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Introduction

Virtualization is the fundamental technology that enabled the widespread adoption of cloud com-
puting. No matter the size, physical location, or nature of any cloud, virtualization remains the cor-
nerstone that cloud computing builds upon. With the ever-increasing pervasiveness of the cloud
computing paradigm, strong isolation guarantees and low-performance overhead from isolation
platforms are paramount. An ideal isolation platform offers both: an infallible isolation boundary
while it retains a negligible performance overhead. In practice, this holy grail remains elusive, and
real-world isolation platforms are to make complex trade-offs between the degree of isolation and
performance overhead.

Particularly common in clouds is the use of virtual machines. These virtual machines are pro-
visioned by the cloud provider and are generally difficult to distinguish from a physical machine
from the perspective of the customer. This type of virtualization is purported to offer a thick isola-
tion boundary, at the expense of a firm (although shrinking) performance overhead. A compelling
alternative to virtual machines are container-based isolation platforms. Container-based isolation
platforms are commonly regarded as a lightweight form of virtualization, characterized by high per-
formance and the ability to be rapidly deployed. The general trend in industry, exacerbated by the
advent of the microservices architectural pattern, has been increasingly receptive to this relatively
new type of virtualization. As container technology matures, some of its limitations have become
apparent as well. An particular limitation is the relatively thin isolation boundary between the con-
tainer and host, exposing a large attack surface to potential adversaries.

The ever-present need for both high performance (i.e. low overhead) and a high degree of secu-
rity in isolation platforms has resulted in a multitude of new isolation solutions, such as unikernels
and secure containers. These new platforms take novel approaches to the existing trade-offs be-
tween isolation and overhead, and thus fall somewhere in-between or next to the existing isolation
platforms of virtual machines and containers. In this thesis, we attempt to place each of these plat-
forms on this emerging spectrum. This spectrum can be divided into multiple, orthogonal, other
spectrums. For example, we can place the examined platforms into a spectrum of where the iso-
lation boundary between host and guest is established. This spectrum can be constructed with
relative ease, as careful examination of the architecture of the isolation platform is sufficient to yield
an answer to this question.
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1.1. Problem statement

Two core properties, the degree of isolation offered by a platform and the performance overhead
incurred, are not trivially determined and warrant the conduct of a wide array of experiments. In
this thesis, we attempt to measure those two essential properties, and place the various new iso-
lation platforms and techniques into two spectrum ranges accordingly. Moreover, we provide an-
swers to questions that are fundamental to the isolation and overhead trade-off through quantifi-
able measures. Besides assessing the performance of platforms through traditional benchmarking
techniques, we also devise a new method to quantitatively measure the security, or isolation, of
each platform through an extension of the Horizontal Attack Profiling (HAP) measure. Guiding our
research throughout the thesis, we attempt to answer the following concrete questions Research
Questions (RQ):

RQ1: Where do the new types of virtualization techniques position themselves on the spec-
trum of performance overhead incurred?

RQ2: Is the degree of isolation offered proportional to the performance overhead imposed by
an isolation platform?

RQ3: Does the extended HAP metric accurately quantify the degree of isolation?

Finding answers to these questions may be beneficial in multiple ways. First, answering RQ1
can serve as a guide for which particular isolation platforms would be well-suited under certain
conditions. For example, in scenarios where performance is of utmost importance, it might be rec-
ommendable to use a platform that sits on the most low-overhead side of performance overhead
spectrum. The second question, RQ2, addresses verification of a commonly held view on isolation
platforms: whether a stronger isolation boundary by definition hinders performance. It indirectly
also addresses the question of whether the aforementioned holy grail is merely extraordinarily elu-
sive, or if its existence is simply impossible. Finally, RQ3 attempts to build upon previous work of
quantitatively assessing security, and deepens this research into a specific direction, potentially im-
proving the quality of research into this specific field.

1.2. Approach and scope

Before we can answer any research questions, we select a subset of the numerous isolation plat-
forms available today. One core property is that each platform should be open-source, so that we
can adjust and thoroughly inspect each and every platform as desired. Even with this requirement
in place, a vast landscape of various (and sometimes exotic) types of virtualization techniques re-
main. In order to effectively answer all of our research questions, we have decided on a relatively
broad scope for this thesis. Naturally, this also limits the depth to which we can investigate the isola-
tion platform. We have attempted to find a good middle-ground, at which we can both characterize
where certain types of virtualization techniques tend to lie in the performance and security spec-
trum, while still retaining the ability to thoroughly inspect each platform.

For answering the first research question, RQ1, we perform extensive research along multiple
axes. First of all, we investigate the different architectures of the various platforms, and try to find
similarities and differences between these architectures. We conduct a large number of traditional
performance benchmarks that stress the subsystems of the isolation platforms. Lastly, we propose
and execute a new method to quantify the degree of isolation of each platform by looking at the
interaction between the platform guest and the host that it is running on. This metric builds upon
earlier work but also extends it by cross-linking it against historical software vulnerability databases
(CVEs). We call this metric the extended Horizontal Attack Profile (HAP) metric. The reason why we



1.3. Thesis outline and key contributions 3

include the extended HAP metric is that it allows us to quantitively express the degree of isolation
of the platforms, allowing for a more accurate inter-platform comparison.

The approach for answering RQ2 relies on data that is also used for RQ1. In particular, it relies
on the data obtained through the extended HAP metric. In essence, if we place each platform into
a spectrum of degree of isolation, and the order is the same (or its inverse, depending on the axes)
as that of the performance overhead spectrum, it indicates a clear correlation between the two. If
the two spectrums do not align, this might be indicative of leeway in optimization along both spec-
trums (i.e. pareto efficiency has not yet been achieved), as the degree of isolation is not strictly
proportional to the performance overhead.

Answering RQ3 requires us to critically look at the obtained results of the extended HAP metric
versus the plain HAP metric. Naturally, as the HAP metric is not an established metric, we attempt
to critique this metric as well. As far as we are aware this metric is the only way to quantitatively
measure security, and, as such, in order to be able to critique the HAP metric, we must compare it to
qualitative research. To this end, we present qualitative research into the different types of virtual-
ization techniques using historical vulnerability data, past research and architectural analysis into
the isolation boundary placement.

All the experiments, both pertaining to the performance as well as the (extended) HAP, are con-
ducted on a powerful machine with 64 CPU cores (2x AMD EPYC 7542 32-Core CPU) and 256Gb of
DDR4 RAM, running Ubuntu version 20.04.

1.3. Thesis outline and key contributions

Chapter 2 provides information on cloud computing and hardware virtualization assumed back-
ground knowledge to understand the remainder of the thesis. Chapter 3 presents the examined
isolation platforms, their main value propositions, as well as a discussion precisely why these and
not other platforms are examined. Chapter 4 dives deep into the architecture of the various isola-
tion platforms, and explores the employed isolation mechanisms. Chapter 5 showcases an exten-
sive set of benchmarking results pertaining to all relevant subsystems of the isolation platforms,
including both micro-benchmarks and real-world benchmarks. Chapter 6 discusses and realizes a
novel method to quantitatively measure the degree of isolation of the platforms. Finally, Chapter 7
presents the final conclusions of the thesis.

The key contributions of this thesis are the following:

1. Provide a comprehensive survey of open-source isolation platforms. These solutions include
containers, hypervisors, unikernels, and everything in-between.

2. Provide an in-depth quantitative comparison of the performance of the platforms, along mul-
tiple axes. These comparisons consider computer subsystems (CPU, I/0O, network, memory),
real-world benchmarks and other related performance characteristics (start-up time). Analy-
sis is provided to distinguish whether the performance limitations are inherent to the chosen
isolation virtualization mechanism or due to the specific implementation. This is made pos-
sible by the wide scope of the chosen platforms.

3. Propose and perform a new method to quantitatively measure the security of the isolation
platforms, through an extension of the Horizontal Attack Profile metric. A qualitative evalua-
tion of this new method is also provided.
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4. Provide qualitative survey-like research on the degree of isolation of the researched isolation
platforms.



Background

This chapter discusses background topics that are relevant to the rest of the thesis. In Section 2.1
we briefly discuss the world of cloud computing as a whole, and its association with isolation plat-
forms. In Section 2.2 we discuss the underlying techniques of one of the more complicated isolation
platforms, hypervisors.

2.1. Cloud computing

Cloud computing makes it possible to buy computing resources as a utility, and has seen widespread
adoption throughout industry in recent years. One of the core techniques that enable cloud com-
puting is the use of isolation platforms. Instead of renting out compute capacity at the granularity
physical machines, isolation platforms provide a way to host multiple tenants within one physical
machine. This leads to a numerous benefits, for both customers as well as cloud platform providers:

* Customers only have to pay for the computing resources they need. For example, customers
pay for the amount of storage by the day, and the number of virtual CPUs by the hour. These
resources can easily be released when they are not necessary anymore, reducing costs.

e Customers can easily and quickly scale the rented resources up and down, fast enough to
combat potential load spikes that would traditionally require ahead-of-time provisioning of
resources (elasticity). The resources are rented from a pool that appears to be infinitely large.

* Customers can avoid making a large up-front commitment by not having to buy private com-
puting resources, and can instead gradually increase the amount of rented computing re-
sources.

* Cloud platform providers can make more efficient use of their hardware by collocating multi-
ple customers on the same hardware.

* Cloud platform providers can use economy of scale to their advantage.

Overall, for the customer, this leads to a reduction in cost of IT deployment and operation. For
cloud platform providers this also proves a profitable business. Naturally, there are downsides to
the use of cloud computing as well, for both customer (e.g. vendor lock-in) as well as the provider
(e.g. scalability with the number of tenants). There are technical challenges that arise with the use
of the multi-tenancy nature of cloud platforms as well, as workloads of different customers are not
separated by hardware boundaries anymore (as is the case with on-premise, private datacenters).
Isolation platforms are a way to reestablish this separation. An isolation platforms should thus pro-
vide separation of resources provided to each tenant. This means that one tenant, a noisy neighbor,
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should not be able to consume all physical resources that are available (leading to degradation of
compute capacity of other tenants), but should instead be constrained by the isolation platform
isolation boundary. An isolation platform should also provide an environment that is private from
the other tenants.

These days, cloud computing platforms provide a vast amount of different services. These ser-
vices differentiate themselves through the type of resources they offer (e.g. storage or compute ca-
pacity), but also in their programming, for example the serverless computing paradigm prescribes
a programming model in which the user only writes a function, which is then executed on the cloud
infrastructure. It is typically paid for on a per-function invocation. Another popular example is the
use of container orchestration frameworks, which are well suited for leveraging the elasticity cloud
platforms offer.

Different cloud services necessitate the use of different isolation platforms. In the aforemen-
tioned serverless computing paradigm, an isolation platform that offers extremely low startup times
is preferable. If the cloud provider rents out parts of physical hardware as a virtualized machine,
support for various operating systems might be deemed a requirement for the isolation platform.
As such, there are various trade-offs the isolation platforms have to make, such on the performance,
ease-of-use, and even security.

2.2. Hypervisor virtualization techniques

First, some words about the terminology used in the following paragraphs. The realm of hypervi-
sor technology uses some distinct terminology that is important to clarify and disambiguate for the
context of this thesis. We will refer to the piece of software that can create and run virtual machines
as hypervisors. Sometimes, hypervisors are also referred to as Virtual Machine Monitors (VMM).
Confusingly, the term VMM can also refer to only the user-space subset of the entire hypervisor
functionality (and typically ‘makes use of” the underlying hypervisor to manage VMs). For clarity,
we will restrict ourselves to the word hypervisor. This word finds its roots in the 1970’s, during which
the kernel of an operating system was called the supervisor. A hypervisor would thus be the super-
visor of the supervisors, with ‘hyper-’ aptly used as a stronger variant of ‘super-’.

The OS that runs the hypervisor (as far as this is applicable, see 2.2.3) is called the host OS,
while the OS that is run by the hypervisor is called the guest. We assume that hypervisors only run
guests that have the same CPU architecture as its guest, and call this virtualization. If the guest
deviates from its host CPU architecture, e.g. an x86-64 host running a RISC-V guest, we speak of
emulation. Although the technology behind containers is sometimes referred to as OS-level virtu-
alization, strictly speaking, no form of virtualization is involved. As such, a container is not a virtual
machine. A relationship similar to the guest-host relationship with hypervisors remains with the
use of containers, where the container itself is the guest and the OS that runs the container is the
host.

For the remainder of this section, we will first briefly touch upon the history of virtualization.
We will then discuss the various techniques used in virtualization.

2.2.1. A brief history of virtualization
Originally published in 1974, the classic paper on virtualization by Popek and Goldberg [68] de-
scribes three essential characteristics for a system to be considered a hypervisor:

1. The hypervisor should provide an environment that is essentially identical with the original
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(host) machine. Essentially here means that a program running under the hypervisor should
exhibit an effect identical to that running on bare metal, excluding timing effects.

2. Programs running under the hypervisor should exhibit at worst only minor decreases in per-
formance. This necessitates that a significant fraction of machine instructions must be exe-
cuted without hypervisor intervention.

3. The hypervisor is in complete control of computing resources.

During this time, the only feasible way of implementing a hypervisor that satisfied all three re-
quirements was a specific style of virtualization called trap-and-emulate. The tight vertical inte-
gration of the hypervisor, hardware and guest operating system (also typical for this time, as just
one company provided all three components [2]) did allow for research into refining this trap-and-
emulate virtualization. For example, IBM’s System 370 introduced a new hardware execution mode
called interpretative execution [69], which allowed for a reduction of traps to a privileged execution
environment in comparison to trap-and-emulate. Another approach was enriching traps such that
hypervisors could handle them more efficiently [49]. However, not every instruction set architecture
makes it possible to implement this classic trap-and-emulate method. The popular x86 architecture
has historically lacked support for this trap-and-emulate, and as such, new methods had to be de-
vised to enable virtualization on this architecture.

2.2.2. Hypervisor techniques

The role of a hypervisor, in essence, is to run virtual machines. Virtual machines are emulations of
real machines. Virtual machines can run and feel like regular non-virtual machines, but do provide
a strict isolation boundary between potentially multiple virtual machines. In contrast to contain-
ers, virtual machine guests should run exactly as they would if they were not being virtualized, as
per the first characteristic described by Popek and Goldberg [68]. In practice, this means that a vir-
tual machine has its own kernel and its own hardware devices, separate from the host machine that
itis running on. These hardware devices and their corresponding device drivers are also virtualized,
and represent physical devices such as a disk drive or a network interface card.

To understand how CPU instructions are virtualized, we should first recall that x86 instructions
can be run with varying degrees of privilege. On x86 this level of privilege is organized into different
rings, ranging from ring 0 (most privileged) to 3 (least privileged). Generally speaking, kernel code
is executed in ring 0 whereas user-space code is executed in ring 3. This setup is depicted on the
leftmost diagram in Figure 2.2.

2.2.3. Type-1 vs. Type-2 hypervisors

The other element that is prerequisite to understanding virtualization is where the hypervisor fits
into the overall picture of virtualization. A hypervisor is responsible for the entire lifecycle of creat-
ing, running and tearing down virtual machines. Hypervisors can be categorized into Type-1 and
Type-2 hypervisors, although the line between the two is not always clear. Type-1 hypervisors run
directly on the host hardware and manage all running operations systems. An example of a Type-
1 hypervisor is Xen. Type-2 hypervisors run on a conventional operating system, and abstract the
guest operating systems from its host. Type-2 hypervisors run as a regular process on the host op-
erating system. An example of a Type-2 hypervisor is QEMU.

An example of where the line between Type-1 and Type-2 hypervisors become blurry is with
KVM, a popular hypervisor in Linux. Starting with Linux version 2.6.20, released February 2007,
KVM was merged into the Linux kernel as a kernel module. KVM allows programs to use the hard-
ware virtualized support that is available within modern CPUs. In essence, KVM allows for virtual
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VM VM App. App.
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Figure 2.1: Architecture of type-1 vs. type-2 hypervisors

machines to be created within the kernel of Linux, thereby not quite satisfying the properties of nei-
ther a Type-1 hypervisor (it does not directly run on the host hardware, instead it uses the already
running kernel) nor that of a Type-2 hypervisor (KVM does not run as a regular process as it is part
of the kernel). Confusingly, KVM is often used in conjunction with other Type-2 hypervisors like
QEMU, a combination often referred to as QEMU/KVM. In this setup, KVM is simply used to allow
for the aforementioned CPU assisted hardware virtualization, and QEMU is the user-space process
that manages parts like resource allocation and device driver emulation. The cooperation between
the QEMU user-space process and the KVM kernel module takes inspiration from the original de-
sign of the Xen hypervisor, in which a small control VM (Domain0) is introduced that mediates (and
thus establishes cooperation) between the other virtualized VMs and virtualized devices.

2.2.4. Virtualization of CPU instructions

Regardless of whether a Type-1 or Type-2 hypervisor is used to run virtual machines, they all em-
ploy the same techniques to run CPU instructions executed in a virtual machine. Most instructions
can simply run within a virtual machine as they would on a traditional machine, meaning as a user-
space process in ring 3. Some instructions are considered privileged. A privileged instruction can
only execute in ring 0. Hypervisors, such as QEMU, run as a user-space process, and can therefore
not execute these privileged instructions. If they were able to execute these instructions, (guest) vir-
tual machines would be able to obtain complete control over the host it is running atop of. Instead,
if an application in the virtual machine attempts to run privileged instructions, a trap is caused.
This trap will be routed by the CPU to a handler in ring 0 code.

Another special case of instructions exist. These are called sensitive instructions, and are called
so because they modify the resources of the machine. If all sensitive instructions would be privi-
leged, then the hypervisor could simply create ring 0 handlers for each of these instructions. Un-
fortunately, instructions that are sensitive but not privileged, also exist. Such instructions are called
non-virtualizable instructions, and are part of the reason why x86 was traditionally considered an
architecture that could not be virtualized (as discussed in 2.2.1).

There are 3 general techniques for handling non-virtualizable instructions:

1. Binary translation. The non-virtualizable instructions are replaced at runtime by sequences
of instructions that are virtualizable and have the same effect. In essence, the set of all x86 in-
structions is translated to a subset of x86 instructions that does not include non-virtualizable
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Figure 2.2: From left to right: x86 privilege levels without virtualization, binary translation, paravirtualization and
hardware-assisted virtualization. Based on [59].

instructions. This technique is sometimes also referred to as a modern variant of trap-and-
emulate [2], where trap refers to the mechanism that kicks into action when the CPU hits a
non-virtualizable instruction, and emulate refers to the translation of this instruction. This
setup is shown in the second diagram from the left in Figure 2.2. This technique was pio-
neered by VMWare in 1998 [59].

2. Paravirtualization. This technique avoids having to deal with non-virtualizable instructions
altogether by rewriting the operating system such that non-virtualizable instructions are re-
placed by system calls to the hypervisor (dubbed hypercalls). An advantage is that this is
relatively simple to implement (vs. binary translation), but requires modification to the guest
OS. This setup is shown in the third diagram from the left in Figure 2.2.

3. Hardware assisted virtualization. Hardware vendors such as Intel and AMD have built-in sup-
port for virtualization in all of their recent (since 2006) x86 processors. These processors intro-
duce a new privilege: ring -1. This allows guest virtual machine kernels to run at ring 0 (which
is what the guest OS kernel expects to run at), while the hypervisor can run at the extra priv-
ileged ring -1. For early generations of CPUs with virtualization support, binary translation
was faster [59], but in recent years it has been overtaken in performance by hardware-assisted
virtualization. This setup is shown in the rightmost diagram in Figure 2.2.

Having explained how CPU instructions run in a virtualized way, we also need to look at how
memory is virtualized using hypervisors. Even non-virtualized operating systems make use of vir-
tualized memory. Each process that runs on a contemporary OS is under the illusion that it has a
large contiguous chunk of memory at its disposal. In reality, the addresses that the process uses
and thinks it controls, resolve to physical memory that may be dispersed all over the physical mem-
ory, or worse, may not even be present in memory at all. The allocation of memory is traditionally
done at the granularity of chunks of 4KiB of memory (in x86), these chunks are called pages. The
OS maintains a mapping from virtual page numbers to physical page numbers in its page table.
The translation of virtual to real memory addresses is performed by the operating system, but is
optimized by two hardware components: the memory management unit (MMU) and translation
lookaside buffer (TLB), which functions as a cache.

To run multiple virtual machines on one machine, virtualization of virtual memory must be vir-
tualized. In other words, the MMU needs to be virtualized for each VM. This way, the guest OS
can continue to control the mapping of its own memory, but it cannot directly control the physical
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memory. In this setup, the hypervisor performs the mapping from the guest memory to the actual
memory. To do this more efficiently, it uses shadow pages. The hypervisor maps the virtual mem-
ory in shadow pages directly to physical memory, updating the TLB whenever the guest updates its
virtual memory. Using shadow pages circumvents the need for having to go through the host OS
virtual memory page table, resulting in efficiency gains.

The last element we need to look at besides CPU and memory is device virtualization. Contem-
porary hypervisors generally run guests with paravirtualized device drivers. Paravirtualized device
drivers are in essence drivers that know that they are being virtualized, and exploit that knowledge
for performance improvements over traditional virtualization. These drivers are presented to the
guest operating systems by the user-space hypervisor process. QEMU in the QEMU/KVM equation
is responsible for this, for example. Paravirtualized drivers consist of two parts, one talking to the
guest, and the other part talking with the host. The driver that is presented to the guest is called
the device front-end. The host-facing driver is called the back-end driver. These two ends need to
be connected by a transportation mechanism, for which virtio is considered the industry standard
and is used by virtually all common paravirtualized drivers. Virtio is not merely a way to transport
information, but a generalized abstraction of a commonly required set of operations within par-
avirtualized drivers. This results in virtio becoming a standard interface (or, API) through which the
front and backend drivers can communicate [81]. Host kernel support for the back-end drivers is
not required as support is implemented in the host user-space hypervisor process.



Isolation platforms

In this chapter we first discuss the tradeoffs that naturally arise when implementing isolation plat-
forms. We then continue by introducing each of the platforms that we will be examining in this
thesis, and explain which problem they aim to solve, including its potential drawbacks. We con-
clude this chapter by arguing why we decided to examine these specific isolation platforms over
others.

3.1. Tradeoffs in isolation platforms

Virtualization is a method to present computer resources in a logical way that is not constrained
by the physical hardware. Virtualization does this by introducing an abstraction layer in between
the hardware and the operating system kernel. This layer provides a means to isolate: users may
make use of the same physical hardware, but are agnostic to both the fact that the hardware is being
shared as well as the existence of the other users. There is no free lunch, however, and the additional
layer establishes a set of tradeoffs to be made which are inherent to the use of an intermediary virtu-
alization layer. For example, raw performance is typically penalized by introduction of an isolation
mechanism. In the following paragraphs, we outline these tradeoffs.

The first tradeoff that becomes apparent within virtualization is the generality offered versus the
size of the trusted computing base. On one hand, it might sound appealing to introduce a virtual-
ization layer that implements support for all hardware that one can possibly imagine, as this will
make it possible for the virtualization layer between any combination of (possibly exotic) hardware
and operating system. However, this generality in the form of wide-ranging support necessarily also
introduces complexity. Complexity implies, almost by definition, more code, and therefore more
software vulnerabilities. These flaws can, in some cases, be exploited by adversaries, and conse-
quently violate the isolation property that virtualization makes valuable in the first place. Figure 3.1
places each of the examined platforms on a spectrum, in which on one side we find the most general
form of virtualization (in which general purpose operating systems are virtualized), and on the other
side the most specific types of virtualization (where we find unikernels, in which only one specific
application is to be virtualized). The hypervisors are placed in a zoomed-in part of the spectrum,
from most general hypervisor to least general, coinciding with the size of the device model these
hypervisor platform offer. In this spectrum we also make a distinction between application and sys-
tem containers, of which the difference between the two types is covered later in this chapter, in
Section 3.3.

A second tradeoff is the level at which the platform implements its functionality. In the para-
graphs prior we assumed that the intermediary layer sits between the hardware and the operating

11
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Figure 3.1: Spectrum of the generality of guests that the isolation platform offers. This can also be interpreted as the size
of the inverse of the trusted computing base.

system. This, however, is not always the case, as exemplified by containers introduced later in this
chapter. The isolation boundary is not placed between the hardware and operating system, but
rather between the operating system and the processes that run on it. But even within one class of
isolation platforms the location of the virtualization layer is not set in stone (e.g. Type-1 vs. Type-2
hypervisors, see Subsection 2.2.3). The location of this boundary determines where functionality of
the platform gets executed: a boundary closer to the host kernel means that more functionality is
executed in the guest kernel, a boundary closer to the guest means that more functionality will get
executed in the host kernel. An overview of where each platform sits in this spectrum is illustrated
in Figure 3.2. At the leftmost end of the spectrum we find a Linux native host, where there is no
isolation boundary at all, and as such everything is executed in the host kernel. Secure containers
generally use the host kernel, but find ways to reduce the lower the isolation platforms closer to the
guest. The aim of this lowering of the boundary is to increase security, hence the name secure con-
tainers. At the right edge of the spectrum we place the hypervisors, that spin up a dedicated fully
featured guest kernel for each guest and as a result make relatively little use of the host kernel.

Native Containers Secure containers Hypervisors
L Docker gVisor QEMU/KVM Firecracker
inux
LXC Kata Cloud-hypervisor OSv
Code in ~ ~ ~ ~ Py Code in
host kernel ~ ~ ~ ~ guest kernel

Isolation boundary location

Figure 3.2: Graphical illustration of the spectrum of where functionality for each isolation platform islocated. A boundary
closer to the host indicate more functionality residing in the guest kernel, and vice versa.

Another tradeoff that is to be considered is the degree of isolation a virtualization platform pro-
vides versus the performance overhead it imposes. This could be visualized as the thickness of the
intermediary layer between the host and guest: a lean virtualization layer may provide isolation to
a lesser extent but quick virtualization translation from operating system to hardware, whereas a
thick virtualization layer provides significantly more isolation at the cost of an increased execution
path length from operating system to hardware (resulting in lower performance). A smaller func-
tion chain from user to hardware in general would mean better performance but at the same time
fewer hurdles to pass to reach the supposedly isolated hardware. This tradeoff between security and
isolation is essential for every isolation platform, but placing the platforms in this spectrum is not
trivial, and requires thorough experimentation.

We will now introduce and discuss the platforms we will examine in this thesis.
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3.2. Docker

Docker is the de facto standard for creating containers. Containers here refer to a way in which the
host kernel facilitates the existence of multiple isolated user-space instances. This idea is not new:
software like BSD jails and chroot provide similar functionality and have been around for decades.
Building upon this idea, the release of Solaris 10 in 2005 introduced a modern and improved con-
tainer implementation called Zones [70]. Linux, at the time, did not have a competing solution,
and only with the merging of user-space namespaces in Linux kernel version 3.8 released in 2013,
proposed a decent and mature alternative. Since then, container popularity steadily increased, ac-
celerated by the ease-of-use of Docker and container orchestrators like Kubernetes. It was around
this time the word ‘container’ was adopted as well. Early on, Docker built on top of the 1iblxc
library (and is still being used by LXC, see next section), but now uses its own implementation to
provide isolation.

Docker, and its parent company Docker Inc., also introduced various standards pertaining to
containers. These, now popular, standards are regulated by the Open Container Initiative!, formed
by the Linux Foundation. Currently, the OCI regulates two standards: the container runtime and
image specification. These standards ensure a standardized workflow independently of the used
container engine. Examples include conventions for being able to run containers without any ad-
ditional arguments (docker run container), copying data between host and guest (docker cp)
and compatibility of container images across various container engines. Container technologies
that adhere to these standards are considered ‘OCI compliant’, a few of which we will introduce
later on in this chapter.

3.3. LXC

Like Docker, Linux Containers (LXC) provide a way to create containers that take advantage of fea-
tures present in the host kernel. The distinguishing characteristic of LXC is that it provides a com-
plete user-space of an operating system, whereas Docker emphasizes running one specific appli-
cation per container. Another way of putting it is that LXC provides OS-oriented containers with
VM-like behavior, in contrast with Docker its application-oriented containers.

In practice the management of LXC containers is generally performed through LXD. LXD em-
ploys the lower-level interface that LXC exposes, allowing for a better user experience. LXD offers
integration into the OpenStack and OpenNebula platforms. Integration with the latter allows for
the usage of qcow2 and regular KVM-like images to be run on LXC, adding to the aforementioned
VM-like behavior.

3.4. QEMU

QEMU is one of the three hypervisors we will closely examine in this thesis. Of the three, QEMU is
by far the oldest (with its initial release in 2003 [71]), and supports a wide range of guests. The other
hypervisors examined in this thesis are primarily focused on virtualizing Linux guests exclusively,
whereas QEMU advertises itself as a machine emulator, supporting a wide range of both virtualiza-
tion and emulation of guests. The originally intended primary usage of QEMU was, and still is, to
run one operating system on another, such as Windows on Linux or Linux on Windows [11]. Another
defining characteristic for QEMU in our hypervisors is its support for debugging use cases: as guests
can easily be stopped, its state can be inspected at any point in time. This led to the popularization
of QEMU for various purposes, including (toy) kernel research, fault injection simulators [4] and
program instrumentation, among many other purposes [35]. A downside to the wide-ranging sup-

lopencontainers.org


opencontainers.org

14 3. Isolation platforms

port for even exotic guests is the complexity that it entails, which is one of the primary motivations
for the creation of the hypervisors discussed in the following chapters.

3.5. Firecracker

Firecracker, developed by Amazon, uses KVM to create and run Linux virtual machines. Firecracker
started out as a fork of Google’s crosvm, a hypervisor written in Rust, but has since diverged sig-
nificantly to serve different needs [30]. Crosvi has been built for virtualizing and thereby securing
Google’s Chrome OS, whereas Firecracker focusses on cloud use cases. Firecracker aims to retain a
minimalist design, excluding unnecessary virtual hardware devices and guest-facing functionality,
in order to reduce the memory footprint and attack surface of each virtual machine. Specifically,
Firecracker focusses solely on virtualizing specific bare Linux guests on a Linux host, and for exam-
ple does not offer a BIOS, cannot boot arbitrary kernels, does not emulate legacy devices nor PCI,
and does not support VM migration [3] (although the latter is under development). The driving fac-
tor for this minimalism is Firecracker its focus on use in the serverless paradigm, which requires low
startup overhead.

3.6. Cloud-hypervisor

The final hypervisor we will be examining in this thesis is Cloud hypervisor. Cloud-hypervisor is
the most recent of the three, with its original (development) release in 2019. Like Firecracker (and
crosvim, for that matter), Cloud-hypervisor is a hypervisor written in Rust and makes use of KVM
and emphasizes safety and security. As such, with Cloud-hypervisor being the latest hypervisor to
come to existence, it makes extensive use of functionality already implemented by Firecracker (and
consequently, crosvm) through the rust-vmm crate. The goal of Cloud-hypervisor is to support
all modern cloud workloads, i.e. full Linux distribution images currently in use by cloud tenants.
One could argue that Cloud-hypervisor establishes a middle-ground between QEMU (supporting a
multitude of operating systems and CPU architectures, and legacy devices like floppy disk drivers)
and Firecracker (running everything as bare-bones as possible, focusing on extreme minimalism).

3.7. Kata containers

Kata containers is an open-source security-oriented platform that promises a way to run OCI com-
pliant containers by using hardware-assisted virtualization as a second layer of defense. The Kata
containers project finds its origin in the merging of Intel’s Clear Containers and Hyper.sh’s runV
open-source projects, both of which aimed to create more secure containers by making use of vir-
tualization technology. Kata containers provides an OCI compatible runtime and can thus be used
within the existing Docker ecosystem. Under the hood, Kata containers spins up a VM using a reg-
ular hypervisor and within that VM constructs a OS-level virtualized container. Strictly speaking,
this setup violates the definition of a container, since the host kernel is not used to isolate guests.
Instead, a VM with guest kernel is started to provide this functionality. The main value proposition
of Kata containers, however, is that it can provide the usability of regular containers but the security
of hardware-assisted virtualization. In the words of the authors on the project homepage 2, Kata
containers is an isolation platform that have “the speed of containers, and the security of virtual
machines”. Implementing a platform like Kata containers necessarily introduces complexity, thus
an increased trusted compute base, even more so when taking into account that virtual machines
and containers are not necessarily built to be compatible with one another.

2katacontainers.io
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3.8. gVisor

Another alternative to security-oriented containers is provided by gVisor [36]. Released by Google
in May 2018, gVisor intercepts all of the calls from the container and executes them directly, adding
an abstraction layer in between the host kernel and the container. This setup may be reminiscent
of the platform discussed in the previous section (see the previous Section 3.7), but instead of using
virtualization technology, gVisor executes all system calls from containers within a user-space ap-
plication kernel that has been reimplemented from scratch. This approach thus provides another
layer of abstraction (which should increase isolation) but does not require the use of existing virtual-
ization platforms (allowing for a flexible resource footprint, and as a consequence, higher container
density). A disadvantage may be found in system call intensive workloads, since all system calls
have to be redirected and executed within a potentially less optimized user-space kernel.

3.9. OSv

Unikernels take a distinctive approach to operating systems. This relatively new approach enables
the creation of small virtual machine images. The main idea with unikernels is that the image is
tightly integrated with the OS it is running on, only including the components that are strictly re-
quired by the application. This image thus includes both the application and the operating system,
and therefore removes the need for any external operating system. From the perspective of the ap-
plication, the operating system becomes nothing more than a library it can call into, and everything
can run into a single address space. Although the popularity of unikernels is relatively new, its ideas
are not, and have already been successfully implemented in prior academic projects such as the
Exokernel [27] and Nemesis [54] operating system architectures.

The design of unikernels are in stark contrast to how virtual machines are currently run on pub-
lic cloud infrastructures, where full GNU/Linux distributions (e.g. Ubuntu Server) are the norm [51].
The primary value proposition of unikernels is the reduction of required run-time software com-
plexity, since it only includes what is strictly required to run its workload, instead of a complete
operating system that provides mostly irrelevant functionality. The advantage of this approach is
twofold:

1. Unikernels reduce the amount of code, therefore reducing attack surface, increasing security.
2. Application images are very small, reducing the resource (memory and storage) footprint.

The reduction in complexity naturally comes at a cost, most often in the form of decreased in-
teroperability with existing software. Since applications must be (re)compiled to run in a unikernel,
possession of this source code is a hard requirement. Moreover, due to the single address space
and single process design of unikernels, there is no support for running multiple processes in one
unikernel (as is often exemplified by the absence of a fork () system call in unikernels).

The unikernel that we will be looking at in this document is OSv [51]. We have chosen OSv
because (1) it is a unikernel that is able to compile and run existing source code, so we can fairly
compare it to to other isolation platforms, and (2) it is under active development. OSv started was
originally designed and implemented by Cloudius Systems (now ScyllaDB3), but is currently main-
tained and being refined by volunteers [65].

3scylladb .com
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3.10. Selection of isolation platforms.

In the previous sections we have introduced all of the platforms we will closely examine in later
chapters. In this concluding section, we argue why we picked certain platforms. The reasons why we
have selected some isolation platforms and did not pick others are best described on a per-category
basis:

* Containers: where picking Docker is an obvious choice due to its massive popularity, LXC
might be aless obvious choice. Given the shared history of Docker and LXC (through 1iblxc)
and LXC being the only real competitor to Docker at the moment of writing, we decided to
also include LXC. Other container technologies exist, such as systemd-nspawn [79], but in
our experience did not offer the same level of maturity. Another container runtime that was
considered for inclusion is crun, a reimplementation of Docker its default runc in the C pro-
gramming language. This however would turn into a discussion of the performance and se-
curity of the programming language, rather than that of the isolation techniques we focus on
in this thesis.

* Hypervisors: The inclusion of the ever-popular QEMU might not come as a surprise, nor the
inclusion of Firecracker, which has been relatively popular since its introduction on Amazon
AWS Lambda®*. We also decided to include Cloud-hypervisor as a third hypervisor, as it sits
in the middle of feature-complete QEMU and bare-bones Firecracker. The exclusion of the
other well-known Xen hypervisor was decided upon in order to retain a feasible scope for our
research.

» Secure containers: at the moment of writing, there are two main project that focus on creating
secure containers, Kata containers and gVisor. Both are included. A third secure container
project called Nabla container exists, but active development ceased in early 2019.

* Unikernels: To fairly compare the performance of unikernel versus the other platforms, we
need a unikernel that can compile and run existing source code (i.e. a unikernel of the second
type as outlined at the end of Section 3.9). Out of the available unikernels of this type, we have
found that only the OSv kernel is stable enough to undergo our performance and security
experiments (and only barely so, e.g. OSv crashes at load-time during the I/O benchmark in
Subsection 5.3.1).

The reason for looking beyond just the classic hypervisors is the emergence of new program-
ming models and services offered by cloud platformes, as is also discussed in Section 2.1.
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Isolation platform architectures

In this chapter we consider the architecture and technical aspects of each platform.

4.1. Docker

Docker refers to an entire software suite including a container lifecycle manager, packaging soft-
ware and interface for communicating with a repository of online container images (Docker Hub).
Broadly speaking, Docker uses a client-server architecture. The CLI client is what an end-user inter-
acts with through familiar commands prefixed with docker (e.g. docker run). These commands
are sent to the Docker daemon dockerd (the server part in the client-server), and performs all the
heavy lifting of building, running and distributing the Docker containers [26]. The client and server
communicate through a rest API over a local or remote UNIX socket. Instead of having to create a
new container from scratch, Docker also features a built-in way to communicate with so called reg-
istries. These registries host a multitude of existing container images, and these can be downloaded
from (and pushed to) through the client (with dockerd again performing the actual interaction). An
overview of the architecture is presented in Figure 4.1

Container runtime

Namespace

Container Registry

Proc

Container image Docker

images

HTTP

Docker daemon (dockerd)

socket Host

Docker CLI 4

API request

Irunc run

Figure 4.1: Architecture of the Docker container platform
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The missing piece in the architecture so far is the component that actually creates the isolated
containers: the container runtime. The default Docker container runtime is runc. This runtime,
given a layered filesystem and related container metadata, creates a new isolated container. As
such, containerd uses this runtime whenever a user has requested to create a new container. It is
also this component that gets replaced by other container isolation platforms that we will introduce
at a later point in this chapter. runc uses functionality exposed by the Linux host kernel to enforce
isolation between a container and the host operating system. The kernel is thus shared between the
host operating system and the container, and no new kernel is booted. The two main kernel features
that are core to runc its isolation are namespaces [64] and cgroups [17].

In the Linux kernel namespaces are a way to manage the visibility of a certain set of resources
from the perspective of a process. By putting a process into a specific namespace, the kernel can
restrict the resources that are visible to this process. Thus, Docker uses namespaces as a way to pro-
vide an isolation boundary between guest and host. There are various types of namespaces available
in the Linux kernel, each of which manage the visibility of a specific set of namespaced resources.
Docker currently uses the following namespaces:

1. The mnt (mount) namespace: mount namespaces restrict the list of mount points that can be
seen by the process. In practice this implies restricting the files that are visible to the process,
such that a process in a namespace cannot see or alter files outside of this namespace.

2. The PID namespace: provide processes with a set of process IDs that are unique to this names-
pace. PID namespaces are nested. In a newly created PID namespace the initial process gets
assigned PID 1. This new init process is still visible to the parent PID namespace, albeit with
a PID other than 1.

3. The network namespace: each and every container gets its own virtual network stack. By de-
fault, only the loopback device is present in a new network namespace. Docker adds its own
bridge as a network device to this namespace, connected to the host network bridge through a
virtual ethernet pair. Each network device is, at any time, part of exactly one network names-
pace.

4. The UTS namespace: provides isolation of the hostname and NIS domain name system iden-
tifiers.

5. The IPC (interprocess communication) namespace: every IPC namespace gets its own set
of System V IPC identifiers (for use in message queues, semaphore sets and shared memory
segments) and its own POSIX message queue filesystem (as present at /proc/sys/fs/mqueue
on most unix distributions).

The namespaces mentioned above are a subset of all the types of namespaces available in the
Linux kernel. At the time of writing, a total of 8 different types are available. A process is always
part of exactly one namespace for each distinct type. Thus, a process is always part of exactly 8
namespaces, one for each type. A process can become part of a namespace either when the process
gets created through clone (), the process calling unshare () by itself, or by setns () which sets the
namespace given a file descriptor.

Whereas namespaces limit the visibility of resources, control groups (cgroups) limit the usage
of resources, such as CPU, memory and network input/output. Note that this also reduces the de-
nial of service attack vector, since resource hogging should in theory not be possible from within
a container. By default, processes on Unix systems inherit nearly everything from their parents.
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This also holds for cgroups: upon creation of a new child process, it inherits the cgroups of its par-
ent. The Linux kernel exposes an interface with cgroups through the cgroupfs pseudo-filesystem.
This pseudo-filesystem typically resides at /sys/fs/cgroup, and lists the available subsystems that
cgroups can limit. An example of such a subsystem is ‘memory’, and in turn lists the properties per-
taining to the memory subsystem that can be limited using cgroups. An example property that limits
the maximum number of bytes in a cgroup is /sys/fs/cgroup/memory/memory.limit_in_bytes.

4.2.1XC

Linux containers (LXC) approach the implementation of containers in a way similar to runc, using
namespaces and cgroups as the main isolation mechanisms. In fact, up until a year after the re-
lease, Docker used LXC as a library (1iblxc) to set up its containers (but now uses its own separate
reimplementation called 1ibcontainer). The characteristic that sets LXC apart from Docker is its
ability to create an environment as close as possible to a standard Linux installation, without the
need for a separate kernel. Concretely, this means that LXC containers:

1. Run a fully-fledged init system such as systemd, whereas Docker uses tini that markets
itself as ‘the simplest init you could think of".

2. Use a feature-complete general filesystem instead of a layered filesystem like Docker. By de-
fault, LXC uses the ZFS filesystem for its containers. Through use of the OpenNebula plat-
form!, it is even possible to create containers based on gcow2 and KVM-like images.

It is worth mentioning that LXC already provides the user with a way to run non-root unpriv-
ileged containers, making use of the newer cgroups v2. Docker, at the time of writing, only offers
running containers using root privileges.

4.3. QEMU
Although all hypervisors closely follow the architecture and techniques mentioned in Section 2.2,
the architecture of these platforms can differ substantially. Recall that for example QEMU also sup-
ports guests that have a foreign CPU architecture (that is, a CPU architecture different from the
host), potentially affecting the overall architecture of QEMU. QEMU supports two general execu-
tion modes:

1. User-mode emulation: Emulate and run a Linux/BSD process that is compiled for a foreign
CPU architecture.

2. System-mode emulation: Emulate or virtualize a complete system, including (virtual) CPUs
and hardware devices.

The focus in this thesis is on the latter mode of emulation.

An end-user creates a QEMU VM through the qemu (or architecturally specific variations thereof,
such as gemu-system-x86_64 for x86_64 guests) program. For every VM there is a separate pro-
cess, and is scheduled on the host OS like any other process. The host does not and can not see
which processes are running within a VM, unlike the case with namespace-based isolation plat-
forms. Memory for guests is provided through allocation by the host process, and is then mapped
to the guest its address space using mmap (). The allocation can be backed by either RAM or file-
backed memory (e.g. hugetlbfs). The guest sees this memory as its own physical memory.
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QEMU processes requests from multiple sources while virtualizing guests. At its core, QEMU
uses an event-driven architecture and reacts to events by continuously polling whether an event
has happened, and if so, dispatch it to the appropriate event handler [38]. In QEMU, this main loop
ismain_loop_wait (), and handles the following types of events:

* Waiting for registered file descriptors to become available. These file descriptors get registered
by various resources, such as the TAP device for networking, audio (ALSA), and recent virtio
(see later chapter) implementations.

* Run expired timers.

* Requests for invoking a function in another thread (such requests are called called bottom-
halves).

In order to continuously and consistently execute iterations of this main event loop, all of the
handlers for these events need to be executed quickly. This means that they should be non-blocking,
and not require any form of synchronization. However, there are cases where it is impossible to
avoid either of these two, in which QEMU employs separate dedicated worker threads to move
the blocking computation out of the main loop. For example, the POSIX aio I/0 interface uses
worker threads in order to implement asynchronous I/0. Another example that uses worker threads
is whenever the graphical display of the guest needs to be encoded (to be viewed by the host through
a VNC viewer). There are also special vCPU threads (one for each virtual CPU) and even multiple
main event-loop threads.

As we have discussed in a previous chapter, hardware-assisted virtualization enables the native
execution of guest code in a special guest CPU mode. The KVM Linux kernel module takes care of
this. QEMU, when enabled, interfaces with KVM to create and run the KVM VM in guest CPU mode.
QEMU thus only has to handle requests from the guest again whenever it traps out. A typical loop
that creates, runs and handles traps from a KVM guest looks as follows[39][38]:

open("/dev/kvm")
ioctl (KVM_CREATE_VM)
ioctl (KVM_CREATE_VCPU)
for (;;) {
ioctl (KVM_RUN)
switch (vcpu->kvm_run->exit_reason) {
case KVM_EXIT_IO0: /* ... */
case KVM_EXIT_HLT: /* ... %/

}

Listing 4.1: Code snippet in C that implements a loop that creates, runs and handles traps from a KVM guest. Included
libraries are omitted for brevity.

As we see in Listing 4.1, the special /dev/kvm file is opened first (and is only available on hosts
that support KVM), and the VM and vCPUs are created through specific ioct1() system calls. Ex-
ecuting ioct1l (KVM_RUN) (resulting in a VM_ENTRY) hands over control to the guest, and keeps
running unless the guest traps back to QEMU. The exit reason is read by QEMU and handled ac-
cordingly, and is then resumed again. While the guest is executing its own code, in extreme cases, it
would be possible for the guest to never yield back control to the host, and thus the main event loop
of QEMU would never continue iterating.
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A figure that illustrates the global architecture of QEMU and summarizes the previous para-
graphs is provided in Figure 4.2. The figure is split up into two separate domains: host and guest.
Note that both host and guest could be further divided into Ring 0 and Ring 3 parts, but are omitted
to retain the clarity of the figure. In this figure we see how the vCPU threads in the host are presented
to the guest as physical CPUs, as well as device drivers like a network and disk driver.
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Guest kernel
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trap
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Figure 4.2: Architecture of the QEMU hypervisor

4.4. Firecracker

Firecracker adopts an event-driven architecture and uses KVM to create and run VMs, much like
QEMU. The usage of threads for the main loop and virtual CPUs is also adopted in Firecracker. What
sets Firecracker apart however is its introduction of HTTP server threads. These threads expose a
REST API through a socket on the host and is used to manage the VM instance. Once a Firecracker
VM has been started (with the InstanceStart API call), the API server threads will block on the
epoll file descriptor and wait for another API request to come in.

In an effort to contrast Firecracker to QEMU/KVM, the developers claim that Firecracker has a
minimal device model. In total, Firecracker supports only a handful of emulated devices, divided
into 3 groups:

1. Virtio devices: network, vsock, block and a memory balloon device (implemented in virtio-net,
virtio-vsock, virtio-blk, and virtio-balloon respectively)

2. Alegacy (i8042) serial and PS/2 mice and keyboard controller.
3. A pseudo clock device that records the time since booting.

Whereas QEMU supports significantly more devices, like USB and GPU devices. In recent re-
leases, QEMU also features support for running virtual machines with a minimal device model
(constructed in response to the advent of Firecracker). The minimal device model of Firecracker
was initially conceived to reduce start-up time for virtual machines, which is particularly benefi-
cial in a serverless context, in which VMs tend to be short-lived (created just before and killed after
executing the function), and as such reducing the start-up time is essential for keeping the overall
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function completion time low.

Another technique Firecracker implements to reduce boot time is by making use of the Linux 64-
bit boot protocol. This allows for booting directly into 64-bit mode, skipping the usual x86 mode-by-
mode (from the 16-bit real mode to 64-bit long mode) booting protocol. Furthermore, Firecracker
boots directly into an uncompressed Linux kernel, starting at the 64-bit entry point [46]. This is dif-
ferent from typical Linux platforms, in which the kernel decompresses itself at startup.

The minimal device model of Firecracker also allows for a reduced attack surface, allowing for
fewer system calls and execution with fewer privileges than QEMU/KVM. The emphasis on extreme
minimalism in the Firecracker project should particularly be apparent when we discuss the security
aspect of the isolation platforms in Chapter 6.

4.5. Cloud Hypervisor

From an architectural point of view, Cloud-hypervisor is similar to the other hypervisors discussed
in this text. It is particularly similar to Firecracker. Cloud-hypervisor uses a similar architecture and
applies similar techniques to reduce boot time, for example by using the Linux 64-bit boot protocol.
The main difference is that Cloud-hypervisor finds a balance between a minimal hypervisor (Fire-
cracker) and a very feature-complete hypervisor (QEMU), slightly leaning towards the minimalism
of Firecracker. As such, the architectural properties of Cloud-hypervisor are expressed here in terms
of how it deviates from the Firecracker design.

Cloud-hypervisor supports 16 different devices, in contrast to the 7 of Firecracker and 40+ of
QEMU. The majority of the devices in this device model are paravirtualized virtio devices. In
contrast to Firecracker, Cloud-hypervisor also supports vhost-user devices: these are devices that
have virtio backends running outside of the hypervisor as a separate process. Vhost-user device
backends implement a master-slave architecture, where the hypervisor is the master and the slave
is the separate process. The communication between the two is implemented in the vhost-user
protocol through an extension of the ioct1 () interface. An example of such a device, virtio-fs,
is discussed in a later chapter. At the time of writing, implementations of virtio-vhost-user are
being developed, taking vhost-user one step further. Virtio-vhost-user make it possible for the mas-
ter and slave components to run within the VMs, establishing a direct (but virtualized) connection
between the two. This is implemented by tunneling the vhost-user protocol over a virtio device.
This has the advantage of bypassing any extra layers in the host (like a network switch), possibly
leading to an increasing in performance. Vhost-user devices are also implemented in QEMU.

Hotplugging memory and vCPUs is also supported by Cloud-hypervisor. Requests for hotplug-
ging are performed via the API that Cloud-hypervisor exposes. Memory is hotplugged by first allo-
cating memory on the host (and must be a multiple of 128MiB) and then mapped from the hyper-
visor userspace process to the virtualized physical memory of the guest. Hotplugging extra CPUs is
implemented by the host performing a _CREATE_VCPU ioct1() call, and are then advertised to the
running guest kernel using ACPI. The newly provisioned vCPUs are not automatically used within
the guest but have to be brought online by manual interaction with the guest Linux kernel sysfs
interface.

The two features described above are simply to illustrate its differences from Firecracker. For our
purposes, the Cloud-hypervisor and Firecracker hypervisors are quite similar, and should exhibit
similar performance and security characteristics. In later chapters we will verify whether this is
indeed the case.



4.6. Kata containers architecture 23

4.6. Kata containers architecture

The Kata containers architecture consists of multiple smaller entities. Figure 4.3 illustrates the archi-
tecture of Kata containers, which shows how a hypervisor is used in conjunction with namespaces.
The entry point of the Kata containers architecture is kata-runtime, which the user interacts with
through the Docker dockerd daemon (for example by running docker run) by implementing the
Containerd Runtime V2 interface [24].
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Figure 4.3: Architecture of the Kata containers secure container platform

The kata-runtime component is responsible for starting the hypervisor. A hypervisor needs a
kernel and root filesystem to start, and Kata containers handle that the following way:

1. Kernel: shipping with the kata-runtime, there is a Linux kernel that ‘is highly optimized for
kernel boot time and minimal memory footprint’ This optimization in practice boils down to
disabling almost all kernel features for the guest kernel using kconfig.

2. Root filesystem: It passes a ‘'mini OS’ as root filesystem. Although this mini OS is customiz-
able while building from source, by default it is based on Clear Linux. Both kata-agent and
systemd (which starts the kata-agent immediately) are included in this mini OS.

The kata-agent is a process for managing containers and processes running within a hyper-
visor. This agent communicates with kata-runtime using a ttRPC server (a reimplementation of
gRPC specifically for low-memory environments [84]) that is exposed on the host by QEMU through
avsock file.

A confined (namespaced and cgrouped) context is created by the kata-agent, within the hy-
pervisor. The root filesystem of this newly created confined context is that of the original Docker
image, passed as a shared mount point from the host through QEMU. Other settings, such as which
command should be run at start are initially passed to the kata-runtime in the Docker image. This
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is set up within the new container context, and the workload is run. Recall that a 'Docker image’
here simply means an OCI bundle, that is, a layered file system with a config. json at the top level,
specifying options such as the entry point. So the workload is specified by the creator of the docker
image using the ENTRYPOINT keyword in the Dockerfile, but is presented to the kata-agent in the
config. json of the OCI bundle.

Whenever a docker exec statement is issued to kata-runtime, and a Kata container is set up
already, it simply forwards this command to the kata-agent running inside the hypervisor, which
delegates it to the confined context to create a new process with this new command.

One of the main components in Kata containers that requires extra attention is the I/0O subsys-
tem. Unlike most hypervisor use-cases, the filesystem of the docker image needs to be shared be-
tween the host and guest of the hypervisor. Sharing is required for OCI commands like docker cp
(for copying data between host and guest). By default, Kata containers does this through the Plan9
filesystem, but a newer faster alternative called virtio-fs can be enabled as well (see Subsec-
tion 5.3.2). In the past, the Docker devicemapper I/0O driver could be used, a driver that presents
the root filesystem as a block device to kata. This resulted in much better I/O performance, but has
been removed from Docker.

4.7. gVisor

gVisor takes a different approach in which no hypervisor is used. Instead, system calls in gVisor
are intercepted and redirected through use of a ‘platform’. Concretely this platform leverages either
ptrace or KVM. The ptrace system call interception implementation employs PTRACE_SYSEMU to
stop and intercept the execution of system calls into the host kernel. With KVM as the platform,
the main gVisor process is run as a KVM VM. In general, the KVM mode ought to be faster because
ptrace has a relatively high context-switch penalty while KVM can make use of hardware assisted
virtualization features like fast address space switching [37]. This platform, and the rest of the gen-
eral architecture of gVisor, is illustrated in Figure 4.4

Regardless of which platform is used, system calls get intercepted and consequently bounced
back to a particular process in user-space. This process is called the Sentry. The Sentry is a ker-
nel in user-space, implementing not just system calls but also features like signal delivery, memory
management and the threading model. To reduce the attack surface, the system calls in the Sen-
try process are implemented using a small subset of system calls to the host kernel. This is enforced
through seccomp filters, meaning that other system calls can never be made to the host kernel, even
if an adversary has complete control over the Sentry process. The Sentry process itself runs as an
unprivileged user and uses namespaces in the same way as Docker does (networking namespaces,
filesystem namespaces, and so on).

The underlying idea in gVisor is that there is defense in depth. Not only does the Sentry process
reimplement system calls to reduce attack surface, it also runs within its own namespace. Even if
the Sentry process were to be compromised, the attacker would have to break out of the names-
paces. This pattern is also applied with the Kata containers platform, in which breaking out of the
namespaced context would only lead you to the next hurdle to pass: the hypervisor.

The seccomp filters applied to the Sentry also include all I/0 related system calls. This means
that the Sentry can not dispatch any I/0O related system calls to the host kernel. Instead, the system
calls coming in from the application that is run under the Sentry are dispatched to another gVisor
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Figure 4.4: Architecture of the gVisor secure container platform

component called Gofer. The Sentry and Gofer process communicate via the 9p protocol, similar to
how the file system is shared between the hypervisor guest and host in Kata containers. Recall that
this 9p filesystem required extra attention in the Kata containers, which is also the case for gVisor.

Another point that needs attention in gVisor, as also noted by the developers themselves, is net-
working. The Sentry implements its own, written from scratch, network stack, made specifically for
gVisor. This network stack is called Netstack, and just like other components in the Sentry intercepts
system calls and reimplements them using fewer system calls to the host kernel. Contemporary
network stacks are extremely vast however, meaning that it takes a lot of effort to implement every
single feature and RFC specification currently in use by mature network stacks, such as the Linux
network stack . Not implementing these features inevitably results in lower performance. Good
examples of features missing in gVisor that affect performance are RACK [19] and BBR [15].

4.8. OSv

OSv is a unikernel that uses existing compilers and a custom kernel to call into. Specifically, the OSv
kernel includes a dynamic ELF linker that can run standard code compiled for Linux. This linker
maps the executable and its dependencies to memory. Whenever application code calls functions
from the Linux ABI (through the standard C library), the linker dynamically resolves it to the cor-
responding function implemented by the custom OSv kernel. This means that system calls, called
through the wrappers implemented in glibc, are treated as regular function calls, and do not lead
to a (user-to-kernel) mode switch. Both the application and kernel (i.e. OS library) run in the privi-
leged ring 0. An architectural overview of OSv is given in Figure 4.5

Running a unikernel image on OSv is done through existing hypervisors. The unikernel image is
simply the image the hypervisor boots off. OSvimages consist of a base image that is fused together
with cross-compiled source code that calls into this base image. The OSv base image (kernel) ex-
poses an interface that follows the Linux ABI convention. This setup makes it so that as long as exe-
cutables are compiled as a relocatable shared object (. so in Linux) as well as position-independent
(“ PIE’, using the -fPiC compiler flag), recompilation and thus application source code is not re-
quired, and existing source code can transparently call into the OSv kernel. Note that there is a
caveat here: since there is no support for multiple processes within one OSv VM, system calls such
as fork() and exec() are not available. Down the line, this can lead to compatibility issues that
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one may only find out about at run-time.

As OSv is made to be run within VMs using these hypervisors, it can make assumptions that gen-
eral purpose OSs cannot. Hypervisors expose a relatively simple hardware model and therefore OSv
only has to implement a small set of hardware device drivers, such as VGA, SATA and serial ports.
For performance reasons OSv also leverages existing paravirtualized drivers such as virtio-blk,
and more recently (2020) virtio-fs.

4.9. Concluding remarks architectures

In this chapter we discussed the architecture of all the isolation platforms. There are both common-
alities as well as significant differences between the platforms. In this section we highlight a few
prominent differences between these designs.

Every platform devises its own way of interacting with a kernel. Secure container gVisor as well
as the unikernel OSv take a relatively unique approach by implementing a kernel in user-space. De-
spite the fact that these platforms both implement a kernel in user-space, they differ in how they
interact with it. gVisor uses the host kernel to redirect system calls to its user-space kernel by us-
ing either ptrace or KVM, thereby, as a direct result of its architecture, imposing overhead. OSv
directly executes system calls because they are regular (dynamically linked) function calls. This can
be exploited for performance gains. But even so, OSv requires a hypervisor that handles VM ex-
its whenever the unikernel guest traps out, just like regular hypervisors. Both OSv and the regular
hypervisors employ a dedicated guest kernel for nearly everything they do, but ultimately rely on
a host kernel (through KVM). The only type of isolation platform discussed that do not introduce
another layer of abstraction but rather just an isolation mechanism are containers. There are two
potential downsides to this architecture: 1) isolation support from the host kernel is a hard require-
ment, and 2) there is no defense-in-depth, while the interface to the host kernel is wide. There are
always tradeoffs to be made, as outlined at the beginning of Chapter 3.

Despite the tradeoffs, similarities between platforms can be observed as well. For example, the
reuse of the virtio paravirtualized devices in every virtualized environment, enabling developers
to only having to implement the guest-facing backend device drivers for the virtualization plat-
forms. Even more so, the entire project of Kata containers mostly focuses on gluing existing compo-
nents (Docker’s dockerd and a hypervisor) together. This results in interfaces that are sometimes
incompatible, leading to various types of shims, as also testified by the network architecture of the
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platform (which we discuss in more detail in Section 5.14). At the other end of the spectrum we have
gVisor, which implements nearly everything from scratch. This includes the implementation of its
entire network stack. This naturally comes at the expense of keeping implementation complexity
within the project low.

The isolation mechanisms employed within the platforms are thoroughly discussed in Chap-
ter 6.






Performance

For measuring overall system performance we perform micro-benchmarks for each platform. These
micro-benchmarks stress CPU performance, I/0 performance, network throughput, network la-
tency and memory (RAM) performance. We then also perform several real-world workload per-
formance measurements. We perform real-world benchmarks in order to draw conclusions about
the general performance of the system, including the interaction between the different subsystems.
These benchmarks should thus be indicative of performance measured in e.g. production systems.
In addition we have also performed experiments to measure the startup time for each platform,
which are particularly relevant in a serverless computing context.

5.1. CPU

In this section we benchmark the CPU performance of the different isolation platforms. This bench-
mark is representative of any application that is CPU-bound, such as compression and decompres-
sion applications, encryption and decryption (prime factorization) applications as well as any other
application that spends a substantial fraction of their runtime on performing mathematical calcula-
tions (e.g. matrix multiplication). The particular benchmark we have chosen entails loading a 30MB
video file! into memory, and then encoding that video file from H.264 to the H.265 video codec. For
this benchmark we make use of the ffmpeg [29] program. The task is executed on guests that have
access to 16 CPU cores, and the job itself is executed using 16 threads.

By making use of the different presets ffmpeg exposes, we have an instrument to control the
speed at which the media is encoded at. In this experiment, we have used the ‘slower’ preset. This
preset, as the name suggests, has a relatively slow compression speed but high compression ratio.
Slower compression speed increases overall total compression time, leading to more CPU cycles,
reducing the ratio of total running time spent on loading the file into memory. The difference in
performance between platforms in this benchmark can thus be attested to actual differences in
CPU performance, not I/0O (which we found to be the cause of significant variations between plat-
forms in initial runs of this benchmark).

For containers, there should only be a minimum of overhead, since the instructions run on the
bare host on the same kernel. Theoretical overhead could lie in the implementation of the book-
keeping of cgroups, but this is not likely to be the case for a mature feature of the Linux kernel.
By virtue of hardware-assisted virtualization, the hypervisors should also be able to perform well.

IDownloadable from the Blender project website at https: //peach.blender . org/download/
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There are two major characteristics that could impair CPU performance in guests using virtualized
CPUs:

1. The CPU performance is impaired because the workload attempts to execute sensitive in-
structions. Sensitive instructions can not be immediately handled by the guest kernel and
are dispatched back to the hypervisor. This incurs an expensive vmexit instruction (which
typically take over 10.000 CPU cycles [7]), switching address spaces, and once completed a
vmenter or vmresume instruction is executed to switch back. Examples of such instructions
are CPUID and HLT [41]. An example of a workload that execute relatively many sensitive in-
structions are databases that frequently schedule otherwise idle virtual CPUs [63]. Paravirtu-
alized device drivers try to avoid executing sensitive system calls altogether.

2. CPU scheduling of the virtual CPUs within the hypervisor guest should not be interfering with
the host kernel CPU scheduler. One way to reduce this CPU contention is by employing CPU
pinning, in which the CPU time the hypervisor exposes to the guest is pinned to a fixed subset
of the host’s CPU cores. An interesting observation was made in [74], in which CPU pinning
was found to be particularly beneficial for I/O heavy workloads.

Ffmpeg: time to encode h264 to h265, 16 threads, 30Mb 1920x1080 video (lower is better)
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Figure 5.1: ffmpeg video re-encoding CPU bound benchmark, re-encoding a 1080p 30Mb video from H.264 to H.265.

As the results of this benchmark show in Figure 5.1, most of the results end up at around 65000
milliseconds, while some differences between platforms can still be observed. A relatively extreme
outlier is OSy, taking up significantly more time to encode the video file. In order to eliminate some
potential causes of this discrepancy we have carried out another, highly specific, microbenchmark.
This benchmark is part of the Sysbench [78] CPU benchmark, and verifies whether a number is
prime using the following simple code (reimplemented in Python, based on Sysbench source code):

for ¢ in range(3, max_prime):
t = math.sqrt(c)
isprime = True
for 1 in range(2, int(t+1)):
if ¢ % 1 ==0:
isprime = False
break
if isprime:
n+=1

Listing 5.1: Prime number verification algorithm, based on Sysbench source code [78] reimplemented in Python
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This benchmark stresses a very small basic subset of all CPU capabilities. This benchmark was
deliberately carried out to verify whether the overhead exhibited by OSv is inherent to the CPUs on
the platform, or due to another more complicated piece of functionality exposed by modern CPUs.
The results of this benchmark is given in Figure 5.2. The results show that there is little to no variance
among all isolation platforms, including OSv, when it comes to executing simple CPU instructions.
Hence, the overhead as imposed by OSv in the ffmpeg benchmark likely finds its cause in another
set of CPU instructions. Upon inspection of used CPU technologies by ffmpeg, all platforms were
allowed the same capabilities (specifically: MMX2 SSE2Fast LZCNT SSSE3 SSE4.2 AVX FMA3 BMI2
AvVX2). Compilation flags as enabled by the GCC compiler on each platform also did not bring any
differences to light that should significantly affect this benchmark.

Sysbench CPU prime number verification (max-prime=20000, 5 repeats)
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Figure 5.2: Sysbench CPU prime verification benchmark

As such, overhead within OSv must be caused by another factor. For example, although hard
to guarantee, it could be attested to the custom implementation of the thread scheduler in OSv (an
indication for this is that the gVisor, the other platform that shows a relatively high performance
overhead, also has a custom thread scheduler). The scheduler keeps a distinct run queue for each
CPU, listing the runnable threads for each CPU. In order to enforce a sense of fairness, the sched-
uler also employs an active load balancer between these queues. In practice, this means that when
there is a run queue that contains more runnable threads than another queue, and a thread asks
to be moved or a certain expires, the load balancer might move a thread to another queue. In this
case, movement of threads between queues does not make sense since each thread roughly has an
equal amount of work to do, and the number of processors and ffmpeg threads within the OSv guest
are equal, potentially resulting in the overhead as measured in our benchmark. This custom thread
scheduler, in conjunction with suboptimalities in implementation in OSv, could be the root cause
for the observed performance overhead.

In conclusion, we see that CPU-bound code that exercises a basic subset of all available CPU
instructions there is no performance overhead. However, with more complex CPU-bound tasks,
such as re-encoding a video using ffmpeg, differences in performance overhead become apparent.
In particular the platforms that implement custom thread schedulers (gVisor and OSv) appear to
suffer a severe performance penalty.
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5.2. Memory

There are two important aspects to the performance of memory: raw throughput and access la-
tency. We have evaluated both, the former of which using two different benchmarks. The memory
benchmark we used Tinymembench [83] and STREAM [62]. Tinymembench is a relatively simple
benchmark which reports both the maximum bandwidth achieved through sequential memory ac-
cesses as well as the latency of random memory accesses in increasingly larger buffers. The band-
width maximum of memory can be measured in many different ways, and indeed, tinymembench
implements this in 29 different ways. These different ways can roughly be categorized in 3 distinct
groups:

1. copy tests: how many bytes can be copied per second between variables residing on the stack.
There are different types of copies within this group, such as forward copies (source address
increases), backwards (source address decreases, while destination address increases), 2-pass
(first, the data is written to a small buffer residing in the L1 cache, and only then it is written
to the main memory), and variations thereof.

2. allocating memory through the memcpy libc system call.

3. allocating memory using modern CPU features such as sse2, making use of larger CPU regis-
ters.

In the results only group 1 and 3 of bandwidth measurements are represented. The second
group, allocating memory through the memcpy system call, resulted in allocation that was signifi-
cantly faster than native speed for most of the platforms. This can be attested to caching or lazy
allocation of chunks of memory, a recurring problem within benchmarking isolation and virtualiza-
tion platforms (which becomes most apparent in a later section, Section 5.3). We therefore do not
present the results of the second group of memory benchmarks.

Tinymembench random memory access latency (MADV_NOHUGEPAGE)
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Figure 5.3: Memory latency tinymem benchmark

Figure 5.3 shows the average time for accessing a random element within buffers of increasing
sizes. We can see that the larger the buffer is, the higher the latency. This is due to the increasing
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proportion of accesses that miss the TLB cache and need to be dispatched to L1/L2 cache, and for
even larger buffers to SDRAM. The numbers displayed here indicate the extra time that was needed
on top of the L1 cache access latency. The latencies of writing to HugePages are omitted because
both Kata containers do not support them, and more importantly, the results are almost equal to
those of regular sized pages shown above.

The results sketch an outcome that is mostly consistent between all the platforms, with the ex-
ception of the hypervisors. In particular Firecracker both has a higher average latency as well as
standard deviation for accesses in larger buffers. The average access latency for Cloud-hypervisor
is larger as well, but not to the same extent as Firecracker. These two platforms, Firecracker and
Cloud-hypervisor, share substantial parts of their source code in the form of the ‘rust-vmm’ Rust
crate dependency, in which the cause for these higher access latencies could potentially reside.

Tinymembench memory throughput benchmarks (copy, sse2)
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Figure 5.4: Memory throughput tinymem benchmark

We use two benchmarks to measure memory throughput. The first benchmark, in Figure 5.4,
is a benchmark that shows how many bytes can be copied per second using both regular as well as
sse2 instructions. This benchmark is part of the Tinymembench benchmark. The second bench-
mark is the popular STREAM benchmark, a simple synthetic benchmark for measuring sustained
memory bandwidth by performing simple operations on vectors [62]. The STREAM benchmark
consists of 4 different vector operations, but we only present the COPY operation results here as the
operations yielded similar relative performance (the other results are provided in Appendix A). The
COPY benchmark executes code of the form a[i] = b[i], transferring 16 bytes per iteration, and
executes no floating point operations. Both of these benchmarks have a sequential access pattern,
meaning that performance is minimized by memory bandwidth rather than latency (as hardware
typically prefetches the data that will be requested later on).

In Figure 5.4 and Figure 5.5 we see the results of these benchmarks. The throughput perfor-
mance is reminiscent of the latency plot at the beginning of this section. All platforms generally
perform equal, or close to equal, with the hypervisors underperforming. Although paravirtualiza-
tion and hardware-assisted virtualization have substantially reduced the overhead of hypervisors,
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STREAM benchmark: Copy, array_size=100000000 (2.2gb total)
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Figure 5.5: Memory copy throughput STREAM benchmark

the additional layer of hypervisor indirection seems to cause overhead. However, there is one re-
markable result that contradicts this finding. Kata containers uses a hypervisor, yet is is not victim
to the reduced memory latency and throughput. We thus conclude that the overhead is not in-
herent to the use of hypervisors. Concretely, Kata containers avoids this virtualization penalty by
techniques such as the QEMU NVDIMM feature, which provides a memory-mapped virtual device
that directly maps between the VM and host, bypassing the intermediary virtualized layer. The I/0
subsystem can employ similar techniques, which are discussed in Section 5.3. Another technique
that can provide improved memory performance for virtualized guests is Kernel Samepage Merging
(KSM) [6]. KSM enables the sharing of memory between multiple processes (like VMs), which in-
creases density, and therefore the reuse of hot pages (for a higher cache hit ratio). Although direct
access techniques such as the NVDIMM feature and KSM potentially lead to performance gains,
it also weakens the isolation boundary between tenants of the same host (as shown in e.g. [44], in
which the authors present a vulnerability introduced by KSM).

In this section we have seen that most of the isolation platforms do not impose significant over-
head on the use of the memory subsystem, of which we have quantified both access latency as well
as throughput. We draw the following conclusions based on the results in this section:

 All containers, including secure containers, perform on-par with native.

* Although most hypervisor-based platforms exhibit some form of slowdown in both latency
and throughput, the Kata container platform is not significantly impaired, despite its use of
the QEMU hypervisor. Furthermore, the OSv platform running under QEMU also does not
show any slowdown. As such, we can conclude that the usage of a hypervisor does not uncon-
ditionally lead to memory performance overhead.

* The memory performance outlier is Firecracker, scoring substantially lower than the other
platforms. Cloud-hypervisor shows a similar (although weaker) effect on memory access la-
tency but not for throughput, while the opposite holds for QEMU. This suggests a trade-off
between latency and throughput for general hypervisor-based platforms.

* OSv its memory performance is strongly affected by its hypervisor. OSv running under the
Firecracker hypervisor underperforms in comparison to OSv running under QEMU, which
yields results close to native.
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5.3.1/0

We first provide a breakdown of how I/0 is implemented in each isolation platform. We then present
the benchmarks and analysis.
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Figure 5.6: Path for I/O requests per isolation platform.

The path a request for I/0, whether it be a read or write request, is different for each isolation
platform. We discuss this path per platform, and is illustrated in Figure 5.6:

* Docker: A feature that makes Docker unique is the use of a so-called Dockerfile. This file de-
scribes, in an imperative manner, how the image should be constructed. This file is tightly
integrated with the layered filesystem Docker uses: each layer represents one instruction in
the Dockerfile. These layers are all read-only, except the topmost layer. The Docker storage
driver implements what is needed to perform interactions between these layers. For exam-
ple, with the overlay?2 storage driver, each layer is present in a different folder on the host
filesystem (typically at /var/lib/docker/overlay?2). Every layer contains the files that are
different from its lower layer, as well as a symbolic link to this lower layer. This layered filesys-
tem however is typically not used for I/O intensive applications, and for any persistent or
performant I/0 workloads Docker volumes should be used. A volume is simply a bind mount
(‘mount -bind‘) from the container to the host filesystem, constrained by a namespace.

e LXC: Creates a loop device for the ZFS pool it creates. This means that the ZFS pool is pre-
sented on the host system as a regular file. It then chroots into the root filesystem folder that
is present in the ZFS pool for that specific container.

* Hypervisors: All of the hypervisors make use of virtio, a paravirtualized I/0 driver exposed
to the guest (called the ‘front-end driver’). The host exposes this paravirtualized driver by an
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implementation in user-space by the hypervisor process. Because this implementation is in
user-space, there is no driver needed in the host kernel. The image of the guest is presented
to the guest as a block device (and can thus contain its own filesystem), while the host only
sees a file on its filesystem. This is made possible by making use of the I/O loop device imple-
mentation in the Linux kernel.

e OSv: Although the I/O performance of OSv is not benchmarked due to its inability to run the
used benchmarking tool, we will shortly discuss how OSv handles I/0. OSv uses a loop device
and virtio, just like the hypervisors. As such, the I/0 architecture of OSv is the same as that of
the hypervisors (as can also be seen in Figure 5.6). The only difference lies in which filesystems
are supported. In the case of OSv, the only supported filesystem is ZFS.

» Kata containers: In terms of architecture and technology Kata is not more than just the sum
of Docker and the hypervisor. This means that a folder in the host is mounted onto the root
filesystem of the container (much like Docker), and within this container, a hypervisor ex-
poses this entire root filesystem to the hypervisor guest through the 9P filesystem.

* gVisor: all I/0 requests (and system calls) are reimplemented in the Sentry process. In this
reimplementation, all requests are dispatched to the Gofer process, which performs the actual
170 operations on the host using the 9P filesystem.

5.3.1.1/0 Benchmarks

For benchmarking the I/0 subsystem we use the Flexible I/0 tester (fio) benchmarking tool [32],
version 3.25. Specifically, we use fio to benchmark the block I/0 performance of the different iso-
lation platforms. By benchmarking on the block level, rather than on the filesystem level, we solely
capture the overhead imposed by the actual virtualization mechanisms, rather than a combination
of overhead imposed by both the filesystem and block layer.

Fio measures the average read and write throughput by pre-allocating a file two times the size of
the amount of memory available to the platform, using fallocate (), and then uses this file to write
to and read from in blocks of 128kb using the 1ibaio I/O engine. For these benchmarks, we start the
platform that is being tested, and then attach a separate storage medium through the user interface
exposed by that platform. For Docker this could be as simple as passing a bind mount through the
--volume flag, whereas for LXC this entails creating a new ZFS storage pool on the separate storage
medium and recreating the LXC container within this new pool. For hypervisors, the target stor-
age medium is attached as an additional drive and mounted within the guest. The amount of data
read/written for each I/0 test is equal across the different platforms, in order to keep the chance of
anomalous seek times imposed by a larger test file to a minimum.

Since Firecracker does not support attaching extra storage devices, it is excluded for this bench-
mark. For OSv there is no working implementation of the 1ibaio engine, and picking other I/0
engines leads to either an unfair comparison or underutilization of the maximum throughput the
storage offers. As such, we have left the OSv platform out of the following benchmarks.

In Figure 5.7 we see the results of this 128kb write/read throughput benchmark. Generally
speaking, the read performance of Docker, LXC and QEMU/KVM is equal to that of a native plat-
form that does not virtualize anything. The write speeds of these platforms come close to that of
native as well, although overhead comes in the form of a higher standard deviation. The other hy-
pervisor, Cloud-hypervisor, performs significantly worse, with lower throughput in both read and
write performance as well as standard deviation. This however is not inherent to the use of hyper-
visors, as QEMU demonstrates. The secure containers gVisor and Kata containers severely suffer
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from the extra layers of indirection, in the best case reaching only half of the speeds achieved using
other isolation platforms.

FIO: Read and write bandwidth (128kb blocks, libaio)
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Figure 5.7: Fio I/0 throughput benchmark

We found running the I/0 benchmarks to be the most difficult to run, due to caching problems
with the chosen isolation platform. It is particularly difficult with hypervisors. The main issue when
using a hypervisor, both the guest and host have a separate page cache. The Linux page cache stores
(parts of) files within memory, leading to greatly accelerated access to these files, since the operat-
ing system can read from the in-memory page cache rather than actually having to read from the
slower non-volatile storage device. While this is desired behavior in many cases, since it can provide
good speedups, it also makes benchmarking all the more difficult.

I/0 Benchmarking tools like fio support writing directly to storage effectively bypassing the page
cache (using the direct=1 option). With some isolation platform however, there are two separate
kernel instances running (the host and guest kernel), both using their own page cache. Despite fio
being instructed to write directly to storage and skip the page cache, due to the additional guest
kernel, it is only able to circumvent the guest kernel page cache. The root filesystem of the guest is
presented as a block device to the guest by creating a loop device on the host, and flags like direct
are not propagated properly (and perhaps this is not even desirable, considering the potential se-
curity implications), and I/O requests executed within the guest can still be cached inside the host
page cache. This also implies that even though the Linux kernel supports dropping its page caches
manually (by runningecho 3 > /proc/sys/vm/drop_caches), if run within a guest, the host page
cache is unaffected. This can lead to misleading benchmark outcomes, in which hypervisors out-
perform the native I/0 speeds by a large margin. An effective and rather crude way to remedy this
issue is by dropping the page cache on the host manually before each benchmark run.

Most of the platforms roughly achieve the same throughput, leaving gVisor, Kata containers and
Cloud-hypervisor behind. When considering the random read latency for the platforms, of which
the results are indicated in the Figure 5.8, the relative performance of the platforms is mostly con-
sistent. The hypervisors incur a latency issue that is inherent to the extra virtualization layer these
platforms have to go through. QEMU exhibits overhead similar to what is shown in prior research.
The newer Cloud-hypervisor platform performs remarkably well in this latency benchmark, but
considering its poor throughput performance, it cannot be concluded that it performs better than
the QEMU I/0 subsystem overall. As for the secure containers, Kata container performs exception-
ally poor. Although the gVisor platform is excluded in this particular benchmark, as all its reads got
cached even when both host and guest page caches were dropped, it is reasonable to assume that
its performance would be similarly lackluster due to the use of the 9P filesystem.
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Figure 5.8: Fio randread latency benchmark

5.3.2. Plan 9 and virtio-fs

The relatively poor performance of gVisor and Kata containers can be attributed to the fact that
these platforms employ the Plan 9 filesystem. This is a network-based filesystem part of the Linux
kernel (and referred to as p9fs within the Linux kernel) [88]. Sharing a filesystem between the guest
and host of containers is required to implement a container runtime compatible with the Docker
engine (it needs OCI compliancy), for features such as docker cp and the aforementioned bind
mounts using the ‘-volume* option.

Although 9pfs is a mature piece of software by most standards, active development ceased in
2012. With the increasing interest in containers in industry, the need for a better and mostly more
performant shared filesystem became clear. This led to the creation of virtio-fs: a filesystem
implemented in FUSE ? using virtio as the transport layer. Since hosts and guests of isolation
platforms are not physically separated by a network, an assumption that traditional networked fi-
leystems are built upon (such as the Plan9 filesystem), do not longer hold. The virtio-fs filesystem
can take advantage of these new conditions, and can gain a significant performance speedup rela-
tive to existing networking filesystems. Naturally, we have benchmarked results for this new storage
platform as implemented by Kata containers as well.

FIO throughput
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Figure 5.9: Fio randread virtiofs benchmark

2https://www.kernel.org/doc/html/latest/filesystems/fuse.html
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Figure 5.10: Fio randread virtiofs latency benchmark

In Figure 5.9 we see three different platforms we have used to evaluate the performance of
virtio-fs. The baseline is the read and write performance to the native filesystem, without any
virtualization layer in between. The second platform is plain QEMU, with a storage medium shared
to the host using the -drive flag. The third platform is plain QEMU with the new shared virtio-fs
filesystem with default settings. We can see that the virtio-fs filesystem throughput is roughly on
par with native, losing by a margin of around 5%. This is an improvement even over the QEMU with
-drive flag setup, which presents the passed device as a block device using virtio-blk (with its
filesystem mounted in the guest).

By investigating the source code of virtio-fs, one can see that several aggressive optimiza-
tions are used to obtain these rather impressive results. An example of such an optimization is that
when writing data from the guest to the host, the data is copied from the guest’s memory directly to
the host and written from there. This effect is also demonstrated in the figure above, in which the
guest (or at least Fio) is under the illusion that writes are completed more or less instantaneously.
This particular way of writing to a filesystem is something that can only be realized because there
is no actual network between the guest and the host, as networked filesystems like 9pfs and NFS
do assume. Another feature of virtio-fs is called DAX (for direct access). DAX maps guest file
content directly onto a memory window on the host (called the DAX window), enabling the guest to
directly fetch data from the host page cache. Note that this sounds similar to the aforementioned
clever write trick, but it is in the opposite direction, and is about the interaction with the host page
cache.

The clear advantages of DAX are illustrated in the figure above. Virtio-fs with DAX enabled
achieves read throughput upwards of 9GB/s. Clearly, this involves caching within memory, which
is something we have been trying to avoid within all benchmarks. The point we are trying to make
here however is that there are great gains to be had in real-life workloads in shared filesystems that
do not assume there is a network between the host and guest. Note that this automatically also
leads to coherency between the guest and host, since there is only one source of truth about the file
contents of shared files: the DAX window.

With these results in mind, in case virtio-fs did not exist, we would like to make note of an
architecture in which there is no I/0 overhead at all that can be trivially implemented in container
runtimes. Even in a container runtime that is separated by a hypervisor as is the case with Kata
containers. Concretely, if an NFS server is set-up within the guest, and the host functions as a client
to that server, you get native I/O performance within the guest. The only downside is that when
data is written from the host to the guest the performance is poor in particular with smaller block
sizes, as demonstrated in Figure 5.13. The host can also run the NFS server and have the container



40 5. Performance

FIO throughput

104
RW

. Write
mm Read

10° 4

Speed (MB/s)

102 .

virtiofs (DAX) Native QEMU default virtiofs (no DAX)
Platform

Figure 5.11: Fio virtiofs with DAX throughput (logarithmic scale)

act as a client, but this hampers all I/O performance that is local to the container (since it is, in fact,
not local anymore, but rather all I/O has to be dispatched to the host through the NFS protocol).
Results of this setup, in which the host acts as the NFS server, are shown in the Figures 5.12 and 5.13
below. Thus, the performance from writing from the guest to the host is shown below, and writing
from host to guest is on par with native. But if you were to move the NFS server to the guest and have

the host act as client, these speeds are naturally swapped as well (leading to native I/O performance
within the guest).

dd sequential read performance

Speed (MB/s)

virtioblk

Platform

Figure 5.12: dd read throughput

The results show four different platforms, the first three a way of providing a shared filesystem
(NFS, 9p and virtio-£fs) and the last exposing a block device to the guest. Note that the compar-
ison between NFS, 9P, virtio-fs, and virtio-blk is an apples with oranges comparison because

the I/0 performed using virtio-blk should be able to reach speeds that the other platforms can-
not, even when running native, because:

* The writes and reads are to a block device, not a filesystem
e Ttis not shared, while the other platforms do share their filesystem.

Virtio-blkisincluded here to give an indication of the price that is paid for having a filesystem
at all. The block device indicates the theoretical maximum speed you should be able to get writing
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Figure 5.13: dd write throughput

directly to the storage device, and the discrepancy between the block device and the others is the
price you pay for introducing a shared filesystem.

Naturally, the shared filesystems perform worse than the block device. Between the three shared
filesystems virtio-fs outperforms all other platforms in all categories (read/write and 1kb/1mb block
size writes). In this comparison, the 1kb block size write speed for the NFS filesystem is significantly
lower, clocking in at around 0.03 Mb/s.

In conclusion, in this section, we have seen that quantifying I/O performance for the various
isolation platform proved to be difficult due to the various layers at which caching happens. In
terms of quantitative results, we make the following observations:

* TheI/O performance of most systems is close to native except for the secure containers gVisor
and Kata containers, and for the hypervisor Cloud-hypervisor.

* For Kata containers there is a very promising alternative in virtio-fs. We have also proposed
and measured performance of an architecture in which Kata containers uses the mature network-
based filesystem NFS, which allows for zero overhead in local writes and reads.

* gVisor performance, in its current form, is severely hampered by the use of both the 9P proto-
col and separate Gofer architectural component.

* Cloud-hypervisor should get better as it matures, but for now remains the outlier. For this
platform, there should not be an architectural bottleneck, as QEMU performs close to native.

5.4. Networking

In this section we first describe how networking is implemented in each isolation platform. Then,
we look at the benchmarking results.

The networking setup can be summarized for each platform as follows:

* Docker: By default, Docker containers are attached to a bridge network. The Docker bridge
driver automatically installs iptables rules on the host machine. This is set up so that contain-
ers on different bridge networks cannot communicate directly with each other. The bridge
and the container are connected through a virtual ethernet (veth) pair.

e LXC: the LXC platform supports various networking types. The default networking type is an
(L2) bridge, equivalent to the type of bridge used in Docker. When this bridge is created at
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LXC installation time, it will also set up a local dnsmasq DHCP server and perform NAT for the
bridge [57].

Hypervisors: similar to how the I/O subsystem is implemented, networking is done through
the paravirtualized virtio-net driver. Access from the host to the supervisor is done through a
TAP device which is exposed as a local network interface to the guest.

OSv: Like the other hypervisor platforms, OSv makes use of the paravirtualized virtio-net
driver. However, unlike the other hypervisor platforms which all run using the linux kernel,
OSv does not, and implements its own TCP/IP network stack. This network stack is based on
(and originally copied over from) FreeBSD, but was later overhauled to implement Van Jacob-

),

sen’s ‘network channels’ design [87], reducing the number of locks and lock operations.

gVisor: the gVisor platform implements its own network stack called Netstack. As Netstack
is part of the Sentry process, this means that everything related to the network subsystem
is implemented in the Sentry process. This is unlike how I/0 is implemented in gVisor, for
which the developers created a separate entity and thus a layer of indirection. In the Netstack
implementation, packets are directly written to the network bridge that is installed by Docker.

Kata containers: Much like Docker, the host networking namespace is connected to the con-
tainer networking interface using a bridge, with a virtual ethernet pair connecting the two
sides. This results in a virtual network interface device being exposed to the container, that
is ‘plugged in’ to the bridge on the host. The local virtual NIC in the container networking
namespace is connected to a TAP device in the same namespace, and is connected to the guest
by passing this TAP device in the hypervisor invocation. In Figure 5.14 we see the architecture
of the various components that make up the networking subsystem in Kata containers. When
looking at this figure, one might wonder why the Docker bridge in the Kata containers archi-
tecture is not directly connected to the TAP device tapO_kata in the guest. This is mostly
due to interoperability with libraries that Kata containers depend on. The Kata containers
project makes use of the Container Network Interface [23], allowing for reuse of functional-
ity such as creating networking namespaces. As Kata containers assumes Docker is installed,
it also assumes the existence of its docker0 bridge interface. Generally, whenever a regular
Docker container is created, the container engine will create a virtual ethernet pair between
the host docker0 bridge and the container networking namespace. Virtual ethernet pairs are
commonly used to connect networking namespaces. As such, while it is technically possibly
to create two TAP devices on the host and guest and connect them, this is inefficient for two
reasons: it results in an architecture where there is an additional TAP device on the host, and
interoperability with the CNI library is lost. Whereas if the CNI library is used (and conse-
quently a virtual ethernet pair to connect namespaces), it is possible to use the pre-created
Docker network interface that is exposed in the container networking namespace. Hypervi-
sors generally do not implement support for virtual ethernet interfaces but instead use TAP
devices. This is why in the case of Kata containers, a Traffic Control (TC) filter is used to con-
nect the container networking virtual ethernet cable to the TAP device. This TC filter should
impose relatively little overhead, as will be verified through experimentation in the next sec-
tion.

5.4.1. Throughput and latency benchmark
For network we take a look at microbenchmarks for both throughput as well as latency. For mea-
suring the network bandwidth we have used the iperf3 benchmark [43], in which the host acts as
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Figure 5.14: Network architecture overview Kata containers

client to the server that is run inside the virtualized guest. For measuring the native benchmark
performance, the host machine acts as a server while the client requests are sent from a device
that is directly connected to its NIC. The iperf3 benchmark aims to reach the maximum achievable
throughput over an IP network. In this context that implies that any score below native indicates
overhead from the platform used.

iperf3 benchmark: Average bitrate over 15 seconds (Gbits/s)

Average bitrate (Gbit/s)

Native Docker gVisor Kata LXC QEMU Firecracker  Cloud-hv OSv OSv-FC
Platform

Figure 5.15: iperf3 network throughput benchmark, maximum throughput achieved.

From the results we can conclude, unlike in the memory benchmark, there is always a price to be
paid for virtualization (or isolation). The host achieves a mean throughput of 37.28 Gbit/s whereas
the second highest, OSv, achieves a mean throughput of 36.36 Gbit/s. The performance advantage
of OSv, which runs under QEMU, and a plain QEMU guest is a very significant 25.7% (in the figure,
QEMU vs. OSv). The network performance throughput as exhibited here does not necessarily reflect
a superior architecture of OSv however, as the results of the benchmark using the Firecracker hyper-
visor to run an OSv guest only results in less significant 6.53% increase (in the figure, Firecracker vs.
OSv-FQ).

The results can be further divided into several groups employing different techniques to sepa-
rate the host network from the guest network, either through namespacing or virtualization. Docker
and LXC, use a network bridge approach as mentioned before, and incur a 9.84% and 9.19% perfor-
mance penalty, respectively.
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The hypervisors besides OSv use a TAP device and virtio-net setup, and incur a more severe per-
formance penalty in the order of 25%. The less mature platforms, particularly Cloud-Hypervisor suf-
fers from severe inefficiencies in its implementation, considering the high-level architectural setup
of QEMU and Cloud-hypervisor are equal. The Kata containers performance is bottlenecked by the
weakest link. Kata container employs both bridges and a QEMU (TAP device + virtio-net) setup. This
means that the performance of Kata containers should be equal to the performance of this weakest
link, which in this case is the QEMU part of the architecture, and indeed it is.

In this figure gVisor the outlier. As described above, gVisor implements its own network stack.
Implementing a network stack from the ground up, however, is not a trivial task, and as a conse-
quence, gVisor does not yet implement all RFCs related to networking, of which many also promise
increasing network throughput. Although at this time it is expected that eventually all relevant RFCs
will be implemented in Netstack, for now, its performance is not competitive.

The average latency as measured with the Netperf benchmark yields similar results, with the
containers using bridges (Docker, Kata containers and LXC) performing very well, followed by the
hypervisors. OSv does not outperform every other platform but has slightly lower latencies than the
hypervisors. Again, gVisor is a notable negative outlier here, with a 90th percentile response time 3
to 4 times that of its competitors. In this chapter, only the 90th percentile scores are presented. Two
other percentile scores, 50 and 99, are provided in Appendix A.
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Figure 5.16: Netperf network latency benchmark (90th percentile)

In conclusion, unlike the other benchmarks we have seen up until this point, there are differ-
ences between nearly all platforms. We observe the following:

* Docker, LXC and OSv perform the best of all isolation platforms. In particular the last platform
is interesting, as it confirms again that the use of a hypervisor does not necessarily lead to
impaired (network) performance.

* As we have seen before, the general hypervisors QEMU, Firecracker, and Cloud-hypervisor
perform in order of maturity.

* Despite its relatively complicated architecture, Kata containers performs on-par with QEMU.
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* The limitations of reimplementing kernel functionality in user-space, as gVisor does, is par-
ticularly apparent in network performance, in both throughput and latency.

5.5. Startup

Figure 5.17 illustrates the startup time for every platform in this thesis. Startup time here is the total
end-to-end process time, from process creation to termination. The termination of the process is
done through a patched init () system (for e.g. the hypervisors and LXC) and an ’exit’ entrypoint
in the containers (which in Docker containers, is scheduled through the ’tini‘ [82] init () system).
OSv startup time is measured by invoking it without a program to run, resulting in an immediate
shutdown after it completes its boot sequence. As published in [3], the authors of Firecracker have
measured booting time as reported by the system itself using a patched kernel. We believe, however,
that this is a misleading metric, as the other results are measured from end-to-end, from process
creation until termination. When startup time for Firecracker is measured in the same way as is
done for other platforms, its performance is, in fact, relatively unimpressive, as we will show in the
rest of this chapter.
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Figure 5.17: Time taken to boot all isolation platforms (CDF)

Although one might assume that including process termination in the total measurement time
may not be ideal, the alternative would be to use measurement methods which can not be applied
to every single platform. Moreover, in practice, the overhead for process termination was minimal,
as we found out through experimentation. The results will be presented in separate parts in the rest
of this section, since the results of all platforms and its variations are too numerous to draw clear
conclusions from one figure.

For the startup time taken for the container runtimes in Figure 5.18 we look at Docker, gVisor,
Kata containers and LXC. There are two variants for each container runtime, one invoked through
docker run and one by directly invoking the runtime with an OCI bundle (‘Docker image’), indi-
cated by *-oci. LXC has no corresponding way to be directly invoked, and as such, there is only one
LXC variant. We can see that plain Docker clocks in at an average startup time at just over 100 ms,
closely followed by gVisor. Around the 400 milliseconds mark, we again see these two platforms.
The difference between their respective OCI counterparts is the overhead for starting and stopping
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Figure 5.18: Time taken to boot container runtimes (CDF)

the containers through the Docker daemon. Then, we see Kata containers requiring a startup time
of 650 milliseconds. For Kata containers startup is more complicated, since the OCI bundle root
filesystem first needs to be transferred to the hypervisor, then within that hypervisor the supervis-
ing ‘kata-agent‘ process proceeds to pivot (chroot) to that OCI bundle root filesystem, before it can
run invoke any commands. Moreover, it also needs to set up other required components, such as
the 9pfs (as discussed in prior Subsection 5.3.1). This all leads to the results as shown in the fig-
ure, where the Kata containers startup time is more than just the sum of the Docker and hypervisor
startup time.
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Figure 5.19: Time taken to boot hypervisors (CDF), replication of work in [3]

Figure 5.19 shows the startup time for the different hypervisors booting with the same kernel
and root filesystem. As mentioned before, the init () system is patched to immediately quit as
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soon as it starts. The fastest hypervisor, shown at left side of the Figure, is Cloud-hypervisor, signif-
icantly outperforming the other hypervisors, followed by QEMU (both plain QEMU and the QEMU
minimal gboot.bin BIOS firmware). The slowest hypervisor is QEMU with the pVM device model,
as inspired by Firecracker. In theory this should lead to faster startup times (with fewer devices to
manage, and no BIOS at startup), but in practice for this version of QEMU it only leads to increased
startup time.

At around 350 milliseconds the Firecracker hypervisor appears. This is an interesting result,
since in [3] the authors conclude that Firecracker has the fastest startup time of all the hypervisors.
We consider this conclusion skewed, as not the actual end-to-end (process creation to termination)
time is measured, but the time taken to write to a special device during boot time, by using a patched
kernel. We do not consider this an apples to apples comparison, as it does not take into account
what happens before the kernel is launched, as well as anything that happens after the kernel prints
this time. The true time needed to start Firecracker, in our experiments, is significantly higher than
its hypervisor competitors Cloud-hypervisor and QEMU.
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Figure 5.20: Time taken to boot OSv under several hypervisors (CDF)

The results in 5.20 indicate the OSv boot times using different hypervisors. We used two main
methods two measure this startup time: end-to-end (as in our measurements above) and stopping
the measurement when a specific line of text is printed to stdout. As we can see, those two variants
of each platform setup are almost superimposed on top of one another, further strengthening the
credibility of our way of measuring end-to-end. An interesting observation from these results is
that the results are almost opposite of the prior hypervisor results (in Figure 5.19): Firecracker is the
fastest, QEMU puVM ranks second, and at last place we see regular QEMU.

In conclusion, we find that most platforms are able to boot and exit within 200 milliseconds. We
make the following observations:

* All containers are fast to boot, with the exception of Kata containers, which typically takes
over 600 ms.

* Firecracker, despite its focus on serving the serverless computing paradigm, boots the slowest
out of the three hypervisors. Cloud-hypervisor is the fastest. Boot time depends heavily on the
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used machine model, as QEMU with the uvm machine model is (unexpectedly) the slowest
out of all.

* Unikernels (OSv) are faster to boot than regular Linux-based images, generally as fast as con-
tainers. Booting OSv images using different hypervisors has a significant effect on boot-time.

* Measuring boot-times end-to-end (from process creation to termination) using default tools
such as grep is as accurate as other ways (e.g. by customizing init()). Overhead for this
measurement technique is negligibly small across the various platforms.

5.6. Real-world benchmarks

In this section we will consider benchmarking the performance of the various isolation platforms
by means of real-world application workloads, in contrast to the previous micro-benchmarks that
stress one specific subsystem of the platform.

5.6.1. Memcached

Memcached is a high-performance key-value store [31], often used as an additional caching layer in
between e.g. a web server and a database. It can store small chunks of arbitrary data in memory and
does never materialize any of its content to disk. We benchmark the performance of Memcached on
each platform using the YCSB (Yahoo! Cloud serving benchmark), a popular framework for bench-
marking different key-value and ‘cloud’ serving stores. Specifically, we use the ‘workload a’ preset of
YCSB, a mix of 50/50 reads and writes, behaviour exhibited by e.g. a session store recording recent
actions.

Memcached YCSB benchmark: workload A
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Figure 5.21: Memcached YCSB benchmark

Benchmarking using YCSB and Memcached implies stressing the memory and networking sub-
systems. As a reminder, the hypervisors underperformed in the memory and network microbench-
marks (the less mature the hypervisor the worse), and gVisor in particular did not fare well in the
network microbenchmark. We see these prior results reflected in the Memcached benchmark: the
newer hypervisors perform worse, and overall the regular containers (in particular LXC) perform
very well. The result of Kata containers is surprising, since the microbenchmarks of network and
memory for Kata containers would not suggest a score significantly lower than most of the other
platforms. The gVisor Memcached score, although poor, can be attributed to its network perfor-
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mance. In Appendix A the performance during the insertion stage for each platform is presented,
but performs nearly identical to that of ‘workload a’ as shown in Figure 5.21.

5.6.2. Mysql

Mysql is a well-known relational database. In combination with the Sysbench [78] benchmark-
ing tool (version 1.0.20), we stress the isolation platforms running MySQL version 5.6.45 using the
oltp_read_write benchmark. This benchmark stresses the memory, filesystem and networking
subsystems. It initially stores 1 million records into 3 tables, and then consecutively executes a
SELECT, UPDATE, DELETE and INSERT SQL query. We call the combination of one of each of these
queries a transaction. We perform this benchmark for every platform with an increasing amount of
threads, starting at 10 up until 160 threads.

MySQL benchmark: sysbench oltp_read_write (3 runs)
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Figure 5.22: Mysql benchmark

The results of this benchmark are shown in Figure 5.22. There are numerous interesting obser-
vations to be made from these results:

* For nearly all platforms, the number of transactions per second peaks at around 50 threads,
after which thread contention appears to impair overall performance. The native platform
peaks at around 110 threads instead, yet does not deliver a significant performance increase
over the isolation platforms.

e There are roughly 3 groups in which the platforms can be divided. OSv (and OSv-FC, super-
imposed on top of OSv) and gVisor severely underperform. It is likely their custom thread
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allocators are to blame for this impaired performance, as these are the only two platforms
that do not reuse existing mature thread implementations. The lack of any effect when vary-
ing the number of threads is also indicative of this. Moreover, as for gVisor, the high network
latency as shown in Section 5.4 undoubtedly worsens performance.

The second group consisting of gVisor and Firecracker yield performance around half of that
of most other platforms. With complex real-world benchmarks like these, it remains difficult
to say exactly precisely what causes this lower performance. For Firecracker, high memory
latencies as demonstrated in Section 5.2 could be the root cause (as a subset of records is kept
in memory during the benchmark). As for Kata containers, the relatively high I/0 latency as
shown in Subsection 5.3.1 could be the culprit.

The third group, consisting of the remaining platforms, all perform alike. Due to the wide
error bands (which did not shrink upon carrying out additional runs) it remains hard to tell
precisely which platform performs better or worse than others.

As mentioned before, drawing strong conclusions based on data obtained through this Mysql
benchmark is difficult. The wide errors bands in the plots seem inherent to the use of this particu-
lar combination (of versions of) Mysql and Sysbench, unlike what is exhibited in other work, such
as [28]. Moreover, some platforms severely underperform, without being able to pin-point why this
should be the case. Upon re-running this experiment, with the hope of getting more telling results,
similar undecisive results were obtained.

5.7. Performance conclusions

RQ1:

Where do the new types of virtualization techniques position themselves on the spectrum of

performance overhead incurred?

Container platforms, such as Docker and LXC, typically showcase near-native performance.
Out of all the isolation platforms, containers perform the best, and typically also have a low
start-up time.

Hypervisors always impose overhead in their networking and memory subsystems. Other
subsystems, such as I/0 and CPU do not necessarily exhibit this overhead, although it de-
pends on the particular hypervisor that is used. Generally speaking, the more mature the
hypervisor, the lower the overhead.

Secure containers display the weakest performance of all isolation platforms. The network-
ing and memory subsystems perform near-native (as with hypervisors), but in particular, I/0
performance suffers. The primary reason for this being the use of networked filesystems, al-
though improvements with the likes of virtio-fs are promising. Moreover, this overhead
could also be remedied by using networked filesystems that use local writes within the con-
tainer.

The OSv unikernel generally performs well, although its performance is hard to quantify due
to instabilities and incompatibilities with the chosen benchmarks. Start-up times are compa-
rable to containers.

The resulting spectrum of overhead imposed is graphically represented in Figure 5.23.
Besides the general statements about the isolation platforms categories, we would also like to
note the following observations:

¢ Firecracker is not the fastest to boot in our experiments, unlike what is presented in [3].
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Figure 5.23: Performance overhead per isolation platform category

* The tagline of the Kata containers project "Speed of containers, security of VMs" generally
does not hold in our experiments. Performance of various subsystems, with in particular I/0,
is weak in comparison to hypervisors.

* 1/0 benchmarking in general is difficult due to the multiple layers of caching. Most of these
difficulties can be overcome by manually clearing the page cache at both the native and vir-
tualized level, although this method is not infallible (e.g. this method does not work for the

gVisor platform).

* Pursuing the development of solutions and protocols that are specifically made for isolation
platforms has proven to be fruitful. For example, using virtio-fs, which only assumes sep-
aration, not necessarily physical separation, can bring significant optimizations for all isola-
tion platforms (virtio-fs initially was developed for plain QEMU only, but now also finds
support in Kata containers [89] and OSv [86]).






Security

Another critical property of the isolation platforms we consider is security. We will approach the
security of the isolation platforms in two ways, the horizontal and the vertical attack profile. The
horizontal attack profile (HAP) is a quantifiable metric that indicates how wide the interface from
the guest to the host is. The vertical attack profile (VAP) aims to reason about security architecture
(defense-in-depth), and does not lend itself to numerical measures, but instead will be discussed in
terms of commonly associated security properties of the used isolation mechanisms by considering
past research and relevant exploits. The following paragraphs will explain both attack profiles in
more detail.

The horizontal attack profile, a term originally coined by IBM’s James Bottomley [12], is a quan-
titative approach to measuring security. Broadly speaking, measuring the HAP means multiplying
the amount of code traversed by a certain bug density of the domain that you're measuring in. Con-
cretely, in this text, that means measuring how many host Linux kernel functions are hit while run-
ning different workloads inside guests using the different isolation platforms. Multiplication of bug
density is not needed as everything is measured within the domain. We extend the HAP metric by
not only measuring how many functions are hit, but looking at which functions are hit. Functions
are scored based on whether they have been part of past CVEs. As CVEs only say something about
vulnerability and not necessarily exploitability, we have recreated a CVE vulnerability to exploitabil-
ity model to establish this relationship. This model is referred to as the EPSS model [45]. The model
enables us to look at which functions are hit and then determine their exploitability, weighing func-
tions that are more likely to be exploited heavier than those that have a lower exploitability, or not
at all, if they are not associated with any relevant CVEs.

For instance, we measure the HAP of the QEMU hypervisor with KVM acceleration enabled. We
record which functions get executed by the qemu-x86_64 process while executing using a kernel
module that can trace which host kernel functions get hit during execution. We perform a workload
inside the guest that is being traced. We shut down the guest, and store all of the executed kernel
functions. We process this output by only keeping the unique functions. We feed these functions to
our EPSS model, which outputs for each function the likelihood of exploitation. A significant por-
tion of the functions is likely not to be associated with any CVE, and we assign a score of 0 for that
function. For the remaining functions, we set the score as the likelihood as predicted by the EPSS
model for that function. We sum up all of these scores, and that gives us a final score for the HAP of
that platform.

In this chapter, we will first discuss the results we obtained by tracing all kernel functions that
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are hit during execution. We then describe in detail how we extend the HAP, and how we have recre-
ated the EPSS model, and the results of the extended HAP model that uses it. As the extended HAP
measure describes the chance of exploitability based on the width (i.e. the sum of the score of the
traced functions) of the interface between the guest and the host kernel, it does not account for the
possible defense-in-depth that is employed by the isolation mechanism. We call this defense-in-
depth the vertical attack profile, and we will qualitatively consider the isolation mechanisms and
defense-in-depth levels that different isolation platforms offer. We do this by analyzing the com-
monly associated security promises these isolation mechanisms offer. We base this analysis on past
research and past exploits. This analysis is provided in the remainder of this chapter.

6.1. Horizontal attack profile

The horizontal attack profile quantifies the width of the interface between the host and guest. The
more (unique) calls between the guest and the host are executed, the wider the HAP is. In a regu-
lar OS the width could be measured through the amount, and perhaps specifically which, system
calls are made to the kernel. This is not possible due to various approaches and implementations
of isolation platforms, in which some choose to run a guest kernel, some reuse the host kernel, and
some implement a kernel in user-space. Yet, with all of these platforms in our setup, there is always
a host kernel present. A means to measure the HAP is thus to measure the system calls made to the
host kernel during execution of the various isolation platforms. Our host kernel, the Linux kernel,
provides ways to measure activity at a various levels of granularity: using the ftrace functional-
ity of the kernel it is possible to not only record system calls, but also which kernel functions get
executed during execution of specific (hypervisor, container, etc.) processes. As ftrace exposes a
complex interface through its custom tracefs filesystem (which requires writing to specific files to
perform configuration at /sys/kernel/tracing), we employ the more user-friendly ftrace front-
end trace-cmd!.

6.1.1. Tracing results
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Figure 6.1: Number of unique host kernel functions executed per platform
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The total number of unique functions executed in the host kernel invoked by the isolation plat-
forms is graphically presented in Figure 6.1. The workloads run during tracing are the CPU, memory
and I/0 benchmarks from the Sysbench benchmarking suite [78], the iperf3 networking bench-
mark [43], and simply starting the platform and shutting it down after 1 minute. A breakdown of the
number of traced function on a per-workload basis is provided in Figure B.1. Note that this is the
plain HAP metric, not including the extension which will be presented later in this chapter. There
are quite a few remarkable observations that can be made:

* Firecracker, the isolation platforms that advertises itself as running lightweight VMs and hav-
ing a minimal device model, calls into the host kernel most often of all platforms. A wider
interface between the host and guest is indicative of potentially weaker security. This is quite
a remarkable finding as it is the opposite of one would expect: the allegedly heavy-weight
general-purpose QEMU hypervisor is expected to expose a much wider interface to the host
than the highly minimalistic and specific Firecracker, but the contrary is the case.

* Cloud-hypervisor invokes very few function calls in the host kernel, which is surprising given
the results of the other two hypervisors. As both the techniques as well as architecture of
Cloud-hypervisor overlap with the platform with Firecracker, this could be attributed to the
work-in-progress status of the project, not fully supporting all functionality that the other
hypervisors do.

* The secure containers, gVisor and Kata containers, have relatively high numbers, especially
compared to the regular containers. For Kata containers this is to be expected, given that Kata
containers starts its own hypervisor (albeit with a stripped down Linux kernel). The number
of functions for gVisor is higher than expected; apparently, based on these results, reimple-
mentation of a kernel in user-space does not necessarily lead to fewer calls to the host kernel.
In this case it mostly provides defense-in-depth, not in width (see Section 6.2).

* OSy, in particular given the fact that it uses a hypervisor, executes host kernel functions spar-
ingly. OSv in this sense fulfills its promise of being secure, and more importantly, from this we
can conclude that a wide HAP is not inherent to the use of a hypervisor.

* Noteworthy is the near doubling of functions executed when OSv is run under the Firecracker
hypervisor (instead of the default hypervisor QEMU). This is likely due to the experimental
nature of support for the Firecracker hypervisor, similar to the reason why Cloud-hypervisor
executes few functions.

e The aim of LXC to provide feature-complete system containers is apparent in the HAP results
as well. The total number of functions executed is high relative to Docker containers.

These tracing results give us a foundation to build upon for extending the HAP metric in the
following sections.

6.1.2. Extending the HAP

This original HAP method as shown in the previous subsection strictly describes the width of the in-
terface, but assumes a uniform distribution of both bugs and exploits across all functions. As such,
the HAP in this form fails to capture potential security risks relevant to the recorded interface. We
extend the HAP measurement by associating the functions recorded with a certain score. This score
is calculated using the EPSS model [45], a logistic regression model that takes input from an aggre-
gation of CVEs, proof-of-concept exploits, exploit databases, and presence of relevant tags, emitting
a score for any given CVE. The score is the likelihood of exploitation within the next 12 months, and
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for our purposes, establishes a relationship between vulnerability and exploitability. We have recre-
ated the EPSS model through aggregation and integration of a wealth of scraped online resources.
Specifically, we use the following datasets:

1. We collect all CVEs that are associated with a Linux kernel git repository 'fix’ commit. These
commits indicate that a certain CVE vulnerability was fixed.

2. We collect all CVEs that have their vendor listed as Linux from cvedetails. com. These CVEs
also have their required access (to reach the vulnerability), vulnerability type and CVSS score
listed. Note that these CVEs also have a severity score associated to them, but these scores are
not a good indication of likeliness of exploitation [45].

3. We collect the number of references for each CVE from the MITRE CVE database®. These
references are web links to security bulletins, security update from vendors and bug tracking
platforms describing the same CVE. The number of such references is positively correlated
with the probability of being exploited [45].

4. We scrape all proof-of-concept exploits for CVEs, from various platforms. Most notably from
github.com.

5. We scrape all exploits that can readily be abused using vulnerability exploitation frameworks.
For this, we gather all the exploits present in the ExploitDB % and Metasploit project®.

Then, through aggregation and integration of these online resources, we find the Linux kernel
CVE fix commits, and extract the functions that are changed in these commits. This establishes a re-
lationship between a Linux function and CVE. Naturally, there are functions that have not been any
part of any publicly disclosed CVE. We set the score for these functions to 0. With that, we now have
a metric for potential exploitability for every single Linux kernel function, which we can cross-link
with the recorded functions during execution of the isolation platforms. Note that the Linux kernel
allows for tracing at a higher resolution than functions (e.g. it supports per line tracing using the
lcov tool, as is done in [14]), but CVEs (and as a result the EPSS model) provides us with scores at
the granularity level of functions, not lines of code.

A figure outlining the pipeline of the extended HAP is given in Figure 6.2. On the left, the isola-
tion platform its associated kernel function executions are recorded using ftrace. These functions
are then fed to the EPSS model, in which the sigmoid function represents the logistic regression
nature of the model. The scores the model outputs are summed, which gives us the final extended
HAP score.

6.1.3. Extending EPSS resources

As outlined in the previous subsection, we have collected and integrated datasets from various on-
line resources. Although this is already a wealth of information, there are certain incompatibilities
between the different datasets. This is best explained using a figure:

As is seen in Figure 6.3, there is a mismatch between the CVEs listed for the Linux kernel from
various resources. The kernel CVEs, in red, are strictly required for establishing the correspondence
between a Linux git commit and a CVE. Thus, after integration, we end up with 1189 CVEs at the
intersection of kernel CVEs and CVEdetails.com CVEs. Another mismatch becomes apparent here,
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this time between the parameter values used in the EPSS model and cvedetails. com. Specifically,
there are 496 CVEs that do intersect, but the information as scraped lacks the information needed by
the EPSS model. These CVEs do not contain information about the vulnerability type, and whether
they are remote or local vulnerabilities. This is the set obtained by taking the CVEs in the red circle
and subtracting the intersection of the two circles in Figure 6.3. In the coming paragraph we discuss
how we attempted to impute these missing values, in order to increase the number of kernel func-
tions that have a EPSS score associated to them. Note that this is different than the yellow circle,
that indicates CVEs with tags but are not compatible with the EPSS model.

Our initial approach was to predict the vulnerability types that are missing from the CVE entries.
We call this prediction variable the "tag’. We train a text classification model based on the CVEs for
which we all have training data (the blue circle in Figure 6.3). The training variable is the description
of that CVE (examples of which are shown in the second column of Table 6.2), and the prediction
variable is the tag. It should be noted that even within this dataset the distribution of tags that we
are predicting is highly imbalanced: the distribution of the three vulnerability types present in the
EPSS model is roughly 82.97% (denial of service), 10.5% (memory corruption) and 6.49% (code exe-
cution). As such, training a text classification model and predicting the tags resulted in poor results
for some classes, with a recall score for the minority classes hovering around 0.65. We considered
and implemented three different approaches in an attempt to tackle this problem:

1. Undersampling: we discard samples within the majority class (denial of service), and train a
model given a uniform distribution of tags. However, this approach inhibits the training of a
generalized model due to a lack of data. In other words, we do not have enough data to train
a model using an undersampling approach.

2. Oversampling using SMOTE: first, we create feature vectors of the textual data. This trans-
forms each sample from a text representation to a vector, in which each element represents
one word in the total vocabulary of the text data. An occurrence of a word within a sample
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is represented by a 1 in the corresponding position of the vector, absence is indicated by a 0.
Each CVE description thus is transformed to a vector of length vocab_size. We then over-
sample these vectors by using the SMOTE technique [18], in which we construct synthetic
samples of the minority class. This technique constructs these synthetic samples by taking
two existing samples of the minority class and their vector representations, and then draw-
ing a sample in between these two points in the vector space. This sample is a new synthetic
sample of the minority class. This approach however did not yield us better results. We be-
lieve the problem with this approach lies in the fact that the vectorized counts are counted
using integers (i.e. samples from the vector space Nvocab_sizey and the SMOTE technique cre-
ates vectors sampled from floating point space between 0 and 1 (i.e. a subset of RV0¢4D-size)
Additional research is needed to confirm these suspicions, but in our case it is sufficient to
conclude that it does not allow for a model that accurately predicts tags.

3. Oversampling using text embeddings: we create synthetic minority samples by using a pre-
trained text embedding, such as the popular BERT text embedding from Google Research [85].
Feeding the text of samples within the minority class as input to such text embeddings al-
lows for easy creation of synthetic minority samples. However, the text that describes CVEs is
highly domain specific. Using a pre-trained general-purpose text embedding for this task can
thus not be used to our advantage.

4. Using references: for each reference of each CVE (see third item in enumeration at the begin-
ning of this section for an explanation of what these references are), we scrape all text from
all the referenced URLs. This produces a large set of textual data pertaining to all the CVEs in
the order of several gigabytes of textual data. We concatenate all the scraped text per CVE and
use this data to predict the tags using a pre-trained model. This is also the method as used in
the original EPSS paper [45], however, we were not able to properly reproduce their findings
using this method. Most of the pages contained too much information irrelevant (i.e. noise)
to the CVE to make accurate predictions.

Despite the limitations discussed above, training a model using these approaches lead to an in-
crease of relevant statistical metrics. For example, training a Linear Support Vector Machine on CVE
description data oversampled using SMOTE results in the metrics shown in Table 6.3. An increase
in relevant metrics is obtained, yet there are significant limitations to this model. First of all, and
perhaps most importantly, it does not generalize well. This means that on unseen data, its predic-
tions are not accurate. This can already be inferred from the low support (the number of testing
cases within that class) as shown in the rightmost column in 6.3, but is perhaps more illustrated by
sampling some of its predictions, as shown in Table 6.2. The Table shows 3 samples as predicted by
the model used in Table 6.3. The model, despite oversampling, exhibits a bias favoring the majority
class, almost always predicting the denial of service tag. The complete table is omitted for brevity,
but the problematic bias is evident in this small sample.

Having employed various techniques and methods to overcome model bias, we ultimately opted
for a simpler keyword-based approach. In this approach, we carefully select specific keywords that
are relevant to a tag. These tags are manually extracted from the descriptions of CVEs using ad-hoc
analysis. This keyword approach results in roughly 150 additional CVEs getting tags assigned, out
of the 433 potential CVEs. It is plausible that there are CVEs among the remaining 283 that should
but don’t get a tag assigned using the keyword-based approach. The CVEs that do get a tag assigned
however have a relatively high accuracy (due to strict manual selection of keywords), unlike when
employing a machine learning approach as described prior in this section.
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Table 6.1: Linear SVC model results (train/test: 0.7/0.3)
CVE CVE Description Predicted tag

CVE-2020-25284

The rbd block device driver in drivers/block/rbd.c in the Linux
kernel through 5.8.9 used incomplete permission checking

for access to rbd devices, which could be leveraged by

local attackers to map or unmap rbd block devices

Denial of Service

CVE-2020-10768

A flaw was found in the Linux Kernel before 5.8-rc1 in the
prctl() function,where it can be used to enable indirect
branch speculation after it has been disabled. This call
incorrectly reports it as being 'force disabled’ when it is
not and opens the system to Spectre v2 attacks. The
highest threat from this vulnerability is to confidentiality.

Denial of Service

CVE-2015-8941

drivers/media/platform/msm/camera_v2/isp/msm_isp_axi_util.c
in the Qualcomm components in Android before 2016-08-05

on Nexus 6 and 7 (2013) devices does not properly validate

array indexes, which allows attackers to gain privileges via a
crafted application

Denial of Service

Table 6.2: CVEs and their predictions using a LinearSVC model trained using data oversampled using SMOTE.

Precision | Recall | Support
Code Execution 1 0.82 11
Memory corruption | 0.96 0.93 27
Denial of Service 0.96 1 73

Table 6.3: Linear SVC model results on count-vectorized CVE description text oversampled using SMOTE (train/test:

0.7/0.3)
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6.1.4. Extended HAP results

The results for the extended Horizontal Attack Profile metric is shown in Figure 6.4. In this Figure, we
observe that the results resemble that of the plain HAP metric, and the relative intra-group results
(e.g. hypervisors) are congruent. Differences are observed when we look at groups relative to each
other (inter-group). In comparison to the plain HAP metric the container platforms score lower
than hypervisors. This is indicative of containers using functions that are less likely to get exploited.
A graph that plots the number of vulnerable functions per traced function is shown in Figure 6.5,
and illustrates a similar picture: platforms using hypervisors, on average, tend to use more vulner-
able functions (as classified by occurrence in CVEs) than containers, although the differences are
negligible at this point in time.

Sum of scores of vulnerable traced functions Vulnerabilities per traced function, by platform
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Figure 6.4: Total scores of extended HAP metric Figure 6.5: Vulnerabilities per traced function

6.1.5. Discussion of the extended HAP

There are advantages as well as some limitations to using the extended HAP metric. The first and
foremost advantage is that the extended HAP establishes a relationship between vulnerability and
exploitability, and therefore should result in a more realistic threat score. It weighs each function
traced by its corresponding likeliness of exploitability. It does this based on historical data, which at
the same time also proves to be one of the main limitations: historical data may introduce unwanted
bias in the metric. Because containers are a new technology (relative to hypervisors), it might be the
case that fewer relevant vulnerabilities have been discovered yet. This results in containers look-
ing more secure when using the HAP metric as a basis, while it remains hard to tell whether this
is the case in reality. If hypervisors were the newer technology of the two, it is possible that hyper-
visors would look safer, simply due to the reliance on the historic nature of the data the extended
HAP metric is based upon. Careful selection of specific timeframes of the isolation platforms could
help remedy this effect, but in practice, in our research there is little data even without filtering
out any data (as extensively discussed in Subsection 6.1.3). However, one could argue that the field
of vulnerability exploitation also adheres to this pragmatic nature: an isolation platform could be
extremely vulnerable, but if there are no known exploits, it remains unlikely to get exploited. Fur-
thermore, over time, as more data becomes available, stronger conclusions can be drawn from the
extended HAP metric, as the recency bias naturally diminishes over time. If critical new vulnerabil-
ities are disclosed, it can easily be added to the database of historical data, and would immediately
trickle down to the extended HAP scores of the affected isolation platforms. As such, we believe our
extended HAP to be valuable, and over time, can only improve.

We would also like to note a limitation that is inherent to the use of the plain HAP metric. The
plain HAP metric fails to capture the defense-in-depth isolation platforms provide. For example,
while Kata containers have a large HAP, they also introduce defense-in-depth, by using both names-

Avg.
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paces as well as a hardware-assisted isolation mechanisms. Moreover, the potential attack surface
between tenants of an isolation platform is also not accounted for. The HAP measures the (horizon-
tal) width of the attack profile, but is unable to capture these vertical, defense-in-depth, aspects of
the isolation platforms. For the remainder of this chapter, starting at Section 6.2, we will look at this
Vertical Attack Profile (VAP) in a qualitative manner.

6.1.6. Extended HAP conclusion
RQ2: Is the degree of isolation offered proportional to the performance overhead imposed by an isola-
tion platform?

To answer RQ2, we first place each platform in a spectrum of extended HAP from narrow to wide,
as is shown in the bottom part of Figure 6.6. Unikernels exhibit the most narrow HAP, followed by
containers, hypervisors, and finally secure containers, which have the widest HAP. We then map
each isolation platform category from performance overhead (grayed-out part of Figure 6.6. This
Figure is also shown in 5.23) to its corresponding entry in the extended HAP spectrum. We make the
following observations about this mapping:

* Secure containers, while imposing the highest performance overhead, also have the widest
extended HAP.

¢ Unikernels show the most narrow extended HAP, while performance overhead was relatively
high. This also implies that a wide HAP is not inherent to the use of a hypervisor.

* Containers and hypervisors were placed at the low overhead end of the performance spec-
trum, but display an extended HAP in-between of other platforms.

® O O O O ®
& Y
Unikernels Containers Hypervisors Secure containers
OSv Docker QEMU/KVM  Firecracker gVisor
LXC Cloud-hypervisor Kata
Narrow ° —~ —~ —~ —~ Py Wide
eHAP ~ ~ ~ ~ eHAP

Extended Horizontal Attack Profile

Figure 6.6: Mapping of performance overhead to extended HAP per isolation platform category. Performance overhead
is displayed in gray as it is also shown in Figure 5.23

As such, we can answer RQ2 as follows: considering the spectrum of the imposed overhead of
isolation platforms, and the mapping of these platforms to the extended HAP spectrum, we do not
observe any clear correlation with the Extended HAP results. Furthermore, no correlation between
this and any other spectra in this thesis (the generality of virtualization in Figure 3.1 or isolation
boundary location in Figure 3.2) is observed.
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6.2. Vertical Attack Profile

In this section, we will describe what kind of isolation mechanisms there are (and provide CVEs
for breaking these). We start each subsection with discussing the additional security measures that
are typically enforced when using the platform. We continue by briefly explaining which isolation
mechanism is used, and provide figures to illustrate the (location of) mechanism. Then, we discuss
what different categories of vulnerabilities are typical for the platform being discussed, based on
past research and CVEs. Finally, we discuss trends in research that have been proposed to increase
security, and provide a conclusion.

6.2.1. Hypervisors

Before we begin categorizing the types of vulnerabilities that are typical for hypervisors, it is worth
mentioning that hypervisors such as QEMU are rarely invoked directly in production, but would
rather make use of a management tool like 1ibvirt (and its command line front-end tool virsh).
Such tools provide ways to readily create more secure VMs than the underlying hypervisor provides
by default. In the case of 1ibvirt, by default, it runs QEMU as an unprivileged user, restricts the
process with SELinux, creates a mount namespace, and so on. Other hypervisor projects, like Fire-
cracker, strongly suggest running the Firecracker binary inside an additional so-called jailer process:
this jailer process adds another layer of isolation by creating a private PID and network namespace,
chrooting, dropping privileges and enabling a seccomp filter (disallowing all but 24 syscalls), before
it exec () s into the Firecracker binary.
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Figure 6.7: Hypervisor isolation mechanism

For explaining the first type of vulnerability category, we should recall that hypervisors (such as
QEMU/KVM) typically ensure isolation through hardware-assisted virtualization. Non-virtualizable
instructions can only be executed in ring -1, and as such the CPU enforces a way that only allows the
hypervisor to run such instructions. Privileged instructions cause a trap and will be routed by the
CPU to a handler in ring 0 code, at which the guest kernel is running. For paravirtualized devices
running inside the guest, hypercalls are the interface to the hypervisor. Therefore, both privileged
instruction handlers and hypercalls potentially provide the VM tenant with a way to escalate priv-
ileges over the resources of the host or cause a denial of service. An example of a vulnerability
found within a privileged instruction handler is CVE-2020-25085, in which the instruction handler
accounts for a 12-bit argument but the user can provide up to 16-bits, resulting in an out-of-bounds
write that can cause denial of service. An example of an issue with a hypercall is CVE-2016-5412. In
this CVE, if the paravirtualized guest makes a H_CEDE hypercall while the CPU is in a transactional
state, the host CPU may get stuck in an infinite loop, causing a denial of service.

Another potential category of vulnerabilities in hypervisors are found in the implementation of
the virtualized hardware infrastructure of VMs itself, rather than in the interface between the host
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and guest. An extensive characterization and subcategorization of these sources is provided in [66],
outlining 6 different subcategories. Examples include implementation flaws in virtual CPUs (CVE-
2010-4525), in the software MMU (CVE-2010-029), interrupt and timer mechanisms (CVE-2010-030)
and even in a floppy disk controller (CVE-2015-3456). It is important to highlight that this category
is inherent as well as unique to hypervisor isolation platforms that employ virtualized hardware.
In a breakdown of known vulnerabilities for the hypervisor platforms Xen and KVM, CVEs of this
category respectively account for 54.3% and 84.2% of all known CVEs. This finding strengthens the
motivation and need for hypervisors (such as Firecracker) to keep the virtualized device model min-
imal.

An interesting trend in research for more secure (cloud) virtualization is the idea of getting rid
of the hypervisor altogether. For example, [50] and [80] propose the NoHype architecture: remove
the hypervisor layer and instead use existing techniques and use the naturally arising partitioning
in hardware for isolation. Concretely, the authors propose (1) using only one VM per core (and in-
stance of naturally arising partitioning), (2) have the existing hardware MMU handle memory par-
titioning, and (3) employing a modified IOMMU that presents itself as N separate devices, each of
which is responsible for a memory range with the width of the total physical range divided by N.
The authors thus advocate the further use of hardware to enforce isolation, to the extent where a
hypervisor is rendered redundant. In [92], the authors argue that virtualization mechanisms are not
arequirement for a strong isolation boundary, and that other isolation platforms like containers can
provide the same degree of isolation. This can be accomplished through a process that the authors
refer to as ‘microkernelfication’, in which functionality traditionally seen as kernel functionality is
moved to user-space daemons, and the existing kernel acts as a mere message-passer (this architec-
ture is resemblant of a microkernel, hence the name microkernelfication).

Despite the large attack surface that hypervisors appear to expose (both in HAP as well as CVEs),
as well as publications proponing alternative architectures to get rid of hypervisors altogether, hy-
pervisors continue to be a popular isolation platform. There are many potential reasons why this is
the case, and it remains hard to say which are the true reasons, but the maturity of the underlying
technology (e.g. KVM and hardware-assisted virtualization) as well as compatibility with existing
software likely play a large role. Orchestration platforms such as libvirt can also help remedy
some vulnerabilities, for example by applying namespaces and seccomp policies.

6.2.2. Containers

In this subsection, we first discuss the Docker ecosystem as a whole, excluding the actual isolation
mechanism used in containers. We discuss the additional security measures taken by Docker and
also discuss a new attack surface as introduced by this ecosystem. We then categorize the various
types of vulnerabilities that are typical for the container isolation mechanisms that Docker and LXC
use. The vertical attack profile of the secure containers gVisor and Kata containers are discussed in
later subsections (Subsection 6.2.4 and 6.2.5, respectively).

Docker, as well as the secure containers gVisor and Kata containers, are used in conjunction with
the Docker CLI (e.g. through docker run). Running containers with the Docker CLI implies usage
of the Docker daemon dockerd. This daemon runs as root. By default, the daemon creates contain-
ers using Docker’s runc, but Kata and gVisor containers can be started by setting the --runtime flag
accordingly. Because the isolation platforms are typically invoked through the Docker daemon, it is
relevant to discuss the additional security measures it provides (even more so considering that [55]
found that these additional security measures play a more important role in preventing privilege
escalation than the base isolation mechanisms namespaces and cgroups do).
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By default, Docker starts containers with a restricted set of Linux capabilities. Linux capabilities
break up the privileges traditionally seen as superuser privileges into distinct units called capabili-
ties, that can be enabled on a per-thread basis [13]. Examples of such capabilities are CAP_SYS_B0OOT
which determines whether a thread can reboot the system, and CAP_DAC_OVERRIDE determines
whether the thread can bypass file read, write and execute permissions checks. By default Docker
enables 14 out of 41 Linux capabilities. Another security measure that is enabled by default is a sec-
comp filter. The seccomp filter blocks any non-whitelisted system calls, and by default blocks 44
out of more than 300 calls. Note that even though it filters 44 system calls, there is significant over-
lap between the seccomp filter and linux capabilities, meaning a significant set of system calls is
already gated by the allowed linux capabilities. Other measures that Docker provides to harden the
containers are not enabled by default. Most notably this includes AppArmor, a Linux kernel module
that administrates which files can be accessed by an application. AppArmor profiles exist for both
the containers itself as well as dockerd, but are not applied by default.

Docker Hub is an online repository that lets developers easily download and upload Docker im-
ages, and is tightly integrated with the Docker CLI (through e.g. docker pull and docker push).
Although convenient, this integration also exposes an additional attack surface. Downloaded im-
ages can be uploaded by anyone, and typically do not undergo the same strict security scrutiny as
Linux distributions (that are used in VMs) do. New software solutions for analyzing Docker images
have been developed, such as Snyk [90], which is by also integrated into Docker Hub itself [40]),
but can never guarantee absence of vulnerabilities. Prior research highlights the potential severity
of this new attack surface: the authors of [76] find that both official images (which are curated by
the company behind Docker, Docker Inc.) and community images average over 70 vulnerabilities
per image, even when only the most recent version of an image were analyzed. When all versions
where analyzed, the average image contained over 180 vulnerabilities. Such vulnerabilities are also
automatically propagated from parent to child images with the Dockerfile FROM statement. More-
over, it is also common practice to download dependencies from other third-party resources. These
dependencies are typically downloaded upon every commit (through a CI/CD pipeline), meaning
that if an adversary gains control over any of these third-party resources it would be trivial to get
code running on production machines. This type of supply chain attack was successfully executed
in [21], in which malicious code ended up on production servers within just over five minutes.
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Figure 6.8: Container isolation mechanism

Docker uses two features of the running host Linux kernel to establish an isolation boundary:
cgroups and namespaces. Breaking out of the namespace can potentially do a lot of harm, as Docker
processes run as root. An escape from the container thus results in the adversary controlling a pro-
cess running as root directly on the host. CVEs underlining this exact problem are numerous (e.g.
CVE-2014-6407, CVE-2014-9357, CVE-2015-3627, CVE-2019-5736). Escape from containers is pos-
sible by modification of shared memory (as discussed in [47] and shown in CVE-2016-5195), but
more often by exploiting weaknesses in the filesystem, such as through symbolic links (e.g. CVE-
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2018-15664, CVE-2018-15664, CVE-2015-3627, CVE-2014-6407). LXC roughly shares its VAP (isola-
tion mechanism and typical vulnerabilities) with Docker, as it also builds upon namespaces and
cgroups. For example, CVE-2015-1331 also describes an attack through symbolic links for LXC.

As aresponse to the recurrence of filesystem based vulnerabilities, the authors of [52] present a
safer shared-filesystem isolation mechanism for containers. The main idea is that only read oper-
ations are directly permitted to the host, and all other I/O operation are handled by a deprivileged
filesystem. This deprivileged filesystem utilizes a low-level block interface. This reduces the at-
tack surface, while complex host abstractions such as symbolic links remain available for the guest
through ahead-of-time preparation of scanning the host filesystem metadata at container creation
time. Container startup overhead the ahead-of-time preparation technique imposes remains lim-
ited (120 milliseconds on a cold start) due to the copy-on-write nature of the deprivileged filesystem.
A second proposed solution to improve I/0 subsystem isolation is outlined by Kappes et al. in [48].
In this work, the authors introduce the libservices framework, which acts as an abstraction layer
between the container workload and host kernel. This abstraction layer contains both the applica-
tion (container workload) and system services in user-space (e.g. a filesystem in user-space through
FUSE). In other words, it moves parts of the host kernel functionality up to the container, with an
increase in isolation as a result.

Breaking cgroups, although harmful, could at most lead to oversubscribing physical resources
of the host (which can affect other tenants running on the same host). In [33], the authors show that
exploiting the cgroup mechanisms through deliberately spawning new child processes can lead to
performance degradation for other tenants. In extreme cases, the adversary tenant was able to over-
subscribe resources up to 200x, while neighboring tenants would experience system performance
degradation of up to 95%.

Due to the massive popularity of containerization in industry, many additional secure container
frameworks and methods have been proposed. For example, the authors of [8] design and imple-
ment a container framework, SCONE, that uses Intel’s Software Guard Extensions (SGX) for a secure
container environment. Intel SGX provides applications a trusted execution environment, in which
confidentiality and integrity are guaranteed even in the presence of a malicious host (e.g. malicious
host kernel) [42]. Another example that can potentially increase the security of containers are or-
chestration frameworks, such as the popular Kubernetes framework. An orchestration framework
may strengthen the isolation boundary by adding additional layers of abstraction, for example:

* Every container runs inside an isolated Kubernetes pod. This adds an additional layer of indi-
rection. Pods also allow for the declaration of network policies, which limits the allowed ways
of communication between pods.

* Kubernetes clusters may be deployed on a stripped-down and hardened OS specifically built
for running Kubernetes (e.g. Rancher 0S°, VMWare Photon® and CoreQS”)

* Kubernetes allows for the encryption of data at rest through the use of secrets.

However, it is beyond the scope of this thesis to enumerate, discuss, and test all of these new plat-
forms (see Chapter 8 for related work in this space). In conclusion, the isolation boundary of plain
containers (without orchestration framework) remains relatively thin, as it is only guarded by the
implementation of namespaces and cgroups in the host kernel. The fact that improper validation

Shttps://rancher.com/products/rancher
Shttp://vmware.github.io/photon
“https://coreos.com
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of symbolic links have often provided a means to escape a Docker or LXC container testifies this
statement. Docker image repositories (Docker Hub) provide a convenient but vulnerable additional
attack surface.

6.2.3. Unikernel

A unikernel shares much of the VAP characteristics with the hypervisors, since the unikernel image
is run by a hypervisor. Indeed, the vertical attack profile of hypervisors and unikernels are the same,
since they use the same isolation mechanisms. The difference is the level of the interface that the
application communicates through: a small unikernel, instead of a full-fledged Linux kernel. The
authors of [92] generalize this observation into the following statement: “the level of interface be-
tween the guest and host is not fundamentally tied to the actual isolation mechanism”. As such, the
difference in security between unikernels and hypervisors running ordinary operating systems lies
solely in the width of the horizontal attack profile (as a result of a difference in level of interface),
not in the vertical attack profile.
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Figure 6.9: Unikernel isolation mechanism

Work on further increasing the security of unikernels has been carried out nonetheless. In [75],
the authors propose and implement a unikernel that make use of the Intel SGX security enclave,
similar to how SCONE uses Intel SGX for securing containers as discussed in Subsection 6.2.2.

6.2.4. gVisor

gVisor redirects requests that require higher privilege from the host kernel to its user-space Sentry
process. The Sentry process offloads its I/O request to the Gofer process. Both of these processes are
restricted by a namespace, and the interface between the Sentry/Gofer process and the host kernel
is guarded by a seccomp filter. The Sentry thus offers an abstraction layer in between the host kernel
and the containers, theoretically making it harder to reach and attack the host kernel directly. This
opens up the possibility for the Sentry process itself being attacked directly by the tenant, and CVEs
such as CVE-2018-16359 and CVE-2018-19333 showcase this. As gVisor implemented its complex
user-space kernel from scratch, and it being a relatively new project, it is not unthinkable that more
significant vulnerabilities will surface in the near future. However, gVisor remains arguably more
secure than the Docker default container runtime, as the Sentry runs in the unprivileged user-space
(instead of kernel-space) and is restricted by a seccomp filter. The authors of [93] also draw this
conclusion.

6.2.5. Kata containers

The vertical attack profile of Kata containers should and does look similar to the vertical attack pro-
file of Docker stacked on top of the profile of the hypervisors. This means that Kata containers use
both namespaces and hardware assisted virtualization as its isolation mechanisms, leading to an
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Figure 6.10: gVisor isolation mechanism

increase in complexity and thus an increase in size of the trusted computing base, also resulting in
a visible widening of the HAP. All published CVEs at the time of writing affect Kata containers’ first
line of defense, namespaces: incorrectly (un)mounting (CVE-2020-2026) and improper file permis-
sions (CVE-2020-2023, CVE-2020-2025, CVE-2020-2024,CVE-2020-28914). This type of vulnerability
is reminiscent of the Docker vulnerabilities discussed in Subsection 6.2.2 and seems to be inherent
to the use of namespaces as an isolation mechanism.
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Figure 6.11: Kata isolation mechanism

6.3. Security conclusions and limitations

In this section, we presented research into various aspects pertaining to the security and degree of
isolation offered by the isolation platforms. With these results, we can answer RQ3: Does the ex-
tended HAP metric accurately quantify the degree of isolation?

Answering RQ3 requires us to first answer the question of whether the extended HAP signifi-
cantly improves upon the regular HAP metric. As discussed in Subsection 6.1.4 and 6.1.5, we believe
that the extended HAP provides significant improvements over the regular HAP, although it also
exhibits some limitations:

* The extended HAP addresses the lack of sensitivity to functions that have proven to be rela-
tively prone to exploits. This results in a more accurate quantification of the degree of isola-
tion.

* The differences in values for the isolation platforms at this point in time are small, but will
increase as more historical data and vulnerabilities are disclosed. Severe vulnerabilities and
exploits will directly result in the extended HAP score of affected platforms.
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* The EPSS model introduces a recency bias, where the newer platform has less public CVEs
and exploits available, skewing the distribution of the EPSS model in their favor. We argue,
however, that this bias is also present in the field of vulnerability exploitation itself, and, as
such, the established relationship closely approximates the true likelihood of exploitation.

e The EPSS model is limited by the amount of information it is fed during the training of the
model. This implies a reliance on the availability of public vulnerability and exploit datasets,
which are, in our experience, not always exhaustive.

As such, we conclude that the extended HAP improves upon the regular HAP. As a follow-up
question, we discuss whether the regular HAP in itself is a good metric for measuring the degree
of isolation that an isolation platform offers. This question remains hard to answer, as we cannot
compare it to any other quantitative measure. Instead, we can only compare it to the qualitative se-
curity research in this chapter, which discussed the various types of vulnerabilities as well as recent
advances in defenses. We observe the following limitations with the plain HAP metric:

* Defense in depth is not captured by the HAP metric. This is particularly apparent for the
secure containers category, platforms of which typically have a very wide HAP, while their
raison d'étre is to be more secure than regular containers. The HAP metric not being able to
capture defense in depth as such lacks a critical component in the overall assessment of the
degree of isolation of an isolation platform.

* Inter-guest communication is not captured with the HAP.

* The HAP is not sensitive to parts of the codebase that exhibit vulnerabilities more frequently
than average, such as filesystem sharing in containers. The extended HAP metric addresses
this point specifically.

In conclusion, we answer RQ3 as follows: The extended HAP metric quantifies the degree of iso-
lation more accurately than the plain HAP by not assuming a uniform distribution of vulnerabilities.
The plain HAP is, as far as we are aware, the only quantitative measure of security. Although we do
observe limitations to the use of this metric (e.g. not taking into account the defense in depth), we
believe it to be a valuable metric for approximating the degree of isolation between the host and
guest.



Conclusion and future work

Virtualization is the underlying technology that powers cloud infrastructure as we know it today.
Virtualization enabled logical partitioning of computing resources, rather than being dictated by
their physical reality. The use of cloud computing resources is exceedingly popular, with public
clouds diversifying their offerings to serve the newly arising needs of customers. This increase in
both mainstream adoption and variety of offerings underline the importance of several key proper-
ties of virtualization platforms. In particular, we consider the performance overhead and the degree
of isolation offered of utmost importance. Prior research typically delved deep into either of these
two properties, and are generally limited to a small set of examined platforms.

This thesis attempts to bridge this gap. It addresses both the performance and security aspects
of various isolation platforms, as well as any potential correlations between the two. We provide a
survey of the architecture and defense in depth measures as employed by the wide-ranging set of
isolation platforms. Furthermore, we carry out an extensive collection of experiments, quantifying
both the security and performance offered by the isolation platforms. These experiments include
typical micro-benchmarks and real-world benchmarks, as well as a novel way to quantitatively mea-
sure the degree of isolation.

7.1. Conclusion
In this section, we reiterate the research questions and provide a brief summary of the conclusions
reached for each of them.

RQ1: Where do the new types of virtualization techniques position themselves on the spectrum
of performance overhead incurred?

A wide array of experiments was conducted to stress and subsequently characterize the per-
formance of the various types of isolation platforms. We found that container platforms have
the best, near-native, performance. Hypervisors exhibit significant differences amongst one
another, but on I/0 and CPU bound tasks typically perform on-par with native. Networking
and memory always exhibit overhead. Secure containers particularly suffer from overhead in
the I/0 subsystem, but promising alternatives are being developed. Finally, unikernels per-
form well, but their performance is hard to characterize due to the various incompatibilities
with benchmarking software. Start-up time is generally the lowest for containers, whereas for
the hypervisors it is highly dependent on the used machine model.

RQ2: Is the degree of isolation offered proportional to the performance overhead imposed by an
isolation platform?
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7. Conclusion and future work

To answer this question, we first established the spectrum of HAP on which we place the isola-
tion platforms, from narrow to wide. We assume this to be indicative of the degree of isolation
(also see RQ3). Our experiments showed that unikernels exhibit the narrowest HAP, followed
by containers, hypervisors, and finally secure containers, which have the widest HAP. We then
map the platforms from the performance overhead spectrum to the HAP spectrum. With this
mapping, we do not observe a clear correlation between the degree of isolation of an isolation
performance and its corresponding performance overhead. No other correlation between the
degree of isolation and the spectrums of the generality of virtualization and isolation bound-
ary location was observed.

RQ3: Does the extended HAP metric accurately quantify the degree of isolation?

The plain HAP metric exhibits limitations that we address with the extended HAP. Particularly,
the lack of sensitivity to parts of the codebase that are more prone to vulnerabilities (based on
historical data) was addressed. To that end, we constructed the extended HAP metric to quan-
tify the likelihood of exploitability for an isolation platform, given the invoked host kernel
functions. We found that the extended HAP scores, although numerical differences in com-
parison to the plain HAP at this time remain small, prove to be a useful metric for measuring
the degree of isolation. Moreover, disclosure of new vulnerabilities and exploits can trivially
be incorporated into the extended HAP metric. As such, the divergence of plain and extended
HAP scores will increase over time, in which the extended HAP provides increasingly accurate
measurements. We also observe limitations to the use of the extended HAP metric. First, the
plain HAP, which the extended HAP builds upon, fails to capture defense in depth. Second, it
remains hard to verify to what extent the degree of isolation is captured by the extended HAP,
as there is no other quantitative measure to benchmark against.

7.2. Future work

This thesis has revealed numerous interesting insights that could serve as a basis for new research
paths. Additional research could build on top of the work presented here, either to extend the scope
of the study and provide a deeper analysis of specific causes of overhead, or to address limitations
observed in the isolation platforms themselves. Although incomplete, the following list enumerates
topics and ideas we believe to be worth pursuing in the future:

1. The platforms discussed and analyzed in this thesis, although wide-ranging, are not exhaus-

tive. For example, the inclusion of a Type-1 hypervisor (e.g. Xen [9]) could provide additional
insights into the characteristics of hypervisor-based platforms in general. Moreover, an ex-
tremely lean implementation of containers (such as systemd-nspawn [79]) could also provide
new insights into the performance overhead that is minimal for a container implementation.
Analysis of platforms that take a different approach altogether to isolation could prove an
interesting path to pursue. For example, the SCONE platform [8] uses a hardware-assisted
secure enclave to provide isolation.

. Some results warrant extra research to draw stronger conclusions. Most notably the MySQL

benchmarks provided unexpected results given the results in prior work [28]. The role of
thread schedulers seems to be particularly weighty in determining performance. An inter-
esting follow-up project could carry out a measurement study of the importance of thread
schedulers on various subsystems and real-world benchmarks within isolation platforms.

. Although the HAP and extended HAP are revolutionary in that they bring a quantitative metric

to capture the degree of isolation, finding a way to incorporate the defense in depth measure
taken by isolation platforms would likely bring substantial improvements to the accuracy of
the metric. For example, secure containers typically employ additional layers of indirection to
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increase security. Not only would incorporating this allows for a more accurate representation
of the degree of isolation, it would also be able to serve as a benchmark against the the HAP
and extended HAP metrics.

4. We have observed significant differences between the network latency and throughput as of-
fered by the isolation platforms. Considering the importance of the networking subsystem,
it could prove to be fruitful to take one step back and look at the performance character-
istics and limitations of the general methods to enable network virtualization (for example,
TAP devices and virtual ethernet cables). Moreover, additional research into drivers that take
advantage of the specific context of isolation platforms, as such drivers, like virtio-fs, boast
significant speedups.






Related work

Due to the popularity of cloud computing, and thus isolation platforms, the field has garnered sig-
nificant attention from academia. There are various ways in which this attention manifests itself:
from proposed improvements on existing systems (e.g. [52] proposes an improvement for container
storage), to completely revising the methods of virtualization (e.g. [53] moves the virtualization layer
up to the application level, and [5] proposes a new interfacing mechanisms between hypervisor host
and guest). This increased attention combined with the relative ease of creating such platforms
through powerful general-purpose libraries and modules like rust-vmm and KVM, lead to the devel-
opment of a diverse landscape of isolation platforms and techniques. We will first discuss literature
surveys that takes one step back, and compare such platforms. Then, we look at related work that
examine only one platform. Finally, we present and discuss related work pertaining to the security
of these platforms.

8.1. Performance comparisons

One important survey that provides a comprehensive performance comparison of virtual machines
and containers on Linux is [28]. In this quantitative evaluation, the Docker container platform
and QEMU/KVM are compared along various subsystem axes. In general, the results indicate that
Docker attained or outperformed QEMU/KVM in every test. The CPU and memory subsystems per-
formed nearly equal across the two examined platforms. In contrast, the I/0 subsystem of Docker
performed on-par with a non-isolated system, but QEMU/KVM significantly underperformed in
this regard. The throughput of sequential I/O remained as high as native, albeit with a significantly
higher standard deviation, while small (4kB) write/reads performance is half of that of Docker and
the native platform. The survey concludes with the observation that a comparison between these
two platforms can only get closer, as Docker imposed close to no overhead from its outset, while
QEMU/KVM over time has minimized its overhead. The authors also observe that the convenience,
faster deployment, elasticity and performance of Docker proves to be a compelling alternative to
QEMU/KVM and hypervisors in general.

In similar vein, [34] presents a quantitative comparison of the OSv unikernel vs. Docker in a
microservices context (entailing benchmarks mostly pertaining to REST services). This study con-
cludes that unikernels outperform Docker, which should be attributed primarily by the kernel-
intensive networking nature of REST services. By the transitive property, considering the previ-
ous paragraph, unikernels should thus outperform native platforms in this context, as also shown
in [67]. Both works note a few caveats however, namely that the OSv unikernel has a higher memory

73



74 8. Related work

footprint (due to the addition of the minimal yet additional guest kernel) and are generally con-
siderably less user-friendly in their current state. Mavridis et al. in [61] performs a quantitative
comparison but in the context of software-defined systems and cloud computing, and reaches the
same conclusion.

8.2. Isolation platforms

There are numerous published works that study one isolation platform in detail, rather than com-
paring them to other platforms. This results in work that can focus on (potential) shortcomings by
carrying out specific benchmarks. On example is [93]. In this work, the gVisor platform is studied,
and properties that might be impaired due to its specific architecture, are benchmarked. Besides
typical performance benchmarks (e.g. memory allocation and network throughput), system call
overhead and file opening performance are also benchmarked. The results show that system call
overhead is severe, particularly when it cannot be processed solely by the Sentry process (i.e. 1/0
system calls). Furthermore, weak I/0 performance is exacerbated due to excessive mode and pro-
cess switching, and the 9P filesystem. The authors propose and benchmark a setup where a tmpfs
filesystem is used instead, and conclude that it is a good, performant, alternative for stateless work-
loads.

In [3], the authors of Firecracker discuss and benchmark their own isolation platform. This
work begins with discussing that with the rise of the serverless computing paradigm also implies
a growing need for an isolation platform that promises both low overhead and a strong isolation
boundary. Three options are discussed: containers, language-specific isolation (e.g. the Java Vir-
tual Machine) and virtualization. The authors argue that, despite its shortcomings, virtualization
benefits outweigh its downsides due to the presence of a guest kernel. This guest kernel, according
to the authors, eliminate the need to “trade off between kernel features and security”, as the threat
model is independent of the feature-completeness of the guest kernel. Besides advocating the use of
virtualization as key isolation mechanism, it also suggest running the hypervisor process to a con-
strained (jailed) environment. Finally, the paper concludes with a short performance evaluation
that considers start-up time, memory overhead and I/0 performance. The findings of the start-up
times are replicated in this work (in Section 5.5), memory overhead is found to be the lowest of all
hypervisors (with Cloud-hypervisor coming in at a close second place), and 1/0, broadly speaking,
underperforms due to the lack of a flush-to-disk block I/O implementation. Another (unpublished)
work, [46], examines the internals of the Firecracker architecture in-depth, but does not include a
performance evaluation.

The original OSv [51] paper presents the implementation design and a brief evaluation of the
platform. As the architecture and implementation design have already been discussed in Chapter 4,
we focus on the performance evaluation aspect of the work here. Concretely, the authors look at
Memcached, SPECjvm2008 and network throughput performance. The authors note a 22%, 0.5%
and 25% speedup, respectively. The authors also present a thread context switch benchmark, to
showcase the efficiency of the custom thread scheduler. In this benchmark, two threads colocated
on the same processor alternately wake each other up, and the average time per iteration of this
process is measured. OSv, on average, takes 328 ns to wake up both threads, whereas native Linux
takes around 905 ns.

Another approach to lightweight VMs is proposed and implemented in [58]. In this work, the au-
thors introduce the LightVM isolation platform, which implements a redesign of the Xen hypervisor
to provide lightweight virtualization. The primary value proposition of this redesign is that, unlike
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plain Xen, does not require a message-passing interface between the front-end and back-end of
paravirtualized drivers, but instead employs shared memory between the host and guest. This in
turn leads to a decrease in performance overhead (i.e. lightweight), while still retaining the high
degree of isolation as offered by hardware-assisted virtualization. This work does not focus on tra-
ditional performance benchmarks, but instead benchmarks metrics related to the creation of guests
(such as guest instantiation time, memory and CPU usage on the host). In these benchmarks, the
authors show that the LightVM platform boasts a near-constant creation and boot time regardless
of the number of running VMs, but, as mentioned above, does not discuss traditional benchmark
performance.

Naturally, considering the maturity and vastness of the field of software-based isolation and
virtualization, there are significantly more texts that present or discuss a single isolation platform.
However, some papers present isolation platforms that, over the course of time, have evolved into
platforms serving substantially different needs than at the time of publication. For example, the
original publication on the QEMU hypervisor [11] primarily focuses on emulation, rather than vir-
tualization.

8.3. Security

For any isolation platform, security is of utmost importance. Naturally, a lot of work in the field of
isolation platform security has been carried out, from container security (e.g. [16] [47] [60] [55]), to
hypervisor security (e.g. [91] [77] [20]). The majority of publications focus on discussing one plat-
form, and as such, have been discussed in Chapter 6 already. Instead, in this section, we discuss
existing surveys on general categories of isolation platforms (e.g. containers).

The authors of [10] construct a taxonomy of container defenses, and places existing container
defense frameworks into these categories. The taxonomy consists of just 3 types of container de-
fenses:

* Configuration based defense: Configuration set and enforced by the host kernel disallows cer-
tain behavior. For example, a whitelist of allowed network interfaces to be used, or directories
to be mounted. An example of a container defense framework of this type is AppArmor.

* Code-based defense: From the host, code is pushed to the container to enforce additional
security measures. Pushing the code is typically made possible through the use of the eBPF
Linux kernel functionality [1]. Seccomp-BPF is a defense framework in this category, which
enforces a policy on allowed system calls within the container itself (based on the pushed
eBPF code).

* Rule-based defense: From the container, string rules are pushed to the host. The host is re-
sponsible for enforcing these rules through handlers in the kernel. An example of this defense
type is OpenBSD’s pledge () system call [72], reducing the abilities of a process (e.g. allowing
changes to routing tables, or interacting with file descriptors), and can never regain them.

The paper concludes that the use of any type of container defense mentioned above can poten-
tially significantly improve security, but due to the diversity regarding the objectives, architectures
and implementation details, it remains challenging to optimally make use of such defenses. Po-
tential remedies outlined are tailoring general defense techniques (e.g. AppArmor) to containers
specifically (akin to [56]), or hybrid abstractions that take advantage of both Lightweight VMs and
containers (e.g. gVisor).
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In [22], a comprehensive overview of various types of isolation platforms is presented. This re-
search includes Type-1 and Type-2 hypervisors, containers, and unikernels. For each of these plat-
forms, the authors qualitatively assess the likeliness of exposure to various vulnerabilities, as well
as the relationship between vulnerabilities and attacks. Based on this data, the authors propose
three improvements to increase the degree of isolation offered by the isolation platforms. First, the
authors plead for integration of security mechanisms at design time, as their research has shown in-
sufficiencies of architectural countermeasures in hypervisors. Second, attack surface of hypervisors
should continue to get minimized (for example by simplification of device model, as the Firecracker
hypervisor does). Finally, security mechanisms (e.g. seccomp profiles) should be actively managed
to combat the ever-evolving arsenal of exploits. The authors also note that unikernels in particu-
lar offer promising potential for reducing attack surface through 1) simplified architecture and 2)
integration of security mechanisms at image build time. In similar research, albeit on a smaller
scale, [73] suggest that the biggest threat to hypervisor-based platforms is an escape from the VM,
and should also be mitigated through simplification of architecture of hypervisors.

In [25], a broad qualitative comparison between full-system virtualization, containers and uniker-
nels is given. A trade-off is implicitly presented in this work, in which one the one hand running a
full OS within a VM for one application is prohibitively inefficient, but containers do not offer the
strong isolation boundary that virtualization platforms do. The author considers the use of uniker-
nels an adequate solution, although imperfect due to the lack of privilege levels. An optimal solu-
tion, instead merely being adequate, should combine the best features of the 3 discussed types of
isolation platforms. New solutions should be assessed on these criteria through the use of several
metrics: monolithic vs. microkernel architectural differences, the use of privilege levels, and attack
surface measurements. A study that employs this last metric to assess three different types of iso-
lation platforms (a hypervisor, container and secure container) can be found in [14], which shows
that platforms that make extensive use of code outside the kernel for OS functionality still execute a
higher relative amount of code in the host kernel.

Although the works above present an accurate and up-to-date overview of the security of iso-
lation platforms, none of them provide quantitative data. As discussed in Section 6.1, we attempt
to measure the degree of isolation through execution tracing. This method was initially outlined
in [12], and eventually lead to a similar measurement approach in [14]. The latter work captures
the executed host kernel code for the Docker, gVisor and Firecracker platforms. Broadly speaking,
based on the data obtained in their experiments, Firecracker reduced the frequency of invocation
of kernel code, but increased the amount of executed kernel code. gVisor invoked a large amount of
duplicated host kernel code indirectly through its user-space Sentry process. Finally, Docker con-
tainers executed the least amount of host kernel code of the three. These findings wholly align with
our measurements and conclusions in Section 6.1.



Additional performance results

In this chapter we provide additional results that were obtained through benchmarking, that were
omitted for either clarity. Section A.1 contains the results of the other available STREAM bench-
marks Add, Scale, and Triad. Section A.2 provides figures that display the 50th and 90th percentile
using the same data as used in the main text for the 90th percentile. Finally, Section A.3 and in
particular Figure A.6 shows the number of insertion operations executed for each platform, which
exhibits behavior nearly identical to that of the actual benchmark in the main text.

A.1. STREAM benchmark

STREAM benchmark: Add, array_size=100000000 (2.2gb total)
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Figure A.1: Memory add throughput STREAM benchmark
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STREAM benchmark: Scale, array_size=100000000 (2.2gb total)
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Figure A.2: Memory scale throughput STREAM benchmark

STREAM benchmark: Triad, array_size=100000000 (2.2gb total)

25000

20000

15000 A

10000 -

5000

Memory throughput, avg. of max. of 10 runs (Mb/s)

Native Docker gVisor Kata LXC QEMU Firecracker  Cloud-hv OSv OSv-FC
Platform

Figure A.3: Memory triad throughput STREAM benchmark
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A.2. Netperf benchmark
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Figure A.4: Netperf network latency benchmark (50th percentile)
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A.3. Memcached benchmark

Memcached YCSB benchmark: insertion of 100000 records (1 run)
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Figure A.6: Memcached YCSB benchmark, insertion stage (100000 records)



Additional tracing results

This chapter presents figures pertaining to the tracing of platforms as explained in Chapter 6 but
were omitted in the main text for the sake of clarity.

A detailed breakdown of traced functions on a per-workload basis is given in Figure B.1.

Number of kernel functions accessed during tracing of each platform
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Figure B.1: Number of unique traced kernel function for each platform per workload.
A figure illustrating the number of traced kernel functions over time is given in Figure B.2. In
this Figure, we see the number of new unique traced functions while starting a Firecracker hyper-

visor guest, waiting for 60 seconds, and then initiate a shutdown. This Figure indicates that not
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necessarily all host kernel functions are executed at startup, but rather only occur after a period of
idleness.
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Figure B.2: Number of traced kernel functions over time in 1 second intervals. The vertical axis indicates the number of
kernel functions that it has not seen during tracing of this process yet. Note that the horizontal axis, that indicates time
in seconds (in this case offset by the boot time of the host machine), is not continuous.
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