File-Injection Attacks on Searchable
Encryption, Based on Binomial
Structures

Master’s Thesis

Tjard J. Langhout

File-Injection Attacks on Searchable
Encryption, Based on Binomial
Structures

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE
by

Tjard J. Langhout
born in Amsterdam, The Netherlands

fuDelft J

Cyber Security Research Group

Department of Intelligent Systems Secura B.V.
Faculty EEMCS, Delft University of Technology Herikerbergweg 15
Delft, The Netherlands Amsterdam, the Netherlands

www.ewl.tudelft.nl WWW.Secura.com

www.ewi.tudelft.nl
www.secura.com

© 2024 Tjard J. Langhout.

File-Injection Attacks on Searchable
Encryption, Based on Binomial
Structures

Author: Tjard J. Langhout
Student id: 4670124

Abstract

One distinguishable feature of file-inject attacks on searchable encryption schemes
is the 100% query recovery rate, i.e., confirming the corresponding keyword for each
query. The main efficiency consideration of file-injection attacks is the number of
injected files. In the work of Zhang et al. (USENIX 2016), log, |K| injected files are
required, each of which contains |K|/2 keywords for the keyword set K. Based on
the construction of the uniform (s,n)-set, Wang et al. need fewer injected files when
considering the threshold countermeasure. In this work, we propose a new attack that
further reduces the number of injected files where Wang et al. need up to 38% more
injections to achieve the same results. The attack is based on an increment (s,n)-set,
which is also defined in this paper.

Thesis Committee:

Chair: Prof. G. Smaragdakis, Faculty EEMCS, TU Delft
Daily supervisor: Dr. K. Liang, Faculty EEMCS, TU Delft

Co-daily supervisor: H. Chen, M.Sc., Faculty EEMCS, TU Delft
Committee member: Dr. J.E.A.P. Decouchant, Faculty EEMCS, TU Delft

Company supervisor: T. Tervoort, M.Sc., Secura

Tjardlanghout@gmail.com

Preface

The past months have been an incredible journey. Initially, I was uncertain about my direc-
tion and the potential success of my project, but it soon evolved into an enriching pursuit,
where I specialized in my subject and confidently developed improvements on previous
works. Publishing a paper, especially within the timeline of this thesis, was beyond my
wildest dreams. I am eagerly looking forward to present this work at ESORICS 2024.

This journey would not have been possible without the guidance and support of my
exceptional supervisors. They were always ready to help, candid in their feedback, and
committed to fostering improvement. I would like to extend my heartfelt thanks to Huan-
huan Chen for his time and effort in guiding me and co-authoring the paper. I am also
grateful to Kaitai Liang for his guidance throughout the project and his valuable feedback
on my report, which continually enhanced my work. Finally, I would like to express my
appreciation to Georgios Smaragdakis. Despite his busy schedule, he consistently provided
feedback and was always available for very pleasant discussions and updates.

I am very grateful to Secura for providing me with the opportunity to conduct my thesis
as a graduation intern. I could not have had a better supervisor than Tom Tervoort, who
was very prepared to help with setting up testing environments and brainstorm through the
challenges thrown with me.

Tjard J. Langhout
Delft, the Netherlands
June 26th, 2024

iii

Contents

[Prefacel iii
v
vii
[List of Tables| vii
1__Intr 10N 1
[LI _Tntroduction] o 1

2 Background| 5
I _SE-Schemesl. e 5
RIT _SEBasics oo 5

[2.1.2 L1: Query-revealed occurrence pattern| 7

[2.1.3 L2: Fully-revealed occurrence pattern| 7

[2.1.4 L3: Fully-revealed occurrence pattern with keyword order| 7

[2.1.5 L4: Full plaintext under deterministic word-substitution cipher] . . . 8

8

9

9

12

15

3.1 Notation]« v o . e 15
[3.2 Binary-Search Attack| 15
[3.2.1 Mechanism of Operation| 15

[3.2.2 Construction Methodology| 15

[3.2.3 Binary-Attack with Threshold| 16

324 Examples| 16

[3.3 Finite Set Theory Attack| 18

CONTENTS

[3.3.1 Mechanism of Operation| 19

[3.3.2 Constructing of a uniform (s,n)-set of a finite set K 19

3.3.3 Examples| 21

4 Design and Develop| 25
BT SEMOdEll . . . o oot ot e e e 25
42 AttackModell 25
4.3 Research Questions| e 26
3.1 RQ;;: (s,n)-setConstruction| 27

4.3.2 RQp,:Hlelnterrelation| 31

4.3.3 RQ;;3:SpaceEfficiency| 34

4.3.4 RQ;: File-Injection Attack|. 38

|5 Experiments and Results| 41
[5.1 Experimentalsetup|, 41
5.2 Performance on the Enron Dataset| 41
5.3 Performance under a Threshold of 200f 42
5.4 Performance under Different Thresholds| 43

[6 Countermeasure & Mitigation| 45
|6.1 File-injection Attacks on SE Schemes with Keyword Padding|. 45
[6.1.1 Calculating the Effects| 45

[6.1.2 Visualising the Effects| 46

[6.2 Adopted Binomial-Attack|. 50
[6.2.1 Removing the (n,n)-Setl 51

[6.2.2 Results after the Mitigation|. 51
[7_Discussion 53
[/1 Discussion]. 53
2 Future Workl 54

8 Conclusion 55
8.1 Conclusion| 55
Bibliography 57
A Pap 61

Vi

List of Figures

4.1 Technical framework of existing attacks.| 26
4.2 Re-organized technical framework for clear quality dispersion.| 27
[5.1 Performance of different injection attacks under a threshold of T=200. 42
[5.2 Performance of file-injection attacks under different thresholds.|. 43
[6.1 Candidate set size per query, 1=200. 47
|6.2 Extra injection size per query, 1=200.] 47
|6.3 Candidate set size per query, =100, 47
|6.4 Extra injection size per query, 1=100.] 47
[6.5 Candidate set size per query, I=300. 48
[6.6 Extra injection size per query, T=300 48
|6.7 Candidate set sizes per query when padding 1s applied, T=200.| 49
[6.8 Candidate set sizes per query that is not in the target set when padding 1s ap- |
| plied, under different thresholds, where the target set i1s a subset of the full |
| keyword universe, for the standard Binomial-attack.|. 50
|6.9 Extra injection sizes per query that is not in the target set when padding 1s |
| applied, under different thresholds, where the target set 1s a subset of the full |
| keyword universe, for the standard Binomial-attack.|. 50
[6.10 Candidate set sizes per query that 1s not 1n the target set when padding 1s ap- |
| plied, under different thresholds, where the target set 1s a subset of the full |
| keyword universe, for the adopted Binomial-attack.| 52
|6.11 Extra injection sizes per query that is not in the target set when padding 1s |

applied, under different thresholds, where the target set 1s a subset of the full |

keyword universe, for the adopted Binomial-attack.| 52

vii

List of Tables

2.1 Plantext Searchable Schemel| 0oL 6
[2.2 Searchable Encryption Scheme| 7
[2.3 Threshold countermeasure with a threshold of T=3. Only the files with three or |
| less keywords get accepted by the scheme.|. 8
[2.4 Padding countermeasure example for the response on a query for k;. Besides |
| the corresponding files, also additional files are sent back that do not match the |
| query keyword.| L. 9
[2.5 Obfuscation countermeasure example for the response on a query for k;. On |
| the contrary to padding, less files are sent back. The response does not contain |
| all the matching filestothe query,|, 9
2.6 File-injection in an SE-scheme|o 0oL 10
[2.7 Different kinds of leakage patterns.|. 11
2.8 An overview of previous SE-attacks.| o 0 L. 13
[3.1 Summary of notations used for our-and the previous-attacks.| 16
3.2 An example of the binary-attack, with a keyword universe of 8./ 17
[3.3 An example of the binary-attack, with a keyword universe of 16 and a threshold |
o4l . .o 18
[3.4 The results of Table|3.3|displayed in a more compressed manner.| 18
[3.5 An example of recovering 10 keywords with the uniform (3,5)-set.|. 20
[3.6 The number of the keywords in the keyword universe K; corresponding to the |
| relation between s; and n; when T=200.] 21
[3.7 An example of recovering 23 keywords with threshold 7=7 by the uniform |
‘ (7,8)-set] o 22
3.8 An example of recovering 16 keywords with threshold 7=5 by the uniform |

(4,5)-setand (3,4)-set.| 23
4.1 An example of all the variants possible from a positional pattern (P.P.) forn =7 |
| and r = 3, and how they would be injected.| 28
|4.2 An example of the construct of the injected files for x4r < 7T < xsr, n =7 and |
| r = 3. Where up till the last positional pattern (P.P.) any positional patterns can |
| be used to make unique combinations and the last positional pattern consists out |
| of consecutive files (P.P. 1). It 7" = x;r, the threshold ends precisely in between |
| positional patterns. If x;v < T < x;1r, P.P. 1 should be used from x;r onward. |

All columns in P.P. I can identify © keywords.[. 29
4.3 Construction of the last 7 (mod r) columns of an (s,n)-set under the two dif- |
| ferent possible scenarios, guaranteeing ° identifiable keywords per column.| . . 30

viii

List of Tables

4.4 'The binary search structure of the injected files in the Binary-attack for 5050 |

‘ keywords, with a threshold of 200.| 32
K5 The (s,n)-sets structure of the injected files in the FST-attack for 5050 key- |
[words, with a threshold of 200, L. 33
4.6 The updated (s,n)-set structure of the injected files in the for 5050 keywords, |
[___withathresholdof 200 34
/.7 The increment |r,n|-set structure of the injected files for 5050 keywords, with |
[_athresholdof200] 35

4.8 An example of recovering 23 keywords with threshold 7=7 by an increment
‘ 3,6]-set, which is divided into 3 blocks. Keywords in the 1st, 2nd, and 3rd
| block can be recovered by 1, 2, and 3 returned files, respectively.| 37

[6.1 Distribution of an Increment [3,6|-set, without (6,6)-set, T=7.| 51

ix

Chapter 1

Introduction

1.1 Introduction

Ensuring exclusive data access remains a paramount concern, often necessitating external
cloud servers due to limited user storage capacity. To enable efficient data searches, these
servers must implement search-over-plaintext methods for speed and efficacy.

Song et al. [[19] were pioneers in proposing a cryptographic scheme tailored to address
the challenge of searching encrypted data, particularly enabling controlled and concealed
keyword searches. This general searchable encryption (SE) framework entails the storage
of an index and database on the server. Each keyword within a file undergoes independent
encryption, alongside the encryption of the file as a whole. Retrieval of files containing
specific keywords involves the user generating a token by encrypting the desired keyword,
which is then matched against all encrypted keywords stored on the server. Upon a match,
the entire encrypted file is returned to the user for decryption. Since the introduction of this
foundational scheme, numerous researchers have proposed diverse variants of SE schemes
[2, 13,15, 110, [13) 16, 20]. These schemes offer varying levels of file and keyword privacy,
with the ORAM scheme emerging as the most secure, effectively concealing access pattern
leakage [13]]. However, schemes with minimal leakage patterns tend to be computationally
intensive and impractical. Alternatively, other proposed schemes, while computationally
less burdensome, permit a marginally higher degree of leakage. Cash et al. [4]] categorized
these schemes into distinct leakage levels: L1, L2, L3, and L4, each revealing different
degrees of information about keyword occurrences. Subsequent studies have demonstrated
the potential exploitation of even minimal leakage to extract significant information from
databases, emphasizing the critical role of prior knowledge in facilitating successful attacks
[, 9} (11} [14]. Recovery of keywords involves retrieving the keyword associated with the
queried token, representing an encrypted keyword of a file.

Attacks on SE schemes may manifest as either passive or active. Passive attacks en-
tail the observation of leakage patterns to construct keyword-query matches [[7, (11} [15 [18]].
These attacks refrain from interfering with protocols and leverage preexisting knowledge to
execute their strategies. Passive attacks typically target weaker schemes exhibiting higher
leakage levels (L2-L4) and often necessitate external or prior knowledge for execution.

1

CHAPTER 1. INTRODUCTION

Conversely, active attacks involve servers injecting files into a user’s database to glean in-
sights. Injection attacks leverage either file access patterns or volume patterns [[1, 4, [17, 21}
22, 23]. Active attacks, typically assuming L1 leakage or less, necessitate minimal prior
knowledge, contrasting with the requirements of passive attacks. Successful recovery of
keywords in active attacks is consistently achieved with 100% accuracy, with the perfor-
mance metric being the number of injections required for a successful attack.

Cash et al. [4] were among the first to introduce an active attack wherein the server
sends files to the client, subsequently encrypted and stored by the client. These attacks
typically assume L2-L.3 leakage, akin to passive attacks. Attackers construct files of their
choosing and transmit them to users, compelling the application of the scheme to the re-
ceived file, thereby enabling observation of ciphertext by the server. Zhang et al. [23] cate-
gorized such attacks as file-injection attacks and introduced the Binary-attack, premised on
L1 leakage and injecting half of the keyword universe per injection, akin to binary search
methodologies.

Countermeasures such as thresholds and padding are implemented to impede the suc-
cess of attacks. Thresholds impose limits on the number of keywords a file can contain,
while padding obscures actual results by introducing additional files alongside queried files.
Wang et al. [21] proposed an alternative approach to injection attacks based on finite set the-
ory, offering superior performance compared to previous methods. This approach, known
as the FST-attack, necessitates fewer injections than the Binary-attack under certain con-
ditions, leveraging so-called (s,n)-sets to enhance attack efficacy. Despite these advance-
ments, the FST-attack’s reliance on singular s values for all identified keywords represents
a notable limitation.

Our contributions. In this research, we introduce a novel file-injection attack on SE
schemes surpassing all prior works. Termed the Binomial-attack, our approach leverages
binomial structures for calculation. It involves a self-defined Increment [r, n]-set comprising
multiple uniform (s,n)-sets, resulting in a reduction of injected files compared to existing
standards like the FST-attack [21]]. The (s,n)-sets utilized in the Increment [r,n]-set are
constructed in a new way to allow using just a portion of an (s,n)-set. The Increment [r,n]-
set begins with the lowest frequency per keyword and incrementally increases frequency
with each successive combination, thereby minimizing space occupancy per keyword and
reducing the need for injected files. Notably, our attack outperforms previous methods,
even under threshold conditions, requiring substantially fewer injections for successful ex-
ecution. To get to these results a main research question was set, including sub-research
question to be able to answer the main question.

2

1.1. INTRODUCTION

RQ; How should injected files be constructed to optimise the number of iden-
tifiable keywords, given the presence of file access pattern leakage?

RQ;.1 Is there a more optimal method for constructing injection files compared
to using (s,n)-sets?

RQ1, How can the interrelatedness of injected files be enhanced beyond the cur-
rent methods?

RQ13; How can maximum keyword turnover per space be achieved across all
injected files?

Organization of the Paper. The remainder of this paper is organized as follows. Chap-
ter 2] provides a comprehensive description of Searchable Encryption (SE) schemes and
SE-attacks. It elucidates the various categories of leakage and discusses countermeasures
that can be employed to make the schemes more resilient to attacks. Furthermore, the
models of SE-attacks are explained alongside an overview of previous attacks. Chapter [3]
presents a brief overview of previously mentioned attacks, with an in-depth discussion of
the Binary and FST-attacks due to their relevance to the attack model proposed in this paper.
Chapter [] details the SE-model and attacker model pertinent to the proposed attack in this
report and traverses through the design and development of the new attack, addressing the
different sub-research questions and integrating the findings to address the main research
question. The proposed Binomial-attack is here introduced. Chapter [5] continues on the
Binomial-attack demonstrating its applicability under various thresholds and dataset sizes,
and its performance compared to previous file-injection attacks. Chapter [6] discusses coun-
termeasures and mitigation strategies for this attack. In Chapter[7.1] the results are debated,
and topics not covered within the paper are examined. Finally, the paper is summarized in
Chapter 8.1

Chapter 2

Background

This chapter covers the background of SE-schemes and SE-attacks, providing an overview
of existing attacks and the models they operate under.

2.1 SE-Schemes

Searchable encryption (SE) schemes enable clients to encrypt data stored on an untrusted
server while still allowing searches through the encrypted files. This section explains the
general structure of such schemes and the types of leakage they may incur.

Cash et al. [4] introduced leakage levels L1-L4 where L1 leaks the least information
and L4 the most, according to the Curtmola et al. [6] security notion. Moreover, starting
from Sect.

2.1.1 SE Basics

The basic SE scheme involves a client and an untrusted server, where the client encrypts
files and keywords separately before storing them on the server. The server maintains these
encrypted files and keywords in a database and an inverted index, respectively. When the
client wishes to search for files containing a specific keyword, it sends a query with the en-
crypted keyword to the server. The server then retrieves and returns the matching encrypted
files to the client. In the absence of encryption, the server would have the capability to read
all the files in its database storage, as they are stored in plaintext. For a visual representation
of the information transactions in such a scheme, refer to Fig. [2.1]

CHAPTER 2. BACKGROUND

Client Server

Operations Inverted Index

Query(a) — a a:F,F

Search(a) —
{Fl,Fz} — f K

1 Database

Search({Fi,F»}) — Fi:ab,c

{{a,b,c},{a,d,e}} — F2:(l,d,€

{{a,b,c},{a,d,e}} <+ Response({{a,b,c},{a,d,e}}) F3:b,e, f

Table 2.1: Plaintext Searchable Scheme

Definition 1 (Searchable Encryption) An index-based searchable encryption scheme com-
prises eight algorithms: KeyGen, Encrypt, Upload, Store, Trapdoor, Query, Search, De-

crypt.

~

. KeyGen(1*) — K: Generates the secret key K from the security parameter \.

2. Encrypt(E, K) — (F.,W.): Encrypts the file F and its keywords using the secret key K,
returning a tuple of the ciphertext of the file and the set of ciphertexts of the keywords.

3. Upload(F,,W,.): Sends the encrypted file and keywords to the server for storage.

4. Store(Fe;,We;) — (Feu,-++ Feiy Wer, -+, We;i): The server stores the encrypted file
and keywords in its database F and inverted index I.

5. Trapdoor(w, K) — t: Encrypts the keyword to produce a trapdoor t.

6. Query(t) — F.;: The client sends the trapdoor to the server, which responds with the
files F; containing the trapdoor, where F; € F.

7. Search(t) — F.;: The server searches its index for the trapdoor and returns the
corresponding files to the client.

8. Decrypt(F,, K) — F: The client decrypts the file using the secret key K.

By applying searchable encryption to the previously outlined scheme in Fig. 2.1 we
introduce a new set of operations and information transactions. This modification ensures
that the server cannot access the keywords stored in the inverted index and database. For a
detailed illustration of the new scheme, refer to Fig. 2.2]

6

2.1. SE-SCHEMES

Client Server
Operations Inverted Index
Trapdoor(a) = ki ki F,F
Query(ki) - ki
Search(k;) —
{F, R} — ke : F3
+ Database
Search({F1,F>}) — | Fkiko,ks
{{kl,kz,k3},{k|,k4,k5}} < F21k17k4,k5
{{k1,ka,ks},{k1,ka,ks}} < Response({ ki1,k2,k3},{k1,ka,ks}}) F; : ko, ks, kg
Decrypt({{ki,ka,k3}, {ki,ka,ks}})
+
{{a,b,c},{a,d,e}}

Table 2.2: Searchable Encryption Scheme

2.1.2 L1: Query-revealed occurrence pattern

L1 leakage initially only leaks basic size information, such as the total length of the docu-
ment. Once a query is performed it also leaks the access pattern of the query, exposing the
identifiers of files containing the queried keywordw. From the keyword set W of a file F, a
sequence of queries q1,q2,- - - ,qo reveals a sequence of sets

{itqreWit{i:qaeWs}, - {i:qo e W}

The scheme may scramble the indices i at random to obscure the direct plaintext-
ciphertext relation. To conclude, for every query the scheme leaks the identifiers of all
the files containing the keyword of the query.

2.1.3 L2: Fully-revealed occurrence pattern

L2 leakage discloses the occurrence pattern for every term prior to any performed queries.
However, the file order per keywords is still at random. If files together contain the terms
UiW; = {wi,--- ,wn}, then the scheme leaks the collection of sets

{i:wleVVi},---,{i:wNeWi}.

2.1.4 L3: Fully-revealed occurrence pattern with keyword order

L3 leakage reveals the same as L2, plus the keyword order. Initially, it already fully exposes
the occurrence pattern, in the order of their first appearance. The number of occurrences
of a keyword within a single document remains hidden. For all keywords wy,--- ,wy, the
profile leaks the sets

{6 7) s wilfl = waks - {6 7) s wil il = wa b

CHAPTER 2. BACKGROUND

where every set contains all the pairs (i, j) with i being the file and j the j-th term of the
first keyword.

2.1.5 L4: Full plaintext under deterministic word-substitution cipher

L4 leakage does not conceal any information, exposing all previous mentioned details in-
cluding the count of each keyword per file.

2.1.6 Countermeasures

There are three main countermeasure techniques: thresholds, padding, and obfuscation.
Each method addresses specific types of attacks and aims to enhance the security of search-
able encryption schemes.

1. Thresholds: This technique limits the size of files, preventing them from becoming
excessively large. It is particularly effective against active attacks that inject large
files to maximize data extraction from a minimal number of files. Refer to Table 2.3]
for a visual example.

2. Padding: In schemes utilizing padding, the server returns a larger set of results than
those that match the query. This set includes true positives as well as false positives,
thereby obscuring the actual query response. After decryption, the user can easily
filter out the false positives. Padding effectively mitigates leakage by increasing the
difficulty for attackers to distinguish between genuine and decoy responses. See Table

3. Obfuscation: Unlike padding, obfuscation reduces the response set by withholding
some true positive files, resulting in a smaller, more ambiguous set of returned files.
While this helps obscure the true query results, it may lead to incomplete data retrieval
for the user, potentially affecting usability. See Table

Each of these countermeasures adds a layer of complexity to the attacker’s task, thereby
enhancing the overall security of the SE-scheme. However, they also introduce trade-offs
in terms of efficiency and usability, which must be carefully balanced.

n K ky k3 '
B ok k3 ks F ky k3 ks

|
:
|
B kb —> [B k&
|
|

Fr ks kg ko Fiv ks kg ko
Fs ki kiz ki3 1 ki

Table 2.3: Threshold countermeasure with a threshold of T=3. Only the files with three or
less keywords get accepted by the scheme.

2.2. SE-ATTACKS

ik k k k
1k 2 k3 ka F ko ke
Bk ks ks kg

F ki ks k1 kg
F ki k3 k1 kg

F, k k3 ks ke
Fy ks kg ko ko

Fs ki ki kiz ki
Fs ki ki kiz kg

Table 2.4: Padding countermeasure example for the response on a query for k;. Besides the
corresponding files, also additional files are sent back that do not match the query keyword.

Fi ki ke ks k4
Bk k k k
2 ky ks ks 6 Bk b ks ks
Fs ki ks Kk kg |:>

F5—kr—k3—k7 kg
Fy ks kg ko ko
Fs kit ki kiz kg

Table 2.5: Obfuscation countermeasure example for the response on a query for k;. On the
contrary to padding, less files are sent back. The response does not contain all the
matching files to the query.

2.2 SE-Attacks

Over the past decades, numerous SE-attacks have been proposed under various models. This
section provides an overview of these models and the corresponding attacks, categorizing
them based on their specific characteristics and methodologies.

2.2.1 Models

Attack models encompass the different settings and scenarios in which an attack operates.
These models can be categorized based on the following criteria: behaviour, type, leakage
patterns, objective, pre-knowledge, query frequency selectivity,and adversary.

Behaviour

An attacker can be either honest-but-curious or malicious. An honest-but-curious attacker
adheres to the protocol without performing any additional operations but attempts to glean
information from the traffic and protocols it observes. This behavior is classified as a Passive
attack. In contrast, a malicious attacker actively seeks to learn information about the data
it handles, going beyond the prescribed protocol by performing extra steps and operations.
This behavior is categorized as an Active attack.

CHAPTER 2. BACKGROUND

Attack Types
Attacks can be based on three kinds of data: sampled data, auxiliary data, and chosen data.

* Sampled data: Attacks utilizing sampled data require a sample from the target
dataset, where the sample’s distribution closely matches that of the entire dataset.
These attacks are known as inference attacks.

* Auxiliary data: Auxiliary data refers to data that has been leaked independently of
the scheme or extracted from public resources. Attacks based on such data are termed
leakage abuse attacks.

* Chosen data: Chosen data is data created by the attacker. When an attacker can
select and generate their own data, the attack is called an injection attack.

An extension of the outline of the SE-scheme is provided to illustrate how file injec-
tion attacks can be executed (see Fig. [2.6). In this example, note that the inverted index
and the database themselves are not encrypted; only the values within the inverted index
and database are encrypted.This is solely done for explanation purposes, as normally these
components would be encrypted as well. When a file is sent to the client, the client auto-
matically encrypts the message and stores it on the server. If the client subsequently queries
the keyword contained in the injected file, the server can detect the access to the injected
file and thereby infer the keyword that was searched.

Client Server
Operations Inverted Index
{f} <~ Inject({f}) ky:F,F
Encrypt({f})
i
Upload({ks }, {ke}) — Store({ko}, {ko}) — | ke:F3,Fy
Query(ke) — ke
Search(kg) —
{F,F} —
3 Database
Search({F3,F1}) — | Fy i ki,kp, ks
{{ka,ks,ke},{ke}} — | Bk kg ks
{{ka,ks,ke},{ke}} < Response({{ka,ks,ke¢},{ke}}) F; ko, ks, ke
Decrypt({{k2, ks, ks },{ke}}) Fy - ke
+
{boe 1AM

Table 2.6: File-injection in an SE-scheme

10

2.2. SE-ATTACKS

Leakage Patterns

An SE-scheme can leak a variety of information, which falls into different categories.
Atomic leakage reveals information about individual matching documents. Table [2.7] pro-
vides an overview of the different leakage categories along with clarifications.

Leakage Patterns Leaks
Volumetric | Volume (vol) Returned documents size
Atomic Access File ID (fid) Accessed files
Co-occurrence (co-oc) Keyword co-occurrence
Volumetric | Total Volume (tvol) Returned total size
. | Access Response length (rlp) Number of matches
Non-Atomic
Response difference (rdp) | Query response change
Search (sp) Queries keyword

Table 2.7: Different kinds of leakage patterns.

Objective

The objective of an attack may encompass the recovery of either the query-keyword pair
associated with queries transmitted to the server or the plaintext content of files stored on
the server. These objectives are categorized as Query Recovery and Data Recovery, respec-
tively.

Pre-Knowledge

Attackers may possess various forms of prior knowledge, including sampled data, known
queries, and known files.

» Sampled data: Data that shares a similar distribution with the targeted dataset.

* Known queries: Queries for which the attacker already knows the corresponding
keyword matches.

* files: Data files from the targeted dataset that are already familiar to the attacker.

Query Frequency Selectivity

In many attacks, a query set is essential for calculating recovery accuracy or ratio. However,
real-world datasets often lack existing query logs, necessitating their creation. The query
frequency denotes how frequently each keyword is queried.

* High selectivity: Most attacks exhibit high selectivity, focusing on querying the most
frequently occurring keywords in the dataset.

11

CHAPTER 2. BACKGROUND

* Low selectivity: Conversely, attacks with low selectivity target keywords that appear
infrequently in the dataset.

* Pseudo-low selectivity: This approach involves selecting keywords that have a rela-
tively low overall occurrence in the dataset (typically 10-13 times).

Adversary Type

An attacker can either be a persistent or a snapshot adversary. A persistent adversary only
has access to the response data of a query. Conversely, a snapshot adversary extends their
intrusion to encompass the transcript of interactions between the client and the server.

2.2.2 Overview

Table [2.8| provides an overview of previous attacks, characterized using the topics outlined
in Section Passive attacks often rely on substantial leakage and may involve unreal-
istic scenarios, such as high query frequency selectivity. In contrast, active attacks do not
require pre-existing knowledge and are unaffected by query selectivity. The objective of all
attacks is query recovery, hence it is not mentioned further in the overview. The behaviour is
mentioned as either passive or active (P/A). The type as interference/leakage abuse/injection
(Inf./Leak./Inj.).The column Query Frequency is abbreviated to Q.F..

12

2.2. SE-ATTACKS

Attack Behav. Type Leakage Pre-know. Q.F.
Frequency analysis[11] P. Inf. sp Sample High
Graph matching[/18]] P. Inf. co-oc Sample High
IKK [9] P. Leak. co-oc Sample High
SAP[135]] P. Leak. co-oc & rdp Sample High
Count[4] P. Leak. co-oc & rlp Files High
Refined score[7] P. Leak. co-oc Sgggrlieesl -
LEAP[14] P. Leak. co-oc Files -
Subgraphy [L1] P. Leak. vol & rlp Queries Pseudo-low
Decoding|[1]] A. In;. tvol & rdp Files -
Binary search[23]] A. In;. fid - -
Finite set theory[21] A. In;. fid - -
Single-round[17]] A. In;. rlp - -
Multi-round[17] A. In;. rlp - -
BVA[22] A. Inj. rdp - -
BVMA[22] A. Inj. vol - -

Table 2.8: An overview of previous SE-attacks.

13

Chapter 3

Related Works

Two attacks that perform under the same circumstances as the attack of this report are
summarised and displayed.

3.1 Notation

We present Table 3.1} which lists the notations used in both previous attacks and our own
approach, accompanied by their respective explanations.

3.2 Binary-Search Attack

The Binary-attack was pioneering in proposing an active file-injection attack on an SE-
scheme, leveraging file access pattern leakage. This attack involves injecting files into the
database and observing the response files to discern the searched keyword. Each keyword
corresponds uniquely to a combination of injected files, and the keyword queried can be
inferred from the files returned in the response.

3.2.1 Mechanism of Operation

The base attack employs a standard non-adaptive version of binary search to identify user-
query keywords. Following file injection, each query returns a distinct combination of
injected files. The specific combination of returned files exposes the queried keyword, as
each file combination corresponds uniquely to a single keyword. Remarkably, the attack
can discern a keyword universe of K using merely [log|K|]| injected files.

3.2.2 Construction Methodology

To determine the number of files needed for injection, we simply calculate the logarithm of
the keyword universe size. The algorithm for constructing these files looks as follows:
A visual example illustrating the construction of the attack is provided in Section [3.2.4]

15

CHAPTER 3. RELATED WORKS

Notations | Definitions

m keyword size

k; Keyword with identifier i

K Keyword universe K = {ky,kp, -+ ,ky}

F; File with identifier i

T Threshold

K| Keyword universe size

Col; ith column of the injected file

K; Subset of the keyword universe K; € K

w Number of keyword subsets, for Binary

M; Combination of injected files that not contain d;

l Number of files that contain the keyword &

s Number of injected files needed to contain all the keywords
n Number of injected files

r Keyword frequency in the files

Xi ith building block for new (s, n)-set construction

n_left Number of cells left in a specific column of all the injected files together
PP Positional Pattern (see Sect. 4.3.1|for definition)

Table 3.1: Summary of notations used for our-and the previous-attacks.

Algorithm 1 Binary-attack

Input: Keyword set K = {ky,ka, -+ ,kn}
Output: F = {F,--- ,Fog (g }-

1: fori=1,--- log|K| do
2: Generate a file F; that contains exactly the keywords in K whose ith bit is 1.
3: end for

3.2.3 Binary-Attack with Threshold

When the SE-scheme incorporates a threshold, the attack must adapt to ensure it does not

surpass this threshold length. It achieves this by generating [|K|/T'| subsets, with each con-
taining 7" keywords. These subsets are then injected as files into the dataset. Subsequently,
the attack pairs the subsets into twos and executes the original Binary-attack. The algorithm
for this Advanced Binary-attack is outlined as follows:

3.2.4 Examples

For a visual representation of the construct of the injected files and a better understanding
of the attack, both with and without a threshold, some examples are given.

16

3.2. BINARY-SEARCH ATTACK

Algorithm 2 Advanced Binary-attack
Input: Keyword set K = {ky,kp, - ,kn }
Olltpllt: F= {F] gt ,Fw,Fl gttt 7Fw/2}-
Partition the universe into w = [|K|/T| subsets Kj,-- -, K,, of T keywords each.
fori=1,2,--- ,wdo
Generate F; containing every keyword k € K.
end for
fori=1,2,---,w/2do
F; < Binary — attack(K»;—1 UKy;)
end for

NN R W

Examples illustrating the construction of the injected files, both with and without a
threshold, to provide a visual representation and enhance understanding of the attack, are
now given.

Example 1 As an example of recovering 8 keywords {ky,ky,--- ,ks}, we compute Alg. or
K = 8.The corresponding injected files are shown in Table[3.2] Keywords are assigned into
files: Fy, F», F3, where I denotes the presence of the corresponding keyword and 0 indicates
its absence. For example, if files F| and F, are returned after a query to a token t, we know
the corresponding keyword to t is k.

Files k1 k2 k3 k4 k5 k6 k7 kg

F 1 1.1 1 0 O O O
23 1 1.0 0 1 1 0 O
B 1 0 1 0 1 0 1 O

Table 3.2: An example of the binary-attack, with a keyword universe of 8.

Example 2 As an example of recovering 16 keywords {ky,ka,- - ,ki¢} with threshold 5, we
compute Alg. 2| for K = 8.The corresponding injected files are shown in Table Key-
words are assigned into files: Fy,--- ,F3, where 1 denotes the presence of the corresponding
keyword and 0 indicates its absence. For example, if files Fi and Fs are returned after a
query to a token t, we know the corresponding keyword to t is k.

The subsequent sections of the report will explicitly detail the keywords contained in
each file and their respective order. Table mirrors the contents of Table [3.3] albeit
presented in a different format.

17

CHAPTER 3. RELATED WORKS

Files ki ko k3 ki ks ke ki ks ko kio kit ki kiz ke kis ke
Fi 1 1 1 1 0 0 O 0 O 0 0 0 0 0 0 0
23 O 0 0 0 1 1 1 1 0 0 0 0 0 0 0
F; o 0 0o O O o o0 o0 1 1 1 1 0 0 0 0
Fy o 0o o0 O O O o o o 0 0 0 1 1 1 1
F5 1 1 0 0 1 1 0 0 O 0 0 0 0 0 0 0
Fs 1 0 1 0 1 O 1 0 O 0 0 0 0 0 0 0
F o 0 0o o o0 o o0 o0 1 1 0 0 1 1 0 0
Fg o 0o o O O O o0 o0 1 0 1 0 1 0 1 0

Table 3.3: An example of the binary-attack, with a keyword universe of 16 and a threshold
of 4.

Files COll C012 COl3 COl4

F ky ka k3 kq
F ks ke ks ks
F3 ko kio ki k2
Fy ki3 ke kis ke
Fs ki ko ks ke
Fs ki k3 ks k7
F ko kio kizs ki
F3 ko kit kiz o ks

Table 3.4: The results of Table (3.3|displayed in a more compressed manner.

3.3 Finite Set Theory Attack

In this section, we review the definition of a uniform (s,n)-set, how the Finite Set Theory
(FST)-attack works, how it can be constructed, and its correctness [21]. Afterwards, its
implementation for injections with thresholds are shown, and with it, its implications. The
method to construct a uniform (s,n)-set of a finite set is presented by Liu and Cao [12].

The FST-attack is an attack designed for SE-schemes that utilizes thresholds on its files.
It is an improvement from the Binary-attack as long as the size of the threshold 7 is larger
than 9 and the size of the keyword universe is larger than 27

18

3.3. FINITE SET THEORY ATTACK

3.3.1 Mechanism of Operation

The FST-attack uses uniform (s,n)-set to determine which files will represent which key-
words and in which order every keyword should be injected in every file. The uniform
(s,n)-set is defined as below.

Definition 2 (Uniform (s,n)-set [21]) Leta set K= {k;,ka,--- ,ky } and the subsets K, K>,
-, K, C K be called a uniform (s,n)-set of K (m > (Sfl)) if the following three conditions
are satisfied:

° |K]’:’K2|::’Kn

>

S
* For any s subsets K;,,- -+ ,K;, € {Ky,-++ , Ky}, there is U K;; = K;
=1

s—1
* Foranys—1 subsets K;,,--- ,K; 1 € {Ky,--- ,K,} there is |J K;; = K\{k;}.
j=1

Where n denotes the number of injected files, |K;| the size of each injected file and m the

keyword universe.

3.3.2 Constructing of a uniform (s,n)-set of a finite set K.

We show an example in Table [3.5] The keywords are recovered according to the injected
file response of a query.
Suppose there will be n injections for the uniform (s,n)-set of K. The files (Fy, F,--- , F},)
are divide into m = (s " 1) groups. Each group contains s — 1 F;s. Denotes as:
M, =F,U---UF

1
M,=F U---UF_,,

My =Fz U---UF; |,
here, M; # M;(1 <i# j <m) and

F,e{R, - F}(1<k<m1<I<s—1).
For 1 <i<m,let
ki ¢ M; and k; € M for all j # i.

Form <i<m,let

ke FiNFHN---NF,

The construction works by including k; in each set F; where F; is not one of the sets
making up M;.

19

CHAPTER 3. RELATED WORKS

Example 3 Constructing a uniform (3,5)-set for keyword set K = {ky,ka,--- ,kio}. Let the
5 subset as (F1,F», F3,Fy, Fs) and we denote

M =FiUF, My=FiUF;, Ms=F UF,
M, = F UFs, Ms = F, UFy, Mg = F, UF,
M7 =F,UFs, Mg = F3 UFy, Mg = F53UF;5
Mig=F,UFs
Let

ki & My, ky & Mo, k3 & M3

ky & My, ks ¢ Ms, ke ¢ Me

k1 & M7, ks ¢ Ms, ko & My

kio & Mo

Then F\,F»,Fs,Fy and Fs can be deduced as shown in Table

(3,5)-set

Files COll COlz COlg COl4 COl5 Col6

F ks ke kq kg ko kio
2) ko k3 ks kg ko kio
F3 k 1 k3 k4 k6 k7 k 10
Fy ki k ka4 ks k7 ko
Fs ki ko k3 ks ke kg

Table 3.5: An example of recovering 10 keywords with the uniform (3,5)-set.

A uniform (s,n)-set for a finite set with size m has the following properties, when we

choose m = (Sfl).

Lemma 1 ([21]) Let (F\,F,,--- ,F,) be a uniform (s,n)-set, then we have

—1
o Size. The size of each file F; is |F;| = ("))forlgign.
5

e Intersection. Let r = n— s+ 1, then the size of the intersection of arbitrary r files is
only I: [,_ Fi;| = 1.

20

3.3. FINITE SET THEORY ATTACK

Based on the uniform (s,n)-set, Wang et al.[21] presents a file-injection attack to SE.
We assume the keyword set K = {ki,ka, - ki }.

Their basic attack is to first construct a uniform (s,n)-set {A,Az, - ,A,} based on
the technique presented by Liu and Cao [12]] for the keyword set K such that (Sfl) > nﬂ
and then generate a file set of size n: {F},Fs,---,F,}, where the file F; contains the same
keyword in the A; for 1 <i < n. Those files are then injected into the SE scheme, and the
attack recovers the keyword corresponding to a token by the returned n — s + 1 files. The
correctness of the basic attack is guaranteed by Lemmal[] i.e., there only exists one keyword
in the intersection of n — s+ 1 files.

When the threshold countermeasure is taken into consideration, that is the number of
keywords in each file should be smaller than a threshold T, they proposed an advanced
file-injection attack, aiming at obtaining a minimum #, the number of files that should be
injected. Towards this goal, they choose the minimum # such that

)
5T 3.1)

Moreover, they present look-up tables to determine the optimal s and » corresponding to
the threshold 7 and the number of keywords in different intervals. the look-up table for a
threshold of 200 is displayed in Table

The range of the number of keywords in K; The range of n; Relation between s; and n;

1330 < |K;| <20100 53 <n; <201 si=n;—1
495 < |K;| <1330 16 <nm <21 si=n;—2
252 < |Ki| < 495 n=11,12 5i=ni—3
|Ki| <252 n; <10 §; < ny

Table 3.6: The number of the keywords in the keyword universe K; corresponding to the
relation between s; and n; when T=200.

3.3.3 Examples

Two examples of different attack scenarios are provided to enhance understanding of its
operation.

Example 4 As an example of recovering 23 keywords {ky,ka,--- ka3 } with threshold 7, we
solve the Eq. (3.1) for T =7 and m = 23 and then get a minimumn =8 ands =n—1="1.
The corresponding injected files according to a uniform (7,8)-set are shown in Table

1Tt means the maximal number of keywords in the uniform (s,n)-set is greater than the keyword size m.

21

CHAPTER 3. RELATED WORKS

Note that some parts in files {Fy,--- ,Fs} are left as blank since the number of keywords in
these files has reached 23. Each keyword can be matched by n— s+ 1 = 2 returned files. For
example, if files F7 and Fg are returned after a query to a token t, we know the corresponding
keyword to t is k.

(7,8)-set

Files Col; Coly, Cols Coly Cols Cols Coly

F kan ko3

F, kie ki kis ki ko o k2

Fs ki ki kis ks kis kg

Fy k7 kg ke kio kis kxo

F5 ka ks ke kio ke ko

Fg ka k3 ke ko ki3 ks

F ki k3 ks ks kio kiz ko3
Fs ki ko ky k7 ki1 kie ka2

Table 3.7: An example of recovering 23 keywords with threshold 7=7 by the uniform (7, 8)-
set.

Example 5 As an example of recovering 16 keywords {ky,ka,--- ,ki¢} with threshold 5, we
split the keyword universe into two subsets of sizes 10 and 6, as the number of files needed
for this is greater with a single set of 16 keywords. Next we solve the Eq. forT =5,
m =10 and for T =5, m = 6. Then we get a minimum n =5 and s = n— 1 = 4 for the set
of size 10 and n =4 and s = n— 1 = 3 for the set of size 6. The corresponding injected files
according to the uniform (4,5)-set and (3,4)-set are shown in Table Note that some
columns in files {Cols,Cols} are left as blank as the (s,n)-sets have run out of possible
combinations. Each keyword can be matched by n — s+ 1 =2 returned files. For example, if
files Fy and Fs are returned after a query to a token t, we know the corresponding keyword
totisk.

22

3.3. FINITE SET THEORY ATTACK

(4,5)-set & (3,4)-set

Files COll COlz COl3 COl4 COl5

F ks ks ko kio
P, kq ks ke ko
F ko k3 ke kg
Fy ki k3 ks kg
Fs ky ko ky ko

Fs ki kis ks
F; ki kiz ke
F ki kis ks
Fy ki ki ks

Table 3.8: An example of recovering 16 keywords with threshold 7=5 by the uniform (4, 5)-
set and (3,4)-set.

These examples also elucidate our primary motivation: a single uniform (s, n)-set within
the keyword set, or multiple sets stacked together, may not optimize the effectiveness of a
file injection attack. In other words, the number of injected files n may not be optimal due
to the possibility that the number of keywords in injected files falls significantly short of
reaching the threshold.

23

Chapter 4

Design and Develop

In an ideal scenario, a searchable encryption scheme would neither leak information during
setup and operations nor incur any performance overhead. However, there must be a trade-
off between security and efficiency. It is necessary to determine which type of leakage is
acceptable to maintain adequate performance of the scheme. This chapter will first discuss
the assumed leakage and attack models for the attack proposed in this report. Subsequently,
the logical steps for designing our new attack will be visualized and elaborated upon through
the use of sub-research questions.

4.1 SE Model

The SE model of the SE-scheme encompasses all settings and information that are leaked
during the setup and operation of the SE-scheme’s protocol. This model is assumed to
function as an email inbox. The scheme adheres to the L1 leakage level, as described in
Sect. where only the file identifiers are exposed for each query performed. This paper
assumes a persistent leakage model, where both queries and responses can be observed over
time. The query frequency selectivity is not of importance for this particular leakage model,
as Section 4.2 will detail an active attack model.

4.2 Attack Model

The attacker in this scenario is a malicious server capable of performing file injections on
the client’s database, thereby classifying the attack as an active attack. The attack will
rely exclusively on the file identifiers from the query responses to gather information. The
objective is to recover the underlying keywords of the queries performed by the client.
Although no pre-existing knowledge is required for the attack, having some pre-knowledge
could be advantageous for constructing a relevant keyword set, ensuring that the injected
keywords align with the database’s topic.

We have developed a technical framework that outlines two existing file access leakage
injection attacks, as well as our new attack. The framework details the types of keyword
identification combinations employed by each attack, along with the methods used to con-

25

CHAPTER 4. DESIGN AND DEVELOP

struct injected files (building blocks) and their respective orientations relative to each other.
This framework is illustrated in Fig. @.1]

--

.

=

=

ase

= Increment Static

-

@)

9

=

A 4 Y Y
g
g Binary Binomial Finite Set Theory
<
A A A A A A

2

3

=

-

3 2 Binary search (s,n)-set

£

5

2]

g

H=

-

{ E] Vertical Horizontal

LR

=l

Figure 4.1: Technical framework of existing attacks.

If the technical framework is observed closely it can be found that, besides all attacks
having overlapping qualities, every attack also has a unique quality. To make this more
obvious/clear, the cells of Fig. [4.1] are re-organized in Fig. {.2] The attributes of the
Binomial-attack will be revealed through the investigation of the research questions.

4.3 Research Questions

This section presents findings on how injected files should be constructed to achieve optimal
keyword identifiability in an SE-scheme that leaks its file access pattern. To address this

26

4.3. RESEARCH QUESTIONS

Binomial

Finite Set
Theory

Figure 4.2: Re-organized technical framework for clear quality dispersion.

issue, three sub-research questions are answered first. The synthesis of these sub-questions
will provide the answer to our main research question.

43.1 RQ;;: (s,n)-set Construction

Is there a more optimal method for constructing injection files compared to using
(s,n)-sets?
A complete uniform (s,n)-set generates all possible combinations among the used files
with a frequency of r = n — s+ 1, ensuring an optimal approach for keyword identifica-
tion. However, the construction of these (s,n)-sets still allows for significant improvement.
Specifically, the (s,n)-set can only be utilized in its entirety; no subsets can be made due
to the set’s structure within the files. This issue is clearly demonstrated in Tables [3.5 and
3.7} If the (s,n)-sets are interrupted at any column, the number of identifiable keywords
decreases significantly more than the proportion of columns lost.

To address this issue and enhance the flexibility of working with (s,n)-sets, we intro-
duce Positional Patterns (P.P.) and construct the files based on these patterns. Both the
original and new methods result in complete sets containing the same number of identifi-

27

CHAPTER 4. DESIGN AND DEVELOP

able keywords. However, the (s,n)-set based on P.P. can identify the maximum number of
keywords, even when only half of the set is utilized in the files.

New construction method of (s,n)-sets

To establish the integrity of our new (s,n)-set construct, we initially define a positional
pattern as a distinct relative arrangement of files used to identify a keyword. Each positional
pattern offers up to n variations before repeating itself. If all variants of a positional pattern
are employed, they occupy at most n - r positions across » columns.

Consider the simplest positional pattern where files are consecutive. This pattern gen-
erates variants as illustrated in Table 4.1l

Variants Injected structure

Files P.P. Vi V2 V3 V4 V5 Vg V7 coly coly cols
F X ki ke k7 ki k7 ke
)2 X ki k k7 ky k7 ka
Fy k2 k3 k4 k4 k3 k2
Fs ks ks ks kq k3 ks
Fe 6 k4 k5 k6 k4 k6 k5
F ks ke k7 kz ke ks

Table 4.1: An example of all the variants possible from a positional pattern (P.P.) for n =7
and r = 3, and how they would be injected.

Given that each positional pattern occupies r columns (with exceptions noted for trivial
edge cases, discussed later), patterns can be inserted into the files until the threshold re-
stricts usage to fewer than r columns. For the remaining columns, we consistently employ
positional pattern (P.P. 1) from Table .1 Preceding columns in front of these columns
can be filled with complete positional patterns, utilizing all variants of the pattern across r
columns. See Table B.2]for a visual clarification.

Proof

For our proof, we start by assuming 7 = x; - ¥ 4+ 1 and generalize from there. In the case of
T = x;-r+ 1, one column is left for the new positional pattern. In this column, there are
three possible scenarios, where n_left stands for the number of free spots in the column
available for keyword combinations:

1. n_left > r: inject the variant starting from on the first available spot.

28

4.3. RESEARCH QUESTIONS

Files
F
23
Fs
Fy
Fs
Fs
F

PP.3 P.P. 4 PP.5 PP. 1

col; colg coly | colyy colyy colyy | coliz coliy colis | colyg \ coly7 \ colig
kis kis ko | kn ks kog | kg kg ks ki : ks : ke
kis kie ko | ko ks ks | ko ko ka2 ki : kq : ka
kie ki7 koo | ks ks kor | ka0 kai k33 ki : ks : ka
ki kig kot | ks kos kog k31 k3 ka4 ky : k3 : k
kis kis ko | ko ks ko k2 ks k3s ky : k3 : ks
kie kio koo | ks ke kap | ko ka3 ka ky : ke : ks
ki ko ki | ks kop kog kso ksa k3s ks 1 ke 1 ks

| | | | | |

+ + + + + +

Xir Xor x3r X4r X4r+2
xqr+1 Xsr

Table 4.2: An example of the construct of the injected files for x4r < T < x5r, n =7 and
r = 3. Where up till the last positional pattern (P.P.) any positional patterns can be used
to make unique combinations and the last positional pattern consists out of consecutive
files (P.P. 1). If T = x;r, the threshold ends precisely in between positional patterns. If
xir < T < xjy1r, P.P. 1 should be used from x;r onward. All columns in P.P. 1 can identify %
keywords.

2. n_left < r: inject the variant starting from on the first available spot and continue at
the beginning of the next column.

3. n_left =r:n/ris aan integer, inject the last variant to fully occupy the column.

The first scenario will ultimately progress to either the second or third scenario, both
of which are illustrated in Table In both scenarios, the column will eventually contain
" combinations. Let’s now consider 7' = x; - r + 2, following from the previous scenarios
which concluded with either scenario 2 or 3.

* In the case of scenario 2: n and r are relatively prime. The variants will not repeat
themselves for - r spaces, equivalent to =~ = r columns. This means that variants
will not repeat until 7 = x; - r +r = xj41 - 1.

In the case of scenario 3: ¥ is an integer, which makes n/r variants of the positional
pattern. Repeating the same steps from the 7" = x; - r 4+ 1 scenario, starting from a
different unused position point, will not lead to repetition until all variants are utilized,
totaling n variants. Together, these variants occupy 7 - r spaces, equivalent to = = r

columns.

Repeating this for the next 7 will eventually lead to T = x; - r 4 r, after which the rea-
soning can be started from 7 = x;, | - r+ 1 again.

29

CHAPTER 4. DESIGN AND DEVELOP

P.P.1
Files colig \ coly7 \ colig PPl
F . ki ; k7 ; ke e Files colig \ coly7 \ colig
B | K : ky : ky | - F | k' ks 1 ke
o3 ... ki : k3 : ky - 2 e ki : ko : ke
Fy el ks : ks : ks e F; el ki : ks : ks
Fs e ks : k3 : ks e Fy . ks : ko : k3
Fs e ks : ke : ks e Fs e ka : ks : k3
F . kq : ke : ks e Fs e ky : ks : ke
I I I I l I I I
+ + v + + v + +
T = X4r x4r+2 T = x4r x4r—+2
xqr+1 Xsr xqr+1 XsF
(a) Second scenario (b) Third scenario

Table 4.3: Construction of the last 7 (mod r) columns of an (s,n)-set under the two
different possible scenarios, guaranteeing ° identifiable keywords per column.

This concludes that for any 7', the described positional pattern P.P.1 can consistently
identify °- keywords within a single column. By consistently using this positional pattern in
the last 7 (mod r) columns, we guarantee the identification of keywords per column.

edge case

if n and r are co-prime (gcd(r,n) = 1) all positional patterns have n variants and take r
columns. If ged(r,n) = cp, where c¢p > 1, there is at least 1 positional pattern that has less
than n variants. namely v = n/cp variants. If ¢p/2 is an integer, there is also a positional
variant which has v = n/(cp/2) variants, and so on. These take “" columns per pattern. All
other positional patterns have n variants and hence r columns. Note * still holds for cp = 1.
The fact that there can be one or two positional patterns with less than r columns does not
pose any trouble as P.P. 1 is always used as last positional pattern. Any positional pattern
can be used for the construct of the files as long as the last pattern is the P.P. 1 pattern, to
guarantee > keywords per column.

Conclusion

To conclude, with the new construct of the (s,n)-set, every column can identify (’:) key-
words. Meaning, if x columns of the (s,n)-set are to be used, [x- ()] keywords can be
identified. On the contrary to the old construction method, where most of the keywords will
be lost due to its wide spread placement of its keyword identifiers.

30

4.3. RESEARCH QUESTIONS

4.3.2 RQj, : File Interrelation

How can the interrelatedness of injected files be enhanced beyond the current meth-
ods?

Both the Binary- and FST-attack combine file sets sequentially to achieve the desired num-
ber of identifiable keywords. This stacking approach results in files from different sets
lacking matching keywords between them, leading to a loss of possible combinations and
an increased total number of injected files required. The re-implementation of the Binary-
and FST-attack on the Enron dataset [8] demonstrates how these attacks stack their sets
in the injected files, as visualized in Tables 4.4| and This stacking is necessary since
traditional (s,n)-sets cannot exceed the threshold and must be fully utilized.

However, with the new construction method introduced in Section [4.3.1] this limitation
is overcome. The (s,n)-set can now be terminated at any desired column without losing
keywords from the remaining portion of the (s,7n)-set. This enhancement ensures no com-
bination loss between injected files, thereby reducing the need for additional files. Table
[.6]illustrates how the construction of injected files is now vertical rather than horizontal,
utilizing all files collectively. The parameter n in the (s,7)-set now consistently represents
the total number of files to be injected.

31

CHAPTER 4. DESIGN AND DEVELOP

Files Coliy Coly --- Colgs Colgg --- Colyg Coligg -+ Colyy

F ki ky -+ kes kee -+ koo kioo -+ koo

Fe fksoor kson2

Fy ki ky -+ kas7 kasg o+ kago
F34 ki ks .- kas; kasg
Fus | kaozs kazza -+ kasao kaszo cc- kaeel
Fioo | kapzs kazzs -+ kasoo kus3
Fioz | kaesr kases -+ kaors kaoto -+ ksoso
Fizo | kasoa kasoa -0 kaorg k920

Table 4.4: The binary search structure of the injected files in the Binary-attack for 5050
keywords, with a threshold of 200.

32

4.3. RESEARCH QUESTIONS

(19,21)-sets & (18,20)-set

Files Coly Col, Colgs Colgg Coliggp Colig1 -+ Colyo
Fio| knat kna ki20s k1206 k1330

Fy ki ka kes ko6 k190

Fn | kant koan kasss k236 k2660

Fy | ki3 ks ki39s k1396 k1520

Fuz | kssor kssoz ksses k3seo k3990

Fe3 | _kace1 _ kace2 kaos kazoe kagso

Fea | kaoso kagel ksooa ksoos

Fg3 | k3oo1 k3992 kaoss __ kaose

Table 4.5: The (s,n)-sets structure of the injected files in the FST-attack for 5 050 keywords,

with a threshold of 200.

33

CHAPTER 4. DESIGN AND DEVELOP

(74,76)-set
Files COll COlz s COZ65 COlG6 s COllgo C01191 s Colz()()
2} ki ks -+ kieao kier2 -+ kazgo kazoo -+ ksoa2
By |kis ko o0 kit kiess o+ kagos kagoo -+ kso49
Fo ko ko -+ kiets kiero - kagoo kagao -+ ksoa9
Fpo |kso kst -+ kiets kiess -+ kagao kag3o
Fyz | koo kao -+ kiete kiezo -+ kagzo kg3l
Fis ks ks oo kient kierp o0 kazog kages

Fr7

Fg3

Table 4.6: The updated (s,n)-set structure of the injected files in the for 5050 keywords,
with a threshold of 200.

Conclusion

Utilizing the newly defined construction method of the (s,n)-set (RQ; 1), the (s,n)-sets can
be merged into a single comprehensive (s,n)-set. This integration enhances the potential
for combinations and optimizes the utilization of available columns. Unlike the horizontal
buildup typical of the Binary- and FST-attack methods, a vertical approach demonstrates
efficiency by requiring fewer files to achieve the same number of keywords.

4.3.3 RQ;3 : Space Efficiency

How can maximum keyword turnover per space be achieved across all injected files?

Keyword identification logically takes the least space when it is represented by as few files
as possible, the minimum being one. However, such scenarios offer limited unique com-
binations since each file can only be used once. Generally speaking, within the bounds
of realistic datasets, a higher frequency for keyword identification allows for more com-
binations in the files. For instance, a (60,65)-set can generate more combinations than a

34

4.3. RESEARCH QUESTIONS

(63,65)-set, despite the latter requiring less space per keyword. As seen in a vertical
construction of the (s,7)-set in the files yields the most possible combinations, compared to
other (s,n)-sets with the same frequency.

To optimize turnover per file space and enhance interrelation between files, we introduce
our own incremental [r,n]-set. This set comprises multiple (s,7)-sets, constructed using the
updated method defined in See Table .7 for a visual representation.

Increment [3,65]-set

(65,65)-set (64,65)-set (63,65)-set
Files COl] COlQ s COl(,s COlﬁﬁ s COllgo COl]g] o COlz()o
F ki kee -+ konis o146 <00 kagit kg e ks049
Py ko kga - kaizs 2163 --- kagzo kas3i
F» koo kgs .-+ ko136 ko164 <00 kagz1 kg
Fi kap klos -+ koot o184 -0 kagst kagso
Fy3 ka3 kioe -+ kooo2 2185 o0 kagsa kags3
Fes kes kiog - kari4 k2207 -0 kagzt kaozy

Fso

Fg3

Table 4.7: The increment [r, n]-set structure of the injected files for 5050 keywords, with a
threshold of 200.

Increment [r,n]-Set

The main idea of the increment [r,n]-set is to optimize the available space in the injected
files, which are defined as follows.

Definition 3 (Increment [7,n]-set) Let A be a set, then the subsets

A1,Ap,-++ A, C A are called an increment [r,n]-set of A if the following conditions are
satisfied:
o |A1| = ‘Az‘ = ... = ’An—r—i—l)

35

CHAPTER 4. DESIGN AND DEVELOP

e Elements in A1,As,--- ,A, are separated into r blocks such that the i-th (1 <i<r)
block of Ay,Az,- -+ ,A, forms a uniform (n— i+ 1,n)-set of the union set of the i-th
block of A1,As, -+ ,Ap.

Recall that for a uniform (s,n)-set, a keyword can be uniquely recovered by n — s+ 1 re-
turned files. Therefore, the keywords in the i-th block of an increment [r,n|-set are deter-
mined by n— (n—i+ 1)+ 1 = files, since the i-th block is a uniform (n —i+ 1,n)-set
by definition.Therefore, the keywords in the first block can be represented by one file, the
keywords in the second block by two files, and so forth. This concept is referred to as an
increment.

We denote the i-th block of A; by Aj- for 1 < j < n, then we get the following corollary
which follows from Lemmal[Il

Corollary 1 If (A,Az,- - ,A,) is an increment [r,n]-set of A, then we have

: n—1
A=)
|]| n—i

for1 <i<rnl1<j<n

Therefore, we know that the size of A; is |A;| = ¥5_; (*_}) for 1 < j < n. The main idea
of our basic file-injection attack is to construct an increment [r,n]-set, instead of complete
independent (s,n)-sets spread over different chunks of files, like FST does. We are aiming
at reducing the total number of injected files n to as few files as possible. Keywords are
recovered according to the different combinations of returned files (details are present in

Section [4.3.3]).

Example 6 We give an example of an increment [r,n]-set of the keyword set {ky,ka,--- ko3 }
with threshold seven for a comparison to the example in Table We compute r and the

minimum n such that
" n—1
Y] <7
i=1 \"n 1

£)

i=1

“4.1)

and then we get r =3 and n = 6. The increment [3,6]-set of the aimed keyword set is
shown in Table Compared to Example 4} it reduces the number of injected files from
8 to 6! Every space in these files is filled with keywords, while still controlling the total
number of keywords within the threshold. The construct of the increment [3,6]-set in Table
H.8 only has a uniform (6,6)-and (5,6)-set. The (4,6)-set is disrupted by the threshold. In
the next second we show how a ratio of an (s,n)-set can identify the same ratio of keywords,
compared to a complete (s,n)-set.

A trick to find the optimal n to Eq. is to try r for values in {1,2,---} in a row, and
a general technique to construct an increment [r,n|-set for m keywords with threshold T is

presented in Sect.

36

4.3. RESEARCH QUESTIONS

(6,6)-set (5,6)-set (4,6)-set

Files COll COZZ COl3 COl4 COl5 COl6 Col7

F ki ki ko kizs kis ki k2>
B ka kn kn ke kie ko k2>
F; k3 ks ki kis kir ka ka2
Fy ka kg kio ke kig kg ko3
Fs ks ko ko kis kim o ko ka3
Fe ke ko ko kie kis ki ka3

Table 4.8: An example of recovering 23 keywords with threshold 7=7 by an increment
[3,6]-set, which is divided into 3 blocks. Keywords in the Ist, 2nd, and 3rd block can be
recovered by 1, 2, and 3 returned files, respectively.

Construction of Increment [r, n]-Set

In this section, we present a way to the construction of increment [r,n]-set of a finite set,
which uses the method of constructing uniform (s,n)-set proposed in Sect. as a sub-
routine.

Given as input the size of the keyword m and threshold of the number of keywords in
a file T, we aim to construct an increment [r,n]-set of the keyword set with the minimum
n such that (1) the size of each file should not be greater than the threshold 7', and (2) the
maximal number of keywords that those files can recover is at least m. To maximize the
recovery ability under condition (1), our overall idea is to construct r uniform (n —i+ 1,n)-
sets by the technique shown in Sect. [3.3]for 1 <i < r and return the first 7 columns as
the aimed set. Then by Lemma|l| we know the first r — 1 blocks take Z;;ll (',’lj) columns
and can recover Z;;ll (n'i l.) keywords in total. The last block takes the rest 7' — Z;;ll (’::)
columns and allows to recover |n/r- [T — Y/~ ! (”*I)U keywords. Then the condition (2) is

i=1 \n—i

equal to

=/ n n = n—1

Z(,)+ : TZ(> > m. 4.2)

i=1 \t—1 r i=1 \"—1
We proceed in the discussion of r starting from 1 to T'. For each r, we record all the possible
n to the Inequality 4.2] with the minimum one as the optimal solution. For simplicity of
exposition, we denote NK(r,n) as the left part of the above inequality. The whole process
of constructing an increment [r,n]-set is present in Algorithm 3|

Going back to Example[d] we compute the Inequality[4.2Jto get candidate =[(2,7),(3,6),(4,7)].

Then we know the optimal increment [r,n]-set is r = 3, and n = 6.

37

CHAPTER 4. DESIGN AND DEVELOP

Algorithm 3 Construction of increment [r, n-set

Input: Number of keywords m, threshold T
Output: An increment [r,n]-set of the keyword set {ki, k2, ,km}

1: Initialize an empty candidate set: candidate <]
2: forr=1toT do
3 Solve n from NK(r,n) > T and denote the minimum 7 as ng
4 Append (r,ng) to candidate
5: r=r+1
6: end for

7: Find (r,ng) with the minimum ng and corresponding r from candidate

8: fori=1tordo

9 Construct a uniform (ng — i+ 1,n9)-set of keywords with index from Z;;ll (™~ to

no—j
. (Z?):;) by the technique proposed in Sect. m

10: end for
11: Output the first T columns of the created files

Conclusion

The increment [r,n]-set optimizes its space consumption by initiating keyword identifica-
tion with a frequency of one and incrementally increasing this frequency once no additional
combinations can be made. The FST-attack requires 83 injection files to identify the entire
Enron dataset, whereas the increment [r,n]-set requires only 65 injection files. This effi-
ciency is achieved by constructing the (s,n)-sets vertically rather than horizontally ,
utilizing the new construction method for the (s,n)-sets (RQ1.1)).

4.3.4 RQ; : File-Injection Attack

How should injected files be constructed to optimise the number of identifiable key-
words, given the presence of file access pattern leakage?

In this section, we present our new file-injection attack to searchable encryption schemes.
It is based on our new definition of a subset family of a finite set, called increment [r,n]-set.
Our main technique is to construct an increment [r, n-set of the keyword set. Compared to
the uniform (s,n)-set used in [21]], the increment [r,n]-set enables us to put more keywords
in the injected files, thus significantly reducing the number of injected files. Our attack is
based on binomial calculations to fit in as many keywords as possible. The attack can be
seen as multiple (s,n)-sets next to each other, however the formatting of these (s,n)-sets
are different compared to the ones from FST. It outperforms both the basic and advanced
FST-attack at all times, in terms of number of injections needed for the same result.

Binomial-Attack

Given the keyword universe K = {kj,k,,--- ,k;, } and the threshold T as the maximal num-
ber of keywords in each file, we present our file injection attack in Algorithm |4 which is
based on the increment [r,n]-set of the K.

38

4.3. RESEARCH QUESTIONS

Algorithm 4 Binomial-attack

Input: Keyword set K = {ky,kp,--- ,kn}, threshold T', a query token ¢
Output: Keyword corresponding to the token ¢

Generate an increment [r,n]-set Aj,A,, - - ,A, of K with threshold T by Algorithm
for j=1tondo
Let a file D; contain the same keywords as A;
end for
Inject files {F1, F»,- -+, F, } into the SE scheme
return the corresponding keyword to ¢ according to the returned i files(1 <i <r)

A o T

Now that the structure of the attack is understood, we can proceed to calculate the re-
quired number of injections to achieve the desired number of identifiable keywords. There
are multiple formulas to calculate the required number of injections. The appropriate for-
mula to utilize depends on at which (n — r+ 1,n)-set the threshold will limit the attack from
injecting more combinations.

Deciding the Number of Injections

The attack always starts with » = 1 and progresses incrementally from there on forth. At
some point within an (n —r+ 1,n)-set, the threshold will limit the number of keywords it
can inject. Refer to Table 4.8 for a visual representation.

By Eq. we know the number of keywords an (n — r+ 1,n)-set can utilize for a
certain threshold, under a specific . When the threshold is reached in the (n — 1,n)-set,
where r = 2 the equation can be written in term of » like the following:

2K
(K, T)=—— 4.3
Similarly to the (n — 2,n)-set, where r = 3, the equation becomes:
—(3+4+2T 3+2T)2+24K
AT = —BF “Vé)+ (4.4)

The formulas F4(K,T) and beyond are only of relevance when the threshold is a signif-
icant portion of the number of keywords that need to be injected.

Deciding the Injection Formulas

The next step involves determining the appropriate utilization of each formula for different
scenarios.

To determine the appropriate value for r in the increment [r,n]-set, we must assess
whether the threshold allows for additional keywords in the files following a uniform (n —
r+ 1,n)-set. This evaluation must be conducted for each r, commencing at r = 2. By
Lemma [1| we know the first two blocks utilize a total of n columns. Therefore if T > n,
the (n— 2,n)-set can also be used. However, the value of n remains unknown at this stage.

39

CHAPTER 4. DESIGN AND DEVELOP

To address this uncertainty, we substitute n = 7" into F>. This yields the threshold at which
both the (n — r+ 1,n)-sets in the increment [2,n]-set become uniform and precisely meet
the threshold. If the keyword universe exceeds this value, the attack will require more than
T injections. Conversely, if the keyword universe falls below this value, fewer than T in-
jections are required. Consequently, there will be residual space in the injected files for (at
least) the (n —2,n)-set. The minimum value of K to only be able to build up to an Increment
[2,n]-set is outlined as follows:
) 1, 1
Ming,(T) = T+ =T 4.5)
2 2
F, should be applied when the outcome of Minp,(T) < K. Alternatively, the formula of
Minp, determines whether F3 or F; should be utilized. Following the same procedures as
before, we get:

) 24T 14+v8T -7 T-1
Ming,(T) = 3 5 + 3 (4.6)

These formulas already hold an improvement over FST, since FST had a lookup table
with overlapping values and no clear points to choose from. Using our previous example 4]

we see Minp,(7) > 23 and Ming,(7) < 23. This means we need to use F3, which results in
F3(23,7) = 6 files.

40

Chapter 5

Experiments and Results

This chapter will detail the setup and execution of the experiments, and demonstrate through
their results how our attack is superior over previous file-injection attacks based on file
access pattern leakage.

5.1 Experimental setup

The performance of the attack is stated by the number of injected files necessary to be able
to identify every keyword in the dataset, based on the injected files returned in the response
of a query. Logically, fewer files is always better as it costs less effort and most importantly,
the chances for detection are slimmer.

To conduct the experiments we have first looked at previous studies and how they define
their performance. In previous studies, the Enron dataset [8] served as a benchmark for
attack performance. The Enron dataset has 30 109 files containing together 5050 unique
keywords. The average file contains 90 keywords. Only 3% of the files in the Enron body
contain more than 200 keywords, making it a good choice for setting the threshold. The
trade-off of setting a limit of T=200 keywords per file results in losing a few files from
honest clients to protect them from server exposure, requiring the server to inject many
more files to achieve the same results.

After covering the Enron dataset, the threshold remains constant at T=200, but experi-
ments are conducted on datasets of varying sizes, containing up to 20 000 unique keywords.
The significant performance difference becomes increasingly evident during this phase.

Following the investigation of different dataset sizes with a threshold of 200, various
thresholds are implemented to examine the relationship between performance and thresh-
old values. These experiments aim to demonstrate that the Binomial attack consistently
outperforms other methods, irrespective of dataset size or threshold.

5.2 Performance on the Enron Dataset

Performing the attack on the Enron dataset results in the following steps:

41

CHAPTER 5. EXPERIMENTS AND RESULTS

1. Ming,(200) = 20100, which is greater than the keyword universe (K=5050), hence
we have to try a higher Ming, .

2. Minp,(200) = 2034, which is smaller than the keyword universe, hence we will con-
tinue with F3(K,T)

3. F3(5050,200) = 65

Hence, when applied to the Enron dataset, our attack requires only 65 files to cover all
the keywords. In contrast, the Binary-attack necessitates a staggering 130 files, twice as
many as our method, while the FST-attack requires 83 files to achieve the same coverage.
Thus, in this real dataset scenario, the FST-attack requires 28% more injections than the
Binomial-attack.

5.3 Performance under a Threshold of 200

When the threshold remains consistent, but the dataset varies, the Binomial-attack consis-
tently outperforms the FST-attack with at least one injected file, regardless of the dataset
size. See Fig. for the performance differences. With a threshold of 200, the most
substantial disparity occurs in datasets ranging from 7 200 to 7400 keywords, where the
FST-attack requires 33 more injections compared to the Binomial-attack. This represents
a 38% increase in injections needed by the FST-attack for equivalent results. Furthermore,
in scenarios where the dataset size exceeds 20 000 keywords, the FST-attack regresses to
its initial performance level on top of where it was left, necessitating additional injections
beyond those required at 20 000 keywords. This phenomenon will be visually evident in the
upcoming section in Fig. [5.2]”

400
350
300
250
200
150

Injections needed

—_
wn O
S O

(=]

0 5000 10000 15000 20000
Keywords in the dataset

------ Binomial FST Binary

Figure 5.1: Performance of different injection attacks under a threshold of T=200.

42

5.4. PERFORMANCE UNDER DIFFERENT THRESHOLDS

5.4 Performance under Different Thresholds

To provide a comprehensive overview of the differences between the attacks, Fig. [5.2]il-
lustrates the comparative performance of the Binary-, FST-, and Binomial-attack across the
thresholds T = {100, 300}, with datasets ranging up to 20 000 keywords.

The results consistently demonstrate the superiority of the Binomial-attack over the
FST-attack across various thresholds and dataset sizes.

0 5000 10000 15000 20000 0 5000 10000 15000 20000

Keywords in the dataset Keywords in the dataset
------ Binomial FST Binary ===== Binomial FST Binary
(a) T=100. (b) T=300.

Figure 5.2: Performance of file-injection attacks under different thresholds.

Performance Difference Explanation, FST- and Binomial-attack

The difference in performance of the base attack follows from the different s values used
for certain keyword universes. FST takes the s value for which it can make the most combi-
nations, under the condition that all possible combinations are utilized. This is due to their
construction method of the set, where not every column can identify * keywords, hence they
need the set to be complete of all combinations. this is a huge restriction. If more keywords
can be identified by making subsets of the same keyword universe, the attack will do so, as
long as the subsets all consist out of complete (s,n)-sets. An example from the FST-paper
[21] (p. 8) is given where the Enron dataset (5050 keywords) under a threshold of 200,
can be identified with a single (s,n)-set with n = 101 and s = 100. However, if subsets are
made, multiple complete (s,n)-sets can be utilized which need less injections combined:
four subsets with n =21 and s = 19. The FST-attack does this for every keyword universe,
using the best complete (s,7)-set combinations.

The Binomial-attack has proven that the (s,7)-sets do not require to be complete to still
be able to identify a portion of the keywords, i.e. the ratio of the complete set being used
can identify the same ratio of keywords, compared to what the complete (s,n)-set could
identify. Since this is possible, it is always the best choice to start with an s as close to
n as possible and continue with a lower s once all the combinations are made. This is the
equivalent to start identifying a keyword with a single file and increasing the number of files
a keyword is identified with once no more unique combinations are left to make.

These differences explain why there is such a difference in performance in these attacks.
When they are far apart, The FST-attack uses multiple subsets with high frequencies to

43

CHAPTER 5. EXPERIMENTS AND RESULTS

identify keywords, which is not space efficient. The Binomial always uses subsets with as
low as possible frequencies, where different subsets never have the same frequency. FST
does have multiple subsets with the same frequency in a lot of occasions. Once the FST
attacks starts straightening out, it is solely using the frequency of two files per keyword,
however there are still multiple subsets. Once it gets to the closest point possible to the
binomial attack it has exactly one complete (s,n)-set with a frequency of two files per
keyword. Binomial still performs better in this scenario as it has also a subset of frequency
one, which can identify more keywords in the same space as a frequency of two.

44

Chapter 6

Countermeasure & Mitigation

This chapter will cover the padding countermeasure of the SE-scheme. First the coun-
termeasure is explained, after which the effects and its calculations are given. Once the
consequences of this countermeasure are clear, a mitigation is proposed called the adopted
Binomial-attack.

6.1 File-injection Attacks on SE Schemes with Keyword
Padding

Keyword padding serves as a countermeasure within the SE scheme aimed at obscuring
query results by returning more files than necessary. In addition to the files containing the
queried keyword, the scheme also includes random files from the dataset in its response.
In this section, we delve into the consequences of padding and compare the implications
between the FST- and Binomial-attack methodologies. Previous studies, such as the FST-
and Binary-attack, explored this topic assuming a file dataset of 30 109 files and a keyword
universe of 5050 keywords. The scheme adopts a threshold of 200, and on average, a query
yields matches on 560 files, with an additional 60% of random files included (336 files).
Section delves into the quantitative effects of padding, while Section presents a
visual exploration of these effects.

6.1.1 Calculating the Effects

To assess the impact, three key steps are necessary. Firstly, we must determine the average
number of additional injected files returned as a consequence of their selection for padding.
Subsequently, we can proceed to determine the average number of keyword combinations
we can generate. These combinations represent distinct file arrangements utilized for the
unique identification of a single keyword, collectively referred to as the candidate set for a
query. Finally, the last step entails re-executing the attack on the candidate set to pinpoint
the specific keyword utilized.

45

CHAPTER 6. COUNTERMEASURE & MITIGATION

Injected Files from Padding

To calculate the average number of injected files chosen during padding, we can utilize the
hypergeometric distribution function. Our population size is 30109 — 560 = 29549, since
the matched files for the query can not be chosen for the padding. The number of successes
will be F3(5050,200) = 64.8 ~ 65 files, minus the average injected file response, leaves
65 — 3 = 62 successes. The sample size is 336. We can calculate the probabilities for
all possible numbers of successes in the sample and then multiply each probability by the
corresponding number of successes. The results are then summed to determine the average
number of injected files (p) chosen in the padding:

e lers .
pP= Z 20549 (6.1)
n=1 (336)

Average Candidate Set Size

The average candidate set size is determined by three key factors associated with each
(n—r+1,n)-set used to identify keywords. The first factor considers the number of possible
combinations within the given (n — r+ 1,n)-set when r+ p injected files are returned. The
second factor accounts for the ratio of combinations utilized in that (n — r 4 1,n)-set com-
pared to its total possible combinations. The third factor represents the ratio of identifiable
keywords in the (n — r+ 1,n)-set to the total number of identifiable keywords. Multiply-
ing these three factors together yields the average candidate set size per (n —r+ 1,n)-set.
Summing the results across all (n — r+ 1,n)-sets provides the overall average candidate set

size:
Ko(r+p\ KPS

r=1

Number of Extra Injections Needed

A straightforward method to determine the number of extra injections required is to analyze
on a per-query basis. By considering the average candidate set size per query, we can exe-
cute our attack specifically for that particular candidate set to recover the searched keyword.
While this approach is not optimal, it suffices for comparison purposes with the FST-attack.

6.1.2 Visualising the Effects

This section will demonstrate the effects of padding on both FST and the Binomial-attack.
While the Binomial-attack may not always appear significantly better based solely on the
average candidate set size per query, it’s important to consider that FST is generally less
efficient, requiring more injections to cover the same candidate set. Here, we present the
results for the schemes with a threshold of T={100, 200, 300}.

46

6.1. FILE-INJECTION ATTACKS ON SE SCHEMES WITH KEYWORD PADDING

Targeting the Whole Dataset

In Fig. [6.I] we see the average sizes of candidate sets for different dataset sizes. The
corresponding number of extra injections required for the candidate sets is illustrated in
Fig. [6.2] While there is a small dataset size range where the Binomial-attack requires one
more injection than the FST-attack, FST generally performs worse for all other dataset sizes.

7 5
6 24
$s £
k] g
24 g3 e
3 3 !
g’ 52 I—
] =]
< 2 £ i
1%} S PN I |
4)
1 '
1
O O —_—]
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Keywords in the dataset Keywords in the dataset
------ Binomial FST ------ Binomial FST

Figure 6.1: Candidate set size per query, Figure 6.2: Extra injection size per query,
T=200. T=200.

Fig. [6.3|demonstrates that the candidate set for the Binomial-attack frequently exceeds
that of the FST-attack. However, this discrepancy is mitigated by the fact that the Binomial-
attack requires fewer injections to achieve the same candidate set size. Consequently, the
Binomial-attack never requires more injections for these candidate sets than the FST-attack
does for its own candidate set, as illustrated in Fig. [6.4]

-
w

=N
o~

(=] _— (8] w £ wn
Number of injections
=1 — ~
L -

]
|
|
|
i
]
)
)
)
)
|
|
]
]
|
|
|
]
]
)
)
)

w

Candidate set size

0 5000 10000 15000 20000 0 5000 10000 15000 20000
Keywords in the dataset Keywords in the dataset

T ====- Binomial FST

----- Binomial

Figure 6.3: Candidate set size per query, Figure 6.4: Extra injection size per query,
T=100. T=100.

With a threshold of 300, the Binomial-attack maintains an average candidate set slightly
above 1, as shown in Fig. [6.5] However, this does not impact the average number of
injections, as depicted in Fig. [6.6] The Binomial-attack only requires more additional
injections on average between dataset sizes of 13,600 and 18,300. Beyond this range, the

47

CHAPTER 6. COUNTERMEASURE & MITIGATION

FST-attack consistently requires more additional injections, whereas before this dataset size,
both attacks require the same number of additional injections.

7 5
6 24
g E
2 g
2 —
g 4 .- E 3
fg 3 .r - o 2
=~ 1 @ ===rF==
ERp) ! E |
o e e mem======T"" ! =1 ,_____'
| ——————Z=o=oons -]
]
0 0]
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Keywords in the dataset Keywords in the dataset
----- Binomial FST ====- Binomial FST

Figure 6.5: Candidate set size per query, Figure 6.6: Extra injection size per query,
T=300. T=300.

Divergent Behaviors Explained

When looking at the consequences of padding, the different differences can be explained
with the frequencies the attack uses and the number of injections that are needed for the
same results. The number of extra injected files that are returned due to the padding is
similar or higher for the FST-attack compared to the Binomial-attack, as it needs more
injections for the same result, hence the odds of injected files being chosen in the padding
is greater for FST. However, since the FST-attack uses more files for the same results, this
also means the spread of a keyword combination is greater compared to the spread of the
Binomial-attack. Since there is a greater spread, the candidate set is slimmer when the
number of injected files in the padding is the same for both the FST- and Binomial-attack.
This spread can become so inefficient that (on average) an injected file in the padding will
have no influence in the candidate size. As can be seen in clarification of Fig. where
the Binomial attack immediately peaks when the first extra injected file from the padding
is introduced. The reason FST’s line is always on an integer, is due to the fact it always
uses a frequency of two for it’s subsets once the line moves away from its candidate set
size of one. The Binomial-attack has three different frequencies in it’s construct at that
point which gives an average of all the three frequencies. The reason FST’s second vertical
peak is before the Binomial attack’s vertical peak is due to the fact the Binomial-attack
can identify more keywords with less injections. The peaks are the moment the average
injected files in the padding becomes two (n = 134), but the Binomial-attack can identify
more keywords with that number of injections, hence it is further in the graph.

48

6.1. FILE-INJECTION ATTACKS ON SE SCHEMES WITH KEYWORD PADDING

-
pras
-

Candidate set size
w
=g
o
o
(=N
=
=]
(1)
Pas
]
[\

Frequency to 2

Padding to 1

0 5000 10000 15000 20000
Keywords in the dataset

------ Binomial FST

Figure 6.7: Candidate set sizes per query when padding is applied, T=200.

Targeting a Subset of the Dataset

When targeting a subset of the keyword universe, fewer injections are required to cover
the target set, benefiting both attacks. However, not every query relates to a keyword in
the target set. When combined with padding, this may not pose an issue if we assume a
consistent average number of injected files in the padding. For instance, if two injected
files are returned and the average padding injection is also two, it suggests a search for a
keyword not in the target set. However, if a return of two injected files could also indicate
a search for a keyword occurring once or twice, all searches become candidate sets. While
these candidate sets may not contain actual keywords from the target set, distinguishing
beforehand is impossible. The only option is to re-perform the attack on the candidate set.

In this scenario, our attack performs notably worse. This is because the Binomial-attack
initiates with an (n,n)-set. FST does not follow this approach, resulting in fewer potential
combinations when all preceding (n — r+ 1,n)-sets are included in the candidate set, see
Fig. Fig. illustrates the number of extra injections required when searching for a
keyword that is not in the target set.

49

CHAPTER 6. COUNTERMEASURE & MITIGATION

7 5

6 .. @
85 ! N
< ! 3
24 Fomm— : 23 e
<3] s H
El Pt E T 52 I'““““'
32 = E : | || \

] =
e U
0 ! 0 !
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Keywords in the dataset Keywords in the dataset
""" Binomial FST =====- Binomial FST
(a) T=100. (2) T=100.

5 5
g* £t
E :
% 3 It ettt =3
E i 3
52 | 52 i
=] =]
= i E 1
h v . Z1 :

0 5000 10000 15000 20000 0 5000 10000 15000 20000
Keywords in the dataset Keywords in the dataset
----- Binomial FST ===== Binomial FST
(b) T=200. (b) T=200.

5 5
g* £
L] g
23 mmmmm= g3
2] =
'g : 2 2t o | ee———aa)
52] 2 T
=] E H
= 1 H '
O] Z

| r N [

0 5000 10000 15000 20000 0 5000 10000 15000 20000
Keywords in the dataset

S

Keywords in the dataset

————— Binomial FST ==-=-=-- Binomial FST
(c) T=300. (c) T=300.
Figure 6.8: Candidate set sizes per query that Figure 6.9: Extra injection sizes per query
is not in the target set when padding is that is not in the target set when padding is
applied, under different thresholds, where theapplied, under different thresholds, where the
target set is a subset of the full keyword target set is a subset of the full keyword

universe, for the standard Binomial-attack. universe, for the standard Binomial-attack.

6.2 Adopted Binomial-Attack

When the target set is a subset of the dataset, searches for keywords outside the target
set result in additional candidate sets. To mitigate the size of these extra candidate sets,
adjustments to the attack methodology are necessary. This section outlines the modifications

50

6.2. ADOPTED BINOMIAL-ATTACK

required to minimize candidate size while maintaining effectiveness. Despite the trade-off,
the attack consistently requires fewer initial injections than FST.

6.2.1 Removing the (n,n)-Set

In the Binomial-attack, the lowest value for r is always one. While this minimizes the space
occupied in injected files, it also leads to greater overlap with keywords spread across mul-
tiple injected files. Conversely, higher values of r in the (n — r+ 1,n)-sets for all keywords
result in smaller candidate sets per query. To reduce the size of candidate sets, keywords
should not be identified with only one injected file, meaning the attack starts from (n— 1,n)
instead of (n,n). This frees up space that can be allocated to a different (n — r+ 1,n)-set.

6.2.2 Results after the Mitigation

The number of identifiable keywords decreases by either 5 or %, depending on which (n —
r+ 1,n)-set the attack terminates due to the threshold. Refer to Table for a visual

representation of this transformation.

In Fig. and the difference in candidate sets and extra injections required
between the FST- and adopted Binomial-attack are illustrated. Especially Fig. [6.10(a)
shows a clear transformation from its previous performance in Fig. [6.8(a). Depending on
the threshold, FST consistently requires an equal or greater number of injections to recover
candidate sets.

(5,6)-set (4,6)-set

Files Col; Col, Cols Coly Cols Colg Col;

F ki ks kq ko ki3 ki kg
P, ki ks ks ko ke kie kg
F; ko ks kz ki kis kie kg
Fy ko ke ks ki kiz kiz ki
Fs k3 ke ke ki ke kir ko
Fs k3 ke ko ki kis kiz kg

Table 6.1: Distribution of an Increment [3, 6]-set, without (6,6)-set, T=7.

51

CHAPTER 6. COUNTERMEASURE & MITIGATION

5 5
@
g! g4
z E
23 =3
=
£ 5
22 52 --
= £ H
S E :
1 3 i
0 0 : .
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Keywords in the dataset Keywords in the dataset
----- Binomial FST ===-- Binomial FST
(a) T=100. (a) T=100.
5 5
8! N
< g
g 3 E 3
=3
= ot 2
k=] g
: :
“ ; Z1 T
| |
0 : 0 '
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Keywords in the dataset Keywords in the dataset
------ Binomial FST ==--=- Binomial FST
5 5
4 24
8)
z g
] =
g’ g3
<
22 Z 2
5 3
: £
© z

_i

l Pl :

0 5000 10000 15000 20000 0 5000 10000 15000 20000

=

Keywords in the dataset Keywords in the dataset
----- Binomial FST -=-=--- Binomial FST
(¢) T=300. (c) T=300.

Figure 6.10: Candidate set sizes per query Figure 6.11: Extra injection sizes per query
that is not in the target set when padding is that is not in the target set when padding is
applied, under different thresholds, where theapplied, under different thresholds, where the
target set is a subset of the full keyword target set is a subset of the full keyword
universe, for the adopted Binomial-attack. universe, for the adopted Binomial-attack.

52

Chapter 7

Discussion

7.1 Discussion

The scenario regarding the probabilities of injected files being selected for padding pur-
poses was adopted from previous studies. This decision was made to facilitate comparisons
between the Binomial-attack and prior injection attack methodologies. Specifically, the sce-
nario involved a dataset consisting of 30 109 files, 5 050 keywords, and an average of 560
hits per query. This scenario was scaled to encompass various sizes of keyword datasets,
allowing for comparative analyses across different scales. It is worth noting that while the
keyword dataset size was varied, other parameters remained unchanged. In real-world sce-
narios, adjustments to these parameters would be warranted, as changes in the keyword
dataset size may significantly impact the number of hits per query. However, for the pur-
pose of comparing our attack methodology against the FST, the scenarios were retained in
their original form. These scenarios solely serve as a means to illustrate the effectiveness of
our proposed attack in comparison to existing methodologies, particularly FST.

When considering the scenario where the entire dataset is targeted, it becomes necessary
to possess knowledge of the entire keyword universe. While previous studies have made
stronger assumptions than this [[1]], we regard the assumption of possessing knowledge of
the entire keyword universe as unrealistic. However, a target set that constitutes a subset
of the entire dataset is highly plausible. This target set does not necessarily need to be
constructed from leaked data; rather, it can consist of self-assembled keywords that are
deemed interesting by the attacker.

In addition to padding, there exist other countermeasures aimed at increasing the dif-
ficulty of attacks. One such countermeasure involves the creation of clusters of keywords,
as described in [[11]. When a search query is initiated for one of the keywords within a
cluster, all files containing keywords from the same cluster are returned. This approach
not only obscures the specific keyword being searched for, but also introduces ambiguity
regarding the association of injected files with specific keywords. Due to the potential for
multiple combinations of keywords within the returned files, the attacker may be compelled
to employ higher (n — r+ 1,n)-sets, necessitating a greater number of injected files. It is
important to note, however, that this countermeasure assumes a static keyword universe and

53

CHAPTER 7. DISCUSSION

may require modification to accommodate dynamic searchable encryption scenarios.
Despite its theoretical appeal, searchable encryption has yet to achieve

widespread adoption in practical applications and can vary significantly in its configura-
tions, including the implementation of countermeasures. Consequently, predicting the exact
characteristics of a searchable encryption scheme in practice remains challenging. Never-
theless, there is value in speculating on the potential implications of different settings and
attempting to assess the scheme’s security under various conditions, even if these scenarios
remain largely theoretical at present. This makes it harder to determine how big the safety
issues of the schemes are.

7.2 Future Work

The additional injections required to neutralize candidate sets are primarily utilized to com-
pare the attack against FST. However, the method itself is far from optimal. As presented in
this paper and the FST paper, each keyword necessitates multiple additional injections. This
approach may result in a greater number of injections than initially required for the attack.
A more efficient strategy involves combining candidate sets and reusing earlier injections,
thereby reducing the overall number of additional injections required. However, the optimal
method for achieving this remains to be determined.

This attack is an active attack that makes no use of leakage apart from the returned in-
jected files. In contrast, other attacks combine active and passive methods [22]]. If Binary- or
FST-attack methods are employed, they could be enhanced by incorporating the Binomial-
attack. Revisiting these attacks may reveal potential improvements.

54

Chapter 8

Conclusion

8.1 Conclusion

In conclusion, our research has introduced an innovative approach to SE attacks by com-
bining advanced techniques from existing literature with novel methodologies developed
during this study. Previous techniques have demonstrated sub-optimal performance, pri-
marily due to their lack of optimization in file injection strategies. These methods fail to
establish optimal correlations between injected files and overly focus on either maintain-
ing a consistent number of files for keyword identification or rigidly adhering to previous
methodologies when adaptations are necessary.

Our proposed attack methodology is enhanced through three critical factors: Building
Blocks, File Interrelation, and Space Efficiency. The Binary-attack, not originally designed
for thresholds, has been poorly adapted, retaining its initial building blocks without substan-
tial improvements. Conversely, the FST-attack, specifically designed for SE-schemes with
thresholds, neglects the space-efficient characteristics inherent to the Binary-attack. Both
approaches fail to optimize file interrelations among injected files.

By establishing a new (s, n)-set structure that offers greater flexibility than the traditional
(s,n)-set construction, our attack achieves optimal file interrelation among all injected files.
This optimization leads to improved space efficiency in keyword identification, ensuring
that keywords are identified with the minimum number of files at all times.

The Binomial-attack represents a significant advancement over these active attack meth-
ods that utilize the leakage of file access patterns. It maximizes the storage of keywords
within a limited number of injected files by employing an Increment [r,n]-set to identify
keywords. This approach iterates through all possible combinations of an (n —r+ 1,n)-set
starting from r = 1, progressing with » = r + 1 until no additional space is available in the
files. The adopted Binomial-attack starts at r = 2 to decrease the candidate set size for a
query when the SE scheme uses padding as a countermeasure.

Our findings demonstrate that, regardless of the presence or absence of a threshold, the
Binomial-attack consistently outperforms both the Binary- and FST-attack methods. How-
ever, when padding is introduced, there are specific threshold and dataset size combinations
where FST requires fewer additional injections on average. It remains uncertain whether

55

CHAPTER 8. CONCLUSION

this advantage would persist with the implementation of a more efficient keyword recovery
method.

56

(1]

(2]

(3]

[4]

(5]

[6]

[7]

[8]

Bibliography

Laura Blackstone, Seny Kamara, and Tarik Moataz. Revisiting leakage abuse attacks.
In NDSS 2020. The Internet Society, 2020. doi: 10.14722/ndss.2020.23103.

Raphaél Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward private
searchable encryption from constrained cryptographic primitives. In Bhavani Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, CCS 2017, pages
1465-1482. ACM, 2017. doi: 10.1145/3133956.3133980.

David Cash and Stefano Tessaro. The locality of searchable symmetric encryption. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 351-368. Springer, 2014. doi: 10.1007/978-3-642-55220-5\ _20.

David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks
against searchable encryption. In CCS 2015, page 668—679. Association for Comput-
ing Machinery, 2015. ISBN 9781450338325. doi: 10.1145/2810103.2813700.

Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou, and Ra-
sool Jalili. New constructions for forward and backward private symmetric searchable
encryption. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, CCS 2018, pages 1038—1055. ACM, 2018. doi: 10.1145/3243734.3243833.

Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable
symmetric encryption: Improved definitions and efficient constructions. J. Com-
put. Secur., 19(5):895-934, 2011. doi: 10.3233/JCS-2011-0426. URL https:
//doi.org/10.3233/JCS-2011-0426.

Marc Damie, Florian Hahn, and Andreas Peter. A highly accurate query-recovery
attack against searchable encryption using non-indexed documents. In Michael D.
Bailey and Rachel Greenstadt, editors, USENIX 2021, pages 143—-160. USENIX As-
sociation, 2021.

Enron Corporation. Enron email dataset, 2004. URL http://www.cs.cmu.edu/~e
nron/.

57

https://doi.org/10.3233/JCS-2011-0426
https://doi.org/10.3233/JCS-2011-0426
http://www.cs.cmu.edu/~enron/
http://www.cs.cmu.edu/~enron/

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

58

Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern
disclosure on searchable encryption: Ramification, attack and mitigation. In NDSS
2012. The Internet Society, 2012.

Seny Kamara and Tarik Moataz. Boolean searchable symmetric encryption with
worst-case sub-linear complexity. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part I1I, volume 10212 of LNCS, pages 94-124, 2017.
doi: 10.1007/978-3-319-56617-7\ 4.

Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu an Tan. Search pattern leakage
in searchable encryption: Attacks and new construction. Information Sciences, 265:
176-188, 2014. ISSN 0020-0255. doi: 10.1016/j.ins.2013.11.021.

R Liu and Z F Cao. In Two new methods of distributive management of cryptographic
key, pages 10-14. J. Commun., 8, 1987.

Muhammad Naveed. The fallacy of composition of oblivious ram and searchable
encryption. IACR Cryptol. ePrint Arch., 2015:668, 2015. URL https://api.sema
nticscholar.orqg/CorpusID:11042885.

Jianting Ning, Xinyi Huang, Geong Sen Poh, Jiaming Yuan, Yingjiu Li, Jian Weng,
and Robert H. Deng. LEAP: leakage-abuse attack on efficiently deployable, efficiently
searchable encryption with partially known dataset. In Yongdae Kim, Jong Kim, Gio-
vanni Vigna, and Elaine Shi, editors, CCS 2021, pages 2307-2320. ACM, 2021. doi:
10.1145/3460120.3484540.

Simon Oya and Florian Kerschbaum. Hiding the access pattern is not enough: Exploit-
ing search pattern leakage in searchable encryption. In Michael D. Bailey and Rachel
Greenstadt, editors, USENIX 2021, pages 127-142. USENIX Association, 2021.

Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Symmetric searchable encryption
with sharing and unsharing. In Javier Lopez, Jianying Zhou, and Miguel Soriano,
editors, ESORICS 2018, Part I, volume 11099 of LNCS, pages 207-227. Springer,
2018. doi: 10.1007/978-3-319-98989-1_11.

Rishabh Poddar, Stephanie Wang, Jianan Lu, and Raluca Ada Popa. Practical volume-
based attacks on encrypted databases. In IEEE European Symposium on Security and
Privacy, EuroS&P 2020, pages 354-369. IEEE, 2020. doi: 10.1109/EUROSP48549.
2020.00030.

David Pouliot and Charles V. Wright. The shadow nemesis: Inference attacks on
efficiently deployable, efficiently searchable encryption. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, CCS
2016, pages 1341-1352. ACM, 2016. doi: 10.1145/2976749.2978401.

Dawn Xiaodong Song, David A. Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In 2000 IEEE Symposium on Security and Privacy, pages
44-55. IEEE Computer Society, 2000. doi: 10.1109/SECPRI.2000.848445.

https://api.semanticscholar.org/CorpusID:11042885
https://api.semanticscholar.org/CorpusID:11042885

Bibliography

[20]

[21]

[22]

[23]

Shifeng Sun, Xingliang Yuan, Joseph K. Liu, Ron Steinfeld, Amin Sakzad, Viet Vo,
and Surya Nepal. Practical backward-secure searchable encryption from symmetric
puncturable encryption. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, CCS 2018, pages 763-780. ACM, 2018. doi: 10.1145/
3243734.3243782.

Gaoli Wang, Zhenfu Cao, and Xiaolei Dong. Improved file-injection attacks on search-
able encryption using finite set theory. Comput. J., 64(8):1264—-1276, 2021. doi:
10.1093/COMINL/BXAA161.

Xianglong Zhang, Wei Wang, Peng Xu, Laurence T. Yang, and Kaitai Liang. High
recovery with fewer injections: Practical binary volumetric injection attacks against
dynamic searchable encryption. In Joseph A. Calandrino and Carmela Troncoso, edi-
tors, USENIX Security 2023, pages 5953—-5970. USENIX Association, 2023.

Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are
belong to us: The power of file-injection attacks on searchable encryption. In Thorsten
Holz and Stefan Savage, editors, USENIX Security 2016, pages 707-720. USENIX
Association, 2016.

59

Appendix A

Paper

61

File-Injection Attacks on Searchable Encryption,
Based on Binomial Structures

Tjard Jan Langhout, Huanhuan Chen, and Kaitai Liang

Delft University of Technology, Delft, The Netherlands
tjardlanghout@gmail.com
{h.chen-2,kaitai.liang}@tudelft.nl

Abstract. One distinguishable feature of file-inject attacks on search-
able encryption schemes is the 100% query recovery rate, i.e., confirming
the corresponding keyword for each query. The main efficiency consider-
ation of file-injection attacks is the number of injected files. In the work
of Zhang et al. (USENIX 2016), | log, |K|| injected files are required, each
of which contains |K|/2 keywords for the keyword set K. Based on the
construction of the uniform (s,n)-set, Wang et al. need fewer injected
files when considering the threshold countermeasure. In this work, we
propose a new attack that further reduces the number of injected files
where Wang et al. need up to 38% more injections to achieve the same
results. The attack is based on an increment (s,n)-set, which is also
defined in this paper.

Keywords: Searchable encryption - File-injection attack - Binomial -
Increment (s, n)-set

1 Introduction

Ensuring exclusive data access remains a paramount concern, often necessitating
external cloud servers due to limited user storage capacity. To enable efficient
data searches, these servers must implement search-over-plaintext methods for
speed and efficacy.

Song et al. [19] were pioneers in proposing a cryptographic scheme tailored
to address the challenge of searching encrypted data, particularly enabling con-
trolled and concealed keyword searches. This general searchable encryption (SE)
framework entails the storage of an index and database on the server. Each key-
word within a file undergoes independent encryption, alongside the encryption of
the file as a whole. Retrieval of files containing specific keywords involves the user
generating a token by encrypting the desired keyword, which is then matched
against all encrypted keywords stored on the server. Upon a match, the entire
encrypted file is returned to the user for decryption. Since the introduction of
this foundational scheme, numerous researchers have proposed diverse variants
of SE schemes [2,4,5,9,13,16,20]. These schemes offer varying levels of file and
keyword privacy, with the ORAM scheme emerging as the most secure, effec-
tively concealing access pattern leakage [13]. However, schemes with minimal

2 Langhout et al.

leakage patterns tend to be computationally intensive and impractical. Alterna-
tively, other proposed schemes, while computationally less burdensome, permit
a marginally higher degree of leakage. Cash et al. [3] categorized these schemes
into distinct leakage levels: L1, L2, L3, and L4, each revealing different degrees of
information about keyword occurrences. Subsequent studies have demonstrated
the potential exploitation of even minimal leakage to extract significant informa-
tion from databases, emphasizing the critical role of prior knowledge in facilitat-
ing successful attacks [1,8,11,14]. Recovery of keywords involves retrieving the
keyword associated with the queried token, representing an encrypted keyword
of a file.

Attacks on SE schemes may manifest as either passive or active. Passive
attacks entail the observation of leakage patterns to construct keyword-query
matches [6,11,15,18]. These attacks refrain from interfering with protocols and
leverage preexisting knowledge to execute their strategies. Passive attacks typ-
ically target weaker schemes exhibiting higher leakage levels (L2-1.4) and often
necessitate external or prior knowledge for execution. Conversely, active attacks
involve servers injecting files into a user’s database to glean insights. Injection
attacks leverage either file access patterns or volume patterns [1,3,17,21-23].
This paper will be based on file-injections with the use of file access pattern leak-
age. Active attacks, typically assuming L1 leakage or less, necessitate minimal
prior knowledge, contrasting with the requirements of passive attacks. Successful
recovery of keywords in active attacks is consistently achieved with 100% accu-
racy, with the performance metric being the number of injections required for a
successful attack.

Cash et al. [3] were among the first to introduce an active attack wherein the
server sends files to the client, subsequently encrypted and stored by the client.
These attacks typically assume L2-1.3 leakage, akin to passive attacks. Attack-
ers construct files of their choosing and transmit them to users, compelling the
application of the scheme to the received file, thereby enabling observation of ci-
phertext by the server. Zhang et al. [23] categorized such attacks as file-injection
attacks and introduced the Binary-attack, premised on L1 leakage and injecting
half of the keyword universe per injection, akin to binary search methodologies.

Countermeasures such as thresholds and padding are implemented to impede
the success of attacks. Thresholds impose limits on the number of keywords a
file can contain, while padding obscures actual results by introducing additional
files alongside queried files. Wang et al. [21] proposed an alternative approach to
injection attacks based on finite set theory, offering superior performance com-
pared to previous methods. This approach, known as the FST-attack, necessi-
tates fewer injections than the Binary-attack under certain conditions, leveraging
so-called (s,n)-sets to enhance attack efficacy. Despite these advancements, the
FST-attack’s reliance on complete (s, n)-sets for all identified keywords represent
a notable limitation.

Organization of the paper. The organization of the rest of the paper goes

as follows. In Chapter 2, the description of the SSE scheme, file-injection, thresh-
olds, and the latest state-of-the-art full file-injection attack on SSE schemes are

given. In Chapter 3, our Binomial-attack is explained in detail, together with
how it can easily be applied under any threshold and dataset size, and the perfor-
mances of our attack compared to previous file-injection attacks are visualised.
In Chapter 4, we show the consequences of padding on our attack and compare
these with the consequences on the FST-attack. In Chapter 5, a mitigation is
proposed to perform better under a scheme that uses padding, with minimal
trade-off. In Chapter 6 and 7 the results and untouched topics of the paper are
debated. Finally, the paper is summarized in Chapter 8.

2 Preliminaries

2.1 Searchable Encryption

An searchable encryption (SE) scheme has three algorithms: encryption, search,
and update (only for dynamic) algorithms.

The encryption algorithm takes as input a set of files F = {Fy,---, F,} and
a secret key from the data owner, and outputs the encrypted files. These cipher-
texts are then stored on the cloud server. The search algorithm takes a secret key
and a keyword k as input, and outputs a query(token) ¢, which allows the cloud
server to search the files that contain the corresponding keyword k among the
encrypted files. The data owner can then decrypt the returned documents from
the server and identify all related files to the keyword k. The update algorithm
only applies to the dynamic SE schemes, which outputs updated files, given a
secret, key and a set of files.

2.2 File Injection Attack

One of the goals of the attacker is called query recovery. The attack attempts to
recover the underlying keywords to queries, which threatens query privacy and
file privacy. We focus on file-injection attacks in this paper.

Instead of passive attacks, the attacker in file-injection attacks is active by
sending to the data owner some proper documents, which are then encrypted
by the latter and also stored on the cloud according to the SE schemes. As an
example, one can inject files to a user by sending designed emails in the email
system. The attacker then observes the returned files, especially its own injected
files, corresponding to the queries through the search algorithm. According to
the returned (previously injected) files, the attacker can achieve the goal of query
recovery.

The first file-injection attack is proposed by Cash et al. [3] and further im-
proved by Zhang et al. [23]. We show an example of the binary-search attack in
Table 1 that injects log, (| K]) files and achieves a 100% query recovery, where
| K| is the size of the keyword set. In this example, if returned files corresponding
to a query t are Fy and F3, then we know its underlying keyword is ky. Analo-
gously, other keywords can also be matched according to different combinations
of returned files.

4 Langhout et al.

Files k1 ko k3 k4 ks ke k7 ks
FrF 11110000
Fy 0 010 0
F3 1 011 0

1 1 1
1 0 0

Table 1: An example of the binary-attack file with a keyword universe of 8.
Keywords are assigned into files: Fy, Fy, F3, where 1 denotes the presence of the
corresponding keyword and 0 indicates its absence.

In this work, our file-injection attack is based on the same assumption in [3,
23] that the attacker knows the file access pattern (i.e., knowing the returned files
according to queries) and also can identify the files on the cloud corresponding
to its injected files. One distinguishable feature of file-inject attacks is the 100%
query recovery rate, so we evaluate the efficiency of such attacks from the number
of injected files.

Wang et al. [21] further improved the work [23] to deal with the countermea-
sures of a threshold of a maximal number of keywords in each file.

2.3 FST-Attack

In this section, we review the definition of a uniform (s, n)-set and how the FST-
attack works [21], based on the uniform (s,n)-set. The method to construct a
uniform (s,n)-set of a finite set is presented by Liu and Cao [12].

Definition 1 (Uniform (s,n)-set [21]). Let a set A = {di1,da,- - ,dmn} and
the subsets Ay, As,--- , A, C A be called a uniform (s,n)-set of A (m > (sfl))
if the following three conditions are satisfied:

= A = |Az| =+ = |An]; .
— For any s subsets Ay, , A;, € {Ar,--- Ay}, thereis |J A, = A;
j=1

s—1
— For any s — 1 subsets Ay ,---,Aj,—1 € {A1,--, An} there is |J A;; =
=1
A\{d;}.

Where n denotes the number of injected files, |A;| the size of each injected file
and m the keyword universe.

A uniform (s,n)-set for a finite set with size m has the following properties,
when we choose m = (Sfl).

Lemma 1 ([21]). Let (A1, Ao, -+, Ayn) be a uniform (s,n)-set, then we have

— Size. The size of each file A; is |A;| = (Z: 11) for1<i<n.

— Intersection. Let r =n — s+ 1, then the size of the intersection of arbitrary
7 files is only 1: |Nj_; Ai;[= 1.

Based on the uniform (s,n)-set, Wang et al. [21] presents a file-injection
attack to SE. We assume the keyword set K = {k1,ka, -, ki }.

Their basic attack is to first construct a uniform (s,n)-set {41, As, -+, An}
based on the technique presented by Liu and Cao [12] for the keyword set K
such that (:1) > m!, and then generate a file set of size n: {Dy, Do, -+, Dy},

where the file D; contains the same keyword in the A; for 1 < i < n. Those
files are then injected into the SE scheme, and the attack recovers the keyword
corresponding to a token by the returned n — s + 1 files. The correctness of the
basic attack is guaranteed by Lemma 1, i.e., there only exists one keyword in
the intersection of n — s + 1 files.

When the threshold countermeasure is taken into consideration, that is the
number of keywords in each file should be smaller than a threshold T, they
proposed an advanced file-injection attack, aiming at obtaining a minimum n,
the number of files that should be injected. Towards this goal, they choose the

minimum n such that
n—1 <7
s—1) —

(2)en

Moreover, they present look-up tables to determine the optimal s and n corre-
sponding to the threshold T and the number of keywords in different intervals.

(1)

Ezample 1. As an example of recovering 23 keywords {ki, ks, -, kos} with
threshold 7, we solve the Eq. (1) for T = 7 and m = 23 and then get a minimum
n =8 and s = n—1 = 7. The corresponding injected files according to a uniform
(7,8)-set are shown in Table 2. Note that some parts in files {Dy,--- , Ds} are
left as blank since the number of keywords in these files has reached 23. Each
keyword can be matched by n — s + 1 = 2 returned files. For example, if files
Dy and D are returned after a query to a token ¢, we know the corresponding
keyword to t is k1.

This example also explains our major motivation: a single uniform (s, n)-set
of the keyword set may not maximize the ability of a file injection attack, or
in other words, the number of injected files n is not optimal. The reason is the
number of keywords in injected files may be far from reaching the threshold.

3 A New File-injection Attack
In this chapter, we present our new file-injection attack to searchable encryption
schemes. It is based on our new definition of a subset family of a finite set, called

! It means the maximal number of keywords in the uniform (s,m)-set is greater than
the keyword size m.

6 Langhout et al.

(7,8)-set
Files Coly Cols Cols Coly Cols Colg Colr

F1 o ko kos

Fy kie kir kis kio ko kou

F3 ki1 k2 kis ki kis ka

Fy kv ks ko ko kis koo

Fs ks ks ke kio ks kio

Fs ko ks ke ko kis kis

F7 kl k‘3 k‘s kg k12 k?17 k?23
Fs ki ko ka kr kit kie koo

Table 2: An example of recovering 23 keywords with threshold T=7 by the
uniform (7, 8)-set.

increment [r,n]-set. Our main technique is to construct an increment [r, n]-set of
the keyword set. Compared to the uniform (s, n)-set used in [21], the increment
[r, n]-set enables us to put more keywords in the injected files, thus significantly
reducing the number of injected files.

3.1 Increment [r,n]-Set

The main idea of the increment [r, n]-set is to optimize the available space in the
injected files, which are defined as follows.

Definition 2 (Increment [r,n]-set). Let A be a set, then the subsets
Ay, Ag, -+ A, C A are called an increment [r,n]-set of A if the following con-
ditions are satisfied:

- |A1| = |A2‘ == ‘An—r+1|7'

— Elements in Ay, Ag,--- , A, are separated into r blocks such that the i-th
(1 <i<r)block of Ay, As,--- , Ay forms a uniform (n—i+1,n)-set of the
union set of the i-th block of Ay, As,--- , A,.

An (s,n)-set is here a single block and the increment [r,n]-set consists out
of multiple (s,n)-sets (blocks), where the r is increased per block. Recall that
for a uniform (s,n)-set, a keyword can be uniquely recovered by r =n — s+ 1
returned files. Therefore, the keywords in the i-th block of an increment [r, n]-set
are determined by n — (n — ¢ + 1) + 1 = ¢ files, since the i-th block is a uniform
(n — i+ 1,n)-set by definition. That is, the keywords in the 1st block can be
represented by 1 file, the keywords in the 2nd block by 2 files, and so on. This
is what we call an increment. We refer to Table 3 for a visual example.

We denote the i-th block of A; by A; for 1 < j < n, then we get the following
corollary which follows from Lemma 1.

Corollary 1. If (A1, Ay, -+, A,) is an increment [r,n]-set of A, then we have

A51= (5

for1<i<nr,1<j<n.

Therefore, we know that the size of A; is |A;| = 3;_, (*7}) for 1 < j < m.
The main idea of our basic file-injection attack is to construct an increment [r, n}-
set, instead of complete independent (s, n)-sets spread over different chunks of
files, like FST does. We are aiming at reducing the total number of injected files
n to as few files as possible. Keywords are recovered according to the different

combinations of returned files (details are present in Section [3.2]).

Ezample 2. We give an example of an increment [r,n|-set of the keyword set
{k1, ko, -, kos} with threshold seven for a comparison to the example in Table
2. We compute r and the minimum n such that

> (000 =
2(#;) > 93,

and then we get 7 = 3 and n = 6. The increment [3, 6]-set of the aimed keyword
set is shown in Table 3. Compared to Example 1, it reduces the number of
injected files from 8 to 6! Every space in these files is filled with keywords, while
still controlling the total number of keywords within the threshold.

(6,6)-set (5,6)-set (4,6)-set
Files Coli Cols Cols Coly Cols Colg Colr

F k1 k7 ko kiz kis ki ka2
F ka2 k7 ki1 ks ks k2o k22
Fs ks ks kir kiz kir ka koo
Fy k4 ks ki2 kia kis ki k23
Fs ks ko ki2 kis kir koo ka3
Fs ke ko kio kie kis k2 ka3

Table 3: An example of recovering 23 keywords with threshold T'=7 by an in-
crement [3, 6]-set, which is divided into 3 blocks. Keywords in the 1st, 2nd, and
3rd block can be recovered by 1, 2, and 3 returned files, respectively.

8 Langhout et al.

3.2 Construction of Increment [r, n]-Set

In this section, we present a way to the construction of increment [r,n]-set of a
finite set, which uses the method of constructing uniform (s, n)-set as a subrou-
tine (we also provide a new construction method of a uniform (s,n)-set in the
full version [10]).

Given as input the size of the keyword m and threshold of the number of
keywords in a file T, we aim to construct an increment [r, n]-set of the keyword
set with the minimum n such that (1) the size of each file should not be greater
than the threshold 7', and (2) the maximal number of keywords that those files
can recover is at least m. To maximize the recovery ability under condition (1),
our overall idea is to construct r uniform (n — ¢ 4+ 1,n)-sets. for 1 < ¢ < r and
return the first 7" columns as the aimed set. Then by Lemma 1, we know the
first 7 —1 blocks take S} (»~}) columns and can recover S (,",) keywords
in total. The last block takes the rest T' — Z:;ll (Z:i) columns and allows to

recover |n/r- [T — Z::_ll ("~1)]) keywords. Then the condition (2) is equal to

S OVES LR LS5 ol (] | SR

i=1
We proceed in the discussion of r starting from 1 to T'. For each r, we record all
the possible n to the Inequality 3, with the minimum one as the optimal solution.
For simplicity of exposition, we denote NK(r,n) as the left part of the above
inequality. The whole process of constructing an increment [r,n]-set is present
in Algorithm 1.

Algorithm 1 Construction of increment [r, n]-set

Input: Number of keywords m, threshold T

Output: An increment [r, n]-set of the keyword set {k1,k2, - ,km}
1: Initialize an empty candidate set: candidate < []
2: forr=1to T do
3 Solve n from NK(r,n) > T and denote the minimum n as ng
4 Append (r,no) to candidate
5: r=r+1
6: end for

7: Find (r,no) with the minimum ng and corresponding r from candidate

8: for i =1 to r do

9 Construct a uniform (no—i+1, no)-set of keywords with index from Z;;ll ("))

- no—Jj
to > i, (Zg:;) by the technique proposed in [10].

10: end for
11: Output the first T' columns of the created files

Going back to Example 1, we compute the Inequality 3 to get candidate =
[(2,7),(3,6),(4,7)]. Then we know the optimal increment [r, n]-set is r = 3, and
n = 6.

3.3 Binomial-Attack

Given the keyword universe K = {k,ka, - ,kn} and the threshold T as the
maximal number of keywords in each file, we present our file injection attack in
Algorithm 2, which is based on the increment [r, n]-set of the K.

Algorithm 2 Binomial-attack
Input: Keyword set K = {ki, k2, -, km}, threshold T, a query token ¢
Output: Keyword corresponding to the token ¢

1: Generate an increment [r, n]-set A1, As, -+, A, of K with threshold T" by Algorithm
1
for j =1tondo

Let a file D; contain the same keywords as A;

end for
Inject files {F1, Fa, -+, Fy} into the SE scheme
return the corresponding keyword to ¢t according to the returned i files(1 < ¢ < r)

Now that the structure of the attack is understood, we can proceed to calcu-
late the required number of injections to achieve the desired number of identifi-
able keywords. There are multiple formulas to calculate the required number of
injections. The appropriate formula to utilize depends on at which (n—r+1,n)-
set the threshold will limit the attack from injecting more combinations.

Deciding the Number of Injections. The attack always starts with r =
1 and progresses incrementally from there on forth. At some point within an
(n —r+ 1,n)-set, the threshold will limit the number of keywords it can inject.
Refer to Table 3 for a visual representation.

By Eq. 3 we know the number of keywords an (n — r + 1,n)-set can utilize
for a certain threshold, under a specific 7. When the threshold is reached in the
(n — 1,n)-set, where r = 2 the equation can be written in terms of n like the
following:

2K
T T4+1

Similarly to the (n — 2,n)-set, where r = 3, the equation becomes:

Fy(K,T) (4)

—(3+42T) + /(34 2T)? + 24K
2

(K, T) = ()

The formulas Fy(K,T) and beyond are only of relevance when the threshold
is a significant portion of the number of keywords that need to be injected.

Deciding the Injection Formulas. The next step involves determining the
appropriate utilization of each formula for different scenarios.

10 Langhout et al.

To determine the appropriate value for r in the increment [r, n]-set, we must
assess whether the threshold allows for additional keywords in the files following
a uniform (n — r + 1,n)-set. This evaluation must be conducted for each r,
commencing at » = 2. By Lemma 1 we know the first two blocks utilize a total
of n columns. Therefore if T > n, the (n — 2,n)-set can also be used. However,
the value of n remains unknown at this stage. To address this uncertainty, we
substitute n = T into F,. This yields the threshold at which both the (n —
r + 1,n)-sets in the increment [2, n]-set become uniform and precisely meet the
threshold. If the keyword universe exceeds this value, the attack will require more
than T injections. Conversely, if the keyword universe falls below this value, fewer
than T injections are required. Consequently, there will be residual space in the
injected files for (at least) the (n — 2,n)-set. The minimum value of K to only
be able to build up to an Increment [2, n]-set is outlined as follows:

1 1
Ming,(T) = 5T2 +5T (6)
F5 should be applied when the outcome of Ming,(T) < K. Alternatively, the
formula of Minp, determines whether F3 or Fy should be utilized. Following the
same procedures as before, we get:

, 24T 1+V8T'—7 T-1
Ming,(T) = . + (7)
3 2 3
These formulas already hold an improvement over FST, since FST had a
lookup table with overlapping values and no clear points to choose from. Using
our previous example 1, we see Ming,(7) > 23 and Ming,(7) < 23. This means

we need to use F3, which results in F5(23,7) = 6 files.

3.4 Performance under Different Thresholds

The results consistently demonstrate the superiority of the Binomial-attack over
the FST-attack across various thresholds and dataset sizes.

The Binomial-attack consistently outperforms the FST-attack with at least
one injected file, regardless of the dataset size. With a threshold of 200, the most
substantial disparity occurs in datasets ranging from 7200 to 7400 keywords,
where the FST-attack requires 33 more injections compared to the Binomial-
attack. This represents a 38% increase in injections needed by the FST-attack
for equivalent results. In previous studies, the Enron dataset [7] served as a
benchmark for attack performance. When applied to the Enron dataset, the
FST-attack requires 83 files to cover the entire keyword universe, whereas the
Binomial-attack accomplishes this with only 65 files. Thus, in this real dataset
scenario, the FST-attack necessitates 28% more injections than the Binomial-
attack.

To provide a comprehensive overview of these differences, Fig. 1 illustrates
the comparative performance of the Binary-, FST-, and Binomial-attack across
various thresholds, with datasets ranging up to 20 000 keywords.

11

400
350

g 300 g 300
k-1 °
g 250 g 250
= =
£ 200 2 200
2 K
S 150 g 150
Z =
= 100 £ 100
50 50
0 0
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Keywords in the dataset Keywords in the dataset
------ Binomial FST Binary -=-=---- Binomial FST Binary
(a) T=100. (b) T=200.

0 5000 10000 15000 20000
Keywords in the dataset

----- Binomial

FST Binary
(¢) T=300.

Fig. 1: Performance of different injection attacks under different thresholds.

4 File-injection Attacks on SE Schemes with Keyword
Padding

Keyword padding serves as a countermeasure within the SE scheme aimed at
obscuring query results by returning more files than necessary. In addition to
the files containing the queried keyword, the scheme also includes random files
from the dataset in its response. In this chapter, we delve into the consequences
of padding and compare the implications between the FST- and Binomial-attack
methodologies. Previous studies, such as the FST- and Binary-attack, explored
this topic assuming a file dataset of 30109 files and a keyword universe of 5050
keywords. The scheme adopts a threshold of 200, and on average, a query yields
matches on 560 files, with an additional 60% of random files included (336 files).
Section 4.1 delves into the quantitative effects of padding, while Section 4.2
presents a visual exploration of these effects.

4.1 Calculating the Effects

To assess the impact, three key steps are necessary. Firstly, we must determine
the average number of additional injected files returned as a consequence of

12 Langhout et al.

their selection for padding. Subsequently, we can proceed to determine the av-
erage number of keyword combinations we can generate. These combinations
represent distinct file arrangements utilized for the unique identification of a
single keyword, collectively referred to as the candidate set for a query. Finally,
the last step entails re-executing the attack on the candidate set to pinpoint the
specific keyword utilized.

Injected Files from Padding. To calculate the average number of injected
files chosen during padding, we can utilize the hypergeometric distribution func-
tion. Our population size is 30 109 — 560 = 29 549, since the matched files for
the query can not be chosen for the padding. The number of successes will be
F3(5050,200) = 64.8 ~ 65 files, minus the average injected file response, leaves
65 — 3 = 62 successes. The sample size is 336. We can calculate the probabilities
for all possible numbers of successes in the sample and then multiply each prob-
ability by the corresponding number of successes. The results are then summed
to determine the average number of injected files (p) chosen in the padding:

62 (62) (29549762>

p-3 ol) ®
n=1 336

Average Candidate Set Size. The average candidate set size is determined by
three key factors associated with each (n—r+1, n)-set used to identify keywords.
The first factor considers the number of possible combinations within the given
(n—r+1,n)-set when r+p injected files are returned. The second factor accounts
for the ratio of combinations utilized in that (n — r + 1,n)-set compared to its
total possible combinations. The third factor represents the ratio of identifiable
keywords in the (n — r 4+ 1,n)-set to the total number of identifiable keywords.
Multiplying these three factors together yields the average candidate set size per
(n —r+1,n)-set. Summing the results across all (n —r 4+ 1, n)-sets provides the
overall average candidate set size:

£ o

r=1

Number of Extra Injections Needed. A straightforward method to deter-
mine the number of extra injections required is to analyze on a per-query basis.
By considering the average candidate set size per query, we can execute our
attack specifically for that particular candidate set to recover the searched key-
word. While this approach is not optimal, it suffices for comparison purposes
with the FST-attack.

4.2 Visualising the Effects

This section will demonstrate the effects of padding on both FST and the
Binomial-attack. While the Binomial-attack may not always appear significantly

13

better based solely on the average candidate set size per query, it’s important to
consider that FST is generally less efficient, requiring more injections to cover the
same candidate set. Here, we present the results for a scheme with a threshold
of 200. Results for different thresholds are available in Appendix A.

Targeting the Whole Dataset. In Fig. 2, we see the average sizes of candidate
sets for different dataset sizes. The corresponding number of extra injections
required for the candidate sets is illustrated in Fig. 3. While there is a small
dataset size range where the Binomial-attack requires one more injection than
the FST-attack, FST generally performs worse for all other dataset sizes.

w

[

Number of injections
[FEEN

Candidate set size
R T T

-

5

5000 10000 15000 20000 0 5000 10000 15000 20000
Keywords in the dataset Keywords in the dataset

o

0

FST

------ Binomial FST ------ Binomial

Fig. 2: Candidate set size per query, Fig.3: Extra injection size per query,
T=200. T=200.

Targeting a Subset of the Dataset. When targeting a subset of the keyword
universe, fewer injections are required to cover the target set, benefiting both
attacks. However, not every query relates to a keyword in the target set. When
combined with padding, this may not pose an issue if we assume a consistent
average number of injected files in the padding. For instance, if two injected files
are returned and the average padding injection is also two, it suggests a search
for a keyword not in the target set. However, if a return of two injected files could
also indicate a search for a keyword occurring once or twice, all searches become
candidate sets. While these candidate sets may not contain actual keywords
from the target set, distinguishing beforehand is impossible. The only option is
to re-perform the attack on the candidate set.

In this scenario, our attack performs notably worse. This is because the
Binomial-attack initiates with an (n,n)-set. FST does not follow this approach,
resulting in fewer potential combinations when all preceding (n—r+1, n)-sets are
included in the candidate set. Figure 4 illustrates the number of extra injections
required when searching for a keyword that is not in the target set.

14 Langhout et al.

5 Adopted Binomial-Attack

When the target set is a subset of the dataset, searches for keywords outside
the target set result in additional candidate sets. To mitigate the size of these
extra candidate sets, adjustments to the attack methodology are necessary. This
chapter outlines the modifications required to minimize candidate size while
maintaining effectiveness. Despite the trade-off, the attack consistently requires
fewer initial injections than FST.

5.1 Removing the (n,n)-Set

In the Binomial-attack, the lowest value for r is always one. While this minimizes
the space occupied in injected files, it also leads to greater overlap with keywords
spread across multiple injected files. Conversely, higher values of r in the (n —
r 4+ 1,n)-sets for all keywords result in smaller candidate sets per query. To
reduce the size of candidate sets, keywords should not be identified with only
one injected file, meaning the attack starts from (n —1,n) instead of (n,n). This
frees up space that can be allocated to a different (n — r 4+ 1, n)-set.

5.2 Results after the Mitigation

The number of identifiable keywords decreases by either 7 or %”, depending on

which (n — 7 4+ 1,n)-set the attack terminates due to the threshold. Refer to
Table 4 for a visual representation of this transformation.
In Fig. 5, the difference in extra injections required between the FST- and

adopted Binomial-attack is illustrated. FST consistently requires an equal or
greater number of injections to recover candidate sets.

(5,6)-set (4,6)-set
Files COll COlz COlg COl4 COl5 COlG COl7

i ki ke ke ko kis kie ko
F2 kl k5 k’g kfl[)]f14 k16 k18
Fs ko ks kv kun kis ke kis
F4 kg k‘6 k’s k’12 le k17 k'18
Fs ks ke ko ki kia kir ko
Fs ks ka ko kiz kis kiz ko

Table 4: Distribution of an Increment [3, 6]-set, without (6, 6)-set, T=7.

15

w
w

IS
IS

v

)
o

Number of injections
w
Number of injections

o
<
<

5000 10000 15000 20000

0 5000 10000 15000 20000 Keywords in the dataset

Keywords in the dataset

----- Binomial FST

------ Binomial FST

Fig. 5: Extra injection sizes per query
that is not in the target set, T=200, for
the adopted attack.

Fig. 4: Extra injection sizes per query
that is not in the target set, T=200.

6 Discussion

In addition to padding, there exist other countermeasures aimed at increasing the
difficulty of attacks. One such countermeasure involves the creation of clusters
of keywords, as described in [11]. When a search query is initiated for one of the
keywords within a cluster, all files containing keywords from the same cluster are
returned. This approach not only obscures the specific keyword being searched
for, but also introduces ambiguity regarding the association of injected files with
specific keywords. Due to the potential for multiple combinations of keywords
within the returned files, the attacker may be compelled to employ higher (n —
r + 1,n)-sets, necessitating a greater number of injected files. It is important
to note, that this countermeasure assumes a static keyword universe and may
require modification to accommodate dynamic searchable encryption scenarios.
Despite its theoretical appeal, searchable encryption has yet to achieve
widespread adoption in practical applications and can vary significantly in its
configurations, including the implementation of countermeasures. Consequently,
predicting the exact characteristics of a searchable encryption scheme in practice
remains challenging. Nevertheless, there is value in speculating on the potential
implications of different settings and attempting to assess the scheme’s security
under various conditions, even if these scenarios remain largely theoretical at
present. This makes it harder to determine how big the safety issues of the
schemes are.

7 Future work

The additional injections required to neutralize candidate sets are primarily uti-
lized to compare the attack against FST. However, the method itself is far from
optimal. As presented in this paper and the FST paper, each keyword necessi-
tates multiple additional injections. This approach may result in a greater num-
ber of injections than initially required for the attack. A more efficient strategy

16 Langhout et al.

involves combining candidate sets and reusing earlier injections, thereby reduc-
ing the overall number of additional injections required. However, the optimal
method for achieving this remains to be determined.

This attack is an active attack that makes no use of leakage apart from the
returned injected files. In contrast, other attacks combine active and passive
methods [22]. If Binary- or FST-attack methods are employed, they could be
enhanced by incorporating the Binomial-attack. Revisiting these attacks may
reveal potential improvements. We also note that further exploration into fields
such as coding theory and combinatorics using our increment [r,n]-set could
yield relevant connections and contributions and vice-versa.

8 Conclusion

The Binomial-attack represents a significant advancement over existing active
attack methods. It maximizes the storage of keywords within a limited number
of injected files by employing an Increment [r,n]-set to identify keywords. This
approach iterates through all possible combinations of an (n—r+1, n)-set starting
from r = 1, progressing with » = r 4+ 1 until no additional space is available in
the files. The adopted Binomial-attack starts at » = 2 to decrease the candidate
set size for a query when the SE scheme uses padding as a countermeasure.

Our findings demonstrate that, regardless of the presence or absence of a
threshold, the Binomial-attack consistently outperforms both the Binary- and
FST-attack methods. However, when padding is introduced, there are specific
threshold and dataset size combinations where FST requires fewer additional
injections on average. It remains uncertain whether this advantage would persist
with the implementation of a more efficient keyword recovery method.

Acknowledgment

This work was partly supported by the European Union’s Horizon Europe Re-
search and Innovation Program under Grant No. 101073920 (TENSOR), No.
101070052 (TANGO) and No. 101070627 (REWIRE).

References

1. Blackstone, L., Kamara, S., Moataz, T.: Revisiting leakage abuse attacks. In: NDSS
2020. The Internet Society (2020). https://doi.org/10.14722/ndss.2020.23103

2. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private search-
able encryption from constrained cryptographic primitives. In: Thuraisingham, B.,
Evans, D., Malkin, T., Xu, D. (eds.) CCS 2017. pp. 1465-1482. ACM (2017).
https://doi.org/10.1145/3133956.3133980

3. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: CCS 2015. p. 668-679. Association for Computing Ma-
chinery (2015). https://doi.org/10.1145/2810103.2813700

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

17

Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 351-368.
Springer (2014). https://doi.org/10.1007/978-3-642-55220-5_20

Chamani, J.G., Papadopoulos, D., Papamanthou, C., Jalili, R.: New constructions
for forward and backward private symmetric searchable encryption. In: Lie, D.,
Mannan, M., Backes, M., Wang, X. (eds.) CCS 2018. pp. 1038-1055. ACM (2018).
https://doi.org/10.1145/3243734.3243833

Damie, M., Hahn, F., Peter, A.: A highly accurate query-recovery attack against
searchable encryption using non-indexed documents. In: Bailey, M.D., Greenstadt,
R. (eds.) USENIX 2021. pp. 143-160. USENIX Association (2021)

Enron Corporation: Enron email dataset (2004), http://www.cs.cmu.edu/~enron/
Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation. In: NDSS 2012. The Internet So-
ciety (2012)

Kamara, S., Moataz, T.: Boolean searchable symmetric encryption with worst-
case sub-linear complexity. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part III. LNCS, vol. 10212, pp. 94-124 (2017). https://doi.org/10.1007/978-3-319-
56617-7_4

Langhout, T., Chen, H., Liang, K.: File-injection attacks on searchable encryp-
tion, bases on binomial structures. JACR Cryptol. ePrint Arch. (2024), https:
//eprint.iacr.org/2024/1000

Liu, C., Zhu, L., Wang, M., an Tan, Y.: Search pattern leakage in searchable en-
cryption: Attacks and new construction. Information Sciences 265, 176-188 (2014).
https://doi.org/10.1016/j.ins.2013.11.021

Liu, R., Cao, Z.F.: Two new methods of distributive management of cryptographic
key. pp. 10-14. J. Commun., 8 (1987)

Naveed, M.: The fallacy of composition of oblivious ram and searchable encryption.
TACR Cryptol. ePrint Arch. 2015, 668 (2015), https://api.semanticscholar.
org/CorpusID:11042885

Ning, J., Huang, X., Poh, G.S., Yuan, J., Li, Y., Weng, J., Deng, R.H.: LEAP:
leakage-abuse attack on efficiently deployable, efficiently searchable encryption
with partially known dataset. In: Kim, Y., Kim, J., Vigna, G., Shi, E. (eds.) CCS
2021. pp. 2307-2320. ACM (2021). https://doi.org/10.1145/3460120.3484540
Oya, S., Kerschbaum, F.: Hiding the access pattern is not enough: Exploiting search
pattern leakage in searchable encryption. In: Bailey, M.D., Greenstadt, R. (eds.)
USENIX 2021. pp. 127-142. USENIX Association (2021)

Patel, S., Persiano, G., Yeo, K.: Symmetric searchable encryption with sharing
and unsharing. In: Lépez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018, Part
II. LNCS, vol. 11099, pp. 207-227. Springer (2018). https://doi.org/10.1007/978-
3-319-98989-1_11

Poddar, R., Wang, S., Lu, J., Popa, R.A.: Practical volume-based at-
tacks on encrypted databases. In: IEEE FEuropean Symposium on
Security and Privacy, EuroS&P 2020. pp. 354-369. IEEE (2020).
https://doi.org/10.1109/EUROSP48549.2020.00030

Pouliot, D., Wright, C.V.: The shadow nemesis: Inference attacks on efficiently
deployable, efficiently searchable encryption. In: Weippl, E.R., Katzenbeisser, S.,
Kruegel, C., Myers, A.C., Halevi, S. (eds.) CCS 2016. pp. 1341-1352. ACM (2016).
https://doi.org/10.1145/2976749.2978401

Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on en-
crypted data. In: 2000 IEEE Symposium on Security and Privacy. pp. 44-55. IEEE
Computer Society (2000). https://doi.org/10.1109/SECPRI.2000.848445

18

20.

21.

22.

A

Langhout et al.

Sun, S., Yuan, X., Liu, J.K., Steinfeld, R., Sakzad, A., Vo, V., Nepal, S.: Practical
backward-secure searchable encryption from symmetric puncturable encryption.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) CCS 2018. pp. 763-780.

ACM (2018). https://doi.org/10.1145/3243734.3243782
Wang, G., Cao, Z., Dong, X.:

Improved file-injection attacks on search-

able encryption using finite set theory. Comput. J. 64(8), 1264-1276 (2021).
https://doi.org/10.1093/COMJNL/BXAA161
Zhang, X., Wang, W., Xu, P., Yang, L.T., Liang, K.: High recovery with fewer
injections: Practical binary volumetric injection attacks against dynamic searchable
encryption. In: Calandrino, J.A., Troncoso, C. (eds.) USENIX Security 2023. pp.
5953-5970. USENIX Association (2023)
23. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: The
power of file-injection attacks on searchable encryption. In: Holz, T., Savage, S.
(eds.) USENIX Security 2016. pp. 707-720. USENIX Association (2016)

Candidate set size
S — v oW B U oo

Performance Comparison under Different Scenarios

0 5000 10000
Keywords in the dataset

----- Binomial

(a) T=100.

Candidate set size
R S R

Candidate set size

15000 20000 0

FST

5000 10000

---- Binomial

=3

5000 10000 15000
Keywords in the dataset

----- Binomial FST

(¢) T=300.

(b) T=200.

20000

15000
Keywords in the dataset

FST

20000

Fig. 6: Candidate set sizes per query when padding is applied, under different
thresholds, where the target set is the full keyword universe, for the standard

Binomial-attack.

24
i1
g
23
N
<
52 T
H .'
Z1 -
0
0 5000 10000 15000 20000
Keywords in the dataset
----- Binomial FST
(a) T=100.
5
R
2
g
=3 FTTTTTTTTTTT
E {
52 R ‘
2 '
£ i
2 I
'
0 4:j

0 5000 10000 15000 20000
Keywords in the dataset

------ Binomial FST
(b) T=200.

5
24 —
S
El
-
P
S
52 R
£ :
S pmeeed
!]

]
0 i
0 5000 10000 15000 20000

Keywords in the dataset

----- Binomial FST

(c) T=300.

Fig. 7: Extra injection sizes per query
when padding is applied, under
different thresholds, where the target
set is the full keyword universe, for the
standard Binomial-attack.

19

Candidate set size
[I R N . =N |

(]
]

)

1

)

]

)

(]

H

0 5000 10000 15000 20000
Keywords in the dataset

————— Binomial FST
(a) T=100.
5
g!
e
g3 |mm=====—=—-—m—-o-
2]
g i
EE '
£ |
<]
O ; 1
]
i
0
0 5000 10000 15000 20000
Keywords in the dataset
----- Binomial FST
(b) T=200.
5
gt
%3 R
2 |
2 H
52 1
-1 |
<]
O , '
]
]
0 '
0 5000 10000 15000 20000

Keywords in the dataset

----- Binomial FST

(c) T=300.

Fig. 8: Candidate set sizes per query
that is not in the target set when
padding is applied, under different

thresholds, where the target set is a

subset of the full keyword universe, for
the standard Binomial-attack.

20 Langhout et al.

Candidate set size

Number of injections

0 5000 10000 15000 20000 0 5000 10000 15000 20000
Keywords in the dataset Keywords in the dataset
----- Binomial FST -=---- Binomial FST
(a) T=100. (a) T=100.
5 5
8! g
Z g
E3 =
§ 3 E 3
z, 52
=1 S
= 2
5 £
1 ; Z1 T
i]
.- [
0 i 0 '
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Keywords in the dataset Keywords in the dataset
------ Binomial FST ===-- Binomial FST
(b) T=200. (b) T=200.
5 5
g g
Z 2
g 3 E 3
.'g 2 : 2
5 3
] £
S s
z

0 5000 10000 15000 20000 0 5000 10000 15000 20000
Keywords in the dataset Keywords in the dataset
----- Binomial FST ==---- Binomial FST
(c) T=300. () T=300.

Fig.9: Candidate set sizes per query Fig.10: Extra injection sizes per query
that is not in the target set when that is not in the target set when
padding is applied, under different padding is applied, under different

thresholds, where the target set is a thresholds, where the target set is a

subset of the full keyword universe, for subset of the full keyword universe, for
the adopted Binomial-attack. the adopted Binomial-attack.

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction

	Background
	SE-Schemes
	SE Basics
	L1: Query-revealed occurrence pattern
	L2: Fully-revealed occurrence pattern
	L3: Fully-revealed occurrence pattern with keyword order
	L4: Full plaintext under deterministic word-substitution cipher
	Countermeasures

	SE-Attacks
	Models
	Overview

	Related Works
	Notation
	Binary-Search Attack
	Mechanism of Operation
	Construction Methodology
	Binary-Attack with Threshold
	Examples

	Finite Set Theory Attack
	Mechanism of Operation
	Constructing of a uniform (s,n)-set of a finite set K.
	Examples

	Design and Develop
	SE Model
	Attack Model
	Research Questions
	RQ1.1 : (s,n)-set Construction
	RQ1.2 : File Interrelation
	RQ1.3 : Space Efficiency
	RQ1 : File-Injection Attack

	Experiments and Results
	Experimental setup
	Performance on the Enron Dataset
	Performance under a Threshold of 200
	Performance under Different Thresholds

	Countermeasure & Mitigation
	File-injection Attacks on SE Schemes with Keyword Padding
	Calculating the Effects
	Visualising the Effects

	Adopted Binomial-Attack
	Removing the (n,n)-Set
	Results after the Mitigation

	Discussion
	Discussion
	Future Work

	Conclusion
	Conclusion

	Bibliography
	Paper

