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Abstract

Looking for making an investment, one objective could be to find a portfolio where the Sharpe ratio
for in the future, known as the out-of-sample Sharpe ratio, is maximized. Since future data is not avail-
able, the Sharpe ratio needs to be predicted using historical data, the in-sample data. This is often done
using the Sharpe Ratio Information Criterion, which determines the bias for the in-sample Sharpe ratio to es-
timate the out-of-sample Sharpe ratio. However, this approach assumes that the covariance matrix is known.

In portfolio management, the covariance matrix is typically unknown and can only be estimated. This
project will use the bootstrap method to estimate the out-of-sample Sharpe ratio using the estimated co-
variance matrix and analogous methods used for the Akaike Information Criterion. By eliminating the
assumption of a known covariance matrix, this method becomes more applicable. Simulations will also be
done with a known covariance matrix, demonstrating that the bootstrap method is an effective approach for
estimating the out-of-sample Sharpe ratio. We then look at some extensions for the bootstrap method and
finally we will apply the bootstrap method to stocks in the Dutch and American stock markets, showing
that the in-sample Sharpe ratio is often overly optimistic compared to the out-of-sample Sharpe ratio. We
reached our goal that we found an effective way to estimate the out-of-sample Sharpe ratio without the
assumption that the covariance matrix is known, resulting this method becomes much more suitable for
predicting the Sharpe ratio in the future.
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1 Introduction
In investment analysis, the Sharpe ratio is commonly used as a measure, dividing the portfolio’s return by its
risk. It quantifies the additional return gained for the extra risk taken. Therefore, the objective is to find a
portfolio where the future Sharpe ratio, known as the out-of-sample Sharpe ratio, is maximized. Since only
historical data is available, the goal is to find a bias correction method to predict the out-of-sample Sharpe ratio
based on the estimated mean of returns of the stocks µ̂ and the estimated covariance matrix Σ̂. The covariance
matrix is a matrix that represents the relationship between the different stocks and how they move together.
The covariance matrix is estimated by

Σ̂ =
1

T − 1

T∑
i=1

(Xi − µ̂)(Xi − µ̂)T ,

where T is the number of samples, µ̂ the estimated mean vector of returns and Xi represents the i− th sample
vector. To estimate the out-of-sample Sharpe ratio, we will first look at the Akaike Information Criterion (AIC),
which focuses on log-likelihood instead of the Sharpe ratio, and the Sharpe Ratio Information Criterion (SRIC),
which predicts a bias correction assuming that the true covariance matrix Σ is known, although in reality this is
never known. Utilizing the bootstrap method, we will estimate a bias correction using the estimated covariance
matrix. The bootstrap method works by repeatedly sampling from the available data with replacement to create
new data sets of the same size as the original. By repeating this process a large number of times, a distribution
of the statistic is obtained, which can be used to estimate its properties, such as its mean or standard deviation.
Therefore, for every simulation, we are able to calculate the Sharpe ratio based on the bootstrap data and we
can compare it with the original data.

Using the bootstrap method, we can also determine the bias for the Sharpe ratio assuming the covariance
matrix is known. By simulating data based on specific mean of returns µ and covariance matrix Σ. This
enables us to compare the performance of the bias estimated through the bootstrap method, the Sharpe Ratio
Information Criterion (SRIC), and the actual bias.
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2 Portfolio Optimization
Portfolio optimization is the process of constructing an investment portfolio using a certain criterion. In finance,
there are several criteria an investor can apply to make an investment decision. The type of criterion being used
depends on the interests and vision of the investor themselves. This can be maximizing the expected return on
the short term or minimizing the risk for a given level of expected return on the long term. Is there a measure
that maximizes returns while minimizing risk? A widely used measure for this is the Sharpe Ratio, developed by
William F. Sharpe in 1966. The Sharpe ratio is a way to measure the risk-adjusted returns of your investments.

2.1 Sharpe Ratio
The Sharpe ratio is the return of the portfolio divided by the standard deviation of the portfolio. The standard
deviation is also referred to as the volatility of the portfolio, which represents the degree of movement or
fluctuation of the portfolio itself. Therefore, the Sharpe Ratio is the extra risk required to get higher returns.
The Sharpe Ratio in simplest form is defined as

Sharpe Ratio =
Rp −Rf

σp
, (1)

where Rp is the return of the portfolio, Rf the return on a risk-free asset and σp the standard deviation of the
portfolio’s excess return. To achieve the highest possible Sharpe ratio, it is important to maximize returns and
minimize risk. Typically, an investment with a Sharpe ratio above 1 is considered good. It is easy to evaluate
the Sharpe Ratio when there is a given data set. This is also known as the in-sample Sharpe Ratio, where the
Sharpe Ratio is based on past observations, but for an investment the goal is to determine the Sharpe Ratio for
the future, which is also known as the out-of-sample Sharpe Ratio.

Let n be the number of assets and k be the number of parameters such that n = k + 1. Let Θ = Rk+1 be a
(k+1)-dimensional parameter space with θ, µ̂ ∈ Θ, where θ represents the weights of the stocks in the portfolio,
and µ̂ represents the estimated mean returns over the stocks over T periods, with [0, T ] being the in-sample
period. These periods could be weekly, monthly, or even yearly returns of the stocks. Denote Σ as the true
known covariance matrix of the returns which is full of rank and assume that µ̂ is a noisy observation of the
true unknown mean return µ, i.e., assume that µ̂ = µ+ ν and ν ∼ N (0, 1

T Σ). Then the in-sample Sharpe ratio
for parameter θ is defined as follows

ρ(θ) =
µ̂T θ√
θTΣθ

,

and the unobserved out-of-sample Sharpe ratio

τ(θ) =
µT θ√
θTΣθ

follows from removing the noise term from the mean returns.
Since µ is unknown, it is not possible to determine the out-of-sample Sharpe ratio directly, but there is an
unbiased estimator for the out-of-sample Sharpe ratio in terms of µ̂, which is called the Sharpe Ratio Information
Criterion.

2.2 Sharpe Ratio Information Criterion
For an investment the goal is to find an out-of-sample Sharpe ratio as high as possible. Let θ̂ ∈ Θ be the vector
that maximizes the in-sample Sharpe ratio and let θ∗ ∈ Θ be the vector maximizing the out-of-sample Sharpe
ratio.

θ̂ ∈ argmax
θ∈Θ

ρ(θ)

θ∗ ∈ argmax
θ∈Θ

τ(θ)

Then there are four combinations of Sharpe ratios,
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Symbol Value Parameter Description
ρ̂ ρ(θ̂) θ̂ In-sample Sharpe ratio of optimal parameter applied

to in-sample data
ρ∗ ρ(θ∗) θ∗ In-sample Sharpe ratio of optimal parameter applied

to out-of-sample data
τ̂ τ(θ̂) θ̂ Out-of-sample Sharpe ratio of optimal parameter ap-

plied to in-sample data
τ∗ τ(θ∗) θ∗ Out-of-sample Sharpe ratio of optimal parameter ap-

plied to out-of-sample data

Since τ̂ is desired to be maximized, τ̂ can be decomposed as follows :

τ̂ = ρ̂− (ρ̂− ρ∗)− (τ∗ − τ̂) + (τ∗ − ρ∗).

Now the out-of-sample Sharpe ratio is decomposed into the in-sample Sharpe ratio minus three terms. These
terms are the noise fit, estimation error and the noise in the in-sample data.

Noise fit = ρ̂− ρ∗

Estimation error = τ∗ − τ̂

Noise = τ∗ − ρ∗

The noise fit is the difference in Sharpe ratio on the in-sample Sharpe ratio between θ̂ and θ∗. Since θ̂ is
optimized on the in-sample data set and θ∗ is the optimal parameter applied to the out-of-sample data, it results
in a difference.
The estimation error is again the difference between θ̂ and θ∗, but then on the out-of-sample Sharpe ratio.
The noise is caused between the difference of the estimated mean returns µ̂ and the true mean returns µ, and
the difference between the estimated covariance matrix Σ̂ and the true covariance matrix Σ. Since there was
assumed that the true covariance matrix was known (and full of rank), the noise is the difference in the estimated
mean return µ̂ and the true mean return µ.

Since µ̂ = µ+ ν where ν ∼ N (0, 1
T Σ), it follows that

E[µ̂] = E[µ+ ν] = E[µ] + E[ν] = E[µ] = µ.

So the expected value of the noise is 0. Furthermore, the noise fit and estimation error have the same expected
value. Let k ≥ 1, then it holds [4]

E[ρ̂− ρ∗] = E[τ∗ − τ̂ ] = E[
k

2T ρ̂
].

Therefore, the Sharpe Ratio Information Criterion (SRIC) is an unbiased estimator of the expected out-of-
sample Sharpe ratio E[τ̂ ].

τ̂ ≈ SRIC = ρ̂− k

T ρ̂

Therefore,

E[τ̂ ] = E[ρ̂− k

T ρ̂
].

The out-of-sample Sharpe ratio is now expressed in terms of µ̂ instead of µ.

Given that µ̂ and Σ are known, the only remaining requirement is to determine the optimal weight of stocks
θ̂ in order to calculate the out-of-sample Sharpe ratio. Since θ̂ is the optimal parameter of the in-sample Sharpe
ratio, so ρ(θ) should be maximized over parameter space Θ.

d

dθ
ρ(θ) =

d

dθ

µ̂T θ√
θTΣθ

Since the logarithm function is a monotonically increasing function, maximizing log(ρ(θ)) results in the same θ̂
as maximizing ρ(θ) .

log(ρ(θ)) = log(
µ̂T θ√
θTΣθ

) = log(µ̂T θ)− log(
√
θTΣθ)
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Taking the derivative with respect to θ holds

d

dθ
log(ρ(θ)) =

1

µ̂T θ
µ̂− 1√

θTΣθ

1

2
(θTΣθ)−

1
2 2Σθ =

µ̂

µ̂T θ
− Σθ

θTΣθ
. (2)

µ̂

µ̂T θ
− Σθ

θTΣθ
= 0 ⇐⇒ µ̂ = Σθ

Since Σ is full of rank, it is invertible. Therefore the optimal parameter θ̂ ∈ Θ for the maximum in-sample
Sharpe ratio is equal to θ̂ = Σ−1µ̂1.

The computation of the out-of-sample Sharpe ratio is now feasible due to the availability of known values
such as µ̂, obtained by averaging the returns of each stock, and the assumption that Σ is known. θ̂ can now
be computed as well and since T and k are known, the calculation of the out-of-sample Sharpe ratio becomes
straightforward.
However, in reality, the true Σ is unknown, so the Sharpe Ratio Information Criterion cannot be applied
correctly 2. In many cases it is assumed that Σ is equal to Σ̂, since Σ̂ can be computed from the data.
Let XT = (X1, X2, ..., XT ) be a sample of size T , then

µ̂ =
1

T

T∑
i=1

Xi Σ̂ =
1

T − 1

T∑
i=1

(Xi − µ̂)(Xi − µ̂)T .

Note that if we consider n stocks, µ̂ is a vector of length n and Σ̂ is a n× n matrix.
Hence, it is important to evaluate the Sharpe ratio in terms of the estimated mean of returns µ̂ and the estimated
covariance matrix Σ̂, as the bias is different than of the Sharpe Ratio Information Criterion. Since this bias is
difficult to determine analytically, a simulation-based method is used in the next chapter to determine a bias
correction for the Sharpe ratio in terms of µ̂ and Σ̂.

2.3 Akaike Information Criterion
Before we are going to estimate the bias for the out-of-sample Sharpe ratio in terms of µ̂ and Σ̂, we need to
look at the Akaike Information Criterion first. Therefore, we need the Kullback-Leiber information (henceforth
referred to as "K-L information"). The K-L information is a measure of how one probability distribution G(x)
is different from a another probability distribution F (x). The K-L information is given by

I(G;F ) = EG

[
log(

G(X)

F (X)
)

]
,

where EG represents the expectation with respect to the probability distribution G. Denote the density functions
of G(X) and F (X) as g(x) and f(x) respectively.
If the probability distribution functions are continuous models with density function g(x) and f(x), the K-L
information is

I(g; f) =

∫ ∞

−∞
log(

g(x)

f(x)
)g(x)dx.

And if the probability distribution functions are discrete models with the probability for each xi is g(xi) and
f(xi) for i = 1, 2, ... . Then the K-L information is given by

I(g; f) =

∞∑
i=1

g(xi) log(
g(xi)

f(xi)
).

The K-L information has the following properties:

(i) I(g; f) ≥ 0
(ii) I(g; f) = 0 ⇐⇒ g(x) = f(x)

1In portfolio optimization you’ll need to normalize this vector such that ||θ̂|| = 1.
2In large data sets, the estimated Σ̂ is often used as the true Σ because the difference is not significant. The uncertainty of the

estimated value of µ̂ is much larger than that of the estimated Σ̂.
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So the smaller the K-L is, the closer the model f(x) is to g(x). In this case we assumed that both g(x) and f(x)
are known, however if we are given a data set xn = (x1, x2, ..., xn) from an unknown probability distribution
G(X), the K-L information cannot be calculated directly.
Since a fraction in the logarithmic function can be written in two terms, the K-L information can also be written
as

I(g; f) = EG

[
log(

g(X)

f(X)
)

]
= EG[log g(X)]− EG[log f(X)].

Note that the first-term on the right-hand side only depends on the unknown true distribution g, so it’s a
constant. Since we want the K-L as small as possible, we want the second term on the right-hand side as large
as possible. That term is called the expected log-likelihood, the expected log-likelihood can be expressed as

EG[log f(X)] =

∫
log f(x)dG(x).

For continuous models this can be expressed as

EG[log f(X)] =

∫ ∞

−∞
g(x) log f(x)dx,

and for discrete models as

EG[log f(X)] =

∞∑
i=1

g(xi) log f(xi).

To maximize the log likelihood, we do need the following. Let f(x|θ) be the candidate model with parameters
θ = (θ1, θ2, ..., θk)

T (θ ∈ Θ ⊂ Rk) , where k is the number of parameters. For a given data set xn = x1, x2, ..., xn

the log-likelihood can be determined as a function of θ ∈ Θ given by

ℓ(θ) =

n∑
α=1

log f(xα|θ).

Let θ̂ be the parameter that satisfies
ℓ(θ̂) = max

θ∈Θ
ℓ(θ),

then θ̂ is called the maximum likelihood estimator and ℓ(θ̂) =
∑n

α=1 log f(xα|θ̂) is known as the maximum
log-likelihood.

Since the K-L distance can’t be computed without full knowledge of g and the parameters in each of the
candidate models fi(x|θ) , Hirotogu Akaike (1973) found a way to estimate the K-L information based on
the empirical maximum log-likelihood. Akaike demonstrated that estimating EyEx[log(f(x|θ̂(y)))] is a critical
aspect in obtaining an applied K-L model selection criterion, where x and y are independent random samples
from the same distribution and both expectations are taken with respect to the truth g [1]. This double
expectation is the target of all model selection approaches, based on K-L information. The approximately
unbiased estimator of EyEx[log(f(x|θ̂(y)))] for large samples and "good" models is

ℓ(θ̂)− k,

where ℓ(θ̂) is the maximum log-likelihood and k the number of parameters as mentioned before. This results in
the Akaike Information Criterion (AIC), which goal is to maximize the fit on the out-of-sample data, given by

AIC = 2k − 2ℓ(θ̂). (3)

Like the K-L information, the lower the AIC, the better the fit. The AIC deals with the trade-off between the
goodness of fit of the model and the simplicity of the model, it penalizes the number of parameters in the model.
Thus, rather having a simple measure of the directed distance between two models (K-L distance), we have an
estimate of the expected, relative distance between the fitted candidate model and the unknown true model.
Note that we assumed that ℓ(θ̂) − k is an unbiased estimator of EyEx[log(f(x|θ̂(y)))] for large sample sizes.
However , when the sample is small, there is a substantial probability that AIC will select models that have too
many parameters, i.e. that AIC will over-fit. Therefore, for small sample sizes, the Akaike Information Criterion
corrected (AICc) was developed. Assume that the candidate model is univariate, linear in its parameters and
has normally distributed residuals, the formula for AICc is as follows [2]

AICc = AIC +
2k2 + 2k

n− k − 1
.
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where n is the sample size and k denotes the number of parameters. The AICc provides an additional penalty
to the number of parameters in the model, therefore for small sample sizes the AICc is more accurate. Note
that as n → ∞, the extra penalty term converges to 0. So AICc → AIC as n → ∞. In this case with these
assumptions, the extra penalty term could be determined analytically. In particular, with other assumptions,
bootstrap estimation of the formula is often feasible. The bootstrap method will be used as well in the next
chapter to determine a bias correction for Sharpe ratio in terms of µ̂ and Σ̂.
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3 The Boostrap Method
Similar to the AIC and the AICc penalises the fit of the model on the out-of-sample data by the number of
parameters, the SRIC penalises the out-of-sample Sharpe ratio by the number of parameters as well. However,
we want to find a bias for the Sharpe ratio without the assumption of a known covariance matrix. To this
end we will use the bootstrap method. The bootstrap method has the ability to provide effective solutions to
problems that cannot be solved by analytic approaches based on theories or formulas. The bootstrap method is
a resampling technique based on the idea to create multiple resamples by drawing observations from the original
data set with replacement.
Let XT = (X1, X2, ..., XT ) be a random sample of size T drawn from an unknown probability function G(x).
We estimate the parameter θ with respect to the probability distribution G(x) by using an estimator θ̂ = θ̂(XT ).
Let xT = (x1, x2, ..., xT ) be the observed data and let θ̂ = θ̂(xT ) be the estimator of θ. The bias and variance
of an estimator are essential quantities used to evaluate the error in estimation. The bias and variance of the
estimator are given by

b(G) = EG[θ̂]− θ, σ2(G) = EG[(θ̂ − EG[θ̂])
2].

Both the bias and variance depends on the true unknown probability distribution G(x). Instead of estimating
these quantities analytically, we will estimate them using the bootstrap method. The bootstrap method can be
executed through the following steps :

(1) Generate a new sample by randomly selecting observations from the original data set with allowing
replacement, i.e , choose T observations from the original data set with equal probability 1

T at each point of
the observations. This probability distribution function is called the empirical distribution function Ĝ(x) and
we can estimate the unknown probability distribution G(x) from Ĝ(x).

(2) Random samples of the empirical distribution function Ĝ(x) are called the bootstrap samples and are
denoted as X∗

T = (X∗
1 , X

∗
2 , ..., X

∗
T ). The estimator based on a bootstrap sample is denoted as θ̂∗ = θ̂(X∗

n). The
estimation of the bias and variance of the estimator becomes

b(Ĝ) = EĜ[θ̂
∗]− θ̂, σ2(Ĝ) = EĜ[(θ̂

∗ − EĜ[θ̂
∗])2].

where this estimation depends on the empirical distribution function Ĝ(x). The expressions of b(Ĝ) and σ2(Ĝ)
are referred to as the bootstrap estimates of b(G) and σ2(G), respectively.

(3) Assume that we made B bootstrap samples, denote X∗
T (i) = (X∗

1 (i), X
∗
2 (i), ..., X

∗
T (i)) as the ith bootstrap

sample. The bootstrap estimates b(Ĝ) and σ2(Ĝ) are numerically approximated by using the Monte Carlo
method. For finding the correction for the Sharpe ratio, we are interested in the bootstrap estimate of the
bias. Let the corresponding estimator of the i-th bootstrap sample be denoted as θ̂∗(i) = θ̂(X∗

T (i)). Then, the
bootstrap estimate of b(Ĝ) is approximated as

b(Ĝ) ≈ 1

B

B∑
i=1

θ̂∗(i)− θ̂.

For so far we have only looked at the parameter θ itself, but the Sharpe ratio is a function of the parameter
θ̂. Let f be the Sharpe ratio function that depends on θ̂, assuming the covariance matrix Σ is known. Then f
is given by [3]

f(XT |θ̂) =
µ̂T θ̂√
θ̂TΣθ̂

, θ̂ = Σ−1µ̂. (4)

The bias is then given by

b(G) = EG(x)

[
T∑

α=1

f(Xα|θ̂(XT ))− TEG(z)

[
f(Z|θ̂(XT ))

]]
, (5)

where EG(x) denotes the expectation with respect to the joint distribution of a random sample XT , and the

second term on the right-hand side of equation 5, EG(z)

[
f(Z|θ̂(XT ))

]
, represents the expectation with respect
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to the distribution G(z) of the future data z that is independent of the random sample XT .

Let µ and Σ be respectively the true mean returns and covariance matrix of the stocks. Let θ̄ be the optimal
parameter based on µ̂ and Σ̂ by θ̄ = Σ̂−1µ̂. This is different than θ̂ because θ̂ = Σ−1µ̂ where Σ is known3. Then
the bias for the Sharpe ratio in terms of the estimated mean returns and the estimated covariance matrix is

b(G) =
µ̂T θ̄√
θ̄T Σ̂θ̄

− µT θ̄√
θ̄TΣθ̄

. (6)

Recall that both µ and Σ are unknown, so we cannot compute this bias directly. However, we can use bootstrap
estimation to approximate this bias.
To approximate this bias, the true distribution G(x) is replaced with an empirical distribution function Ĝ(x).
The following are substituted as well :

G(x) → Ĝ(x)

Xα ∼ G(x) → X∗
α ∼ Ĝ(x)

Z ∼ G(z) → Z∗ ∼ Ĝ(z)

EG(x), EG(z) → EĜ(x∗), EĜ(z∗)

θ̄ = θ̄(X) → θ̄
∗
= θ̄

∗
(X∗)

Therefore, the bootstrap bias estimate of equation 5 becomes

b∗(Ĝ) = EĜ(x∗)

[
T∑

α=1

f(X∗
α|θ̄(X

∗
T ))− TEĜ(z∗)

[
f(Z∗|θ̄(X∗

T ))

]]
. (7)

Let xT = (x1, x2, ..., xT ) be the given data set. Note that if the empirical distribution function is considered as
the true distribution, then

EĜ(z)

[
f(Z|θ̄(X∗

T ))

]
=

∫
f(z|θ̄(X∗

T ))dĜ(z)

=
1

T

T∑
α=1

f(xα|θ̄(X∗
T ))

≡ 1

T
f(xT |θ̄(X∗

T )).

So for the second term on the right-hand side, we have

TEĜ(z∗)

[
f(Z∗|θ̄(X∗

T ))

]
≡ f(xT |θ̄(X∗

T )). (8)

On the other-hand, based on reusing the bootstrap sample X∗
T , we have

EĜ∗(z)[f(Z|θ̄(X∗
T ))] =

∫
f(z|θ̄(X∗))dĜ∗(z)

=
1

T

T∑
α=1

f(X∗
α|θ̄(X

∗
T ))

≡ 1

T
f(X∗

T |θ̄(X
∗
T )).

Therefore,
T∑

α=1

f(X∗
α|θ̄(X

∗
T )) ≡ f(X∗

T |θ̄(X
∗
T )). (9)

Combining equation 8 and equation 9 into equation 7, the bootstrap bias estimate can be written as

b∗(Ĝ) = EĜ(x∗)

[
f(X∗

T |θ̄(X
∗
T ))− f(XT |θ̄(X∗

T ))

]
, (10)

3The same method as 2, but then with Σ̂ instead of Σ
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where Ĝ is a known probability distribution (the empirical distribution function).
Let us generate B sets of bootstrap samples, each of size T and denote the ith bootstrap sample as X∗

T (i) =
(X∗

1 (i), X
∗
2 (i), ..., X

∗
T (i)). Denote the difference of equation 8 and equation 9 with respect to the sample X∗

T (i)
as

D∗(i)f(X∗
T (i)|θ̄(X

∗
T (i)))− f(xT |θ̄(X∗

T (i))), (11)

where θ̄(X∗
T (i)) is an estimate of θ̄ obtained from the ith bootstrap sample. Then the expectation in equation

10 based on B bootstrap samples can be numerically approximated as

b∗(Ĝ) ≈ 1

B

B∑
i=1

D∗(i) ≡ bB(Ĝ), (12)

where bB(Ĝ) is the bootstrap estimate of the bias b(G) of the Sharpe ratio. So with this bootstrap estimation
to approximate the bias, we are able to estimate the out-of-sample Sharpe ratio. Denote the Sharpe Ratio
Information Criterion corrected as SRICc and

SRICc ≡
µ̂T θ̄√
θ̄T Σ̂θ̄

− bB(Ĝ), (13)

Therefore,

τ̄ ≈ µ̂T θ̄√
θ̄T Σ̂θ̄

− bB(Ĝ). (14)

.
For unknown µ and unknown Σ, the replacements are given by

G(x) → Ĝ(x)

Xα ∼ G(x) → X∗
α ∼ Ĝ(x)

µ → µ̂

µ̂ → µ̂∗

Σ → Σ̂

Σ̂ → Σ̂∗

θ̄ → θ̄∗

This means that considering the empirical distribution Ĝ(x) as the true distribution, the estimated µ̂ is consid-
ered as the true mean of returns. So where in the ’real’ world µ is unknown, in the empirical distribution it is
known and it is equal to µ̂. Similarly, when it comes to the covariance matrix, the estimated covariance matrix
is treated as if it were the actual covariance matrix for the empirical distribution. Therefore for the empirical
distribution we have the true mean of returns as µ̂, the estimated mean of returns as µ̂∗, the true covariance
matrix as Σ̂ and the estimated covariance matrix as Σ̂∗. For every bootstrap sample X∗(i), we can determine
µ̂∗(i), Σ̂∗(i) and θ̄∗(i) for every i = 1, ..., B. Then D∗(i) can be calculated by

D∗(i) =
µ̂∗(i)T θ̄∗(i)√

θ̄∗(i)T Σ̂∗(i)θ̄∗(i)
− µ̂T θ̄∗(i)√

θ̄∗(i)T Σ̂θ̄∗(i)
.
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Let’s look at an example to provide a clearer understanding of this concept.

Example
Consider the monthly returns of 2 stocks over the past year.

Stock 1 Stock 2
0.05 -0.03
0.01 0.06
0.03 -0.04
0.05 0.01
-0.06 0.07
0.01 -0.03
0.03 0.04
-0.01 -0.02
0.04 0.04
-0.01 0.02
0.01 0.08
0.03 0.05

Now we can determine µ̂, Σ̂ and θ̄, where θ̄ = Σ̂−1µ̂.

µ̂ = (0.015, 0.021)T Σ̂ =

(
0.0009727273 −0.0004318182
−0.0004318182 0.0017901515

)
θ̄ = Σ̂−1µ̂ = (0.57, 0.43)T

The in-sample Sharpe ratio with the unknown covariance matrix is

µ̂T θ̄√
θ̄T Σ̂θ̄

=
0.01749

0.02184
= 0.839.

Now let’s generate B = 1000 bootstrap samples4. For every sample, we can determine µ̂∗(i), Σ̂∗(i) and
θ̄∗(i).

For the first bootstrap sample X∗(1) we get

X∗(1) =

Stock 1 Stock 2
0.01 0.08
0.04 0.04
0.04 0.04
-0.01 0.02
-0.01 0.02
0.03 -0.04
0.01 0.08
0.03 0.04
0.04 0.04
0.05 0.01
0.04 0.04
0.04 0.04

with

µ̂∗(1) = (0.026, 0.034)T Σ̂∗(1) =

(
0.0004265152 −0.00008106061

−0.00008106061 0.0009901515

)
θ̄∗(1) = (0.63, 0.37)T

Then

D∗(1) =
µ̂∗(1)T θ̄∗(1)√

θ̄∗(1)T Σ̂∗(1)θ̄∗(1)
− µ̂T θ̄∗(1)√

θ̄∗(1)T Σ̂θ̄∗(1)
= 1.77− 0.83 = 0.94.

Repeating this 999 times gives us
1

1000

1000∑
i=1

D∗(i) = 0.341.

4If the number B of bootstrap samples becomes infinitely large, errors in the approximation by Monte Carlo simulation can be
ignored. In this paper we will use B = 1000.

12



Therefore, the bootstrap estimate of the bias b(G) is approximately 0.341. The out-of-sample Sharpe ratio of
the 2 stocks is estimated as

τ̄ ≈ µ̂T θ̄√
θ̄T Σ̂θ̄

− bB(Ĝ) = 0.839− 0.341 = 0.498.

3.1 Bias for the Sharpe Ratio Information Criterion
We can estimate the bias of the Sharpe ratio using an unknown covariance matrix as well as with a known
covariance matrix. In the case of an known covariance matrix, the bias can be estimated analytically as well,
so we are able to compare both results. However, when the covariance matrix is known, we need to simulate
data based on that covariance matrix. To accomplish this, we consider an n dimensional multivariate normal
distribution and require the true mean, denoted as µ. Therefore, we are able to determine the real bias as well,
as µ and Σ are known. By comparing the actual bias, the analytically estimated bias, and the bias estimated
through bootstrapping, we can evaluate and compare the results.

Let X ∼ N(µ,Σ) be an n dimensional multivariate normal distribution where µ ∈ Rn and Σ ∈ Rn×n is a
symmetric, positive definite n× n matrix, so

ΣT = Σ and xTΣx > 0 ∀x ∈ Rn\{0}.

Now we able to simulate the returns of n components using the mvrnorm package in R with a given T.
Remember that we assumed that Σ is known, so the replacements for the bootstrap simulation is as follows :

G(x) → Ĝ(x)

Xα ∼ G(x) → X∗
α ∼ Ĝ(x)

µ → µ̂

µ̂ → µ̂∗

Σ → Σ

θ̂ → θ̂∗

Let θ̂ = Σ−1µ̂ and θ̂∗(i) = Σ−1µ̂∗(i) where µ̂∗(i) is the vector of the mean returns of the i−th bootstrap sample.
We can determine the true bias b(G), the bias analytically bA(G) and the bootstrap bias by

b(G) =
µ̂T θ̂√
θ̂TΣθ̂

− µT θ̂√
θ̂TΣθ̂

= ρ̂− τ̂ (15)

bA(G) =
k

T ρ̂
, k = n− 1 (16)

bB(Ĝ) =
1

B

B∑
i=1

D∗(i) , D∗(i) =
µ̂∗(i)T θ̂∗(i)√
θ̂∗(i)TΣθ̂∗(i)

− µ̂T θ̂∗(i)√
θ̂∗(i)TΣθ̂∗(i)

(17)

Because the bootstrap method is based on simulated data from a multivariate normal distribution, we also need
to consider the randomness inherent in the simulated data itself. Therefore, since there is randomness in the
simulated data, we will need to repeat the entire bootstrap process multiple times. Let A be the number of
simulated multivariate normally distributed samples, and B be the number of bootstrap samples per simulated
data. Errors in the approximation gets smaller if B becomes infinitely large, so we will set B = 1000 in this
study. To determine A, we should look at the graph of the true bias for different A with different T. Consider
the data simulated by µ and Σ described in Table 6.1. For different A we obtain
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When comparing the results, we observe that for A = 10 and A = 50, the bias line still fluctuates significantly
compared to A = 100 and A = 1000. Since it takes a considerable amount of time to generate 1000 bootstrap
samples for each data set in 1000 simulated data sets, we will now choose A = 100.

For given µ and Σ, then we have θ∗ = Σ−1µ. The out-of-sample Sharpe ratio of optimal parameter applied
to out-of-sample data is

τ∗ = τ(θ∗) =
µT θ∗√
θ∗Σθ∗

. (18)

Let n = 5 , for these simulations we will set A = 100 and B = 1000. The vector µ and matrix Σ are given in
Table 6.1 and τ(θ∗) = 0.373. For different T we have

T 50 100 500 1000
E[b(G)] 0.18798357 0.08870314 0.02130247 0.01215171
E[bA(G)] 0.18190248 0.10356744 0.02111789 0.01059187
E[bB(Ĝ)] 0.13698760 0.09127060 0.02083634 0.01038829

E[bA(G)− b(G)] -0.0060810913 0.0148642926 -0.0001845812 -0.0015598427
E[bB(G)− b(G)] -0.0509959701 0.0025674580 -0.0004661327 -0.0017634268

V ar(b(G)) 0.0121420539 0.0096372878 0.0020956847 0.0008120217
V ar(bA(G)− b(G)) 0.0246147640 0.0156246108 0.0023272278 0.0008572548
V ar(bB(Ĝ)− b(G)) 0.0163976531 0.0134063846 0.0023026829 0.0008634795
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The graph of the expectations of the true bias, the bias determined analytically and the bootstrap estimates
of b(G) for different T is

Now with n = 5 again, but τ(θ∗) = 0.639 with µ and Σ given in Table 6.2 , we get

T 50 100 500 1000
E[b(G)] 0.118449198 0.063864710 0.018439971 0.008999992
E[bA(G)] 0.119081434 0.061031618 0.012340676 0.006206526
E[bB(Ĝ)] 0.110203248 0.059778875 0.012384546 0.006191265

E[bA(G)− b(G)] 0.000632236 -0.002833092 -0.006099294 -0.002793466
E[bB(G)− b(G)] -0.008245950 -0.004085835 -0.006055425 -0.002808728

V ar(b(G)) 0.0170670606 0.0092963760 0.0019834704 0.0008156174
V ar(bA(G)− b(G)) 0.0232022581 0.0113535830 0.0020607965 0.0008313181
V ar(bB(Ĝ)− b(G)) 0.0218060986 0.0110296799 0.0020538077 0.0008269363

The graph for different T is
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Let n = 7. The vector µ and matrix Σ given in Table 6.3. Here τ(θ∗) = 0.692 and we have

T 50 100 500 1000
E[b(G)] 0.172598863 0.080858114 0.020078872 0.009452923
E[bA(G)] 0.157033706 0.084548507 0.017155271 0.008627436
E[bB(Ĝ)] 0.142190753 0.079895199 0.016972179 0.008727723

E[bA(G)− b(G)] -0.0155651561 0.0036903936 -0.0029236010 -0.0008254863
E[bB(G)− b(G)] -0.0304081100 -0.0009629150 -0.0031066924 -0.0007251995

V ar(b(G)) 0.0168894399 0.0111699971 0.0020454595 0.0008012633
V ar(bA(G)− b(G)) 0.0247100195 0.0143077051 0.0021504106 0.0008208858
V ar(bB(Ĝ)− b(G)) 0.0220951196 0.0138568447 0.0021405644 0.0008185002

For different T we have

Now for the same n = 7 , but τ(θ∗) = 1.893 with different µ and Σ as in Table 6.4.

T 50 100 500 1000
E[b(G)] 0.0651319261 0.0402263691 0.0092300500 0.0009463701
E[bA(G)] 0.062475119 0.031342895 0.006322203 0.003171175
E[bB(Ĝ)] 0.059707624 0.031169910 0.006187428 0.003110910

E[bA(G)− b(G)] -0.002656807 -0.008883474 -0.002907847 0.002224805
E[bB(G)− b(G)] -0.005424302 -0.009056459 -0.003042622 0.002164539

V ar(b(G)) 0.016553071 0.010870797 0.002257263 0.001034536
V ar(bA(G)− b(G)) 0.017675174 0.011232939 0.002272195 0.001038016
V ar(bB(Ĝ)− b(G)) 0.017685806 0.011325991 0.002255490 0.001040529
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For different T we have

Last, we set n = 10 with µ and Σ given in Table 6.5 , τ(θ∗) = 1.062 and for different T we have

T 50 100 500 1000
E[b(G)] 0.165234589 0.087959603 0.013164947 0.008566129
E[bA(G)] 0.159739061 0.081930363 0.016876840 0.008440529
E[bB(Ĝ)] 0.147442243 0.078610189 0.016561705 0.008409919

E[bA(G)− b(G)] -0.0054955275 -0.0060292402 0.0037118938 -0.0001256003
E[bB(G)− b(G)] -0.0177923459 -0.0093494139 0.0033967582 -0.0001562107

V ar(b(G)) 0.018172842 0.007373774 0.001895096 0.001048880
V ar(bA(G)− b(G)) 0.024093572 0.008571411 0.001956823 0.001065460
V ar(bB(Ĝ)− b(G)) 0.023212075 0.008534129 0.001953808 0.001063178
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As the number of observations, denoted by T, increases towards infinity, it appears that the bias and the
bootstrap bias tends to converge towards 0. This convergence is in line with the analytic bias. Specifically,
as T → ∞, the ratio k

T ρ̂ → 0. This indicates that the bias decreases as the sample size grows larger. So
the more data samples we have, the smaller the difference between the in-sample Sharpe Ratio and the out-
of-sample Sharpe Ratio. However we see that the expectation of the real bias oscillates every now and then.
We can prevent this by increasing the value of A. However, this would require a significantly larger number of
simulations, resulting in long computation times.

Moreover, the expectation of the difference between the true bias, represented by b(G), and the bias estimated
through bootstrapping, denoted as bB(Ĝ), also tends to approach 0 as the sample size increases. This suggests
that the bootstrap bias becomes increasingly accurate and aligns closely with the true bias as T becomes larger.

3.2 Bias with Unknown Covariance Matrix
Since real data works with an unknown µ and Σ, we want to determine the bootstrap bias for µ̂ and Σ̂. But first
we will look at an situation where Σ is known, but proceed as if Σ was unknown. In this way we can compare
the real bias B(G) and the bootstrap estimate of the bias bG(Ĝ). Note that since Σ is unknown, we can not
use bA(G) = k

T ρ̂ since it works only for a known Σ.
Denote ϕ(θ) as the in-sample Sharpe ratio with the estimated covariance matrix Σ̂ as

ϕ(θ) =
µ̂T θ√
θT Σ̂θ

and
θ̄ ∈ argmax

θ∈Θ
ϕ(θ) ⇐⇒ θ̄ = Σ̂−1µ̂

So the in-sample Sharpe ratio of θ̄ is given by

ϕ̄ = ϕ(θ̄) =
µ̂T θ̄√
θ̄T Σ̂θ̄

(19)

The replacements are given as follows
G(x) → Ĝ(x)

Xα ∼ G(x) → X∗
α ∼ Ĝ(x)

µ → µ̂

µ̂ → µ̂∗

Σ → Σ̂

Σ̂ → Σ̂∗

θ̄ → θ̄∗

We can determine the real bias b(G) and the bootstrap bias bB(Ĝ) by

b(G) =
µ̂T θ̄√
θ̄T Σ̂θ̄

− µT θ̄√
θ̄TΣθ̄

(20)

bB(Ĝ) =
1

B

B∑
i=1

D∗(i) , D∗(i) =
µ̂∗(i)T θ̄∗(i)√

θ̄∗(i)T Σ̂∗(i)θ̄∗(i)
− µ̂T θ̄∗(i)√

θ̄∗(i)T Σ̂θ̄∗(i)
(21)

Since θ̄ = Σ̂−1µ̂ , it follows that θ̄∗(i) = Σ̂∗−1(i)µ̂∗(i) where µ̂∗(i) is the vector of the mean returns of the i− th
bootstrap sample and Σ̂∗−1(i) is the inverse matrix of the estimated covariance matrix of the i− th sample.

Let n = 5 and τ(θ∗) = 0.639 like in the previous section with µ and Σ given in Table 6.2 , we get the
following results

T 50 100 500 1000
E[b(G)] 0.18592260 0.09155274 0.02520011 0.01108002
E[bB(Ĝ)] 0.193940913 0.095573047 0.019108900 0.009741311

E[bB(Ĝ)− b(G)] 0.008018310 0.004020307 -0.006091210 -0.001338706
V ar(b(G)) 0.038383073 0.012137729 0.002016526 0.001193710

V ar(bB(Ĝ)− b(G)) 0.038899947 0.012641336 0.002029076 0.001203932
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with the graph for different T .

Let n = 7 and τ(θ∗) = 1.893 and µ and Σ as Table 6.4 , we get

T 50 100 500 1000
E[b(G)] 0.32106749 0.15329509 0.03445561 0.01095473
E[bB(Ĝ)] 0.39901946 0.18398893 0.03432741 0.01689747

E[bB(Ĝ)− b(G)] 0.077951965 0.030693841 -0.000128204 0.005942742
V ar(b(G)) 0.069198737 0.036262468 0.005706364 0.002904131

V ar(bB(Ĝ)− b(G)) 0.053253785 0.032811071 0.005600765 0.002835116

with the graph for different T .
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And for n = 10 with τ(θ∗) = 1.062 and µ and Σ as Table 6.5

T 50 100 500 1000
E[b(G)] 0.38866244 0.21292585 0.03328613 0.01785017
E[bB(Ĝ)] 0.46431969 0.20758395 0.03869519 0.01912915

E[bB(Ĝ)− b(G)] 0.075657252 -0.005341894 0.005409066 0.001278981
V ar(b(G)) 0.051864881 0.019598431 0.002975479 0.001563956

V ar(bB(Ĝ)− b(G)) 0.039046105 0.017959168 0.002978843 0.001552197

with the graph for different T

Compared to the tables in Section 3.1, E[bB(Ĝ)−b(G)] is generally higher. This is because we are estimating
two parameters µ̂ and Σ̂ instead of just one like before where we estimated the mean returns µ̂ , but Σ was
known. However, the differences are still very small, although not as small as in Section 3.1.

3.3 Bias with real data
For so far we’ve looked at situations with simulated data generated by a multivariate normal distribution. We
had a situation where we assumed that Σ was known and a situation where Σ was unknown, although we knew
it to simulate the data. Because we knew it we were able to measure the accuracy of the bootstrap bias with
an unknown covariance matrix, situations like in the stock market. We are able to estimate µ̂ and Σ̂ , but the
true µ and Σ remains unknown. Therefore we are only able to estimate the bias through the bootstrap method.
The replacements for the bootstrap method becomes

G(x) → Ĝ(x)

Xα ∼ G(x) → X∗
α ∼ Ĝ(x)

µ → µ̂

µ̂ → µ̂∗

Σ → Σ̂

Σ̂ → Σ̂∗

θ̄ → θ̄∗

The bootstrap estimate of the bias b(G) is given by
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bB(Ĝ) =
1

B

B∑
i=1

D∗(i) , D∗(i) =
µ̂∗(i)T θ̄∗(i)√

θ̄∗(i)T Σ̂∗(i)θ̄∗(i)
− µ̂T θ̄∗(i)√

θ̄∗(i)T Σ̂θ̄∗(i)
(22)

Using the quantmod mode in R , we are able to download the stock returns from different stocks on Yahoo.com.
We will be using the monthly stock returns for 10 companies in the S&P500 over the last 15 years ( T = 180 )
with the following ticker symbols :
Apple Inc. (AAPL), Amazon.com Inc. (AMZN), Alphabet Inc. (GOOGL), Microsoft Corporation (MSFT),
Johnson & Johnson (JNJ), JPMorgan Chase & Co. (JPM), Visa Inc. (V), Procter & Gamble Company (PG),
NVIDIA Corporation (NVDA) and Coca-Cola Company (KO). Then the mean monthly returns µ̂ and the
weights θ̄ of the stocks is given by

Mean return Weights
AAPL 0.022681496 0.15312343
AMZN 0.024058524 0.25226688

GOOGL 0.015162039 -0.15646389
MSFT 0.015965240 0.08915606
JNJ 0.006089021 -0.08510370
JPM 0.011240314 0.01287974

V 0.015362046 0.28126941
PG 0.005921317 0.35711495

NVDA 0.034145774 0.14641688
KO 0.005823066 -0.05065977

When the portfolio weights have negative values, it suggests that you should consider going short for those
particular stocks. Going short involves borrowing shares of a stock, selling them at the current market price,
and repurchase them back when the stock price has lowered. The difference in the price you sold it for and the
price you bought it back again, is your profit per share. By selling high and buying back at a lower price, you
could profit from a decline in the stock’s price.

Set B = 1000 , now we are able to calculate the in-sample Sharpe ratio with the estimated covariance matrix
Σ̂, the bootstrap bias and the estimated out-of-sample Sharpe ratio in terms of µ̂ and Σ̂. We get the following
results

ϕ(θ̄) 0.3512865
bB(Ĝ) 0.1508145

τ̄ 0.200472

So τ̄ ≈ 0.200472. This suggests that the investment may not be favorable since its Sharpe ratio is significantly
lower than 1.

3.4 Parametric Bootstrapping
There are also other methods available for creating a bootstrap sample. In our previous approach to create
a bootstrap sample, we randomly selected data points from the original data set with equal probability 1

T
and repeated this T times. However, we can also create a parametric bootstrap sample. Specifically, we can
do it in a similar way to how we simulated data using a multivariate normal distribution in Section 3.1. We
will repeat this process again, but this time the bootstrap sample is generated using a multivariate normal
distribution where the parameters are the estimated mean returns µ̂ and the estimated covariance matrix Σ̂
from the original data sample. This assumes that the distribution of stock returns follows a normal distribution.

The parametric bootstrap method can be applied to both simulated data and real data. We’ll start by
looking at the simulated first.
Let X ∼ N(µ,Σ) be an n dimensional multivariate normal distribution where µ ∈ Rn and Σ ∈ Rn×n is a
symmetric, positive definite n× n matrix. Now again we are able to simulate the returns of n stocks using the
mvrnorm package in R with an given T. Assume Σ is known and µ is unknown so that we can compare the
results with the tables from Section 3.1.
So for B bootstrap samples we have X∗

1 , X
∗
2 , ..., X

∗
B ∼ N(µ̂,Σ) where µ̂ is the estimated mean returns of

the original data set that was multivariate normally distributed with mean µ and covariance matrix Σ. De-
note bBP

(Ĝ) as the parametric bootstrap bias and bBNP
(Ĝ) as the bootstrap bias where the bootstrap sample

is made by randomly selecting data points from the original data set as described earlier this chapter. Let

21



∆P = E[bBP
(Ĝ) − b(G)] and ∆NP = E[bBNP

(Ĝ) − b(G)]. Now we are able to compare both the expectations
of the given µ and Σ given in the Appendix 6.

For the same vector µ and matrix Σ given in Table 6.1 and n = 5 with τ(θ∗) = 0.373, for different T we
have 5

T 50 100 500 1000
E[b(G)] 0.161438402 0.121482645 0.029211961 0.006953545

E[bBP
(Ĝ)] 0.14537207 0.08738081 0.02020537 0.01066994

E[bBNP
(Ĝ)] 0.14272527 0.08571980 0.02035783 0.01058429

V ar(bBP
(Ĝ)− b(G)) 0.019883738 0.013008789 0.002365005 0.001024831

V ar(bBNP
(Ĝ)− b(G)) 0.020048627 0.013053651 0.002388197 0.001020464
∆P -0.016066328 -0.034101836 -0.009006590 0.003716392
∆NP -0.018713130 -0.035762847 -0.008854128 0.003630747

|∆P | ≤ |∆NP |? yes yes no no

Now with n = 5 and µ and Σ as in Table 6.2 with τ(θ∗) = 0.639 we have

T 50 100 500 1000
E[b(G)] 0.102555996 0.073888945 0.006435471 0.004927047

E[bBP
(Ĝ)] 0.114963694 0.058065894 0.012431604 0.006427476

E[bBNP
(Ĝ)] 0.112109330 0.057476420 0.012627387 0.006146473

V ar(bBP
(Ĝ)− b(G)) 0.0213450919 0.0111561158 0.0018134659 0.0009754792

V ar(bBNP
(Ĝ)− b(G)) 0.0213733193 0.0112661018 0.0018082516 0.0009977858
∆P 0.012407698 -0.015823051 0.005996133 0.001500430
∆NP 0.009553334 -0.016412525 0.006191916 0.001219427

|∆P | ≤ |∆NP |? no yes yes no

For n = 7 and τ(θ∗) = 0.692 with µ and Σ as in Table 6.3 , we have

T 50 100 500 1000
E[b(G)] 0.15065272 0.10134822 0.01844502 0.01421800

E[bBP
(Ĝ)] 0.148507588 0.078436755 0.016926924 0.008582008

E[bBNP
(Ĝ)] 0.14395746 0.07737558 0.01702628 0.00850104

V ar(bBP
(Ĝ)− b(G)) 0.0239630822 0.0120946178 0.0020251103 0.0008141151

V ar(bBNP
(Ĝ)− b(G)) 0.0243591136 0.0121813489 0.0020471102 0.0008127827
∆P -0.002145136 -0.022911462 -0.001518100 -0.005635997
∆NP -0.006695264 -0.023972638 -0.001418743 -0.005716965

|∆P | ≤ |∆NP |? yes yes no yes

Now for the same n = 7 , but τ(θ∗) = 1.893 and µ and Σ as in Table 6.4 , we obtain

T 50 100 500 1000
E[b(G)] 0.082405655 0.023672404 -0.001584687 0.003369389

E[bBP
(Ĝ)] 0.061744905 0.031690093 0.006163020 0.003117028

E[bBNP
(Ĝ)] 0.060631251 0.031585741 0.006358751 0.002930593

V ar(bBP
(Ĝ)− b(G)) 0.0213035798 0.0127760426 0.0025203315 0.0009934036

V ar(bBNP
(Ĝ)− b(G)) 0.0212727407 0.0128651896 0.0025345261 0.0009794762
∆P -0.020660750 0.008017689 0.007747707 -0.000252361
∆NP -0.0217744043 0.0079133371 0.0079434376 -0.0004387955

|∆P | ≤ |∆NP |? yes no yes yes

5Note that E[b(G)] is different than in 3.1 , as we simulate the data A = 100 times again resulting in different µ̂.
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Last, with n = 10 and τ(θ∗) = 1.062 and with µ and Σ as in Table 6.5

T 50 100 500 1000
E[b(G)] 0.15878676 0.07173546 0.01647524 0.00472808

E[bBP
(Ĝ)] 0.150372015 0.080372687 0.016813668 0.008490658

E[bBNP
(Ĝ)] 0.148216456 0.078741650 0.016753313 0.008454651

V ar(bBP
(Ĝ)− b(G)) 0.025029831 0.010218825 0.002248660 0.001095269

V ar(bBNP
(Ĝ)− b(G)) 0.024801466 0.010376836 0.002244633 0.001085448
∆P -0.0084147426 0.0086372223 0.0003384249 0.0037625782
∆NP -0.0105703011 0.0070061855 0.0002780703 0.0037265706

|∆P | ≤ |∆NP |? yes no no no

The results indicate that the parametric bootstrap simulation is not always effective. Intuition would
make you think it should have been much more effective because the simulated data itself is already normally
distributed, but 11 out of the 20 results have been improved. This also shows that the non-parametric bootstrap
method is also very effective to estimate a bias for the out-of-sample Sharpe Ratio with an unknown covariance
matrix.
However, for real data we cannot assume that the distribution of the returns are normally distributed. Take a
look at the distribution of the monthly returns of Apple Inc. (AAPL) and Amazon.com Inc. (AMZN) over the
last 15 years.
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Since using the bootstrap method is almost as effective as the parametric bootstrap, knowing that the
distribution is normal, the parametric bootstrap seems not to be a good choice when working with real data.
It seems that working with the non-parametric bootstrap method will result in a more accurate bias estimation
for real data.

3.5 Efficient Bootstrap Simulation
We’re going to look at an situation again where both µ and Σ are unknown and let A = 100 and B = 1000.
Then the expectations of the true bias B(G), the bootstrap bias bB(Ĝ) and the variance of the bootstrap bias
of µ and Σ as in Table 6.2 for different T is

T 50 100 500 1000
E[b(G)] 0.182091381 0.080742047 0.019995929 0.005194821
E[bB(Ĝ)] 0.193029532 0.096274737 0.019104932 0.009564266

E[bB(Ĝ)− b(G)] 0.0109381506 0.0155326894 -0.0008909971 0.0043694456
V ar(bB(Ĝ)− b(G)) 0.024647856 0.010543000 0.002199383 0.001563571

V ar(bB(Ĝ)) 0.0002554725 0.00005197233 0.000002852164 0.00000117283

We can reduce the variance of D∗ significantly with an effective, yet extremely simply method called the
efficient bootstrap simulation method.
Let XT = (X1, X2, ..., XT ) be a random sample of size T of stock returns with unknown probability function
G(x). Let f be the Sharpe ratio function. Set the difference between the in-sample Sharpe ratio of θ̄ and T
times the out-of-sample Sharpe ratio of every stock based on weight θ̄ as

D(XT ;G) = f(XT |θ̄)− T

∫
f(z|θ̄)dG(z), (23)

where f(XT |θ̄) =
∑T

α=1 f(Xα|θ̄). We can decompose D(XT ;G) into three terms:

D(XT ;G) = D1(XT ;G) +D2(XT ;G) +D3(XT ;G), (24)

where
D1(XT ;G) = f(XT |θ̄)− f(XT |θ)

D2(XT ;G) = f(XT |θ)− T

∫
f(z|θ)dG(z) (25)

D3(XT ;G) = T

∫
f(z|θ)dG(z)− T

∫
f(z|θ̄)dG(z).
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Since the bias b(G) is the expectation of D(XT ;G) with respect to G(x), we can take the expectation of
the right-hand side of equation 24. For the expectation of D2(XT ;G) we have

EG

[
D2(XT ;G)

]
= EG

[
f(XT |θ)− T

∫
f(z|θ)dG(z)

]
=

T∑
α=1

EG

[
f(Xα|θ)

]
− TEG

[
f(Z|θ)

]
= 0.

Therefore, the expectation in the second term can be removed from the bias for the Sharpe ratio. The expectation
of D(XT ;G) is then given by

EG

[
D(XT ;G)

]
= EG

[
D1(XT ;G) +D3(XT ;G)

]
. (26)

Similarly, for the bootstrap estimate, we have

EĜ

[
D(X∗

T ; Ĝ)

]
= EĜ

[
D1(X

∗
T ; Ĝ) +D3(X

∗
T ; Ĝ)

]
. (27)

For each bootstrap sample we have

D1(X
∗
T (i); Ĝ) +D3(X

∗
T (i); Ĝ) = f(X∗

T (i)|θ̄
∗
(i))− f(X∗

T (i)|θ̄) (28)

+ f(XT |θ̄)− f(XT |θ̄
∗
(i)). (29)

So for B bootstrap samples with replacement, we can use the following as the bootstrap estimate of the bias
for the Sharpe ratio with unknown µ and Σ where the variance of bb(Ĝ) is reduced

bB(Ĝ) =
1

B

B∑
i=1

[
D1(X

∗
T (i); Ĝ) +D3(X

∗
T (i); Ĝ)

]
. (30)

Let’s look back at the previous situation where µ and Σ are unknown, but we simulate data with µ and Σ.
The replacements for the bootstrap method becomes

G(x) → Ĝ(x)

Xα ∼ G(x) → X∗
α ∼ Ĝ(x)

µ → µ̂

µ̂ → µ̂∗

Σ → Σ̂

Σ̂ → Σ̂∗

θ̄ → θ̄∗

We can determine the true bias b(G) , the bootstrap bias bB(Ĝ) and the bootstrap bias based on the efficient
bootstrap simulation bBD1+D3

(Ĝ) by

b(G) =
µ̂T θ̄√
θ̄T Σ̂θ̄

− µT θ̄√
θ̄TΣθ̄

(31)

bB(Ĝ) =
1

B

B∑
i=1

D∗(i) , D∗(i) =
µ̂∗(i)T θ̄∗(i)√

θ̄∗(i)T Σ̂∗(i)θ̄∗(i)
− µ̂T θ̄∗(i)√

θ̄∗(i)T Σ̂θ̄∗(i)
(32)

bBD1+D3
(Ĝ) =

1

B

B∑
i=1

D∗
1(i) +D∗

3(i) ,

D∗
1(i) +D∗

3(i) =
µ̂∗(i)T θ̄∗(i)√

θ̄∗(i)T Σ̂∗(i)θ̄∗(i)
− µ̂∗(i)T θ̄√

θ̄T Σ̂∗(i)θ̄
+

µ̂T θ̄√
θ̄T Σ̂θ̄

− µ̂T θ̄∗(i)√
θ̄∗(i)Σ̂θ̄∗(i)

(33)

Let A = 1 and B = 1000 and µ and Σ as in Table 6.2 with n = 5 and τ(θ∗) = 0.639. Then we have
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T 50 100 500 1000

E[b(G)] 0.1830706 0.09991509 0.02801865 0.008603255
E[bB(Ĝ)] 0.1977577 0.0860242 0.01889751 0.008836818

E[bBD1+D3
(Ĝ)] 0.1766645 0.0747394 0.01859225 0.00887424

V ar(D∗) 0.03624417 0.01249258 0.002556437 0.00137943
V ar(D∗

1 +D∗
3) 0.01514015 0.002970085 0.0001907571 3.808036e-05

V ar(D∗)
V ar(D∗

1+D∗
3 )

2.39391 4.206136 13.40153 36.22418

So the variance clearly decreases for the efficient bootstrap method. However, if we use the same µ and Σ,
but set A = 100 and we consider the variance of bB(Ĝ)− b(G) and the variance of bBD1+D3

(Ĝ)− b(G) instead
of the variance of D∗ and D∗

1 +D∗
3 . We have

T 50 100 500 1000

E[b(G)] 0.18461463 0.08232263 0.01534991 0.01364866
E[bB(Ĝ)] 0.19397732 0.09604567 0.01927288 0.00953835

E[bBD1+D3
(Ĝ)] 0.175067736 0.086928329 0.017577812 0.008803043

V ar(bB(Ĝ)− b(G)) 0.02070216 0.01382024 0.00254931 0.00150082
V ar(bBD1+D3

(Ĝ)− b(G)) 0.02161585 0.01406552 0.00254228 0.00149871

And for n = 10 with µ and Σ as in Table 6.5

T 50 100 500 1000

E[b(G)] 0.40940322 0.18569519 0.03595673 0.02203501
E[bB(Ĝ)] 0.46608338 0.20434356 0.03874754 0.01944856

E[bBD1+D3
(Ĝ)] 0.43279702 0.19075269 0.03615625 0.01808009

V ar(bB(Ĝ)− b(G)) 0.036378997 0.016582132 0.003614419 0.001564121
V ar(bBD1+D3

(Ĝ)− b(G)) 0.038593564 0.016825635 0.003615264 0.001566377

When we examine the efficient bootstrap simulation method on the real data used in 3.3 of the 10 stocks of
the S&P500, we get the following results.
For data from the last 15 years6 (T=180), 10 years (T=120) and 5 years (T=60) we get

T 50 100 500

ϕ(θ̄) 0.4684776 0.4402991 0.3535254
E[bB(Ĝ)] 0.2892111 0.1913182 0.1478384

E[bBD1+D3
(Ĝ)] 0.270292 0.1846712 0.1451355

V ar(bB(Ĝ)) 0.08166466 0.01140712 0.006426418
V ar(bBD1+D3

(Ĝ)) 0.0745123 0.008628737 0.004570688

It is remarkable that although the variance of D∗ significantly decreases when working with D1 + D3, it has
little impact on the variance of the difference between the bootstrap bias and true bias when using D1 + D3

instead of D1+D2+D3. This is partly due to the high values of A and B, which compensate for outliers. Since
both are high, we observe that the expectation of the bootstrap bias with D1 +D2 +D3 remains fairly stable,
resulting in minimal change in the variance of the difference between bootstrap bias and true bias. Since the
performance of the expectation of the bias does not deteriorate significantly, we will continue using the efficient
bootstrap method going forward.

6Written in June 2023, the data is from July 2008 up until June 2023

26



4 Optimal out-of-sample performance on the stock market
In the previous chapter we’ve looked at the bootstrap method to provide a solution for our problem, to find the
bias for the Sharpe ratio in terms of µ̂ and Σ̂. Now we can apply this to find an out-of-sample Sharpe ratio as
high as possible.

4.1 AEX index
Whereas we used some stocks of the S&P500 to provide an illustration in Section 3.3, we will now evaluate the
stocks included in the AEX index. The AEX index (Amsterdam Exchange index) is a stock market index of
the largest and most traded Dutch companies on the stock market. The Amsterdam Exchange, formerly known
as the Amsterdam Stock Exchange , consists out of 25 companies as of today. It consist multinationals like
Shell (SHELL) , Heineken (HEIA) and Philips (PHIA) . Since it is an index, every company has its own weight,
based on multiple factors like the number of shares or the stock price.

We will use 21 out of the 25 stocks on the AEX index, as we will exclude DSM FIRMENICH AG (DSM),
EXOR NV (EXOR), Unilever PLC (UNA) and UNIVERSAL MUSIC GROUP NV (UMG) because of limited
data.

The stocks of the AEX are divided into 4 groups and we will use the monthly returns from October 2019
until March 2023 (T = 42).

Company Name Ticker Symbol
ABN AMRO Bank ABN

Adyen ADYEN
Aegon AGN

Akzo Nobel AKZA
ArcelorMittal MT

ASM International ASM
ASML Holding ASML
ASR Nederland ASRNL

BE Semiconductor Industries BESI
Heineken HEIA

IMCD Group IMCD
ING Groep INGA

Koninklijke Ahold Delhaize AD
Koninklijke KPN KPN

NN Group NN
Koninklijke Philips PHIA

Prosus PRX
RANDSTAD NV RAND

RELX NV REN
Royal Dutch Shell SHELL
Wolters Kluwer WKL

For every k, we can determine the in-sample Sharpe ratio ϕ(θ̄) and the estimated out-of-sample Sharpe ratio
of θ̄, the SRICc. For Group 1 and B = 1000 we have

k = 0 1 2 3 4
ϕ̄ 0.2374982 0.2908931 0.4109325 0.4223135 0.4369413

SRICc 0.2029535‘ 0.1844124 0.2758241 0.2340135 0.1989806

With ADYEN, AKZA and MT as the stocks in the optimal portfolio of k = 2.
For Group 2 we have

k = 0 1 2 3 4
ϕ̄ 0.3472794 0.3663406 0.3684859 0.3704620 0.3705338

SRICc 0.3381414 0.2848894 0.2274709 0.1751970 0.1138997

With ASM as the only stock in the optimal portfolio for Group 2 with k = 0.

For Group 3 we have
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k = 0 1 2 3 4
ϕ̄ 0.2561472 0.2775962 0.3020766 0.3108165 0.3127524

SRICc 0.22601033 0.16883125 0.12507073 0.07784122 0.03122697

With IMCD as the only stock in the optimal portfolio for Group 3 with k = 0 as well.

And for Group 4 we have

k = 0 1 2 3 4 5
ϕ̄ 0.2507819 0.3271396 0.3972709 0.4365822 0.4442045 0.4538303

SRICc 0.2200048 0.2380637 0.2705799 0.2513734 0.2004801 0.1613454

With PHIA, PRX and WKL as the optimal portfolio for k = 2.
Combining these stocks gives us a set of 8 stocks. For every k we can determine the optimal portfolio for the
in-sample Sharpe ratio and thus determine the estimated out-of-sample Sharpe ratio.

k = 0 1 2 3 4 5 6 7
ϕ̄ 0.3472794 0.5854177 0.6048200 0.6332137 0.6628492 0.6926390 0.7025422 0.7026793

SRICc 0.3372524 0.5405120 0.5011670 0.4757376 0.4613320 0.4388097 0.3987629 0.3430310

The 2 stocks are ASM and PHIA, with weights

Stock Weight
ASM 3.300712
PHIA -4.300712
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4.2 Dow Jones
We will now turn our attention to stocks in another index, the Dow Jones Index. It is an index comprising 30
of the most traded stocks on the American stock exchange. This index was created by the editors of the Wall
Street Journal and Charles Dow, the founder of Dow Jones & Company. The list of the 30 stocks is divided
into three groups.

Company Name Ticker Symbol
American Express AXP
Amgen AMGN
Apple AAPL
Boeing BA
Caterpillar CAT
Cisco Systems CSCO
Chevron CVX
Goldman Sachs GS
Home Depot HD
Honeywell International HON
IBM IBM
Intel INTC
Johnson & Johnson JNJ
Coca-Cola KO
JPMorgan Chase JPM
McDonald’s MCD
3M Company MMM
Merck & Co. MRK
Microsoft MSFT
Nike NKE
Procter & Gamble PG
Travelers Companies TRV
UnitedHealth Group UNH
Salesforce.com CRM
Verizon Communications VZ
Visa V
Walgreens Boots Alliance WBA
Walmart WMT
Disney DIS
Dow Inc. DOW

We will be using the monthly returns of the past 5 years (from July 2018-June 2023) with T = 60.
For Group 1 we get

k = 0 1 2 3 4
ϕ̄ 0.2989935 0.3092388 0.3271078 0.3364129 0.3468378

SRICc 0.29026984 0.24882782 0.21719532 0.18010834 0.15167386

k = 5 6 7 8 9
ϕ̄ 0.3555418 0.3590934 0.3613501 0.3631258 0.3640199

SRICc 0.12052628 0.08855036 0.05069839 0.02848946 -0.01053263

With AAPL as the only stock.

For Group 2 we have

k = 0 1 2 3 4
ϕ̄ 0.3577082 0.4937761 0.5597171 0.5920486 0.6104849

SRICc 0.3569828 0.4509397 0.4803914 0.4850859 0.4656908

k = 5 6 7 8 9
ϕ̄ 0.6251110 0.6364925 0.6397944 0.6427450 0.6453592

SRICc 0.4408035 0.4224554 0.3952310 0.3514836 0.3157805
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The optimal group for k = 1 is MCD, MMM, MRKK and MSFT.
For Group 3 we get

k = 0 1 2 3 4
ϕ̄ 0.2388362 0.3439759 0.3885305 0.4103151 0.4357754

SRICc 0.22044014 0.28434715 0.28520458 0.25687398 0.21891846

k = 5 6 7 8 9
ϕ̄ 0.4569858 0.4662683 0.4765018 0.4881302 0.4910108

SRICc 0.20844617 0.17762202 0.16560048 0.13485215 0.09807598

where the 3 stocks are PG, VZ and V.
We will combine the 8 stocks together. We get

k = 0 1 2 3
ϕ̄ 0.3577082 0.4937761 0.5619183 0.5964770

SRICc 0.3514779 0.4470615 0.4826738 0.4695378

k = 4 5 6 7
ϕ̄ 0.6445280 0.6696924 0.6761052 0.6790434

SRICc 0.4896885 0.4761158 0.4557754 0.4217120

where MMM, MRK, MSFT, PG and VZ are the stocks for k = 4 with weights

Stock Weight
MMM -1.4767443
MRK 0.9247129
MSFT 1.5172696

PG 1.2050789
VZ -1.1703171

The estimated out-of-sample Sharpe ratio’s from both cases are not very good and it is nowhere near an
estimated out-of-sample Sharpe ratio of 1. The SRICc heavily penalizes portfolios with a large number of
parameters, which, when combined with the high level of volatility observed in the stock market in recent years,
makes it challenging to find an optimal portfolio with an expected out-of-sample Sharpe ratio above 1 as of
right now.
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5 Conclusion
We first examined the concept of the Sharpe ratio and its mathematical formulation. In doing so, we also ex-
plored the Sharpe Ratio Information Criterion, which led us to our research problem. To find a bias correction
for the Sharpe ratio when the covariance matrix Σ is unknown. For this method, we looked into the Akaike
Information Criterion, which selects the model with the best log-likelihood in a similar manner.

In Chapter 3, we utilized the bootstrap method to estimate a bias correction for the Sharpe ratio, both with
and without assuming known Σ. Since we were working with simulated data, we knew the true values of µ and
Σ. Therefore, we could assess the accuracy of the expected bootstrap bias and analytical bias compared to the
expectation of the true bias. The analytical and bootstrap biases closely aligned and consistently remained close
to each other. For the simulated data where Σ is assumed unknown, we could only compare the expectation
of the true bias and the bootstrap bias for different values of T . The bootstrap method proved to be highly
effective in estimating a bias correction for the out-of-sample Sharpe ratio using only the estimated covariance
matrix Σ̂. We also explored various extensions of the bootstrap method, such as the parametric bootstrap and
the efficient bootstrap simulation method, but found limited improvement. Finally, we applied these techniques
to stocks in the Dutch and American markets and found that achieving an optimal out-of-sample Sharpe ratio
above 1 is quite challenging. In-sample Sharpe Ratios with high k values are heavily penalized.

Overall, we succeeded in making the Sharpe ratio more applicable by removing the assumption of known
Sigma, which also makes it more difficult to find an out-of-sample Sharpe ratio above 1.
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6 Appendix

.1 Table 1

mean_returns =


0.05
0.07
0.09
0.08
0.06



cov_mat =


0.04 0.02 0.01 0.03 0.02
0.02 0.09 0.03 0.01 0.04
0.01 0.03 0.16 0.02 0.01
0.03 0.01 0.02 0.09 0.03
0.02 0.04 0.01 0.03 0.12


.2 Table 2

mean_returns =


0.11
0.09
0.10
0.11
0.13



cov_mat =


0.04 0.02 0.01 0.03 0.02
0.02 0.09 0.03 0.01 0.04
0.01 0.03 0.10 0.02 0.01
0.03 0.01 0.02 0.04 0.03
0.02 0.04 0.01 0.03 0.12


.3 Table 3

mean_returns =



0.12
0.10
0.08
0.15
0.11
0.13
0.09



cov_mat =



0.06 0.03 0.02 0.01 0.02 0.03 0.02
0.03 0.08 0.04 0.02 0.03 0.04 0.02
0.02 0.04 0.07 0.01 0.02 0.03 0.01
0.01 0.02 0.01 0.09 0.02 0.03 0.02
0.02 0.03 0.02 0.02 0.08 0.03 0.02
0.03 0.04 0.03 0.03 0.03 0.10 0.04
0.02 0.02 0.01 0.02 0.02 0.04 0.06


.4 Table 4

mean_returns =



0.07
0.08
0.09
0.10
0.11
0.11
0.05


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cov_mat =



0.023 0.013 0.009 0.008 0.003 0.005 0.007
0.013 0.026 0.011 0.009 0.001 0.001 0.007
0.009 0.011 0.013 0.008 0.002 0.006 0.005
0.008 0.009 0.008 0.010 0.002 0.005 0.005
0.003 0.001 0.002 0.002 0.004 0.003 0.002
0.005 0.001 0.006 0.005 0.003 0.016 0.005
0.007 0.007 0.005 0.005 0.002 0.005 0.008


.5 Table 5

mean_returns =



0.15
0.08
0.06
0.13
0.06
0.14
0.07
0.03
0.12
0.05



cov_mat =



0.05 0.02 0.01 0.00 0.01 0.02 0.01 0.00 0.01 0.01
0.02 0.08 0.03 0.01 0.02 0.01 0.02 0.01 0.01 0.01
0.01 0.03 0.06 0.02 0.01 0.00 0.01 0.01 0.01 0.01
0.00 0.01 0.02 0.04 0.01 0.01 0.01 0.00 0.00 0.00
0.01 0.02 0.01 0.01 0.07 0.01 0.02 0.01 0.01 0.01
0.02 0.01 0.00 0.01 0.01 0.05 0.03 0.02 0.01 0.01
0.01 0.02 0.01 0.01 0.02 0.03 0.09 0.02 0.01 0.01
0.00 0.01 0.01 0.00 0.01 0.02 0.02 0.06 0.02 0.01
0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.02 0.05 0.02
0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.04


.6 R Code for Chapter 3
library(MASS)
tijden <- c(50,100,500,1000)
tijdintervals <- length(tijden)

truebiasbvec <- rep(NA,tijdintervals)
bootsrapbiasvec <- rep(NA,tijdintervals)
efficientbootstrapvec <- rep(NA,tijdintervals)
verschivariance <- rep(NA,tijdintervals)
verschilvariance_efficient <- rep(NA,tijdintervals)

for (p in 1:tijdintervals){
A <- 100
rb <- rep(NA,A)
bb <- rep(NA,A)
bd1d3 <- rep(NA,A)
for (j in 1:A) {

mean_returns <- c(0.15, 0.08, 0.06, 0.13, 0.06, 0.14, 0.07, 0.03, 0.12, 0.05)

# Covariance matrix
cov_mat <- matrix(c(0.05, 0.02, 0.01, 0.00, 0.01, 0.02, 0.01, 0.00, 0.01, 0.01,

0.02, 0.08, 0.03, 0.01, 0.02, 0.01, 0.02, 0.01, 0.01, 0.01,
0.01, 0.03, 0.06, 0.02, 0.01, 0.00, 0.01, 0.01, 0.01, 0.01,
0.00, 0.01, 0.02, 0.04, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00,
0.01, 0.02, 0.01, 0.01, 0.07, 0.01, 0.02, 0.01, 0.01, 0.01,
0.02, 0.01, 0.00, 0.01, 0.01, 0.05, 0.03, 0.02, 0.01, 0.01,
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0.01, 0.02, 0.01, 0.01, 0.02, 0.03, 0.09, 0.02, 0.01, 0.01,
0.00, 0.01, 0.01, 0.00, 0.01, 0.02, 0.02, 0.06, 0.02, 0.01,
0.01, 0.01, 0.01, 0.00, 0.01, 0.01, 0.01, 0.02, 0.05, 0.02,
0.01, 0.01, 0.01, 0.00, 0.01 , 0.01 , 0.01, 0.01, 0.02, 0.04),

nrow = 10, ncol = 10, byrow = TRUE)

t <- tijden[p]
stocks <- length(mean_returns)
returns <- mvrnorm(t, mean_returns, cov_mat)

rf <- 0
means_sample <- colMeans(returns)
covariance_matrix <- cov(returns)
theta_sample <- solve(covariance_matrix) %*% means_sample
optimal_theta_sample <- theta_sample/sum(theta_sample)

# The number of bootstrap replicates
B <- 1000

D <- rep(NA, B)
D1D3<- rep(NA,B)
for (i in 1:B) {

# Generate a bootstrap sample
boot_sample <- returns[sample(nrow(returns), replace = TRUE), ]
meansboot_sample <- colMeans(boot_sample)
covboot_sample <- cov(boot_sample)
# Determine optimal Theta
theta <- solve(covboot_sample) %*% meansboot_sample
optimal_theta <- theta/sum(theta)

sharpe_bootsample_optimaltheta <- (meansboot_sample %*% optimal_theta) /
(sqrt(t(optimal_theta) %*%
covboot_sample %*% optimal_theta))
sharpe_sample_optimaltheta <- (means_sample %*% optimal_theta) /
(sqrt(t(optimal_theta) %*% covariance_matrix %*% optimal_theta))

d2 <- (meansboot_sample %*% optimal_theta_sample) /
(sqrt(t(optimal_theta_sample) %*% covboot_sample %*% optimal_theta_sample))
d3 <- (means_sample %*% optimal_theta_sample) /
(sqrt(t(optimal_theta_sample) %*% covariance_matrix %*% optimal_theta_sample))
D_i <- sharpe_bootsample_optimaltheta - sharpe_sample_optimaltheta
D[i] <- D_i
D_1_3 <- sharpe_bootsample_optimaltheta - d2 + d3 - sharpe_sample_optimaltheta
D1D3[i] <- D_1_3

}

bias_bootstrap <- mean(D)
bias_efficientbootstrap <- mean(D1D3)
os <- (mean_returns %*% optimal_theta_sample) /
(sqrt(t(optimal_theta_sample) %*% cov_mat %*% optimal_theta_sample))
ss <- (means_sample %*% optimal_theta_sample) /
(sqrt(t(optimal_theta_sample) %*% covariance_matrix %*% optimal_theta_sample))
realbias <- ss-os
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rb[j] <- realbias
bb[j] <- bias_bootstrap
bd1d3[j] <- bias_efficientbootstrap

}
truebiasbvec[p] <- mean(rb)
bootsrapbiasvec[p] <- mean(bb)
efficientbootstrapvec[p] <- mean(bd1d3)
verschivariance[p] <- var(bb-rb)
verschilvariance_efficient[p] <- var(bd1d3-rb)

}

truebiasbvec
bootsrapbiasvec
efficientbootstrapvec
verschivariance
verschilvariance_efficient

.7 R Code for Chapter 4
library(MASS)

library(quantmod)
symbols <- c("AXP", "AMGN", "AAPL", "BA", "CAT", "CSCO", "CVX", "GS",
"HD", "HON", "IBM", "INTC", "JNJ", "KO", "JPM", "MCD", "MMM", "MRK",
"MSFT", "NKE", "PG","TRV", "UNH", "CRM", "VZ", "V", "WBA", "WMT",
"DIS","DOW")
getSymbols(symbols, src = ’yahoo’)

AXP <- periodReturn(AXP, period = ’monthly’, subset = ’2018-07::’)
AMGN <- periodReturn(AMGN, period = ’monthly’, subset = ’2018-07::’)
AAPL <- periodReturn(AAPL, period = ’monthly’, subset = ’2018-07::’)
BA <- periodReturn(BA, period = ’monthly’, subset = ’2018-07::’)
CAT <- periodReturn(CAT, period = ’monthly’, subset = ’2018-07::’)
CSCO <- periodReturn(CSCO, period = ’monthly’, subset = ’2018-07::’)
CVX <- periodReturn(CVX, period = ’monthly’, subset = ’2018-07::’)
GS <- periodReturn(GS, period = ’monthly’, subset = ’2018-07::’)
HD <- periodReturn(HD, period = ’monthly’, subset = ’2018-07::’)
HON <- periodReturn(HON, period = ’monthly’, subset = ’2018-07::’)
IBM <- periodReturn(IBM, period = ’monthly’, subset = ’2018-07::’)
INTC <- periodReturn(INTC, period = ’monthly’, subset = ’2018-07::’)
JNJ <- periodReturn(JNJ, period = ’monthly’, subset = ’2018-07::’)
KO <- periodReturn(KO, period = ’monthly’, subset = ’2018-07::’)
JPM <- periodReturn(JPM, period = ’monthly’, subset = ’2018-07::’)
MCD <- periodReturn(MCD, period = ’monthly’, subset = ’2018-07::’)
MMM <- periodReturn(MMM, period = ’monthly’, subset = ’2018-07::’)
MRK <- periodReturn(MRK, period = ’monthly’, subset = ’2018-07::’)
MSFT <- periodReturn(MSFT, period = ’monthly’, subset = ’2018-07::’)
NKE <- periodReturn(NKE, period = ’monthly’, subset = ’2018-07::’)
PG <- periodReturn(PG, period = ’monthly’, subset = ’2018-07::’)
TRV <- periodReturn(TRV, period = ’monthly’, subset = ’2018-07::’)
UNH <- periodReturn(UNH, period = ’monthly’, subset = ’2018-07::’)
CRM <- periodReturn(CRM, period = ’monthly’, subset = ’2018-07::’)
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VZ <- periodReturn(VZ, period = ’monthly’, subset = ’2018-07::’)
V <- periodReturn(V, period = ’monthly’, subset = ’2018-07::’)
WBA <- periodReturn(WBA, period = ’monthly’, subset = ’2018-07::’)
WMT <- periodReturn(WMT, period = ’monthly’, subset = ’2018-07::’)
DIS <- periodReturn(DIS, period = ’monthly’, subset = ’2018-07::’)
DOW <- periodReturn(GS, period = ’monthly’, subset = ’2018-07::’)

returns <- cbind(AXP,AMGN,AAPL,BA,CAT,CSCO,CVX,GS,HD,HON,
IBM,INTC,JNJ,KO,JPM,MCD,MMM,MRK,MSFT,NKE,
PG,TRV,UNH,CRM,VZ,V,WBA,WMT,DIS,DOW)

colnames(returns) <- symbols

rf <- 0

sharpe_ratio_calculator <- function(stockreturns) {

means <- colMeans(stockreturns)
cov_matrix <- cov(stockreturns)
stocks <- ncol(stockreturns)
t <- nrow(stockreturns)
theta <- solve(cov_matrix) %*% means
weights <- theta / abs(sum(theta))
total <- means %*% weights
portfolio_sd <- sqrt(t(weights) %*% cov_matrix %*% weights)
sharpe_ratio <- (total - mean(rf)) / portfolio_sd

result <- list(sharpe_ratio = sharpe_ratio , weights = weights)
return(result)

}

optimaln <- function(n,stockreturns){
num_stocks <- ncol(stockreturns)
num_combinations <- choose(num_stocks, n)
return_matrices <- rep(NA,num_combinations)
combinations <- combn(num_stocks, n)
for (i in 1:num_combinations) {

subset_returns <- stockreturns[, combinations[, i]]
return_matrices[[i]] <- sharpe_ratio_calculator(subset_returns)$sharpe_ratio

}

max_position <- which.max(return_matrices)
hoogste <- max(return_matrices)
combi <- combinations[,max_position]
result <- list(hoogste = hoogste , combi = combi)
return(result)

}

highestweight <- function(stockreturns){
bestsharpe <- rep(NA,ncol(stockreturns))
bestsharpecombi <- list()
for (p in 1:ncol(stockreturns)){

bestsharpe[p] <- optimaln(p,stockreturns)$hoogste
bestsharpecombi[[p]] <- optimaln(p,stockreturns)$combi

}
result <- list(bestsharpe = bestsharpe , bestsharpecombi = bestsharpecombi)
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return(result)
}

outofsample_sharpe_ratio <- function(returns){
means_sample <- colMeans(returns)
covariance_matrix <- cov(returns)
theta_sample <- solve(covariance_matrix) %*% means_sample
optimal_theta_sample <- theta_sample/abs(sum(theta_sample))
rfmean <- mean(rf)
insample_sharpe_ratio <- ((means_sample %*% optimal_theta_sample)-rfmean) /
(sqrt(t(optimal_theta_sample) %*% covariance_matrix %*% optimal_theta_sample))
# Set the number of bootstrap replicates
B <- 10000

D <- rep(NA, B)
for (i in 1:B) {

# Generate a bootstrap sample
boot_sample <- returns[sample(nrow(returns), replace = TRUE), ]
meansboot_sample <- colMeans(boot_sample)
covarianceboot_sample <- cov(boot_sample)
# Determine optimal Theta
theta <- solve(covarianceboot_sample) %*% meansboot_sample
optimal_theta <- theta/abs(sum(theta))

D1 <- ((meansboot_sample %*% optimal_theta)-rfmean) /
(sqrt(t(optimal_theta) %*% covarianceboot_sample %*% optimal_theta))
D4 <- ((means_sample %*% optimal_theta)-rfmean) /
(sqrt(t(optimal_theta) %*% covariance_matrix %*% optimal_theta))

D2 <- ((meansboot_sample %*% optimal_theta_sample)-rfmean) /
(sqrt(t(optimal_theta_sample) %*% covarianceboot_sample %*% optimal_theta_sample))
D3 <- ((means_sample %*% optimal_theta_sample)-rfmean) /
(sqrt(t(optimal_theta_sample) %*% covariance_matrix %*% optimal_theta_sample))
D_i <- D1 - D2 + D3 - D4

D[i] <- D_i

}
return(insample_sharpe_ratio- mean(D))

}

best_out_of_sample_sharpe_ratio<-function(stockreturns){
os_sharpe_values <- rep(NA,ncol(stockreturns))
for (i in 1:ncol(stockreturns)){

stockmatrix <- c()
stockmatrix <- cbind(stockreturns[,highestweight(stockreturns)$bestsharpecombi[[i]]])
os_sharpe_values[i] <- outofsample_sharpe_ratio(stockmatrix)

}

return(os_sharpe_values)
}

returns1 <- returns[,1:10]
returns2<- returns[,11:20]
returns3<- returns[,21:30]

highestweight(returns1)$bestsharpecombi
highestweight(returns1)$bestsharpe
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best_out_of_sample_sharpe_ratio(returns1)

highestweight(returns2)$bestsharpecombi
highestweight(returns2)$bestsharpe
best_out_of_sample_sharpe_ratio(returns2)

highestweight(returns3)$bestsharpecombi
highestweight(returns3)$bestsharpe
best_out_of_sample_sharpe_ratio(returns3)
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