
CityJSON : does (file) size matter?
The compression of 3D city models in

the CityJSON encoding

1

Jordi van Liempt
MSc Geomatics P5 presentation

Hugo Ledoux
Balázs Dukai
Ken Arroyo Ohori
Willem Korthals Altes

Contents
Introduction (motivation and CityJSON)

Theory/related work on compression

Methodology

Benchmark results

Conclusion/discussion

2

Introduction: motivation
Possibilities 3D city models increasingly explored

Geoinformation on the web is popular

Files can become massive, network speed can be a bottleneck

Therefore: compression of CityJSON

3

4

Introduction: research
Different use cases for 3D city models on the web

To what extent can the implementation of different compression
techniques improve CityJSON’s performance on the web, considering file
size, visualisation, querying, spatial analysis, and editing performance?

5

 ?

Introduction: CityJSON
Follows the CityGML data model

But: on average 6x smaller

Wavefront OBJ-style geometries

6

Introduction: CityJSON

7

Highlighted: attributes

 geometry

Introduction: CityJSON

8

 Highlighted: attributes

 geometry

Introduction: CityJSON

9

 Highlighted: attributes

 geometry

Introduction: CityJSON

10

 Highlighted: mandatory members

Theory: compression
Reduction of redundancy vs. (de)compression speed

Lossy vs. lossless

General-purpose vs. specific purpose

Transmission time gain > (de)compression time

11

 !

Theory: zlib

Lempel-Ziv 1977 and Huffman coding

12

Blah blah blah blah blah!

 Blah b[D=5, L=18]!

Theory: zlib

 Lempel-Ziv 1977 and Huffman coding

13 Source: Dcoetzee [2007]

Theory: attribute replace

14

Theory: attribute replace

15

Theory: attribute replace

16

Theory: binary JSON
JSON has key-value structure, human-readable

But: binary files are concise and processed faster

CBOR is one binary encoding for JSON

Binary code for data type and length of data

17

Related work: Draco
Draco library for improved storage and transmission of 3D graphics

Different compression levels, metadata

Quantisation, Edgebreaker, parallelogram prediction, delta encoding

18

Methodology: tested CityJSON variants

Original geometry Draco geometry

1 original draco

2 original-zlib draco-zlib

3 original-cbor draco-cbor

4 original-cbor-zlib draco-cbor-zlib

5 original-replace draco-replace

6 original-cbor-replace draco-cbor-replace

7 original-cbor-replace-zlib draco-cbor-replace-zlib

19

Methodology: benchmarking

20

Use case Operations

Visualisation Visualise all features

Querying Query one feature
Query all features

Spatial analysis Buffer one feature
Buffer all features

Editing
(attributes)

Edit one feature
Edit all features

Editing
(geometries)

Edit one feature
Edit all features

8 (16) datasets

large vs. small
attributes vs. no attributes

2 server implementations

Compression in advance vs. on the fly

9 data operations

Results: notes
Performance improvement: function of file size and (de)compression time

Lossiness: all techniques used are lossless

Box plots: variability in datasets

21

Results: visualisation

22

Results: visualisation

23

Results: visualisation

24

Results: conclusion

• "I have this dataset and want to do
anything with it, which compression types
are the most suitable?"

25

 ?

Results: conclusion

• "I have this dataset and want to do
anything with it, which compression types
are the most suitable?"

26

 ?

Results: conclusion

• "I have this dataset and want to do
anything with it, which compression types
are the most suitable?"

27

 ?

Results: conclusion

• "I have this dataset and want to do
anything with it, which compression types
are the most suitable?"

28

 ?

Discussion
Alternatives: b3dm and I3S

Created for high (visualisation) performance

CityJSON much easier to use, and should be kept like that!

Compression can be beneficial, but needs some further investigation

3DCityDB, streaming?

29

 !

References (important ones)
• CBOR. Concise Binary Object Representation (CBOR), 2013. URL https://tools.ietf.org/html/ rfc7049.

• Dcoetzee. File:Huffman tree.svg, 2007. URL https://commons.wikimedia.org/wiki/File: Huffman_tree.svg.

• Google. Draco 3D data compression, 2019b. URL https://google.github.io/draco/.

• D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the IRE, 40(9):1098–1101,
1952.

• H. Ledoux, K. Ohori, K. Kumar, B. Dukai, A. Labetski, and S. Vitalis. CityJSON: A compact and easyto-use encoding of the
CityGML data model. Open Geospatial Data, Software and Standards, 4 (1):4, 2019.

• J. Rossignac, A. Safonova, and A. Szymczak. Edgebreaker on a corner table: A simple technique for representing and
compressing triangulated surfaces. In Hierarchical and geometrical methods in scientific visualization, pages 41–50. Springer,
2003.

• G. Taubin, W. P. Horn, F. Lazarus, and J. Rossignac. Geometry coding and vrml. Proceedings of the IEEE, 86(6):1228–1243,
1998.

• zlib. zlib - A Massively Spiffy Yet Delicately Unobtrusive Compression Library, 2020. URL https: //zlib.net/.

30

Extra slides

31

Relevant work: b3dm
• Batched 3D Model

• Cesium 3D Tiles

• Feature table, batch table, glTF

• Mix of JSON/binary

• Attributes: "height" : [10.0, 20.0, 15.0]

• But: feature template

32

Relevant work: I3S
• Indexed 3D Scene Layer

• Heterogeneous features (3D meshes and point clouds)

• Also tiles, but other specification

• Mix of JSON/binary

• CRS per node

33

Relevant work: streaming

34

File size in MB of different streaming implementations

Theory: quantisation
• Lossy—complete vertices and precision

• Coordinates close to each other are mapped to 1 of these coordinates

35

85016.719, 447470.356, 0.357
85016.643, 447470.446, 0.358
85016.780, 447470.352, 0.402

85016.643, 447470.446, 0.358

Theory: edgebreaker
• Compresses mesh connectivity

• Mesh -> triangle spanning tree -> CLERS string

• Decompression: triangle edges zipped based on CLERS character

36 Source: Taubin et al. (1998) Source: Rossignac et al. (2003)

Theory: parallelogram prediction

37

• Storing error of prediction instead of full coordinate

• Parallelogram rule

Methodology: testing platform

38

39

40

41

