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Abstract
In this paper, we present a decentralized and communication-free collision avoidance approach for multi-robot systems that
accounts for both robot localization and sensing uncertainties. The approach relies on the computation of an uncertainty-aware
safe region for each robot to navigate among other robots and static obstacles in the environment, under the assumption of
Gaussian-distributed uncertainty. In particular, at each time step,we construct a chance-constrained buffered uncertainty-aware
Voronoi cell (B-UAVC) for each robot given a specified collision probability threshold. Probabilistic collision avoidance is
achieved by constraining themotion of each robot to bewithin its correspondingB-UAVC, i.e. the collision probability between
the robots and obstacles remains below the specified threshold. The proposed approach is decentralized, communication-free,
scalable with the number of robots and robust to robots’ localization and sensing uncertainties. We applied the approach
to single-integrator, double-integrator, differential-drive robots, and robots with general nonlinear dynamics. Extensive
simulations and experiments with a team of ground vehicles, quadrotors, and heterogeneous robot teams are performed to
analyze and validate the proposed approach.

Keywords Collision avoidance · Motion planning · Planning under uncertainty · Multi-robot systems

1 Introduction

Multi-robot collision avoidance in cluttered environments is a
fundamental problemwhen deploying a team of autonomous
robots for applications such as coverage (Breitenmoser and
Martinoli 2016), target tracking (Zhou et al. 2018), formation
flying (Zhu and Alonso-Mora 2019) and multi-view cine-
matography (Nägeli et al. 2017). Given the robot current
states and goal locations, the objective is to plan a local
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motion for each robot to navigate towards its goal while
avoiding collisions with other robots and obstacles in the
environment. Most existing algorithms solve the problem in
a deterministic manner, where the robot states and obstacle
locations are perfectly known. Practically, however, robot
states and obstacle locations are generally obtained by an
estimator based on sensor measurements that have noise and
uncertainty. Taking this uncertainty into consideration is of
utmost importance for safe and robust multi-robot collision
avoidance.

In this paper, we present a decentralized probabilistic
approach for multi-robot collision avoidance under localiza-
tion and sensing uncertainty that does not rely on commu-
nication. Our approach is built on the buffered Voronoi cell
(BVC) method developed by Zhou et al. (2017). The BVC
method is designed for collision avoidance among multiple
single-integrator robots,where each robot only needs to know
the positions of neighboring robots. We extend the method
into probabilistic scenarios considering robot localization
and sensing uncertainties by mathematically formalizing a
buffered uncertainty-aware Voronoi cell (B-UAVC). Further-
more, we consider static obstacles with uncertain locations in
the environment.We apply our approach to double-integrator
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dynamics, differential-drive robots, and general high-order
dynamical robots.

1.1 Related works

1.1.1 Multi-robot collision avoidance

The problemofmulti-robot collision avoidance has beenwell
studied for deterministic scenarios, where the robots’ states
are precisely known. One of the state-of-the-art approaches
is the reciprocal velocity obstacle (RVO) method (Van den
Berg et al. 2008), which builds on the concept of velocity
obstacles (VO) (Fiorini and Shiller 1998). The method mod-
els robot interaction pairwise in a distributed manner and
estimates future collisions as a function of relative veloc-
ity. Based on the basic framework, RVO has been extended
towards several revisions: the optimal reciprocal collision-
avoidance (ORCA) method (Van Den Berg et al. 2011)
casting the problem into a linear programming formulation
which can be solved efficiently, the generalized RVOmethod
(Bareiss and van den Berg 2015) applying for heterogeneous
teams of robots, and the ε-cooperative collision avoidance
(εCCA) method (Alonso-Mora et al. (2018)) accounting for
the cooperation of nonholonomic robots. In addition to those
RVO-based methods, the model predictive control (MPC)
framework has also been widely used for multi-robot col-
lision avoidance, which includes decentralized MPC (Shim
et al. 2003), decoupled MPC (Chen et al. 2015), and sequen-
tial MPC (Morgan et al. 2016; Luis et al. 2020. While those
approaches typically require the robots position and velocity,
or more detailed future trajectory information to be known
among neighboring robots, the recent developed buffered
Voronoi cell (BVC) method (Zhou et al. 2017; Pierson et al.
2020) only requires the robots to know the positions of other
robots. In this paper, we build upon the concept of BVC and
extend it to probabilistic scenarios, where each robot only
needs to estimate the positions of its neighboring robots.

1.1.2 Collision avoidance under uncertainty

Some of the above deterministic collision avoidance
approaches have been extended to scenarios where robot
localization or sensing uncertainty is considered. Based on
RVO, the COCALU method (Claes et al. 2012) takes into
account bounded localization uncertainty of the robots by
constructing an error-bounded convex hull of the VO of each
robot. Gopalakrishnan et al. (2017) presents a probabilis-
tic RVO method for single-integrator robots. Kamel et al.
(2017) presents a decentralized MPC where robot motion
uncertainty is taken into account by enlarging the robots with
their 3-σ confidence ellipsoids. A chance constrained MPC
problem was formulated by Lyons et al. (2012) for planar
robots, where rectangular regions were computed and inter-

robot collision avoidance was transformed to avoid overlaps
of those regions. Using local linearization, Zhu and Alonso-
Mora (2019b) proposed a chance constrained nonlinearMPC
(CCNMPC) method to ensure that the probability of inter-
robot collision is below a specified threshold.

Among these attempts to incorporate uncertainty into
multi-robot collision avoidance, several limitations are
observed. Probabilistic VO-based methods are limited to
systemswith simplefirst-order dynamics, or limited to homo-
geneous teams of robots. Probabilistic MPC-based methods
typically demand communication of the planned trajectory
of each robot to guarantee collision avoidance, which does
not scale well with the number of robots in the system. An
alternative to communicating trajectories is to assume that
all other robots move with constant velocity (Kamel et al.
2017), which has been shown to lead to collisions in cluttered
environments (Zhu and Alonso-Mora 2019b). Recently, Luo
et al. (2020) proposes probabilistic safety barrier certificates
(PrSBC) to define the space of admissible control actions
that are probabilistic safe, but it is only designed for single-
integrator robots. In this paper, we define the probabilistic
safe region for each robot directly based on the concept of
buffered Voronoi cell (BVC).

The BVC method has also been extended to probabilis-
tic scenarios by Wang and Schwager (2019). Taking into
account the robot measurement uncertainty of other robots,
they present the probabilistic buffered Voronoi cell (PBVC)
to assure a safety level given a collision probability thresh-
old. However, since the PBVC of each robot does not have
an analytic solution, they employ a sampling-based approach
to approximate it. In contrast, our proposed B-UAVC has an
explicit and analytical form, which is more efficient to be
computed. Moreover, our B-UAVC can be incorporated with
MPC to handle general nonlinear systems, while the PBVC
method developed by Wang and Schwager (2019) cannot be
directly applied within a MPC framework.

1.1.3 Spatial decomposition in motion planning

Our method constructs a set of local safe regions for the
robots, which decompose the workspace. Spatial decompo-
sition is broadly used in robot motion planning. Deits and
Tedrake (2015a) proposes the IRIS (iterative regional infla-
tion by semi-definite programming) algorithm to compute
safe convex regions among obstacles given a set of seed
points. The algorithm is then used for UAV path planning
(Deits and Tedrake 2015b) and multi-robot formation con-
trol (Zhu and Alonso-Mora 2019). Liu et al. (2017) presents
a simpler but more efficient iteratively inflation algorithm to
compute a convex polytope around a line segment among
obstacles and utilizes it to construct a safe flight corridor
for UAV navigation (Tordesillas et al. 2019). Similar safe
flight corridors are constructed for trajectory planning of
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quadrotor swarms (Hönig et al. 2018), by computing a set of
max-margin separating hyperplanes between a line segment
and convex polygonal obstacles. The max-margin separat-
ing hyperplanes are also used by Arslan and Koditschek
(2019) to construct a local robot-centric safe region in convex
sphere worlds for sensor-based reactive navigation. While
those spatial decomposition methods have shown successful
application in robot motion planning, they all assume perfect
knowledge on robots and obstacles positions. In this paper,
we consider both the robot localization and obstacle posi-
tion uncertainty and construct a local uncertainty-aware safe
region for each robot.

1.2 Contribution

The main contribution of this paper is a decentralized and
communication-free method for probabilistic multi-robot
collision avoidance in cluttered environments. The method
considers robot localization and sensing uncertainties and
relies on the computation of buffered uncertainty-aware
Voronoi cells (B-UAVC). At each time step, each robot
computes its B-UAVC based on the estimated position and
uncertainty covariance of itself, neighboring robots and
obstacles, and plans its motion within the B-UAVC. Prob-
abilistic collision avoidance is ensured by constraining each
robot’s motion to be within its corresponding B-UAVC, such
that the inter-robot and robot-obstacle collision probability
is below a user-specified threshold.

An earlier version of this paper was published by Zhu
and Alonso-Mora (2019a). In this version, three main addi-
tional extensions are developed: (a) we further consider static
obstacles with uncertain locations in the environment; (b)
we extend the approach to double-integrator dynamics and
differential-drive robots and (c) we provide thorough simu-
lation and experimental results and analyses.

1.3 Organization

The remaining of this paper is organized as follows. In Sect.
2 we present the problem statement and briefly summarize
the concept of BVC. In Sect. 3 we formally introduce the
buffered uncertainty-aware Voronoi cell (B-UAVC) and its
construction method. We then describe how the B-UAVC is
used for probabilisticmulti-robot collision avoidance in Sect.
4. Simulation and experimental results are presented in Sects.
5 and 6, respectively. Finally, Sect. 7 concludes the paper.

2 Preliminaries

Throughout this paper vectors are denoted in bold lower-
case letters, x, matrices in plain uppercase M , and sets in
calligraphic uppercase, S. I indicates the identity matrix.

A superscript xT denotes the transpose of x. ‖x‖ denotes
the Euclidean norm of x and ‖x‖2Q = xT Qx denotes the
weighted square norm. A hat x̂ denotes the mean of a ran-
dom variable x. Pr(·) indicates the probability of an event
and p(·) indicates the probability density function.

2.1 Problem statement

Consider a group of n robots operating in a d-dimensional
space W ⊆ R

d , where d ∈ {2, 3}, populated with m static
polygonal obstacles. For each robot i ∈ I = {1, . . . , n},
pi ∈ R

d denotes its position, vi = ṗi its velocity and
ai = v̇i its acceleration. Let G = {g1, . . . , gn} denote their
goal locations. A safety radius rs is given for all robots. We
consider that the position of each robot is obtained by a state
estimator and is described as a Gaussian distribution with
covariance �i , i.e. pi ∼ N (p̂i , �i ). We also consider static
polytope obstacles with known shapes but uncertain loca-
tions. For each obstacle o ∈ Io = {1, . . . ,m}, denote by
Ôo ⊂ R

d its occupied space when located at the expected
(mean) position. Ôo is given by a set of vertices. Hence, the
space actually occupied by the obstacle can be written as
Oo = {x + do | x ∈ Ôo,do ∼ N (0, �o)} ⊂ R

d , where do
is the uncertain translation of the obstacle’s position, which
has a zero mean and covariance �o.

A robot i in the group is collision free with another robot
j if their distance is greater than the sum of their radii,
i.e. dis(pi ,p j ) ≥ 2rs and with the obstacle o if the mini-
mum distance between the robot and the obstacles is larger
than its radius, i.e. dis(pi ,Oo) ≥ rs . The distance func-
tion dis(·) between a robot with another robot or an obstacle
are defined as dis(pi ,p j ) = ∥

∥pi − p j
∥
∥, and dis(pi ,Oo) =

minp∈Oo ‖pi − p‖, respectively. Note that the robots’ and
obstacles’ positions are random variables following Gaus-
sian distributions, which have an infinite support. Hence, the
collision-free condition can only be satisfied in a probabilis-
ticmanner, which is defined as a chance constraint as follows.

Definition 1 (Probabilistic Collision-Free) A robot i at posi-
tion pi ∼ N (p̂i , �i ) is probabilistic collision-free with a
robot j at position p j ∼ N (p̂ j , � j ) and an obstacle o at
position po ∼ N (p̂o, �o) if

Pr(dis(pi ,p j ) ≥ 2rs) ≥ 1 − δ, ∀ j ∈ I, j 	= i, (1)

Pr(dis(pi ,Oo) ≥ rs) ≥ 1 − δ, ∀o ∈ Io, (2)

where δ is the collision probability threshold for inter-robot
and robot-obstacle collisions.

The objective of probabilistic collision avoidance is to
compute a local motion plan, ui , for each robot in the group,
that respects its kinematic and dynamical constraints, makes
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progress towards its goal location, and is probabilistic col-
lision free with other robots as well as obstacles in the
environment. In this paper, we first consider single-integrator
dynamics for the robots,

ṗi = ui , (3)

and then extend it to double-integrator systems, differential-
drive robots and robots with general high-order dynamics.

2.2 BufferedVoronoi cell

The key idea of our proposed method is to compute an
uncertainty-aware collision-free region for each robot in
the system, which is a major extension of the determinis-
tic buffered Voronoi cell (BVC) method (Zhou et al. 2017;
Pierson et al. 2020). In this section, we briefly describe the
concept of BVC.

For a set of deterministic points (p1, . . . ,pn) ∈ R
d , the

standard Voronoi cell (VC) of each point i ∈ I is defined as
(Okabe et al. 2009)

Vi = {p ∈ R
d : ‖p − pi‖ ≤ ∥

∥p − p j
∥
∥ ,∀ j 	= i}, (4)

which can also be written as

Vi = {p ∈ R
d : pTi jp ≤ pTi j

pi + p j

2
,∀ j 	= i}, (5)

where pi j = p j − pi . It can be observed that Vi is the inter-
section of a set of hyperplanes which separate point i with
any other point j in the group, as shown in Fig. 1a. Hence,
VC can be obtained by computing the separating hyperplanes
between each pair of points.

To consider the footprints of robots, a buffered Voronoi
cell for each robot i is defined as follows:

Vb
i = {p ∈ R

d : pTi jp ≤ pTi j
pi + p j

2
− rs

∥
∥pi j

∥
∥ ,∀ j 	= i},

(6)

which is obtained by retracting the edges of the VC with a
safety distance (buffer) rs .

In deterministic scenarios, if the robots are mutually
collision-free, then the BVC of each robot is a non-empty
set (Zhou et al. 2017). It is also trivial to prove that the
BVCs are disjoint and if the robots are within their cor-
responding BVCs individually, they are collision free with
each other. Using the concept of BVC, Zhou et al. (2017)
proposed a control policy for a group of single-integrator
robots whose control inputs are velocities. Each robot can
safely and continuously navigate in its BVC, given that other
robots in the system also follow the same rule. However, the
guarantee does not hold for double-integrator dynamics or
non-holonomic robots such as differential-drive robots.

2.3 Shadows of uncertain obstacles

To account for uncertain obstacles in the environment, we
rely on the concept of obstacle shadows introduced by Axel-
rod et al. (2018). The ε-shadow is defined as follows:

Definition 2 (ε-Shadow) A setSo ⊆ R
d is an ε-shadow of an

uncertain obstacleOo if the probabilityPr(Oo ⊆ So) ≥ 1−ε.

Geometrically, an ε-shadow is a region that contains the
uncertain obstacle with probability of at least 1 − ε, which
can be non-unique. For example So = R

d is an ε-shadow
of any uncertain obstacle. To preclude this trivial case, the
maximal ε-shadow is defined:

Definition 3 (Maximal ε-Shadow) A set So ⊆ R
d is a maxi-

mal ε-shadow of an uncertain obstacle Oo if the probability
Pr(Oo ⊆ So) = 1 − ε.

The above definition ensures that if there exists a max-
imal ε-shadow So of the uncertain obstacle Oo that does
not intersect the robot, i.e. dis(pi ,So) ≥ rs , then the col-
lision probability between the robot and obstacle is below
ε, i.e. Pr(dis(pi ,Oo) ≥ rs) ≥ 1 − ε. Note that the max-
imal ε-shadow may also be non-unique. In this paper, we
employ the method proposed by Dawson et al. (2020) to con-
struct such shadows. Recall that the uncertain obstacleOo is
related to the nominal geometry Ôo by Oo = {x + do | x ∈
Ôo,do ∼ N (0, �o)}. To construct the maximal ε-shadow,
we first define the following ellipsoidal set

Do = {d : dT�−1
o d ≤ F−1(1 − ε)}, (7)

where F−1(·) is the inverse of the cumulative distribution
function (CDF) of the chi-squared distributionwith d degrees
of freedom. Next, Let

So = Ôo + Do= {x + d | x ∈ Ôo,d ∈ Do}, (8)

be theMinkowski sum of the nominal obstacle shape Ôo and
the ellipsoidal set Do. Then, we have the following lemma
(Axelrod et al. 2018) and theorem (Dawson et al. 2020):

Lemma 1 Let do ∼ N (0, �o) ∈ R
d and Do = {d :

dT�−1
o d ≤ F−1(1 − ε)} ⊂ R

d , then Pr(do ∈ Do) = 1 − ε.

Theorem 1 So is a maximal ε-shadow of Oo.

Proofs of the above lemma and theorem are given in
Appendix A.1 and A.2.

3 Buffered uncertainty-aware Voronoi cells

In this section, we formally introduce the concept of buffered
uncertainty-aware Voronoi cells (B-UAVC) and give its con-
struction method.

123



Autonomous Robots

(a) (b) (c) (d)

Fig. 1 Example of buffered uncertainty-aware Voronoi cells (B-
UAVC). Blue dots are robots; blue dash-dot ellipses indicate the 3-σ
confidence ellipsoid of the position uncertainty. aDeterministicVoronoi
cell (VC, the boundary in gray solid line). bUncertainty-aware Voronoi

cell based on the best linear separators (UAVC, the boundary in blue
dashed line). c UAVC with robot raidus buffer (the boundary in green
solid line). d Final B-UAVC with robot radius and collision probability
buffer (the boundary in red solid line) (Color figure online)

3.1 Definition of B-UAVC

Our objective is to obtain a probabilistic safe region for each
robot in the workspace given the robots and obstacles posi-
tions, and taking into account their uncertainties.

Definition 4 (Buffered Uncertainty-Aware Voronoi Cell)
Given a team of robots i ∈ {1, . . . , n} with positions mean
p̂i ∈ R

d and covariance �i ∈ R
d×d , and a set of convex

polytope obstacles o ∈ {1, . . . ,m} with known shapes and
locations mean p̂o ∈ R

d and covariance �o ∈ R
d×d , the

buffered uncertainty-aware Voronoi cell (B-UAVC) of each
robot is defined as a convex polytope region:

Vu,b
i = {p ∈ R

d : aTi jp ≤ bi j − βi j ,∀ j 	= i, j ∈ I, (9)

and aTiop ≤ bio − βio,∀o ∈ Io}, (10)

such that the probabilistic collision free constraints in Defi-
nition 1 are satisfied.

In the above B-UAVC definition, ai j , aio ∈ R
d and

bi j , bio ∈ R are parameters of the hyperplanes that separate
the robot from other robots and obstacles, which results in a
decomposition of the workspace. βi j and βio are additional
buffer terms added to retract the decomposed space for prob-
abilistic collision avoidance. Accordingly, we further define

Vu
i = {p ∈ R

d : aTi jp ≤ bi j ,∀ j 	= i, j ∈ I, (11)

and aTiop ≤ bio,∀o ∈ Io}, (12)

that does not include buffer terms to be the uncertainty-aware
Voronoi cell (UAVC) of robot i .

It can be observed the UAVC and B-UAVC of robot i are
the intersection of the following:

1. n − 1 half-space hyperplanes separating robot i from
robot j for all j 	= i, j ∈ I;

2. m half-space hyperplanes separating robot i from obsta-
cle o for all o ∈ Io.

In the following, we will describe how to calculate the sep-
arating hyperplanes with parameters (ai j , bi j ) and (aio, bio)
that construct the UAVC and then the corresponding buffer
termsβi j , βio constructing theB-UAVC for probabilistic col-
lision avoidance.

3.2 Inter-robot separating hyperplane

In contrast to only separating two deterministic points in
Voronoi cells, we separate two uncertain robots with known
positions mean and covariance. To achieve that, we rely on
the concept of the best linear separator between twoGaussian
distributions (Anderson and Bahadur 1962).

Given pi ∼ N (p̂i , �i ) and p j ∼ N (p̂ j , � j ), consider a
linear separator aTi jp = bi j where ai j ∈ R

d and bi j ∈ R.
The separator classifies the points p in the space into two
clusters: aTi jp ≤ bi j to the first one while aTi jp > bi j to the
second. The separator parameters ai j and bi j can be obtained
by minimizing the maximal probability of misclassification.

The misclassification probability when p is from the first
distribution is

Pri (aTi jp > bi j ) = Pri

⎛

⎝
aTi jp − aTi j p̂i
√

aTi j�iai j
>

bi j − aTi j p̂i
√

aTi j�iai j

⎞

⎠

= 1 − �((bi j − aTi j p̂i )/
√

aTi j�iai j ),

where �(·) denotes the cumulative distribution function
(CDF) of the standard normal distribution. Similarly, the
misclassification probability when p is from the second dis-
tribution is
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Pr j (aTi jp ≤ bi j ) = Pr j

⎛

⎝
aTi jp − aTi j p̂ j
√

aTi j� jai j
≤ bi j − aTi j p̂ j

√

aTi j� jai j

⎞

⎠

= 1 − �((aTi j p̂ j − bi j )/
√

aTi j� jai j ).

The objective is to minimize the maximal value of Pri and
Pr j , i.e.

(ai j , bi j ) = arg minmax
ai j∈Rd ,bi j∈R

(Pri ,Pr j ), (13)

which can be solved using a fast minimax procedure. In this
paper, we employ the procedure developed by Anderson and
Bahadur (1962) to compute the best linear separator parame-
tersai j andbi j .Abrief summaryof the procedure is presented
in Appendix B.

Remark 1 The best linear separator coincides with the sepa-
rating hyperplane of Eq. (5) when �i = � j = σ 2 I . In this
case, ai j = 2

σ 2 (p̂ j − p̂i ) and bi j = 1
σ 2 (p̂ j − p̂i )T (p̂i + p̂ j ).

Remark 2 ∀i 	= j ∈ I, a j i = −ai j , b ji = −bi j . This can be
obtained according to the definition of the best linear sepa-
rator.

Remark 3 In contrast to deterministic Voronoi cells, the
UAVCs constructed from the best linear separators gener-
ally do not constitute a full tessellation of the workspace, i.e.
⋃n

1 Vu
i ⊆ W , as shown in Fig. 1b.

3.3 Robot-obstacle separating hyperplane

Our method to calculate the uncertainty-aware separating
hyperplane between a robot and a convex polytope obsta-
cle with uncertain location is illustrated in Fig. 2. Given
the mean position of the robot p̂i and the uncertain obsta-
cle Oo = {x + do | x ∈ Ôo,do ∼ N (0, �o)}, we first
perform a linear coordinate transformation:

W = (
√

�o)
−1, (14)

Under the transformation, the robot mean position and obsta-
cle information become

p̂Wi = W p̂i , (15)

ÔW
o = W Ôo, (16)

dWo = Wdo, (17)

�W
o = W�oW

T = I d×d . (18)

The transformed uncertain obstacle is then OW
o = {xW +

dWo | xW ∈ ÔW
o ,dWo ∼ N (0, I )}. Here we use the super-

script ·W to indicate variables in the transformed space. Note

Fig. 2 Depiction of uncertainty-aware separating hyperplane calcula-
tion between a point and an arbitrary polytope obstacle with uncertain
location. (Top left) A point and a polytope obstacle with uncertain loca-
tion. (Top right) Effects of the transformation W to normalize the error
covariance. (Bottom left) ε-shadow of the transformed obstacle and the
max-margin separating hyperplane in the transformation space. (Bottom
right) Inverse transformation to obtain the uncertainty-aware separating
hyperplane.

that the obstacle position uncertainty covariance is normal-
ized to an identity matrix under the transformation, as shown
in Fig. 2 (Top right). This coordinate transformation tech-
nique to normalize the uncertainty covariance has also been
applied to other motion planning under uncertainty works
(Hardy and Campbell 2013).

Then given the collision probability threshold δ, we com-
pute a ε-shadow of the transformed uncertain obstacle OW

o
based on Eqs. (7–8):

DW
o = {dW : dW T

dW ≤ F−1(1 − ε)}, (19)

SW
o = ÔW

o + DW
o , (20)

where ε = 1 − √
1 − δ, making that Pr(OW

o ⊆ SW
o ) =√

1 − δ.
Note that we assume Ôo is a convex polytope. Hence, the

transformed ÔW
o is also a polytope. In addition, it can be

observed the setDW
o defined in Eq. (19) is a circular (sphere

in 3D) set with radius
√

F−1(1 − ε). Hence, we can compute
the ε-shadow in Eq. (20) of the transformed uncertain obsta-
cle by dilating its nominal shape by the diameter of the set
DW

o , which results in an inflated convex polytope. Note that
the resulted convex polytope is slightly larger than the exact
Minkowski sum SW

o which has smaller round corners. This
introduces some conservativeness. For simplicity, we use the
same notation SW

o for the resulted inflated convex polytope
and thus there is Pr(OW

o ⊆ SW
o ) >

√
1 − δ.

Next, we separate p̂Wi from SW
o by finding a max-margin

separating hyperplane between them. Note that SW
o is a

bounded convex polytope that can be described by a list
of vertices (ψW

1 , . . . , ψW
po ). Hence, finding a max-margin

123



Autonomous Robots

hyperplane between p̂Wi and SW
o can be formulated as a sup-

port vector machine (SVM) problem (Hönig et al. 2018),
which can be efficiently solved using a quadratic program:

min aWio
T
aWio

s.t. aWio
T
p̂Wio − bWio ≤ 1,

aWio
T
ψW
k − bWio ≥ 1, ∀ k ∈ 1, . . . , po.

(21)

The solution of the above quadratic program (21) formu-
lates a max-margin separating hyperplane with parameters
(aWio , bWio ).We then shift it along its normal vector towards the
obstacle shadow, resulting in a separating hyperplane exactly
touching the shadow, as shown in Fig. 2 (Bottom left). Finally
we perform an inverse coordinate transformation W−1 and
obtain the uncertainty-aware separating hyperplane between
the robot and obstacle in the original workspace:

aio = WT aWio ,

bio = bWio ,
(22)

as shown in Fig. 2 (Bottom right), in which the ε-shadow in
the transformed space SW

o becomes So in the original space.

Remark 4 The linear coordinate transformation W and its
inverse W−1 preserves relative geometries of Oo. That is,
Pr(Oo ⊆ So) = Pr(OW

o ⊆ SW
o ) >

√
1 − δ.

3.4 Collision avoidance buffer and B-UAVC

In Sects. 3.2 and 3.3 we have described the method to com-
pute the hyperplanes that construct the UAVC. Now we
introduce two buffer terms to the UAVC, to account for
the robot physical safety radius and the collision probability
threshold.

Recall Eq. (11) that the UAVC of robot i can be written
as the intersection of a set of separating hyperplanes

Vu
i = {p ∈ R

d : aTi jp ≤ bi j ,∀ j 	= i, j ∈ I,

and aTiop ≤ bio,∀o ∈ Io},

Let l ∈ Il = {1, · · · , n, n + 1, · · · , n + m}, l 	= i denote
any other robot or obstacle, we can write the UAVC in the
following form

Vu
i = {p ∈ R

d : aTilp ≤ bil ,∀l ∈ Il , l 	= i}. (23)

which combines the notations for inter-robot and robot-
obstacle separating hyperplanes. Next, we will describe the
computation method of probabilistic collision avoidance
buffer to extend the UAVC to B-UAVC.

3.4.1 Robot safety radius buffer

We compute the robot safety radius buffer by shifting the
boundary of the UAVC towards the robot by a distance equal
to the robot’s radius. Hence the corresponding buffer for the
hyperplane (ail , bil) is

βr
i = rs ‖ail‖ . (24)

Figure 1c shows the bufferedUAVCof each robot after taking
into account their safety radius.

3.4.2 Collision probability buffer

To achieve probabilistic collision avoidance, we further com-
pute a buffer term βδ

i , which is defined as

βδ
i =

√

2aTil�iail · erf−1(2
√
1 − δ − 1), (25)

where erf(·) is the Gauss error function (Andrews 1997)
defined as erf(x) = 2√

π

∫ x
0 e−t2dt and erf−1(·) is its inverse.

In this paper, we assume the threshold satisfies 0 < δ < 0.75,
which is reasonable in practice. Hence, erf−1(2

√
1 − δ −

1) > 0, βδ
i > 0. This buffer can be obtained by following

the proof of forthcoming Theorems 2 and 3.
Finally, the buffered uncertainty-aware Voronoi cell (B-

UAVC) is obtained by combining the two buffers

Vu,b
i = {p ∈ R

d : aTilp ≤ bil − βr
i − βδ

i ,∀l ∈ Il , l 	= i}.(26)

Figure 1d shows the final B-UAVC of each robot in the team.

3.5 Properties of B-UAVC

In this subsection, we justify the design of ε in Eq. (19) when
computing the shadow of uncertain obstacles, and compu-
tation of the collision probability buffer βδ

i in Eq. (25) by
presenting the following two theorems.

Theorem 2 (Inter-Robot Probabilistic Collision Free) ∀pi ∼
N (p̂i , �i ) and p j ∼ N (p̂ j , � j ), where p̂i ∈ Vu,b

i and p̂ j ∈
Vu,b
j , i 	= j ∈ I, we have

Pr(dis(pi ,p j ) ≥ 2rs) ≥ 1 − δ,

i.e. the probability of collision between robots i and j is
below the threshold δ.

Proof We first introduce the following lemma:

Lemma 2 (LinearChanceConstraint (Blackmore et al. 2011))
A multivariate random variable x ∼ N (x̂, �) satisfies

Pr(aT x ≤ b) = 1

2
+ 1

2
erf

(
b − aT x̂√
2aT�a

)

. (27)
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According to Eq. (26), if p̂i ∈ Vu,b
i , there is

aTi j p̂i ≤ bi j − rs
∥
∥ai j

∥
∥ −

√

2aTi j�iai j · erf−1(2
√
1 − δ − 1). (28)

Applying Lemma 2 and substituting the above equation, we
have

Pr(ai jpi ≤ bi j − rs
∥
∥ai j

∥
∥)

= 1

2
+ 1

2
erf

⎛

⎝
bi j − rs

∥
∥ai j

∥
∥) − aTi j p̂i

√

2aTi jai j

⎞

⎠

≥ 1

2
+ 1

2
erf

(

erf−1(2
√
1 − δ − 1)

)

= 1

2
+ 1

2
(2

√
1 − δ − 1)

= √
1 − δ.

(29)

Similarly for robot j , there is

Pr(a j ip j ≤ b ji − rs
∥
∥a j i

∥
∥) ≥ √

1 − δ. (30)

Note that ai j = −a j i , bi j = −b ji (Remark 2). It is trivial to
prove that

ai jpi ≤ bi j − rs
∥
∥ai j

∥
∥

a j ip j ≤ b ji − rs
∥
∥a j i

∥
∥

}

�⇒ ∥
∥pi − p j

∥
∥ ≥ 2rs . (31)

Hence, we have

Pr(dis(pi ,p j ) ≥ 2rs) = Pr(
∥
∥pi − p j

∥
∥ ≥ 2rs)

≥ Pr(ai jpi ≤ bi j − rs
∥
∥ai j

∥
∥) · Pr(a j ip j ≤ b ji − rs

∥
∥a j i

∥
∥)

≥ √
1 − δ · √

1 − δ

= 1 − δ.

(32)

This completes the proof. ��

Theorem 3 (Robot–Obstacle Probabilistic Collision free)
∀pi ∼N (p̂i , �i ), where p̂i ∈ Vu,b

i , we havePr(dis(pi ,Oo)≥
rs) ≥ 1 − δ, i.e. the probability of collision between robot i
and obstacle o is below the threshold δ.

Proof Similar to Eq. (29), we have

Pr(aiopi ≤ bio − rs ‖aio‖) ≥ √
1 − δ. (33)

Based on the computation of aio and bio in Eq. (21–22), it is
straightforward to prove that

aiopi ≤ bio − rs ‖aio‖ �⇒ dis(pi ,So) ≥ rs . (34)

Thus,

Pr(dis(pi ,So) ≥ rs) ≥ √
1 − δ. (35)

If Oo ⊆ So and dis(pi ,So) ≥ rs , there is dis(pi ,Oo) ≥ rs .
Hence, by combining with Remark 4, we have

Pr(dis(pi ,Oo) ≥ rs) ≥ Pr(Oo ⊆ So) · Pr(dis(pi ,So) ≥ rs)

>
√
1 − δ · √

1 − δ

= 1 − δ,

(36)

which completes the proof. ��

4 Collision avoidance using B-UAVC

In this section, we present our decentralized collision avoid-
ance method using the B-UAVC. We start by describing
a reactive feedback controller for single-integrator robots,
followed by its extensions to double-integrator and non-
holonomic differential-drive robots. A receding horizon
planning formulation is further presented for general high-
order dynamical systems. We also provide a discussion on
our proposed method.

4.1 Reactive feedback control

4.1.1 Single integrator dynamics

Consider robots with single-integrator dynamics ṗi = ui ,
where ui = vi is the control input. Similar to Zhou et al.
(2017), a fast reactive feedback one-step controller can be
designed to make each robot move towards its goal location
gi , as follows:

ui = vi,max · g∗
i − p̂i

∥
∥g∗

i − p̂i
∥
∥
, (37)

where vi,max is the robot maximal speed and

g∗
i := argminp∈Vu,b

i
‖p − gi‖ , (38)

is the closest point in the robot’s B-UAVC to its goal location.
The strategy used in the controller, Eq. (37), is also

called the “move-to-projected-goal” strategy (Arslan and
Koditschek 2019). At each time step, each robot in the system
first constructs its B-UAVC Vu,b

i , then computes the closest

point in Vu,b
i to its goal, i.e. the “projected goal”, and gen-

erates a control input according to Eq. (37). Note that the
constructed B-UAVC is a convex polytope represented by
the intersection of a set of half-spaces hyperplanes. Hence,
finding the closest point, Eq. (38), can be recast as a lin-
early constrained least-square problem, which can be solved
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Fig. 3 Additional buffer is added to allow robots with double integrator
dynamics to have enough space to decelerate.

efficiently using quadratic programming in polynomial time
(Kozlov et al. 1980).

4.1.2 Double integrator dynamics

For single-integrator robots, the reactive controller Eq. (37)
guarantees the robot to be always within its corresponding B-
UAVC and thus probabilistic collision free with other robots
and obstacles. However, the controller may drive the robot
towards to the boundary of its B-UAVC. Consider the double
integrator robot which has a limited acceleration, p̈i = ui ,
where ui = acci is the control input. It might not be able to
continue to stay within its B-UAVC when moving close to
the boundary of the B-UAVC. Hence, to enhance safety, as
illustrated inFig. 3we introduce an additional safety stopping
buffer, which is defined as

βs
i =

⎧

⎨

⎩

∥
∥aTil vi

∥
∥
2

2acci,max
, if aTilvi > 0;

0, otherwise,
(39)

where acci,max is the maximal acceleration of the robot. This
additional stopping buffer heuristically leaves more space
for the robot to decelerate in advance before touching the
boundaries of the original B-UAVC. Hence, the updated B-
UAVC in Eq. (26) with an additional safety stopping buffer
now becomes

Vu,b
i = {p ∈ R

d : aTilp ≤ bil − βr
i − βδ

i − βs
i ,

∀l ∈ Il , l 	= i}. (40)

Accordingly, the reactive feedback one-step controller for
double-integrator robots is as follows,

ui = acci,max · g∗
i − p̂i

∥
∥g∗

i − p̂i
∥
∥
. (41)

Fig. 4 Reactive feedback control for differential-drive robots.

4.1.3 Differential-drive robots

Consider differential-drive robots moving on a two dimen-
sional space W ⊆ R

2, whose motions are described by

˙̂pi = vi

[

cos θi
sin θi

]

,

θ̇i = ωi ,

(42)

where θi ∈ [−π, π) is the orientation of the robot, and
ui = (vi , ωi )

T ∈ R
2 is the vector of robot control inputs in

which vi and ωi are the linear and angular velocity, respec-
tively.We adopt the control strategy developed byArslan and
Koditschek (2019) and Astolfi (1999) and briefly describe it
in the following.

As shown in Fig. 4, firstly, two line segments

Lv = Vu,b
i ∩ HN , (43)

Lω = Vu,b
i ∩ HG , (44)

are determined, in which HN is the straight line from the
robot position towards its current orientation and HG is the
straight line towards its goal location, respectively. Then the
closest point in the robot’s B-UAVC, g∗

i , and in the two lines
segments g∗

i,v , g
∗
i,ω is computed. Finally the control inputs of

the robot are given by

vi = −k · [cos(θ) sin θ ](p̂i − g∗
i,v),

ωi = k · atan
( [− sin(θ) cos θ ](p̂i − (g∗

i + g∗
i,ω)/2)

[cos(θ) sin θ ](p̂i − (g∗
i + g∗

i,ω)/2)

)

,
(45)

where k > 0 is the fixed control gain. It is proved by Arslan
and Koditschek (2019) that if the local safe region is convex,
then the robot will stay within the convex safe region under
the control law of Eq. (45).
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4.2 Receding horizon planning

Consider general high-order dynamical systems with, poten-
tially nonlinear, dynamics xki = fi (x

k−1
i ,uk−1

i ), where
xki ∈ R

nx denotes the robot state at time step k which typ-
ically includes the robot position pki and velocity vki , and
uki ∈ R

nu the robot control input. To plan a local trajectory
that respects the robot kinodynamic constraints, we formu-
late a constrained optimization problem with N time steps
and a planning horizon τ = N�t , where �t is the time step,
as follows,

Problem 1 (Receding horizon trajectory planning)

min
x̂1:Ni ,u0:N−1

i

N−1
∑

k=0

uki Ru
k
i + (p̂N

i − gNi )T QN (p̂N
i − gNi )

s.t. x0i = x̂i , (46a)

x̂ki = fi (x̂
k−1
i ,uk−1

i ), (46b)

p̂ki ∈ Vu,b
i , (46c)

uk−1
i ∈ Ui , (46d)

∀i ∈ I, ∀k ∈ {1, . . . , N }. (46e)

In Problem 1, Ui ∈ R
nu is the admissible control space; R ∈

R
nu×nu , QN ∈ R

d×d are positive semi-definite symmetric
matrices. The constraint (46c) restrains the planned trajectory
to be within the robot’s B-UAVC Vu,b

i . According to the

definition ofVu,b
i inEq. (40), the constraint can be formulated

as a set of linear inequality constraints:

aTil p̂
k
i ≤ bil − βr

i − βδ
i − βs

i , ∀l ∈ Il , l 	= i . (47)

At each time step, the robot first constructs its correspond-
ing B-UAVC Vu,b

i represented by a set of linear inequalities
and then solves the above receding horizon planning prob-
lem. The problem is in general a nonlinear and non-convex
optimization problem due to the robot’s nonlinear dynam-
ics formulated as equality constraints x̂ki = fi (x̂

k−1
i ,uk−1

i ).
While a solution of the problem including the planned trajec-
tory and control inputs is obtained, the robot only executes
the first control input u0i . Then with time going on and at the
next time step, the robot updates its B-UAVC and solves the
optimization problem again. The process is performed until
the robot reaches its goal location.

Remark 5 (Probability of collision for the planned trajec-
tory) From Theorems 2 and 3, constraint (46c) guarantees
that at each stage within the planning horizon, the collision
probability of robot i with any other robot or obstacle is
below the specified threshold δ. Hence, the probability of
collision for the entire planning trajectory of robot i with
respect to each other robot and obstacle can be bounded by

Algorithm 1 Collision Avoidance Using B-UAVC for Each
Robot i ∈ I in a Multi-robot Team

—————— Construction of B-UAVC ——————
1: Obtain pi ∼ N (p̂i , �i ) via state estimation
2: for Each other robot j ∈ I, j 	= i do
3: Estimate p j ∼ N (p̂ j , � j )

4: Compute the best linear separator parameters (ai j , bi j ) via Eq.
(13)

5: end for
6: for Each static obstacle o ∈ Io do
7: Estimate do ∼ N (0, �o) with known Ôo
8: Compute the separating hyperplane parameters (aio, bio) via Eqs.

(14)-(22)
9: end for
10: for Each separating hyperplane l ∈ Il , l 	= i do
11: Compute the safety radius buffer via Eq. (24): βr

i = rs ‖ail‖
12: Compute the collision probability buffer via Eq. (25): βδ

i =
√

2aTil�iail · erf−1(2
√
1 − δ − 1)

13: Construct the B-UAVC via Eq. (26)
14: end for

——————Collision Avoidance Action ——————
15: if i is single-integrator then
16: Compute control input via Eqs. (37)-(38)
17: else if i is double-integrator then
18: Compute control input via Eqs. (39)-(41)
19: else if i is differential-drive then
20: Compute control input via Eqs. (43)-(45)
21: else
22: Compute control input by solving Problem 1
23: end if

Pr(∪N
k=1p̂

k
i /∈ Vu,b

i ) ≤ ∑N
k=1 Pr(p̂

k
i /∈ Vu,b

i ) = Nδ. Never-
theless, this bound is over conservative in practice. The real
collision probability of the planned trajectory ismuch smaller
than Nδ (Schmerling and Pavone 2017). Hence, we impose
the collision probability threshold δ for each individual stage
in the context of receding horizon planning, thanks to the
fast re-planning and relatively small displacement between
stages (Luo et al. 2020).

Algorithm 1 summarizes our proposed method for decen-
tralized probabilistic multi-robot collision avoidance, in
which each robot in the system first constructs its B-UAVC,
and then compute control input accordingly to restrain its
motion to be within the B-UAVC.

4.3 Discussion

4.3.1 Uncertainty estimation

For each robot i in the system, to construct its B-UAVC,
the robot needs a) its own position estimation mean p̂i and
uncertainty covariance �i from onboard measurements via
a filter, e.g. a Kalman filter, and b) to know each other robot
j’s position mean p̂i and uncertainty covariance � j . In case
communication is available, such position estimation infor-
mation can be communicated among robots. However, in a
fully decentralized systemwhere there is no communication,
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each robot i will need to estimate other robot j’s position
mean and covariance, denoted by p̃ j and �̃ j , via its own
onboard sensor measurements. In this case, we assume that
robot i’s estimation of robot j’s position mean is the same as
robot j’s own estimation, i.e. p̃ j = p̂ j ; while robot i’s esti-
mation of the uncertainty covariance of robot j is larger than
its own localization uncertainty covariance, i.e. |�̃ j | ≥ |�i |.
This assumption is reasonable in practice since the robot gen-
erally has more accurate measurements of its own position
than other robots in the environment. Then robot i computes
its B-UAVCusing p̂i , �i , p̃ j , and �̃ j . According to the prop-
erties of the best linear separator, this assumption leads that
each robot i always partitions a smaller space when comput-
ing the separating hyperplane with another robot j , which
results in a more conservative B-UAVC to ensure safety for
robot i itself.

4.3.2 Empty B-UAVCs

Taking into account uncertainty, the robots being probabilis-
tic collision-free (Definition 1), i.e., Pr(

∥
∥pi − p j

∥
∥ ≥ 2rs) ≥

1 − δ,∀i, j ∈ {1, . . . , n}, i 	= j , does not guarantee that
the defined B-UAVC Vu,b

i is non-empty. Nevertheless, the

case Vu,b
i being empty is rarely observed in our simulations

and experiments.We handle this situation by decelerating the
robot if its B-UAVC is empty.

5 Simulation results

We now present simulation results comparing our proposed
B-UAVC method with state-of-the-art baselines as well as a
performance analysis of the proposed method in a variety of
scenarios.

5.1 Comparison to the BVCmethod

We first compare our proposed B-UAVC method with the
BVC approach (Zhou et al. 2017) that we extend in two-
dimensional obstacle-free environments with single integra-
tor robots. Both the B-UAVC and BVC methods only need
robot position information to achieve collision avoidance,
in contrast to the well-known reciprocal velocity obstacle
(RVO)method (VanDenBerg et al. 2011)which also requires
robot velocity information to be communicated or sensed.
Comparison between BVC and RVO has been demonstrated
by Zhou et al. (2017) in 2D scenarios, hence in this paper we
focus on comparing the proposed B-UAVC with BVC.

We deploy the B-UAVC and BVC in a 10 × 10m envi-
ronment with 2, 4, 8, 16 and 32 robots forming an antipodal
circle swapping scenario (VanDen Berg et al. (2011)). In this
scenario, the robots are initially placed on a circle (equally

spaced) and their goals are located at the antipodal points
of the circle. We use a circle with a radius of 4.0 m in sim-
ulation. Each robot has a radius of 0.2 m, a local sensing
range of 2.0 m and a maximum allowed speed of 0.4 m/s.
The goal is assumed to be reached for each robot when the
distance between its center and goal location is smaller than
0.1m. To simulate collision avoidance under uncertainty, two
different levels of noise, �1 = diag(0.04 m, 0.04 m)2 and
�2 = diag(0.06 m, 0.06 m)2, are added to the robot position
measurements. Particularly, each robot’s localization uncer-
tainty covariance is �1 and its estimation of other robots’
position uncertainty covariance is �2. The time step used in
simulation is �t = 0.1 s.

In the basic BVC implementation, an extra 10% or 100%
radius buffer is added to the robot’s real physical radius to
account for measurement uncertainty for comparison (Wang
and Schwager 2019). In the B-UAVC implementation, the
collision probability threshold is set as δ = 0.05. Any robot
will stop moving when it arrives at its goal or is involved
in a collision. Both the B-UAVC and BVC methods use the
same deadlock resolution techniques proposed in this paper
(Appendix C). We set a maximum simulation step K = 800
and the collision-free robots that do not reach their goals
within K steps are regarded to be in deadlocks/livelocks.

For each case (number of robots n) and each method, we
run the simulation 10 times. In each single run, we evalu-
ate the following performance metrics: (a) collision rate, (b)
minimum distance among robots, (c) average travelled dis-
tance of robots, and (d) time to complete a single run. The
collision rate is defined to be the ratio of robots colliding over
the total number of robots. Time to complete a single run is
defined to be the time when the last robot reaches its goal.
Note that the metrics (2)(3)(4) are calculated for robots that
successfully reach their goal locations. Finally, statistics of
10 instances under each case are presented.

The simulation results are presented in Fig. 5. In all runs,
no deadlocks are observed. In terms of collision avoidance,
both the B-UAVC approach and BVC with additional 100%
robot radius achieve zero collision in all runs. The BVCwith
only 10% robot radius leads to collisions when the total num-
ber of robots gets larger. In particular, when there are 32
robots an average of 28% robots collide, as shown in Fig.
5a. While the BVC with 100% additional robot radius can
also achieve zero collision rate as our proposed B-UAVC,
it is more conservative and less efficient. In average, the B-
UAVC saves 10.1% robot travelled distance (Fig. 5c) and
14.4% time for completing a single run (Fig.5d) comparing
to the BVC with additional 100% robot radius.

Remark 6 The “BVC + X%” is a heuristic way to handle
uncertainty. The above simulation results show that if X is
too small, then it cannot ensure safety; while if X is too
large, the results will be very conservative and less efficient.
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(a) (b)

(c) (d)

Fig. 5 Evaluation of the antipodal circle scenariowith varying numbers
of single-integrator robots. The a collision rate, bminimum distance, c
travelled distance and d complete time are shown. Lines denote mean
values and shaded areas around the lines denote standard deviations
over 10 repetitions for each scenario

So generally reasoning about individual uncertainties using
the proposedB-UAVCmethodwill performbetter than deter-
mining an extra X% buffer.

Remark 7 In some cases we can design such an X that it
will have the same results as the B-UAVC method. Consider
the case where �i = � j = σ 2 I . According to Remark 1,
the best linear separator coincides with the separating hyper-
plane computed by the BVC method, whose parameters are
denoted by ai j and bi j . The hyperplane parameters can be fur-
ther normalized tomake

∥
∥ai j

∥
∥ = 1. In this case, ourB-UAVC

and the BVC have the same safety radius buffer βr
i = rs .

Given a collision probability threshold δ, our B-UAVC fur-
ther introduces another buffer to handle uncertainty

βδ
i =

√

2aTil�iail · erf−1(2
√
1 − δ − 1)

= σ
√
2 · erf−1(2

√
1 − δ − 1).

If we choose an extra safety buffer X% such that

X% · rs = σ
√
2 · erf−1(2

√
1 − δ − 1),

then the results of the “BVC + X%” method are the same
as our B-UAVCmethod. However, our B-UAVCmethod can
handle general cases where it is hard to design an X% to
always achieve the same level of performance.

5.2 Performance analysis

We then study the effect of collision probability threshold on
the performance of the proposedB-UAVCmethod. Similarly,
we deploy the B-UAVC in a 10 × 10m environment with 2,
4, 8, 16 and 32 robots in obstacle-free and cluttered environ-
ments with 10% obstacle density. In the obstacle-free case
for each number of robots n, 10 scenarios are randomly gen-
erated to form a challenging asymmetric swapping scenario
(Serra-Gómez et al. 2020), indicating that the environment
is split into n sections around the center and each robot is
initially randomly placed in one of them while required to
navigate to its opposite section around the center. In the
obstacle-cluttered case, ten random moving scenarios are
simulated for each different number of robots in which robot
initial positions and goal locations are randomly generated.
Figure 6 shows a sample run of the scenario with eight robots
and ten obstacles. We then run each generated scenario five
times given a parameter setting (collision probability thresh-
old). The robots have the same radius and maximal speed as
in Sect. 5.1. Localization noise with zero mean and covari-
ance � = diag(0.06 m, 0.06 m)2 is added. For evaluation of
performance, we focus on the robot collision rate, the robot
deadlock rate, and the minimum distance among successful
robots.

We evaluate the performance of B-UAVC with different
levels of collision probability threshold: δ = 0.05, 0.10,
0.20 and 0.30. The simulation results are presented in Fig.
7. In the top row of the figure, we consider the collision
rate among robots. The result shows that with a roughly
small collision probability threshold δ = 0.05, 0.10, 0.20,
no collisions are observed in both obstacle-free asymmetric
swapping and obstacle-cluttered random moving scenarios,
indicating that the B-UAVC method maintains a high level
of safety. However, when δ is set to 0.3, the collision rate
among robots increase dramatically, in particular when the
number of robots is large. For example, in the asymmetric
swapping scenario with 32 robots, there are 68.75% robots
involve in collisions in average. In the bottom row of the fig-
ure, the minimum distance among robots are compared. The
result shows that with smaller threshold, the minimum dis-
tance will be a little bit larger. The reason is that robots with a
smaller threshold will have more conservative behavior and
have smaller B-UAVCs during navigation.

5.3 Simulations with quadrotors in 3D space

We evaluate our receding horizon planning algorithm with
quadrotors in 3D space and compare our method with one
of the state-of-the-art quadrotor collision avoidance meth-
ods: the chance constrained nonlinearMPC (CCNMPC)with
sequential planning (Zhu and Alonso-Mora 2019b), which
requires communication of future planned trajectories among
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(a) (b) (c) (d) (e)

Fig. 6 A sample simulation run of the random moving scenario with 8 robots and 10% obstacle density. The robot initial and goal locations are
marked in circle disks and solid squares. Grey boxes are static obstacles. The B-UAVCs are shown in shaded patches with dashed boundaries

(a) (b)

(c) (d)

Fig. 7 Effect of the collision probability threshold on the method per-
formance. The a–b collision rate, and c–d minimum distance among
robots are shown. The evaluation has 2, 4, 8, 16, and 32 robot cases
with 10 instances each. The left column shows results of the asymmet-
ric swapping scenario and the right column shows results of the random
moving scenario with 10% obstacle density. Lines denote mean values
and shaded areas around the lines denote standard deviations over 50
runs

robots. For both methods, we adopt the same quadrotor
dynamics model for planning. The quadrotor radius is set
as r = 0.3 m and the collision probability threshold is set to
δ = 0.03. The time step is �t = 0.05 s and the total num-
ber of steps is N = 20 resulting in a planing horizon of one
second.

As shown in Fig. 8, we simulate with six quadrotors
exchanging their initial positions in an obstacle-free 3D
space. Each quadrotor is under localization uncertainty � =
diag(0.04 m, 0.04 m, 0.04 m)2. For each method, we run
the simulation 10 times and calculate the minimum distance
among robots. Both our B-UAVCmethod and the CCNMPC
method successfully navigates all robots without collision.
An averageminimumdistance of 0.72m is observed in ourB-
UAVC method, while the one of CCNMPC is 0.62 m, which

(a) (b)

Fig. 8 Simulation with six quadrotors exchanging positions in 3D
space. Solid lines represent executed trajectories of the robots. aResults
of our B-UAVC method. b Results of the CCNMPC method (Zhu and
Alonso-Mora 2019b)

indicates our method is more conservative than the CCN-
MPC. However, the CCNMPC is centralized and requires
robots to communicate their future planned trajectories with
each other, while the B-UAVCmethod only needs robot posi-
tions to be shared or sensed.

6 Experimental validation

In this section we describe the experimental results with a
teamof real robots. A video demonstrating the results accom-
panies this paper.

6.1 Experimental setup

We test our proposed approach on both ground vehicles
and aerial vehicles in an indoor environment of 8m (L) ×
3.4m (W) × 2.5m (H). Our ground vehicle platform is the
Clearpath Jackal robot and our aerial vehicle platform is the
Parrot Bebop 2 quadrotor. For ground vehicles, we apply the

123



Autonomous Robots

(a) (b) (c) (d)

Fig. 9 Collision avoidance with two differential-drive robots and two
static obstacles. The two robots are required to swap their positions.
Top row: Snapshots of the experiment. Bottom row: Trajectories of

the robots. Robot initial and goal positions are marked in circle disks
and solid squares, respectively. Grey boxes are static obstacles. The
B-UAVCs are shown in shaded patches with dashed boundaries

controller designed for differential-drive robots as shown in
Sect. 4.1.3. For quadrotors, the receding horizon trajectory
planner presented in Sect. 4.2 is employed. The quadrotor
dynamics model f in Problem 1 is given in Appendix D.
For solving Problem 1 which is a nonlinear programming
problem, we rely on the solver Forces Pro (Zanelli et al.
2020) to generate fast C code to solve it. Both types of robots
allow executing control commands sent via ROS. The exper-
iments are conducted in a standard laptop (Quadcore Intel i7
CPU@2.6 GHz) which connects with the robots via WiFi.

An external motion capture system (OptiTrack) is used to
track the pose (position and orientation) of each robot and
obstacle in the environment running in real time at 120 Hz,
which is regarded as the real (ground-truth) pose. To vali-
date collision avoidance under uncertainty, we thenmanually
add Gaussian noise to the real pose data to generate noisy
measurements. Taking the noisy measurements as inputs, a
standard Kalman filter running at 120 Hz is employed to esti-
mate the states of the robots and obstacles. In all experiments,
the added position measurements noise to the robots is zero
mean with covariance �′

i = diag(0.06 m, 0.06 m, 0.06 m)2,
which results in an average estimated position uncertainty
covariance �i = diag(0.04 m, 0.04 m, 0.04 m)2. The added
noise to the obstacles is zero mean with covariance �′

o =
diag(0.03 m, 0.03 m, 0.03 m)2 and the resulted estimated
positionuncertainty covariance is�o = diag(0.02m, 0.02m,

0.02 m)2. The collision probability threshold is set as δ =
0.03 as in previous works (Zhu and Alonso-Mora 2019a, b).

6.2 Experimental results

6.2.1 Experiments with differential-drive robots in 2D

We first validated our proposed approach with two
differential-drive robots. In the experiment, two robots are

(a) (b)

Fig. 10 Experimental results with two differential-drive robots. a His-
togram of inter-robot distance. bHistogram of distance between robots
and obstacles

required to swap their positions while avoiding two static
obstacles in the environment. The robot safety radius is set as
0.3m.We run the experiment four times. The two robots suc-
cessfully navigated to their goals while avoiding each other
as well as the obstacles in all runs.

Figure 9 presents the results of one run. The top row of
the figure shows a series of snapshots during the experiment,
while the bottom row shows the robots’ travelled trajectories
and their corresponding B-UAVCs. It can be seen that each
robot always keeps a very safe region (B-UAVC) taking into
account its localization and sensing uncertainties. In Fig. 10
we cumulate the distance between the two robots (Fig. 10a)
and distance between the robots and obstacles (Fig. 10b)
during the whole experiments. It can be seen that a minimum
safe inter-robot distance of 0.6 m and a safe robot-obstacle
distance of 0.3 m were maintained over all the runs.

6.2.2 Experiments with quadrotors in 3D

We then performed experiments with a team of quadrotors in
two scenarios: with and without static obstacles. The quadro-
tor safety radius is set as 0.3 m.
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Fig. 11 Collision avoidance with two quadrotors and two static obsta-
cles. The two quadrotors are required to swap their positions. Top row:
Snapshots of the experiment. Bottom row: Trajectories of the robots.

Quadrotor initial and goal positions aremarked in circles and diamonds.
Solid lines represent travelled trajectories and dashed lines represent
planned trajectories

Fig. 12 Collision avoidance with three quadrotors in a shared workspace. Top row: Snapshots of the experiment. Bottom row: Trajectories of the
robots

Scenario 1
Two quadrotors swap their positions while avoiding two

static obstacles in the environment. We performed the swap-
ping action four times and Fig. 11 presents one run of the
results.

Scenario 2
Three quadrotors fly in a confined space while navigating

to different goal positions. The goal locations are randomly
chosen such that the quadrotors’ directions from initial posi-
tions towards goals are crossing. New goals are generated
after all quadrotors reach their current goals. We run the
experiment for a consecutive two minutes within which the
goal of each quadrotor has been changed eight times.

Figure 12 presents a series of snapshots during the exper-
iment. Figure 13 cumulates the inter-quadrotor distance in
the experiments of both scenarios, and the distance between
quadrotors and obstacles in Scenario 1. It can be seen that
a minimum safety distance of 0.6 m among quadrotors and
that of 0.3mbetween quadrotors and obstacleswere achieved
during the whole experiments.

6.2.3 Experiments with heterogeneous teams of robots

We further tested our approach with one ground differential-
drive robot and one quadrotor to show that it can be applied
to heterogeneous robot teams. In the experiment, the ground
robot only considers its motion and the obstacles in 2D (the
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(a) (b)

Fig. 13 Experimental results with two/three quadrotors with/without
obstacles. a Histogram of inter-robot distance. b Histogram of distance
between robots and obstacles

ground plane) while ignoring the flying quadrotor. In con-
trast, the quadrotor considers both itself location and the
ground robot’s location as well as obstacles in 3D, in which
it assumes the ground vehicle has a height of 0.6 m. To this
end, the B-UAVC of the ground robot is a 2D convex region
while that of the quadrotor is a 3D one.

Figure 14 shows the results of the experiment. It can be
seen that the two robots successfully reached their goals
while avoiding each other and the static obstacles. Particu-
larly at t = 4 s, the quadrotor actively flies upward to avoid the
ground robot. In Fig. 15 we cumulate the distance between
the two robots and the distance between robots and obstacles,
which show that a safe inter-robot clearance of 0.6m and that
of 0.3 m between robots and obstacles were maintained dur-
ing the experiment.

7 Conclusion

In this paper we presented a decentralized and commu-
nication free multi-robot collision avoidance method that
accounts for robot localization and sensing uncertainties.
By assuming that the uncertainties are according to Gaus-
sian distributions,we compute a chance-constrained buffered
uncertainty-aware Voronoi cell (B-UAVC) for each robot
among other robots and static obstacles. The probability
of collision between robots and obstacles is guaranteed to
be below a specified threshold by constraining each robot’s
motion to bewithin its correspondingB-UAVC.We apply the
method to single-integrator, double-integrator, differential-
drive, and general high-order dynamicalmulti-robot systems.
In comparison with the BVC method, we showed that our
method achieves robust safe navigation among a larger num-
ber of robots with noisy position measurements where the
BVC approach will fail. In simulation with a team of quadro-
tors, we showed that our method achieves safer yet more
conservative motions compared with the CCNMPC method,
which is centralized and requires robots to communicate
future trajectories. We also validated our method in exten-
sive experiments with a team of ground vehicles, quadrotors,
and heterogeneous robot teams in both obstacle-free and
obstacles-clutter environments. Through simulations and
experiments, two limitations of the proposed approach are
also observed. The approach can achieve a high level of safety
under robot localization and sensing uncertainty, however, it
also leads to conservative behaviours of the robots, particu-
lary for agile vehicles (quadrotors) in confined space. And,
since the approach is local and efficient inter-robot coordi-
nation is not well investigated, deadlocks and livelocks may

Fig. 14 Collision avoidance with a heterogeneous team of a differential-drive robot and a quadrotor. Top row: Snapshots of the experiment. Bottom
row: Trajectories of the robots
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(a) (b)

Fig. 15 Experimental results with a ground differential-drive robot and
a quadrotor. a Histogram of inter-robot distance. b Histogram of dis-
tance between robots and obstacles

occure for large numbers of robots moving in complex envi-
ronments.

For futurework, we plan to employ the proposed approach
as a low-level robust collision-avoidance controller, and
incorporate it with other higher-level multi-robot trajectory
planning and coordination methods to achieve more efficient
multi-robot navigation.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-021-10029-
2.

Appendix

A Proofs of Lemmas and Theorems

A.1 Proof of Lemma 1

Proof First we can write the random variable do in an equiv-
alent form do = �′

od
′
o, where d′

o ∼ N (0, I ) ∈ R
d and

�′
o�

′T
o = �o. Note that d′T

o d′
o is a chi-squared random vari-

able with d degrees of freedom. Hence, there is

Pr(d′T
o d′

o ≤ F−1(1 − ε)) = 1 − ε.

Also note that �−1
o = (�′

o�
′T
o )−1 = �′T−1

o �′−1
o , thus

dTo �−1
o do = d′T

o �′T
o �′T−1

o �′−1
o �′

od
′
o = d′T

o d′
o. Hence,

it follows that Pr(dTo �−1
o do ≤ F−1(1 − ε)) = 1 − ε.

Thus, let Do = {d : dT�−1
o d ≤ F−1(1 − ε)}, there is

Pr(do ∈ Do) = 1 − ε. ��

A.2 Proof of Theorem 1

Proof We need to prove that the set So contains the set Oo

with probability 1 − ε. It is equivalent to that for any point
in Oo, the set So contains this point with probability 1 − ε.
Recall the definition of Oo, every y ∈ Oo can be written as
x + do with some x ∈ Ôo. Also note the definition So =
{x + d | x ∈ Ôo,d ∈ Do}. Hence the probability that So

contains y is equal to the probability that Do contains do.
That is, Pr(y ∈ So) = Pr(do ∈ Do) = 1−ε,∀y ∈ Oo. Thus,
Pr(Oo ⊆ So) = 1 − ε. So is a maximal ε-shadow of Oo.

��

B Procedure to compute the best linear sepa-
rator between two Gaussian distributions

The objective is to solve the following minimax problem:

(ai j , bi j ) = arg minmax
ai j∈Rd ,bi j∈R

(Pri ,Pr j ),

where

Pri (aTi jp > bi j ) = 1 − �((bi j − aTi j p̂i )/
√

aTi j�iai j ),

Pr j (aTi jp ≤ bi j ) = 1 − �((aTi j p̂ j − bi j )/
√

aTi j� jai j ).

Let u1 = bi j−aTi j p̂i
√

aTi j�iai j
, u2 = aTi j p̂ j−bi j

√

aTi j� jai j
. As the function �(·) is

monotonic, the original minimax problem is equivalent to

(ai j , bi j ) = arg maxmin
ai j∈Rd ,bi j∈R

(u1, u2).

We can write u1 in the following form for a given u2,

u1 =
aTi j p̂i j − u2

√

aTi j� jai j
√

aTi j�iai j
,

where p̂i j = p̂ j − p̂i . For each given u2, u1 needs to be
maximized. Hence, we can differentiate the above equation
with respect to ai j and set the derivative to equal to zero,
which leads to

ai j = [t�i + (1 − t)� j ]−1p̂i j , (48)

where t ∈ (0, 1) is a scaler. Thus according to definition of
u1 and u2, we have

bi j = aTi j p̂i + taTi j�iai j = aTi j p̂ j − (1 − t)aTi j� jai j . (49)

It is proved that u1 = u2 must be hold for the solution of
the minimax problem (Anderson and Bahadur 1962), which
leads to

aTi j [t2�i − (1 − t)2� j ]ai j = 0. (50)

Thus, one can first solve for t by combining Eqs. (48) and
(50) via numerical iteration efficiently. Then ai j and bi j can
be computed using Eqs. (48) and (49).
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C Deadlock resolution heuristic

We detect and resolve deadlocks in a heuristic way in
this paper. Let ‖�pi‖ be the position progress between
two consecutive time steps of robot i , and �pmin a prede-
fined minimum allowable progress distance for the robot
in ndead time steps. If the robot has not reached its goal
and �ndead ‖�pi‖ ≤ �pmin, we consider the robot as in a
deadlock situation. For the one-step controller, each robot
must be at the “projected goal” g∗

i when the system is in a
deadlock configuration (Zhou et al. 2017). In this case, each
robot chooses one of the nearby edges within its B-UAVC
to move along. For receding horizon planning of high-order
dynamical systems, the robot may get stuck due to a local
minima of the trajectory optimization problem. In this case,
we temporarily change the goal location gi of each robot by
clockwise rotating it along the z axis with 90◦, i.e.

gi,temp = RZ (−90◦)(gi − p̂i ) + p̂i , (51)

where RZ denotes the rotation matrix for rotations around
z-axis. This temporary rotation will change the objective of
the trajectory optimization problem, thus helping the robot to
recover from a local minima. Once the robot recovers from
stuck, its goal is changed back to gi .

Similar to most heuristic deadlock resolutions, the solu-
tions presented here can not guarantee that all robots will
eventually reach their goals since livelocks (robots continu-
ously repeat a sequence of behaviors that bring them from
one deadlock situation to another one) may still occur.

DQuadrotor dynamics model

We use the Parrot Bebop 2 quadrotor in our experiments. The
state of the quadrotor is

x = [pT , vT , φ, θ, ψ]T ∈ R
9,

where p = [px , py, pz]T ∈ R
3 is the position, v =

[vx , vy, vz]T ∈ R
3 the velocity, and φ, θ, ψ the roll, pitch

and yaw angles of the quadrotor. The control inputs to the
quadrotor are

u = [φc, θc, vzc , ψ̇c]T ∈ R
4,

where φc and θc are commanded roll and pitch angles, vzc
the commanded velocity in vertical z direction, and ψ̇c the
commanded yaw rate.

The dynamics of the quadrotor position and velocity are

⎧

⎪⎨

⎪⎩

ṗ = v,

[

v̇x

v̇y

]

= RZ (ψ)

[

tan θ

− tan φ

]

g −
[

kDx vx

kDyvy

]

,

v̇z = 1
τvz

(kvzvzc − vz),

where g = 9.81 m/s2 is the Earth’s gravity, RZ (ψ) =
cosψ − sinψ

sinψ cosψ
is the rotation matrix along the z-body axis,

kDx and kDy the drag coefficient, kvz and τvz the gain and
time constant of vertical velocity control.

The attitude dynamics of the quadrotor are

⎧

⎪⎪⎨

⎪⎪⎩

φ̇ = 1
τφ

(kφφc − φ),

θ̇ = 1
τθ

(kθ θc − θ),

ψ̇ = ψ̇c,

where kφ, kθ and τφ, τθ are the gains and time constants of
roll and pitch angles control respectively.

We obtained the dynamics model parameters kDx = 0.25,
kDy = 0.33, kvz = 1.2270, τvz = 0.3367, kφ = 1.1260,
τφ = 0.2368, kθ = 1.1075 and τθ = 0.2318 by collecting
real flying data and performing system identification.
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