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 A B S T R A C T

Rising energy expenses, the shift towards renewable sources, and grid congestion considerably affect the oper-
ations of container terminals. To tackle these challenges, it is necessary to implement energy-aware integrated 
operational planning which considers related uncertainties. This work proposes a two-stage stochastic mixed 
integer programming model to optimize container terminal operations planning and demand-responsive energy 
management. To this end, energy consumption is shifted whenever operationally possible and economically 
beneficial. We solve the proposed model by developing a dedicated progressive hedging algorithm. Operations 
considered in this model include vessel scheduling at berths, temperature control of refrigerated containers, 
and allocation of handling capacity of quay cranes, yard cranes, and automated guided vehicles to serve each 
vessel. Various scenarios for vessel arrival times and electricity prices are explored representing the uncertainty 
of energy demand and supply, respectively, based on a case study of the Altenwerder container terminal in 
Hamburg. Our results suggest potential cost savings of 5.9 per cent on average with a single energy price 
based on a long-term contract and 13.2 per cent when applying varying real-time electricity prices based on 
wholesale market rates. These findings underscore the substantial potential of demand response strategies for 
(electrified) container terminal operations.
1. Introduction

Electricity prices have been volatile in recent years. Between 2019 
and 2022, the average electricity price in Europe increased from 38 
€/MWh to 235 €/MWh, representing an increase of 518% (ENTSO-
E, 2025). This price surge has resulted in higher operational costs for 
container terminals, particularly those with a high level of electrifica-
tion, which have been significantly impacted by the rising electricity 
prices. Challenges related to the transition to renewable energy sources 
and limited grid capacity in many port regions further aggravate this 
situation.

Container terminal operators can reduce their energy costs (and 
ensure energy supply) by implementing a demand response (DR) pro-
gram. DR program serves as a rationing system to change the power 
consumption of consumers to better match the demand for power with 
the supply. Rationing is usually accomplished by price incentives to 
shift consumption from higher-price periods to lower-price periods. The 
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energy consumption is adjusted through real-time energy prices in DR 
system, which is more flexible than single energy prices in long-term 
contracts signed by container terminals to hedge against future price 
risks and uncertainty. By implementing demand response programs to 
strategically manage their energy consumption, container terminals can 
effectively lower energy costs.

The energy demand at a port primarily depends on logistics pro-
cesses at the port system. Logistics processes within a port are uncer-
tain, leading to complex operations planning with uncertain energy 
demand. Energy consumption fluctuates significantly throughout the 
day, depending on the scheduling (Bakar et al., 2021). Terminal op-
erators currently possess limited knowledge about energy consumption 
patterns. Unlike other industries, container terminals lack continuous 
and recurring production cycles (Grundmeier et al., 2014). Instead, 
daily processes in container terminals are highly dynamic depending on 
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the number of containers and ship arrival patterns (Grundmeier et al., 
2014).

Energy management and operations planning considering uncer-
tainty is the research issue that has a great potential for exploration. 
Several studies concentrate on DR with a single load, while literature 
focusing on energy-aware integrated planning problems involving mul-
tiple energy loads is scarce. Moreover, there is limited work considering 
the stochastic nature of both energy demand and supply, highlighting 
the research gap related to energy-aware operational problems with 
multiple loads considering uncertainty in both supply and demand. 
To the best of our knowledge, only one work (Iris and Lam, 2021) 
identified in the literature utilized a stochastic modeling approach that 
considered multiple scenarios of solar energy production to account 
for stochastic electricity supply. However, uncertainty in neither port 
operations nor energy demand has been considered. In our work, 
we consider uncertain ship arrival time (and resulting uncertainty in 
energy demand patterns) and uncertain energy prices in particular en-
ergy pricing schemes. Moreover, we develop a scenario decomposition 
algorithm to solve the model efficiently.

This work investigates energy management and energy-aware oper-
ations planning in container terminals, in which energy consumption 
is adjusted by a DR system. The goal of the study is to increase the 
efficiency of allocating energy resources and arranging operations in 
container terminals. The main objectives are to minimize schedule and 
energy-related costs, to demonstrate the impact of stochastic modeling 
when taking the uncertainty of energy demand and supply and to 
show the impact of demand response. We optimize the operations 
planning problem within a container terminal, incorporating the asso-
ciated energy costs into the objective function. The energy costs of the 
optimization process include two aspects: the cost of purchasing elec-
tricity from the wholesale market and the cost of imbalances resulting 
from inaccurate consumption predictions. To address the uncertainty 
of electricity demand and supply, we consider multiple scenarios of 
ship arrival times and electricity prices. We then conduct computational 
experiments based on the data from the HHLA Container Terminal 
Altenwerder (CTA) in Hamburg, Germany. We assess the impact of the 
uncertainty by comparing the solutions of the stochastic approach to 
reactive approaches. The impact of DR is presented by comparing the 
cost savings when applying no energy price, single energy prices and 
varying prices per hour.

This paper contributes to the field in the following ways:

1. It introduces uncertainty on both energy supply and demand 
sides when studying operations and energy flows in container 
terminals. The uncertainty of energy supply and demand is 
represented by fluctuating energy prices and ship arrival times, 
respectively.

2. It considers multiple energy loads and integrates planning of Au-
tomated Guided Vehicles (AGVs), quay and yard cranes, reefer 
containers, and ship electricity consumption to derive total en-
ergy demand.

3. It introduces a new stochastic programming approach, using 
scenario decomposition with progressive hedging, and demon-
strates it outperforms the reactive approaches through compu-
tational experiments based on a terminal in Port of Hamburg, 
Germany.

4. It quantifies the positive impact of demand response planning in 
real-time energy pricing schemes through the case study at the 
terminal in the Port of Hamburg, Germany.

The remainder of this paper is organized as follows. We provide 
a literature review in Section 2 and define the problem in Section 3. 
Section 4 establishes the mathematical model for the problem followed 
by the solution procedure discussed in Section 5. The numerical results 
and their implications are presented in Section 6. Based on these 
results, managerial insights are provided in Section 7. Finally, Section 8 
summarizes the conclusions and lessons learned from this study.
2 
2. Literature review

Only a small number of studies have dealt with the underexplored 
area of energy consumption within the container terminals. In a re-
view paper by Iris and Lam (2019b), an overview was provided on 
operational strategies, technologies, and energy management systems 
aiming to increase energy efficiency in ports. The authors emphasized 
the need for future research in operational strategies that incorporated 
energy-aware planning of operations, particularly in integrated plan-
ning problems. Additionally, the importance of an energy management 
system for balancing energy demand with supply was highlighted. 
However, this task is challenging due to the fluctuating energy supply 
from renewable sources, time-variant energy prices, and the difficulty 
in predicting energy demand resulting from the high operational com-
plexity. Similarly, a review by Bakar et al. (2021) emphasized the 
growing significance of energy management in future ports. This paper 
conducted a review of energy-aware planning problems within con-
tainer terminals. The focus of the review is the on-demand response 
for integrated planning problems involving multiple energy loads.

Demand response relates to shifting the energy demand to low-
demand periods by solving integrated operations planning problems 
involving multiple energy demand generators. Several studies con-
centrate on demand response with a single load. In a study by van 
Duin et al. (2018), the demand response of reefers was considered 
to lower the peak load. Geerlings et al. (2018) and Kermani et al. 
(2018) investigated strategies to reduce the peak loads of quay cranes 
(QCs). These two loads account for the majority of peak demand 
in container terminals. Another intriguing application of demand re-
sponse is the use of vehicle-to-grid (V2G) charging for automated 
guided vehicles (AGVs) within the terminal. Schmidt et al. (2015) 
explored various business cases for V2G charging with AGVs, and Har-
nischmacher et al. (2023) further investigated the use of AGVs for fre-
quency containment reserves. Tang et al. (2025) studied smart charging 
with demand response and energy peak shaving for reefer containers 
with Internet-of-Things. As the trend towards electrification contin-
ues within terminals, ships become a significant electric load through 
onshore power supply. Yu et al. (2022) performed a multi-objective 
optimization considering energy-related costs and emissions for berth 
allocation and quay crane assignment (BACAP) problems. Similarly, He 
(2016) quantified the impact of energy-aware planning on operational 
costs by comparing optimization results of an energy-saving strategy 
(with a constant electricity price) with a time-saving strategy (with 
no electricity-related cost). Additionally, the effect of energy-aware 
planning on yard cranes (He et al., 2015a) and automated guided 
vehicle (He et al., 2015b) scheduling was also investigated. Recent 
developments in energy system optimization and intelligent energy 
management, including battery thermal management systems (Oye-
wola et al., 2024) and real-time grid security (Xiao et al., 2024), 
underscore the growing importance of integrated control strategies 
across domains.

Literature specifically focusing on energy-aware integrated planning 
problems involving multiple energy loads is scarce. Table  1 provides 
an overview of the most relevant literature, categorized based on 
the pricing schemes considered for price-based demand response pro-
grams. Table  2 presents all the sources of energy demand and supply 
considered in these studies.

Kanellos (2017, 2019) and other scholars (Kanellos et al., 2019) con-
ducted multiple studies on demand response in container terminals, de-
veloping a multi-agent system where different loads communicate with 
each other. However, these studies do not model detailed operations 
planning for scheduling activities at the container terminal. Mao et al. 
(2022) focused on loads within an integrated energy system encompass-
ing electricity, heat, and cooling demands, employing mixed-integer 
programming optimization. Pu et al. (2020) also addressed an inte-
grated energy system but estimated the total amount of fixed, reducible, 
and shiftable loads. In the study of Iris and Lam (2021), an integrated 
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Table 1
Area of focus and pricing scheme of literature closely related to energy-aware integrated planning problems.
 Reference Focus Uncertainty Pricing scheme
 D S NP SP TOU RTP 
 Gennitsaris and Kanellos (2019) Demand response √  
 Iris and Lam (2021) Port microgrid √ √ √ √  
 Sarantakos et al. (2024) Energy system √ √  
 Kanellos (2019) Demand response √  
 Kanellos (2017) Demand response √  
 Kanellos et al. (2019) Demand response √  
 Mao et al. (2022) Integrated energy system √ √  
 Pu et al. (2020) Integrated energy system √ √  
 Xiong et al. (2024) Port microgrid √  
 Zhao et al. (2024) Integrated energy system & Demand response √ √ √  
 This paper Demand response √ √ √ √ √  
Uncertainty: D (Electricity demand), S (Electricity supply).
Pricing scheme: NP (No pricing), SP (Single pricing), TOU (Time-of-use pricing), RTP (Real-time pricing).
Table 2
Energy demand and supply in the literature closely related to energy-aware integrated planning problems.
 Reference Demand Supply

 SH QC YC AGV RE ESS Other EG WT PV ESS Other 
 Gennitsaris and Kanellos (2019) √ √ √ √  
 Iris and Lam (2021) √ √ √ √ √ √ √ √  
 Sarantakos et al. (2024) √ √ √ √ √ √ √ √ √  
 Kanellos (2019) √ √ √ √  
 Kanellos (2017) √ √ √ √  
 Kanellos et al. (2019) √ √ √ √   
 Mao et al. (2022) √ √ √ √ √ √ √ √ √  
 Pu et al. (2020) √ √ √ √  
 Xiong et al. (2024) √ √ √ √ √ √ √ √ √ √  
 Zhao et al. (2024) √ √ √ √ √ √ √ √  
 This paper √ √ √ √ √ √  
Demand: SH (Ship), QC (Quay crane), YC (Yard crane), AGV (Automated guided vehicle), RE (Reefer), ESS (Energy storage system).
Supply: EG (Electricity grid), WT (Wind turbine), PV (Photovoltaic panel).
operations planning and energy management problem was solved using 
stochastic mixed-integer optimization. Our study significantly differs 
from these studies as we model and obtain detailed demand response 
through operations planning for AGVs, QCs, YCs, reefer containers and 
ships with different pricing schemes and uncertainty in both energy 
demand and supply sides, as presented in Tables  1 and 2.

When proposing energy-aware operations planning, authors often 
stress the importance of considering the stochastic nature of both 
energy demand and supply. However, only a very limited number 
of studies have investigated this topic, with the study of Iris and 
Lam (2021) as an example. It considered multiple scenarios of solar 
energy production to account for stochastic electricity supply, with-
out the consideration of uncertainty in the energy demand or port 
operations. Sarantakos et al. (2024) presented a joint logistics-electric 
framework for optimal operation and power management of electrified 
ports, considering multiple uncertainties in the arrival time of vessels, 
network demand, and renewable power generation. Zhao et al. (2024) 
constructed a coordinative optimization problem based on the logistics-
energy coupling characteristics with the aim of minimizing the port 
operation cost, the demand response capacity of port flexible loads and 
the operation constraints of an integrated energy system. Xiong et al. 
(2024) proposed a joint scheduling method that considers the impact 
of tidal patterns on the period and intensity of port operations. The 
method takes advantage of the strong correlations between renewable 
energy (solar, wind and tidal) and multi-class load to support the port 
microgrid operator in determining the most cost-effective scheduling 
of energy supply and flexible loads during port activities. The research 
gap lies in energy-aware operations (combined with energy manage-
ment) with multiple loads considering uncertainty in both supply and 
demand. Our study incorporates uncertain ship arrival times and uncer-
tain energy prices to represent the uncertainty in the energy demand 
side and supply side, respectively.
3 
3. Problem description

This study aims to assess the potential of demand response by 
modeling operations planning and energy flows between different com-
ponents in the container terminal. Different pricing schemes, namely no 
pricing, single pricing, and real-time pricing, are considered to quantify 
the impact that demand response has on the operations in the terminal.

To model the problem, we employ a two-stage stochastic program-
ming approach that incorporates uncertainties. Stochastic problems are 
those optimization problems where some of the parameters of the 
model are uncertain. Uncertainty can be defined by random variables 
in the form of probability distributions or densities. A stage of a given 
planning horizon is a set of consecutive time periods where the realiza-
tion of one or more stochastic (i.e., uncertain) events take place. At the 
end of a stage, decisions are taken, considering the specific outcomes 
of the stochastic events of this and previous stages. In the two-stage 
stochastic programming, the first stage, known as the ‘‘here-and-now’’ 
decision, takes place before the values of the uncertain parameters are 
known. The second stage, the ‘‘wait-and-see’’ decision, is the response 
to the realization of these uncertain parameters.

Formulation (1) gives the general mathematical formulation of a 
two-stage stochastic optimization with recourse. In this equation, 𝜉 is 
the realization of the uncertain parameters. E𝑃  is the expected value of 
all realizations of 𝜉. 𝑓{⋅} is the objective function of first stage (𝐹 ) or 
second stage (𝑆). 𝑨,𝑻 ,𝑾  are the coefficient matrices. 𝒃,𝒉𝜉 are right-
hand-side vectors. 𝒙 are the first stage decision variables and 𝒚𝜉 are 
the second stage decision variables. In linear formulation, 𝑓𝐹 (𝒙) can 
be written as 𝒄⊤𝒙, and 𝑞(𝒚𝜉 , 𝜉) can be written as 

∑

𝜉 𝑝𝜉 (𝒒⊤𝜉 𝒚𝜉 ) (𝑝𝜉 is the 
probability for each scenario). The linear split-variable formulation of 
Formulation (1) is shown by Formulation (28).

min 𝑓𝐹 (𝒙) + E [𝑓𝑆 (𝒙, 𝒚 , 𝜉)] (1a)

𝒙 𝑃 𝜉
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Fig. 1. Overview of operations planning problems, energy flows and information flows in a container terminal.
s.t. 𝑨𝒙 = 𝒃, (1b)

where 𝑓𝑆 (𝒙, 𝒚𝜉 , 𝜉) = min
𝒚𝜉

𝑞(𝒚𝜉 , 𝜉), (1c)

s.t. 𝑻 𝜉𝒙 +𝑾 𝜉𝒚𝜉 = 𝒉𝜉 (1d)

In the problem studied, we consider the energy consumption of 
vessels, quay cranes (QCs), yard cranes (YCs), reefers, and automated 
guided vehicles (AGVs) on the demand side. On the supply side, the 
energy is purchased from the electricity grid. Various operational re-
search problems are included to accurately describe the operations 
within the terminal. We consider different operations including ship 
scheduling at berths, QC assignment, AGV assignment, YC assignment, 
AGV charging, and reefer temperature control. Fig.  1 shows the energy 
and information flow between all the loads and the electricity grid. 
The information flows are controlled by the terminal operating sys-
tem (TOS), while the electricity flows are coordinated by the energy 
management system (EMS). The terminal operating and energy man-
agement systems exchange information to match the operational and 
electrical requirements.

Five electric loads are considered in the problem, namely ships, 
QCs, YCs, AGVs and reefer containers in the yard. Ships consume 
energy through onshore power supply while berthed, with a constant 
consumption rate per hour. The energy consumption of the QCs and 
YCs depends on the handling rate (ℎ𝑚) of each equipment 𝑚. The 
energy demand of AGVs materializes through the charging of the AGV 
batteries. All AGVs are modeled as one large battery that is depleted 
based on the handling rate of the AGVs.

The reefer containers consume the energy required for cooling. In 
the yard, all reefer containers are modeled as one large cold storage 
tank, with heat transfer to the ambient temperature. Container temper-
ature is allowed to fluctuate between specific bounds. The number of 
reefers present in the yard is assumed to be constant.

In the model, 𝑁 vessels arrive at the terminal over 𝐻 hours. For 
every vessel, a start time 𝑆 and a finish time 𝐹  are decided, which 
results in the berthing duration. Each vessel has a specific container 
load of 𝑑 that needs to be handled during berthing. As it is customary 
in berth assignment problems, a ship is allowed to berth if there is 
available space on the quay. Once berthed, a number of QCs, YCs 
and AGVs are assigned to the ship every hour to load and unload 
4 
the containers. The handling rate 𝑝 set is determined based on the 
minimum and maximum handling capacity of QCs, YCs and AGVs.

Demand response (DR) is defined as a tariff or program developed to 
motivate the change in energy consumption of end-users, in response 
to changes in the price of electricity over time, or to give incentive 
payments designed to induce lower electricity use at times of high 
market prices or when grid reliability jeopardized. The DR in the 
studied problem is classified as the economic-based DR, in which the 
system operator designs different tariff structures like real-time pricing 
(RTP), critical peak pricing (CPP), time-of-use (TOU), peak load pricing 
to motivate different types of users like residential, commercial, and 
industrial. The energy price is an important factor that influences how 
consumers allocate energy resources. Users can alter their energy con-
sumption patterns as per the tariff structure and comfort requirements. 
The impact of different pricing schemes (no pricing, single pricing and 
real-time pricing) is investigated in the study (Palensky and Dietrich, 
2011; Patnam and Pindoriya, 2021).

The problem contains sources of uncertainty, both in the supply 
and demand of electricity. The uncertainty in supply is presented by 
electricity prices, while the uncertainty in demand is presented by ship 
arrival times. Notably, the prices of electricity and the arrival times of 
ships are the most significant uncertainties when optimizing a container 
terminal’s operations planning. The uncertainty of the arrival times and 
electricity prices are considered to be independent of each other.

We formulate the problem as a two-stage optimization problem with 
uncertainties taken into account. The first stage decisions are taken one 
day ahead of when the operations are performed. A baseline schedule 
is created where the expected start time 𝑆𝑑𝑎

𝑖  for every vessel and the 
expected energy consumption 𝑃 𝑑𝑎

𝑡  for every hour are decided upon in 
the first stage. The decisions in the second stage are made in real time 
just before performing the operations. The baseline decision made in 
the first stage can be changed by deciding upon berthing start time in 
scenario 𝑤 (𝑆𝑖,𝑤) and power used in scenario 𝑤 (𝑃𝑡,𝑤). The second stage 
objective is based on the expected value of all the different realizations. 
Different weights 𝜋𝜉 are assigned to every realization based on the 
likelihood of occurrence.

A time step of one hour is considered in this model. Electricity 
prices from the market one day ahead of the actual operations are 
obtained every hour. Additionally, the energy demand of different loads 
is averaged over an hour assuming a constant consumption within one 
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hour. For every hour, the amount of energy consumed is equal to the 
amount of energy supplied by the grid.

The real-time pricing model is present today (in e.g., Germany, 
or the Netherlands) under the name of dynamic pricing. If an energy 
customer opts for a dynamic pricing (what we call real-pricing in our 
paper) they will be exposed to the hourly wholesale market price. In 
this case, the customer is exposed to the fluctuations of the electricity 
price at the national level and will be required to remunerate their 
consumed energy under such fluctuating price. In contrast, what we 
call single-pricing scheme is a fixed-price contract for a certain duration 
of time. When the customer chooses a fixed-price contract they have a 
guaranteed price for every unit of energy they consume.

To explore the impact of DR, we compare the ship berthing sched-
ule, energy consumption patterns and other related variables under the 
real-time pricing (time-variant pricing during the planning horizon) 
scheme with those under no-pricing and single-pricing schemes. No 
pricing scheme excludes cost-related factors when modeling, and the 
single-pricing scheme applies a single energy price for the entire day. 
The no pricing and single pricing schemes therefore do not include 
uncertain considerations. On the contrary, the real-time pricing scheme 
employs different energy prices for each time unit (usually hour) and 
considers uncertainty presented by energy prices in various scenarios.

The objective is to minimize the ship’s lateness costs and energy-
related costs. Deviations from the baseline schedule are minimized by 
considering rescheduling costs and power imbalance costs.

4. Mathematical model

4.1. Assumptions

The following assumptions are made in this problem:

(1) Ships only use constant onshore power when they are berthed.
(2) The berthing location of a ship does not influence energy con-

sumption.
(3) The hoisting and lowering operations of QCs consume the same 

amount of energy for each container, which is the same case for 
YCs.

(4) The energy consumption of QCs, YCs and AGVs only depends on 
the handling rate.

(5) The number of reefers in the yard is constant throughout the 
day.

(6) The reefer cooling requirements are the same for every reefer 
container.

(7) All the reefer containers in the storage yard can be modeled as 
a large reefer container.

(8) The reefer energy consumption is based on the constant ambient 
temperature per time period.

(9) The AGV fleet can be modeled with one large battery.
(10) The energy consumption of the container terminal does not 

influence the electricity price.

4.2. Model formulation

In this section, a mixed-integer linear programming model is for-
mulated for the problem described above. Tables  3, 4 and 5 present 
an overview of all sets, parameters and decision variables used in the 
model.

The objective function consists of scheduling and energy-related 
costs. The first two components of the objective function in Eq.  (2) 
minimize the cost of lateness for all ships (∑𝑖∈𝑉 𝑐𝑙𝑎𝑡𝑒𝑖 𝐿𝑖,𝑤) and the cost 
associated with deviations from the baseline schedule (∑𝑖∈𝑉 𝑐𝑟𝑒𝑠𝑐ℎ𝑐𝑙𝑎𝑡𝑒𝑖
(𝑆𝑙𝑎𝑡𝑒

𝑖,𝑤 +𝑆𝑒𝑎𝑟𝑙𝑦
𝑖,𝑤 )). The subsequent two elements aim to minimize the cost 

connected to energy purchase on the day-ahead market (∑𝑡∈𝑇 𝑐𝑑𝑎𝑡,𝑤𝑃
𝑑𝑎
𝑡 )

and the cost associated with power imbalances in both shortage and 
5 
Table 3
Sets.
 Sets Description  
 𝑉 Set of vessels to be served, 𝑖 ∈ 1, 2,… , 𝑁 , where 𝑁 is 

the number of vessels to be served.
 

 𝑇 Set of time periods, 𝑡 ∈ 0, 1,… , 𝑡𝑚𝑎𝑥 − 1, where 𝑡𝑚𝑎𝑥 is 
the number of hours considered.

 

 𝑃𝑖 Set of possible handling rate pattern 𝑝 that can be 
assigned to a ship 𝑖 ∈ 𝑉 .

 

 𝑀 Types of machinery present in the terminal, 
𝑚 ∈ {𝑄𝐶, 𝑌 𝐶,𝐴𝐺𝑉 }.

 

 𝑆 Set of scenarios, 𝑤 ∈ 𝑆.  

Table 4
Parameters.
 Parameters Description

 𝑘𝑚 The number of machinery 𝑚 ∈ 𝑀 available.  
 ℎ𝑚 Handling rate of machinery 𝑚 in containers per hour.  
 𝑑𝑖 The total demand of containers to be handled (loaded 

+ unloaded) for ship 𝑖 ∈ 𝑉 .
 

 𝑢𝑝,𝑚 The number of machinery of type 𝑚 used in handling 
rate pattern 𝑝.

 

 𝑙𝑠ℎ𝑖𝑝𝑖 The quay length that ship 𝑖 takes up.  
 𝑙𝑡𝑜𝑡𝑎𝑙 The total length of the quay.  
 𝑒𝑎𝑡𝑖 Expected arrival time of vessel 𝑖 ∈ 𝑉 .  
 𝑒𝑓𝑡𝑖 Expected berthing finishing time of vessel 𝑖 ∈ 𝑉 .  
 𝑎𝑖,𝑤 Actual arrival time of vessel 𝑖 ∈ 𝑉  in scenario 𝑤 ∈ 𝑆.  
 𝑒𝑠ℎ𝑖𝑝 Energy consumption of a ship for onshore power for 

one hour.
 

 𝑒𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑟𝑦𝑚 Energy consumption of machinery 𝑚 for operating for 
one hour.

 

 𝑒𝑐ℎ𝑎𝑟𝑔𝑒 Energy consumed by one charger when charging an 
AGV every time unit.

 

 𝑒𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑎𝑥 Maximum energy consumed by all chargers when 
charging AGVs every time unit.

 

 𝑏𝑚𝑖𝑛 Minimum battery level allowed for an AGV.  
 𝑏𝑚𝑎𝑥 Maximum battery level allowed for an AGV.  
 𝜂𝑐ℎ𝑎𝑟𝑔𝑒 Charging efficiency.  
 𝑒𝑟𝑒𝑒𝑓𝑒𝑟,𝑚𝑎𝑥 Maximum energy consumption of all reefer 

connections every time unit.
 

 𝑡𝑐𝑚𝑖𝑛 Minimum temperature allowed for reefer containers.  
 𝑡𝑐𝑚𝑎𝑥 Maximum temperature allowed for reefer containers.  
 𝜂𝑟𝑒𝑒𝑓𝑒𝑟 Cooling efficiency.  
 𝑡𝑎𝑡 Ambient temperature at time period 𝑡.  
 𝑚 Mass of the reefer.  
 𝑐𝑝 Specific heat capacity of a reefer.  
 𝑢 Heat transfer coefficient of a reefer.  
 𝑎 Area of the reefer.  
 𝑐𝑑𝑎𝑡,𝑤 Hourly electricity price at time period 𝑡 in scenario 𝑤. 
 𝑐𝑙𝑎𝑡𝑒𝑖 Penalty cost of exceeding the expected finishing time 

(EFT) for vessel 𝑖 ∈ 𝑉  for one hour.
 

 𝑐𝑟𝑒𝑠𝑐ℎ𝑖 Cost of changing the initial schedule by one hour, a 
coefficient multiplying 𝑐𝑙𝑎𝑡𝑒𝑖 .

 

 𝑐𝑠𝑢𝑟 Cost of having a surplus of energy, a coefficient 
multiplying 𝑐𝑑𝑎𝑡,𝑤.

 

 𝑐𝑠ℎ𝑜𝑟 Cost of having a shortage of energy, a coefficient 
multiplying 𝑐𝑑𝑎𝑡,𝑤.

 

 𝑀 A large positive number.  
 𝜋𝑤 Probability of scenario 𝑤’s realization.  

surplus (∑𝑡∈𝑇 𝑐𝑑𝑎𝑡,𝑤(𝑐
𝑠ℎ𝑜𝑟𝑃 𝑠ℎ𝑜𝑟

𝑡,𝑤 − 𝑐𝑠𝑢𝑟𝑃 𝑠𝑢𝑟
𝑡,𝑤 )). These costs are calculated for 

each scenario and the weighted average of all scenarios is minimized. 

min
𝑉 ,𝑇

∑

𝑤∈𝑆
𝜋𝑤

(

∑

𝑖∈𝑉
𝑐𝑙𝑎𝑡𝑒𝑖 𝐿𝑖,𝑤 +

∑

𝑖∈𝑉
𝑐𝑟𝑒𝑠𝑐ℎ𝑐𝑙𝑎𝑡𝑒𝑖 (𝑆𝑙𝑎𝑡𝑒

𝑖,𝑤 + 𝑆𝑒𝑎𝑟𝑙𝑦
𝑖,𝑤 )+

∑

𝑡∈𝑇
𝑐𝑑𝑎𝑡,𝑤𝑃

𝑑𝑎
𝑡 +

∑

𝑡∈𝑇
𝑐𝑑𝑎𝑡,𝑤(𝑐

𝑠ℎ𝑜𝑟𝑃 𝑠ℎ𝑜𝑟
𝑡,𝑤 − 𝑐𝑠𝑢𝑟𝑃 𝑠𝑢𝑟

𝑡,𝑤 )
) (2)

The model is subject to the following set of constraints. Constraint 
(3) ensures the energy consumed by the ships, quay cranes (QCs), yard 
cranes (YCs), automated guided vehicle (AGV) charging, and reefer 
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Table 5
Decision variables.
 Decision variables Description  
 𝑆𝑑𝑎

𝑖 ∈ Z+ Scheduled berthing start time of vessel 𝑖 ∈ 𝑉  in the 
baseline plan.

 

 𝑆𝑖,𝑤 ∈ Z+ Berthing start time of vessel 𝑖 ∈ 𝑉  in scenario 𝑤 ∈ 𝑆.  
 𝑆𝑒𝑎𝑟𝑙𝑦

𝑖,𝑤 ∈ Z+ Time the vessel 𝑖 ∈ 𝑉  arrives ahead of schedule in 
scenario 𝑤 ∈ 𝑆.

 

 𝑆 𝑙𝑎𝑡𝑒
𝑖,𝑤 ∈ Z+ Time the vessel 𝑖 ∈ 𝑉  arrives behind schedule in 

scenario 𝑤 ∈ 𝑆.
 

 𝐹𝑖,𝑤 ∈ Z+ Berthing end time (time when handling ends) of 
vessel 𝑖 ∈ 𝑉  in scenario 𝑤 ∈ 𝑆.

 

 𝐿𝑖,𝑤 ∈ Z+ Lateness of operations for ship 𝑖 ∈ 𝑉  in scenario 
𝑤 ∈ 𝑆.

 

 𝐴𝑖,𝑡,𝑤 ∈ B 1 if vessel 𝑖 ∈ 𝑉  is assigned at to a berth in time 
period 𝑡 in scenario 𝑤 ∈ 𝑆, 0 otherwise.

 

 𝐻𝑖,𝑝,𝑡,𝑤 ∈ B 1 if pattern 𝑝 of quay cranes, yard cranes and AGVs is 
assigned to serve vessel 𝑖 ∈ 𝑉  at time period 𝑡 in 
scenario 𝑤 ∈ 𝑆, 0 otherwise.

 

 𝐵𝑡,𝑤 ∈ R+ Battery level at time period 𝑡 in scenario 𝑤 ∈ 𝑆.  
 𝑇𝐶𝑡,𝑤 ∈ R Reefer temperature at time period 𝑡 in scenario 𝑤 ∈ 𝑆. 
 𝐸𝑐ℎ𝑎𝑟𝑔𝑒

𝑡,𝑤 ∈ R+ Energy consumed to charge AGVs at time period 𝑡 in 
scenario 𝑤 ∈ 𝑆.

 

 𝐸𝑟𝑒𝑒𝑓𝑒𝑟
𝑡,𝑤 ∈ R Energy consumed to cool the reefers at time period 𝑡

in scenario 𝑤 ∈ 𝑆.
 

 𝑃𝑡,𝑤 ∈ R+ Power used from the utility grid at time period 𝑡 in 
scenario 𝑤 ∈ 𝑆.

 

 𝑃 𝑑𝑎
𝑡 ∈ R+ Power purchased at the day-ahead market for time 

period 𝑡 in the baseline plan.
 

 𝑃 𝑠𝑢𝑟
𝑡,𝑤 ∈ R+ Power surplus at time period 𝑡 in scenario 𝑤 ∈ 𝑆.  

 𝑃 𝑠ℎ𝑜𝑟
𝑡,𝑤 ∈ R+ Power shortage at time period 𝑡 in scenario 𝑤 ∈ 𝑆.  

 𝐼𝑀𝑠𝑡𝑎𝑡𝑒
𝑡,𝑤 ∈ B Imbalance state, 1 if there is a surplus and 0 if there 

is a deficit in scenario 𝑤 ∈ 𝑆
 

cooling matches the power drawn from the grid. 
∑

𝑖∈𝑉
𝑒𝑠ℎ𝑖𝑝 𝐴𝑖,𝑡,𝑤 +

∑

𝑚∈𝑀

∑

𝑖∈𝑉

∑

𝑝∈𝑃𝑖

𝑢𝑝,𝑚 𝐻𝑖,𝑝,𝑡,𝑤 𝑒𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑟𝑦𝑚 + 𝐸𝑟𝑒𝑒𝑓𝑒𝑟
𝑡,𝑤

+ 𝐸𝑐ℎ𝑎𝑟𝑔𝑒
𝑡,𝑤 = 𝑃𝑡,𝑤

𝑚 = {𝑄𝐶, 𝑌 𝐶}, ∀ 𝑡 ∈ 𝑇 ,∀𝑤 ∈ 𝑆

(3)

Constraints (4)–(9) are associated with berth assignment of ships. 
Constraint (4) guarantees that the start time of vessel operation is either 
equal to or later than its expected arrival time. Constraint (5) defines 
the lateness time, which is the time a ship departs after the expected 
departure time. To ensure that the ships are berthed during every hour 
between the berthing start time and end time, Constraint (6), (7) and 
(8) are introduced. Constraint (9) prevents overcrowding of the berth 
by ensuring that the total length of all berthed vessels is shorter than 
the quay length. 
𝑆𝑖,𝑤 ≥ 𝑎𝑖,𝑤 ∀𝑖 ∈ 𝑉 ,∀𝑤 ∈ 𝑆 (4)

𝐿𝑖,𝑤 ≥ 𝐹𝑖,𝑤 − 𝑒𝑓𝑡𝑖 ∀𝑖 ∈ 𝑉 ,∀𝑤 ∈ 𝑆 (5)

∑

𝑡∈𝑇
𝐴𝑖,𝑡,𝑤 = 𝐹𝑖,𝑤 − 𝑆𝑖,𝑤 ∀𝑖 ∈ 𝑉 ,∀𝑤 ∈ 𝑆 (6)

(𝑡 + 1)𝐴𝑖,𝑡,𝑤 ≤ 𝐹𝑖,𝑤 ∀𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇 ,∀𝑤 ∈ 𝑆 (7)

𝑡 𝐴𝑖,𝑡,𝑤 + 𝑡𝑚𝑎𝑥 (1 − 𝐴𝑖,𝑡,𝑤) ≥ 𝑆𝑖,𝑤 ∀𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇 ,∀𝑤 ∈ 𝑆 (8)

∑

𝑖∈𝑉
𝐴𝑖,𝑡,𝑤 𝑙𝑠ℎ𝑖𝑝𝑖 ≤ 𝑙𝑡𝑜𝑡𝑎𝑙 ∀𝑡 ∈ 𝑇 ,∀𝑤 ∈ 𝑆 (9)

Constraints (10)–(12) are related to the handling capacity assign-
ment of cargo handling equipment. A handling rate is assigned to every 
ship for every hour it is berthed, which is accomplished by Constraint 
(10) and (11). Constraint (12) guarantees that the machinery capacity 
is not exceeded for QCs, YCs, and AGVs. 
∑

𝐻𝑖,𝑝,𝑡,𝑤 = 𝐴𝑖,𝑡,𝑤 ∀𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇 ,∀𝑤 ∈ 𝑆 (10)

𝑝∈𝑃𝑖

6 
∑

𝑡∈𝑇

∑

𝑝∈𝑃𝑖

𝑝𝐻𝑖,𝑝,𝑡,𝑤 ≥ 𝑑𝑖 ∀𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇 ,∀𝑤 ∈ 𝑆 (11)

∑

𝑖∈𝑉

∑

𝑝∈𝑃𝑖

𝑢𝑝,𝑚𝐻𝑖,𝑝,𝑡,𝑤 ≤ 𝑘𝑚 ∀𝑡 ∈ 𝑇 ,𝑚 ∈ 𝑀,∀𝑤 ∈ 𝑆 (12)

A day-ahead schedule is formulated for both the arrivals of the ships 
and power consumption. Constraint (13) states the difference between 
the actual start time in each scenario and the day-ahead scheduled 
start time is equivalent to the deviation of the start time. Similarly, 
Constraint (14) defines the energy consumption surplus and shortage. 
It is impossible to have a surplus and a deficit in energy consumption 
simultaneously. A binary variable 𝐼𝑀𝑠𝑡𝑎𝑡𝑒

𝑡,𝑤  is used to keep track of 
whether there is a surplus or shortage, and Constraint (15) and (16) 
model this relationship. 
𝑆𝑙𝑎𝑡𝑒
𝑖,𝑤 − 𝑆𝑒𝑎𝑟𝑙𝑦

𝑖,𝑤 = 𝑆𝑖,𝑤 − 𝑆𝑑𝑎
𝑖 ∀𝑖 ∈ 𝑉 ,∀𝑤 ∈ 𝑆 (13)

𝑃 𝑠ℎ𝑜𝑟
𝑡,𝑤 − 𝑃 𝑠𝑢𝑟

𝑡,𝑤 = 𝑃𝑡,𝑤 − 𝑃 𝑑𝑎
𝑡 ∀𝑡 ∈ 𝑇 ,∀𝑤 ∈ 𝑆 (14)

𝑃 𝑠𝑢𝑟
𝑡,𝑤 ≤ 𝑀 ⋅ 𝐼𝑀𝑠𝑡𝑎𝑡𝑒

𝑡,𝑤 ∀𝑡 ∈ 𝑇 ,∀𝑤 ∈ 𝑆 (15)

𝑃 𝑠ℎ𝑜𝑟
𝑡,𝑤 ≤ 𝑀 ⋅ (1 − 𝐼𝑀𝑠𝑡𝑎𝑡𝑒

𝑡,𝑤 ) ∀𝑡 ∈ 𝑇 ,∀𝑤 ∈ 𝑆 (16)

Constraints (17)–(19) concern the limits for energy used to charge 
AGVs and the AGV battery level. Constraints (17) and (18) describe that 
the total power used to charge the AGVs is constrained by the maximum 
energy limit and the number of AGVs available for charging. Constraint 
(19) ensures that the battery energy level always remains within the 
minimum and maximum allowed values. 
𝐸𝑐ℎ𝑎𝑟𝑔𝑒
𝑡,𝑤 ≤ 𝑒𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑎𝑥 ∀𝑡 ∈ 𝑇 ,∀𝑤 ∈ 𝑆 (17)

𝐸𝑐ℎ𝑎𝑟𝑔𝑒
𝑡,𝑤 ≤ (𝑘𝑚 −

∑

𝑖∈𝑉

∑

𝑝∈𝑃𝑖

𝑢𝑝,𝑚 ⋅𝐻𝑖,𝑝,𝑡,𝑤) ⋅ 𝑒𝑐ℎ𝑎𝑟𝑔𝑒

𝑚 = {𝐴𝐺𝑉 }, ∀𝑡 ∈ 𝑇 , ∀𝑤 ∈ 𝑆
(18)

𝑏𝑚𝑖𝑛 ≤ 𝐵𝑡,𝑤 ≤ 𝑏𝑚𝑎𝑥 ∀𝑡 ∈ 𝑇 , ∀𝑤 ∈ 𝑆 (19)

Constraints (20)–(22) monitor the AGV battery level and guarantee 
the energy consumed equals the energy charged. Constraints (20) and 
(21) capture the principle that the state of battery charge fluctuates 
based on the amount of energy charged and discharged for time periods 
1 to H and time period 0, respectively. We assume the initial battery 
level at the beginning is (𝑏𝑚𝑖𝑛 + 𝑏𝑚𝑎𝑥)∕2. Constraint (22) asserts that the 
amount of energy consumed equals the amount of energy charged.

𝐵𝑡,𝑤 = 𝐵𝑡−1,𝑤 + 𝜂𝑐ℎ𝑎𝑟𝑔𝑒 ⋅ 𝐸𝑐ℎ𝑎𝑟𝑔𝑒
𝑡,𝑤 −

∑

𝑖∈𝑉

∑

𝑝∈𝑃𝑖

𝑒𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑟𝑦𝑚 ⋅ 𝑢𝑝,𝑚 ⋅𝐻𝑖,𝑝,𝑡,𝑤

𝑚 = {𝐴𝐺𝑉 }, ∀𝑡 ∈ 𝑇 ⧵ {0} , ∀𝑤 ∈ 𝑆
(20)

𝐵𝑡,𝑤 = (𝑏𝑚𝑖𝑛 + 𝑏𝑚𝑎𝑥)∕2 + 𝜂𝑐ℎ𝑎𝑟𝑔𝑒 ⋅ 𝐸𝑐ℎ𝑎𝑟𝑔𝑒
𝑡,𝑤 −

∑

𝑖∈𝑉

∑

𝑝∈𝑃𝑖

𝑒𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑟𝑦𝑚 ⋅ 𝑢𝑝,𝑚 ⋅𝐻𝑖,𝑝,𝑡,𝑤

𝑚 = {𝐴𝐺𝑉 }, 𝑡 = {0}, ∀𝑤 ∈ 𝑆

(21)

∑

𝑡∈𝑇
𝜂𝑐ℎ𝑎𝑟𝑔𝑒 ⋅ 𝐸𝑐ℎ𝑎𝑟𝑔𝑒

𝑡,𝑤 =
∑

𝑡∈𝑇

∑

𝑖∈𝑉

∑

𝑝∈𝑃𝑖

𝑒𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑟𝑦𝑚 ⋅ 𝑢𝑝,𝑚 ⋅𝐻𝑖,𝑝,𝑡,𝑤

𝑚 = {𝐴𝐺𝑉 }, ∀𝑤 ∈ 𝑆
(22)

The following five constraints ensure the proper operation of the 
reefers. Constraint (23) indicates that the temperature of the reefers, 
represented by 𝑇𝐶𝑡,𝑤, should always be within the minimum and 
maximum temperature to ensure the good quality of the stored content. 
The energy consumed by the reefers at any time should not exceed 
the maximum rated power of all the reefer connections, as dictated 
by Constraint (24). The reefers lose heat to the environment through 



J. Stoter et al. Journal of Cleaner Production 527 (2025) 146383 
convection. This heat loss depends on the temperature difference be-
tween the container and the environment, both of which are assumed 
to be constant for every hour. Constraint (25) is the cooling balance 
constraint, which stipulates that the temperature change of the reefer 
container depends on the heat loss and the cooling energy supplied. 
Constraint (26) requires the same cooling balance for the initial time 
period. Constraint (27) is the reefer energy constraint, which ensures 
that the total energy lost through heat transfer equals the total energy 
consumed by cooling. 
𝑡𝑐𝑚𝑖𝑛 ≤ 𝑇𝐶𝑡,𝑤 ≤ 𝑡𝑐𝑚𝑎𝑥 ∀𝑡 ∈ 𝑇 ,∀𝑤 ∈ 𝑆 (23)

𝐸𝑟𝑒𝑒𝑓𝑒𝑟
𝑡,𝑤 ≤ 𝑒𝑟𝑒𝑒𝑓𝑒𝑟,𝑚𝑎𝑥 ∀𝑡 ∈ 𝑇 ,∀𝑤 ∈ 𝑆 (24)

𝑚 ⋅ 𝑐𝑝 ⋅ (𝑇𝐶𝑡,𝑤 − 𝑇𝐶𝑡−1,𝑤) = 𝑢 ⋅ 𝑎 ⋅ (𝑡𝑎𝑡 − (𝑡𝑐𝑚𝑖𝑛 + 𝑡𝑐𝑚𝑎𝑥)∕2)−

𝜂𝑟𝑒𝑒𝑓𝑒𝑟 ⋅ 𝐸𝑟𝑒𝑒𝑓𝑒𝑟
𝑡,𝑤 ∀𝑡 ∈ 𝑇 ⧵ {0} ,∀𝑤 ∈ 𝑆

(25)

𝑚 ⋅ 𝑐𝑝 ⋅ (𝑇𝐶𝑡,𝑤 − (𝑡𝑐𝑚𝑖𝑛 + 𝑡𝑐𝑚𝑎𝑥)∕2) = 𝑢 ⋅ 𝑎 ⋅ (𝑡𝑎𝑡 − (𝑡𝑐𝑚𝑖𝑛 + 𝑡𝑐𝑚𝑎𝑥)∕2)−

𝜂𝑟𝑒𝑒𝑓𝑒𝑟 ⋅ 𝐸𝑟𝑒𝑒𝑓𝑒𝑟
𝑡,𝑤 𝑡 = {0},∀𝑤 ∈ 𝑆

(26)

∑

𝑡∈𝑇
𝑢 ⋅ 𝑎 ⋅ (𝑡𝑎𝑡 − (𝑡𝑐𝑚𝑖𝑛 + 𝑡𝑐𝑚𝑎𝑥)∕2) =

∑

𝑡∈𝑇
𝜂𝑟𝑒𝑒𝑓𝑒𝑟 ⋅ 𝐸𝑟𝑒𝑒𝑓𝑒𝑟

𝑡,𝑤 ∀𝑤 ∈ 𝑆 (27)

These constraints manage the energy consumption of ships, QCs, 
YCs, AGVs and reefer containers while adhering to the constraints based 
on the operations planning. We also add the domains of all variables 
in Table  5.

5. Solution procedure

This section explains the algorithmic procedure to obtain the solu-
tions. First, the stochastic decomposition method, progressive hedging, 
is introduced. Then, we explain how the scenarios are obtained.

5.1. Stochastic decomposition with progressive hedging

Optimization problems under uncertainty are notoriously complex 
to solve, both in theory and practice. A practical method to tackle these 
problems involves the use of decomposition strategies in stochastic 
programming models. This process breaks down the overarching issue 
into manageable sub-problems, simplifying the overall optimization 
process and reducing computational complexity.

To handle this complexity efficiently, we implement a progressive 
hedging (PH) algorithm based on the original PH algorithm introduced 
by Rockafellar and Wets (1991). The algorithmic steps are shown 
presented in pseudo-code in Algorithm 1. The PH algorithm is based 
on the split-variable formulation of Formulation (1), which can be 
compactly written as Formulation (28).

min 𝑓𝐹 (𝒙𝜉 ) + E𝑃 [𝑞(𝒚𝜉 , 𝜉)] (28a)

s.t. 𝑨𝒙𝜉 = 𝒃, ∀𝜉 ∈ 𝛯 (28b)

𝑻 𝜉𝒙𝜉 +𝑾 𝜉𝒚𝜉 = 𝒉𝜉 , ∀𝜉 ∈ 𝛯 (28c)

𝒙𝜉 − 𝒙̄ = 0, ∀𝜉 ∈ 𝛯 (28d)

The PH algorithm is a practical way for splitting a large problem 
into smaller sub problems and solving them iteratively, thus possibly 
reducing the solving time considerably. The idea of the PH algorithm 
is to aggregate the solutions of subproblems, where artificial costs have 
been added. These added costs enforce that the aggregated solutions 
become non-anticipative and are updated in every iteration of the 
algorithm. The non-anticipativity constraint (28d) enforces that all 
the decisions taken in the first stage must be the same under all 
scenarios. The PH algorithm is based on the idea of relaxing the non-
anticipativity constraint, solving all scenario subproblems separately 
and then iteratively achieving consensus on the non-anticipative first-
stage solution. The mathematical model presented in Formulation (1) is 
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decomposed into several independent optimizations for every scenario, 
with 𝒙𝜈𝜉 , 𝒚𝜈𝜉 representing the decision variable of the first and second 
stage, respectively. 𝒙𝜈𝜉 includes 𝑆𝑑𝑎

𝑖  and 𝑃 𝑑𝑎
𝑡  in this model, and 𝒚𝜈𝜉

represents all the other decision variables.
Algorithm 1 first sets the initial value for iteration counter 𝜈 and 

penalty parameter 𝜌 > 0, and then solves the model for the first time. 
The initial mean value of 𝒙𝜉 and the initial dual prices are calculated. 
In the following steps, the mathematical model of this problem is 
iteratively solved, with the mean value of 𝒙𝜉 and dual prices 𝜆𝜉 (also 
called Lagrange multipliers) updated in every interaction. The model 
is solved in parallel for each scenario. The dual price is represented by 
𝜆𝜈𝜉 and the likelihood of occurrence of every scenario is represented 
by 𝜋𝜉 . 𝜌 is the penalty experienced for deviations of the first-stage 
decision variable from the mean. The core idea of progressive hedg-
ing can be motivated via the augmented Lagrangian method, which 
combines classical Lagrangian methods and the penalty function. The 
problem is solved iteratively for 𝜈 times until sufficient convergence 
of ∑𝜉∈𝛯 𝜋𝜉‖𝒙

(𝜈+1)
𝜉 − 𝒙̄(𝜈+1)‖2 < 𝛿0 is met or the maximum number of 

iterations reaches.

5.2. Scenario generation

Generating and reducing scenarios accurately is crucial in stochastic 
programming. For efficiency and accuracy, a balance between sample 
size and complexity is sought, with a preference for the least number 
of samples (Roald et al., 2023).

For ship arrival times, we observed historical data and found that 
the estimated arrival time generally follows a uniform distribution. A 
quasi-random sampling technique, specifically Halton sampling, was 
utilized to get distinct scenarios. The arrival distribution was obtained 
from Kolley et al. (2023). The actual arrival time is generated by 
adding uniformly distributed estimated arrival time plus the devia-
tion time obtained from quasi-random sampling that conforms to a 
normal distribution. This method promotes a uniform distribution and 
distinct scenarios, leading to more accurate optimization results. The 
arrival times were rounded to the nearest hour, with corresponding 
probabilities for each hour.

In terms of electricity price scenarios, an approach based on the 
clustering method in Crespo-Vazquez et al. (2018) was used. Using his-
torical data from the German day-ahead market, a K-means clustering 
algorithm was implemented to group days with similar prices. We use 
the day with the median value in each cluster to represent each cluster, 
with cluster weights derived from normalizing the number of days in 
each cluster.

Upon obtaining the individual scenarios for both the arrival times 
and electricity prices, the total set of scenarios was generated using the 
Cartesian product of the two sets. The associated probability for each 
scenario was obtained as the product of the probabilities of arrival time 
and electricity prices. This method led to a near-actual representation 
of uncertainty and less computational time for the optimization model.

We conduct computational experiments in the next section. We use 
the data collected from the open platform or website of HHLA Con-
tainer Terminal Altenwerder (CTA) in Port of Hamburg to run various 
experiments and analyze the results. Details are further explained in 
the next section.

6. Computational experiments and results

This section conducts computational experiments and presents the 
results obtained. To find the potential for demand response, we present 
a case study of the HHLA Container Terminal Altenwerder (CTA) in 
Hamburg. Altenwerder is a state-of-the-art container terminal with a 
high degree of automation and has a lot of electrified equipment. 
Additionally, CTA has much data publicly available.
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Algorithm 1: Progressive hedging for a two-stage stochastic optimization
Initialization: Let the iteration counter 𝜈 = 0, the penalty parameter 𝜌;
Solve the scenario subproblems for each 𝜉 ∈ 𝛯:

𝒙(0)𝜉 , 𝒚(0)𝜉 = argmin
𝒙𝜉 ,𝒚𝜉∈𝑿(𝜉)

𝑓𝐹 (𝒙𝜉 ) + 𝑓𝑆 (𝒙𝜉 , 𝒚𝜉 , 𝜉)

Compute the initial solution 𝒙̄(0) = ∑

𝜉∈𝛯 𝜋𝜉𝒙
(0)
𝜉  and the initial duals:

𝜆(0)𝜉 = 𝜌(𝒙(0)𝜉 − 𝒙̄(0)), ∀𝜉 ∈ 𝛯

while ∑𝜉∈𝛯 𝜋𝜉‖𝒙
(𝜈+1)
𝜉 − 𝒙̄(𝜈+1)‖2 ≥ 𝛿0 or 𝜈 ≤ 𝜈𝑚𝑎𝑥 do

Solve the augmented scenario subproblems for all 𝜉 ∈ 𝛯:

𝒙(𝜈+1)𝜉 , 𝒚(𝜈+1)𝜉 = argmin
𝒙𝜉 ,𝒚𝜉∈𝑿(𝜉)

𝑓𝐹 (𝒙𝜉 ) + 𝑓𝑆 (𝒙𝜉 , 𝒚𝜉 , 𝜉) + 𝜆(𝜈)𝜉 𝒙𝜉 +
𝜌
2
‖𝒙𝜉 − 𝒙̄(𝜈)‖22

Solution update:
𝒙̄(𝜈+1) =

∑

𝜉∈𝛯
𝜋𝜉𝒙

(𝜈+1)
𝜉

Duals update:
𝜆(𝜈+1)𝜉 = 𝜆(𝜈)𝜉 + 𝜌(𝒙(𝜈+1)𝜉 − 𝒙̄(𝜈+1)), ∀𝜉 ∈ 𝛯

Iteration update: 𝜈 = 𝜈 + 1
end 
The computations were all conducted using the commercial solver 
Gurobi v10.0.1, in combination with the Pyomo modeling language. 
For the stochastic decomposition, the mpi-sppy package was utilized
(Knueven et al., 2020). The optimization model was run on an Intel 
i7-7700HQ processor with a 2.80 GHz clock speed and 8.00 GB of RAM.

All optimizations were solved using the progressive hedging algo-
rithm. Ten iterations and a penalty parameter of 8000 were employed 
for each scenario’s solution to converge. For all models, a mixed-integer 
programming optimality gap of 5% was used as a termination criterion. 
The solving time for each individual scenario was limited to 300 s. A 
convergence threshold of 0.01 was set. The convergence was lower than 
0.01 for most of the experiments, though the threshold was not reached 
within 10 iterations in every experiment. The convergence metric was 
lower than 0.05 in all cases.

6.1. Model parameters

This section presents the parameters used in the study. We collected 
ship berthing record data from the open platform HHLA COAST. The 
sailing list from the CTA revealed that between April 10, 2023 and May 
7, 2023, 190 ships arrived at the CTA terminal, averaging 7 ships per 
day (HHLA, 2025b). The terminal equipment configuration data was 
collected on the CTA website. The terminal utilizes 14 quay cranes 
(QCs), 74 battery electric automated guided vehicles (AGVs), and 52 
yard cranes (YCs) for container handling (HHLA, 2025a). Containers 
are delivered and dispatched via ship, truck, or train. No onshore 
power facilities are currently applied at the CTA terminal. The length 
of the quay at CTA is found to be 1400 m (HHLA, 2025a). Based on 
the container layout, it is estimated that the AGVs travel an average 
distance of 947 m in 237 s to move a container (Zhang et al., 2023). 
Currently, there are 18 charging stations with a combined capacity of 
4 MW for these AGVs (HHLA, 2025c).

The energy consumption for QCs and YCs to move one container is 
estimated to be 8 kWh and 2 kWh, respectively (He, 2016; He et al., 
2015a; Iris and Lam, 2021). Additionally, the handling speed of both 
QCs and YCs is set to 30 containers per hour (He, 2016; He et al., 
2015a). The average energy consumption of AGVs per meter is 0.00935 
kWh (He et al., 2015b). By multiplying the energy consumption per 
meter with the average travel distance, the energy consumption for 
AGVs is estimated to be 9 kW per container move. Furthermore, based 
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on the travel time, the handling rate for the AGVs is calculated to be 
15 containers per hour.

Three types of ships are assumed to arrive at the container terminal: 
feeder, short-sea, and deep-sea vessels. Following the work of Iris and 
Lam, it is assumed that 40% of ships are feeders, 40% are short-
sea vessels, and 20% are deep-sea vessels (Iris and Lam, 2021). The 
ship lengths are uniformly distributed in the ranges [70, 200] for 
feeders, [210, 300] for short-sea vessels, and [300, 400] for deep-sea 
vessels (Iris and Lam, 2019a). The container demand is also assumed 
to be uniformly distributed in the ranges [200, 600] for feeders, [600, 
1600] for short-sea vessels, and [1600, 4500] for deep-sea vessels (Iris 
and Lam, 2021). Based on the number of QCs, YCs, and AGVs assigned 
to fulfill the demand, the ship unloading rate varies. The handling rate 
is defined as the handling speed multiplied by the number of QCs, YCs, 
and AGVs assigned. For feeders, the handling rate can be one of 30, 45, 
60, for short-sea vessels 60, 75, 90, 105, 120, and for deep-sea vessels 
120, 135, 150, 165, 180.

The estimated time of arrival for each ship is distributed uniformly 
in the range [0, 24]. The actual arrival time 𝑎𝑡,𝑤 is the estimated 
arrival time plus a deviation, which is different for every scenario. 
The arrival time deviations are normally distributed with a mean of 
0 and a standard deviation of 3 h, similar to Kolley et al. (2023). 
The estimated time of finishing is calculated by dividing the container 
demand by the minimum handling rate and adding the estimated time 
of arrival. If a ship departs later than the estimated finishing time, a 
penalty is applied. This penalty is obtained by converting the penalty 
stated by Iris and Lam (2021) to euros, assuming an exchange rate of 
0.63 euro/SDG, resulting in penalties of 630 euros, 1260 euros, and 
1890 euros for feeder, short-sea, and deep-sea vessels, respectively. 
Additionally, a penalty of 20% of the late penalty is assumed with 
regards to changing the berthing schedule created on the previous day, 
similar to the approach used by Liu et al. (2020).

For the energy consumption of reefer containers, it is assumed that 
all reefers are of the same type. According to a breakdown by van 
Duin et al. (2018), frozen product-based reefer containers are the most 
common type. The temperature range allowed for frozen products like 
meat and fish is between −20 and −16 ℃ (van Duin et al., 2018). Based 
on the average values for a 40 ft container, the mass, specific heat, 
heat transfer coefficient, and area of a reefer container are 24500 kg, 
2.76 kJ∕kg ⋅ K, 0.4 W∕m2 ⋅ K, and 135.26 m2, respectively (Kanellos, 
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2017). A cooling efficiency of 0.95 and the maximum cooling power 
are obtained from Kanellos (2017). At the CTA terminal, there are 2200 
reefer connections, of which it is assumed that an average of 1500 are 
used simultaneously (HHLA, 2025a).

According to the HHLA website, it takes 1.5 h to charge one 
AGV (HHLA, 2022). Based on the charging rate and the number of 
AGVs, it can be calculated that all AGVs together can store 24.7 MWh of 
electricity. A charging efficiency of 90% is assumed, similar to Kanellos 
(2017).

Historical electricity prices from the day-ahead market in Germany 
were obtained from the ENTSO-E (2025) website. A penalty of 20% 
of the day-ahead price was assumed for having an energy surplus or 
shortage, following the approach of Crespo-Vazquez et al. (2018). The 
maximum allowed imbalance was set to 10 MW.

While the current experiments focus on a single-terminal system, 
we note that the model has been successfully executed for instances 
involving up to 40 vessels within a 48-h horizon, well above the typical 
daily number of ships for this container terminal. This suggests that the 
current model is, to some extent, suitable for larger terminal systems.

In the case of multi-terminal port systems, however, additional 
model adjustments would be necessary to reflect the structural and 
operational relationships between terminals, such as whether their 
energy systems are jointly managed or independently operated. These 
extensions would primarily affect the constraints and can be integrated 
into the existing framework.

6.2. The impact of stochastic modeling

The mathematical formulation of the stochastic problem (SP) is 
given by Formulation (1). We consider the uncertainty in the arrival 
times of ships and electricity prices. To find the impact that stochas-
tic modeling has on the results, a comparison is made between the 
stochastic problem (SP) and several reactive approaches. For reactive 
approaches, the first-stage variables of the stochastic problem are fixed 
at some specific values. The mathematical formulation of the reactive 
approach is given in Eq.  (29). In the problem described in Section 3, the 
first-stage variables are the start time of operations, 𝑆𝑑𝑎

𝑖 , and the energy 
purchased on the day-ahead market, 𝑃 𝑑𝑎

𝑡 . Three reactive approaches 
are formulated, RE(reactive problem), RE+ and EEV(expectation of the 
expected value problem). For the RE and RE+ approach, 𝑆𝑑𝑎

𝑖  is set to 
the estimated arrival time 𝑒𝑎𝑡𝑖. 𝑃 𝑑𝑎

𝑡  is set to 0 and the average daily 
consumption 𝑃 𝑑𝑎 for the RE and RE+ approach respectively. For the 
EEV, 𝑆𝑑𝑎

𝑖  and 𝑃 𝑑𝑎
𝑡  are set to the solutions that can be obtained by 

solving the expected value problem. The mathematical formulation of 
the expected value problem is given by Eq.  (30). The 𝑥 obtained from 
this problem is then used as 𝑥0 in Eq.  (29).

min
𝒙0 ,𝒚𝜉∈𝑿(𝜉)

𝑓𝐹 (𝒙0) + E𝑃 [𝑓𝑆 (𝒙0, 𝒚𝜉 , 𝜉)] (29a)

where 𝒙0 ∶ fixed (29b)

min
𝒙,𝒚𝜉∈𝑿(𝜉)

𝑓𝐹 (𝒙) + 𝑓𝑆 (𝒙, 𝒚𝜉 , 𝜉) (30a)

where 𝜉 = E𝑃 [𝜉] (30b)

For comparison, the results of the stochastic model can also be 
compared with the wait-and-see solution (WS). This solution gives a 
lower bound to the problem in case a perfect forecast of the first-
stage decision variables is known. the wait-and-see solution is how-
ever not achievable in practice, since no perfect forecast exists. The 
mathematical formulation of WS is given by Eq.  (31). 

min
𝒙 ,𝒚 ∈𝑿(𝜉)

E𝑃 [𝑓𝐹 (𝒙𝜉 ) + 𝑓𝑆 (𝒙𝜉 , 𝒚𝜉 , 𝜉)] (31)

𝜉 𝜉
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Table 6
Result comparison among reactive approaches and stochastic problem
 No. RE RE+ EEV SP
 Total cost [€] Total cost [€] Total cost [€] Total cost [€]
 1 62863.8 58775.9 53217.3 50138.7
 2 62074.0 57967.5 53056.8 47049.1
 3 69925.5 63784.6 59770.4 57459.1
 4 53117.1 51103.7 40004.2 39828.8
 5 81891.7 74881.7 67645.8 62538.3
 6 67430.5 61454.6 53747.0 52804.4
 7 75826.3 69324.2 62984.9 61154.2
 8 48113.5 45913.3 41666.9 39914.3
 9 71876.7 65269.8 56203.4 54556.0
 10 59377.4 55685.1 55818.4 52716.3
 Avg 65249.7 60416.1 54411.5 51815.9
 Cost savings (%) 0.0 7.4 16.6 20.6

Note: RE (Reactive problem), EEV (Expectation of the expected value problem ), SP 
(Stochastic problem), Cost savings (%) = (𝐴𝑣𝑔𝑅𝐸 − 𝑥) ∗ 100∕𝐴𝑣𝑔𝑅𝐸 .

Table  6 gives the results of total costs for the RE, RE+, EEV and SP 
approaches. The optimization was done ten times for each approach, 
using different random seeds. For every approach, the cost reduction 
compared to the RE approach is calculated. The difference between 
the results from RE approach and results from other approaches (RE+, 
EEV, SP) is divided by the results from RE results to get the cost 
saving percentage. By employing the EEV strategy, a cost reduction 
of 16.6% can be achieved. The stochastic problem presented in this 
paper further increases the cost reduction to 20.6%. As for wait-and-
see (WS) solution, the average cost for ten iterations is 44096.5€. The 
hypothetical maximum reduction achievable through WS solution is 
32.4%.

Based on the differences between the EEV and SP solutions, the 
value of the stochastic solution (VSS) is calculated using Eq.  (32). 
Similarly, the expected value of perfect information (EVPI) is computed 
using Eq.  (33), which represents the difference between the SP and WS 
solutions. As the equations below show, the stochastic approach we use 
is superior to the EEV, and there is also space for improving forecasting 
accuracy. 
𝑉 𝑆𝑆 = 𝐸𝐸𝑉 − 𝑆𝑃 = 54411.5−51815.9 = 2595.6 (32)

𝐸𝑉 𝑃𝐼 = 𝑆𝑃 −𝑊𝑆 = 51815.9−44096.5 = 7719.4 (33)

6.3. The positive impact of demand response

To assess the impact of demand response on the solution, we 
consider different electricity pricing schemes: no pricing (NP), single 
pricing (SP), and real-time pricing (RTP) cases.

In the NP case, all energy-related costs in the objective function 
are disregarded. The objective function is simplified by removing the 
energy cost terms, resulting in Eq.  (34). 

min
𝐕,𝐓

∑

𝑤∈𝐒
𝜋𝑤

(

∑

𝑖∈𝐕
𝑐𝑙𝑎𝑡𝑒𝑖 𝐿𝑖,𝑤 +

∑

𝑖∈𝐕
𝑐𝑟𝑒𝑠𝑐ℎ𝑐𝑙𝑎𝑡𝑒𝑖 (𝑆𝑙𝑎𝑡𝑒

𝑖,𝑤 + 𝑆𝑒𝑎𝑟𝑙𝑦
𝑖,𝑤 )

)

(34)

In the SP case, the electricity price 𝑐𝑑𝑎𝑡,𝑤 in the objective function is 
replaced with a single price 𝑐𝑑𝑎𝑤  for each hour. The objective function 
is modified accordingly, resulting in Eq.  (35). Therefore, there is no 
uncertainty in energy prices in this case. 

min
𝐕,𝐓

∑

𝑤∈𝐒
𝜋𝑤

(

∑

𝑖∈𝐕
𝑐𝑙𝑎𝑡𝑒𝑖 𝐿𝑖,𝑤 +

∑

𝑖∈𝐕
𝑐𝑟𝑒𝑠𝑐ℎ𝑐𝑙𝑎𝑡𝑒𝑖 (𝑆𝑙𝑎𝑡𝑒

𝑖,𝑤 + 𝑆𝑒𝑎𝑟𝑙𝑦
𝑖,𝑤 )+

∑

𝑡∈𝐓
𝑐𝑑𝑎𝑤 𝑃 𝑑𝑎

𝑡 +
∑

𝑡∈𝐓
𝑐𝑑𝑎𝑤 (𝑐𝑠ℎ𝑜𝑟𝑃 𝑠ℎ𝑜𝑟

𝑡,𝑤 − 𝑐𝑠𝑢𝑟𝑃 𝑠𝑢𝑟
𝑡,𝑤 )

) (35)

The mathematical formulation presented in Section 3 remains the 
same for the RTP case. However, for the SP and NP cases, minor ad-
justments are needed. Specifically, Constraint (22) and Constraint (27) 



J. Stoter et al. Journal of Cleaner Production 527 (2025) 146383 
Fig. 2. Ship schedule and hourly energy consumption of the second instance for different pricing strategies in the fourth scenario.
are replaced with Constraint (36) and Constraint (37), respectively. 
These changes ensure that the energy consumed by operations, such 
as charging and cooling, matches the energy demand for each time 
period without considering different prices. Constraint (36) and (37) 
prevent unnecessary rescheduling of charging and cooling times that 
would occur under the assumption of a single or no pricing scheme, as 
the timing of consumption becomes irrelevant in the SP and NP cases. 
𝜂𝑐ℎ𝑎𝑟𝑔𝑒 ⋅ 𝐸𝑐ℎ𝑎𝑟𝑔𝑒

𝑡,𝑤 =
∑

𝑖∈𝑉

∑

𝑝∈𝑃𝑖

𝑒𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑟𝑦𝑚 ⋅ 𝑢𝑝,𝑚 ⋅𝐻𝑖,𝑝,𝑡,𝑤

𝑚 = 𝐴𝐺𝑉 , ∀𝑡 ∈ 𝑇 , ∀𝑤 ∈ 𝑆
(36)

𝑢 ⋅ 𝑎 ⋅ (𝑡𝑎𝑡 − (𝑡𝑐𝑚𝑖𝑛 + 𝑡𝑐𝑚𝑎𝑥)∕2) = 𝜂𝑟𝑒𝑒𝑓𝑒𝑟 ⋅ 𝐸𝑟𝑒𝑒𝑓𝑒𝑟
𝑡,𝑤 ∀𝑡 ∈ 𝑇 , ∀𝑤 ∈ 𝑆 (37)

Ten optimization experiments were performed for all three pricing 
schemes. Electricity prices of Germany in 2022 were used for the 
optimization.

Fig.  2 illustrates the planned and actual ship schedule and en-
ergy purchase and consumption for the second instance in the fourth 
scenario. By plotting the ship schedule and energy purchase and con-
sumption, a visual comparison can be made between the different 
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pricing strategies, including the decisions made in the first stage and 
how they changed in the second stage. In the subfigures for energy pur-
chase and consumption, the grey bars represent the energy purchased 
one day ahead of the actual operations in the energy consumption 
shortage case (day-ahead energy purchase < energy consumption) or 
equal-use case (day-ahead energy purchase = energy consumption), 
while the stacked grey and blue bars represent day-ahead energy 
purchased in the energy consumption surplus case (day-ahead energy 
purchase > energy consumption).

For the NP alternative, power imbalances can be observed for most 
hours, resulting in higher energy costs. When the cost of electricity 
is taken into account in the SP alternative, these imbalances are sig-
nificantly reduced, leading to lower energy costs. When the real-time 
pricing scheme (RTP scheme is implemented, imbalances occur much 
less frequently. Once real-time prices are considered in the optimization 
(RTP scenario), the energy consumption pattern also changes with the 
fluctuating prices. The energy consumption reduces during times of 
high prices, and the energy consumption increases during times of 
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Table 7
Result comparison of different pricing strategies.
  No. No pricing Single pricing Real-time pricing
 EC [€] SC [€] TC [€] EC [€] SC [€] TC [€] EC [€] SC [€] TC [€]
 1 44628.1 13482.0 58110.1 43325.8 13692.0 57017.8 38798.7 11340.0 50138.7
 2 49746.6 6 804.0 56550.6 47013.8 6 602.4 53616.2 42317.8 4 731.2 47049.1
 3 53979.6 11390.4 65370.0 50921.5 10735.2 61656.7 47429.5 10029.6 57459.1
 4 45266.7 3 931.2 49197.9 39856.1 4 989.6 44845.7 35544.8 4 284.0 39828.8
 5 57095.3 11793.6 68888.9 55677.2 11844.0 67521.2 52357.5 10180.8 62538.3
 6 55265.5 3 376.8 58642.3 52559.4 4 737.6 57297.0 48559.9 4 244.5 52804.4
 7 55561.2 10533.6 66094.8 52899.1 9 626.4 62525.5 48999.4 12154.8 61154.2
 8 46231.0 4 284.0 50515.0 40303.2 3 780.0 44083.2 35991.5 3 922.8 39914.3
 9 54584.0 8 618.4 63202.4 51742.4 6 442.8 58185.2 47626.0 6 930.0 54556.0
 10 50439.0 9 651.6 60090.6 45624.5 8 794.8 54419.3 41401.5 11314.8 52716.3
 Avg 51279.7 8386.6 59666.3 47992.3 8124.5 56116.8 43902.6 7913.3 51815.9
 Cost savings (%) 0.0 0.0 0.0 6.4 3.1 5.9 14.4 5.6 13.2

Note: EC (Energy-related cost), SC (Schedule-related cost), TC (Total cost), Cost savings (%) = (𝐴𝑣𝑔𝑁𝑃 − 𝑥) ∗ 100∕𝐴𝑣𝑔𝑁𝑃 .
low prices. We can find visible energy consumption peaks and troughs 
during planning horizon when applying real-time pricing scheme. Some 
differences in the berthing schedule can be observed between the 
different alternatives, although they are minor. Most of the differences 
are noticeable between the RTP scenario and the other two scenarios.

Table  7 presents the results of different pricing strategies, including 
NP, SP, and RTP. The costs are divided into energy-related costs and 
schedule-related costs. We assume that the percentage cost savings for 
different costs can be calculated directly using the costs obtained under 
different pricing methods. For example, the cost savings of energy-
related costs can be directly calculated using the energy-related costs 
under different pricing schemes. The cost reduction compared to the 
results under no-pricing scheme is calculated. The difference between 
the results under the no-pricing scheme and results under other pricing 
schemes (single-pricing and real-time pricing) is divided by the results 
from no-pricing scheme to get the cost saving percentage. As the 
table shows, the real-time pricing strategy has a noticeable decrease in 
energy-related costs. By considering a single price or a real-time price 
of electricity, the energy-related costs decrease by 6.4% and 14.4%, 
respectively. It appears that scheduling costs also slightly decrease. 
However, the average absolute difference in scheduling costs between 
the no pricing and real-time pricing is small, at around 400 euros. 
It can be concluded that the real-time pricing scheme will have a 
relatively less significant impact on scheduling costs than it will have 
on energy-related costs, though no definitive conclusions can be drawn 
regarding the impact of energy-aware optimization on scheduling costs. 
By considering energy prices, the total operational cost of the terminal 
is reduced by 5.9% and 13.2% for the single and real-time pricing 
schemes, respectively, with energy-related costs accounting for the 
majority of the reduction. It shows that the real-time pricing scheme 
in a demand response mechanism performs well in the energy man-
agement system. This demonstrates that incorporating real-time pricing 
into terminal operations can yield substantial financial benefits. More-
over, the results highlight the importance of time-sensitive electricity 
pricing in improving cost-saving performance within demand response 
frameworks.

Fig.  3 displays the average energy consumption across all instances 
for the NP and RTP schemes. A negative correlation between energy 
consumption and electricity price is observed in the real-time pricing 
case. Compared to the steady consumption pattern during the planning 
horizon with the NP strategy, the average consumption increases at 
night and in the early afternoon when prices are lowest with the RTP 
scheme. This clear load-shifting behavior reflects how the model adapts 
energy usage in response to price signals, concentrating consumption 
in off-peak periods to reduce operational costs. The visual contrast 
between the two schemes illustrates the potential of real-time pricing 
scheme to reshape the temporal distribution of energy demand. To 
quantify this correlation, the Pearson correlation coefficient is calcu-
lated between energy consumption and electricity price. For the NP 
and SP schemes, a correlation of 0.09 and 0.03 is found, so almost 
11 
no correlation exists between price and consumption. However, when 
RTP scheme is considered, the Pearson correlation coefficient becomes 
−0.85, indicating a strong negative correlation.

Furthermore, increased volatility in electricity consumption for RTP 
can be observed in Fig.  3. The peak-to-average ratio (PAR) is calculated 
for all different pricing schemes. The NP and SP schemes have PAR 
values of 1.17 and 1.19, respectively. In contrast, the RTP scheme 
exhibits a significantly higher PAR of 2.05. This means that the RTP 
strategy creates more volatile consumption with higher peaks. It is 
generally not desired since it causes more strain on the electricity grid.

Similarly to the energy demand, other decision variables can also be 
compared under different pricing schemes. Fig.  4 illustrates variations 
in the number of berthed ships, the handling rate of cargo handling 
equipment combination (QCs, YCs and AGVs), the power of AGV 
charging, and the power of reefer cooling. Each of these variables 
responds to price changes. A larger difference between NP and RTP 
indicates greater responsiveness of the variable to price changes. From 
Fig.  4, it can be visually observed that different variables change to 
a great extent when comparing the RTP and NP schemes. A metric 
called the flexibility coefficient (FC) is calculated to compare the sen-
sitivity of each variable to price changes. The FC is defined as the 
standard deviation of the difference of variables between the NP and 
RTP schemes divided by the mean value of the variable under the NP 
scheme. The FC for each variable (X) can be calculated using Eq.  (38). 
When comparing the FC for the variables above, we can discover that 
the cooling power is the most flexible, with a normalized standard 
deviation of 1.48. It implies that the rate at which reefers are cooled 
can be adjusted more readily in response to price changes. Following 
this, the AGV charging power also demonstrates notable flexibility. 
The handling rate and the number of ships berthed exhibit relatively 
lower levels of flexibility compared to other variables. These results 
suggest that energy-intensive and temporally shiftable components are 
more responsive to price signals. Understanding such flexibility can 
help operators identify the most effective levers for cost optimization 
under dynamic pricing schemes. 

FC =
𝜎(𝑋𝑁𝑃 −𝑋𝑅𝑇𝑃 )

𝑋̄𝑁𝑃
(38)

6.4. Price sensitivity

In light of the ongoing energy crisis in Europe, the electricity prices 
in 2022 were significantly higher compared to previous years. To 
assess the impact of demand response under different price scenarios, 
a sensitivity analysis is conducted.

To evaluate the influence of prices, the experiments described in 
Sections 6.2 and 6.3 were repeated using the price data from 2019. 
Since the energy prices were lower in 2019, the energy-related costs in 
2022 exhibit a significant increase compared to the prices of 2019.
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Fig. 3. Average energy consumption for No pricing and Real-time pricing schemes.
Fig. 4. Pattern comparison for different variables between No pricing and Real-time pricing schemes.
To further investigate the impact of rising electricity prices, the cost 
based on the real-time price scheme was calculated for each year from 
2016 to 2022. For each year, ten instance experiments were conducted, 
and the average cost of all instances, as well as the cost increase 
compared to 2016, are shown in Table  8. It can be seen that due to 
the upward trend in electricity prices, the energy costs have increased 
by more than 800 percent since 2016. Consequently, the total costs 
have also risen significantly. Based on the computational experiments 
12 
conducted in this study, no clear relationship can be observed between 
the scheduling costs and the rising electricity prices.

In summary, the sensitivity analysis highlights the considerable 
impact of electricity prices on the energy related costs and the overall 
cost of operations. The results underscore the importance of incorpo-
rating demand response strategies to mitigate the effects of fluctuating 
electricity prices and improve cost efficiency in port operations.
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Table 8
Average cost comparison from 2016 to 2022.
 Year Average energy cost Average schedule cost Average total cost
 € % € % € %  
 2016 5124.8 100.0 7646.5 100.0 12771.3 100.0  
 2017 6537.3 127.6 7208.2 94.3 13745.6 107.6  
 2018 7604.0 148.4 7174.4 93.8 14778.4 115.7  
 2019 5451.9 106.4 7252.5 94.8 12704.4 99.5  
 2020 4418.7 86.2 7232.4 94.6 11651.1 91.2  
 2021 29074.0 567.3 7279.4 95.2 36353.5 284.6  
 2022 43902.6 856.7 7913.3 103.5 51815.9 405.7  

7. Managerial insights

The experimental results lead to several valuable managerial in-
sights for the operations and management of container terminals. Fo-
cusing on the implications of energy-aware optimization on the opera-
tions, the following key insights emerge:

• The growing impact of uncertainty: Properly accounting for un-
certainty in the demand and supply of energy is crucial when 
optimizing energy consumption and operations planning in con-
tainer terminals. Failing to consider this uncertainty can result 
in up to 20% higher costs, on average, due to the need for 
subsequent operational plan changes.

• The economic opportunity of energy-aware planning: Implement-
ing an energy-aware optimization approach based on hourly vary-
ing electricity prices can lead to significant cost reductions in 
container terminals, with potential savings of up to 13.2% of the 
operational costs. These cost savings can be achieved without 
requiring substantial investments in, for instance, energy storage 
or renewable energy infrastructure.

• The importance of real-time pricing: The real-time pricing scheme 
has a relatively more significant impact on energy-related costs 
than on scheduling costs. The inclusion of energy-related costs has 
a small impact on the scheduling costs. The decrease in energy-
related costs accounts for the majority of the reduction in total 
costs.

• Container terminal (in this case, Alterwerder terminal) opera-
tors need to have more connection with grid operator/electric-
ity power supplier to take care of the fluctuation of energy 
consumption, especially when consumption peaks and troughs 
happen.

• The role of peaks: The energy consumption peak period shifts 
with the implementation of the real-time pricing scheme. Energy 
consumption during peak periods is higher with real-time pricing 
than with the other pricing schemes. There is still space to explore 
the effect of real-time pricing on peak time-related electricity 
costs.

• The flexibility in energy consumption: To effectively manage the 
overall energy consumption of a container terminal, focusing on 
reefer container energy consumption holds the greatest potential 
with a flexibility coefficient of 1.48, followed by controlling the 
charging rate of AGVs, with a flexibility coefficient of 0.48. 
Furthermore, modifying the handling rate of ship (un)loading 
and adjusting ship arrival and departure times also have some 
potential to influence energy consumption throughout the day 
with a flexibility coefficient of 0.18 and 0.12, respectively.

• The model has the possibility to be extended to study the integra-
tion of renewable energy sources. The generation of renewable 
energy has a high degree of uncertainty, which can represent 
the uncertainty on the energy supply side. Different energy gen-
eration scenarios can be generated to be integrated into the 
stochastic programming model.
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These insights highlight the potential for cost savings and opera-
tional improvements by considering electricity demand and implement-
ing efficient control measures. By adopting these insights, container ter-
minals can optimize their operations, reduce energy-related expenses, 
and get ready for the challenges of the transition to renewable energy 
sources.

8. Conclusions

8.1. Summary

Demand response (DR) is an effective measure to manage energy 
consumption and reduce energy-related costs in container terminals. 
It helps to adapt the power consumption of consumers in ports to 
better match the demand for power with the supply. Nonetheless, 
in academic literature, energy consumption management in ports has 
received limited attention, especially in the aspect of the uncertainty in 
energy demand and supply.

We present an integrated energy-aware optimization approach for 
the operations of a container terminal in this paper and build a stochas-
tic programming model to formulate the operation and energy flow in 
container ports. The model considers vessels, quay cranes (QCs), yard 
cranes (YCs), reefers, and automated guided vehicles (AGVs) as multi-
ple loads in the energy system. The uncertainty in demand is reflected 
in ship arrival times, and the uncertainty in supply is represented by 
electricity prices. We further develop a progressive hedging algorithm 
to efficiently solve the problem, and conduct computational exper-
iments, based on data from Container Terminal Altenwerder (CTA) 
in the Port of Hamburg, to test the proposed model and explore 
its practical implications. The stochastic programming method proves 
to outperform reactive approaches consistently. We analyze different 
pricing strategies to assess the potential benefits of demand-responsive 
planning. Our results suggest the cost saving increases to 13.2% on 
average when applying real-time electricity prices, which is more than 
the cost saving achieved by the single pricing scheme. As for impli-
cations, our results show that considering uncertainty in the demand 
and supply of energy is crucial when optimizing energy consumption 
and operations planning in container terminals in an integrated way. 
Furthermore, we observe that implementing an energy-aware optimiza-
tion approach based on hourly varying electricity prices can lead to 
significant cost reductions in container terminals, and including energy-
related costs has minimal impact on the scheduling costs. Finally, 
the control of reefer energy consumption and adjusting the charging 
times of AGVs have the most potential to alter the overall energy 
consumption pattern.

8.2. Limitations and future research

The limitations of this study largely stem from the peaks and 
valleys of electricity consumption. The peaks may put pressure on 
the load of the grid, and the troughs may pose a challenge to the 
smooth operation of the grid. Considering the operational capacity 
of the grid linked to the port suggests a potential avenue for future 
research. In the future, researchers may explore peak and valley power 
for different loads and total energy requirements on grid capacity. 
Integrating the mechanism of the electricity grid into actual operational 
problems may lead to more realistic and instructive results. Extend-
ing the framework to include on-site renewable generation or energy 
storage systems offers a particularly promising avenue for future work, 
enabling joint optimization of stochastic generation, storage sizing and 
demand-response at the terminal scale. Moreover, incorporating carbon 
pricing or emissions-based penalties into the objective function — by 
linking energy consumption to time-varying emission intensities — 
could further enhance the environmental realism of the model and 
support carbon-aware operational planning.
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