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Simultaneous nitrification and phosphate removal by

bioaugmented aerobic granules treating a fluoroorganic

compound

Anouk F. Duque, Vânia S. Bessa, Udo van Dongen, Merle K. de Kreuk ,

Raquel B. R. Mesquita, António O. S. S. Rangel,

Mark C. M. van Loosdrecht and Paula M. L. Castro
ABSTRACT
The presence of toxic compounds in wastewater can cause problems for organic matter and nutrient

removal. In this study, the long-term effect of a model xenobiotic, 2-fluorophenol (2-FP), on

ammonia-oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and phosphate accumulating

organisms (PAO) in aerobic granular sludge was investigated. Phosphate (P) and ammonium (N)

removal efficiencies were high (>93%) and, after bioaugmentation with 2-FP degrading strain FP1, 2-

FP was completely degraded. Neither N nor P removal were affected by 50 mg L�1 of 2-FP in the feed

stream. Changes in the aerobic granule bacterial communities were followed. Numerical analysis of

the denaturing gradient gel electrophoresis (DGGE) profiles showed low diversity for the ammonia

monooxygenase (amoA) gene with an even distribution of species. PAOs, including denitrifying PAO

(dPAO), and AOB were present in the 2-FP degrading granules, although dPAO population decreased

throughout the 444 days reactor operation. The results demonstrated that the aerobic granules

bioaugmented with FP1 strain successfully removed N, P and 2-FP simultaneously.

Key words | 2-fluorophenol (2-FP), aerobic granular sludge, ammonia-oxidizing bacteria (AOB),

microbial population dynamics, nitrite oxidizing bacteria (NOB), phosphate

accumulating organisms (PAO)
HIGHLIGHTS

• Inoculation with strain FP1 led to 2-FP removal within the aerobic phase.

• Nitrifiers and PAOs activities were not affected by 2-fluorophenol.

• Bioaugmented granules with FP1 were able to simultaneously remove N, P and 2-FP.

• Granular sludge is promising for the treatment of wastewaters containing toxics.
This is an Open Access article distributed under the terms of the Creative

Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying

and redistribution for non-commercial purposes with no derivatives,

provided the original work is properly cited (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

doi: 10.2166/wst.2021.142

om http://iwaponline.com/wst/article-pdf/83/10/2404/891877/wst083102404.pdf
HE UNIVERSITEIT DELFT user
21
Anouk F. Duque†

Vânia S. Bessa
Raquel B. R. Mesquita
António O. S. S. Rangel
Paula M. L. Castro (corresponding author)
Universidade Católica Portuguesa, CBQF – Centro
de Biotecnologia e Química Fina – Laboratório
Associado, Escola Superior de Biotecnologia,

4169-005 Porto,
Portugal
E-mail: plcastro@porto.ucp.pt

Udo van Dongen
Mark C. M. van Loosdrecht
Department of Biotechnology,
Delft University of Technology,
van der Maasweg 9,
2629 HZ Delft,
The Netherlands

Merle K. de Kreuk
Section Sanitary Engineering, Department of Water
Management,

Delft University of Technology,
Stevinweg 1,
2628 CN, Delft,
The Netherlands

†Present address: UCIBIO-REQUIMTE,
Departamento de Química,
Faculdade de Ciências e Tecnologia,
Universidade NOVA de Lisboa,
2829-516 Caparica, Portugal
INTRODUCTION
Aerobic granular sludge is a novel technology for the bio-
logical treatment of wastewater. It has several advantages

over activated sludge, such as excellent settling properties,
high biomass retention and the ability to deal with high
organic loading rates and to perform simultaneously diverse
biological processes, such as chemical oxygen demand

(COD), N and P removal (Winkler et al. ; Nancharaiah
& Sarvajith ). Aerobic granulation has been applied for
the treatment of a wide variety of wastewaters, including

domestic and industrial wastewaters (Amorim et al. ;
Nancharaiah & Sarvajith ).

Several industries are dealing with a variety of toxic com-
pounds in their wastewater. Xenobiotics can inhibit the
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Figure 1 | Aerobic granular sludge inoculum used for the start-up of the SBR. The bar size

is 1 mm.
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biological processes of the plants treating these industrial

wastewaters, especially nitrification and phosphate removal.
Nitrification can be affected by several environmental factors
like pH, temperature, dissolved oxygen concentration, toxic

compounds, available substrate, and product inhibition
(Antoniou et al. ). Previous research showed that
microbial granules seem to be more resistant to wastewater
containing toxic compounds than suspended microbial

sludge (Liu et al. , ). There are a few studies on the
influence of phenol on nitrification by microbial granules.
Liu et al. () has reported that for phenol concentrations

up to 10 mg L�1, the nitrifying activity of aerobic granules
was recovered after phenol degradation. Furthermore, Liu
et al. () proposed that the granular structure could bene-

ficially protect microbial cells from phenol toxicity, mainly at
a longer exposure time. Generally, the latter studies report
that nitrifying bacteria embedded in microbial granules
might have a better ability to resist the shock of toxic com-

pounds in wastewaters than suspended nitrifying bacteria
(Fang ; Liu et al. , ).

As for nitrification, the biological phosphate removal

process is also affected by some environmental and operat-
ing factors, namely temperature, dissolved oxygen, carbon
sources, pH, among other parameters (Mulkerrins et al.
). To date, several explanations for the instability of
the biological phosphate removal process have been
reported, namely: (i) competition with glycogen accumulat-

ing organisms (GAO) (López-Vázquez et al. ), (ii)
intrusion of nitrite and/or nitrate into anaerobic phase
(Puig et al. ), and (iii) excessive aeration (Lopez et al.
). The effect of highly recalcitrant compounds on simul-

taneous biological phosphate removal and nitrification
processes by granular sludge has not been yet reported.
Thus, it is of practical interest to investigate the effect of

xenobiotic compounds on aerobic granule performance.
Fluorinated compounds have significant biological effects
as enzyme inhibitors, modifiers of cell–cell communication,

and they may disrupt membrane transport and processes
for energy generation (Key et al. ). They are widely
used in pharmaceutical and agricultural and other industrial

applications, such as polymers and liquid crystals (Clark
et al. ; Natarajan et al. ). The stability that makes
fluorinated organics interesting for commercial use also
makes them ubiquitous environmental contaminants due to

their recalcitrance, tending to persist and accumulate in the
environment (Key et al. ; Moody & Field ;
McCulloch ). A granular sludge sequencing batch reac-

tor (SBR) bioaugmented with a specialized strain capable
of degrading 2-FP as sole source of carbon and energy,
://iwaponline.com/wst/article-pdf/83/10/2404/891877/wst083102404.pdf
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named Rhodococcus sp. strain FP1, was previously shown

to perform COD removal and 2FP degradation when treating
a synthetic wastewater, as previously described by Duque
et al. (). Moreover, Ramos et al. () have demonstrated

simultaneous partial nitrification and 2FP biodegradation
using aerobic granules bioaugmented with Rhodococcus sp.
Strain FP1. In this study, the simultaneous nitrification, phos-
phate and 2-FP removal processes by bioaugmented aerobic

granular sludge, as well as the microbial community involved
in such processes, was investigated. The dynamics of the
nitrifying and phosphate and glycogen accumulating

microbial community present on aerobic granules was inves-
tigated using fluorescence in situ hybridization (FISH) and
denaturing gradient gel electrophoresis (DGGE) analysis of

the ammonia monooxygenase (amoA) gene.
MATERIALS AND METHODS

Reactor set-up and operation

A laboratory-scale SBR with a working volume of 2.5 L,
110 cm height and an internal diameter of 6.5 cm was estab-
lished and operated (Duque et al. ). Air was introduced
at the bottom of the reactor (4 L min�1). The dissolved

oxygen (DO) was measured as percentage of the oxygen sat-
uration concentration (100%¼ 9.1 mg L�1). The experiment
was conducted with no oxygen control (DO 100%). The pH

was maintained at 7.0± 0.8 by dosing 1 M NaOH or 1 M
HCl. Biological phosphate removing granular sludge
(500 ml wet granules) collected from a pilot plant treating

sewage in the Netherlands (Epe wastewater treatment
plant) was used to inoculate the reactor (Figure 1).
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The SBR operation was divided in seven different

phases as previously described by Duque et al. () and
here summarized in Table 1.

Briefly, the reactor was operated in successive cycles of

3 h (phases I and II) or 4 h (phases VI and VII) or 8 h (phase
V) or 12 h (phases III and IV). Each cycle consisted of
60 min influent feeding (which was introduced in the
bottom of the reactor), 112 (phases I and II) or 172

(phases VI and VII) or 412 (phase V) or 652 (phases III
and IV) min aeration, 3 min settling and 5 min effluent
withdrawal. The volume exchange ratio per cycle was ca.

40% (2-FP concentration inside the bioreactor was diluted
to a concentration of 19 or 38 mg L�1). Acetate was
used as the growth substrate at a volumetric loading rate

of 3.9 g L�1 d�1. The settling time was chosen such that
only particles with a settling velocity larger than 6 m h�1

were effectively retained in the reactor. Excess sludge
(including accumulated cell internally stored phosphate)

was removed at the same time as effluent discharge
occurred. The solid retention time (SRT) was calculated
based on the suspended solids concentration in the dis-

charged effluent and the sludge content of the reactor. The
calculated SRT in the reactor was 30 days on average.
Between phases II and III, the reactor was bioaugmented

with a specialized bacterial strain able to degrade 2-FP pre-
viously isolated in our laboratories (Duque et al. ), a
Rhodococcus sp. strain FP1 (LMG 26251; DSM 45581).

As previously described by Duque et al. (), the reactor
was inoculated with 1.25 L of suspended FP1 pure culture
with an optical density at 600 nm of 0.8. As bioaugmenta-
tion with the specialized strain proved successful in terms
Table 1 | Operation conditions applied to the SBR

Parameter I II

Days of operation 99 109

FP
1
ad

d
it
io
n

g

Cycle length (h) 3 3

HRTa 7.9 7.9

CODb (mg L�1) 330 374

2-FP OLRc (kg m�3 d�1) – 0.075f

NH4
þ-N VLRd (g L�1 d�1) 0.37 0.37

PO4
3�-P VLRe (g L�1 d�1) 0.15 0.15

aHRT – hydraulic residence time.
bCOD – Theoretical influent chemical oxygen demand values per cycle.
c2-FP OLR – 2-fluorophenol organic loading rate.
dNH4

þ-N VLR – ammonia-nitrogen volumetric loading rate.
ePO4

3--P VLR – phosphate-phosphorous volumetric loading rate.
fOrganic shocks loadings with 2-FP applied 1 cycle/2 days.
gBioaugmentation with Rhodococcus sp. strain FP1.
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of 2-FP removal, simultaneous removal of N and P was sub-

sequently investigated (Phases VI and VII).

SBR synthetic industrial wastewater

As previously described by Duque et al. (), the SBR syn-

thetic industrial wastewater consisted of two different media
with the following compositions: (A) 63 mM sodium acetate,
3.6 mM magnesium sulphate, and 4.7 mM potassium chlor-

ide; and (B) 35.4 mM ammonium chloride, 4.2 mM di-
sodium hydrogen phosphate, 2.1 mM potassium dihydrogen
phosphate, and 10 mL L�1 trace element solution according
to Vishniac & Santer (). During fluoroorganic shock

loadings, 2-FP was added to medium A (2.38 mM in
phases II, III and VII and 4.76 mM in phases IV to VI). In
each cycle, 89 mL of each medium were dosed together

with 772 mL of tap water to the SBR.

Analytical methods

Ammonium, nitrate and nitrite concentrations were assessed

by sequential injection analysis (SIA) as described by Segundo
et al. () and Mesquita et al. (), respectively. Phosphate
concentration of filtered samples was determined by flow

injection analysis (FIA) as described by Torres et al. ().
Total suspended solids (TSS) and volatile suspended

solids (VSS) were determined according to Standard

Method 2540 (APHA ).
The DO concentration in the reactor was measured

online with a DO-sensor (InPro 6820, Mettler-Toledo) as
percentage of the oxygen saturation concentration
III IV V VI VII

12 6 36 133 43

12 12 8 4 4

31.6 31.6 21.1 10.5 10.5

374 418 418 418 374

0.019 0.037 0.056 0.112 0.056

0.09 0.09 0.14 0.28 0.28

0.04 0.04 0.05 0.11 0.11
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(100%¼ 9.1 mg L�1). The pH was monitored online using a

pH-electrode (InPro 3030, Mettler-Toledo).
2-FP was analyzed by high performance liquid chromato-

graphy (HPLC), on a System Gold 126 (Beckman Coulter,

Fullerton, USA) with a LiChroCART 25-4 LiChrospher 100
RP-18 reversed-phase column, 5 μm particle size (Merck,
Darmstadt, Germany) as described by Duque et al. ().

Calculations

The theoretical NH4
þ-N and PO4

3--P concentrations related to
the beginning of the SBR cycle (time 0) were calculated by
dividing the amount of phosphate or nitrogen present in
the influent media (mg PO4

3--P or mg NH4
þ-N) by the reactor

working volume (2.5 L).

Aerobic granular sludge microbial community analysis

Sampling of aerobic granular sludge

Aerobic granular sludge samples (about 5 g of granules)
were collected during the aeration phase in order to achieve
a representative sample of the biomass present in the reac-

tor. The granules were crushed, using a pottering tube and
a pestle. The resulting bacterial suspensions were used for
DNA extraction for DGGE analysis. The samples for

DGGE analysis were selected considering whole reactor
operation, representing each operating phase (Table 2).

DNA extraction

The genomic DNA extraction of crushed aerobic granules

was performed using the UltraClean Microbial DNA
Table 2 | Sample selection criteria for DGGE analysis

Sampling
day (d) Operating phase

d100 II – Before the first feeding with 0.22 mM 2-FP
(end phase I)

d114 II – After intermittent 0.22 mM 2-FP organic shocks

d210 II – Before bioaugmentation with FP1 (end phase II)

d217 III – End of feeding with 0.22 mM 2-FP (end phase III)

d227 IV – End of feeding with 0.44 mM 2-FP (end phase IV)

d246 V – Feeding with 0.44 mM 2-FP, 8 h cycles

d267 VI – End of 8 h cycles (end phase V)

d301 VI – Feeding with 0.44 mM 2-FP, 4 h cycles

d408 VII – Feeding with 0.22 mM 2-FP, 4 h cycles

://iwaponline.com/wst/article-pdf/83/10/2404/891877/wst083102404.pdf
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Isolation Kit (MO BIO Laboratories, Inc., USA) according

to the manufacturer’s instructions. The extracted DNA was
kept at �20 �C until used for denaturing gradient gel electro-
phoresis (DGGE).

Polymerase chain reaction (PCR) of the amoA gene
fragment

The gene encoding the active site of ammonia monooxygen-
ase (amoA) fragments was amplified using the primer set
amoA-1F-GC and amoA-2R (Rotthauwe et al. ). Ampli-

fication was performed in 50 μl reaction mixtures using a
Bio-Rad iCycler Thermal Cycler (Bio-Rad Laboratories,
Richmond, CA, USA). Each PCR reaction mixture con-

tained 1× PCR buffer (Promega, USA), 2 mM MgCl2,
0.3 mg L�1 bovine serum albumin (BSA), 200 μM of each
nucleotide, 50 pmol of each primer, 2 U Taq polymerase

(Promega, USA), and 1–20 ng of purified DNA. The PCR
conditions were as described previously (Hornek et al.
). Double PCR was performed using as the template
2 μl of the DNA amplicon obtained after the first amplifica-

tion round and using the same primers and conditions
applied in the first PCR amplification.

DGGE

PCR-amplified amoA gene fragments were separated by

DGGE using a DCode™ Universal Mutation Detection
System (Bio-Rad Laboratories, Richmond, CA, USA). The
PCR products containing ca. 300 ng of DNA were loaded
onto 6% (w/v) polyacrylamide gels (37.5:1, acrylamide:bisa-

crylamide) in 0.5× Tris-acetate-EDTA (TAE) buffer (20 mM
Tris-acetate, pH 7.4, 10 mM sodium acetate, 0.5 mM Na2-
EDTA) using a denaturing gradient ranging from 20% to

80% (100% denaturant contains 7 M urea and 40% forma-
mide). Electrophoresis was performed at 60 �C in 1× TAE
buffer, initially at 20 V (15 min) and then at 75 V (960 min).

The gels were stained in a 10× GelGreen Nucleic Acid
Stain solution (Biotium Inc., USA) in 0.1 M NaCl. The
DGGE images were acquired using a Safe Imager™ Blue-

Light Transilluminator (Invitrogen™, USA) and a microDOC
gel documentation system (Cleaver Scientific Ltd, UK).

DGGE profiles were analyzed using GelCompar® II soft-
ware (VERSION 4.6; Applied Maths, Sin-Martens-Latem,

Belgium). Dendrograms were generated using the unweighted
pair group method with arithmetic mean (UPGMA). Every
gel contained three lanes with a standard of four bands for

internal and external normalization and as an indication of
the quality of the analysis. Numerical analysis of DGGE
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profiles was performed using two indexes, diversity (H) (Shan-

non & Weaver ), and equitability (E) (Pielou ).
Fluorescence in situ hybridization (FISH)

In order to identify the distribution of the microbial
population, FISH was performed on crushed granules. FISH
was performed as described in Amann (). The EUBMIX

probe (mixed probe of EUB338, EUB338-II and EUB338-III)
was applied to target almost all bacteria (Daims et al. ).
The PAOMIX probe (mixed probe of PAO462, PAO651 and
PAO846) was applied to target Accumulibacter (phosphate

accumulating organisms (PAO)) (Crocetti et al. ). PAO
probes ACC-444-I and ACC-444-II were used to target denitri-
fying Accumulibacter clade IA (denitrifying PAO (dPAO)) and

clade IIa (Flowers et al. ) and the GAOMIX probe (mixed
probe of GAOQ431 and GAOQ989) was applied to
target Competibacter GAO (Crocetti et al. ). Ammonia-

oxidizers belonging to β-Proteobacteria were detected with
the use of NSO190 and NEU653 (Wagner et al. ; Mobarry
et al. ). FISH was performed using hybridization and
washing buffers as described by Manz et al. (). The hybri-

dized samples were analyzed using a Zeiss Axioplan2 Imaging
Epifluorescence microscope. Images were taken with a
Zeiss Axiocam MRm Black and White CCD camera. Zeiss

Axiovision software was used to acquire, to color and compose
different multichannel images.
RESULTS AND DISCUSSION

Long-term effect of 2-FP on nitrification and phosphate
removal

The SBR overall performance after 5 months of 2-FP feeding

at a concentration of 50 mg L�1 (phases VI and VII) is
shown in Table 3 and the average typical patterns of phos-
phate and nitrogen concentrations during a cycle are
Table 3 | Summary of SBR treatment performance after being fed with 2-FP for 5 months

Parameter
Beginning of
cyclea

End of anaerobic
feedingb Effluentb

PO4
3--P (mg L�1) 6.94 32.8± 1.9 2.49± 0.65

NH4
þ-N (mg L�1) 17.65 8.15± 1.94 0.07± 0.04

NO2
- -N (mg L�1) – 0.02± 0.01 0.027± 0.009

NO3
- -N (mg L�1) – 2.11± 0.54 2.38± 0.49

aTheoretical values.
bValues are means± standard error of the mean (SEM).
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presented in Figure 2. After start-up (phase I), the phosphate

and ammonium removal was on average 93 and 99%,
respectively, and the nitrite and nitrate concentrations
found in the effluent were on average 0.03 and 2.4 mgN L�1.

respectively (Table 3). Acetate was fully consumed and
stored during the anaerobic period, and therefore was not
present in the bulk liquid during aeration. Duque et al.
() described that there was no 2-FP removal observed

in phases I and II, indicating that the initial microbial
population before bioaugmentation was not capable of
2-FP degradation, neither under anaerobic nor aerobic

conditions. Nitrite did not accumulate, and all the
ammonium and phosphate were removed, therefore it can
be assumed that NOB, AOB and PAO were not inhibited

by the presence of 19 mg L�1 of 2-FP. Liu et al. (),
who have studied the toxicity effect of phenol on aerobic
granules, have shown that aerobic granules are more resist-
ant to toxic effects of phenol than flocculated sludge,

supposedly mainly because of the compact and shielding
structure of the granules. In the layered structure of gran-
ules, PAO are present more inside the granule and the

nitrifiers grow in the outer layer (De Kreuk et al. ).
Therefore, PAO are potentially not exposed to the same
high concentration as present in the wastewater, being

less susceptible to toxic compounds (Fang ; Liu &
Tay ).

Due to batch feeding and since 2-FP was not degraded

during the feeding phase, within each cycle the aeration
phase starts with a high 2-FP concentration. Therefore,
AOB and NOB adaptation to 2-FP can be due either to
the presence of the 2-FP degrading bacteria that are remov-

ing the toxicity via degradation of the compound or to a
Figure 2 | Concentration profiles of phosphate (•), ammonium (□), nitrite plus nitrate

(NOx
- , ▲), 2-FP (×) and F- in the granular SBR during a cycle. Values refer

to 1 month operation after being fed with 2-FP for 5 months and are means±
standard error of the mean (SEM). The concentrations related to time 0 are

theoretical values.
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protection provided by the granular structure (Tay et al.
a, b; Carucci et al. , ). Liu et al. (),
who have studied the toxicity effect of phenol on aerobic
granules, have shown that aerobic granules are more

resistant to the toxic effects of phenol than flocculated
sludge, supposedly mainly because of the compact and
shielding structure of the granules. Ammonium started
to be consumed after the 60 min anaerobic feeding

phase of the SBR cycle (during the aeration phase)
(Figure 2). 2-FP accumulated in this period since it was
not degraded anaerobically. This indicates that the 2-FP

degrading bacteria were not playing an important role
in removing the toxicity during that period. Therefore,
these results demonstrate that most likely the nitrifying

bacteria in the granular matrix can adapt to the presence
of toxic compounds, shielding the bacteria inside the
granules against these toxic effects, corroborating the
results obtained by Jiang et al. (). Liu et al. (),

who have studied the effect of phenol on nitrifying gran-
ular sludge, reported that nitrifying bacteria in microbial
granules might have a better capacity to resist shocks

from toxic compounds in wastewater than suspended
nitrifying bacteria. In fact, it is known that microorgan-
isms can regulate extracellular polymers (EPS) synthesis

and modify their properties as a response towards the
effects of antimicrobial agents (Allison et al. ;
Amorim et al. ). Wei et al. () observed that the

presence of 4-chlorophenol induced EPS production by
the aerobic granules, as the polysaccharides and proteins
levels increased. The presence of some functional groups
in EPS, such as carboxyl, phosphoric, sulfhydryl and

hydroxyl groups, also seems to be an important defense
strategy as it can promote the adsorption of toxics to
the EPS matrix (Amorim et al. ). Moreover, the

layered structure of the granules can act as a diffusion
limitation barrier by the development of a concentration
gradient within the granules, preventing toxicants to

reach the inner biomass (Amorim et al. ).

Microbial community in the aerobic granules

DGGE analysis of amoA gene

A full overview of the organisms present in the aerobic gran-

ules and the effect of 2-FP on the full community was
described by Duque et al. (). The later study demon-
strated that, generally, the 16S bacterial communities were

not affected by the presence of 2-FP. Moreover, a wide bac-
terial diversity was observed, hindering the identification of
://iwaponline.com/wst/article-pdf/83/10/2404/891877/wst083102404.pdf
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low abundant bacteria, such as AOB. Therefore, DGGE

analysis was performed to assess the AOB population
present in the aerobic granules. The gene encoding the
active site of ammonia monooxygenase (amoA), one of the

enzymes responsible for the conversion of ammonia into
nitrite, was selected for DGGE as it has been defined as a
molecular marker for AOB diversity (Hornek et al. ).
DGGE was chosen over 16S rRNA-Next Generation

Sequencing in order to easily monitor the possible disap-
pearance of the low abundant amoA communities due to
2-FP dosage. In total, 24 band positions were detected in

the amoA gel and the number of bands per lane ranged
between 2 and 4 (Figure 3).

The DGGE patterns obtained were very similar

between all samples, although two clusters could be ident-
ified (Figure 3). One of the clusters included samples
collected at day 100 and day 267 and was clearly separ-
ated from the cluster that included samples collected at

day 301 and day 408. Therefore, a major shift in bacterial
assemblage was identified between days 267 and 301,
when the hydraulic residence time (HRT) decreased

from 21.1 h to 10.5 h concomitant with an increased load-
ing rate. Within the cluster that included samples
collected between day 100 and day 267, a less significant

shift was identified between the beginning of the feeding
with 2-FP (day 100) and continuous feeding of 2-FP (day
114) (<80% similarity), indicating that the presence of 2-

FP had a slight influence on AOB population present in
the aerobic granules. Previous studies on bioaugmentation
as a tool to protect activated sludge nitrifying bacterial
community against 3-chloroaniline shocks, demonstrated

that toxic shocks caused changes in the structure of the
AOB community (Boon et al. ). However, in the pre-
sent study, nitrification was not affected by the presence

of 2-FP, suggesting that 2-FP affected the AOB population
diversity present in the aerobic granules, but not the
reactor performance. Corroborating the present study,

Emanuelsson et al. () showed that an operationally
stable reactor does not imply a stable microbial commu-
nity and vice versa. Shannon’s diversity index (H ), used

to calculate diversity of bacterial communities (Shannon
& Weaver ), was on average 0.49± 0.04 and the equit-
ability index (E), which can range from 0, indicating
pronounced dominance, to 1, indicating equal abundance

of all species (Pielou ), was on average 0.95± 0.01.
Thus, the calculation of H and E indexes based on
amoA gene DGGE profiles showed that the AOB commu-

nity presented low diversity, low species richness and
complete evenness.



Figure 3 | Cluster analysis of the AOB community present in the aerobic granules based upon DGGE profiles of amoA gene amplification using the total genomic DNA extracted from the

aerobic granules. Similarities were calculated using the Bray–Curtis measure. The dendrogram presents the similarity, in percentage, between samples. ‘d____’ label refers to

the day of the sample.
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Analysis of nitrifying bacteria and phosphate and
glycogen accumulating organisms in aerobic granules
based on FISH

The FISH analysis for the nitrifiers (AOB), PAO (including
dPAO) and GAO populations was carried out to assess the
Figure 4 | FISH analysis of crushed granules from day 210 (a and b) and from day 301 (c and d)

Ammonia-oxidizing bacteria belonging to β-Proteobacteria group (a and c) and denitr

version of this paper, at http://dx.doi.org/10.2166/wst.2021.142.

om http://iwaponline.com/wst/article-pdf/83/10/2404/891877/wst083102404.pdf
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population dynamics. Figure 4 presents FISH images of
crushed granules from two sampling days, day 210 and
day 301, stained with specific probes for PAO, dPAO, nitri-

fiers and eubacteria.
Nitrifiers, particularly AOB, were present in low num-

bers in all SBR samples, corroborating amoA gene DGGE
. The bar size is 20 μm. (Blue: Eubacteria; Green: Phosphate accumulating organisms; Red:

ifying Accumulibacter (b and d). The full colour version of this figure is available in the online

http://dx.doi.org/10.2166/wst.2021.142
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results. The low numbers are due to the low growth yield of

this autotrophic organism. Heterotrophic PAO were present
in high numbers (Figure 4(a) and 4(c)). A mixture of PAOI
and PAOII showed full overlap with the PAO mix,

suggesting that all PAO were PAOI and/or PAOII
(Figure 4(b) and 4(d)). According to De Kreuk et al. (),
in the layered structure of granules, PAO are present more
inside the granule and the nitrifiers grow in the outer

layer. Therefore, PAO are potentially not exposed to the
same high concentration as present in the wastewater,
being less susceptible to toxic compounds (Fang ; Liu

& Tay ). On day 210, PAOI were still present and
towards the end of the experiment, there was not much of
both PAOI and PAOII remaining. This result is in agreement

with the observed nitrate accumulation in the effluent
towards the end of 2-FP continuous feeding, suggesting
that denitrification was most probably inhibited by the
long period of continuous 2-FP feeding and/or by high DO

concentration (ca. 100%) during the aeration phase. In
fact, the granules size decreased along the experiment
(Duque et al. ), which could have resulted in a change

in oxygen penetration depth by diffusion. Hence,
operational conditions, such as DO concentration, could
be optimized to achieve simultaneous removal of N, P,

COD and toxic compounds, such as 2-FP.
GAO were almost absent in all analyzed samples, which

was expected, as phosphate was being completely removed

from the wastewater. The applied operational conditions
were favourable for enhanced biological phosphorus
removal (EBPR), providing a selective advantage to PAO
over their competitors, GAO, as reported by Oehmen

et al. () and Puig et al. ().
CONCLUSIONS

The microbial population of aerobic granules involved in
nitrification and phosphate removal are capable of adapting
to the presence of pollutants. In this study there was no indi-

cation of direct interaction between the different metabolic
groups, 2-FP degrading bacteria and nitrification and phos-
phate conversion bacteria. The AOB population was
stable, presenting low diversity, low species richness and

complete evenness. PAO, including dPAO, were dominant
in the 2-FP degrading aerobic granules, but numbers
decreased, suggesting that operational conditions could be

optimized. The bioaugmented granules with capacity to
remove 2-FP were also able to simultaneously remove N
://iwaponline.com/wst/article-pdf/83/10/2404/891877/wst083102404.pdf
VERSITEIT DELFT user
and P. Granular sludge is promising for N and P removal

from wastewaters containing toxic compounds.
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