Another interesting property of the Fiat-Shamir heuristic is that it can also turn honest-verifier zero-
knowledge Sigma protocols into zero-knowledge protocols, since using random oracles automatically
forces any verifier to behave honestly [20].

2.7.3. Bulletproofs

Bulletproofs [10] are another class of ZKPs that has emerged recently. They are short and non-
interactive ZKPs that do not require a trusted setup which can be used to prove a variety of statements
about the structure of an encrypted plaintext. They are particularly useful to efficiently prove that some
value is within a predefined range, e.g. v € [0,232), and are commonly used as a building block for
confidential transaction systems such as Bitcoin, where they can be used to prove some secret asset
values are non-negative. They can also be used to replace complex Sigma proofs with shorter and
more efficiently computable proofs.



Related work

In this chapter, we present an overview of some notable privacy-preserving data aggregation schemes
from the related literature. In Section 3.1, we start by describing some protocols that work in the
honest-but-curious model where all parties behave as instructed by the protocol but may still try to infer
information they are not entitled to know. In Section 3.2, we proceed to review some protocols in which
the users may act maliciously by sending invalid values to the aggregator, which is still assumed to be
honest but curious. Next, in Section 3.3, we describe some protocols in which the adversarial model
is flipped by having the aggregator act maliciously and attempt to publish incorrect results, while the
users remain honest but curious. In Section 3.4, we conclude the chapter by mentioning two schemes
that attempt to tackle scenarios in which both the aggregator and the users may be dishonest, not only
with respect to privacy but also to the integrity of the aggregation result.

3.1. Privacy-preserving data aggregation

In this section, we present several privacy-preserving protocols that work in the honest-but-curious
model, where parties are assumed to follow the protocols honestly but may try to infer private informa-
tion about other users in the system.

Kursawe et al. In [51], the authors present four protocols for private data aggregation in smart grids.
These protocols are classified into aggregation protocols and comparison protocols. The aggregation
protocols work by blinding the private measurements using zero-sum random masks in such a way that
when all the blinded values are added together, the masks cancel out leaving out only the aggregated
result. The comparison protocols work by assuming that the aggregator already knows an approximate
value of the aggregation. The reason for this is that, in these protocols, the input values and the final
aggregation itself are exponents of generators of some cyclic group. As such, the aggregator is required
to either solve a discrete logarithm or, using its approximate value, test whether the result is in the close
interval around this value. In one of the methods introduced in the paper, each user possesses a Diffie-
Hellman key pair, with the public key being also known by all the other users in the system. p leaders
are elected among the users. Each user, excluding the leaders, selects a random number r;, with
1 < j < p for each leader, and sends it to the corresponding leader [;, encrypted with the public key
of ;. Each leader [;, then, generates a new random number 7; such that 7; = — >.""' r;, where = is
the number of users in the system. When a non-leader user decides to submit a value z;, it creates a
blinded ciphertext ¢; as follows:

p
¢ =z +» r; mod 2%, (3.1)

i=j
The leaders, instead, only use their blinding value r;. Thus, when all values are submitted and aggre-
gated by the aggregator, only the sum is revealed when all ciphertexts are combined, since the random

masks cancel out. Some of the drawbacks of the scheme include the interactivity between the users
and the lack of support for user dropouts.

14
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Li et al. In [55], the authors present an in-network data aggregation protocol tailored for smart grids.
The system model consists of a network of connected smart meters and a collector device, which is
responsible for collecting the measurements and reporting the results to the central management. The
scheme works in the honest-but-curious model. The Paillier cryptosystem is used to encrypt the individ-
ual smart meter measurements and its homomorphic properties are exploited to additively aggregate
the ciphertexts and obtain the sum of all measurements. The collector holds the Paillier decryption key,
while all the smart meters hold the public key. First, since we deal with in-network aggregation where
all smart meters collaborate in the process, the collector and the smart meters collaborate to construct
a spanning tree rooted at the collector. In this way, each smart meter can encrypt its private measure-
ment using the Paillier public key and send it upward to its parent. The parent node, then, adds its own
encrypted measurement to the received ones and sends the partially-aggregated ciphertext upward. In
the end, the collector device homomorphically combines the received ciphertexts, decrypts the result,
and sends it to the central management. The scheme has some downsides. First, the performance
of the protocol heavily depends on the network topology. The shorter and wider the spanning tree is,
the faster the protocol will perform. Moreover, since the Paillier cryptosystem is malleable, the scheme
cannot guarantee the integrity of the result since a compromised smart meter or an external adversary
might tamper with the individual ciphertexts, thus invalidating the result. Finally, the scheme is not
collusion-resistant because if an internal node shares the ciphertext of another user with the collector,
the collector may directly decrypt it.

Shi et al. In [79], the authors introduce a concept they call aggregator obliviousness. This concept
captures three main security notions. The first one is that the aggregator can only learn the aggregated
value at the end of a time period. Moreover, only the aggregator can compute the final aggregation.
Finally, in the case of collusion between the aggregator and a subset of the users, then the aggregator
can learn the sum of the remaining participants but nothing more about the participants’ data.

In the same paper, the authors introduce a privacy-preserving data aggregation protocol that is ag-
gregator oblivious. The protocol is non-interactive except for a trusted setup phase, performed only
once, where the public parameters and secret keys are generated and distributed among the partici-
pants. The scheme works in a cyclic group G of prime order p and with random generator g. The secret
keys of each user sk; <$Z,, with 1 < i < n, are randomly sampled during the setup. The secret key
of the aggregator sk is chosen in such a way that:

sko == sk;. (3.2)
=1
The protocol works on time-series data, so each input value is timestamped with an integer ¢ to
indicate the time period to which it belongs. To do so, the protocol assumes the existence of a secure
hash function H: {0,1}* — G. Each individual ciphertext ¢, ; for a private measurement z; is computed
as:
c=g% - H(t)™. (3.3)

The aggregator can aggregate all ciphertexts for a time period ¢ with
V=H(ty* [[e ===, (3.4)
=1

The actual aggregate value """ | z; must be then found by finding the discrete logarithm of V, either
by using brute force or other suitable methods, like Pollard’s rho algorithm.

The scheme also supports differential privacy. Each user adds some noise r; ; to their private value
to obtain zj; = x;+ + r;+, Where r; , is sampled from a symmetric geometric distribution. This results
in a differentially-private scheme where the accumulated noise in the final statistic is minimal.

A clear drawback of this scheme is that the input space must be small enough, for the decryption of
the aggregate to run in polynomial time. Additionally, it is not fault-tolerant since the aggregation can
only be performed correctly when every user participates in the protocol.
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Lu et al. The authors of [58] present a privacy-preserving data aggregation protocol with support for
multidimensional data whose communication complexity is linear in the number of users and, thus, it
does not depend on the number of dimensions. The scheme is targeted at smart grids. Similar to many
smart grid aggregation schemes, the model includes a set of n honest-but-curious users, an honest-
but-curious aggregator, and a fully-trusted operation center. The main novelty of the scheme is the
adoption of a superincreasing sequence of large prime numbers:

a=(ay=1,a9,...,q), (3.5)

with Z;;ll a; -w-d < a forl <4 <[, where w is the maximum number of users in a residential area,
[ is the number of dimensions supported by the protocol, and d is the maximum size of a single datum,
for example, a 32-bit number. The Paillier cryptosystem is used to encrypt the individual reports from
the smart meters and its homomorphic properties are used to aggregate the ciphertexts. A ciphertext
looks as follows:

¢ = garldil R ,gazdu = guldn-‘r“'-‘raldzz - mod 7’L2, (3.6)

where r; < Z; is a random number chosen by user i, and d,; indicates the 4™ dimensional value of
user i. As a result, ¢; is a normal Paillier ciphertext that, however, hides [ values each split by a prime
number a;. Once all ciphertexts are aggregated by the aggregator and decrypted by the operation
center, the resulting plaintext value is:

w

M=ay» da+---+a Y dy modn. (3.7)
=1

i=1

In order to extract the individual aggregates for each dimension, notice how M; ;| = M mod q; and
the I-dimensional value can be extracted using the following equation:

Zdil MMy @y, dzl. (3.8)
i=1 & &

The same procedure can be used to extract the remaining aggregates. While this scheme is very effi-
cient communication-wise, since [ different values can be packed into a single one before submission,
it has, nonetheless, several drawbacks. The authors only assume external adversaries that eavesdrop
on the communication channels, while all internal parties are assumed to be honest but curious. As
such, integrity can only be guaranteed if the users and the aggregator act honestly and are not com-
promised. Additionally, collusions are not allowed otherwise the confidentiality of the private reports
may be compromised. Finally, a trusted setup, performed by the operation center, is required, which
may discourage the usage of these schemes for applications other than smart grids. We also note
that another method for multidimensional data packing relies on the Chinese Remainder Theorem, an
example of which can be found in [69].

Erkin and Tsudik In [28], the authors introduce a scheme to aggregate smart grid measurements
both spatially and temporally. Spatial aggregation refers to the aggregation of all user measurements
at any given aggregation round, which is the type of aggregation all schemes introduced until now adopt.
Temporal aggregation, on the other hand, refers to the aggregation of several measurements from a
single user, taken at predefined intervals. The protocol assumes an honest-but-curious adversarial
model, where all participants honestly follow the protocol but may try to infer private information about
other participants. The protocol is also resistant to up to n — 2 collusions, where n is the number of
users. Paillier encryption is adopted for its homomorphic properties and instantiated using a trusted
authority. However, both the public and private keys are made public. The reason for this choice is
to allow any party that is authorized to learn the total energy consumption to decrypt the aggregate.
Nonetheless, individual users must not be able to decrypt individual measurements. To overcome this,
each smart meter shares a random seed with every other user in the system. This seed is used to
initialize a pseudorandom number generator and to generate random masks. Then, in round ¢, each
user i generates a random value r; ;:

N

N
rit=mn-+ Z Tijt — Z Tj—i,ts (3.9)

i=1,i%] G=1,i%]
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where r;_,;; indicates a random number generated in round ¢ with the seed sent by user i to user j.
Intuitively, when all r; ; values are added together, we are left with V - n, since the random masks add
up to zero. With r; ,, each user can create a Paillier ciphertext for its private measurement:

cio= g™t H(t)™, (3.10)

where H : {0,1}* — Z; is a secure hash function. Thus, the private measurements are now blinded
by some randomness and only the final spatial aggregation can be decrypted by whichever party pos-
sesses the decryption key.

Temporal aggregation, which is useful for billing purposes, can be realized in two ways. The first
method is by having each smart meter send its encrypted measurements to the utility supplier, which, in
turn, only aggregates them after a certain number of measurements have been received, say M. Each
measurement is blinded with noise that cancels out when M successive measurements are aggregated
to prevent the supplier from decrypting the individual measurements. In the second method, the smart
meter itself periodically reports its temporally-aggregated measurement to the supplier encrypted with
the public key of the trusted smart meter manufacturer. As such, the manufacturer is required to decrypt
the aggregation for the supplier.

The scheme requires a trusted entity to recover in case of a smart meter malfunction. Additionally,
in the case of temporal aggregation, the intervention of the manufacturer is also required to decrypt the
aggregated measurements when using the second method. The first method has, however, a higher
space complexity for the utility supplier. We further note that in [88], the authors present a similar
scheme that also adds support for public verifiability by letting each participant store a copy of the
ciphertexts they receive and allowing them to query other users in the same neighborhood to ensure
the value published by the aggregator was correct.

Bonawitz et al. In [7], the authors propose a round-based scheme for secure data aggregation for
distributed machine learning. Their scheme supports high-dimensional data and ensures security even
in the face of user dropouts, which is desirable for practical implementations. This means that the
scheme is robust against users randomly leaving the protocol during any round of the protocol.

The basic protocol consists of four rounds. There are n users that can drop out at any point during
the protocol and an aggregation server. The users do not communicate with each other directly but,
rather, via the server using an authenticated channel.

There is a setup phase in which each party is given the public parameters. During the first round,

each user generates two Diffie-Hellman key pairs (cI'%, ¢35, which is used to securely communicate

’ U

with other users, and (sP% s5K), which is, instead, used to agree on pairwise seeds that are later
used to generate zero-sum masks. The users send their public keys are sent to the server, which
then broadcasts them to all users in the next round. In the second round, each user randomly picks a
random seed b,,, to be used with a random number generator, and uses (¢, n)-secret sharing to generate
n shares of both b, and s>¥ for all users. Each share is encrypted with the public key of every other
user and sent to them via the aggregator. In the third round, each user u masks their inputs using the
output from a pseudo-random number generator initialized with seeds s,, ,, shared with all other n — 1

users v. The masks are computed in such a way that they all sum up to zero when added together:

Y, =2, +PRNG(b,) + > PRNG(s,,)— »_ PRNG(s,,) mod p. (3.11)

veU:u<v veUu>v

In this equation, x,, is the value that user » wants to hide, and PRNG(b,,) is used to ensure that a lying
server cannot trick other users into sharing their shares of some user «. If all users contribute, then
only the PRNG(b,,) masks of every user remain and they can be removed by letting the aggregator
ask the users for ¢ shares of b,,. Alternatively, if a user « drops out, then the aggregator only needs to
worry about collecting ¢ shares of 57X to reconstruct and remove the missing masks. However, honest
users only reply to one request: either a share of b, or one of s7%, but not both. Thus, privacy and
fault-tolerance are guaranteed as long as less than 1/3 of the users are malicious and collude with the
aggregator. The authors also present some extensions to the scheme that guarantee its security in the
presence of malicious internal adversaries, but they only focus on the privacy of the input values and not
on the correctness of the final result, which cannot be guaranteed in this stronger model. Additionally,
the solution involves verifying many signatures that are linear in the number of users, leading to a high
computational cost.
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The protocol has, additionally, another main drawback. It is highly interactive as, in every round, all
users have to re-generate the keys and share secret shares of them with everyone else. Consequently,
this also leads to a quadratic communication and storage overhead for the aggregator.

Zhuo et al. In [89], the authors propose a privacy-preserving and verifiable data aggregation scheme
for mobile crowdsourcing. The adopted system model involves a requester that outsources data aggre-
gation tasks that are executed by a set of workers, usually mobile devices. To reduce the computational
burdens of mobile devices, a cloud server is introduced to perform most of the computation. The sys-
tem is initialized by a trusted authority that handles the registration of workers, the generation of the
public parameters, and key distribution. All internal parties, i.e. the requester, the workers, and the
cloud server, are assumed to be honest but curious and collusion attacks are not considered. The
main goal of the scheme is to protect the identity and privacy of the workers, to allow the requester to
offload a data aggregation task, and to verify the correctness of the computation in case the integrity
of the submitted values is affected during transmission. The data aggregation scheme is based on
BGN encryption, which offers both additive and multiplicative homomorphic operations in the cipher-
text domain. The ciphertexts are encrypted using the public key of the requester and submitted by the
workers to the cloud server. The cloud server handles the heavy data aggregation tasks. Identity pri-
vacy is achieved using ring signatures, while verification of the computation is achieved using special
hash functions computed over the ciphertexts that can be verified individually by the cloud server and
in an aggregated fashion by the requester using bilinear maps. The authors provide extensions that
allow the computation of several aggregation functions such as sum, mean, variance, and uncentered
correlation coefficient.

3.2. Privacy-preserving data aggregation with malicious users

In this section, we present an overview of data aggregation schemes that allow users to behave ma-
liciously. More specifically, these users may submit malformed data that is outside of the expected
range of values and may either cause an incorrect statistic to be computed by the aggregator or even
make the statistic impossible to compute. The common solution to prevent these types of attacks is to
ensure the values submitted by the users are well formed, for example, by ensuring they lie in a valid
range. Zero-knowledge proofs, like bulletproofs, represent a straightforward technique to perform this
task. Here, instead, we present some schemes from the literature that adopt different techniques.

Fanetal. The authors of [44] propose a scheme for mobile sensing that is privacy-preserving and can
withstand malicious users who attempt to poison the aggregation with invalid data. In their model, the
aggregator is honest-but-curious and, as such, it follows the protocol but it may attempt to infer private
information. The users can be malicious and collude with each other to cause a disturbance in the
final statistic. Additionally, a trusted authority is responsible for the distribution of all key material to the
users and the aggregator. The general technique used by the protocol is to restrict the range of values
that each user can submit. A data vector D = [dy,...,d,,] is defined during the setup phase which
contains all the allowed values that can be submitted. Each user, in this case, mobile sensing devices,
picks the value that is closest to the sensed value from the data vector. Next, the individual values
are blindly signed by the server, using its RSA secret key, so that the users cannot change the values
afterward. Then, the users encrypt their reports and send them to the aggregator. The decryption key
of the aggregator kg is set to be equal to additive inverse of the sum of all user keys, i.e. ky = Z:;l k;
with k; being the encryption key of user i. Thus, the aggregator can only decrypt the final aggregate,
but not the individual reports. As in [79], the aggregator must solve a discrete logarithm to extract the
statistic. To validate the signed reports, the aggregator constructs a validation vector V' from D, using
its RSA secret key. Each user multiplies its signed report with the corresponding validation value in V'
to get A = (H(t)z;)? and then sends this to the aggregator. The aggregator, knowing d, z;, and H (t)
can verify whether A is valid or not and, in the latter case, report the user.

The scheme has, however, some drawbacks. First, the integrity of the statistic can only be guar-
anteed if we assume that the aggregator is honest-but-curious. Second, the aggregator must solve
a discrete logarithm to extract the aggregate, which is an expensive operation and limits the size of
plaintext space. Additionally, only a selected number of values can be submitted, which may not be
suitable for situations in which more fine-grained data are needed. Finally, other arbitrary behavior
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from the users, such as submitting random ciphertexts, is not tolerated.

Karakoc et al. The authors of [48] propose a secure data aggregation scheme to counter malicious
users that input incorrect data into the aggregation protocol. The paper mainly focuses on the use of
data aggregation to train machine learning models in a federated learning scenario. The primary goal
of the protocol is to prevent model poisoning and backdoor injection attacks. Model poisoning occurs
when users send arbitrary data that renders the trained model unusable, whereas backdoor injection
refers to a technique whereby malicious users send carefully-crafted model updates that do not affect
the trained model performance if not for a selected set of inputs, for which the model outputs values
of the malicious user’s choosing. In the paper, the aggregator is assumed to be honest but curious
while the users are malicious with respect to the correctness of the data they submit. The solution
proposed by the authors is to enforce the input values of each user to be in a specific interval that
minimizes the chance of either type of attack happening. This scheme is reminiscent of other data
aggregation schemes with range validation, with the main novelty being that the solution is not based
on zero-knowledge proofs. The scheme uses the aforementioned PUDA scheme [54] as a sub-protocol
to compute the final statistic, which is the sum of all input values, as well as to check the validity of the
result. To check whether the result was computed from inputs belonging to a legitimate range, each
user engages in an interactive protocol with the aggregator to compute a verification tag compatible
with the verification procedure of the PUDA scheme. These tags are valid only if the input values of
every user belong to a legitimate interval, otherwise, they are random and will cause the verification to
fail. These tags are computed by each user through an interactive protocol with the aggregator based
on an Oblivious Programmable Pseudo-random Function (OPPREF). In short, for each bit of the input
data, the user will engage in a special oblivious transfer with the aggregator after which the user will
receive a piece of the final verification tag based on the bit value obliviously sent to the aggregator. The
protocol is set in such a way that if the bit sequence corresponds to a number that is smaller than the
threshold, then the resulting verification tag is valid, otherwise, it is random.

The scheme uses the aforementioned PUDA scheme [54] as a sub-protocol and, as such, it inherits
all of its drawbacks. Additionally, the scheme is highly interactive, since it requires nl oblivious transfers,
where n is the number of users and [ is the maximum bitlength of the input values. Furthermore,
verification only indicates that possibly malicious behavior occurred during the execution of the protocol.
However, the scheme does not allow the aggregator to identify exactly which users acted maliciously.
Finally, the aggregator is assumed to be honest but curious during the execution of the protocol.

Kursawe et al. In [51], the authors also propose another class of schemes they call comparison
schemes. These rely on the aggregator already knowing the approximate value V' that the aggregate
sum will be equal to. In these protocols, the aggregate is hidden as a discrete logarithm g>i-1 % and,
thus, the aggregator must explore the plaintext space around the aggregate until it is found to roughly
match the expected value V. If after a bounded number of trials, this is not the case, then one or more
users probably sent an incorrect value for aggregation. The main drawback of the scheme is that the
aggregator cannot directly identify which users acted maliciously during a round. The aggregator only
knows that something possibly went wrong during the execution of the protocol, but not where.

3.3. Privacy-preserving data aggregation with a malicious aggre-

gator

In this section, we summarize some works that assume the presence of a malicious aggregator that
may attempt to publish an incorrect aggregation result. The users, however, are assumed to be honest
but curious and do not collude with the aggregator or otherwise act dishonestly.

Lietal. In[56], the authors propose a data aggregation scheme for wireless sensor networks (WSN).
WSNs are networks of low-powered devices used for several monitoring scenarios, such as military
surveillance and wildfire tracking. A key aspect of WSNs is any algorithm that runs on them must be
energy efficient and this is one of the objectives of this scheme. Additionally, the scheme allows for the
identification of malicious aggregators that tamper with the aggregation results. The scheme focuses
on in-network aggregation, where the participants are arranged in a tree-like structure with the source
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nodes being the leaves of the tree and the aggregators being the remaining internal nodes, and the
root being the final node where the full aggregation result is computed. Data aggregation starts from
the leaf nodes and proceeds toward the root. At each aggregator node, the aggregate of its children is
computed and sent upward. Each sensor node can verify whether its parent has computed the correct
aggregate value by re-computing the aggregate using the values from its siblings and comparing it with
that output by its parent. If an inconsistency is found, the parent node is reported to the whole network.
The main drawback of the scheme is that it is not privacy-preserving. The individual values submitted
for aggregation can be directly inspected by other nodes during the verification phase. Therefore, while
for many WSN applications privacy is not required, this scheme cannot be used in scenarios privacy
preservation is of paramount importance. We mention this scheme in this section because, to the best
of our knowledge, it is one of the earliest ones to tackle the problem of data tampering at the hand of
the aggregator.

Leontiadis et al. (2015) The authors of [54] were among the first to propose a publicly-verifiable
private data aggregation scheme to defend against a malicious aggregator. Malicious, in this context,
means that it might provide a bogus aggregate result instead of the correct one computed from the
inputs submitted by the users. To defend against this, the aggregator is required to provide a proof of
correctness in addition to the aggregate value. The users are assumed to be honest but curious and
trusted to submit the correct input values. The aggregation scheme is based on the scheme presented
in [79], which is augmented with a verification protocol. For this purpose, in addition to aggregator
obliviousness, the authors propose a new security notion they call aggregate unforgeability, which
guarantees that an aggregator cannot forge a valid proof for an aggregate sum that was not computed
correctly from the original users’ inputs. In addition to the users, which provide their private data, and
the aggregator, which aggregates the inputs, the scheme also consists of a trusted key dealer, which
performs a setup in the beginning and then goes offline, and a semi-trusted data analyzer whose task is
to collect the aggregate values from the aggregator and verify their correctness. No party should learn
anything about the private inputs of the participating users, other than their aggregate value. The basic
aggregation scheme is identical to [79], as summarized above, thus here only the verification protocol
will be described. It consists of four main phases: setup, tag encryption, aggregation, and verification.
In the setup phase, the trusted key dealer generates the public parameters and secret keys, which are
distributed among the participants. The public parameters include a bilinear map e¢ : G; x Gy — Gr,
a cryptographic hash function H : {0,1}* — Gy, and random generators ¢; € G, g2 € G,. Each user
is handed a tag key tk; and a secret key a, which is shared by all users. The verifier receives the

verification key vk = (9225;1 tk",gg). During submission, each user creates a tag

i = H(t)™ (g7)", (3.12)

and sends it to the aggregator. The aggregator then computes a global tag:

n

or = [[oie = H()y>=1 ™ (gf) = v, (3.13)

Finally, given a sum >, z; ;, the verifier can check the following equation to ensure the aggregation
was performed correctly:

? m ths 1Tt a
e(o1,92) = e(H(t), g5~ " )e(g=" """, g3). (3.14)

Similar to [79], a drawback of this scheme is the limited input space, since decrypting the final
aggregate value requires solving a discrete logarithm. The scheme is also not fault-tolerant. Most
importantly, the scheme is not collusion resistant. Assuming a user u; colludes with the aggregator by
revealing its secret ¢ to the latter, then the aggregator can forge a bogus tag from a valid one like so.
Several other protocols are based on PUDA such as [48, 27, 53]. In [27], the authors extend the PUDA
protocol to prove its security under simpler hardness assumption which, in practice, can translate to
keys of smaller size, but also a more complex protocol.

Bakondi et al. Another protocol for time-series data with public verifiability is presented in [5]. Similar
to the previously mentioned works, the statistic this paper focuses on is the sum. The scheme is mostly
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non-interactive, except for a trusted setup at the beginning and the uploading of the input data to the
aggregator’s server. The aggregator is assumed to be malicious in the adversarial model adopted by
the authors. The users are trusted to provide the correct input values and every registered user is
required to participate in the protocol for the final aggregation to be computed correctly.

The scheme uses homomorphic signatures which can be combined by the aggregator to produce
a publicly verifiable output, from which the aggregated sum can also be extracted. Bilinear maps are
used for verification, thus we assume a pairing function e: G; x Go — Gp. Each signature must be
encrypted first, as the verification procedure of the scheme also permits verifying individual signatures,
which allow an adversary to extract the signed value in polynomial time. Thus, each user i is given a
secret key sk; = (k;, ), with k; <sZ,, and « <sZ,, while the aggregator is given k = >_"" | k;. Each
user ¢ can compute an encrypted signature as follows:

[e3%

W = Hy(id)* HH2 (id, §) mN“ ng € Gy, (3.15)

where Hl, H,, are secure hash functions mapping to G4, zd |s the round identifier, g, is a public generator,
each mNJr is 0 unless j = ¢, in which case itis 1, and m{ is the private data to be signed. The secret
key of each user also includes «, which is a secret exponent that is shared by all users and that must
be kept away from the aggregator. It ensures that the aggregator cannot modify any of the signatures.
Next, the aggregate signature can be extracted:

n n N «
o(M,id) = Hy(id)* [ © = (H Hy(id, j)M~+ T gyu) € Gy, (3.16)

i=1 j=1 u=1

where M indicates the multidimensional sum resulting from the aggregation. It must be noted that,
without proper care, the aggregate signature of this scheme is malleable, as a malicious aggregator
can simply compute o2 to produce a forgery. To counter this type of attack, each user i adds a vector of
n bit values to its private datum, one for each user in the system. Before submitting the signature, user
i sets the ™ bit value to 1. During the evaluation procedure, the verifier ensures that the signature was
created from exactly n input values by checking whether the vector contains n 1’s. Trying to tamper
with a signature would invalidate this condition. Verification can be performed using the properties
of bilinear maps, the computed result M, and a public parameter h* € Gy by ensuring the following
equation holds:

e(o(M,id), HH2 (id, j) M-+ ng “ h®), (3.17)

and ensuring the last n bit values of M are all 1’s.

The scheme has a few drawbacks. The message space of this protocol must be small for the
decryption of the aggregate to run in polynomial time. This is common among many similar schemes
that use discrete logarithm-based primitives. The scheme is not fault-tolerant and requires a full trusted
setup to be executed whenever a user joins or leaves the system. Finally, collusion is not considered
in the threat model adopted by the authors.

The drawback of their scheme is that both the aggregator and the users are assumed to be honest
but curious. Collusions between users and the aggregator are allowed, but only to infer information
about the remaining honest users.

Ni et al. In [65], the authors introduce a data aggregation scheme for smart grids that protects the
confidentiality, integrity, and authenticity of private metering data despite a malicious aggregator. The
system model consists of a trusted operation center, which also handles the initial setup, a set of
trusted users, and a malicious aggregator, which may attempt to modify the aggregate or infer informa-
tion about the metering data of individual smart meters. The private data is encrypted using the Paillier
cryptosystem with the public key of the operation center. As such, the aggregator can only collect and
aggregate the encrypted data but it cannot decrypt the aggregate. Additionally, homomorphic signa-
tures are created using commitment-like authentication tags of the form o; = (H(ID; || t)g%u™)®,
where H(ID; || t) is the cryptographic hash of a user’s identifier in aggregation round ¢, a; is a secret
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exponent computed from the user’s secret key using a pseudorandom function, and m; is the private
datum. Similar to other schemes with malicious aggregators like [5, 54], each signature is further
blinded using an exponent o shared by all users to prevent tampering from external adversaries or the
aggregator. Finally, the operation center can decrypt the aggregate computed by the aggregator using
its Paillier secret key, and verify whether the signature matches the aggregate using the properties of
bilinear maps and the verification key computed during a setup phase in the beginning. If the verifica-
tion fails, the operation center retrieves all the individual reports from the smart meters to identify the
corrupted reports.

The scheme cannot tolerate collusions between a single user and the aggregator both with respect
to the confidentiality of the private values and the integrity of the aggregate.

3.4. Privacy-preserving data aggregation with malicious users and

aggregators

In this section, we summarize two schemes whose goal is to achieve confidentiality as well as integrity
and authenticity of the aggregate statistic despite the presence of both a malicious aggregator and
malicious users.

Leontiadis et al. (2021) The authors of [53] propose a publicly-verifiable protocol for private data
aggregation with both malicious users and a malicious aggregator. In particular, in their model, the
aggregator is allowed to collude with malicious users to forge the verification tag for a message of
an honest user which, consequently, invalidates the final result of the aggregation. The users of the
protocol are still assumed to submit genuine input data and not fake values.

The actual aggregation scheme is based on the scheme presented in [79], and is executed sepa-
rately from the tagging scheme, which is used to compute the verification material. We now proceed
to describe the latter.

The scheme works in a pairing group (G1, G2, Gr) of prime order p, for which an efficiently-computable
pairing function e: G; x G2 — G and a secure hash function H: {0,1}* — G, are assumed to exist.
During the setup phase, a trusted authority generates a random key r <3 Z,,, which is sent to a honest-
but-curious party called the Converter, and a generator w <3 G-, which is distributed to all users. Each
user also generates a random value r; < Z,,, and sends it to the trusted authority. The trusted authority
finally generates the private verification key:

vk = (vk1,vke, vks) = (w,r, Zri), (3.18)
i=1

A user i computes a metatag for an aggregation round ¢ as follows:
mtag;, = (mtagl, mtag?,) = ([H(t)" g™ w), (3.19)

where tk; is randomly generated once by the users during the setup phase, and z;, is the user’s
input value to be tagged. Each mtag; . is sent to the converter along with a zero-knowledge proof of
commitment opening. This is done to ensure that mtagil,t is of the form h%g®. We note that the proof
presented in this paper allows for the exponents of the tag to be 0. If the proof concludes successfully,
the converter uses r to further randomize the metatag:

st} , = e(mtag},, mtag?,)", (3.20)

St?,,t = (mtagg,t)r. (3.21)

The converter, then, sends (st} ,, st?,) back to the user. The user can then inspect the tag for a possible
forge by checking

e(st?,w)w = st} . (3.22)
If the equation holds, the tag was not tampered with and st}yt is the final tag for user i. The aggregator
combines all tags together by computing o = []_, st}, and sends (3", x; +, ;) to the data analyzer
for verification. Here, "1 | x;, is computed using the éggregation protocol presented in [79].
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Finally, the data analyzer can check the validity of the result by verifying the aggregate signature
against the received sum using the private verification key.

The scheme suffers from several drawbacks. Firstly, it relies on a semi-trusted party during every
round to ensure the unforgeability of the verification tags. Moreover, if the malicious aggregator, a
malicious user, and the converter were to collude with each other at the same time, the scheme cannot
guarantee unforgeability anymore. We also found that malicious users can send a malformed tag to the
converter where [H ()" g®i-t]tki, with either r, = 0 or z; ; = 0, from which they can then compute ¢" and
send (¢g",w) to the aggregator. The aggregator can use this value to output tags for any values of its
choosing. Thirdly, the scheme is not fault-tolerant so every user must contribute in every round. Users
are also entrusted to submit well-formed values. If a malicious user sends a random tag to the aggrega-
tor, the verification procedure fails and there is no mechanism to detect which user acted dishonestly.
Additionally, the scheme must assume a trusted external verifier, as the verification key contains secret
information and, thus, cannot be public. Finally, as with all other discrete logarithm-based schemes
mentioned so far, the message space of the input values must be small for the aggregator to decrypt
the final result in polynomial time.

Mouris and Tsoutsos In [63], the authors propose a private data aggregation scheme that supports
the computation of several statistics such as the sum, average, histograms, and even categorical data.
The scheme is also publicly verifiable and can detect users who attempt to poison the aggregate. The
system model consists of a set of users, some of which may be malicious and submit invalid data. A
curator takes on the role of the aggregator and is assumed to be possibly malicious. However, it does
not possess the secret key required to decrypt the aggregate. Another party, the analyst, is instead
responsible for decrypting, verifying, and publishing the final statistic. Finally, a trusted ledger is used
to store special commitments from the users.

Each user encrypts their private values using the Paillier cryptosystem, then commits to the cipher-
text using an RSA-based multiplicative commitment scheme introduced in the same paper, which is
then published on a ledger. Additionally, each user computes a zero-knowledge proof to prove that its
private value belongs to a valid range, and it is sent to the curator along with the ciphertext. The curator
then verifies the proof to ensure the ciphertext is over valid data. Once all ciphertexts are received by
the curator, the encrypted aggregate statistic is published by the curator to the analyst. Finally, the
analyst collects all commitments from the ledger and aggregates them by computing their product to
produce a commitment over the aggregate. Finally, the analyst decrypts the aggregate and verifies its
validity using the commitment.

The main drawback of the scheme is that it is not collusion resistant. Indeed, if the analyst and cura-
tor collude then confidentiality of the private data cannot be guaranteed. Furthermore, users colluding
with the curator may still affect the correctness of the aggregate. Moreover, the scheme relies on a
trusted ledger which may not always be available or may be expensive to use and store large amounts
of data on.

3.5. Concluding remarks

In this chapter, we have presented several works from the related literature on privacy-preserving data
aggregation. The works range from those working in the honest-but-curious model to others that as-
sume malicious behavior other than the users or the aggregator. To the best of our knowledge, only two
schemes appear to work in a model in which both the aggregator and the users may be malicious, not
only with respect to confidentiality but also integrity. However, both have several downsides. In [53],
the system model assumes a semi-trusted third party and only allows for pairwise collusions between
this party and the aggregator or the users. On the other hand, in [63], the authors present a protocol
packed with many desirable features, however, it also works in a slightly more complex system model
where the aggregator or the users may be both independently malicious but cannot collude.

For these reasons, there is a need for a simple and practical private data aggregation scheme
that can ensure the integrity and authenticity of the computed statistic in the presence of a malicious
aggregator and malicious users, that works in a stronger model without additional semi-trusted parties,
and that is efficient in practice.



Publicly Verifiable Data Aggregation
Against Internal Adversaries

In this chapter, we describe a privacy-preserving and publicly-verifiable protocol to compute the sum
over a set of privately-held values. We introduce two separate schemes that are executed sequentially.
The first computes an aggregate signature over the sum of the private inputs, by taking advantage of
the homomorphic properties of Pedersen commitments. The second scheme is used to compute the
plaintext sum itself. If the space of plaintext messages is small enough, say in [0,23?) or smaller, it is
possible to extract the sum from the aggregate signature itself in polynomial time. However, this is not
very efficient in practice because it requires brute force or a large lookup table. As such, the second
protocol provides a faster way to compute the sum.

We first introduce the notation adopted throughout this work to describe the protocols, then we
summarize the system model and assumptions, then we proceed to describe the two schemes in more
detail.

Notation

Symbol Meaning

n The number of users

k The number of malicious users the system can tolerate

t An integer identifier denoting a particular aggregation round

Tit The private value submitted by user u; during round ¢

D A large prime number indicating the order of a group

G; A a group of prime order p

Zy, The set of integers modulo p

u; Identifier for the i-th user, 1 <i <n

U The set of all users

ui The signing set of user u;

[s]: The secret share of user u;

[s]2 The secret share of user u; after combining it with the Lagrange coefficients.
Adding k distinct [s]F together allows one to recover s

a}yt The initial partial partial signature of user w; in round ¢

of,’tj The second partial partial signature of user u; in round ¢ after the secret share
[s]; of user u; € Uj, is added to it

a;."”t The third partial signature of user v; in round ¢ after all of its k partial signatures
afj have been aggregated together

Oit The final signature of user «; in round ¢ after «; adds its secret share [s]} to it

o The aggregate signature for round ¢

—$ A random sampling operation

S The i-th group (MPVAS+ extension)

24



4.1. System model and assumptions 25

Symbol Meaning

Gu,; The group of user u; (MPVAS+ extension)

ZKPNeqZero(a} ;) A ZKP of inequality to zero of o},

DH (i, 5) ~ Diffie-Hellman key agreed between users u; and Uj

Sij Shared seed between users u; and u;

PRNG(s; ;,t) The t-th pseudorandom integer output by the PRNG seeded with s; ;
Cit PPDA ciphertext of user u; during round ¢

4.1. System model and assumptions

The system consists of a set of n users U = {uy,...,u,}, an aggregator, a trusted dealer, and one or
more verifiers. In any given aggregation round ¢, each user u, possesses a private integer value z; ;.
The goal of the protocol is to compute the sum of all private values in round ¢ such that the following
properties hold:

» Confidentiality: No unauthorized party should be able to learn the private value of a user.

* Unforgeability: The aggregator should not be able to publish an authenticated sum that is not
equal to the sum of the values submitted by the users.

+ Availability: Malicious users that attempt to disrupt the execution of the protocol by causing the
verification to fail are detected and removed so that the system can continue to operate properly.

In the protocol presented in this chapter, we assume the availability property is not affected. We drop
this assumption in Chapter 5, where we present an extension to tackle malicious behavior from the
user with respect to availability. We further note that unforgeability is a property of signature schemes
that also implies integrity and authenticity of the signed message [81], which is the research goal of
this thesis.

We now define three types of behavior:

* Fully trusted: A fully trusted party does not deviate from the protocol and does not attempt to
affect any of the three properties.

* Honest-but-curious: An honest-but-curious party also correctly follows the protocol but may
attempt to infer information about the private values of other users using previously-held infor-
mation or information from messages obtained legally during the execution of the protocol. An
honest-but-curious user does not collude with other users.

» Malicious: A malicious user may actively try to deviate from the protocol in order to learn informa-
tion about the private value of other users or to affect the unforgeability and availability properties
of the protocol. A malicious user may collude with the aggregator.

4.1.1. Participating parties

In this section, we provide an overview of all parties that participate in the protocol. Table 4.2 summa-
rizes the adversarial assumptions about each entity. All adversaries are assumed to be probabilistic
and polynomially bounded.

Aggregator

The aggregator is the party that is tasked to collect the encrypted inputs and signatures from all users,
aggregate them, and publish the plaintext result of the aggregation as well as an aggregate signature
proving the correctness of the result to a verifier. The aggregator is assumed to be malicious with
respect to confidentiality and unforgeability. This means that the aggregator may deviate from the
protocol and collude with other malicious users in order to learn the private values of honest-but-curious
users or to tamper with their signatures to output an authenticated aggregation result of its choosing.
The aggregator does not, however, actively try to disrupt the protocol, for example, by outputting random
values. As such, the aggregator does not attempt to cause the verification of the aggregate to constantly
fail and will actively try to identify and report users that, instead, attempt to do so.
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Users

The users are a collection of parties that hold some private data over which a statistic, in this case, the
sum, is to be computed in a distributed and privacy-preserving manner. No other unauthorized party
should be able to learn the private data of a user by participating in the protocol. Additionally, each user
is required to submit a special homomorphic signature that, when aggregated with the signatures of
other users, allows the verifier to check whether the statistic was computed correctly or whether there
was an attempt to falsify it. Each user is assumed to have encrypted and authenticated bidirectional
communication channels with the aggregator and the dealer, but not with other users. We also assume
that the integrity of in-transit messages is preserved. All users are somewhat time-synchronized and
participate in the aggregation at the same time and inherently know what the round identifier t is. When
users need to interact with each other, messages have to be relayed through the aggregator. We
assume a heterogeneous population of both honest-but-curious and malicious users. In particular, we
allow the system administrator to choose the number of malicious users that the protocol should be
able to withstand. Throughout the paper, we refer to this threshold as k. The aggregator, although
also assumed to be malicious, is not included in this number. While the three main properties analyzed
in this work (confidentiality, unforgeability, availability) are guaranteed when & < n — 2, we assume
that in an average, real-world execution of this protocol the number of malicious users will be much
smaller. Similar to [53, 5], in the scheme described in this chapter, all users are at least trusted to send
valid information and not random or fake information that causes the verification of the result to fail.
In Chapter 5, we describe an extension that allows the aggregator to detect malicious users that also
attempt to disrupt the execution of the protocol and, thus, its availability.

Verifier

The verifier is a party that verifies whether the aggregation was performed correctly. In short, we say
that the aggregation is performed correctly if the statistic is computed only from the values that are
originally sent out by all registered users during a given round of the protocol. If a party manages to
inject a new value and tamper with the values sent by the registered users, then the verifiers should
be able to detect it. We do not put restrictions on which entities are allowed to verify the results of
the aggregation: any party holding the public verification key can be a verifier. Verifiers may include
external auditors, the system administrator, the aggregator, and internal users.

Dealer
All the protocols described in this work assume a trusted setup that is performed to bootstrap the system.
This is an assumption that is also employed by many other similar schemes that work in the malicious
model, such as [5, 53, 54, 27, 79]. A trusted setup makes it easier to bootstrap a system such as this
one in the presence of malicious participants. While not always ideal, it is a sensible assumption for
several practical applications such as smart grids and medical data sharing, where a trusted institution
or manufacturer can take on the role of the trusted authority.

A fully-trusted dealer is tasked to generate and distribute the public and private parameters of the
protocols to the other involved parties. Once the setup is finished, the dealer goes offline for the re-
mainder of the protocol execution.

Entity Confidentiality \ Unforgeability | Availability
Aggregator Malicious Trusted
n — k Users | Honest-but-curious \ Trusted

k Users Malicious \ Trusted

Verifier Honest-but-curious | -

Dealer Trusted

Table 4.2: The adversarial assumptions for each participant of the protocol.



4.2. Publicly-verifiable aggregate signatures with malicious users and aggregators (mPVAS) 27

®

I |l J

<n-—k 0<k<n-2

Figure 4.1: Diagram showing the system model assumed by the protocols. The blue nodes indicate honest-but-curious users.
They do not collude or deviate from the protocol but may be nonetheless interested in learning the private values of other users.
The red nodes indicate malicious users. They can deviate from the protocol and collude with each other to learn the private
values of other users or to affect the integrity and authenticity of the result of the aggregation.

4.2. Publicly-verifiable aggregate signatures with malicious users
and aggregators (mPVAS)

In this section, we present a protocol that allows users to compute special signatures over their private
values that can be aggregated into one single signature over the sum of the private values. The aggre-
gate signature is unforgeable, assuming a bounded number k of malicious users, and allows a verifier
that holds the public verification key to verify the integrity and authenticity of the computed statistic.
Confidentiality of private values is still preserved throughout the execution of the protocol. The core
idea behind the scheme is to create commitment-like signatures and wrap each one of them under a
common secret exponent, which we call s. This is a technique used by other schemes with verifiability,
for example [5, 54, 57], as also shown in Equation 3.15 and Equation 3.12. However, these schemes
assume honest behavior from the users who are all entrusted with the secret. When users behave
maliciously and collude with the aggregator by revealing the secret exponent, then the unforgeability
of the aggregate signature cannot be guaranteed anymore since the aggregator can now tamper with
the individual signatures. We overcome this limitation by splitting the secret exponent s into n secret
shares, where n denotes the number of users in the system. We adopt Shamir Secret Sharing with a
threshold of k& + 1, where k is the maximum number of tolerated malicious users. When users decide
to create a signature for their private input, they start with a partial signature and then collaborate with
other users to reconstruct s via interpolation in the exponent. The result is that malicious users and the
aggregator, even by colluding with each other, do not have enough secret shares to fully reconstruct
the secret s. As a result, the individual signatures of honest users and the final aggregate signature
cannot be tampered with without invalidating the end result, which is detected during the verification
phase. The underlying structure of our signatures is based on that of the ciphertexts of the data ag-
gregation scheme presented in [79] and is reminiscent of Pedersen commitments. We also adopt the
structure of the verification keys as well as the verification procedure of the publicly verifiable PUDA
scheme [54]. The computations are performed over a pairing group. Signing is performed in the first
group G, the verification keys are generated in the second group G-, and verification is carried over in
the target group Gr. Finally, Shamir Secret Sharing and a zero-knowledge proof of inequality to zero
are used to construct valid signatures without letting dishonest users learn any information that could
allow them to tamper with the result without being detected.
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In short, the scheme consists of five phases: setup, signing, signature aggregation, and verification.
During the setup phase, users are handed the public and secret information required to engage in the
protocol. In the signing phase, each user interacts with other users to construct their final signature. All
individual signatures are then aggregated together during the signature aggregation phase. Finally, the
verifier can verify whether the output sum was computed correctly by verifying the aggregate signature.
We now describe each phase of the protocol in more detail.

4.2.1. Setup

During the setup phase, the trusted dealer chooses and publishes the public parameters pp = (H, G4,
Ga,Gr, 91, 92, ¢, k,p), generated according to a strong security parameter A. Each G; is a cyclic group
order p, where p is a large prime number. ¢g; and g, are random generators of G; and G, respectively.
e: Gy x Go — Gr is a type-3 bilinear map in which the SXDH assumption holds (see Definition 6).
H : {0,1}* — G is a cryptographically-secure hash function. k is the maximum number of malicious
users the system is capable of tolerating.

Each user is assigned a unique integer identifier i and broadcast to all other users. For simplicity,
we will assume that i € {1,2,...,n}.

The dealer also randomly chooses a secret s «—sZ,, creates n secret shares [s]; using (k + 1,n)
Shamir Secret Sharing. Recall that a secret share consists of a coordinate (z;,y;) on the 2D plane.
We implicitly assume that the x; coordinate of user u,; corresponds to its own integer identifier. Thus,
[s]; denotes the secret y; coordinate of user w;. These shares are distributed to the respective users
u;. If k = 0, then each user receives a copy of s. Next, the dealer then requests a randomly-sampled
signature key sk; <sZ, from each user u;. Users reply by sending gg’“ back to the dealer. When the
dealer has received n replies, it computes the verification key

ok = (9=, g3) . (4.1)
which is sent to the verifiers.

4.2.2. Signing
When a user intends to create a signature for its private value, interaction with other users is required.
The creation of a signature consists of four steps.

1. Create partial signature
In the first step, a user u; in round ¢ chooses a random value r; ; <$Z, and computes its initial partial
signature o, as follows:

olir= (H(t)shgfi’t)”’t € G;. (4.2)

The reason for the random exponent r; ; is to prevent other, possibly malicious users, from tampering
with the signature, since g; is public. Next, the user also creates a zero-knowledge proof of inequality
to zero to prove that neither exponent of H (¢) nor ¢; is equal to zero, i.e.

PEK{(sk;,xit,mit) 1 0ig = H(t)Ski'”*tgf"’t'T“ Nski-rie #0ANxi -1 # 0} (4.3)

This step is necessary to prevent malicious users from sending malformed partial signatures and ob-
taining ¢, which can be used to tamper with any signature. We denote the information required to
prove this condition by ZKPNeqZero(o; ). Finally, the user sends the tuple (o} ;, ZKPNeqZero(o;,)) to
the aggregator.

2. Add secret share

The aggregator relays any received (o} ,, ZKPNeqgZero(a} ,)) to k users other than u;. We call this set
of users the signing set of user u; and we denote it by U . The method in which this set is constructed
is left as an implementation detail. It is possible to choose a fixed subset of £ users or a sliding window
in which every user communicates with the next k users. We assume the latter in our evaluation of
the protocol. In either case, we also assume that every user knows the identifiers of all members in
its signing set and how many requests it is supposed to reply to. Honest users do not reply to further
requests. Each user u; € U first verifies ZKPNquero(a}’t). If the proof is invalid, u; is reported and



4.2. Publicly-verifiable aggregate signatures with malicious users and aggregators (mPVAS) 29

the protocol aborts. Notice that if u; is malicious, then at least one user u; € Ui must be honest and
will, thus, detect dishonest behavior. If the proof is valid, each u; computes:

j s|: sk Tieyrg e\ 5]
o = (o} )l = ((H(t)k gy ")) € G (4.4)

Here, [s]; denotes the partially-reconstructed secret of user u; computed via interpolation by multiply-

ing [s]; with the Lagrange basis polynomial corresponding to user u;. Finally, u; sends ai’tj to the
aggregator.

3. Sum secret shares

When the aggregator has received & partial signatures aftj for user u;, it aggregates the secret shares
in the exponent by computing the product of all £ signatures:

of = [ (%) = (o)== e .. (4.5)

uj Eu};

The aggregator finally sends a;f”,t back to the original user u;.

4. Compute final signature

At this point, k& secret shares have been added to the exponent. Thus, there is only one left to add in
order to finally reconstruct s. Additionally, the random value r; ; must be also removed by the original
user for the signature to be valid. The final signature is computed by the original user as follows:

3\ 7 i Tit\[s]F
oie = (0F,) 7 - (H(t)Mgy)lh

s

_ (H(t)sk,;gfi,t)[S]IJFEuJeu']iC[S]; (4.6)

= (H(t)™g]"")* € G1.

Finally, u;, submits its final signature o; ; to the aggregator. Notice that final user signatures cannot
be verified as the verification key only allows for the verification of aggregate signatures, described in
the next paragraph. This is by design, as verifying individual user signatures would trivially allow an
adversary to learn the private input of a user by brute force and, thus, break the confidentiality property.

4.2.3. Signature aggregation
Once every user has computed and submitted its final signature for round ¢, the aggregator can aggre-
gate them together by computing their product:

n

or =T =TI (H®Fg7)" = (HE*Z" (g1)> " € Gy (4.7)
=1

i=1

The aggregator then sends the aggregate signature o, to the verifier.

4.2.4. Verification

The aggregate signature is a signature over the sum of all inputs submitted by all registered users. The
aggregator cannot create an aggregate signature for a sum that was not computed from the inputs
submitted by all registered users, because doing so requires knowledge of s. Once both the aggregate
signature and the sum are published by the aggregator, the verifier can check whether they both match
by verifying the following equation:

e(H(t),vk:l)e (glzxi’t,vkg) Le (0, 92)

= e (H), ()= ) e (677 95) £ e lo1,92). o
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where
e (01.92) = e (HE)") =" (g1) =" go)
= ((H)Z",g) e (9%, g2 4.9)

= e (H(D), (9= ) e (97", 03) € G-

4.2.5. Final remarks

As a final remark, we note that since the exponents of the signatures cannot be equal to 0, then it
follows that none of the submitted data values can be 0 either. Thus, if 0 is a valid value that can be
aggregated, additional steps must be taken. For example, we can ask each user to add 1 to their data
values and then, eventually, subtract n from the sum. Finally, Figure 4.2 shows a sequence diagram of
the signing and signature aggregation phases of the protocol, which succinctly summarizes the main
core of the protocol.

mPVAS (Signing and Signature aggregation)

User u; Aggregator Signing set U’

Tit <$Zp
U?,z — H(t)m’.‘ifm
Uil,z ~ (“?,t)h't
Ci,e + ZKPNeqZero(o? ;)

(”11.:s Git)

(U:,n Ci,f)
Each of the k users verifies (i ¢
If the proof holds:
ot = (1)
{02 |uy € W'}

3 _ 2,5
Oit = || Tit

uj €Ut

or= [ oue = H@HZ™ (@)=

ui €U

Figure 4.2: Sequence diagram of the signing and signature aggregation phases.

4.3. Privacy-preserving data aggregation protocol (PPDA)

Most of the schemes with public verifiability mentioned in Chapter 3 rely on discrete logarithm-based
constructions in order to encrypt the private data. However, that means that revealing the aggregate
involves computing a discrete logarithm and, as such, decrypting the ciphertexts becomes computa-
tionally expensive, although not intractable if the plaintext space is small enough to be traversed in
polynomial time. Since the mPVAS scheme assumes that all users behave honestly with respect to
availability, i.e. they do not send malformed data, we can speed up the extraction of the sum with an
additional protocol presented here. The protocol is partially based on that of [7], with the difference that
the setup is performed only once by having each user share a random seed with everyone else and we
do not adopt any of its features for fault tolerance. The protocol consists of three phases: setup, sub-
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mission, and aggregation. We provide a short overview of each phase before describing the protocol
in more detail.

1. Setup: During the setup phase each user registers with the protocol by contacting the trusted
dealer. The dealer distributes the necessary public and secret information to each user.

2. Submission: When a new aggregation round begins, each user will encrypt its private value by
blinding it with zero-sum masks. These masks are random but cancel out when all ciphertexts
are added together.

3. Aggregation: The aggregator collects n encrypted values from users and aggregates them by
adding them together. Since the masks add up to 0, only the final sum is revealed.

4.3.1. Setup
The users signal their intention to register with the protocol to the trusted dealer. The dealer publishes
the public parameters pppppa = (G, g, H1,p) generated according to a strong security parameter A,
where G is a cyclic group in which the Decisional Diffie-Hellman problem is hard (see Definition 3), g
is a generator of G, and H; : {0,1}* — {0,1}" is a cryptographically-secure hash function, and p is
the prime order of G;. We also assume a cryptographic pseudo-random number generation algorithm
PRNG, with the same output bit length as p.

Afterward, all pairs of users (u;, u;) engage in a Diffie-Hellman key agreement in order to compute
a shared secret DH (i, j). Finally, the shared seed s, ; that is used by the PRNG is computed by letting
s;; = H(DH(i,j)). All messages are routed through the trusted dealer.

4.3.2. Submission
In round ¢, when a user u; wants to submit its private value for aggregation, u; creates a mask for its
private value z; ; as follows:

mis= Y PRNG(s;;,t)— Y  PRNG(s;t). (4.10)

u; €U:<g u; €U:i>j5

Here, PRNG(s; ;,t) indicates the ¢-th pseudorandom integer output by the PRNG seeded with s; ;.
Then, the ciphertext is computed by adding the mask directly to the input value:

Cit = Tyt + My (4.11)

The user then sends ¢; ; to the aggregator.

4.3.3. Aggregation
During the aggregation phase, the aggregator can combine all ciphertexts together and decrypt the
final sum for round ¢ by adding all ciphertexts together:

sum; = Zn: Cit
=1
= Z Tit + Myt
Zl : (4.12)
=> @i+ | >, PRNG(sij,t)— Y PRNG(s;;t)
i=1 i=1 \u;eU:i<j u; €U>j
= z”:l” mod p.
=1

Therefore, in the end, only the aggregate sum is revealed.



Extensions

In this chapter, we present two extensions to the main protocol described in Chapter 4. In Section 5.1,
we describe an extension that reduces the communication overhead assuming non-adaptive corrup-
tions of users. In Section 5.2, we show an extension to allow the aggregator to identify users who
behave maliciously and attempt to disrupt the protocol.

5.1. Extension for lower communication overhead (mPVAS+)

In this section, we describe an extension of the mPVAS scheme that can grant a significant improvement
in communication complexity. In the mPVAS scheme, assuming perfect load balancing’, then each
user needs to send its partial signature to the aggregator, which will relay it to k£ other users, and then
check the partial signatures of k other users. This leads to a total of k£ + 1 messages exchanged,
ignoring the zero-knowledge proofs and additional metadata. Although we assume that the number
of malicious users in the system is much smaller than that of honest users, this level of interaction
may still be too high. Fortunately, if we assume non-adaptive corruptions, i.e. the corrupted users are
fixed from the start, then it is possible to decrease the number of messages exchanged using a divide-
and-conquer strategy. Intuitively, users are randomly grouped into small-size groups and are provided
with secret shares of s generated with different instances of secret sharing, such that the shares of
two different groups are incompatible. Then, each user only needs to communicate within their own
group to construct its final signature, drastically reducing the number of messages exchanged. A fully
malicious group of users is required to break the unforgeability property of the scheme.

5.1.1. Setup

The key difference between the setup phase of the mPVAS+ extension and that of the main mPVAS
protocol is that, after every user has signaled the intention of registering with the protocol, the dealer
randomly assigns users to groups of size ¢ < k. If ¢  n, the last group will also contain the remainder
n mod ¢ of the users, and the secret sharing threshold of this group is adjusted accordingly. Next,
the dealer chooses a random secret s <—s$Z, and, for each group 9;, the dealer creates |9;| shares
[s]; using (¢, c) Shamir Secret Sharing. We use the notation §,,, to indicate the set of users belonging
to the group of user u;, u; excluded. Notice that a different instance of the secret sharing protocol
is used for each group. Since each instance is created using different randomness, shares that are
generated for different groups are incompatible with each other. Afterward, each share [s]; is sent to
the corresponding user u;, along with a list of the other users in the same group, and the same public
parameters and verification key of the mPVAS scheme.

5.1.2. Signing

The signing procedure only differs from that of the mPVAS scheme in that the partial signature a}’t of
each user u; needs to be sent to the ¢ — 1 other users assigned to the group of u;, instead of k& other
users in the system.

"For example, assuming a total order on the user identifiers, when each user sends its partial signature to the k next users.

32
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5.1.3. Signature aggregation and verification
When the signatures are finally computed, they are sent to the aggregator for aggregation and verifica-
tion using the same procedures used in the mPVAS protocol.

5.1.4. Choosing the threshold ¢

The reason why this scheme has a lower communication overhead than the main scheme mPVAS
is that every user only needs to communicate with ¢ — 1 < k other users in order to construct their
signatures. In practice, ¢ can be much smaller than k. Note, however, that in this case the unforgeability
property of the scheme can only be guaranteed under probabilistic bounds. In fact, if ¢ malicious users
end up being assigned to the same group, then unforgeability is clearly broken since they have enough
shares to collectively reconstruct s. However, the probability of this scenario happening can be made
negligibly small by increasing the threshold c. As an example, let us assume n = 1000 users, k = 100
of which can be malicious. Then, choosing ¢ = 5 means that each user will have to check the partial
signatures of 4 other users, instead of 100 of them. The probability of obtaining a group with 5 malicious
users is only p ~ 0.002 and it decreases exponentially as we increase the group size ¢: p =~ 0.0002 with
¢ =6 and p ~ 0 with ¢ = 7. These probabilities were computed using a simulation with 100, 000 trials.
The simulated probabilities for a wider range of scenarios are plotted in Appendix A.

5.2. Extension for input validation (mPVAS-IV)

Public verifiability allows any entity that possesses the verification key to ensure that the data aggrega-
tion was performed correctly on the inputs provided by the registered users. However, when verification
fails it is useful to take steps to find what caused the failure. Since we work in an interactive setting,
malicious users interested in disrupting the protocol have a rather large attack surface. In this section,
we present an extension to the mPVAS protocol that allows the aggregator to identify malicious users
that attempt to affect the result of the verification procedure. We assume that the aggregator is trusted
with respect to identifying malicious behavior and not disrupting the protocol, but still malicious with re-
spect to confidentiality and unforgeability. The reason why this is a fair assumption is as follows. First,
note that the aggregator is very powerful with regard to the results it may output. In fact, the aggregator
may decide to always output an incorrect sum that causes the verification to fail, thereby disrupting the
protocol indefinitely. Additionally, the aggregator may lie about which users acted maliciously when
trying to identify malicious behavior. However, we argue that if verification fails too many times, for
example, more than k times, it may raise the suspicion that the aggregator may not be acting honestly
since the expected number of malicious users must have been thrown out at this point. As such, in the
worst case, all that a fully malicious aggregator can do is disrupt the protocol for k& rounds, while the
properties of confidentiality and unforgeability of the verification material are still maintained. For this
reason, we argue that it is not worth it for the aggregator to act maliciously with respect to availability.
Furthermore, we claim that having a mechanism that can allow the protocol to continue functioning
properly after a small number of failures as opposed to an indefinitely large number of failures is worth
having.

In the original mPVAS scheme, there are three ways in which a malicious user u,, might try to
invalidate the verification procedure: tampering with the partial signature of another user, sending a
malformed final signature, and lying about another user sending an invalid proof of inequality to zero.
Additionally, a user might send a malformed PPDA ciphertext, but we avoid this by dropping the need
for the PPDA scheme altogether and letting the aggregator extract the sum from the aggregate sig-
nature. We now present an extension to the mPVAS protocol, which we call mPVAS-IV, which allows
the aggregator to identify malicious users in each of the three aforementioned scenarios. For each of
the four phases, i.e setup, signing, aggregation, and verification, we describe the changes that must
be applied to the mPVAS protocol. In Table 5.1, we summarize the updated adversarial assumptions
adopted by the mPVAS-IV extension.

5.2.1. Setup

The setup phase of the mPVAS-IV protocol runs similarly to that of the main mPVAS scheme. The only
difference is that the aggregator is handed additional information that can be used to detect malicious
behavior. Specifically, once the signing keys sk; and secret shares [s]; of s are generated, the dealer

sends the sets SS = {gI7" ... gl }, SK = {nI1 g5 ... hiv g3~} to the aggregator, where 7; <sZ,,
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hr, gr are random generators of Gr. The corresponding users u; are also given r;, which they must
know in order to generate a valid zero-knowledge proof of commitment equality, explained in more
detail below.

SS contains the inverses of the secret shares of each user and allows the aggregator to ensure all
final signatures are correctly signed with s. Notice that since they are stored as exponents of g», the
aggregator cannot efficiently recover them.

SK contains commitments of the signing keys of every user. These allow the aggregator to verify
whether each user signed their signature using the correct signing key and not, for example, some
random number. L

The public verification key includes g5 and is now vk = (g s i sk ,92,92 5 ). Finally, dealer randomly
chooses h; <3Gy, and publishes the public parameters pp = (H, Gy, G2, Gr, g1, k1, g2, 97, hr, €, k, D).

Entity Confidentiality \ Unforgeability | Availability
Aggregator Malicious Trusted
n — k Users | Honest-but-curious \ Trusted

k Users Malicious

Verifier Honest-but-curious | -

Dealer Trusted

Table 5.1: Adversarial assumptions adopted in the mPVAS-IV scheme.

5.2.2. Signing

Tampering with the partial signature of another user

The first way in which a malicious user u,,, may try to invalidate the verification procedure in the mPVAS
scheme is by tampering with the partial signature o}, of some user u; by sending, for example, a random
value back instead of the value described in Equation 4.4. Users can verify whether their final signature
is well-formed by ensuring that the following equation holds:

e(H (1), (95))e(gy . g3) = e(0ii, g2) (5.1)
where
e(oie,g2) = e((H()*)** (g5)", g2)
=e((H(t)*)™, g2)e((g3)""", g2) (5.2)

e(H(t), (95)%)e(gy"", g5)-

If the equality holds it means that none of the partial signatures oZ i ,uj € Ui were tampered with,

otherwise at least one of the users in the signing set Ui must have submitted an invalid or In this
case user u; informs the aggregator Recall that the aggregator possesses both the partlal S|gnature
o}, of user u; as well as all the o’ i/, for every u; € Uj. For each user u; in the signing set U}, the

aggregator computes:
25° _ o[ g2 o 1*
o7 =elo;} ,92

(( 171 be)[S] ’92[*];> (53)
(

(H 1 xlt TIthQ)

e( 7,t7g2)

_1_
where a}; is expected to be equal to the original a}f sent by u;. Note that the aggregator can find g;]j ,
by first computing the Lagrange coefficient using the set of integer identifiers L; = {i} U {j | u; € UL}:

e

HEN| #GZ,}, (5.4)
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and then computing:

o _ (T
go " =\(92" € Go. (5.5)

Finally, the aggregator verifies that the expected 0},; is, indeed, equal to the oz{t it originally received
from user u;:

e (al-l’t,gg) z O’i’tj*. (5.6)

If this is the case, then v; did not act maliciously. Otherwise, u; will be reported as malicious. The
same process is repeated for the remaining users in U:.

Lying about another user sending an invalid zero-knowledge proof of inequality to zero

In order to overcome the case where a malicious user incorrectly reports another user for having sent
an invalid proof of inequality to zero, the aggregator must verify all proofs. The aggregator already
possesses the proofs and the respective partial signatures of every user, so there are no additional
steps required.

5.2.3. Signature aggregation

During the signature aggregation phase, the aggregator receives signatures o; ; from every user and,
then, proceeds to aggregate them. The signatures are aggregated into one signature o; using the pro-
cedure described in the mPVAS scheme. Thus, no changes are required for the signature aggregation
phase.

5.2.4. Verification

The verification is also performed as explained in Chapter 4. However, if the verification fails, then
the aggregator is expected to detect which users caused it to fail. There are two possible reasons
why this might happen at this point in the protocol. One or more users sent a malformed ciphertext or
malformed final signature. The first cause is avoided because the mPVAS-IV extension drops the need
for a separate data aggregation protocol to be run after the aggregate signature one. However, this
requires the aggregator to solve a discrete logarithm to extract the sum from the aggregate signature.
As such, the plaintext space must be small enough so that the aggregator can extract the sum in
polynomial time. The second cause can be detected by allowing the aggregator to check whether each
final signature o; ; is well formed.

Malformed signature detection

A malicious user u,, may try to invalidate the verification procedure by sending a malformed signature
om,: 10 the aggregator. Detecting this entails verifying that the secret exponent s wraps the entire
signature and that the signing key sk, is the exponent of H(¢) and belongs to user u,,. Additionally, for
the decryption of the sum to be tractable, the signed value must be within a confined range of values
[min, max] that can be traversed in polynomial time, e.g 32-bit values or smaller. In order to check for

the first condition, both the aggregator and u,,, can compute, using vks = gf:

, (5.7)
= (H(t)" g, g2

= e(H(t),2)" ™ e (g1, 92)"™" € Gp.

Now, a non-interactive zero-knowledge proof of commitment equality is performed between the

’

aggregator and u,,. User u,, must prove to the aggregator that the exponent of the first factor of o,,, ,,
namely e(H (t), gg)Sk:n is indeed equal to the committed value h}”"g}km € SK, using the protocol shown
in Figure 2.2, with inputs .S = a;n’t and T = hlrgs¥=. This ensures that the first two conditions hold.
Finally, the aggregator must also ensure that the signed value is within the expected range, say in
[1,232). We use a bulletproof to allow users to prove the range of their signed values. However, we did
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not find any implementation of bulletproofs that allows for proofs in Gr. As such, since we cannot prove
the range of U’:n,t’ we require users to send the aggregator an additional commitment C' = hlg{"* € Gy,
along with a bulletproof to prove that z; ; € [min, max] and a proof of equality (Figure 2.2) to prove that

the committed value C(r, z; ;) matches that of a;m.

5.3. Dealing with a detected malicious user

The aggregator informs the system administrator of any detected malicious users. If the system ad-
ministrator decides to kick out the dishonest users, a new trusted setup must be performed in order to
re-generate the secret keys as well as the verification key. This is necessary because the verification
key contains information about all the secret signing keys and, for this reason, verification fails if less
than n registered users contribute to the aggregation. While the intervention of the trusted authority is
not always ideal or practical, it is necessary because of the absence of a simpler recovery system in
the event of faults.



Security analysis

In this chapter, we provide arguments in support of the security of the protocols introduced in this work.
We start by providing evidence of the privacy-preserving properties of both the PPDA and mPVAS
schemes, along with the extensions. We then proceed by presenting arguments showing the unforge-
ability property holds in all of the schemes.

6.1. Privacy proofs
We begin our privacy proof by introducing an important concept that captures the general goal of private
data aggregation schemes.

6.1.1. Aggregator Obliviousness

In order to show that the private values submitted by the users stay confidential, we adopt the notion
of Aggregator Obliviousness (AO, first formalized in [79] and later also used and extended in [54, 53].
Intuitively, a data aggregation scheme is Aggregator Oblivious if, given ciphertexts ¢; » and signatures
0.+, the aggregator cannot learn anything about the individual plaintext inputs «; ;, other than their sum
i xi¢. Ifasubsetofthe users U, C Uofsize |Ux| < k colludes with the aggregator by revealing their
private inputs, then the aggregator can only learn Zu,-,eU\Uk z; +. We focus on the aggregator because
it is the party that has access to most of the information since all messages are routed through the
aggregator.

6.1.2. The PPDA scheme is Aggregator Oblivious
The PPDA scheme from Section 4.3 can be easily shown to be aggregator oblivious by proving the
following theorem.

Theorem 1 Given a ciphertext c¢; ; of a honest user u; computed according to the PPDA scheme, a
malicious aggregator that colludes with w < n — 2 users cannot recover the underlying plaintexts x; ;
of the remaining n — w users.

Proof Each ciphertext ¢;, = z;+ + m; . is blinded by a random mask m; ; which is computed using
a cryptographically-secure PRNG as shown in Equation 4.10. The PRNG is initialized by a seed that
is generated uniformly at random according to the security parameter A. As such, each ciphertext
appears virtually indistinguishable from a random value to the aggregator. Recall that each pair of
users (u;,u;) shares a seed s, ;, which is generated during the setup phase and distributed by the
trusted dealer. It follows that there are s = (}) = 21(ﬁ2)! = "(”2_1) unique, randomly-generated
seeds in total, one for each pair of users. Any subset of 1 < w < n users collectively possesses

S(n— i) unique seeds. If w < n — 2, then an aggregator that colludes with w users possesses

sa < > ( i) = (n= 1)(" 2 = ’2” 2 < 5. As such, there is at least one pairwise seed that is
not known by the aggregator and that is used by the remaining n — w users to generate their random
masks. Therefore, the ciphertexts of the remaining users will still look indistinguishable from random

37
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to the aggregator. All the aggregator can learn is the sum of the inputs of the remaining users, but not
their individual inputs.

6.1.3. The mPVAS scheme is Aggregator Oblivious

In order to prove the AO property of the mPVAS scheme, we adopt a more formal approach based
on a security game. In short, we show that if a probabilistic polynomial-time adversary has a non-
negligible advantage of breaking the AO property of our scheme, then it also has a non-negligible
advantage of breaking the AO property of the Shi et al. [79] scheme, which is proven under the Deci-
sional Diffie-Hellman assumption. The proof of this property follows an indistinguishability-based game
and it provides an adversary with access to the following oracles.

. OSetup(l’\): performs the setup of the mPVAS scheme using the given security parameter A and
replies with the public parameters pp and the verification key vk. The secret values of each user
([s]+, sk;) are kept secret.

* Ocompromise! (i € U): when queried on a user id u;, the oracle replies with the secret of information
of user u;: ([s];, ski:).
* Osign(u; € U, t,2;4): givenaninput z; , of user ; in round ¢, the oracle replies with (a}’t, {oi’tj }ujeu;; , a?’t, ch),
where each afyt, 1 <1 < 3is a partial signature, and o, ; is the final signature.
* Ochallenge (X, X+ ): given two sets of input values X, X\ of size |X/.| = n,suchthat}> .. af,. =
D, eU x} ., the oracle randomly flips a coin b <—s {0, 1} and, for set XL, it returns all the corre-
sponding partial and final signatures of its inputs.

AO security game
The AO security game is depicted below and based on the game introduced in [79].

1. Setup. The adversary A queries the Osep(1*) oNnce, which returns the public parameters and
verification key.

2. Learning l. A can adaptively make the following type of queries.

Compromise. A specifies a uid u; € U and queries the Ogompromiset (i) Oracle, which returns
the secret information of user u;.

Sign. A can ask for the two types of partial signature, and the final signature any users u; € U
by querying the oracles Osigp.

Verify. A is allowed to test whether a sum matches an aggregate signature by using the
verification key vk obtained during the setup phase.

3. Challenge. Only performed once during the game. A chooses a set of users U* C U, with
|U*| > 2, that were not compromised in the learning phase and an aggregation round ¢* for
which no sign queries were made in the learning phase. A also chooses two distinct sets of
inputs of users u; € U* for round t*, X2 = {2, }u,ev- and XL = {z,.}u,cu-. We require
that >°, cp- 20, = > u,eu- Tise» otherwise A can trivially guess which set of inputs was cho-
sen by the challenger. A sends (U*,t*, X2, XL) to C. C flips a coin b+<+s{0,1} and returns
({ﬁ}}meUn{{U,?;;j}ujgu; }uiey*,{aii}uiem, {O'Zt*}uie[]*) to A. A is allowed to perform more
verification tests on the aggregate signatures received by C during the challenge phase.

4. Learning Il. After the Challenge phase, A can continue to make Learning queries, as long as the
aggregation round ¢ # ¢* and the compromised users u; ¢ U*.

5. Guess. A outputs a guess b* € {0, 1} to indicate which set of inputs was chosen by the challenger.
A wins if b* = b.

We can now define the AO property. We follow the definitions seen in [54, 53].

Definition 1 (Aggregator Oblivious) Let Pr[.A%°] denote the probability that aggregator A outputs
b* = bin the AO game. A data aggregation protocol is said to be Aggregator Oblivious if, any polyno-
mially bounded A has negligible advantage Pr[.A*°] < i + negl(\) of winning the AO game.

In order to prove the security of the mPVAS scheme, we will also introduce the following hard
problems, following the definitions of [49].
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Definition 2 (Discrete Logarithm Problem (DLP)) The discrete logarithm problem in a cyclic group
G of order q and with generator g is to compute a given (g, g*) with a € Z,. We say that the DLP is hard
relative to some cyclic group G generated with security parameter X if, for all probabilistic polynomial-
time algorithms A, there exists a negligible function negl such that Pr[A(G, g, g*) — a] < negl()).

Definition 3 (Decisional Diffie-Hellman (DDH) problem) Given (G, g, g%, ¢°, h), where G is a cyclic
group of order g with generator g € G, a,b <sZ, are uniformly sampled, and h € G, the DDH problem
is to decide whether h = g® or h = g¢, for a uniformly sampled ¢ € Z,. We say that the DDH problem
is hard relative to some cyclic group G with security parameter ) if, for all probabilistic polynomial-time
algorithms A, there is a negligible function negl such that

|Pr[A(G,q,9,9% ¢".9°) = 1] —=Pr[A(G,q, 9,9 9", 9*°) = 1]| < negl()), (6.1)
where q is the order of G, g € G is a generator, a,b, c € Z, are uniformly sampled.

Definition 4 (Computational Diffie-Hellman (CDH) problem) Given (G, g, g%, g*), where G is a cyclic
group of order q with generator g, and a,b € Z, are uniformly sampled, the CDH problem is to compute
h = g®®. We say that the CDH is hard relative to some cyclic group G generated with security parameter
A if, for all probabilistic polynomial-time algorithms A, there exists a negligible function negl such that
PrlA(G, q,9,9% ¢°) — g**] < negl()).

The next problem definition comes from [9].

Definition 5 (Co-Computational Diffie-Hellman (Co-CDH) problem) Given (G1,G2,Gr,q,¢e,91,92,95)
where G1, G are cyclic groups of prime order q with generators g1 € Gy, g, € Go, e is a bilinear map
e: Gy x Gy = Gr, and a € Z, is uniformly sampled. The Co-CDH problem is to compute g € G.
We say that the Co-CDH problem is hard relative to some cyclic groups G1, Gy generated with security
parameter X if, for all probabilistic polynomial-time algorithms A, there exists a negligible function neg|
such that PrlA(G1, Gs, Gy, q, €, g1, g2, 95) — g§] < negl()).

For each of the problems defined above we can define a corresponding assumption stating that there
exist groups in which the problem is considered hard. The security of the mPVAS scheme relies on the
following hardness assumption. We will follow the definition of [5].

Definition 6 (Symmetric External Diffie-Hellman (SXDH) assumption) The SXDH assumption states
that there exist cyclic groups G1, G+, G, generated with security parameter \, and an efficiently com-
putable bilinear map e : G; x Go — G such that DLP, CDH, Co-CDH, and DDH are all hard in both
G; and Ga.

Given the above definitions, we can now show that the scheme guarantees the AO property by proving
the following theorem.

Theorem 2 The mPVAS scheme is Aggregator Oblivious in the random oracle model under the SXDH
assumption in Gy and Gs.

Proof Let us assume an adversary A that can win the AO game with a non-negligible advantage.
We will show how a polynomial time algorithm 55 can break the AO scheme of [79], henceforth re-
ferred to as PPATS (Privacy-Preserving Aggregation of Time-Series data), which is provably secure
under the DDH assumption, by using .4 as a subroutine. A summary of the scheme is also pro-
vided in Section 3.1. We will refer to the oracles provided by the PPATS scheme, respectively, as

PPATS ()PPATS ~PPATS PPATS PPATS i PPATS i
Osetup + Pencrypt: Ocompromise: Ochallenge: Osetup returns the public parameters. Og,c returns the ci-

phertext ¢; ; of a given input z; ; in round ¢ using the PPATS scheme. OEF® . returns the secret

encryption key sk, of a specified user u; € U. Finally, OChalonge: ONly called once during the game,
randomly flips a coin b <—s {0, 1} and, similarly to the challenge phase described above, encrypts one
of the two plaintext sets chosen by the adversary X% = {x; i+ }u,cv--

We follow the AO security game and show how B reacts to the queries of A.
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1. Setup. When A queries the Osep(1*) oracle, B queries OSPATS(1%). The latter returns the

Setup

public parameters ppppars = (H,G1, g1,p). B also queries the OF/TS - (0), which returns the

secret key of the aggregator skq = — >, skz B will additionally choose the remaining public
parameters of the mPVAS scheme pp = (H, Gy, Gs, G, g1, 92, ¢, k). Finally, B also chooses the
secret keys (s, {sk; }u,cu), creates n secret shares [s]; using (k + 1,n)—Shamir Secret Sharing,
and creates the verification key as follows:

’

vk = ((93) 7", 93) = ((g3)=" " g3) (62)

Then, B returns the public parameters pp = (H, G1, G2, Gr, g1, g2, €), and the verification key vk
to A.

2. Learning.

(a) Compromise. When A queries the Ocompromiset (i € U) oracle, B will, in turn, query
OFATS mise(ti € 1) and return the corresponding secret key sk; of user u;. Additionally,

the secret share [s]; is also sent to A.
(b) Sign. When A calls Osign(u; € U, t,2;,), B queries ogﬁ@;ﬁt(ui € U,t,z;,) to obtain ¢FPATS =

H(t)s’“;gfi’f. B then computes:

1
7
25 _ (-1 \s]5 i-
Y= (ai’t) 7, foru; € Uy;
3 _ 2,5.
it — Hujeuz Oit>

oir = (e 027 ) ™ - (00) ™ = (HO™ g7

Notice how each partial signature and the final signature o, ; are constructed from the ci-
phertext output by the encryption algorithm of PPATS but perfectly simulate a partial or final
signature of the mPVAS scheme. Finally, B returns (a}yt, {U?,}j}ujeu',p%t) to A.

(c) Verify. A can test the correctness of an aggregate sum using the verification key vk obtained
during the setup according to Equation 4.8.

3. Challenge.

(a) A chooses a set of uncompromised users U* C U, with |[U*| > 2 and an aggregation round ¢*
for which no sign queries were made in the learning phase. Then, A also chooses two sets of
ciphertexts X{. = {9, }u,cv- and X} = {z}  }u,cv- suchthat 3o (ool =370, e a4

When A calls the Ochaiienge (X;:, X+ ) oracle, B queries OEEQ,T;QE(XP* ,XL). The oracle flips

a coin b+<s{0,1} and returns the encrypted ciphertexts of the v set {cf"fATSb}uieU*. B
computes the partial and final signatures using the Og;yn oracle, returning

b b b
(T Yuveves Ho? e b, eug usevs {07 Yusevs {0 Yuser- )
to A, In particular, the final signature is:
’ b s

0} = <H(t*)5’“igf“*) , foru; e U*. (6.3)
Notice how aﬁt*, and all partial signatures are computed from the ciphertexts output by the
encryption algorithm of the PPATS scheme and perfectly simulate the ciphertexts, partial
and final signatures of the mPVAS scheme. The aggregation of all such final signatures is

also valid and, thus, correctly verify using the verification key vk, as shown below:

S * S , s *wl? £
ot = JI ober = (H(E)) 5o ™ (g)meus e (6.4)
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If A has a non-negligible advantage e of guessing the correct bit b* in the AO game of the mPVAS
scheme, then B can also win the AO game of the PPATS scheme with the same non-negligible ad-
vantage e by guessing the same bit b*. This would contradict the DDH assumption in G, because the
security of the PPATS scheme relies on this assumption. Additionally, if the DDH does not hold in G,
then the SXDH assumption does not hold either since it requires that the DDH problem be hard in G;.
Therefore, the mPVAS scheme must be AO in the random oracle model under the SXDH assumption.

6.1.4. Aggregator Obliviousness of the mPVAS+ extension

The mPVAS+ extension improves the communication overhead of the mPVAS scheme by grouping
users randomly into small-size groups in which distinct secret-sharing schemes are employed with a
lower threshold than the one used in mPVAS.

Theorem 3 The mPVAS+ extension does not affect the AO property of the PPDA and mPVAS schemes.

Proof The mPVAS+ extension does not affect the execution of the PPDA scheme which, thus, re-
mains Aggregator Oblivious as proven in Theorem 1.

The mPVAS+ extension does, however, change the behavior of the base mPVAS scheme. Users
are grouped into groups of size ¢ < k and the secret exponent s is shared among members of each
group using (¢, c¢) secret sharing. It is, thus, possible for ¢ malicious users to end up in the same group.
When that happens, they can collectively reconstruct s and share it with the aggregator, thus allowing
it to tamper with the signatures of honest users. However, note that even with knowledge of s, the
aggregator still cannot learn the private values of individual users because they are also blinded by
either some randomness r; ;, randomly sampled by the users, or by the secret key sk;. When s is
known by the aggregator, the mPVAS scheme directly reduces to the PPATS scheme of [79], which is
Aggregator Oblivious.

6.1.5. Aggregator Obliviousness of the mPVAS-IV extension
We now show why the mPVAS-IV extension is still Aggregator Oblivious despite the additional knowl-
edge provided to the aggregator.

Theorem 4 The mPVAS-IV extension maintains the Aggregator Oblivious property.

Proof The additional information received by the aggregator does not yield any advantage to breaking
the AO property. In fact, the secret shares the aggregator receives in the set SS cannot be efficiently
extracted due to the DLP problem being hard in G;. The commitments contained in the set SK are
hiding, thus the aggregator cannot extract the signing keys either. A

Furthermore, as with the mPVAS scheme, all partial signatures 01-17,5,07;27’5, o}, are all blinded with a
random exponent r; , chosen by the user, which makes extracting xz; ; from these partial signatures
computationally hard.

The value shown in Equation 5.7, namely e (H(t), g2 e (gl,gg)“:"vt, is hiding under the random
oracle model, hence the private value x,, , cannot be extracted, either.

Finally, all the zero-knowledge proofs used in the extension, namely ZKPNeqEq, ZKPEq, and the
bulletproof do not leak any information about the private witness because of their zero-knowledge
property. As such, the aggregator cannot learn the private value of honest users and, thus, the mPVAS-
IV scheme remains Aggregator Oblivious.

)sk

6.2. Unforgeability proofs

In this section, we provide evidence of the unforgeability of the aggregate signature schemes presented
in this work. In order to do so, we adopt the concept of Aggregate Unforgeability (AU), which was first
formalized in [53, 54, 27] and denotes the notion that in round ¢, the aggregator cannot produce a valid
proof of correctness o, for a sum that was not computed from inputs submitted by the registered users.
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6.2.1. Types of forgeries

We say that an adversary A successfully forges an aggregate signature o, for some round t if it outputs
the tuple (sum,, o;) such that Verify(¢, vk, sum;,0;) = 1 and sum; # Z?:l x;¢. In other words, A can
provide a valid aggregate signature that successfully authenticates an incorrect sum. In line with the
works of [5, 54, 53, 27, 84], we distinguish between two types of forgeries:

1. Type-l, when an adversary A forges an aggregate signature for a round ¢* in which A did not see
any signatures from the users. This implies forgeries for future rounds of the protocol.

2. Type-ll, when an adversary A forges an aggregate signature for a round ¢* in which A saw all
signatures from the users. This implies forgeries for present or past rounds of the protocol.

6.2.2. Aggregate Unforgeability of the mPVAS scheme
In this section, we show that it is computationally infeasible for the aggregator to produce either Type-I
or Type-ll forgeries in the mPVAS scheme.

Theorem 5 The mPVAS scheme is Aggregate Unforgeable against Type-I forgeries.

Proof A Type-l forgery occurs when the aggregator manages to output a valid aggregate signature o
in a round ¢ in which it did not receive any signatures from the users. Thus, the aggregator can only use
knowledge from previous rounds or knowledge obtained by colluding with users. First, we note how sig-
natures from different rounds are incompatible with each other. Since we assume a cryptographically-
secure hash function H : {0,1}* — G, it means that, under the random oracle model, the output
of such a hash function can be considered random. As such, in each round ¢, each signature has a
different random factor H(t¢). Even assuming the aggregator chooses the round identifier ¢, because
of the collision resistance property of H, it has a negligible probability of finding two different round
identifiers ¢, ¢’ such that H(t) = H(t’). Similarly, because of the second pre-image resistance property
of H, given ¢, the aggregator has negligible probability of finding another ¢’ such that H(¢t) = H(¢'). It
follows that the aggregator cannot reuse signatures from previous rounds. The only other option left
for the aggregator is to construct new signatures itself. However, in order to do so, all secret signing
keys sk; are required but, assuming colluding users, the aggregator has only access to at most k of
them. The aggregator also needs the secret exponent s to compute a valid signature, but it has only
access to at most k secret shares of s, which are not enough to reconstruct s.

Theorem 6 The mPVAS scheme is Aggregate Unforgeable against Type-Il forgeries.

Proof There are three pieces of information that can allow the aggregator to successfully forge an
aggregate signature in a round in which it received all signatures from the users: the secret exponent
s, the factor g5, or, when k > 1, the factor H(t)*.

The exponent s is secret-shared by all users using (k + 1,n)-Shamir Secret Sharing. Since we
assume at most & malicious users who collude with each other and k shares leak no information about
the underlying secret s, then no dishonest party can directly learn s. Additionally, if (H(t)g1)® € G,
is known, recovering s is considered computationally infeasible because DLP is assumed to be hard
in G,. The same argument applies to the value g3, which is part of the verification key and known
by everyone. Note that, while the aggregator knows g3, since the Co-CDH problem is assumed to be
hard in G, and G, obtaining ¢7 is still considered hard. In a malicious setting where users can behave
arbitrarily, sending malformed signatures may allow them to gain additional information that will allow
them to break the AU property. Individual signatures cannot be tampered with without the knowledge
of s, or g;. Additionally, when k > 1, H(¢)*® can also be used to learn g; by letting two users collaborate
with each other. By sending a partial signature of the form o}, = (H(t)%¢})¢, where either a = 0 or
b = 0, a user could learn, respectively, H(t)* or g7. H(t) can be used to derive g; from the signature
of another malicious user. With ¢, a malicious aggregator can tamper with the aggregate signature
and publish an authenticated aggregate of its choosing. However, even when malicious users deviate
from the protocol, they cannot learn these two values. When a user u; submits a partial signature
o, = (H(t)**ig7"*)"t, u; is required to prove in zero-knowledge that sk; - r;; # 0 and x; ;- r; 4 # 0. If
u; is honest, then the % proofs will be correctly verified because the signature will be well-formed. If u;
is malicious, then at least one of the k verifiers, say u;, must be honest. This means that «; will abort
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the protocol and report u; if ZKPNeqgZero(c;,) = L, meaning o}, is malformed. Hence, u; can only
learn (H(t)g1)®, which is not enough to create forgeries.

6.2.3. Aggregate Unforgeability of the mPVAS+ scheme
The mPVAS+ scheme can be thought of as multiple instances of the regular mPVAS scheme running
on multiple groups of users but with different instances of Shamir Secret Sharing used to generate the
secret shares of s. Thus, as long as each group contains at least one honest user, the AU property still
holds following the same logic presented in the previous section for the mPVAS scheme.

However, we restate that the mPVAS+ only provides AU with k& malicious users only if we assume
non-adaptive corruptions. If this is not the case, the security of the scheme is downgraded to that of
an mPVAS instance with k = ¢ — 1.

6.2.4. Aggregate Unforgeability of the mPVAS-IV extension

Despite the aggregator being trusted to detect users who attempt to disrupt the protocol and being
trusted not to disrupt the execution of the protocol, the aggregator is still considered malicious with re-
spect to the unforgeability property of the mPVAS-IV extension. This extension provides the aggregator
with additional knowledge that is not available in the main scheme. As such, in this section, we provide
additional arguments to show why the AU property is still maintained in the mPVAS-IV extension.

Theorem 7 The mPVAS-IV scheme is Aggregate Unforgeable against Type-I forgeries.

Proof The first new piece of information that the aggregator has in the mPVAS-IV extension is the set
5SS = {gJ™,...,gI™}. Since DLP is assumed to be intractable in G, the aggregator has negligible

probability of obtaining the secret share [s]|; of a user u; from 92[?“. The aggregator is also handed

g§ and, using the same argument, it is easy to see that recovering s from it is also hard. Finally, the
aggregator possesses SK = {h} ;kl,...,h}"gST’“"}, but, because of the perfect hiding property of
Pedersen commitments, the aggregator cannot learn any information about the signing key sk; from
its corresponding commitment. Hence, the additional information that is handed to the aggregator in
the mPVAS-IV extension gives the aggregator no advantage of learning the necessary information to
create Type-| forgeries.

Theorem 8 The mPVAS-IV scheme is Aggregate Unforgeable against Type-Il forgeries.

Proof There is no additional piece of information handed to the aggregator in the mPVAS-IV extension
that could allow it to create Type-Il forgeries. Intuitively, this is because all of the additional values are
members of either G, or Gr, but the signatures are elements of G;. As such, there is no additional
information that could be used by the aggregator to tamper with the signatures in G,, assuming the
SXDH assumption holds in the chosen pairing group.

6.3. Completeness, soundness, and zero-knowledge of the Sigma

protocols

In this section, we prove completeness, soundness, and honest-verifier zero-knowledge for each of the
Sigma protocols shown in Figure 2.2 and Figure 2.3.

6.3.1. Proofs for the ZKP of equality between commitments (ZKPEq)
Completeness This property directly follows from inspection of the protocol in Figure 2.2. The first
equation that the verifier has to check holds because:

gy hiE = g TR = gt TR = S°. (6.5)
Similarly, the second equation also holds:

g3y = gy HIChTEC = gEe g R hYY = TCts, (6.6)
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(Special) Soundness This property is proved by showing that given two accepting conversations
between a prover and a verifier, obtained with different challenges, it is possible to extract a witness
that satisfies the statement to be proven. For the ZKPEq protocol, given two accepting conversations
(t1,t2,¢, 81, 82, 83) and (t1,ta,c, 8}, s5, s4), with ¢ # ¢/. Then,

gilhi2 = Sctlv g§1h§3 = Tct27 gilh’i2 = SC/tlv gglh’;d = TC/tQ

o/ s ! ’ Y / o/ ’
51—587782—S c—c 51—5877583—S c—c
=g, ‘hy * =S8 and g, 'hy =T (6.7)
s1—¢| sa—sh sy—si  sg—sh

:>S = glc—c/ hlc—c/ and T _ gQC_CI hQ(_ir,

We can extract the witness (z,y, z) by letting = = s1-5) Y= 2-% and » = 8%

c—c'? c—c c—c’ °

(Special) Honest-verifier zero-knowledge Given an arbitrary challenge ¢ € Z,, the real-world con-

versation can be simulated by choosing random 77,5, 75 <—s Z3, and setting t; = g;ll hIQS*C and t, =
gsth3?T—¢. The distribution of the simulated messages is the same as that of those sent in the real
protocol. As such, an honest verifier cannot learn anything more from engaging in the protocol than it
could already learn on its own.

6.3.2. Proofs for the ZKP of inequality to zero (ZKPNegZero)

Completeness From the protocol in Figure 2.3, since x # 0, then 2 must have an inverse. Thus, we
can rewrite S as:

S =h%gY
=8% = hg* (6.8)
=h=S8%g %

Similarly, since y # 0, we can write g = SvhTY. Then, we have:
Shgh = §Uts g% = §¥gU(S¥ g ¥ )¢ = ah®, (6.9)
and L,
Slzpr2 = Gy pE=% = SYRA(Svh ™ v)¢ = bg®. (6.10)
(Special) Soundness Given accepting conversations (a, b, ¢, 71,11, 72,12) and (a, b, ¢/, 1,11, 5, 15), with
¢ # ¢, we have:
Sllgrl _ ah(:?Sl/lgr; _ ahc/
=Shhgn=r = pe=e (6.11)

¢! r1i—r]

£t—c_ = _
=S =hhlg Bl

’
c—c!  _T2-TH

Using the same method, we also get S = h'2~"2g -2 Assuming [; # I} and [ # I}, otherwise we
would have divisions by zero, the witness (x, y) can be obtained with:

_c—c
L
ro — 14
T

T

(6.12)

(Special) Honest-verifier zero-knowledge Given an arbitrary challenge ¢ € Z,, the real-world con-
versation can be simulated by choosing random 1,71, 5,5 +$Z,, and setting a « Shgrih—c and
b+ Sléh’“ég—c. The distribution of the simulated messages is the same as that of those sent in the real
protocol. As such, an honest verifier cannot learn anything more from engaging in the protocol than it
could already learn on its own.



Performance evaluation

In this chapter, we analyze the theoretical computation and communication complexity of our protocols.
We then continue to evaluate the practical running time of each protocol for different sets of parameters.

7.1. Computation complexity

In this section, we analyze the theoretical computation complexity for each of our protocols. Each
protocol can be logically split into several operations that act as a unit. For each such operation, we
calculate the total number of multiplications, multiplicative inverses, exponentiations, and hashes re-
quired to perform it. Since we work with bilinear maps, we also divide the algebraic operations based on
the group in which they are executed because, in practice, they may perform differently in each group.
The computation complexity of the zero-knowledge proofs and secret share reconstruction protocols
are analyzed separately and then treated as a unit for simplicity.

7.1.1. Zero-knowledge proofs and secret sharing
We start the analysis of our protocols by first summarizing the complexities of the zero-knowledge
proofs used in our schemes, which are then treated as a unit throughout the rest of this chapter.

In Table 7.1, we summarize the number of algebraic operations required to generate a zero-knowledge
proof of inequality to zero, as well as to verify one. These are derived by direct inspection of the protocol
in Figure 2.3. We denote this unit of computation by ZKPNeqgZero.

Table 7.1: Summary of the computation complexity of the zero-knowledge proof of inequality to zero (ZKPNegZero).

Operation Mul. Inv. Exp. | Hash
Generation | 2:G1,2:Z, | 4:Zy, | 4:Gy | 1:7Z,
Verification 4:Gy 0 6:Gy | 1:Z,

In Table 7.2, we summarize the number of operations required by the zero-knowledge proof of
commitment equality presented in Figure 2.2. We implicitly use the Fiat-Shamir heuristic to make the
proof non-interactive, hence the presence of the hashes in the analysis. This unit of computation is
denoted by ZKPEgq.

Table 7.2: Summary of the computation complexity of the zero-knowledge proof of equality between commitments(ZKPEq).
Note, G/ and G/, do not necessarily correspond to the pairing groups G; and G2. They just indicate two possibly distinct groups
of the same order. In our protocol, we perform one proof with G| = G, = G, another with G| = G}, = G1, and one with
G| = G1,G) = Gr.

Operation Mul. Exp. Hash
Generation | 1:G},1:G5,3:Z, | 2:G},2: G, | 1:Z,
Verification 2:GY,2: G 3:G1,3:G4 | 1:7Z,

45
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In Table 7.3, instead, we summarize the number of operations that every user must perform in order
to compute a partially-reconstructed share of s. We denote this unit of computation as SSS.

Table 7.3: Summary of the number of operations required to reconstruct a share. It requires k — 1 multiplications and k inversions
to compute the Lagrange coefficient of a signing set. Finally, the reconstructed share can be computed by multiplying the
coefficient with the secret share.

Operation Mul. Inv.
Share construction | k:Z, | k:Z,

The computation complexity of bulletproofs is much more complex, thus we refer the reader to the
original paper for more details [10].

7.1.2. PPDA
During the setup phase, every pair of users exchanges random seeds using the Diffie-Hellman key
agreement protocol. For each user, this costs n exponentiations in G and n — 1 hashes.

During an aggregation round, the PPDA scheme only requires that each user generate n—1 random
numbers using a seeded PRNG and add these together with the private datum they want to hide, for a
total of »n additions in Z,. The aggregator, on the other hand, needs to add n — 1 ciphertexts together
in order to find the sum.

7.1.3. mPVAS and mPVAS+
We now proceed to analyze the theoretical computation complexity for the users, the aggregator, and
the verifier.

Dealer During the setup phase, which is only performed once, the dealer has to draw one random
number s s Z, and perform k exponentiations in G, to generate the verification key vk. Finally, the
dealer has to generate n secret shares of s using (¢,n)-Shamir secret sharing; more details can be
found here [78]. In the case of the mPVAS+ extension, the dealer still needs to generate n secret
shares of s, but using a different instance of (¢, ¢) secret sharing for each group.

Users In the setup phase, each user only needs to draw a random integer and compute one expo-
nentiation, which is a negligible number of operations compared to the rest of the protocol.

During the signing phase, users interact with each other in order to construct valid signatures. We
assume perfect load balancing since we can allow users to stop replying to new signing requests after
the expected number of received requests has already been reached. With perfect load balancing,
each user sends its partial signature o}, to the next & users, along with a zero-knowledge proof of
inequality to zero of the exponents. These users first check any received ZKPNeqZero proof to ensure
the partial signatures are well formed, then they add their secret share in the exponent, creating % partial
signatures afj, which are sent to the aggregator. The aggregator then aggregates these and sends
the partially aggregated signature Uz?’,t back to the original user u;. Finally, u; removes the randomness
r;+ from the partial signature and adds its own secret share to finally construct its final signature. All
of these operations are performed either in G, or in Z,, and a summary of the exact number and type
of operations is shown in Table 7.4. We prioritize multiplication operations, which are cheaper, and we
try to reduce the number of exponentiations and pairing operations as much as possible.

Table 7.4: Summary of the computation complexity of signing operations for a single user in a single round of the mPVAS
scheme.

Operation Mul. Inv. Exp. | Hash | Gen. ZKPNegZero | Ver. ZKPNeqgZero | SSS
Create partial sig. | 1:G1,2:Z, 0 2: Gy 1 1 0 0
Add secret share 0 0 k:Gq 0 0 k k
Compute final sig. 1:Gy 1:Zy | 2:Gy 0 0 0 1

Signing in the mPVAS+ scheme requires a smaller number of messages to be exchanged between
the users. Users are assigned to groups of size ¢ < k and, as such, each user communicates with ¢ — 1
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other users in its group. In practice, ¢ can be made much smaller than k. This leads to a decrease
in the number of exponentiations and verifications of ZKPNeqgZero, as well as the number of shares

computed.

Table 7.5: Summary of the computation complexity of signing operations for a single user in the mPVAS+ scheme.

Operation Mul. Inv. Exp. Hash | Gen. ZKPNeqgZero | Ver. ZKPNeqZero | SSS
Create partial sig. | 1:G1,2:7Z, 0 2:Gy 1 1 0 0
Add secret share 0 0 c—1:Gy 0 0 c—1 c—1
Compute final sig. 1: G, 1:7Zy, 2:Gy 0 0 0 1

Aggregator The aggregator is involved in two steps of the computation of each signature. First, for
each user u;, the aggregator sums £ secret shares added by users in u;’'s signing set by multiplying
the partial signatures af”t’ together and exploiting their additive homomorphic property. Finally, the ag-
gregator also aggregates all signatures together to get the final aggregate signature over all submitted
values. In the mPVAS+ scheme, the aggregator needs to aggregate fewer partial signatures for each
user because of the smaller group size. All of these operations consist of multiplications in G, and are
summarized in Table 7.6.

Table 7.6: Summary of the computation complexity for the aggregator in the mPVAS and mPVAS+ schemes.

(a) mPVAS (b) MPVAS+
Operation Mul. Operation Mul.
Sum secret shares n(k—1): Gy Sum secret shares n(c—2): Gy
Aggregate signatures n—1:Gy Aggregate signatures n—1:G;

Verifier The computation overhead for the verifier is very low. In fact, verification of the result of the
aggregation can be done in constant time, regardless of the number of users in the system. The exact
computation overhead is shown in Table 7.7. Verification in the mPVAS+ scheme does not differ from
the main mPVAS scheme and has the same complexity.

Table 7.7: Summary of the computation complexity for the verifier in the mPVAS and mPVAS+ schemes.

Mul.
Gr

Operation
Verification | 1:

Exp. | Pair. | Hash
1:Gy 3 1

7.1.4. mPVAS-IV

We analyze the worst-case scenario, when the partial signature of every user is tampered with and
when there is at least one malicious user submitting an invalid signature. We analyze the additional
computation complexity of the input validation operations for users and the aggregator.

Dealer The dealer has to compute 2n additional exponentiations in G, n multiplications in Go, n — 1
additional multiplications in G, and n inverse in Z, in order to generate the sets SS and SK. The
verification key also requires an additional exponentiation in G2 and an inverse in Z, to be computed.

User The additional computation overhead for each user is the same as that of the verifier, as shown
in Table 7.7, since verifying the validity of a partial signature amounts to checking Equation 4.8, but
with different values. Moreover, each user generates 2 ZKPEq proofs and 1 Bulletproof to prove their
final signature is well formed.

Aggregator The aggregator, on the other hand, has to verify the partial signatures Ui’tj for every user
u; € UL, and repeat the process for every user in the system. This leads to an overall computation
complexity of O(kn). The exact number and types of operations are shown in Table 7.8. The aggregator
must also decrypt the sum embedded in the signature by performing the verification procedure on all
possible messages until the correct one is found. This involves O(2!) verifications, where [ is the bit
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length of the encrypted messages. It follows that I must be small enough to allow decryption to be run
in polynomial time. This is analyzed in Section 7.4.

Table 7.8: Summary of the (additional) computation complexity for the aggregator and the users in the mPVAS-IV scheme.

(a) Aggregator

Operation Mul. Inv. Exp. Pair. | Ver. ZKPEq | Ver. Bull. | SSS
Verifying all o’i’tj 0 kn:Zy, | kn:Go | kn+1 0 0 kn
Verifying all o; ; 0 0 0 n 2n n 0
(b) Users
Operation Mul. Exp. | Pair. | Hash | Gen. ZKPEq | Gen. Bull.
Generating proofs | 1:Gr | 1: Gy 3 1 2 1

7.1.5. Summary
In this section, we summarize the asymptotic computation complexity of our schemes.

Table 7.9 shows the asymptotic computation complexity of the PPDA scheme. The scheme is
very efficient since it requires O(n) additions for both the aggregator and the users, which are cheap
operations. The users are also required to compute O(n) exponentiations and hashes to generate the
shared seeds, but these operations are only performed once during the setup.

Table 7.9: Asymptotic computation complexity of the PPDA scheme.

Participant | Add. | Exp. | Hash
Dealer - - -
User O(n) | O(n) | O(n)
Aggregator | O(n) - -
Verifier - - -

In Table 7.10, we show the complexity for the mPVAS scheme. The user performs O(k) exponenti-
ations, share reconstructions, and proof verifications, while aggregator performs O(kn) multiplications,
which are less expensive than exponentiations and ZKP operations. As such, we expect the practical
running time to be slower for the users during an average aggregation round because they perform
more complex operations.

Table 7.10: Asymptotic computation complexity of the mPVAS scheme. For the mPVAS+ scheme, replace & with c.

Participant | Mul. Inv. | Exp. | Pair. | Hash | Gen. ZKPNegZero | Ver. ZKPNeqgZero | SSS
Dealer O(n) - o) - - - - -
User o) | 0(1) | Ok) - 0(1) 0(1) O(k) O(k)
Aggregator | O(kn) - - - - - - -
Verifier o) - o) | 0(1) | 01) - - -

In Table 7.11, instead, we show the asymptotic computation complexity for each participant in the
mPVAS-IV scheme. Intuitively, the performance of the aggregator is greatly reduced due to the in-
creased number of expensive operations, which are in the order of O(kn). For the users, the complexity
remains the same.
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Table 7.11: Asymptotic computation complexity of the mPVAS-IV scheme.

Participant | Mul. Inv. Exp. | Pair. | Hash | Gen. ZKPNeqgZero | Ver. ZKPNeqgZero

Dealer O(n) | O(n) | O(n) - - -

User o) o0(1) Ok) | O1) | 0(1) O(1) O(k)

Aggregator | O(kn) | O(kn) | O(kn) | O(n) - - O(n)

Verifier o) - o) | O1) | 0Q1) - -
(b)

Participant | Gen. ZKPEq | Ver. ZKPEq | Gen. Bull. | Ver. Bull. | SSS

Dealer - - - - -

User 0(1) - 0(1) - O(k)

Aggregator - O(n) - O(n) O(kn)

Verifier - - - - -

7.2. Communication complexity

In this section, we analyze the communication complexity of our protocols. We denote by |G| the bit
length of an element in G, which is dependent on the chosen elliptic curve for the pairing operations
and on its security parameter. In our experimental analysis, we used curves whose element sizes are
summarized in Table 7.13. In Table 7.12, we summarize the asymptotic communication complexities
of all schemes.

7.21. PPDA

During the setup phase, each user sends their Diffie-Hellman public key to the dealer, which relays it to
the other users. This results in n(n — 1) messages sent by the dealer and 1 sent by the users. During
an aggregation round, each user sends one message, namely their ciphertext, to the aggregator. The
aggregator does not send any messages in this protocol, besides publishing the resulting sum to the
verifiers.

7.2.2. mPVAS and mPVAS+
The size of a zero-knowledge proof of inequality to zero message requires approximately 2||G1 || +4||Z, ||
bits and we denote this amount by || ZKPNegZero ||.

Dealer During the setup phase, the dealer sends n secret shares of s, one for each user. These
shares are elements of Z, and, thus, the approximate size of the messages sent during the setup
phase is n||Z,|.

Users In the mPVAS and mPVAS+ schemes, all signing operations happen in G;. In the mPVAS
scheme, each user sends 1 partial signature o}, to its signing set, along with a zero-knowledge proof
of inequality to zero. Additionally, each user also replies to & signing requests from other users.
Finally, users send their final signature to the aggregator. As a result, in every round, each user
sends out approximately (2 + k)||G1|| + || ZKPNeqgZero || bits, without accounting for implementation-
specific metadata. In the mPVAS+ scheme, users reply to ¢ — 1 signing requests, instead, leading to
(1 + ¢)||G1|| + || ZKPNegZero || bits exchanged.

Aggregator In the mPVAS and mPVAS+ schemes, the aggregator relays messages from the users.
For each of the n users, the aggregator relays & partial signatures a}’t to their respective signing sets,
together with k& zero-knowledge proofs of inequality to zero. Finally, the aggregator also returns a
partial signature o7, to each user, for a total of (kn + n)||G+|| + kn|| ZKPNegZero || bits sent out by the
aggregator in the mPVAS scheme. Similarly, in the mPVAS+ scheme, the total bits the aggregator has
to send out in a round approximately amounts to (cn)||Gy|| + (¢ — 1)n|| ZKPNegZero ||, where c is the
group size.
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7.2.3. mPVAS-IV

We denote by || ZKPEq|| = |G| + |G, + 2||Z,| the approximate bit length of a zero-knowledge
proof of commitment equality and by || BP || the bit length of a 32-bit bulletproof. More specific details
on the sizes of bulletproofs can be found in the original paper [10]. In the following section, we only
analyze the communication complexity of the mPVAS-IV scheme in the case in which a malformed
final signature is sent to the aggregator, resulting in the failure of the verification procedure. The other
malicious behavior does not require additional messages to be exchanged by the participants.

Dealer In addition to the n||Z,| bits sent to send the secret shares to the respective users, the dealer
also sends additional information to the aggregator. The set SS consists of approximately n||G:|| bits,
while the set SK consists of n||G|| bits. Each user u; also receives a integer ||Z,|| from the dealer.

Users When a malicious user sends a malformed final signature, the verification of the aggregate
signature will fail. In order to detect which user sent out invalid data, the aggregator requires additional
information from each user. Specifically, each user u; needs to prove that their signature was signed
using the correct signing sk;, which can be done with a zero-knowledge proof of commitment equality.
Additionally, the aggregator wants to make sure the aggregate signature is decryptable, i.e. the sum
can be efficiently extracted from it. Thus, each user must prove the signed value is in a valid range,
such as [1,232). In order to do so, however, bulletproofs internally require an additional commitment
on the private value, which must be equal to that of the signature. Thus, a second proof of equality
between commitments must be produced by the users. Finally, each user must also generate and send
out a bulletproof to prove their private value is in the correct range. The total communication complexity
for a single user results in (2 + k)[|G || + || ZKPNeqZero || + 2|| ZKPEq || + || BP||.

Aggregator The aggregator does not have to send additional messages in the mPVAS-IV extension.
As such, the communication complexity remains the same as that of the mPVAS scheme.

7.2.4. Summary

In Table 7.12, we summarize the asymptotic communication complexity of all schemes. The dealer
has to share information with every user, which leads to a complexity of O(n) for all signature schemes.
Additionally, in the PPDA scheme, it needs to broadcast each user’s public key to every other user, for
a total of O(n?) messages. Users only communicate within their own signing set, for a complexity of
O(k), or O(c) in the mPVAS+ scheme. The aggregator needs to relay messages between each user
and their signing set, which leads to a complexity of O(kn) for the mPVAS and mPVAS-IV schemes,
and O(cn) for the mPVAS+ scheme. Verifiers do not actively participate in the protocol.

Table 7.12: Asymptotic communication complexities of all protocols.

Participant | PPDA | mPVAS | mPVAS+ | mPVAS-IV
Dealer O(n?) O(n) O(n) O(n)
Aggregator - O(kn) O(en) O(kn)
User o) O(k) O(e) O(k)
Verifier - - - -

7.3. Comparison with related schemes

We conclude the section with a quick comparison with other related schemes. We first note that similar
schemes such as [5, 54, 53, 63], work in a different system and adversarial model where there is little
to no interaction between the participants except for the initial setup. As such, the communication com-
plexities for these schemes is O(1) for both the aggregator and the users. The computation complexity
is O(1) for the users and O(n) for the aggregator. While this is better than any of our schemes, their ad-
versarial model is also weaker than the one adopted by us. As discussed in Chapter 3, these schemes
either assume honest behavior from the users, like [54, 5], or no collusions between the aggregator
and the users [63], or they rely on a semi-trusted party [63, 53]. Nonetheless, it is easy to notice that
the mPVAS scheme can also generalize all of these scenarios. The case in which all users behave
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honestly can be simulated by choosing k& = 0, thus leading to a non-interactive scheme with O(1) com-
munication complexity and a computation complexity nearly identical to that of the PUDA scheme [54].
Furthermore, the mPVAS scheme can also generalize the scheme presented in [53], which entrusts
a semi-trusted third party with the secret signing key, by choosing £ = 1. This scenario also leads to
constant communication complexity.

7.4. Experimental running time

In this section, we analyze the experimental running times of our protocols. We use the Charm frame-
work [1, 16] to develop a proof-of-concept implementation of our schemes. The framework is widely
used for the prototyping and benchmarking of cryptographic schemes, e.g. [3, 74]. For the mPVAS
and mPVAS+ schemes, the experiments are performed over the MNT224 elliptic curve. The MNT224
curve is pairing friendly, it allows for type-3 pairings, which are necessary for the SXDH assumption to
hold, and provides 112 bits of security [19, 86]. This is the most secure curve provided by the Charm
framework that is compatible with our schemes. While the current recommendation is to use curves
that provide 128 bits of security as a conservative choice, 112 bits is the minimum security level re-
quired by NIST for the US Federal Government [6]. For the mPVAS-IV extension, the experiments are
performed on the BN254 curve, instead. The reason for this choice is that it is the only pairing-friendly
curve provided by the Charm framework for which we were able to find an experimental implementa-
tion of bulletproofs [39]. Although at first glance, the BN254 curve appears to be more secure than the
MNT224 due to the larger prime field (254 bits as opposed to 224 bits), a recently published attack [50]
on elliptic curves dramatically reduced the security of several pairing-friendly curves, including BN254,
whose security level is downgraded from 128 to 100 bits [75]. For this reason, we stress this curve
should not be used in real-world implementations of the protocol. We only use it here to evaluate our
protocol, since the performance of this curve should be comparable to that of other curves offering 128
bits of security that do not suffer from the aforementioned attack.

The experiments were run on a 2018 MacBook Pro with a 2.20 GHz 6-core Intel Core i7 CPU with
16GB of RAM. The results show the total running time for the aggregator and for a single user, averaged
over 10 runs. The protocol was executed sequentially on a single core with no special optimizations.
Messages between users are assumed to be delivered instantaneously.

Table 7.13 shows the size of an element in each of the three types of groups, as well as Z,,, according
to [47] and also experimentally confirmed by us. The size of the elements is a parameter that influences
the performance of the various algebraic operations performed in each group.

Table 7.13: Sizes of the elements in each group on the MNT224 and BN254 curves.

Curve Gy Go Gr Zp
MNT224 | 56 bytes | 168 bytes | 168 bytes | 28 bytes
BN254 64 bytes | 128 bytes | 384 bytes | 32 bytes

7.4.1. PPDA running time

In this section, we briefly analyze the performance of the PPDA scheme. As can be seen in Figure 7.1,
the scheme performs very efficiently for both the users and the aggregator. This is expected since the
scheme is very simple and only involves generating n — 1 random numbers for each user, as well as
adding these numbers together. The aggregator only needs to add n ciphertexts up. Additions are very
cheap compared to the more expensive multiplications and pairings required in the other schemes. In
both cases, the running time increases linearly in the number of users participating in the protocol.

7.4.2. mPVAS running time
Here, we analyze the practical performance of the mPVAS scheme. Figure 7.2a shows the running
time for the aggregator. As stated before, all computations were performed on a single core of the test
machine. The results show that even in the worst tested case when the system has 1000 users and the
threshold % is set to withstand 30% of malicious users, the total running time is slightly over 1 second.
Additionally, the graph shows that when k& = 0 and the aggregator does not have to perform the sum
secret shares step for every user, the running time is close to zero.

For the users, the running time is slightly worse. While the asymptotic complexity for the users is
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Total running time for the aggregator (PPDA) Total running time for a single user (PPDA)
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Figure 7.1: Experimental running time for the PPDA scheme.

O(k), verifying k zero-knowledge proofs of inequality to zero represents a clear bottleneck for the users
in light of the hidden constants of the ZKP. Nonetheless, as can be seen from Figure 7.2b, the running
time is only around 2.50 seconds for a single user even in the extreme case when k = 300, i.e. 30% of
1000 users are malicious, and it gets progressively lower as k decreases.

Finally, Figure 7.2c shows the running time for the verifier. As expected, since the verifier only needs
to compute three pairings, regardless of the number of users, the running time is essentially constant.

Total running time for the aggregator (mPVAS) Total running time for a single user (MPVAS)
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Figure 7.2: Experimental running time for the mPVAS scheme for the aggregator, a single user, and a verifier.

7.4.3. mPVAS+ running time

Unlike the main mPVAS scheme, the mPVAS+ scheme ensures confidentiality and unforgeability only
against non-adaptive corruptions under probabilistic bounds. However, this translates to much faster
running times for both the users and the aggregator. Recall that the scheme works by randomly group-
ing users and using a different instance of Shamir Secret Sharing for each group. Users only need
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to communicate with other users belonging to the same group. As such, we only need to choose the
group size ¢ to be small enough so that the probability of ¢ malicious users ending up in the same
group is negligible. In practice, this means the group size ¢ can often be much smaller than &. In our
experiments, we only used 10%, 20%, 30% as the percentages of malicious users, as with 5% the ad-
vantage offered by the mPVAS+ extension is negligible for some scenarios. We ran a simulation over
100, 000 trials to select the appropriate group size ¢ for each of the three parameters and found that,
when 10% of users are malicious, a group size of ¢ = 7 is sufficient to ensure the probability of grouping
¢ malicious users together is negligible. Similarly, ¢ = 10 and ¢ = 13 were also found to be ideal when
the percentages of malicious users are 20% and 30%, respectively. The results of the simulations we
used to guide our decisions can be found in Appendix A.

Figure 7.3a shows the results of our experiments for the aggregator. As explained in the previous
section, the main bottleneck for the aggregator is the sum secret shares step, while the running time
required to aggregate the final signatures is usually negligible. However, since the mPVAS+ extension
sets fixed group sizes, it follows that even with 1000 users, 30% of which malicious, the aggregator only
needs to aggregate 13 — 1 = 12 partial signatures af_f for each user, instead of 300. This explains why
the running time is so low if compared to the main mPVAS scheme.

The same logic can be applied to the users. The main bottleneck for users is verifying the zero-
knowledge proofs of inequality to zero. However, the number of such proofs is also bounded by the
group size. Indeed, each user only needs to verify ¢ — 1 proofs. So, in the worst tested case, even with
300 malicious users, each user only needs to verify 13 — 1 = 12 proofs instead of 300. In Figure 7.3b
we can see the actual results of our experiments. The running time for each user is almost constant
for most practical scenarios, albeit we stress that the mPVAS+ extension is only secure against non-
adaptive corruptions.
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Figure 7.3: Experimental running time of the mPVAS+ scheme for the aggregator and a single user.

7.4.4. mPVAS-IV running time

The mPVAS-IV scheme deals with cases in which malicious users either submit malformed values
to be aggregated or tamper with those of other users. As such, the aggregator is required to perform
additional checks on the submitted signatures in order to ensure they are well-formed and, if not, identify
which users submitted incorrect values. Figure 7.4 shows the running times for a single user and the
aggregator for the case in which a malicious user sends back an incorrect signature oit. In Figure 7.4a,
we see the total running time for a single user, which is slightly higher than in the regular mPVAS scheme
because of the additional checks on the partial signatures and the generation of the required zero-
knowledge proofs. For the aggregator, the running time is much higher than in the mPVAS extension.
The reason for this increase is due to the additional exponentiations and pairings operations required
to check the validity of a partial signature, which must be repeated for every user in a signing set. As
such, the running time will increase proportionally with increasingly larger signing set sizes. We remark
that our implementation does not include any specific optimizations, such as parallelization, which can
in practice drastically reduce the running time for the aggregator.

Figure 7.5, instead, shows the case in which a malicious user submits a malformed final signature to the
aggregator. When this happens, the verification of the aggregate signature will fail. The aggregator can,
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Figure 7.4: Running time of the mPVAS-IV scheme for the aggregator and a single user. We evaluate the case in which a
malicious user tampers with the partial signature a}{t of another user.

then, detect which user submitted an invalid signature by performing several checks using bulletproofs
for range validation, zero-knowledge proofs of commitment equality to ensure the correct signing keys
were used, and the properties of bilinear maps to verify that the correct secret exponent s was used.
These checks must be performed on all n users and, of course, they linearly add up to the total running
for the aggregator. In fact, in Figure 7.5b, we can see that the running time for the aggregator is even
higher than in the case with one malformed partial signature and can reach up to 300 seconds on
our test machine. Generating the bulletproof requires roughly 100ms for each individual user while
verifying a single bulletproof takes 8ms for the aggregator. Despite the much larger running times
for the aggregator, we remark that the mPVAS-IV extension deals with very extreme cases that in a
normal execution of the protocol we would expect to encounter only a limited number of times before
all malicious users are kicked out and the protocol can continue to operate more smoothly.

Total running time for a single user (mPVAS-IV, generating the proofs) Total running time for the aggregator (mPVAS-1V, final signature checks)

200 400 600 800 1000 200 400 600 800 1000

Figure 7.5: Running time of the mPVAS-IV scheme for the aggregator and a single user. We evaluate the case in which a
malicious user submits a malformed final signature o; ; that causes the verification to fail.

7.5. Concluding remarks

From the evaluation presented in this chapter, we believe that the performance of the schemes pre-
sented in this work is practical for real-world applications. For the users, the practical running time does
not go beyond the 3.5-seconds mark even in the mPVAS-IV extension with 300 adaptive malicious users.
With non-adaptive malicious users, the running time for each user is firmly below 0.25 seconds. The
real-world performance of the protocol is heavily dependent on the parameter k. The lower k is, the
faster the protocol performs, and vice versa. The performance is even better for the aggregator running
the mPVAS and mPVAS+ schemes, while it degrades quickly with the mPVAS-IV scheme. In the latter
case, we remark that the performance degradation is to be expected only in a handful of aggregation
rounds because, once all malicious users have been kicked out, the remaining rounds of aggregation
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will perform more efficiently once again.

While we performed our experiments on a relatively powerful machine from 2018, we also note that
our implementation is a proof-of-concept lacking many optimizations. Additionally, despite most of the
expensive cryptographic operations being executed by compiled C code, the rest of our implementation
was written in Python, which is a slow, interpreted language. An implementation fully written in faster
languages such as C++ or Rust, would have yielded even faster running times.

We note that even in smart grids, it is often possible to develop low-budget smart meters that can
perform complex cryptographic operations [61]. This, coupled with the fact that meters only report their
measurements every few minutes and that manufacturers can act as trusted authorities, renders our
schemes suitable for smart grid deployments, although a low choice of k is recommended. Applications
like federated learning, medical data sharing, and others where dedicated servers can be used to
participate in data aggregation protocols are also suitable for our scheme.

As always, in security, there is often a trade-off between security and performance that must be
evaluated on a case-by-case basis. Fortunately, our protocols are parametrized and allow system
administrators to choose parameters that can strike their preferred balance between security and per-
formance.



Conclusion

In this conclusive chapter we provide a brief discussion of this research project, delineate possible
future lines of work, and provide some concluding thoughts.

8.1. Discussion

In this work, we presented a private data aggregation protocol that guarantees confidentiality, integrity,
and authenticity of the aggregate even in the presence of a malicious aggregator and a bounded number
k of malicious users. In other words, once users submit a private value for aggregation, nobody can
either learn what this value is nor can they change it. The scheme is publicly-verifiable in constant-time
by anyone holding the public verification key. The scheme does not rely on other semi-trusted party
during any aggregation round, but only on a trusted authority during the initial setup. The protocol
comprises two schemes that are executed sequentially. The first is an aggregate signature scheme in
which each user starts with a commitment-like partial signature that is "re-signed” by k other users and
the originating user itself using shares of a secret key s, which is generated during setup. When & + 1
such partial signatures are combined, each user obtains a new signature that is signed with s. As long
as no more than k£ malicious users are present in the system, no malicious user nor the aggregator
can directly learn s or any information that might allow them to tamper with the signatures of honest
users, thus guaranteeing the integrity and authenticity of the result. Each private value is hidden inside
a Pedersen commitment-like signature and only the final aggregate signature, obtained by combining
n user signatures, can actually be verified so as not to break the confidentiality property. The second
is a simple privacy-preserving data aggregation scheme based on zero-sum masks that are freshly
generated during each aggregation round using a seeded pseudo-random number generator. The
purpose of this scheme is to allow for faster decryption of the aggregate as well as for a large plaintext
space. The scheme uses random masks generated using the outputs from a secure PRNG and, as
long as at least two users behave honestly, no one can learn the private value of an individual honest
user.

We also provided an extension to our scheme that dramatically improves the communication com-
plexity of our scheme under probabilistic bounds at the expense of a weaker security model with non-
adaptive user corruptions. In other words, as long as the users that behave maliciously are fixed from
the beginning, then we can achieve the same properties of the original scheme but with fewer mes-
sages exchanged by the users. The extension works by randomly assigning each user to a group of
size ¢ < k and by splitting the common secret key s using different secret sharing instances for each
group. Thus, malicious users from different groups cannot collude with each other. However, the sig-
nature scheme is not unforgeable anymore if ¢ malicious users end up in the same group, but we can
make the probability of this happening arbitrarily small by choosing a larger c.

Finally, we also provided an extension to identify users that behave arbitrarily maliciously. These
include users that send invalid messages that cause the aggregation and verification to fail. This is
a desirable feature because the schemes from the related literature assume that users will send well-
formed messages, although this may not always be true. Schemes with public verifiability allow a verifier
to detect when the statistic is computed incorrectly, but cannot pinpoint the cause. It is beneficial to
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take steps to identify the cause thereof and to take action in order to avoid more failures in the future.

All of the schemes only rely on an aggregator and a set of users and do not require an additional
trusted or semi-trusted party during any aggregation round. A trusted party is only required once during
the setup phase.

We evaluated the security of our protocols and showed that they achieve the security properties
set forth in our research question, namely confidentiality, integrity, and authenticity. Additionally, we
evaluated the performance of our mPVAS protocol and found that its performance is acceptable for
several real-world applications since an aggregation round can be executed in a matter of seconds,
even without any optimization. The mPVAS-IV extension is significantly slower for the aggregator,
although it is meant to deal with extreme cases of malicious behavior, which are not to be expected in
every aggregation round and its performance can be greatly improved using parallelization. In general,
the performance of our protocols is entirely dependent on the chosen threshold &: the higher & is, the
worse the protocol performs, and vice versa. This means that a system administrator can choose k
according to the desired levels of security and performance.

Despite the many desirable properties, our protocols have also several downsides. The only sum-
marization function directly supported by our protocols is the sum, although other functions can also
be derived from it, such as the average. Other useful functions, such as finding the minimum or max-
imum value, or the standard deviation are also desirable statistics. Additionally, the protocols require
interaction from the users, which must be online during every aggregation round, and cannot withstand
any user dropout. As such, if a system is prone to users dropping out or being unable to be constantly
online, then our protocols would not be a suitable choice.

8.2. Future work

While the schemes introduced in this work achieve many desirable features, they also have several
constraints which make them unsuited for some applications. In this section, we provide a summary of
what we consider to be the most important drawbacks of our scheme that should be addressed in the
future.

Fault tolerance None of the schemes presented in this work are fault tolerant. This means that the
schemes cannot withstand any user suddenly dropping out of the system. Indeed, all users are required
to participate in the protocol in order to compute the aggregate and the corresponding verification
material. Fault tolerance is a desirable feature in many scenarios, such as participatory sensing, where
the network connection of one or more mobile devices could suddenly drop during an aggregation
round.

Better support for multi-dimensional data Data is often multi-dimensional in nature and in many
scenarios it would be beneficial to support multi-dimensional data by design. Our protocol can only
aggregate data across one dimension at a time and, as such, when aggregating multiple dimensions
the performance of the protocol will decrease linearly in the number of dimensions. There are already
private data aggregation schemes that allow for the efficient packing of multi-dimensional data into one
single value to keep the complexity low like [58].

Removing the need for a trusted setup The mPVAS and mPVAS+ extensions require a trusted
setup, where a trusted authority needs to intervene in order to help with the key generation and dis-
tribution. We note that this requirement is shared by many other schemes that, similarly, deal with
malicious participants [5, 53, 54]. While in principle this is only required once, it is not always practical
for all real-world applications. For smart grid deployments or for coordinated data sharing in healthcare,
one could expect that one or more reputable institutions could be trusted enough to perform this task.
However, in general, this is not always possible. As such, it is desirable to have a scheme that can
also deal with situations where a trusted authority is not available.

Additionally, we note that the mPVAS-IV extension requires a new trusted setup whenever a mali-
cious user is identified because the verification keys need to be updated to account for the removed
users. Thus, it would be convenient to have a procedure to rebootstrap the system without requiring
the intervention of a trusted authority. A fault-tolerant scheme could, in principle, help with this problem
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since the kicked-out users could be considered dropouts and, thus, ignored during aggregation and
verification.

Range validation One malicious behavior that our schemes cannot fully protect against is data poi-
soning, which occurs when one or more malicious users decide to submit incorrect data to either render
the aggregation useless or to skew it towards a specific value [48]. Note that this type of attack can
happen even if the aggregator is honest. Since we work in a privacy-preserving setting where the in-
dividual values cannot be directly inspected, the general strategy to mitigate these types of attacks is
to ensure that the submitted data is within a valid range. The specific range depends on the context.
For example, if we want to compute the average age of a set of patients, then it would be unrealistic to
expect someone to be 200 years old, thus we can limit the range to something like [0, 100]. Extending
our schemes with range validation would ensure that not only the aggregator nor any malicious user
cannot tamper with the values submitted by honest users but also that the values submitted by ma-
licious users are within a valid range, increasing the trust in the correctness of the aggregation. We
conclude by noting that the mPVAS-IV extension already uses bulletproofs to ensure that the range of
the submitted values is within a range that can allow the aggregator to decrypt the aggregate efficiently.
Thus, if we can trust the aggregator to also perform range validation honestly, then the scheme already
offers this feature. However, in this work, we do not make this assumption. As a result, a different party
or the users themselves must collaborate in order to ensure the correct range of all submitted values.

8.3. Concluding remarks

"Data is the new oil” that is fueling the Fourth Industrial Revolution. However, just like oil, unregulated
and uncontrolled use can lead to severe issues for individuals and society as a whole, especially when
privacy is at stake. Privacy-preserving data aggregation is a privacy-enhancing technology aimed
at protecting sensitive data during processing, but it is not a definitive solution. Many private data
aggregation schemes work in the honest-but-curious model and do not offer any protection against
internal parties that behave maliciously not only with respect to the confidentiality of the data but also
its integrity. Protocols that attempt to solve this problem only partially do so by defending against either
malicious aggregators or malicious users, but fail when both the aggregator and users are malicious
and may also collude with each other. The data aggregation protocol presented in this work aims at
solving this problem by not only ensuring the confidentiality of the input values but also the integrity and
authenticity of the aggregate even in the presence of a malicious aggregator and a subset of malicious
users that collaborate to tamper with the result of the aggregation. Ensuring not only confidentiality,
but also integrity and authenticity even in the presence of malicious adversaries helps to develop more
trust in the results of privacy-preserving schemes and make such schemes appealing to a wider range
of scenarios.
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MPVAS+ Group Probabilities

In this appendix, we collect some graphs showing the probabilities of obtaining a group where all users
are malicious for various group sizes, ranging from 2 to 16, and different percentages of malicious users,
0.05%,0.10%, 0.20%, 0.30%. Each graph shows the simulated probability distribution for six settings in
which the number of users is, respectively, 50, 100, 250, 500, and 1000. The probabilities were computed
using a simulation with 100, 000 trials over which the average number of times at least one group was
fully malicious was computed.

The graphs are presented in Figure A.1.
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Figure A.1: Simulated distributions of the probability of obtaining at least one fully malicious group for different numbers of users,
group sizes, and percentages of malicious users.
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