
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy
|N

et
he

rl
an

ds
Fo

re
ns

ic
In

st
it

ut
e

Authorship Attribution
in a Forensic Setting

Wouter Hajer

Authorship
Attribution

in a Forensic Setting

by

Wouter Hajer
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday August 27, 2024 at 13:00.

Student number: 4957458
Project duration: December 1, 2023 – August 27, 2024
Thesis committee: Dr. J. Söhl, TU Delft, Supervisor

Dr. ir. T. Nane, TU Delft, Chair
A. F. van Luenen NFI, Daily supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

Before you is the result of 8 months of thesis research in authorship attribution. I look back at a very
enjoyable internship at the Netherlands Forensic Institute (NFI), where I got the opportunity to use the
knowledge acquired during my studies to work on a problem with real societal impact. I would like to
thank everybody who helped me during my thesis project and will use this preface to thank some of
them in particular.

Firstly, I would like to thank Jakob Söhl, my supervisor from the TU Delft, for reaching out about
possible projects at the NFI over a year ago and for all his supervision since. Our bi-weekly meetings
helped me to take a step back from my work and look at the bigger picture. This was of great value
for the overall quality of my thesis. Additionally, I would like to thank Tina Nane for taking place in my
graduation committee.

Secondly, I would like to thank Anne Fleur van Luenen, my daily supervisor at the NFI, for all her
guidance during my thesis. Our weekly meetings helped me immensely with all aspects of carrying out
my thesis project. I also would not have been able to navigate the bureaucratic hurdles of accessing
real forensic data without her help. I also would like to thank Rolf Ypma for his valuable input and
stimulating discussions during our meetings once every three weeks. Additional thanks go to all my
other colleagues at the NFI from which I have learned a lot during lunch conversations, from demos
of their projects and their questions and feedback during my demos. I also would like to thank all the
other interns with whom I have shared room D2.07 during this project. They made my time at the NFI
that much more enjoyable. Lastly, I would like to thank Hans van Halteren for his help with retrieving
the abc_nl1 corpus.

Finally, I would like to thank my friends and family for all their support during my studies and in my
thesis project. My thanks go to my friends of Fysisch Incapabel who I know supported me even though
they had to act disappointed that I pursued my Masters in mathematics instead of physics; to Boyd and
Koen, for all our lovely games of mario kart and dominion in between the in-depth discussions about
our studies; to my parents and sisters, for all their support during my studies; and to Marthe, for all her
love and support.

Wouter Hajer
The Hague, July 2024

i

Summary

Authorship attribution is the task of determining the unknown author of a text. In forensic authorship
attribution, the likelihood that a suspect has written a specific text of unknown origin is computed based
on reference texts from both the suspect and a background population. The current method used at the
Netherlands Forensic Institute contains a manual and a computational part. In this thesis, we attempted
to improve the computational part of this process. We study this problem from three directions.

Firstly, the performance of state-of-the-art computational authorship attribution methods was as-
sessed on Dutch, forensically relevant corpora. The compared methods were support vector machines
combined with masking, using either word or character n-grams as features, BERT-basedmodels using
a mean pooling strategy to handle long texts and the baseline, which consists of a logistic regression
model with the 100 most frequent Dutch words as features. We notice similar performance differences
between state-of-the-art methods as in the literature. The best-performing method was a support vec-
tor machine without masking using character n-grams as features. In comparison, both the baseline
and BERT-based models perform worse on our corpora.

Secondly, a score-based likelihood ratio systemwas created to modify the computational authorship
attribution methods for usage in forensics. This method is based on kernel density estimators and uses
cross-calibration to handle the small number of training and calibration texts of the suspect. For most
methods, the performance is in line with the previous performances outside the likelihood ratio system,
except for the BERT-based methods, which significantly underperform when part of a likelihood ratio
system. This is likely caused by the combination of cross-calibration and the randomness in finetuning
BERT models.

Additionally, authorship attribution methods should be topic-robust, such that their attribution is not
biased by the topic of a text. We introduced two new metrics to measure the topic-robustness of
authorship attribution methods, ‘topic impact’ and ‘conversation impact’. These metrics can only be
used on specific types of corpora, the topic impact can be computed on topic-controlled corpora and the
conversation impact can be computed on conversational corpora. To study whether these metrics both
measured the topic-robustness of authorship attribution methods for their respective corpus type, we
computed the correlation between the results of the metrics for varying authorship attribution methods.
We found a correlation of 0.68. As a result, we cannot conclude that the conversation impact is a
perfect metric to measure the topic-robustness of methods using conversational corpora, but it does
give a good indication of large differences between methods.

Using this newmetric, we found that our best-performing methods suffered from a high conversation
impact and, as a result, might be more likely to have a low topic-robustness. If more of the infrequent
words were masked, the conversation impact decreased, but so did the performance. A trade-off
between high performance and high topic-robustness must be made when a model is chosen for real
forensic case work. The conversation impact metric we proposed can help quantify these effects on
forensically relevant corpora and therefore assist in making better choices.

ii

Contents

Preface i

Summary ii

Nomenclature v

1 Introduction 1
1.1 Structure . 2

2 Related Work 3
2.1 Linguistics . 3
2.2 Computational Authorship Attribution . 3

2.2.1 The State of Computational Authorship Attribution before 2010 3
2.2.2 Developments in Authorship Attribution . 4
2.2.3 Recent comparative studies . 5

2.3 Forensic Science . 6
2.4 Authorship Attribution in Dutch . 7

3 Corpora 8
3.1 FRIDA . 8
3.2 RFM . 8
3.3 abc_nl1 . 9

4 Feature-based Authorship Attribution 10
4.1 Features . 10

4.1.1 Summary statistics . 10
4.1.2 Function words . 10
4.1.3 Word n-grams . 10
4.1.4 Character n-grams . 11
4.1.5 POS n-grams . 11
4.1.6 Special characters . 11

4.2 Support vector machines . 11
4.2.1 Hard margin SVM . 11
4.2.2 Soft margin SVM . 12
4.2.3 The SMO algorithm . 12
4.2.4 Multiclass SVM . 12
4.2.5 Kernels . 13

4.3 Implementation . 13
4.3.1 Feature vector . 13
4.3.2 SVM . 15

4.4 Masking . 16
4.5 Background vocabulary . 16
4.6 Baseline . 17

5 BERT 18
5.1 Model architecture . 18

5.1.1 Tokenization . 19
5.1.2 Encoding . 19
5.1.3 Multi-head attention . 20
5.1.4 Feed-forward neural network . 20
5.1.5 Pre-training . 21

5.2 BERT models for authorship attribution . 21

iii

Contents iv

5.3 Subverting the token limit . 21
5.3.1 Truncation . 21
5.3.2 Averaging classifications . 21
5.3.3 Mean pooling before classification layer . 22

5.4 Dutch BERT models . 22

6 Likelihood Ratio Framework 23
6.1 Common Source problem . 23
6.2 Specific Source problem . 23
6.3 The CS and SS problem in authorship identification . 23
6.4 Likelihood Ratio . 24

7 Likelihood Ratio Systems 25
7.1 Binary scorer . 25
7.2 Kernel Density Estimation . 25

7.2.1 Cross-calibration . 27
7.3 Feature-based likelihood ratio systems . 27
7.4 Dataset Balance . 28
7.5 Bounding . 28

7.5.1 Bounds on the optimal LR system . 29

8 Validation 31
8.1 Metrics in computational authorship attribution . 31
8.2 Validation in forensic sciences . 32

8.2.1 Accuracy . 33
8.2.2 Discriminating power . 34
8.2.3 Calibration . 37
8.2.4 Graphical representations . 37
8.2.5 The choice of V . 39

9 Topic and Conversation Impact 41
9.1 Topic impact . 41
9.2 Conversation impact . 42
9.3 Practical implementation . 44

10 Results and Discussion 45
10.1 Computational authorship attribution . 45

10.1.1 Feature vector and SVM models . 45
10.1.2 BERT-based models . 46
10.1.3 Comparison . 47
10.1.4 Influence of text length, number of texts and number of authors 47

10.2 Forensic authorship attribution . 50
10.2.1 Log-likelihood ratio cost . 50
10.2.2 Tippett plots . 52
10.2.3 ECE plot . 54
10.2.4 PAV plots . 55

10.3 Topic and conversation impact . 56

11 Conclusions and Recommendations 60
11.1 Conclusions . 60
11.2 Future research . 61

References 62

A Proof that the weighted average of the Cllr of two sets is the same as the Cllr of their
union 65

B Tables of results presented in figures 67

C Tables of additional experiments results 70

Nomenclature

Abbreviations

Abbreviation Definition

AA Authorship Attribution
BERT Bidirectional Encoder Representations from Transformers
CAA Computational Authorship Attribution
CS Common Source
ECE Empirical Cross Entropy
ELUB Empirical Lower and Upper Bound
EU Expected Utility
FAA Forensic Authorship Attribution
KDE Kernel Density Estimation
LR Likelihood Ratio
MLM Masked Language Modelling
NFI Netherlands Forensic Institute
NSP Next Sentence Prediction
PAV Pool Adjacent Violators
POS Part-of-Speech
PDF Probability Density Function
RFM Real Forensic Messages
SMO Sequential Minimal Optimization
SS Specific Source
SVD Singular Value Decomposition
SVM Support Vector Machine

v

1
Introduction

In 2018, police agents found a dead man in the Dutch town of Heeg [17]. Shortly before his death, a
last e-mail was sent from his computer, in which it is explained that after his death €17,000 should be
transferred to a client. The police asked the Netherlands Forensic Institute (NFI) to investigate whether
this e-mail was written by the victim or one of two other persons who could have accessed this computer.
If this e-mail was indeed written by one of the two others, this could be used as evidence that they were
involved with his death.

This is an example of a forensic authorship attribution (FAA) case. In such cases, there is a text of
unknown origin, here the e-mail, and several known texts, also called reference texts. The reference
texts consist of both texts written by the suspect and texts written by the other possible authors, the
reference population. In the example, the reference texts could be earlier emails written by the victim
and the two possible suspects.

The current method used at the NFI has a dual approach. Firstly, for each possible author, a lan-
guage expert looks through all their reference texts and observes features that are indicative of their
writing style. This could be, for example, the usage of uncommon words or consistent spelling mis-
takes in certain words. It is important that the experts go blindly into this endeavour: they should not
have seen the text of unknown origin, nor should they know which author has written the texts they are
reading, to keep bias at a minimum. We will call the notable features found by language experts the
manual features.

Secondly, the 100 most frequent Dutch words are also used as features. The occurrences of all
both the manual features and the most frequent words are then counted in all texts and normalized
by the number of words in the text. The resulting feature vectors of the known texts are then used to
train and calibrate a classification model based on logistical regression that can compute the value of
evidence of the unknown text. In this thesis, we study methods to improve the quality of these systems.
Due to the manual work involved in finding the manual features in the current method, we will focus on
the second part, the features consisting of the 100 most frequent words. We will set this method as
the baseline method in our research. In real case work, manual features can be added to the feature
vector of the models we study to get a complete model.

In recent years, the field of computational authorship attribution (CAA) has seen significant improve-
ments in performance and the current state-of-the-art models are much more complex than using the
current baseline [37, 54]. The differences between this field and that of forensic authorship attribution
are twofold. Firstly, there is a difference in the used datasets, also called corpora. In computational au-
thorship attribution often large corpora of books, blogs, movie reviews, internet comments or fanfiction
are studied, as these are easily accessible on the internet [54]. In forensic cases, the studied texts are
often of a more private nature, like chat messages or e-mails, which are often smaller in size and not as
easily accessible for most researchers compared to online corpora. Additionally, most research in CAA
has been performed on English corpora and to a lesser extent on Spanish, French and German corpora
[39, 54], while in forensic cases at the NFI authorship attribution is mostly used on Dutch texts. Due
to the difference in studied texts, other methods might perform better on forensically relevant datasets
than on the datasets studied in CAA. Therefore, the first aim of this thesis is to study the performance

1

1.1. Structure 2

of current state-of-the-art CAA methods on forensically relevant, Dutch corpora and to compare their
results with the baseline.

The second difference between computational and forensic authorship attribution is the result of the
model. In CAA the models need to attribute a text to one specific author and the performance of models
is judged based on metrics based on the percentage of correct attributions. However, in an FAA case,
the goal is not just to attribute a text to the correct author, but also to estimate how much more likely
that author is to have written the text compared to the reference population of alternative authors. This
way, a judge can combine the value of evidence with the value of other pieces of evidence to make a
judgement. A so-called likelihood ratio system, which can be based on various authorship attribution
methods, can be built to calculate the value of evidence. To the best of our knowledge, this specific area
is understudied in terms of publications [20, 25], especially when compared to the adjacent fields of
CAA and likelihood ratio systems for the authorship verification task. We want to expand the literature in
FAA using the NFI’s likelihood ratio framework [32] combined with state-of-the-art authorship attribution
models. This leads us to the second aim of this thesis, to study the performance of likelihood ratio
systems built using current state-of-the-art CAA methods in comparison with the baseline.

A risk in the field of FAA is the impact of the topic of a text on its attribution. Suppose a hypothetical
case where our reference set consists of texts about football written by Alice and texts about painting
written by Bob. Suppose a model attributes new texts to either Alice or Bob based on the frequency
of all words used in the text. In Alice’s known texts, words like team, field, game, and referee might
frequently be used, while Bob might use words like canvas, brush, pigment, and colour. If Alice now
writes a text about painting, themodel might attribute this text to Bob, because the text contains painting-
related words which Alice did not use in her texts about football. The same effect can happen when
the model is tested on a text written by Bob about football.

In FAA, the topic of the unknown text can be significantly different from the topics of the reference
texts. An example of this is cases where we want to use messages from a suspect’s regular phone to
identify the author of text messages sent from a burner phone, a second phone only used for criminal
purposes. The topics discussed on the burner phone are likely different from topics discussed in text
messages on the regular phone. As a result, it is desirable to use models that do not suffer attribute
texts based on topic, which we call topic-robust models.

Recently, some studies have tested the influence of topic on authorship attribution in corpora where
several authors have eachwritten texts about the same varying topics [1, 52], also called topic-controlled
corpora. However, to the best of our knowledge, a corpus that is both topic-controlled and forensically
relevant has not yet been created. To still be able to test the topic-robustness of state-of-the-art CAA
methods on forensically relevant datasets we propose the usage of conversations as a proxy for the
topic. If two people are having a conversation, with for example chat messages or e-mails, they are
likely writing texts about the same topic. Therefore we might be able to use both halves of a conver-
sation as two texts written by different authors about the same topics. To validate this idea we want to
define metrics to measure the impact of topic on a topic-controlled corpus and the impact of the usage
of conversations as a proxy for topic in a conversation corpus. If the results of various models are cor-
related, this might support the possibility of measuring the topic-robustness of models on forensically
relevant conversation corpora. We summarize this in our third and final research aim: to define metrics
to calculate both the topic and conversation impact and study their correlation.

1.1. Structure
We will start by studying the related work and identifying research gaps in Chapter 2. In Chapter 3 we
introduce all datasets used in this thesis. We will proceed with the theory behind two state-of-the-art
authorship attribution methods, feature vectors with support vector machines (Chapter 4) and BERT-
based models (Chapter 5). Then we will explain the theory behind likelihood ratios (Chapter 6) and
how to use a computational authorship attribution method in this likelihood ratio framework (Chapter
7). Having covered all this theory, we will continue by showing how to validate both computational
and forensic authorship attribution methods (Chapter 8). As our last theory chapter, we will define
the metrics ‘topic impact’ and ‘conversation impact’ in Chapter 9. We continue by presenting and
discussing our results in Chapter 10. Lastly, we will draw our conclusion from these results and make
recommendations for future research in Chapter 11.

2
Related Work

As authorship attribution is a multi-disciplinary field, research in this area is performed from a variety of
backgrounds and with different aims. Three main categories of research done in authorship attribution
are studies with either a linguistic, a forensic or a computer science focus. In this chapter, we will
describe the previous work done in these subfields, with a focus on both computational and forensic
authorship attribution, as those fields are closely related to this thesis. Furthermore, we will give an
overview of the previous research performed on Dutch texts. As this chapter is meant to give an
overview, we will not go into depth into many of the mentioned techniques. For the techniques we use
in this thesis, we will reference the section in which they will be explained in depth.

2.1. Linguistics
The origin of authorship attribution is located in the field of linguistics, with studies discussing the au-
thorship of famous anonymous texts or books. The example that is often [50] referred to as the first
study in authorship attribution is the study by Mosteller and Wallace [36] into the origin of the Federalist
papers. Much of this research performed before computers could handle large sets of features was
done by finding specific features by hand. This could be specific words or sentences that only one of
the authors uses or summary statistics like the average length of words or sentences. This feature
could then be quantified and counted in both the known and unknown texts to try to determine the
author of the unknown text.

2.2. Computational Authorship Attribution
The field of computational authorship attribution is the largest of the three subfields. We will therefore
divide the previous research in this subfield into three parts. We will first illustrate the state of compu-
tational authorship attribution before 2010, as around that time three influential works were published
that reviewed the state of the field, by Juola [24], Koppel et al [29] and Stamatatos [50]. From this
baseline, we will describe all major publications and newly proposed methods of the following years.
Lastly, we will cover the results of two recent comparative studies in which the performance of a variety
of methods is compared on several of the most studied corpora [37, 54].

2.2.1. The State of Computational Authorship Attribution before 2010
In his book, Juola [24] extensively covers the history of authorship attribution and describes the re-
sults of the so-called Ad-hoc Authorship Attribution Contest he organised in 2004. During this contest
corpora from a variety of languages were included, specifically English, French, Serbian, Latin and
Dutch. Of the top three methods in the contest, the first one used a support vector machine (SVM) with
“unstable words”, words with commonly used substitutes, as features. The other two methods were
a character n-gram method with k-nearest neighbour classification and a profile-based method using
features including word n-grams, character n-grams and summary statistics. In Chapter 4 we give an
in-depth discussion of the varying features mentioned here and the theory behind SVMs.

Koppel et al [29] compares five sets of features with five machine learning techniques for classi-

3

2.2. Computational Authorship Attribution 4

fication on three English corpora. The three corpora consist respectively of e-mails, literature and
blogs. In this comparison, they find the best results using a feature set containing the 1000 character
3-grams/words with the highest “information gain” from the 10.000 most frequent 3-grams/words in the
training corpus. Furthermore, when combining these feature sets the performance is improved even
more. On their corpora, two classification methods show the best results, namely Bayesian multi-class
regression and a support vector machine with a linear kernel.

Stamatatos [50] did not evaluate and compare several methods quantitatively, but gives an exten-
sive qualitative overview of many previous publications. The features used in previous research are
subdivided into four categories: lexical, character, syntactic and semantic. The methods are described
as part of two categories, profile-based and instance-based approaches. In a profile-based approach,
all training documents of a single author are concatenated into a single document, of which summary
statistics are used to determine if it is related to an unknown text. On the other hand, in an instance-
based approach, the individual training texts are used to train a classifier, which then classifies the
unknown texts. Furthermore, he describes an important issue at hand, namely how to discriminate be-
tween three factors that impact texts: authorship, genre and topic. In many of the corpora used at the
time, there is a correlation between author and topic, as people tend to discuss similar topics between
different texts. In 2009 a new English corpus was published in which topic and genre were controlled
[18], leading to many studies in the subfield of cross-domain authorship attribution. The most influential
of those are included in the following section.

2.2.2. Developments in Authorship Attribution
Sapkota et al [46] studied the performance of different types of character 3-grams. They divided these
n-grams into three main categories: affix n-grams, word n-grams and punctuation n-grams, with further
subdivision in these categories. They use these n-gram types as feature sets to show that on a single-
domain corpus affix n-grams perform significantly better than other types of n-grams, while on a cross-
domain corpus, both affix and punctuation n-grams get the best results. That the relative usefulness of
punctuation n-grams increases on a cross-domain might be a sign that these are features of an author’s
style that are better conserved across topics.

In a 2018 paper Stamatatos [52] proposes a new method to tackle cross-domain authorship called
masking. In this technique words that occur less frequently are replaced by asterisks and all digits are
replaced by hashtags. Upon the modified dataset they utilize two different methods, character 3-grams
with a support vector machine and prediction by partial matching (PPM) [53]. They show that the use of
character 3-grams in combination with a support vector machine and masking works significantly better
than the same system without masking in cross-topic authorship attribution. This result is the strongest
when only 100 - 200 of the most frequent words are not masked. For PPM no significant increase was
seen in accuracy when using masking and the overall performance was lower than that of the character
3-gram methods. Four different methods for masking were proposed, where words outside of the most
frequent words were replaced by either one asterisk per letter, one asterisk per word, one asterisk per
letter while leaving the exterior letters intact or one asterisk per letter while leaving the last two letters
intact. The performance of these methods was comparable, with the method replacing each letter with
an asterisk outperforming the other methods slightly. We discuss masking and our implementation of
it further in Chapter 4.4.

During the yearly PAN/CLEF conference shared tasks on digital text forensics and stylometry are
done. Authorship Attribution tasks have been included during some of these years, most recently in
2019 [27]. During this task, the focus was on cross-fanfiction, a variant of cross-domain, authorship
attribution. In this task, the texts in the training set are about a different fandom (e.g. Harry Potter, Lord
of the Rings) than the texts in the validation set. Additionally, some of the texts in the validation sets
were from authors outside the author set and have to be classified as unknown. All good performing
strategies in this task were n-gram and SVM-based. The best performance was by Muttenthaler et al
[39] using an SVM with as features an ensemble of word and character n-grams, disregarding the 50%
least frequent features. Additionally, they used dimension reduction by singular value decomposition.
We study the implementation of the method by Muttenthaler et al in-depth in Chapter 4.3.

Transformers
The use of transformers in authorship attribution was first proposed by Fabien in 2020 [16]. This paper
introduces the method BERTAA, which is based on the pre-trained language model BERT [14]. We dis-

2.2. Computational Authorship Attribution 5

cuss the inner workings of BERT models and the implementation of BERTAA more in-depth in Chapter
5.

Additionally, Fabien explores ways of combining BERTAAwith stylometric features and n-grams [16].
This is done by building two individual logistic regression models, one using an array of stylometric
features and the other using the hundred most frequent n-grams. Then another logistic regression
model is fitted to combine the outputs of the three models. The addition of these features did not lead
to significant improvements in the macro-accuracy of the model [16].

In 2021, Barlas and Stamatatos proposed using transfer learning in cross-domain authorship at-
tribution [6]. Four different transformers are trained on an authorship attribution task: BERT, GPT-2,
ELMo and ULMFiT. The authorship is attributed using a multi-headed classifier, meaning that an indi-
vidual classifier is trained for each author. During the validation phase the classification heads of all the
authors are connected to the model and the author is decided as the one with the lowest cross-entropy
loss for the validation text. In a later comparative study [54], this method is referred to as per-Author
Language Model (pALM), which is the abbreviation we will use as well. A similar multi-headed classifier
approach was first proposed for the authorship verification task by Bagnall in 2016 [4] using a recurrent
neural network (RNN) to represent the texts. Authorship verification is a task related to authorship
attribution in which it is determined whether two texts are written by the same author, or by two differ-
ent authors. The implementation using pre-trained transformers obtains a higher performance than a
modified version of the method using RNNs, especially using BERT and ELMo [6].

Altakrori et al [1] proposed a new subtask for authorship attribution called the topic confusion task.
For this experiment, a dataset is used in which all authors have written ten articles about each of four
different topics. The authors are then split into two groups and the training set of group A covers topic
1, while the training set of group B covers topic 2. For the validation set this is reversed, so topic 2 for
group A and topic 1 for group B. The remaining two topics are used for hyperparameter tuning before
the model is tested on the validation set. The authors assume that this approach filters methods quite
well in whether they classify based on the topic or the author’s style. We study this so-called topic
confusion task more deeply in Chapter 9.

Altakrori et al [1] use two types of methods: a feature set with an SVM and methods using a BERT-
based transformer. The feature sets used in the SVMmodels are stylometrics, POS n-grams, character
n-grams and word n-grams. Additionally, they look at the masking method [52] and combinations of the
feature sets. For the BERT-based models, they look at both BERT and RoBERTa. These were imple-
mented with either just a classification layer, similar to BERTAA but with the weights of the transformer
frozen during training, or the pALM method [6].

Their results show that the n-gram-based methods outperform the BERT methods significantly. Of
the n-gram-based methods masking with character or word n-grams worked best. This performance
was increased slightly when combined with the features from stylometrics and POS n-grams. From
the transformer-based models, the pALM method with RoBERTa worked better than the other imple-
mentations. For this model, the same group error was similar to the n-gram methods. However, the
cross-group error was significantly higher, seemingly suggesting that the influence of the topic is larger
on transformer-based methods [1].

2.2.3. Recent comparative studies
Two recent studies comparing performances of several different methods on a larger set of corpora
have been done by Murauer et al [37] and Tyo et al [54].

Murauer et al (2021)
Murauer et al [37] compare five feature-basedmethods that use an SVMas a classifier with a transformer-
based method using three different pre-trained language models. The five feature-based methods are
character 3-grams [51], universal part-of-speech tagging [8], DT-grams [38], and two methods with a
document embedding using either character 3-grams or words as tokens [19]. The pre-trained lan-
guage models used were BERT [14], and two later variants of BERT, namely DistilBERT [45] and
RoBERTa [33]. Here the pre-trained language models are used without any further modifications, sim-
ilar to BERTAA [16].

Murauer et al evaluate the F1-score (Chapter 8.1) of these models on six categories of corpora,
three of which are cross-domain. The corpora that are not cross-domain are subdivided into standard
corpora, small corpora, with only ten training texts per author, and corpora with several languages,

2.3. Forensic Science 6

where each author uses only one language. The cross-domain corpora are subdivided into cross-topic,
cross-genre, or cross-language. Murauer et al’s results show that character 3-grams outperform the
other methods on all corpora except the cross-language corpora [37]. Especially for small corpora and
cross-topic corpora the models using character 3-grams get a significantly higher F1-score than the
other methods. Of the pre-trained language models, RoBERTa performs the best, with a slight edge
over BERT and DistilBERT. RoBERTa also had the overall best performance on the cross-language
corpus [37].

Tyo et al (2022)
Tyo et al [54] compare four different methods based on macro-accuracy (Chapter 8.1): the n-gram
method by Muttenthaler et al that won at PAN/CLEF in 2019 [39], prediction by partial matching (PPM)
[53], BERTAA [16] and pALM [5]. Tyo finds that n-gram performs the best on 5 out of the 7 datasets,
with BERTAA performing the best on the other two datasets. Tyo et al note that the corpora on which
BERTAA outperforms n-grams have the largest training sets per author of the corpora. Due to large
computational costs, the other two methods could only be used on smaller datasets. On the tested
datasets PPM performs similarly to BERTAA, while pALM performs worse than the other methods.

Tyo et al also looked at the cross-domain and cross-topic performance of the methods, on the same
corpora that Murauer et al used. Here n-gram significantly outperforms all other methods, while the
remaining methods perform similarly to each other.

Comparison
Although these studies both include four of the same corpora, we cannot directly compare the results
of both papers. This is due to the difference in performance measures, where one uses F1-score
and the other macro-accuracy. However, we can study the general trend in both papers, namely that
methods using n-grams with an SVM still outperform other methods on most corpora, especially with a
small number of training texts per author. Of the other methods, the ones using BERT-based methods
perform the best, but it seems that current methods still need a significant amount of training texts per
author to outperform character n-grams-based models. We thus conclude that currently SVMs with n-
grams as features are state-of-the-art on almost all corpora, but BERT-based methods are the closest
of the other methods and are state-of-the-art on some of the corpora with the most text per author. As
a result, we will focus on these two methods in the rest of this thesis.

2.3. Forensic Science
Although the previously described research has significantly furthered the accuracy of authorship attri-
bution methods, these results are not directly transferable to the forensic sciences. This is due to two
major reasons: the datasets used in the studies and the measures used to score the performance of
the methods. Datasets that are commonly used in research consist of for example news articles, blogs,
movie reviews, fanfiction, books and forum posts [54]. On the other hand, this thesis research focuses
on conversations, spoken or text messages. This results in individual messages with a much smaller
length than those used in most authorship attribution research. Additionally, classification in compu-
tational authorship attribution studies is performed without a measure for the strength of the evidence
that the appointed author has written the text. This makes it impossible for judges to use these results
in their verdicts.

In his 2022 book, Grant [20] describes the history and current state of forensic authorship attribution,
while comparing it to other forensic sciences. In the forensic sciences, there has been a push to quantify
the strength of evidence in likelihood ratios. A likelihood ratio, also called a Bayes factor, is a measure
of the strength of evidence, which we study in depth in Chapter 6.

The usage of likelihood ratios in authorship attribution generalizes the way evidence is measured
with a variety of other forensic disciplines, as it is also common practice in fields like DNA analysis and
automatic speaker recognition. Some research has been published focusing on determining likelihood
ratios for this field [23, 25]. Still, no standardized procedure that is accepted in British courts has
arisen from this [20]. At the Netherlands Forensic Institute, likelihood ratios are used to quantify the
evidence of authorship attribution in court cases, but no methodology of their method has previously
been published.

Juola [25] proposes a procedure in which the authorship of a questioned document by a certain
suspect is determined. This procedure is based on collecting reference material of the suspected

2.4. Authorship Attribution in Dutch 7

author and 10 random authors and comparing these texts to the questioned document on five feature
sets. These feature sets consist of words used, word length, character 4-grams, most common words
and punctuation. For each of these categories and each author, a distance between the questioned
and known documents is determined based on the cosine distance. The distances of the 11 authors
are then ranked per category, with the lowest distance being given 1 point and the highest 11. By
summing these scores for the suspect a total score is determined, which is compared to reference
data to estimate a likelihood ratio. In our view, this method is an important first publication focusing on
likelihood ratios in the field of authorship attribution but also leaves some room for improvement. For
example, the five feature sets are dependent on each other and the method of transforming distances
to a ranked sum leaves information unused.

More studies have been done into likelihood ratios for the related authorship verification, for example
by Ishihara [23] and Sergidou [48]. Due to the difference in tasks, these methods are not directly
transferable. In a previous Master’s thesis at the Netherlands Forensic Institute Scheijen [47] focused
mainly on the verification task, but also included some research into likelihood ratios for the attribution
task. In this study, kernel density estimation was used to transform a feature set of frequent words into
likelihood ratios. This is also called a feature-based likelihood ratio system. Due to unstable covariance
matrices for larger feature sets, the number of frequent words used was limited to only 20 words. As
a result, the log-likelihood ratio cost of her results was quite high, around 0.6. This was an important
contribution to the field of forensic authorship attribution, as it is the only feature-based likelihood ratio
system for authorship attribution that has currently been proposed.

2.4. Authorship Attribution in Dutch
Most research in authorship attribution has been done on corpora of English text. Some papers have
previously been published focusing specifically on the Dutch language [3, 26, 31, 34, 56]. As the
last of these studies was published in 2011 they are not up to date concerning recent state-of-the-art
methods. The corpora studied in the majority of these studies consisted of essays written by Dutch [3,
26, 56] or Flemish [34] students. The remaining study used a corpus of Dutch newsgroup messages,
a type of forum [31]. The most recent paper focused on Dutch authorship attribution, by Luyckx and
Daelemans [34], concluded that the features that performed the best were character n-grams. This
corresponds to the results of studies on English corpora around that time [24, 50]. This suggests that
the performance of this method might be transferable to the Dutch language. The previously mentioned
thesis by Scheijen [47] also covers a Dutch corpus, consisting of transcribed speech, created at the
Netherlands Forensic Institute, FRIDA [55]. As the focus of her research was on the verification task, no
comparison of several methods on the attribution task was performed. The features used for authorship
attribution were the 20 most frequently used words.

3
Corpora

In this chapter, we will describe the three corpora, also called datasets, used in this thesis research,
FRIDA, RFM and abc_nl1.

3.1. FRIDA
FRIDA [55] is a dataset created at the Netherlands Forensic Institute consisting of phone calls between
individuals. The participants were paid to have 8 phone conversations with a duration of 5 minutes.
From the participants, pairs were made such that each participant always conversed with the same
other participant, which we will call their conversation partner, or simply partner. The original goal of
this dataset was the usage for validating automatic speaker recognition models. Later, all texts were
transcribed by hand, leading to a dataset that can be used in authorship attribution.

The transcription results in 8 conversation halves per speaker, who we will also call the author. In
total FRIDA contains 224 authors, but in our study, we use just the first 50 of these authors. This
number is chosen as it represents a common size of a background population in forensic authorship
attribution cases. The average number of words per text in FRIDA is 508.6. In figure 3.1a a histogram
of the number of words per text in FRIDA is shown.

3.2. RFM
Real Forensic Messages (RFM) is, as the name suggests, a dataset created from real chat messages
used in forensic case work. We cannot go into depth about the creation or the contents of this dataset,
but we will give statistics about the average text length, the number of authors and the number of texts
used per author.

We look at messages between 25 author pairs, giving us 50 authors in total. We divide the time
into blocks of two hours and merge all messages of one author per time chunk into one conversation
half. We then randomly selected 8 conversation halves from all conversation blocks in which both the
author and their partner sent at least 10 messages. This gives us a mean word count of 238.7 per
conversation half, while the median is 185. In Figure 3.1b a histogram of the number of words per text
of RFM is shown. We will also investigate the impact of text length and the number of texts per author
on RFM, by creating altered versions of RFM with different parameters. When using these altered
versions we will mention their specific properties.

In the histograms containing the number of words in FRIDA and RFM, we notice a significantly
different distribution between the two datasets. This is caused by the way they are created. As each
conversation in FRIDA is exactly 5 minutes long, the number of words per half of the conversations
is much more normally distributed compared to the number of words per text in RFM. In RFM, a text
consists of all messages sent by a single author in a space of 2 hours if at least 10 messages were
sent in this period it can contain significant outliers. We notice that the longest text consists of more
than 1500 words in a single text, which is more than six times the average text length. This leads to
the right-skewed distribution of text lengths we see in Figure 3.1b.

8

3.3. abc_nl1 9

(a) FRIDA (b) RFM

Figure 3.1: Histogram of the number of words per text in the datasets FRIDA and RFM.

3.3. abc_nl1
The abc_nl1 corpus [3] was created in 1999 at the Radboud University to be used for authorship at-
tribution research. 8 students, 4 in their first year and 4 in their final year were paid to write three
argumentative, three descriptive and three fictive texts. These topics were fixed, such that each author
wrote about the same topics. Due to issues with accessing the original dataset, we used a reduced
version of this dataset with only 6 texts per participant1. The remaining texts cover the following topics:
argumentative texts about the television show ‘Big Brother’ and the health risks of smoking, descriptive
texts about football and a book review and fiction texts about Little Red Riding Hood and a chivalric
romance. A second change in the reduced version of this dataset is that all text is written in lowercase.
We assume that this change has little impact on the attribution of texts, as the texts in this dataset
generally consist of correct Dutch. This means that capitalization is only used at the start of sentences
and for proper nouns. The start of sentences is also signified by preceding punctuation marks, so
information about the frequency of using certain words at the start of sentences can still be captured.
Secondly, if all authors had capitalized all proper nouns, which we expect in essays, no information
about authorship was present in the capitalization.

We utilize the abc_nl1 corpus solely for our third research aim, the study of the relationship between
the impact of topic and conversation on authorship attribution. As abc_nl1 is a topic-controlled corpus,
it can be used to study the topic impact of various authorship attribution methods. We do not use
abc_nl1 when computing our other results as it is not a forensically relevant corpus.

1This dataset can be found as problem M at: https://www.mathcs.duq.edu/~juola/authorship_materials2

https://www.mathcs.duq.edu/~juola/authorship_materials2

4
Feature-based Authorship Attribution

In this chapter, we will cover necessary background knowledge from authorship attribution using feature
vectors. Wewill include an overview of commonly used features like character, word and part-of-speech
n-grams. We will also cover techniques to classify the resulting feature vectors, with a focus on Support
Vector Machines. Then we will describe the feature-based authorship attribution model we used in this
thesis.

4.1. Features
Many different features can be used to attribute texts to authors. In this section, we will give a short
overview of those most commonly used in authorship attribution [50].

4.1.1. Summary statistics
The earliest authorship attribution methods were based on summary statistics. These features included
for example the average character length of words or the average number of words per sentence. In
calculating these averages, these methods disregard a lot of information and are therefore not suited
to differentiate between large numbers of authors.

4.1.2. Function words
A different method is to use a curated list of function words as features. Function words are words with
little lexical meaning, like articles, pronouns and auxiliary verbs. Using function words as features has
the advantage that little to no topic is captured in these words, meaning that the topic of a text cannot
influence its attribution. A drawback is that a curated list has to be created and this list is language-
dependent, meaning that it cannot be easily used on texts in a different language. Alternatively, the
most common words in a corpus could be assumed to be function words and require less curation.

4.1.3. Word n-grams
Another common way of extracting features from a text is the use of n-grams. An n-gram is a set of
n ∈ N consecutive tokens taken from a list. In the context of authorship attribution, these tokens could
for example be characters or words. For example, the Dutch sentence “Hij gaat naar school.” contains
the word uni-, bi- and tri-grams shown in the table below.

Word unigrams [“Hij”, “gaat”, “naar”, “school”]
Word bigrams [“Hij gaat”, “gaat naar”, “naar school”]
Word trigrams [“Hij gaat naar”, “gaat naar school”]

Here all words are counted instead of just the function words. Furthermore, by looking at combina-
tions of words, uncommon sentence structures used by a specific author can be found.

10

4.2. Support vector machines 11

4.1.4. Character n-grams
Similarly, to word n-grams, we can look at combinations of characters. If we look back at the example
sentence, it contains the following character uni-, bi- and tri-grams:

Character unigrams [“H”, “i”, “j”, “ ”, “g”, “a”, “a”, “t”, ... ,“l”, “.”]
Character bigrams [“Hi”, “ij”, “j ”, “ g”, “ga”, “aa”, “ar”, ... , “ol”, “l.”]
Character trigrams [“Hij”, “ij ”, “j g”, “ ga”, “gaa”, “aar”, ... , “ool”, “ol.]

Note that we include spaces in the character n-grams. Furthermore, a choice can be made to
include or exclude punctuation marks and whether to view all letters as lowercase letters or to keep
this distinction. Methods often include punctuation marks if they use character n-grams while excluding
them when using word n-grams [39]. Because of the high number of possible word and character n-
grams, especially for high values of n, the number of features can become quite large. This can be
beneficial, as much information is still present, but also increases computational time.

4.1.5. POS n-grams
Part-of-speech (POS) n-grams look at the sentence structure used in texts. All words are first given a
POS tag which annotates the grammatical function of each word in the sentence, like article, noun or
verb. The sentence “Hij gaat naar school.” is tagged as [Pronoun, Verb, Adposition, Noun]. POS bi-
or tri-grams can highlight an author’s commonly used sentence structures, which might be used with
different words in different sentences.

4.1.6. Special characters
Some methods also specifically include special characters like punctuation symbols or emojis as fea-
tures. This information can also be processed as a part of either word or character n-grams, but
including it as a specific feature can put additional emphasis on these features.

4.2. Support vector machines
There exist several methods to use the feature vectors to classify new texts. A simple method would
be to normalize the elements and calculate the average distance to the feature vectors of the training
texts for each author [30]. As the authorship attribution task is a multiclass classification problem, many
machine-learning classification methods can be used, including logistical regression, naive Bayes, sup-
port vector machines, decision trees and random forests [24, 29, 47, 50]. As support vector machines
(SVMs) generally outperform other methods using feature vectors [47, 52, 54], we focus on implement-
ing and improving methods using SVMs. In this section, we will give a theoretical background of the
SVM, which was first proposed by Boser, Guyon and Vapnik in 1992 [9]. We start from a linearly
separable binary classification problem, also called the hard margin SVM and will expand this to the
non-separable setting, also called soft margin SVM, and to the multiclass setting.

4.2.1. Hard margin SVM
Suppose we have a dataset S = (x1, y1), ..., (xNs

, yNs
), with xi ∈ Rns and yi ∈ {−1, 1}. We first assume

that this dataset is linearly separable, so there exists a hyperplane β⊤x + β0 = 0 with parameters
β ∈ Rns , β0 ∈ R such that

β⊤xi + β0 > 0, ∀yi = 1, i ∈ 1, ..., Ns

β⊤xi + β0 < 0, ∀yi = −1, i ∈ 1, ..., Ns.
(4.1)

Often more than one hyperplane separates the two classes. We define the optimal separating
hyperplane as the hyperplane for which the minimal distance, the margin M , between the dataset and
the hyperplane is the largest. As the inequality in the Conditions (4.1) is strict, we know that M > 0.
Let xi be a point from the dataset and x a point on the hyperplane. The minimal distance between
the point xi and the hyperplane can be found by calculating the length of the projection of xi − x on to
vector perpendicular to the hyperplane, which is β. So:

d(β, β0, xi) = ||projβ(xi − x)|| = || (xi − x)⊤β

β⊤β
β|| = |x⊤

i β − x⊤β| ||β||
||β||2

=
|β⊤xi + β0|

||β||
(4.2)

4.2. Support vector machines 12

To be able to express the size of M in terms of the length of β, we now rewrite the Conditions (4.1).
This new condition holds for fewer hyperplanes, but we can rescale every hyperplane that satisfies
Conditions (4.1) with a factor 1

M to satisfy Condition (4.3).

yi(β
⊤xi + β0) ≥ 1, ∀i ∈ 1, ..., Ns. (4.3)

If we substitute (4.3) into Equation (4.2) and use that |yi| = 1 we get that for all xi ∈ S

d(β, β0, xi) ≥
1

||β||
. (4.4)

So by minimizing ||β|| while satisfying Condition (4.3) we can find the separating hyperplane with the
largest distance to all points in S. To simplify later derivations we change the optimization objective
to minimizing 1

2 ||β||
2, which does not change the solution. To summarize, we can formulate the hard

margin support vector machine as the following optimization problem:

min
β,β0

1

2
||β||2

subject to: yi(x
⊤
i β + β0) ≥ 1, ∀i ∈ 1, ..., Ns.

(4.5)

The optimal solution can be found using the SMO algorithm (Chapter 4.2.3). We note that for the
optimal solution, there exists at least three points for which Condition (4.3) is satisfied with equality.
These points are also called support vectors and have given this classifier the name support vector
machine.

4.2.2. Soft margin SVM
In general, we do not know whether a hyperplane that separates S exists or not. To still be able to use
SVMs in the casewhere this hyperplane does not exist, we introduce slack variables ξi, i ∈ 1, ..., Ns and
slightly change both the objective function and the corresponding conditions. We first modify Condition
(4.3) into

yi(β
⊤xi + β0) ≥ 1− ξi, ξi ≥ 0, ∀i ∈ 1, ..., Ns. (4.6)

This means that there no longer exists a hard margin around the hyperplane that separates the two
classes. Furthermore, data points may be located on the wrong side of the hyperplane. To still be able
to find a hyperplane that separates the classes reasonably well we need to update the optimization
objective with a cost for large values of ξi, to limit the number of points that cross the margin. This
finally leads us to the following optimization problem:

min
β,β0

1

2
||β||2 + C

Ns∑
i=1

ξi

subject to: yi(β
⊤xi+β0) ≥ 1− ξi, ξi ≥ 0, ∀i ∈ 1, ..., Ns.

(4.7)

Here C is a regularization parameter that can be chosen, with a default value of 1.

4.2.3. The SMO algorithm
Both the hard and soft margin SVM optimization problem can be solved by first using Lagrangian multi-
pliers to find the Wolfe dual of this problem [21]. This dual is a quadratic programming problem that can
be solved in various ways. Currently, the most used algorithm uses sequential minimal optimization
(SMO), proposed by Platt in 1998 [41]. In SMO, all but two variables are assumed fixed and the opti-
mization problem is solved for the remaining two variables. This is done iteratively until no improvement
can be found. The SMO algorithm guarantees that it converges to the global optimum [41].

4.2.4. Multiclass SVM
We have described implementing a support vector machine as a binary classifier between two classes.
For authorship attribution, we need to be able to classify a text between several authors. To do this,
two common heuristical multiclass strategies exist for SVMs, One-vs-One classifying and One-vs-Rest
classifying.

4.3. Implementation 13

One-vs-One classifier
As the name suggests, a One-vs-One classifier handles two classes per instance. To do this, for
every pair of classes an individual SVM is built using the training data of those classes, leading to
n(n−1)

2 classifiers as we have n different classes, one for each author. Given a new test sample, every
classifier decides which of the two classes is the most likely. In the end, the text is attributed to the
class with the most votes from the individual classifiers.

One-vs-Rest classifier
One-vs-Rest classifier functions by building n classifiers, where each classifier is an SVM that compares
the training data from one class to that of new class containing the training data from all other classes.
With each classifier, a score is calculated for validation texts using the distance to the decision boundary.
This score is negative if the validation sample is on the other side of the decision boundary compared
to the training samples of the class for which the specific classifier was built. The text is then attributed
to the class with the highest score.

In our implementation, we experimented with both strategies. In these experiments (Appendix C)
we noticed that the One-vs-Rest classifier performed much better, leading to us continuing with this
strategy. We note that the computational load of the One-vs-Rest classifier is also lower for large
numbers of authors compared to the One-vs-One strategy, due to the quadratic relation between the
number of classes and the number of classifiers in the One-vs-One strategy.

4.2.5. Kernels
To find non-linear hyperplanes that separate classes, one can expand the SVM with the kernel trick, to
increase the dimensionality of the feature space with for example a polynomial or Gaussian kernel. In
Authorship Attribution this is not commonly used, and in our experiments this also led to a deteriorated
performance (Appendix C). This is likely due to the low number of training texts compared to the di-
mensions of the feature space. As a result, a high dimensional kernel assures that optimal separating
hyperplanes can be found, but this also increases the risk of overfitting on the training data. With our
limited amount of 7 training texts per author, it is not unsurprising that utilizing the kernel trick introduces
significant overfitting problems.

4.3. Implementation
In the following sections, we will cover our implementation of an SVM, which is a combination of the
implementation by Muttenthaler, Lucas and Amann [39] with the idea of masking from Stamatatos [51,
52].

4.3.1. Feature vector
The implementation by Muttenthaler, Lucas and Amann [39] works by averaging the results of an SVM
with character n-grams as features and an SVM with word n-grams as features. As both SVM have
the same architecture we will explain them at the same time, while highlighting the small differences.
The model starts by creating the feature vector for all texts. For the word n-gram model, all word 1
and 2 grams are counted, while for the character n-gram model, all character 2, 3, 4 and 5 grams are
counted. In the word n-gram model capitalization and punctuation are ignored, while in the character
n-gram model both are included.

The feature vector is then reduced to include only the 30% most frequent n-grams over all the
training texts. This is done to negate the influence of n-grams that occur infrequently. The reason
that these infrequent features can be an issue is that an n-gram that occurs in only one training text
would give a dimension that separates that text from all other texts. As almost any text has at least one
unique character 5-gram, not excluding infrequent features could result in overfitting on the training set.
This is a slight modification of Muttenthaler et al, where the 50% most frequent features were included.
The remaining features are first divided by the total number of words or characters in the text and then
scaled by dividing the count by the maximal count of that feature over all texts. This is to ensure all
features have a value between 0 and 1 and therefore prevent that more frequent n-grams have a higher
weight than less frequent n-grams.

4.3. Implementation 14

All the permutations to the feature vectors are also performed on the validation texts, using the
transformations as computed on the training texts. As a result, on the validation texts, it is for example
not necessary that the value for each feature is less or equal to 1, as the frequency of a feature on a
validation set might be higher than the highest frequency of that feature in the training set.

In general, the number of unique features mf is much larger than the number of training texts Ns,
mf ≫ Ns. Let M be the training matrix, where each row is the transposed feature vector of a training
text, leading to the dimensions of M being Ns by mf . Using the singular value decomposition (SVD)
ofM we can reduce the dimensionality of the feature vectors to Ns. We will show that by doing this we
can lower the computational cost without impacting the performance of the SVM.

For every real-valued matrix with more columns than rows, there exists a singular value decompo-
sition M = UΣV ⊤, with Σ a diagonal matrix of dimensions Ns ×Ns, U an orthogonal matrix, meaning
UU⊤ = U⊤U = I, of dimensions Ns×Ns and V a semi-orthogonal matrix of dimensionsmf ×Ns, with
V ⊤V = I.

We can then compute a lower dimension version of M , M̃ = MV of dimensions Ns × Ns. The
transposed feature vectors of x⊤

i are the rows of M. So x̃i = V ⊤xi are column vectors of M̃ , with
length Ns. We now want to show that the optimal SVM on the data (x1, y1), ..., (xNs

, yNs
) gives the

same results as creating the optimal SVM with the reduced feature vectors x̃1, ..., x̃Ns . To do this we
will show that Formulation (4.7) can be reformulated as

min
β̃,β0

1

2
||β̃||2 + C

Ns∑
i=1

ξi

subject to: yi(β̃
⊤x̃i+β0) ≥ 1− ξi, ξi ≥ 0, ∀i ∈ 1, ..., Ns.

(4.8)

For this proof, we first show that the optimal solution for Formulation (4.8) has a corresponding solu-
tion for Formulation (4.7) with the same objective value. Then we will show that the optimal Formulation
(4.7) has a corresponding solution for Formulation (4.8) with the same objective value. From these two
parts, we can then conclude that the corresponding solution of an optimal solution is also optimal and
both problems have the same objective value for their optimal solution.

We start by showing (4.8) to (4.7). Suppose β̃ is the optimal solution to Formulation (4.8). We need
to show that we can find β such that ||β̃|| = ||β|| and β̃⊤x̃i = β⊤xi. Take β = V β̃. We then find

β̃⊤x̃i = β̃⊤V ⊤xi = (V β̃)⊤xi = β⊤xi, ∀I ∈ 1, ..., Ns (4.9)

and

||β||2 = ||V β̃||2 = (V β̃)⊤V β̃ = β̃⊤V ⊤V β̃ = β̃⊤β̃ = ||β̃||2. (4.10)

This shows that β = V β̃ satisfies the conditions of Formulation (4.7) and has the same objective value.
Note that we have kept the values of β0 and ξi the same between both formulations.

We then show (4.7) to (4.8), for which the proof is significantly more elaborate. Suppose β is an
optimal solution to Formulation (4.7).

We first note that as x⊤
i is a row of M , it is equal to the ith row of UΣV ⊤, which is equal to UiΣV

⊤,
where Ui is the ith row of U. Then as Σ⊤ = Σ we have xi = V ΣU⊤

i , which leads to

x̃i = V ⊤xi = V ⊤V ΣU⊤
i = ΣU⊤

i . (4.11)

From this we find

xi = V ΣU⊤
i = V x̃i

(
= V V ⊤xi

)
. (4.12)

Secondly, we establish that V V ⊤ is an orthogonal projection. This can be seen from

(V V ⊤)2 = V V ⊤V V ⊤ = V (V ⊤V)V ⊤ = V IV ⊤ = V V ⊤ (4.13)

and

4.3. Implementation 15

(V V ⊤)⊤ = V V ⊤. (4.14)

We can now use the Cauchy-Schwarz inequality to find

||V V ⊤β||2 = β⊤V V ⊤V V ⊤β = β⊤V V ⊤β = ⟨β, V V ⊤β⟩ ≤ ||β|| · ||V V ⊤β||. (4.15)

By dividing both sides by ||V V ⊤β|| we get

||V V ⊤β|| ≤ ||β||. (4.16)

We additionally have that, using Equation (4.12),

(V V ⊤β)⊤xi = β⊤V V ⊤xi = β⊤xi. (4.17)

So we see that β∗ = V V ⊤β satisfies the conditions of Formulation (4.7) and has a lower or equal
objective value than β. Therefore, as β was an optimal solution to Formulation (4.7), β∗ must also be
an optimal solution to Formulation (4.7). Thus we have,

||β∗|| = ||β|| (4.18)

It now suffices to show that we can find β̃ such that ||β|| = ||β̃|| and (β)⊤xi = β̃⊤x̃i. We can choose
β̃ = V ⊤β. Using this combined with the previous result that xi = V x̃i, we get

β⊤xi = β⊤V x̃i = (V ⊤β)⊤x̃i = β̃⊤x̃i, ∀I ∈ 1, ..., Ns (4.19)

We note that for β∗ we have

V V ⊤β∗ = V V ⊤V V ⊤β = V V ⊤β = β∗. (4.20)

Finally, we find

||β̃||2 = ||V ⊤β||2 = β⊤V V ⊤β = β⊤V V ⊤V V ⊤β = (β∗)⊤β∗ = ||β∗||2 = ||β||2. (4.21)

This shows that β̃ = V ⊤β satisfies the conditions of Formulation (4.8) and has the same objective
value. As we have now shown this both ways, we can conclude that if we find an optimal solution β̃ for
Formulation (4.8), β = V β̃ must also be optimal for Formulation (4.7) and vice versa. Therefore, we
can reduce the feature vectors to length Ns, while keeping the same classification results.

Similarly, feature vectors created for texts in the validation set can also be reduced in dimension
using x̃v = V ⊤xv for xv a feature vector of a text in the validation set and V as computed using the
training data. These feature vectors can then be classified using the SVM created on the reduced
space. This reduction of feature space significantly speeds up the computation of the SVMs and as it
does not alter the attribution this speed increase comes free of cost. For our problem, this reduces the
dimension from the order of 10,000 features to 350 features.

4.3.2. SVM
The feature vectors are then used to train a support vector machine. Here the support vector classifier
of scikit learn is used, which uses the libsvm [12] implementation of the SMO algorithm. The default
value of C = 1 is used for the regularization parameter in the support vector classifier. The results of
the character and word model are combined by averaging the resulting softmax probabilities for each
class of both models and then attributing them to the class with the highest probability. We will study
both the attribution performance of the combined model and the individual word and character models
in the results (Chapter 10).

4.4. Masking 16

4.4. Masking
To reduce the impact of the topic of a text on its attribution the idea of masking can be used. This idea,
of which the usage in authorship attribution was first proposed by Stamatatos in 2017 [51, 52], uses a
list of the most frequent words to mask infrequent words. The idea is simple, very general words like
“is”, “he”” and “going” are used more often than topic-related words like “football” and “paint”. Therefore,
if we only look at the Nf most frequent words this might hide the topic of a text and leave us with the
usages of general words, in which style still might be present. Stamatatos [51, 52] replaces words
outside of the list of most frequent words with either one or more asterisks. In single masking, a single
asterisk is used to mask these words while in multiple masking the same number of asterisks as the
number of letters in the word is used. The idea of masking is quite similar to the use of function words
as a feature but has the added value that we can still use character n-grams as features.

In our implementation of masking, we use the hashtag sign # instead of the asterisk *, as the asterisk
is already used to signify certain speech properties in FRIDA. Furthermore, we noticed no significant
performance difference between single masking and multiple masking, as can be seen in Appendix C.
Therefore we used single masking for computational efficiency.

Lastly, we did some experiments using masking in combination with BERT-based models (Chapter
5). This led to a worse performance (Appendix C) and, as a result, we dropped this analysis from our
results.

Below an example sentence from FRIDA is given, together with how the sentence is modified when
masking is performed with Nf ∈ {5000, 1000, 200, 100}. In this thesis, we sometimes use Nf = ∞ to
specify that no masking is being performed and all texts are kept the same.

Nf = ∞ Uh over vliegtuigen dingen allemaal dat soort dingen
Nf = 5000 Uh over vliegtuigen dingen allemaal dat soort dingen
Nf = 1000 Uh over # dingen allemaal dat soort dingen
Nf = 200 Uh over # dingen allemaal dat # dingen
Nf = 100 Uh over # # # dat # #

4.5. Background vocabulary
Masking uses a list of themost frequent words as a background vocabulary. Here an important choice is
whether a generic Dutch frequency list is used or a new frequency list is made for this corpus specifically.
We chose to create corpus-specific frequency lists for the FRIDA and RFM corpora and used a generic
Dutch frequency list for abc_nl1. This has two reasons: the usage of slang and the size of the corpora.

Most existing frequency lists of Dutch are created on standard Dutch, meaning that no slang is
included. In real forensic datasets, a lot of slang is present and useful for authorship attribution. Con-
sequently, information is lost by excluding these words. As abc_nl1 consists of formal essays, it does
not include slang.

The second reason for not using a corpus-specific frequency list for abc_nl1 is its size. It consists
of 48 texts with an average length of 911 words, which is not big enough to be representative. The
fixed topics strengthen this effect. For example, the 81st most common word in abc_nl1 is “Roodkapje”
(Little Red Riding Hood), which is not a common word outside of fairy tales. The frequently list we
use for abc_nl1 is the SUBTLEX-NL [28] frequency list 1, created from dutch movie subtitles, as it is
the most commonly used Dutch frequency list available to us. For the other two datasets, the number
of authors is significantly larger, ensuring a more representative number of texts. Furthermore, the
number of authors is larger than the set of authors we use for authorship attribution. This ensures that
the vocabulary of the authors taken into account is diluted by the vocabulary of all other authors in the
set.

For FRIDA we created a frequency list by counting the frequency in all texts in the dataset. For
RFM we did the same with a representative sample from the full dataset from which RFM was created.

1The list can be downloaded at https://osf.io/3d8cx/

https://osf.io/3d8cx/

4.6. Baseline 17

4.6. Baseline
To compare our models with the current baseline, we also implemented the non-manual part of what
is currently used at the NFI. To simplify our code base we implemented the baseline as a modified
version of the previously introduced SVM model. This version uses a logistic regression classifier,
word n-grams as features and masking with Nf = 100. Two additional modifications are made. Firstly,
we only look at the word 1-grams, and exclude the word two grams. Secondly, we no longer cut off the
70 % least frequent features, such that all the 100 most frequent words are used as features.

5
BERT

The deep learning architecture transformers was first introduced by researchers from Google in 2017
[57]. Before transformers, architectures like recurrent neural networks (RNNs) and convolutional neu-
ral networks (CNNs) struggled with capturing long-range dependencies and context in data effectively.
Due to the use of a softmax-based attention mechanism, transformer-based models can selectively
focus on different parts of the input data. This attention-based approach handles sequences more ef-
fectively, making it particularly suitable for natural language processing tasks that require understanding
context and relationships between words. Several models have been based on this improvement, e.g.
GPT [42] and BERT [14]. Due to its good performance on authorship attribution tasks compared to
other transformer-based models [6] we will focus on BERT and explain its architecture to illustrate the
working of a transformer-based model. Then, we will cover how BERT can be utilized for the authorship
attribution task and introduce the two BERT-based models pre-trained on Dutch data that are used in
our research.

5.1. Model architecture
Bidirectional Encoder Representations from Transformers (BERT) uses a modified version of the en-
coder of the full transformer architecture. In Figure 5.1 the architecture of BERT is illustrated.

Figure 5.1: Illustration of the encoding part of the transformer architecture used in BERT, modified from Vaswani et al [57].

To use a deep learning model on text, the text first has to be converted to numerical vectors. This

18

5.1. Model architecture 19

is done in two steps. First, the text is cut into smaller parts, tokens, from a specific vocabulary. Sub-
sequently, the encoding of that token is calculated using the token, its segment and its position. The
resulting encoding matrix is repetitively put through a multi-head attention layer and a feed-forward
neural network layer to get the final hidden state. In the following subsections we will cover these steps
in depth.

5.1.1. Tokenization
To tokenize inputted text BERT uses WordPiece embeddings [60]. A vocabulary of 30,000 wordpieces
is created starting from individual characters by combining them into commonly used parts of words and
words. As a result, the meaning of most words can be captured in tokens while keeping the vocabulary
as small as possible. This vocabulary is then used to tokenize texts into a vector of integers, as shown
below on the example sentence “She is metalworking in Delft.”

Text She is metalworking in Delft .
Wordpieces [CLS] she is metal ##working in del ##ft . [SEP]
Tokens 101 2016 2003 3384 21398 1999 3972 6199 1012 102

We notice that short words like “she”, “is” and “in” are included in the vocabulary and therefore
have their own token. Lesser used or longer words like “Delft” and “metalworking” are split into two
tokens, were the WordPiece of the second token starts with ## to signify it is not at the start of a word,
so “##working” and “working” correspond to different tokens. Due to this method of splitting words into
chunks, the vocabulary can be kept lower, while still having the meaning of longer words being encoded
in their chunks. For example, the words “woodworking” and “overworking” are both also outside the
vocabulary and thus tokenized using the “##working” token. As this piece has the same meaning in all
three words it allows us to convey a similar message with a smaller vocabulary size.

There are two types of WordPiece tokenization models, a cased version that includes capitalization
and an uncased version that ignores capitalization. As a result of this, both cased and uncased BERT
models have been released. The example above uses uncased tokenization. When tokenizing a
sentence in BERT, a [CLS] (classifier) and [SEP] (separation) token are always added to the start
and end of the token sequence, respectively. Other special tokens are the [UNK] token for unknown
elements, e.g. Chinese characters, the [MASK] token used to mask other tokens during pre-training
and the [PAD] (padding) token used to extend all sequences to length 512, which is the maximal input
length BERT can handle.

5.1.2. Encoding
To be able to perform computations on the token sequences we want to transform their values from
integers to vectors of dimension dmodel consisting of floats. As we do this for each of the 512 tokens our
resulting encoding matrix E has dimensions 512× dmodel. Here each row corresponds to the encoding
of a single token. The encoding of each token is computed as the sum of the token encoding (Eτ), the
positional encoding (Ep) and the sentence encoding (Es).

The token encoding is computed using a 30, 000× dmodel matrix I, where each row corresponds to
the token encoding of an individual token in the vocabulary. Let τ be a sequence of tokens representing
a text, also called a token vector, then the token encoding of τ , Eτ =

[
I⊤τ1 I⊤τ2 ... I⊤τ512

]⊤. Here Iτ1
corresponds to the τ th1 row of matrix I.

The positional encoding matrix Ep is calculated independently of the values of the tokens and is
therefore constant. It is calculated with the following equations:

Ep
i,2j = sin

(
i/100002j/dmodel

)
Ep

i,2j+1 = cos
(
i/100002j/dmodel

) (5.1)

Lastly, a sentence encoding matrix is added. The sentence encoding is only relevant for the next
sentence prediction task, one of the two tasks used in the pre-training of BERT. It consists of two types
of rows of dimension dmodel, Es

A for the first sentence and Es
B for the second sentence. We then have

5.1. Model architecture 20

Es =

Es

A
...
Es

A

Es
B

...
Es

B

, where the change of the row vector happens at the end of the first sentence and is

signified by the [SEP] token. In our application, we use only Es
A, leading to a matrix Es with constant

rows.
Finally, we can calculate the complete encoding matrix E as follows,

E = Eτ + Ep + Es. (5.2)

5.1.3. Multi-head attention
We now use this encoding matrix E to calculate the resulting hidden states. It first passes through a
multi-head attention layer, consisting of h attention heads, where we choose h to be a divisor of dmodel.
For each attention head i, i ∈ 1, ..., h, a Query, Key and Value matrix is calculated using weight matrices:
Qi = EWQ

i , Ki = EWK
i and Vi = EWV

i . The dimensions of the weight matrices are dmodel × dk, with
dk = dmodel/h. Therefore the resulting Q, K and V matrices have dimensions 512× dk. From this, we
calculate the attention matrix

Attentioni (Qi,Ki, Vi) = softmax
(
QiK

T
i√

dk

)
Vi. (5.3)

Here the softmax function is used on the rows of the matrix QiK
T
i√

dk
.

The resulting attention matrices are then concatenated into a 512× dmodel matrix and multiplied by
another weight matrix Wo of dimensions dmodel × dmodel to get

O = concat
(
Attention1 (Q1,K1, V1) , ...,Attentionh (Qh,Kh, Vh)

)
Wo. (5.4)

Since dk is chosen such that dk = dmodel/h concatenating the outputs of the h attention heads results in
a matrix with dimensions 512× dmodel, which is the same as the encoding matrix E. Lastly, the original
matrix E is added to O and the result is normalized using row-based z-score normalization.

5.1.4. Feed-forward neural network
After passing through the attention layer each row of the resulting matrix is passed through a feed-
forward neural network with one hidden layer of dimension dhidden and a ReLu (f(x) = max(0, x))
activation function. This corresponds to the output being computed as

Fi = max(0, OiW1 + b1)W2 + b2, ∀i ∈ 1, ..., 512. (5.5)

WithOi being the columns ofO and Fi the columns of the resulting matrix F . TheW1 andW2 are weight
matrices of dimensions dmodel × dhidden and dhidden × dmodel, respectively. b1 and b2 are bias vectors of
size dhidden and dmodel. In practice dhidden is chosen to be equal to 4 · dmodel.

After passing through the feed-forward layer the matrix O is added to F and again z-score normal-
ization is performed on the rows. The combination of passing the matrix iteratively through a multi-head
attention layer and a feed-forward neural network layer is repeatedN times. For each iteration different
weight matrices are used. The resulting output matrix 512 by dmodel matrix F after N iterations is called
the final hidden state. The first row of the final hidden state, corresponding with the [CLS] token, is
often used for inference about the whole sentence.

We note that except for the multi-head attention layer, all matrix manipulations are performed purely
on the individual rows, meaning that only the information of one specific token is used. Only during the
multi-head attention layer, the context of the adjacent rows is used during matrix multiplication.

Two different models were proposed in the original paper [14], a base version with model dimension
dmodel = 768 and number of iterations N = 12 and a large version with dmodel = 1024 and N = 24. For
both versions h = 8 is used. Due to computational restrictions, wewill use the base versions of all BERT-
based models. In model benchmark tests it was shown that the large version slightly outperforms the
base version [14], but in practice, the base versions are used more often due to the combination of
satisfactory performance and memory restrictions.

5.2. BERT models for authorship attribution 21

5.1.5. Pre-training
The original BERT model was pre-trained on two tasks, masked language modelling (MLM) and next
sentence prediction (NSP). In the masked language modelling task 15% of all tokens are randomly
replaced with a [MASK] token. The model must then predict the original token at the location of all
[MASK] tokens. This is done using a classification head on the final hidden state at the [MASK] token
which maps to the entire vocabulary. A classification head is a dense neural network layer, in this
case from dmodel nodes to 30,000 nodes. The resulting scores are converted into probabilities using a
softmax function. From these scores, the cross-entropy loss is computed and backpropagated through
the BERT model.

In the NSP task, the model is given two sentences and it must predict whether or not they are
consecutive sentences from the same text. During the pre-training on this task, a classification head
converts the final hidden state of the [CLS] token to a vector of size two, from which probabilities are
again computed using a softmax function and the cross-entropy loss is backpropagated.

5.2. BERT models for authorship attribution
In previous research, transformer-based models have been utilized for two types of authorship attri-
bution methods. The first method consists of fitting a classification head onto the final hidden state
[16], and the second method uses a multiheaded classifier [5, 6]. Overview studies have shown better
performance for the first method [37, 54] and therefore we chose to focus on this method.

This method, called BERTAA [16], adds a classification head on top of the BERT model, that maps
the vector of size dmodel = 768 from the final hidden state of [CLS] token to a vector r of size n, with n
being the number of authors. This model is then finetuned on the training set. During finetuning, training
texts written by the n authors are iteratively passed through the model and the loss is calculated using
cross-entropy loss. The softmax probability of the correct classification is first calculated to compute
the cross-entropy loss. Suppose a training text t is written by author aj , j ∈ 1, ..., n. The probability of
attributing the text to author ai, where i ∈ 1, ..., n, is defined as

pai =
eri∑n

k=1 e
rk
. (5.6)

This is called the softmax function and guarantees that all probabilities are non-negative and their sum
is equal to 1.

The cross-entropy loss is defined as

L(t, p) = − log (pat
) . (5.7)

This results in a loss of 0 if the probability for the true author is 1 and this loss increases as the probability
decreases. The same cross-entropy loss is used during the pre-training of BERT models on the NSP
and MLM tasks. This loss is then backpropagated through the entire BERTAA model to update all
weight matrices.

5.3. Subverting the token limit
As the input of BERTmodels is limited to 512 tokens, longmessages cannot be parsed as onemessage.
To avoid this limitation when classifying long texts, we have developed two new strategies. We will first
introduce the original method used in BERTAA [16] before introducing our proposals.

5.3.1. Truncation
The original method truncates the tokenized message to satisfy the limit of 512 tokens, so only the first
512 tokens of the message are considered. While this method is simple in both implementation and
computation it disregards a significant amount of information from longer texts. We will refer to this
method as the truncation method.

5.3.2. Averaging classifications
In our first proposal, the text is subdivided into message parts of 512 tokens. To ensure no context is
missed, the parts are chosen such that they overlap. Let τ be the vector of tokens for a message t, with
|τ | > 512. We first strip the [CLS] and [SEP] tokens from this vector to create τ∗. We now subdivide

5.4. Dutch BERT models 22

τ∗ into two non-overlapping vectors of 255 tokens, τ∗1 , ..., τ∗m, m = ceil(|τ |/255). To the last vector, τ∗m
padding tokens, [PAD], are added such that it is of length 255. Now we create a set of token vectors
T ∗∗ as follows: τ∗∗i = concat([CLS], τ∗i , τ∗i+1, [SEP]), for i ∈ 1, ...,m − 1. T ∗∗ is now a set of m − 1
vectors of tokens of length 512, with 255 tokens overlapping with the previous vector and 255 with the
next vector. After subdividing the texts we use our classification model on each of the vectors, and
calculate the softmax probabilities for each author, as in Equation (5.6). We then take the average of
the probabilities for each vector and attribute the text to the author with the highest average probability.
We summarize this computation in Equation (5.8).

aa = argmax
aj∈A

1

m− 1

m−1∑
i=1

er
i
j∑n

k=1 e
rik

(5.8)

Here aa is the author to which the text is attributed and rij is the value from the classification layer of
the BERT model for token vector τ∗∗i and author aj .

During finetuning with this method, the cross-entropy loss is also computed using these average
probabilities. We will refer to this method as the averaging method.

5.3.3. Mean pooling before classification layer
In the second method we propose, we use the same subdivisions into token vectors as in our first
proposal. Instead of averaging the resulting probabilities we now average the final hidden states at the
[CLS] positions of the message parts. A layer that averages these vectors is also called a mean pooling
layer. The resulting vector is then the input of the classification head and the computations continue
similar to the original method. We will refer to this method as the mean pooling method.

A drawback of the overlapping message chunks in both the averaging and the mean pooling meth-
ods is that the first and last tokens of the message are considered only once, while all other tokens are
considered twice. As a result, they have a lesser impact on the overall classification compared to the
middle sections.

5.4. Dutch BERT models
After the introduction of BERT models, several Dutch BERT-based models were also created by pre-
training this architecture on Dutch corpora. In this thesis, we have studied the performance of the two
most used Dutch BERT-based models, BERTje [59] and RobBERT [13].

BERTje uses the same architecture as BERT but was pre-trained using Dutch corpora. The training
corpus included Wikipedia articles, news articles and historical fiction [59]. The pre-training procedure
was also altered slightly from the original BERT paper. The NSP task was replaced with a sentence
ordering prediction (SOP) task, where the model classifies whether the order of two consecutive sen-
tences is correct or inversed. Furthermore, to increase the difficulty of the MLM task all WordPieces of
the same word were masked if one of the pieces was masked.

RobBERT is pre-trained with the same strategy as RoBERTa [33], an english BERT-based model
pre-trained on just the MLM task. For pre-training RobBERT the Dutch part of the OSCAR corpus was
used, consisting of crawled web data [13].

6
Likelihood Ratio Framework

In the forensic sciences, evidence is quantified using likelihood ratios (LRs). In this chapter, we will
cover the theoretical bases behind the likelihood ratio. Furthermore, we will give a short introduction
to the common source and the specific source problems using authorship identification as our leading
example.

6.1. Common Source problem
Suppose threats are made to someone from two different social media accounts. These two messages
could be sent by either one person using both accounts or by two different people. This is an example
of the Common Source (CS) problem in forensic identification. The problem does not focus on who
sent the threats, but whether or not they were sent by the same person. To generalize this problem,
we formulate two hypotheses, the prosecution hypothesis (Hp) and the defence hypothesis (Hd) [40].
Suppose we have two sets of unknown source evidence, eu1

and eu2
, then

Hp : The two sets of unknown source evidence both originate from the same unknown source.
Hd : The two sets of unknown source evidence originate from two different unknown sources.

6.2. Specific Source problem
The Specific Source (SS) problem is defined with two slightly different hypotheses. We return to the
example of online threats to illustrate these hypotheses. Suppose that one social media account has
made a threat to a person and it is suspected that the author of the threat is as. Then, we can examine
previous social media messages which are known to be written by as and social media messages from
the background population to determine if as wrote the threats. This is called a specific source problem,
as we want to decide whether a piece of unknown source evidence originates from a specific suspected
source or another source in the background population. We have one set of unknown source evidence
eu, control material es known to come from the suspected source and control material eb known to come
from various sources in the background population. The hypotheses are now defined as follows [40]:

Hp : The unknown source evidence eu and the specific source evidence es both originate from the
specific source.

Hd : The unknown source evidence eu does not originate from the specific source, but from some
other source in the alternative source population.

6.3. The CS and SS problem in authorship identification
In the field of authorship identification, the general common source problem of determining whether two
texts have been written by the same author or by a different author is called the Authorship Verification
(AV) task. The specific source problem of finding the specific author of an unknown text is called the

23

6.4. Likelihood Ratio 24

Authorship Attribution (AA) task. In forensic literature, the AV task [22, 23, 44, 47, 48] has been studied
more extensively than the AA task [20]. Due to the high relevancy in court cases and the lack of
research, this thesis will focus on the AA problem.

6.4. Likelihood Ratio
We want to define the influence of the set of scientific evidence E on the odds of hypothesisHp against
Hd. The set E is defined as E = {eu, es, eb} for the specific source problem. In court cases often
additional non-scientific evidence is considered, for example, motive, opportunity, eyewitness accounts
and alibi [15]. The set of all initial, non-scientific evidence is called I. Prior odds, meaning the conviction
of the court about the non-scientific evidence, are defined as

P (Hp|I)
P (Hd|I)

. (6.1)

We want to update this value by including the evidence E. To do this we need to calculate the
posterior odds from the prior odds. the posterior odds are defined as

P (Hp|E, I)

P (Hd|E, I)
. (6.2)

To update the prior odds, we use Bayes’ Theorem, a well-known result following directly from the
definition of conditional probability

(
P (A|B) = P (A∩B)

P (B)

)
. It states:

Theorem 6.4.1 (Bayes’ theorem). Let A and B be events where P(B)>0. Then

P (A|B) =
P (B|A)P (A)

P (B)

Using this theorem on both the top and the bottom of the posterior odds, and then applying the
definition of conditional and Bayes’ theorem again, leads us to:

P (Hp|E, I)

P (Hd|E, I)
=

P (E,I|Hp)P (Hp)
P (E,I)

P (E,I|Hd)P (Hd)
P (E,I)

=
P (E, I|Hp)P (Hp)

P (E, I|Hd)P (Hd)

=
P (E|I,Hp)P (I|Hp)P (Hp)

P (E|I,Hd)P (I|Hd)P (Hd)
=

P (E|I,Hp)
P (I|Hp)P (Hp)

P (I)

P (E|I,Hd)
P (I|Hd)P (Hd)

P (I)

=
P (E|I,Hp)

P (E|I,Hd)
· P (Hp|I)
P (Hd|I)

(6.3)

We call the factor P (E|I,Hp)
P (E|I,Hd)

the Likelihood Ratio (LR). The LR is calculated by forensic scientists and
presented to the court as the value of the evidenceE. The court can then take the value of the evidence
into account to update their prior beliefs. In practice, the non-scientific evidence I is often left out of
the formula of the likelihood ratio, reducing it to

LR =
P (E|Hp)

P (E|Hd)
. (6.4)

7
Likelihood Ratio Systems

To be able to use authorship attribution in court cases we need a model that outputs likelihood ratios
when given validation samples. To transform classification models into likelihood ratio systems we go
through three steps. First, we must alter the multiclass classification models into binary scorers as the
likelihood ratio framework has only two hypotheses, Hp and Hd. Kernel density estimation (KDE) is
then used to calibrate a function that transforms the scores into likelihood ratios. Lastly, we have to
bound the resulting LRs to prevent over- or underestimating them in the tail regions of the KDEs. During
the construction of our likelihood ratio system we follow a part of the guideline for the construction of
score-based LR systems by Leegwater et al [32]. Our three steps correspond to steps 4 and 5 in their
paper.

7.1. Binary scorer
We perform two steps to convert a multiclass classification model into a binary scoring model. We use
the same types of models, but with a small modification to the dataset and how we handle the resulting
score. Firstly, we set one of the authors as the suspect. The texts written by this author, and thus with
true hypothesis Hp are given label 1, all other texts, those with true hypothesis Hd, are given label 0.
The binary scorer is then trained to assign a number, corresponding to the likelihood of that sample
being written by the suspect. The binary version of the SVM and baseline models return a single score,
called the decision value. We can directly use this value for the calibration step. For the BERT models,
the classification head returns two values, one corresponding to the Hp class and one to the Hd class.
To convert these values to a single score we calculate the logit of the softmax of the results of the
classification head, meaning

s = log
(

p1
1− p1

)
, p1 =

er1

er1 + er2
. (7.1)

Here s is the resulting score, and r1 and r2 are the results from the classification head for the classes
Hp and Hd. s corresponds to the score the Hp class should be given to ensure the same resulting
softmax probability p1 if the score of theHd class is set to 0. This ensures that the score s corresponds
to the relative differences between the scores of the two classes.

7.2. Kernel Density Estimation
To convert the scores from the binary scorer into likelihood ratios we use Kernel Density Estimators
(KDEs). A KDE estimates a probability density function (PDF) from samples drawn from a distribution.
This is done by creating a standard PDF, the kernel function, around each sample and taking the
average of the individual PDFs as the overall PDF. Mathematically, we can write this as

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
. (7.2)

25

7.2. Kernel Density Estimation 26

HereK is the kernel function, x1, ..., xn are the samples drawn from a distribution and h is the bandwidth
used for K. f̂(x) is the resulting estimate of the PDF. We will use the most used kernel for likelihood
ratio systems, the Gaussian kernel. For a Gaussian kernel, the kernel function is equal to the PDF of
a standard normal:

K(x) =
1√
2π

e−
x2

2 (7.3)

If we write out K
(
x−xi

h

)
we get a scaled version of a normal distribution with µ = xi and σ = h. So we

fit a normal distribution with a standard deviation of h around each sample and take the average of all
these normal distributions to find our KDE.

In kernel density estimation an important choice is the value of the bandwidth h. A too small value
of h leads to overfitting on the individual samples, resulting in a PDF with a peak at the score of each
sample. On the other hand, a too large value of h results in a too general model, that does not fit the
data. The optimal value of h can only be computed in the theoretical case where the underlying density
f(x) is known. In practice, Silverman’s rule of thumb (7.4) is often used [49]. This estimator is modified
from the optimal value of h for samples from an underlying Gaussian distribution. It is given by

ĥ = 0.9min
(
σ̂,

IQR
1.34

)
N−1/5

c . (7.4)

Here σ̂ is the estimated standard deviation of the samples and the IQR is the interquartile range, the
difference between the 75th and 25th percentile of the scores. Nc corresponds to the number of samples
in the calibration set.

In the likelihood ratio framework, KDEs can be used to construct two PDFs, f̂p for the samples
under Hp and f̂d for the samples under Hd. These PDFs represent the probability that a sample under
that hypothesis is given a score s by the binary scoring model. Therefore, the score s of a new sample
can be used to estimate the corresponding likelihood ratio:

LR(s) =
P (E|Hp)

P (E|Hd)
=

f̂p(s)

f̂d(s)
(7.5)

Figure 7.1: Plot containing two histograms of the density of calibration samples under Hp and Hd, in blue and orange
respectively, against their score given by a binary SVM scorer. Also included are the corresponding KDE fits in the same

colours. The score has a scale from negative infinity to infinity. Made on a subset of FRIDA consisting of 50 authors with each
7 texts in the training-and-calibration set, using 7-fold cross-calibration.

An example of the KDEs fitted on texts of both classes can be seen in Figure 7.1. The blue histogram
and line correspond to the samples under Hp and the KDE fit f̂p. Similarly, the orange histogram
corresponds to samples under Hd, with the orange line being the resulting fit f̂d. This example comes
from a problem with 50 authors and 7 calibration texts per author. As a result, the fit for Hp is done on

7.3. Feature-based likelihood ratio systems 27

7 samples, against 343 samples under Hd. We also notice this in the bandwidth of the respective KDE
fits, which is smaller for f̂d due to the factor N−1/5

c in Equation (7.4).

7.2.1. Cross-calibration
We cannot calibrate the KDEs on texts from the training dataset, as the binary scorer has already seen
these texts during training and therefore scores them differently than unseen texts. Thus we split our
dataset not into two but three parts, a training set, a calibration set and a validation set. The training
set is used to train the binary scorer and then the scores computed for samples in the calibration set
are used to fit the KDEs. Lastly, the system is validated by estimating the LRs on the validation set and
comparing their values with the ground truth (Chapter 8).

A common limitation in authorship attribution cases is the available number of texts, especially for
samples under Hp. To use all available texts to their maximal potential, we use k-fold cross-calibration.
In k-fold cross-calibration, we have a joint training and calibration set split in k folds. We then train
k different models, leaving one of the k folds out of the training set to be used as the calibration set.
Each iteration returns a set of scores created by the model on the respective calibration set. We then
combine all these calibration scores and compute the KDEs under both hypotheses. Lastly, we train
a new model on the entire training and calibration set and use that model together with the KDEs
to calculate the resulting likelihood ratios on the validation set. In Figure 7.2 the principle of cross-
calibration is illustrated with k = 4.

Figure 7.2: Illustration showing the concept of 4-fold cross-calibration. The scores on the calibration set in iterations 1-4 are
used to create the KDEs that calculate the LRs on the validation set.

The advantage of cross-calibration is that we can use more data to fit the KDEs and train the model
that is used on the validation set. The biggest drawback is that the models used to calculate the
calibration scores are not the same models as the model used to calculate the scores of the texts in the
validation set. We assume that due to the calibration models being trained on a significant subset of the
set on which the validation model is trained the difference in scores is small. In practice, using cross-
calibration meant that we could use 7 samples under Hp for both training and calibration, compared to
5 and 2 respectively under normal calibration. This increase in training and calibration texts results in a
significantly better performance. A second drawback of using k-fold cross-calibration is that it increases
the computational load significantly, by approximately a factor k.

7.3. Feature-based likelihood ratio systems
The likelihood ratio system introduced in this chapter is a score-based method. This means that text
samples are first given a one-dimensional score, from which the system estimates a likelihood ratio.
Next to score-based methods, also feature-based methods exist, where a kernel density estimator is
fitted over all the feature dimensions, leading to a multidimensional KDE. This could for example be
done with the features used in the SVM models or with the hidden state of dimension 512 resulting

7.4. Dataset Balance 28

from the classifier token in BERT-based models. Using the working of KDEs and the fact that we only
have 7 calibration samples under Hp we will motivate our decision to focus on score-based likelihood
ratio systems.

Creating a well-calibrated one-dimensional KDE on 7 samples is challenging, but in more than 100
dimensions this is next to impossible, due to the low density of samples in the multidimensional space.
So, to build a feature-based model we would have to restrict ourselves to only a few features, losing
a lot of information in the process. As our binary scoring models convert all the features into a single
score, they can still use parts of the information present in all features. As they are also better suited
for dealing with the low number of calibration texts under Hp in authorship attribution tasks, we chose
to focus on score-based likelihood ratio systems.

7.4. Dataset Balance
With the creation of the binary problem, we have also created an unbalanced training dataset. As
the texts from all authors except for the suspect have true hypothesis Hd, we have significantly more
texts under Hd than under Hp. For the SVM models, this unbalance did not result in problems. While
these models did classify almost all samples to be more likely to be not from the suspect, the following
calibration step using KDEs solves this issue. This can also be seen in Figure 7.1, where we notice that
all calibration samples (the histogram) get assigned a score greater than 0, on a scale from negative
infinity to infinity. This means that the SVM would classify every calibration text as more likely to be
written by someone else than the suspect if we were to use it for classification. However, a clear
separation between the scores for samples under Hp and samples under Hd is seen, resulting in a
well-performing LR system after calibration with KDEs.

The BERT models reached a local optimum where all texts were classified as under Hd and this
did not improve with further finetuning. To solve this we altered the weight of the samples under Hp,
increasing the loss for miss-classification of those samples. We chose to give text underHp a weight of
n−1, with n the number of authors, such that the total weight of training texts is 7(n−1) for both classes.
A drawback of this method is that the 7 texts of the suspected author have significantly more impact on
the model than all other texts. Especially for large sets of authors, this can lead to significant overfitting
on the training texts in this class. In practice, we noticed that due to this overfitting on texts under
Hp we had to restrict the number of epochs we trained our model in comparison to the computational
authorship attribution task.

7.5. Bounding
Calculating likelihood ratios using kernel density estimation can result in extremely large or small LRs
when in the tail distribution of the scores under respectively Hd and Hp. As there are no calibration
samples from one of the distributions in these regions, it is difficult to calibrate these extremely large
LRs. To combat this problem we want to find both a lower and upper bound on the values an LR can
take for a specific problem.

Several methods for calculating such bounds exist, with varying levels of complexity. A simple rule
of thumb states: “Likelihood ratios should never be larger than the size of the training dataset under
Hd, or smaller than 1 divided by the size of the training data set under Hp” [58]. Note that the training
dataset in this quote corresponds to what we call the calibration dataset. Their justification for this
bound is that a conservative estimate for the probability that the score of a new sample under Hp is
smaller than the scores of all previous samples under Hp is 1

Np
, with Np being the number of samples

under Hp. While this approach is pragmatic, it lacks a theoretical basis and ignores much information
present in the LRs calculated on the calibration set [58]. To combat this Vergeer et al [58] proposed a
method called Empirical Lower and Upper Bound (ELUB).

The ELUB method is based in decision theory and tries to find the region of LRs in which the LRs
given by the proposed system result in a higher expected utility than the reference system. The refer-
ence system is a likelihood ratio system that always returns an LR of 1, independent of the evidence.
A suspect is only convicted if the utility of conviction is larger than that of acquittal. From this, it can
be reasoned that there must be a threshold LRth such that when the likelihood ratio is larger than this
number the suspect is convicted. Using this reasoning, Vergeer et al [58] generalize the utilities of the
four possible outcomes to the following values:

7.5. Bounding 29

Guilty (Hp) and convicted (LR > LRth) : U = 0

Guilty (Hp) and acquitted (LR ≤ LRth) : U = −1

Innocent (Hp) and convicted (LR > LRth) : U = −LRth
P (Hp)

P (Hd)

Innocent(Hd) and not acquitted (LR ≤ LRth) : U = 0.

The expected utility (EU) of a well-calibrated system is then equal to

EU = E [U] = E [U |Hp]P (Hp) + E [U |Hd]P (Hd)

= −P (LR ≤ LRth|Hp)P (Hp)− LRth
P (Hp)

P (Hd)
P (LR > LRth|Hd)P (Hd)

= −P (LR ≤ LRth|Hp)P (Hp)− LRthP (Hp)P (LR > LRth|Hd)

= −P (Hp)
(
P (LR ≤ LRth|Hp) + LRthP (LR > LRth|Hd)

)
(7.6)

If we compute this for both the reference system and another LR system we find the EU ratio:

EU ratio =
EU(reference)
EU(LR system)

=
P (1 ≤ LRth|Hp) + LRthP (1 > LRth|Hd)

P (LR ≤ LRth|Hp) + LRthP (LR > LRth|Hd)
(7.7)

If this ratio is greater than 1 the negative utility of using the reference system is greater than that of
using the LR system. So we should only use the LR system in the region of LRth where the EU ratio is
greater than 1. The upper and lower bounds on the LRs are found by locating the threshold LRs (LRth)
for which the EU ratio is equal to 1.

The probabilities P (LR ≤ LRth|Hp) and P (LR > LRth|Hd) are estimated from the LRs and their
truth values in the calibration set. To estimate the bounds conservatively, two samples of misleading
evidence are added to the set of calibration LRs: one corresponding to a sample under Hp with an LR
of 0 and one with truth value Hd and an LR of infinity. As a consequence, for large LRth we always
have

P (LR > LRth|Hd) > 0, while P (1 > LRth|Hd) = 0, ∀LRth > 1.

From this, it follows that the EU ratio goes to 0 if the LRth goes to 0. If the LR system is beneficial for
some LRth the EU ratio must be greater than 1 for those LRth. Now the lowest LRth where the EU ratio
is lower than 1, gives us the upper bound on our LR system. Similarly, a lower bound is guaranteed due
to the misleading sample under Hp with an LR of 0. Adding these misleading evidence points keeps
us from over- or underestimating LRs due to small datasets that by chance consist of better-separated
data compared to the true population.

Now, to ensure that the use of the likelihood ratio system is always beneficial over that of the refer-
ence system, all LRs greater than the upper bound are set to the upper bound and, similarly, all LRs
smaller than the lower bound are set to the lower bound. This ensures that we only assign LRs in the
region where this is beneficial given a conservative estimate.

7.5.1. Bounds on the optimal LR system
From the formula for the EU ratio, we can calculate the lower and upper bound of an optimal LR system,
which gives each sample under Hp an LR of ∞ and under Hd an LR of 0. We can use these values
to compare the results of our LR systems with the maximal reachable values when using an ELUB
bounder with one misleading sample per class.

We start by calculating the upper bound. For LRth ≥ 1, we have that P (1 > LRth|Hd) = 0 and
P (1 ≤ LRth|Hp) = 1. Furthermore, for our optimal LR system with one misleading sample added, we
have, if we set the number of calibration samples under Hd as Nd, that

P (LR ≤ LRth|Hp) =
1

Np + 1
and P (LR > LRth|Hd) =

1

Nd + 1
, (7.8)

as only for the added misleading samples we have LR ≤ LRth under Hp or LR > LRth under Hd.

7.5. Bounding 30

The EU ratio then becomes

EU(reference)
EU(LR system)

=
1

1
Np+1 + LRth

Nd+1

. (7.9)

We note that this ratio is indeed larger than one for LRth = 1 and then decreases for larger LRth. We
now look at where the expected utility of both systems is equal, so where the EU ratio is equal to 1. If
we set this equation equal to 1 and factor out LRth we get

LRth =
1 +Nd

1/Np + 1
. (7.10)

In our standard case, we study 50 authors, of which one is marked as the suspect, with each 7 training
and calibration texts. Therefore we have Np = 7 and Nd = 343. If we plug this into Equation (7.10) we
get

LRth = 301. (7.11)

So for an optimal LR system with our sample size, the ELUB bounder sets all LRs larger than 301 to
the upper bound of 301. For LR systems that are not optimal, this upper bound can only be equal or
lower, as no system can decrease the probabilities in the denominator of the EU ratio.

We can do something similar to get a lower bound on the LR of an optimal system. We now look
at LRth smaller than 1, which results in P (1 > LRth|Hd) = 1 and P (1 ≤ LRth|Hp) = 0. As the
denominator remains the same as in the upper bound case we have

EU(reference)
EU(LR system)

=
LRth

1
Np+1 + LRth

Nd+1

. (7.12)

If we again set this to be equal to 1 and factor our LRth, we get

LRth =
1 + 1/Nd

Np + 1
. (7.13)

We can plug Np = 7 and Nd = 343 into this equation to get the following lower bound on the LR of an
optimal system with our sample sizes.

LRth ≈ 0.125 (7.14)

Wewill use these bounds on the optimal LR system to calculate a lower bound on the log-likelihood-ratio
cost, a metric for LR systems which we will introduce in Chapter 8.

8
Validation

There are several ways to measure the performance of an authorship attribution method. In this chapter,
we will give an overview of these metrics. We will introduce precision, recall, macro-accuracy and F1-
score, which are often used as metrics in computational authorship attribution. After this, we will cover
the performance metrics used to evaluate likelihood ratio systems in forensic authorship attribution,
including the log-likelihood-ratio cost. We will also introduce several graphical methods which are used
to interpret the results of likelihood ratio systems.

8.1. Metrics in computational authorship attribution
To enable us to definemetrics mathematically, we will first describe the computational authorship attribu-
tion problem in terms of mathematical variables. Assume we have a set A = {a1, a2, ..., an} consisting
of n authors and sets T , V consisting of texts written by the authors in A, respectively the training and
validation set. Let m be a model for multiclass classification that is trained on the texts in set T . We
then define M as a n× n matrix, where element Mij is defined as the number of texts in V written by
author ai attributed to author aj by m. For an author ai, i ∈ {1, 2, ..., n} the precision of model m is
defined as the ratio of all samples with true author ai that are attributed to author ai. In formula form,
we write this as

precision(m, ai, V) =
Mii∑n
j=1 Mij

. (8.1)

Similarly, the recall is defined as the ratio of all samples that are classified as being written by author
ai of which the true author is ai, mathematically

recall(m, ai, V) =
Mii∑n
j=1 Mji

. (8.2)

From the precision and recall per author, we can calculate the average recall and precision of the
entire model. This can be done using either the micro-average or the macro-average. When using the
micro-average we give the same weight to every text in V , resulting in

precisionmicro(m,V) =

∑n
i=1 Mii∑n

i=1

∑n
j=1 Mij

, (8.3)

recallmicro(m,V) =

∑n
i=1 Mii∑n

i=1

∑n
j=1 Mji

. (8.4)

We note that the terms on the right-hand side of these equations are equal, resulting in

precisionmicro(m,V) = recallmicro(m,V), (8.5)

which is always true in multiclass classification. Intuitively, this can be explained by the fact that a false
positive for one class must always correspond to a false negative for another class. As a result, the

31

8.2. Validation in forensic sciences 32

total number of false positives is equal to the total number of false negatives. The micro-averaged
precision is therefore also called the micro-accuracy or simply the accuracy of the model.

When taking the macro-average each class is given the same weight, resulting in

precisionmacro(m,V) =
1

n

n∑
i=1

precision(m, ai, V) =
1

n

n∑
i=1

Mii∑n
j=1 Mij

, (8.6)

recallmacro(m,V) =
1

n

n∑
i=1

recall(m, ai, V) =
1

n

n∑
i=1

Mii∑n
j=1 Mji

. (8.7)

The macro-averaged precision and recall reduce to their micro-averaged versions whenever the value
in the denominator is constant. For the precision, a constant denominator means that each author has
written an equal number of the texts in V , while for recall it means to each author an equal number
of texts is attributed. In literature, the macro-averaged precision is also sometimes called the macro-
accuracy [37].

We also define the Fβ-score, which is a weighted average of the precision and the recall

Fβ(m,V) = (1 + β2)
precision(m,V) · recall(m,V)

β2 · precision(m,V) + recall(m,V)
. (8.8)

We can again calculate either a micro-averaged or a macro-averaged Fβ-score. Here the micro-
averaged Fβ-score is calculated from precisionmicro(m,V) and recallmicro(m,V). Due to their equality,
we can reduce this Equation to

Fβ,micro(m,V) = (1 + β2)
precisionmicro(m,V) · recallmicro(m,V)

β2 · precisionmicro(m,V) + recallmicro(m,V)

= (1 + β2)
(precisionmicro(m,V))2

(1 + β2)precisionmicro(m,V)
= precisionmicro(m,V).

(8.9)

So the micro Fβ reduces to the micro-averaged precision for multiclass classification problems. There-
fore it is more interesting to look at the macro-averaged Fβ-score. Specifically, we look at the macro
F1-score, as F1 is the harmonic mean between the recall and the precision, giving both equal impor-
tance. We get

F1,macro(m,V) =
1

n

n∑
i=1

F1(m, ai, V) =
2

n

n∑
i=1

precision(m, ai, V) · recall(m, ai, V)

precision(m, ai, V) + recall(m, ai, V)
. (8.10)

We have now introduced a range of performance metrics used in multiclass classification problems
like authorship attribution. Of these macro-accuracy and the macro F1-score are most often used in
literature [37, 54]. We will use the macro F1-score as our primary metric to compare the performance of
multiclass classification models. We choose this metric over the other options as it can properly handle
imbalanced datasets. For example, for micro F1-score, good performance for authors with many texts
in the test set can skew the overall accuracy. Furthermore, macro F1-score considers both precision
and recall, which makes it a preferable metric over macro-accuracy.

In this thesis we will often refer to the macro F1-score as simply the F1-score for readability. When
we use the term F1-score this always refers to the macro-averaged version.

8.2. Validation in forensic sciences
Likelihood ratio systems return a likelihood ratio (LR) instead of a classification, such that the strength
of the evidence can be weighted in court. As a result, when we quantify the performance of a likelihood
ratio system we want to take the value of the LRs into account. For example, given a text not written by
the suspect, we prefer a model that returns an LR of 2 over one that returns an LR of 300, even though
both models wrongly express that the text is more likely to be written by the suspect. Therefore, to
properly measure the performance of likelihood ratio systems, we need different performance metrics
than those we just introduced for the multiclass classification problem.

8.2. Validation in forensic sciences 33

To properly validate our LR systems we follow the validation framework proposed by Meuwly et al
[35]. This paper gives a guideline to both performance metrics and graphical representations for the
validation of likelihood ratio systems. This is done following three main performance characteristics:
accuracy, discriminating power and calibration. In this context, accuracy means how closely the calcu-
lated LRs correspond to the truth values. This is measured by the log-likelihood-ratio cost (Cllr). The
discriminating power is defined as the performance of the model in distinguishing between samples
from Hp and samples from Hd when calibrated optimally. The main metric used to evaluate the dis-
criminating power is the minimal log-likelihood-ratio cost (Cmin

llr). Lastly, the performance characteristic
calibration describes how well the likelihood ratio system is calibrated, where the discriminating power
of the model is assumed as fixed. The calibration of an LR system is measured using the calibration
log-likelihood-ratio cost (Ccal

llr). Next to the performance metrics, three graphical representations are
used to graphically illustrate the performance of a likelihood ratio system, namely ECE plots, Tippett
plots and PAV plots. An overview of the three performance characteristics and their corresponding
metrics and graphical representations is given in Table 8.1. In the following subsections, we will go
over each of the three main performance characteristics in depth, introducing the formal definitions of
their respective metrics and explaining their graphical representations.

Table 8.1: Overview of performance characteristics and their corresponding metrics [35].

Performance characteristic Performance metric Graphical representation
Accuracy Cllr ECE plot
Discriminating power Cmin

llr Tippet plot, ECE plot
Calibration Ccal

llr Tippet plot, PAV plot, ECE plot

8.2.1. Accuracy
The log-likelihood-ratio cost (Cllr) is a metric introduced by Brümmer and Du Preez [11] to measure
the accuracy of a likelihood ratio system independent of the domain of application. Let V be the set
of likelihood ratios (LRs) computed by a likelihood ratio system on a validation set. V can be split into
two disjoint subsets Vp and Vd, withHp andHd being the true hypothesis for texts corresponding to the
LRs in Vp and Vd respectively. The Cllr is then defined as follows

Cllr =
1

2|Vp|
∑

LR∈Vp

log2
(
1 +

1

LR

)
+

1

2|Vd|
∑

LR∈Vd

log2 (1 + LR) . (8.11)

We can interpret this formula as follows: if a sample fromHp has a large LR, the cost added by that
sample, log2

(
1 + 1

LR

)
, is close to zero. If the LR is 1 we get a cost of log2 (2) = 1 for that sample and

the added cost increases for LRs closer to zero. The inverse is true for samples from Hd, LRs close to
zero contribute minimally to the overall cost compared to larger LRs. We notice that the contribution to
the Cllr is 1 for samples under Hd with an LR of 1.

Consider a hypothetical system that returns an LR of 1 for every sample, effectively disregarding the
evidence and classifying all samples as equally likely under Hp and Hd. This system, also called the
reference system, can always be constructed, as it acts independently of the evidence. The reference
system’s Cllr is always 1, as every sample adds exactly 1 to the average. Thus, any likelihood ratio
system used in court must achieve a Cllr lower than 1. Otherwise, the system’s performance is worse
than having no information at all.

Recall that we computed a lower and upper bound on the LRs of our LR system for our dataset
size (Chapter 7.5.1). From this we can compute a lower bound on the Cllr for our LR system. For the
optimal LR system, LR = 301, ∀LR ∈ Vp and LR = 0.125, ∀LR ∈ Vd when using an ELUB bounder
with one misleading sample per hypothesis. This gives

Cllr =
1

2|Vp|
|Vp| log2

(
1 +

1

301

)
+

1

2|Vd|
|Vd| log2 (1 + 0.125)

=
1

2
log2

(
1 +

1

301

)
+

1

2
log2 (1 + 0.125) ≈ 0.088.

(8.12)

8.2. Validation in forensic sciences 34

So we can conclude that with our sample sizes the Cllr has a lower bound of 0.088. This gives us a
way to compare our results with the attainable optimum, as no model can reach a Cllr of 0 with our
configuration of the ELUB bounder.

To illustrate the metrics used for the validation we study a simplified example with only six data
points, as shown in Table 8.2. We will come back to this example for each of the forensic validation
metrics.

Table 8.2: Simplified example of LRs generated by an LR system and their corresponding truth values

Sample LR H
s1 0.01 Hd

s2 0.1 Hd

s3 1 Hd

s4 5 Hp

s5 10 Hd

s6 100 Hp

For this example the log-likelihood-ratio cost is

Cllr =
1

2 · 2

(
log2

(
1 +

1

5

)
+ log2

(
1 +

1

100

))
+

1

2 · 4

(
log2 (1 + 0.01) + log2 (1 + 0.1) + log2 (1 + 1) + log2 (1 + 10)

)
=

1

4
(0.263 + 0.014) +

1

8
(0.014 + 0.138 + 1 + 3.459) = 0.646.

(8.13)

In this example, the Cllr value is less than 1, indicating that the log-likelihood-ratio system performs
better than a system ignoring the evidence. Furthermore, the only misclassified sample, s4, contributes
0.432 to the Cllr, which accounts for 67% of the total cost. This illustrates the significant impact of
misclassified samples on the Cllr. The Cllr is influenced by both the frequency of misclassifications
and the magnitude of the corresponding LRs.

8.2.2. Discriminating power
The minimal log-likelihood-ratio cost, Cmin

llr , is also calculated using Equation (8.11). The difference
between the Cllr and the Cmin

llr is that the set V of LRs is first modified to V opt using isotonic regression
when calculating the Cmin

llr . It has been shown that optimal calibration for binary scoring rules is found
when recalibrating using isotonic regression [7, 10]. As the Cllr is a binary scoring rule [11], we can
recalibrate our likelihood ratios to find the minimal likelihood ratio cost for this system. As the isotonic
regression removes calibration errors, the remaining mistakes are solely caused by the discriminative
power of the likelihood ratio system. As a result, we can use the Cmin

llr as a metric for the discriminative
power.

Isotonic regression, or monotonic regression, is a non-parametric method to find a monotonically
increasing or decreasing function that minimizes the sum of squared differences between the observed
and the predicted values. We will focus on increasing isotonic regression, but the principles are the
same for the decreasing case, with inverted signs. To write the objective of isotonic regression in
formula form, we suppose we have N data points of the form (xi, yi) with weights wi, i = 1, ..., N , with
ordered x values, so x1 ≤ x2 ≤ .. ≤ xN . Then we minimize the following objective under the monotonic
non-decreasing condition:

min
N∑
i=1

wi(ŷi − yi)
2

subject to:
ŷi ≤ ŷj , ∀i, j where xi < xj

(8.14)

8.2. Validation in forensic sciences 35

The set of ŷ that minimizes this objective can be found using the Pool Adjacent Violators (PAV)
algorithm [2]. We initialize the algorithm by setting ŷi = yi. The algorithm works by iteratively combining
adjacent data points that violate the isotonicity constraint, so ŷi ≥ ŷi+1 while xi < xi+1. The algorithm
combines the adjacent points into a single point, with ŷi:i+1 = wiŷi+wi+1ŷi+1

wi+wi+1
and a weight wi:i+1 =

wi + wi+1. Here we use the subscript i : j to write a point that combines all points from xi up to and
including xj . As this algorithm uses only the adjacency of points and not their specific x value, it only
matters that xi:j keeps the same location in the ordering. Therefore we may set xi:j = xi.

If we iteratively perform this algorithm until the monotonicity constraint is satisfied we are left with
a set of predictors of the form {ŷ1:a, ŷa+1:b, ..., ŷz+1:N}. For the specific data points, we get that ŷ1 =
...ŷa = ŷ1:a, so the combined points all have the same predicted value. We can now define the function
f(x) : [x1, xN] → [ŷ1, ŷN] by linearly interpolating between the predicted values of ŷi. The resulting
function is then piecewise linear. In Figure 8.1 an example of isotonic regression is shown to illustrate
this process. The blue points represent the original dataset and the orange line represents the iso-
tonic regression fit. We notice that the line consists of two types of line segments. We have constant
line segments, where the isotonic regression combined multiple data points to satisfy the monotonic
increasing constraint, and increasing line segments, where the estimator linearly interpolates between
two adjacent estimates ŷi:j and ŷj+1:k.

Figure 8.1: Example of isotonic regression on a simulated dataset. The blue points represent the original dataset and the
orange line represents the isotonic regression fit.

We now translate this process to likelihood ratios. When comparing to our introduction of isotonic
regression, x represents the original likelihood ratios in the set V , y the true likelihood ratios, 0 for
samples under Hd and infinity for samples under Hp, and ŷ the likelihood ratios after recalibration,
so V opt. The weight of the samples is chosen such that the total weight of the samples under both
hypotheses is equal, giving

wp =
Nd

Np +Nd
, wd = 1− wp. (8.15)

Here, Np and Nd are the total number of samples in the validation set under respectively Hp and Hd,
while wp and wd represent the weights assigned to the two classes.

For likelihood ratios the value of y for samples with true hypothesis Hp is positive infinity. If we
averaged the LRs off several data points, the average would always be infinity if at least one sample
from Hp is included. Instead, when combining two data points of equal weight, one under Hp and one
under Hd, we want their combined LR to be 1, as both hypotheses are equally likely. In general, we
can write the expected LR when averaging data points as

8.2. Validation in forensic sciences 36

LRavg =
wpnp

wdnd
. (8.16)

Here, np and nd are the number of samples under respectively Hp and Hd being combined.
To combat this issue we first transform the LRs to odds by using the following transformation

p(LR) =

{
LR

1+LR , if LR < ∞
1, else.

(8.17)

This one-to-one mapping returns values of p between 0 and 1. If we now average np samples with
weight wp and p = 1 and nd samples with weight wd and p = 0 we get the following pavg:

pavg =

 ∑
s:H=Hp

wp +
∑

s:H=Hd

wd

−1 ∑
s:H=Hp

wp · 1 +
∑

s:H=Hd

wd · 0

 =
wpnp

wpnp + wdnd
(8.18)

Now we can transform pavg back into a LR using the inverse of the transformation from Equation
(8.17), LR(p) = p

1−p . This gives

LRavg =

wpnp

wpnp+wdnd

1− wpnp

wpnp+wdnd

=
wpnp

wpnp + wdnd − wpnp
=

wpnp

wdnd
(8.19)

This corresponds to the value we expect to get when combining LRs, as stated in Equation (8.16). The
transformation of likelihood ratios into odds solves the problem with infinite LR values and thus allows
us to perform isotonic regression using the PAV algorithm on likelihood ratios. So, the Cmin

llr is defined
as follows

Cmin
llr =

1

2|V opt
p |

∑
LR∈V opt

p

log2
(
1 +

1

LR

)
+

1

2|V opt
d |

∑
LR∈V opt

d

log2 (1 + LR) . (8.20)

We finally note that the maximal possible value for Cmin
llr is 1. The reason for this is that a system

with poor discriminative power can always be recalibrated to the reference system, with an LR of 1 for
each sample. As the reference system has a Cllr of 1, which we showed in the previous section, this
results in a Cmin

llr of 1.
We now return to our simplified example from Table 8.2 to illustrate the calculation of the Cmin

llr .
We first order the values based on their LR and convert their hypothesis to y = ∞ for samples under
Hp and y = 0 for samples under Hd. We notice that samples with the three lowest LR have y(1) =
y(2) = y(3) = 0, which corresponds to the monoticity constraint. The fourth and fifth sample have
y(4) = ∞ and y(5) = 0, violating the constraint. To combine these points we first calculate their weights,
wp = Nd

Np+Nd
= 2

3 and wd = 1 − wp = 1
3 . Their combined LR then becomes LRavg =

2
3 ·1
1
3 ·1

= 2. Lastly,
y(6) = ∞, satisfying the monoticity constraint. We summarize the calibrated LRs in Table 8.3.

Table 8.3: Simplified example of LRs generated by a likelihood ratio system, their corresponding truth values and their
calibrated LRs.

Sample LR H LRcal
s1 0.01 Hd 0
s2 0.1 Hd 0
s3 1 Hd 0
s4 5 Hp 2
s5 10 Hd 2
s6 100 Hp ∞

8.2. Validation in forensic sciences 37

From this we can calculate the Cmin
llr of this system:

Cmin
llr =

1

2 · 2

(
log2

(
1 +

1

2

)
+ log2

(
1 +

1

∞

))
+

1

2 · 4

(
log2 (1 + 0) + log2 (1 + 0) + log2 (1 + 0) + log2 (1 + 2)

)
=

1

4
(0.585 + 0) +

1

8
(0 + 0 + 0 + 1.585) = 0.344.

(8.21)

8.2.3. Calibration
The calibration log-likelihood-ratio cost is defined as the difference between the Cllr and the Cmin

llr

Ccal
llr = Cllr − Cmin

llr . (8.22)
Intuitively this is a logical way of measuring the calibration of a system. Namely, if the Cllr measures

the overall performance and the Cmin
llr the performance of the optimally calibrated system, then the

difference measures how much the system can be improved with better calibration. The split from a
Cllr into a Cmin

llr and Ccal
llr allows us to make more in-depth comparisons of LR systems and improve

them more systematically. For example, if the Ccal
llr of a likelihood ratio system is larger than the Cmin

llr

it is often more useful to investigate ways of improving the calibration than to pursue a system with
a greater discriminating power. Returning to our simplified example, we get Ccal

llr = Cllr − Cmin
llr =

0.646− 0.344 = 0.302, meaning that a significant part of our total cost is caused by poor calibration.

8.2.4. Graphical representations
PAV plot
A pool adjacent violators (PAV) plot shows the pre-calibrated LRs of a likelihood ratio system against
the LRs fitted on their truth values using isotonic regression. While the PAV plot is used to illustrate
the calibration of a likelihood ratio system, it is made using the PAV algorithm. In Figure 8.2 the PAV
plot of the simplified example can be seen. Note that a cut-off is used to show data points with optimal
log-likelihoods of infinity or negative infinity. For a well-calibrated system, all points are expected to be
close to the x = y-diagonal, meaning that the post-calibrated LRs differ little from the pre-calibrated
LRs. A PAV plot can be useful for identifying the cause for high values of Ccal

llr . Causes could include
under- or overestimating LRs, meaning the points are placed consistently above or below the diagonal.
Looking at our example in Figure 8.2 we notice that the LRs were slightly overestimated before the
recalibration with isotonic regression.

Figure 8.2: PAV plot of the example data set. The filled-in points have finite values. The blue line represents the
x = y-diagonal and the orange line is gotten through linear interpolation of the points.

8.2. Validation in forensic sciences 38

ECE plot
The empirical cross entropy (ECE) plot shows the value of the ECE against the log-odds of the prior
probability of the likelihood ratio

(
p =

P (Hp)
P (Hd)

)
. It is defined as [43]

ECE =
p

(p+ 1)Np

∑
LR∈Vp

log2
(
1 +

1

LR · p

)
+

1

(p+ 1)Nd

∑
LR∈Vd

log2 (1 + LR · p) . (8.23)

We notice that for p = 1 this equation reduces to the formula for the Cllr ((8.11)). In Figure 8.3 the
ECE plot of our example dataset is shown.

Figure 8.3: ECE plot of the example data set. The dotted blue line corresponds to the reference system, which always returns
an LR of 1. The orange line represents the ECE of the computed likelihood ratios. The dashed green line corresponds to the

PAV-calibrated likelihood ratios.

It contains the lines for three different systems. The dotted blue line corresponds to the reference
system, which always returns an LR of 1. The continous orange line represents the ECE of the com-
puted likelihood ratios in the set V . The dashed green line corresponds to the likelihood ratios after
performing the PAV algorithm, so V opt. Due to the optimality of isotonic regression for binary scoring
rules the line for V opt is always equal to or below the line for V . A large gap between these two lines
points to poor calibration of the likelihood ratio system. If the ECE of the LRs is larger than that of the
reference system for a certain range, the reference system performs better than the likelihood ratio
system for those prior odds. If this range excludes p = 1 this cannot be seen from the Cllr. As a result,
the ECE plot shows additional information.

Tippett plot
A Tippett plot can be used to illustrate both the discriminating power and the calibration of a likelihood
ratio system. It plots the inverse cumulative density of the log-likelihood ratios under Hp (blue) and
Hd (red). In Figure 8.4 a Tippett plot of the example dataset is shown. As an accurate likelihood ratio
system returns LRs larger than 1 under Hp and lower than 1 under Hd we expect the line for Hp to
cross the dashed line at a higher value than the line for Hd. The lines being further apart corresponds
to a model having a larger discriminating power.

8.2. Validation in forensic sciences 39

Figure 8.4: Tippett plot of the example data set. The blue and red lines correspond to the cumulative proportion of LRs under
Hp (blue) and Hd (red) larger than the LR on the x-axis. The dashed line corresponds to an LR of 1, where both hypotheses

are equally likely.

8.2.5. The choice of V
Now that we have introducedmetrics for measuring the performance of a likelihood ratio system, we still
have to decide which likelihood ratios to include at the moment we calculate these metrics. Suppose we
have a total data set consisting of n authors, with m texts written by each author. To test an authorship
attribution model on this set we split it into a training-and-calibration set and a validation set. When
assessing a certain likelihood ratio system we must choose a certain suspect and see all other authors
as the reference population. However, we do not just want to asses this for just one specific author
as the suspect, as the closeness of the specific author to other authors could influence the results.
Similarly, we want to assess the system for several splits of the dataset into training-and-calibration set
and validation set, using k-fold cross-validation. In practice, we use 1 text per author in the validation
set, and we usem-fold cross-validation, leading in total tom ·nmodels being evaluated on n texts each.
We write the resulting sets of likelihood ratios as Vi,j , with i ∈ 1, ...,m corresponding with the validation
texts and j ∈ 1, ..., n to the author chosen as the suspect.

If we look at a singular set Vi,j , this includes the likelihood ratio of only 1 sample under Hp and
n− 1 under Hd. If we calculate the Cmin

llr for such small sets of LRs, it is on average smaller than if we
perform the same on a union of these sets. We illustrate this in an example with m = 2, n = 2 where
we set the first author as the suspect. Suppose we get the following LRs

Table 8.4: Example of sets of validation LRs.

Hp Hd

V1,1 1 0.1
V2,1 10 1

Let V1 be the union of V1,1 and V2,1. Then we compute the following values for our metrics

Table 8.5: Example of metrics applied to sets of validation LRs.

Cllr Cmin
llr Ccal

llr

V1,1 0.569 0 0.569
V2,1 0.569 0 0.569
V1 0.569 0.500 0.069

8.2. Validation in forensic sciences 40

We first note that the average Cllr of the two sets is equal to the Cllr of their union. This is a general
result from the definition of the Cllr, under the condition that the ratio between the number of samples
under Hp and under Hd is equal for all three sets. For the proof of this result, we refer to Appendix A.
Secondly, we note a large discrepancy between the average Cmin

llr and Ccal
llr of the two sets compared

to that of their union. This is caused by the combination of the sets cancelling the perfect separation
between the LRs of Hp and Hd in the individual sets, leading to a lower discriminative power. This
example illustrates the significant difference between first calculating the metrics on individual sets Vi,j

and then taking the average compared with first taking the union of all sets Vi,j and calculating the
metrics on that set.

In practice, both methods have advantages and drawbacks. If we calculate the metrics on an
individual set Vi,j we measure the metrics on the validation results of an individual model, giving a good
representation of its performance. The main drawback is that using this method we would perform
isotonic regression on a set of LRs with only one sample under Hp. This gives too little data for an
isotonic regression fit, leading to lower values of Cmin

llr . On the other hand, if we first combine all
likelihood ratios in a single set V before using our metrics, we have m · n samples under Hp when
performing isotonic regression, leading to a better fit. However, these likelihood ratios come from
different models with different suspects, and it is therefore questionable to state they can be evaluated
as one likelihood ratio system.

We have chosen to use the middle ground of these two extremes. We bundle the likelihood ratios
of all the models with the same author as the suspect, saying Vj =

∪
i∈1,...,m

Vi,j as set on which we

compute our metrics. This gives usm samples underHp when performing isotonic regression, leading
to a better fit than in the case where we use individual set Vi,j . As we combine likelihood ratios from
models with the same author as the suspect, we expect the difference between the models to be
smaller. Furthermore, this allows us to compare the system’s performance over the different authors.
Additionally, this can show us if a method performs well for all suspects, or if there are outliers for which
it performs poorly.

To summarize, Figure 8.5 shows how we combine the LRs from cross-validation before we compute
our metrics. We do this with each author as the suspect and use both the averages of these metrics
to evaluate the overall results of different methods as well as boxplots to investigate the distribution of
these values over the authors.

Figure 8.5: Illustration summarizing our use of cross-validation and describing when we calculate our metrics.

9
Topic and Conversation Impact

Authorship attribution models often attribute texts based on topic instead of the author’s style. This
is an undesirable property when used in forensic cases, as this could influence the attribution and
introduce biases towards certain authors. To combat this effect, we want to be able to measure the
topic-robustness of methods. The topic of texts heavily influences a model with low topic-robustness
while a model with high topic-robustness attributes texts almost purely based on writing style. In this
section, we propose two metrics to measure the topic-robustness of models for two different types of
corpora. These metrics are the ‘topic impact’, which can be used on topic-controlled corpora, and the
‘conversation impact’, which can be used on conversational corpora.

9.1. Topic impact
Before we introduce our metric, we must explain both the standard and the confusion task. The stan-
dard task is extensively studied in previous research [3, 51] and consists of an intuitive way to ensure
that the topic is excluded from the attribution reasons during authorship attribution. Suppose we have
texts of n authors, a1, ..., an, about Nt topics, where each author has written about each topic. For both
tasks, the authors are split into two groups, Aa and Ab of the same size. In the standard task, we use
all the texts about Nt − 1 topics as training texts and attribute the texts about the remaining topic. As
the model has previously not seen any texts about the last topic, the validation texts are unlikely to be
attributed based on their topic. In Figure 9.1a a schematic of this task can be seen.

(a) Standard case (b) Confusion case

Figure 9.1: Illustration showing the distribution of texts over the training and validation in the standard and confusion case for a
topic-controlled dataset. The y-axis shows the different authors, while the x-axis shows the different topics. Dark blue squares

represent texts in the training set, and light blue squares represent texts in the validation set.

Secondly, we study the confusion task, first introduced by Altakrori et al in 2021 [1]. In this task,
for Nt − 2 topics all texts are added to the training set. For the remaining two topics, which we will call
Ta and Tb, we divide them such that for Ta the texts written by authors in Aa are added to the validation

41

9.2. Conversation impact 42

set while the texts written by Ab are added to the training set. The texts about topic Tb are divided the
other way around. The texts written by Ab are added to the validation set and those written by Aa to
the training set. A schematic of this task can be seen in Figure 9.1b. Here Ta = T6 and Tb = T5.

Suppose a text from the validation set covering topic Ta, written by an author from Aa, is attributed
to an author from Ab in the confusion task. This might be caused by the fact the texts about topic Ta

from the author inAb were present in the training set. To quantify this effect we first divide the attribution
of the texts in the validation set into three groups, giving the following scores:

sc = # of texts attributed to the correct author, e.g. from ai to ai,
ss = # of texts attributed to a different author from the same group, e.g. from ai ∈ Aa to aj ∈ Aa \ ai,
so = # of texts attributed to a different author from the other group, e.g. from ai ∈ Aa to aj ∈ Ab.

These groups can be seen visually as in Figure 9.2.

Figure 9.2: Illustration showing in which a text from author ai is counted as when it is attributed to author aj in the topic impact
case.

In the confusion task, texts from other authors about the same topic as the validation texts are
present in the training set. As a result, we expect that for models that have a low topic-robustness,
the number of attributions to so increases for the confusion task in comparison with the standard task.
Therefore, to measure the topic impact It, we now subtract the percentage of texts falsely attributed to
the other group in the standard case from the percentage of texts falsely attributed to the other group
in the confusion task. In formula form, we write this as

It =
sco

scc + scs + sco
− sso

ssc + sss + sso
. (9.1)

The superscripts s and c correspond with the standard and confusion tasks. With the topic impact, we
can measure how much topic influences the attributions made by a model. If It = 0, it is completely
independent of topic influence, while if It = 1 it changes from attributing all texts to authors in the same
group to attributing all texts to an author from the other group.

9.2. Conversation impact
Suppose Alice and Bob have a conversation, for example, via chat messages, e-mail or on the phone.
If Alice is talking to Bob about football it is quite unlikely that Bob only replies by talking about painting.
As a result, we suppose that both halves of the same conversation, created by the two conversation
partners, cover the same topic or topics. In conversational corpora, texts come from conversations in
which two or more people write to each other, we can thus combine all messages per conversation
partner into a conversation half and expect both conversation halves of the same conversation to

9.2. Conversation impact 43

cover the same topics. We can apply this to define a metric that allows us to study the impact of this
conversational structure on the performance of AA methods, the conversation impact.

We suspect that both halves of a conversation cover the same topics. This would allow us to test the
robustness of authorship attribution methods on datasets that are not topic-controlled but do include
a conversational structure, like chat messages or transcriptions of phone calls. To test this theory we
want to study the correlation between topic impact and what we will call conversational impact.

Suppose we now have np author pairs with each nc conversations between the pair of authors. If
we number these authors such that author a2i−1 has conversations with author a2i, i ∈ 1, ..., np we can
create a standard and confusion task similar to the topic-controlled dataset. We again create sets Aa

and Ab, but now such that a2i−1 ∈ Aa, a2j ∈ Ab for i ∈ 1, ..., np. As a result an author from Aa always
has a conversation with an author from Ab.

In the standard case, Figure 9.3a, all but one of the authors’ conversation halves are added to the
training set, while the last conversation half is added to the validation set. This way, the conversation
half of the authors’ conversation partner corresponding to the text in the validation set is also in the
validation set.

In the confusion case, it is ensured that the partners’ conversation half corresponding to the texts
in the validation set are in the training set. If conversation Ci is in the validation set for all odd authors,
we add conversation Ci−1 to the validation set for all even authors. This is illustrated in Figure 9.3b.

(a) Standard (b) Confusion

Figure 9.3: Illustration showing the distribution of texts over the training and validation in the standard and confusion case for a
dataset of conversations. The y-axis shows the different authors, while the x-axis shows the different conversations. Dark blue

squares represent texts in the training set, and light blue squares represent texts in the validation set.

In the confusion case, the model has been trained on the other conversation half of all texts in
the validation set. As a result, we now expect more attributions to the conversation partner in the
confusion case than in the standard case. We use this expectation as the basis for the metric we call
conversation impact, Ic. We again subdivide all attributions of the texts in the validation set into three
groups, but we slightly redefine these groups compared to the topic impact case:

sc = # of texts attributed to the correct author, e.g. from ai to ai,
sp = # of texts attributed to the authors partner, e.g. from ai to ai+1 for odd i,
sr = # of texts attributed to a different author other than the authors’ partner, e.g. from ai to

aj /∈ {ai, ai+1} for odd i.

These groups are illustrated in Figure 9.4. We expect that in the confusion task, the number of
attributions to the conversation partners is larger, so sp is relatively larger than in the standard task.
This is the basis for the conversation impact, which is defined as

Ic =
scp

scc + scp + scr
−

ssp
ssc + ssp + ssr

. (9.2)

The superscripts c and s again refer to the confusion and standard task. With the conversation impact,
we can measure how much the other half of a conversation influences the attributions made by a model.
If It = 0, the model is completely independent of the influence of the other half of conversations, while if

9.3. Practical implementation 44

Figure 9.4: Illustration showing in which a text from author ai is counted as when it is attributed to author aj in the
conversation impact case.

It = 1 it changes from attributing all texts either correctly or to an author that is not the author’s partner
to attributing all texts to the author’s partner.

In general, we expect a higher relative percentage of false attributions to the author’s partner com-
pared to the other authors even in the standard case. This is due to people being more likely to speak
with people of similar backgrounds and people copying phrases that have been said to them, which is
an effect that might occur even over multiple conversations. However, due to taking the difference of
the wrong attributions to the author’s partner between the confusion and the standard case, we expect
these effects to be removed while the effect of the topic of the other conversation half remains.

9.3. Practical implementation
When calculating the topic or conversation impact we use k-fold cross-validation, with k equal to the
number of topics or conversations, respectively. During the confusion task, if Ti or Ci is the topic or
conversation for which the texts are in the validation set for Aa we use the texts corresponding to Ti−1

or Ci−1 as the validation texts for Ab. This way every text is in the validation set precisely once. When
for topic T1 or conversation C1 the texts are the validation texts for the authors in Aa, we have that the
texts corresponding with Tnt

or Cnc
are in the validation set for the authors in Ab.

The datasets we use for investigating the correlation between topic and conversation impact are
the topic-controlled corpus abc_nl1 and the conversational corpus FRIDA. We chose these datasets
because they both consist of correctly spelled Dutch and therefore abc_nl1 is more comparable to
FRIDA than RFM, in which manymore deviations from the standard spelling are used. abc_nl1 consists
of 8 authors with each 6 texts, where each text is about one topic. For an as equal comparison as
possible we use a reduced version of FRIDA with 8 authors and 6 conversations per author.

10
Results and Discussion

In this chapter, we will cover all results of our research. We divide the results into three parts, following
our three main research aims. We start with the results of a variety of models when using metrics
from computational authorship attribution. Using these results we choose a subset of these models
for which we study the results of their corresponding likelihood ratio systems, using validation methods
from the forensic sciences. We will compare the chosen methods on the forensic authorship attribution
task and explain possible causes of performance differences. Lastly, we will show the results of our
analysis into the impact of both conversation and topic on authorship attribution methods and their
possible correlation. For the readability of this chapter, we will present some of our results in the form
of figures. Tables containing the values for these plots can be found in Appendix B. Almost all code
that was used to create the results presented in this chapter is publicly available at https://github.
com/wouterhajer/Authorship_Attribution. Only the code to create the corpus dataframe for RFM
has been excluded.

10.1. Computational authorship attribution
10.1.1. Feature vector and SVM models
In Figure 10.1 the 8-fold cross-validated F1-scores of the SVM-based models against the number of
unmasked words, Nf , are shown on the datasets RFM and FRIDA. The baseline is included as the
horizontal red line, which is independent of Nf . The blue, orange and green lines represent models
using words, characters or a combination as feature vectors, respectively.

(a) RFM (b) FRIDA

Figure 10.1: F1-score of three types of SVM models against the number of unmasked words, Nf , on the datasets RFM and
FRIDA. In red the performance of the baseline is included, which is independent of Nf .

Firstly, we notice that almost all models significantly outperform the baseline. In both images, a
trend can be seen where the performance of all models increases as the number of unmasked words

45

https://github.com/wouterhajer/Authorship_Attribution
https://github.com/wouterhajer/Authorship_Attribution

10.1. Computational authorship attribution 46

increases. This effect is the strongest at the start when theNf is increased from 100 to 1000. For further
increases in the Nf the curve flattens. The word n-gram model has a significantly lower performance
than the other models on both datasets. The combined model performs similarly to the character model,
so no significant information seems to be added by combining the word and character models. As a
result, we will focus on the character-based model in our further results. We will continue to study the
same range of Nf , as the choice of Nf significantly influences the topic and conversation impact, as
we will show further in this chapter.

One possible explanation for the large gap between the performance of the word and character
model is that the character model captures additional information, due to the inclusion of capitalization
and punctuation marks, which cannot easily be included in word n-grammodels. This, however, cannot
explain the difference in performance on the FRIDA dataset. In this dataset, all authors have the
same punctuation and capitalization, as this dataset consists of transcriptions of phone calls, where
punctuation and capitalization are added consistently by the transcribers. Another possible explanation
would be that character n-grams capture additional information about similar words, even when only
a few words are left unmasked. An example of this could be that the words “jij, hij, zij, wij”, (you, he,
she/they, we), all include the trigram “ij ”, and are used in similar sentence structures.

10.1.2. BERT-based models
In Figure 10.2 8-fold cross-validated F1-scores of the BERT-based models against the number of fine-
tuning epochs are shown for the datasets RFM and FRIDA. The baseline model is included as the
horizontal red line, which is independent of the number of epochs. The dashed lines represent models
based on RobBERT, while the continuous lines represent models based on BERTje. The blue, orange
and green lines represent the mean pooling, averaging and truncation strategies for dealing with the
token limit, respectively.

(a) RFM (b) FRIDA

Figure 10.2: 8-fold cross-validated F1-score of six types of BERT-based models against the number of epochs they were
finetuned on the datasets RFM and FRIDA. In red the performance of the baseline is included, which is independent of the

number of epochs. All dashed lines represent RobBERT-based models, while all continuous lines correspond to BERTje-based
models.

In both subfigures, the performance increases with longer finetuning, but the curve flattens around
40-50 epochs. We even notice a slight decrease in performance for some models when comparing
their results after 50 epochs with finetuning for only 40 epochs on the RFM corpus, possibly indicating
that the model starts overfitting on the finetuning data. We see that on the FRIDA dataset, the mean
pooling strategy outperforms the other two strategies, while on the RFM dataset, the distance between
the three strategies is much smaller. On the FRIDA data set the mean pooling strategy is also the only
strategy that outperforms the baseline, after around 40 epochs of finetuning. On the RFM corpus, all
models outperform the baseline after only 20 epochs of finetuning.

Another interesting observation from Figure 5.1 is that on RFM the RobBERT-based models out-
perform the BERTje-based models, while the opposite can be seen on the FRIDA corpus. Additionally,
we see that on the RFM corpus, all models start with an equivalent performance after 10 epochs of
finetuning and then the RobBERT-based models see a steeper increase in performance compared to

10.1. Computational authorship attribution 47

the BERTje-based models. The same steeper performance increase for RobBERT-based models is
seen on the FRIDA corpus, although here the initial performance of the RobBERT-based models is with
an F1-score of around 0.1, lower than that of the BERTje-based models, which have an F1-score of
around 0.2 after 10 epochs of finetuning. Due to the steeper incline of the RobBERT-based methods,
this difference decreases after more epochs of finetuning.

A possible explanation for the result that BERTje-based models outperformed RobBERT-based
models on FRIDA, while we saw the opposite on RFM, could be the pre-training corpora used for
both underlying models. BERTje was pre-trained on a corpus consisting of mostly Wikipedia articles,
newspaper articles and books. As a result, this includes mostly correctly written Dutch, which might
correspond more closely to the transcribed phone conversations than the chat messages. RobBERT,
on the other hand, was pre-trained on a corpus consisting of scraped internet pages, which also includes
online forums on which the writing quality might more closely resemble that of the chat messages in
RFM.

The result that the different strategies for dealing with the token limit perform similarly on RFM but
not on FRIDA can likely be explained by the shorter texts in RFM. The RFM corpus averages 303 tokens
per text compared to 774 tokens per text in FRIDA when both corpora are tokenized with RobBERT. As
a result, the token limit of 512 tokens is only reached in 12.7% of the texts in RFM compared to 93.0% of
texts in FRIDA. With the tokenizer of BERTje, similar token lengths were seen. As a result, the impact
of the different strategies is more noticeable on FRIDA. As our mean pooling strategy outperforms the
other strategies on FRIDA while having a similar performance on RFM, we will focus on this strategy
in our further results.

10.1.3. Comparison
If we compare the performance of the BERT-based models with SVM models we notice that the SVM
models outperform the BERT-based models. The peak F1-score of the SVM models is 0.880 on RFM
and 0.957 on FRIDA, compared to 0.727 and 0.629 for BERT-basedmodels. So while the mean pooling
BERT-based models outperform the baseline after 50 epochs of finetuning, they still get outscored by
the SVM models. Similar results were found in previous comparisons on English corpora with a low
amount of training text per author [37, 54]. In both studies, only on corpora with on average more than
100,000 characters of training texts per author BERT-based methods outperformed character n-grams.
As our corpora consist of an average of 2,000-5,000 characters per author, our results agree with the
previous literature. This also shows that the performance difference between these methods on English
corpora is transferable to Dutch corpora.

We also notice that all BERT-based models perform better on the RFM corpus than on FRIDA, while
all other methods perform better on FRIDA. We would have expected all methods to perform better on
FRIDA, as it contains an average of 509words per text compared to 239 in RFM, and therefore hasmore
information per message. On the other hand, RFM does include punctuation and spelling mistakes as
made by the author, which FRIDA does not as it consists of transcriptions of spoken text. It could be
possible that BERT-based models lean more heavily on these written characteristics than our feature
based models, leading to this difference.

10.1.4. Influence of text length, number of texts and number of authors
We additionally studied the influence of several factors on the F1-score of the previously selected
models. The select models are character n-gram SVM models with Nf ∈ {100, 200, 1000, 5000,∞},
a RobBERT- and a BERTje-based model with the mean pooling strategy and 50 epochs of finetuning
as well as the baseline. We tested the variables “text” length and “number of texts” with the RFM
dataset, as this contains more texts per author, giving us more freedom to vary these variables. As
FRIDA consists of more authors, we study the influence of the number of authors with FRIDA.

Text length
To create texts of varying lengths we varied the minimal number of messages we use to construct a text
in RFM. Next to the standard version of RFM with a minimum of 10 messages, we studied a minimum
of 15 messages and a minimum of 5 messages. In Table 10.1 the results are shown, with the highest
value for each column highlighted in boldface.

The general trend we see in Table 10.1 is that longer texts increase the performance of all models.
This is to be expected, as longer texts contain more information, and therefore are likely to contain

10.1. Computational authorship attribution 48

Table 10.1: Cross-validated F1-scores of 8 models on the authorship attribution task on the RFM corpus with texts of varying
average length. The highest value of each column is shown in boldface.

Model type
Minimal # of messages 5 10 15
Avg # of words 150.7 238.7 293.6
Model specification

Character SVM

Nf = ∞ 0.621 0.853 0.940
Nf = 5000 0.628 0.834 0.928
Nf = 1000 0.586 0.826 0.885
Nf = 200 0.453 0.682 0.764
Nf = 100 0.403 0.589 0.705

BERT-based, mean pooling,
50 epochs

RobBERT 0.581 0.727 0.795
BERTje 0.538 0.661 0.753

Baseline Baseline 0.306 0.427 0.544

more identifying information about the author. An interesting observation is that for the shortest text
length, the SVM model with Nf = 5000 outperforms the model without masking. It must be noted that
this difference is so small that this could also be caused by random variations.

The BERTje-based model, the RobBERT-based model and the SVM model with Nf = 200 have a
comparable performance with the minimum of 10 messages per text, with F1-scores of 0.727, 0.661
and 0.682, respectively. If the text length is lowered to a minimum of 5 messages per text, we see that
the performance of the SVM model Nf = 200 drops to 0.453, compared to 0.581 and 0.538 for the
RobBERT- and BERTje-based models, respectively. So the impact of smaller texts is larger on SVM
models than on BERT-based models. If we look at the effects of longer text on these three models we
notice that the relative performance is similar to the standard version of RFM, with F1-scores of 0.795,
0.753 and 0.764 for the RobBERT-, BERTje-based and SVM model, respectively.

We are not completely sure why the effect of shorter texts is smaller on BERT-based models. From
the literature, we expected that as BERT-based models only outperform SVM with large amount of
training texts, their performance would deteriorate the fastest with short training texts. Our results
show the opposite of our expectations. A possible cause for this effect could be that for short texts the
frequency of individual features is very low, as not many combinations occur more than once. As a
result, a situation could happen that a common word has not been written by the author in his training
texts, but does occur in the validation text, influencing the attribution. This is muchmore likely to happen
for shorter training and validation texts. Due to the use of embeddings, the BERT-based models might
be less influenced by the occurrence of a single common word not used in the training texts.

Number of texts
In Table 10.2, the cross-validated F1-scores of the 8 selected models are shown against the number of
included texts per author. As we use leave-one-out cross-validation, the number of training texts is 3,
7 and 15 for the different columns, respectively.

Table 10.2: Cross-validated F1-scores of 8 models on the authorship attribution task on the RFM corpus with varying number
of texts per author. Cross-validation is done with one test text, meaning that there are 3, 7 and 15 training texts respectively.

The highest value of each column is shown in boldface.

Model type # of texts per author 4 8 16
Model specification

Character SVM

Nf = ∞ 0.692 0.853 0.956
Nf = 5000 0.647 0.834 0.893
Nf = 1000 0.602 0.826 0.911
Nf = 200 0.487 0.682 0.803
Nf = 100 0.377 0.589 0.728

BERT-based, mean pooling,
50 epochs

RobBERT 0.368 0.727 0.807
BERTje 0.307 0.661 0.821

Baseline Baseline 0.266 0.427 0.551

As we would expect, the performance of all models increases when the number of training texts

10.1. Computational authorship attribution 49

is increased. This effect is the strongest for the BERTje-based model, which see a larger absolute
increase in the F1-score when going from 4 to 8 and from 8 to 16 texts per author than all other models,
with differences of 0.354 and 0.160, respectively. The RobBERT-based model also shows a large
increase when going from 4 to 8 texts per author. That the effect of increasing the number of training
texts is the largest on the BERT-based models is what we would have expected based on the literature.
However, at 16 texts per author this effect is not large enough to outperform SVM models, the best of
which attains an F1-score of 0.956, compared to 0.821 for the best BERT-based model.

We also wanted to highlight the performance of the SVMmodel without masking with a small number
of training texts. With only three training texts per author, it reaches a F1-score of 0.692 on a set of 50
authors, where random attribution has an average F1-score of 0.020. This shows howmuch information
can be obtained from even a few texts per author and how authorship attribution can still be useful in
cases with little training material available. This is extra relevant in the forensic context, where data
scarcity is a common issue.

Number of authors
In Table 10.3, the cross-validated F1-scores of the 8 selected models are shown against the number
of authors included in the analysis. In this table we notice an unexpected pattern for the SVM models.
We expected that the F1-score decreases when the number of authors increases, as there is a higher
chance of two authors having similar writing styles. Instead, for all SVM models we notice that the
performance is stable or even increasing when the number of authors increases.

Table 10.3: Cross-validated F1-scores of 8 models on the authorship attribution task on the FRIDA corpus with a varying
number of included authors. The highest value of each column is shown in boldface.

Model type # of authors 10 20 50 100
Model specification

Character SVM

Nf = ∞ 0.950 0.950 0.957 0.956
Nf = 5000 0.919 0.951 0.945 0.953
Nf = 1000 0.935 0.914 0.940 0.940
Nf = 200 0.825 0.851 0.874 0.885
Nf = 100 0.779 0.795 0.775 0.777

BERT-based, mean pooling,
50 epochs

RobBERT 0.603 0.624 0.620 0.634
BERTje 0.740 0.665 0.629 0.609

Baseline Baseline 0.669 0.595 0.547 0.477

We think this effect has two main causes. Firstly, as we use a One-vs-Rest classifier, the “rest”
class of each SVM has a larger number of samples when more authors are included in the analysis.
This could improve these individual classifiers, leading to a better overall classification. This is also
the reason why we chose the One-vs-Rest classifier over a One-vs-One classifier. For example, for
the character SVM model with Nf = 200, the F1-score using a One-vs-One classifier is 0.742 for 10
authors, against 0.477 for 50 authors. We can compare this to the results of the same model with a
One-vs-Rest classifier, namely 0.825 for 10 authors, against 0.874 for 50 authors. We notice that the
One-vs-One classifier decreases significantly in performance when the number of authors increases,
while the performance of the One-vs-Rest classifier rises slightly.

However, this cannot be the full explanation, as the baseline model also uses One-vs-Rest classifi-
cation as its multiclass strategy. We see a decrease in accuracy for the baseline model as the number
of authors increases. This difference between the baseline and the SVM models could be explained
by the number of features in the feature vector. The baseline has 100 features, against 30,000 for the
character SVM model without masking. The baseline might perform worse in separate 100 authors,
as it can only compare them based on 100 features. Even the character SVM model with Nf = 100
contains 5800 distinctive features and might therefore be impacted less by the increase in authors.

We notice that when the number of authors is increased from 10 to 100 the F1-score of the BERTje-
based model decreases significantly, from 0.740 to 0.609, while it increases slightly for the RobBERT-
based model, from 0.603 to 0.634. We are unsure what could cause this big difference, as the archi-
tecture of these models is the same.

10.2. Forensic authorship attribution 50

10.2. Forensic authorship attribution
10.2.1. Log-likelihood ratio cost
Support vector machines
In Figure 10.3, the log-likelihood ratio cost (Cllr) and its two subdivisions, the Cmin

llr and Ccal
llr , of the

SVMmodels with character n-grams as features are plotted against the number of unmasked words for
the RFM and FRIDA corpora. Additionally, the value of these three variables for the baseline model is
included by the horizontal dotted lines, independent ofNf . Remember that a lower Cllr implies a better-
performing likelihood ratio system. We notice that our models significantly outperform the baseline and
that their performance increases when Nf increases.

(a) RFM (b) FRIDA

Figure 10.3: Cllr , Cmin
llr and Ccal

llr of character-based SVM models against the number of unmasked words, Nf , on the
datasets RFM and FRIDA. The performance of the baseline is included by the dotted lines, which are independent of Nf .

In the breakdown of the Cllr into Cmin
llr and Ccal

llr we see that for larger Nf the Cmin
llr decreases

sharply, while the Ccal
llr remains almost constant. The curve for the Cmin

llr looks similar, but with the
opposite direction, to the F1-score we saw in Figure 10.1. Namely, it first decreases sharply and the
curve flattens after about Nf = 1000.

As all compared likelihood ratio systems consist of an SVM with cross-calibration using KDEs we
expected their results to differ in discriminative power and calibration quality. We also see this in Figure
10.3, where the line of Ccal

llr is almost constant. This shows that the separation of the Cllr into its
subdivisions performs well. The lowest Cllr we found, reached by the model without masking, is 0.158.
Recall that the minimal reachable value using an ELUB bounder with our dataset size was 0.088. So
the majority of the remaining Cllr of the best-performing model is caused by the dataset size. As the
Cmin

llr of this model is 0.033, only small gains can still be achieved by further improving the discriminative
power of the underlying models.

The best method to lower the total Cllr would be to increase the number of texts under Hp, as
this would lead to better-calibrated KDEs and decrease the lower bound on our LRs. In practice, this
is often impossible, as you are constrained by the number of known texts written by the suspect in
forensic authorship attribution cases.

BERT-based models
Table 10.4 includes the same metrics for the BERT-based models using the mean pooling strategy and
10 epochs of finetuning. We recall that we finetune for fewer epochs compared to the computational
authorship attribution case due to the lower number of classes, which are now limited to Hd and Hp.
It must be noted that these values have been computed without cross-validation due to computational
constraints. Using a NVIDIA GeForce GTX 1080 GPU these computations took 2 days per result, which
cross-validating would have extended to 16 days per result.

Although we do not use cross-validation, the Cllr of the BERT-based models can still be compared
to the results of the SVM models due to the result that the average Cllr of several subsets is the same
as the Cllr of the union of these subsets, which we proof in Appendix A. We should, however, keep a
slightly larger uncertainty in mind, due to the lack of cross-validation.

10.2. Forensic authorship attribution 51

The Cmin
llr and Ccal

llr computed for the BERT-based models cannot be directly compared to the cor-
responding results of the other models. This is due to our choice to perform PAV re-calibration on the
union of all likelihood ratio results computed on the validation set with the same author as suspect,
which we motivated in Chapter 8.2.5. Without cross-validation, this set consists of 50 likelihood ratios,
of which only 1 is under Hp, compared to 400 LRs, of which 8 are under Hp with cross-validation. In
general, we expect the Cmin

llr to increase and the Ccal
llr to decrease when we would perform the same

analysis with cross-validation. To allow for better comparisons, we also include the result of the baseline
model if no cross-validation is used in Table 10.4.

Table 10.4: Cllr , Cmin
llr and Ccal

llr of a RobBERT and BERTje-based model with mean pooling strategy and 10 epochs of
finetuning. Baseline values without cross-validation are also included for comparison. The lowest value of each column is

shown in boldface.

Dataset RFM FRIDA
Model Cllr Cmin

llr Ccal
llr Cllr Cmin

llr Ccal
llr

RobBERT 0.746 0.390 0.355 0.811 0.407 0.404
BERTje 0.664 0.281 0.383 0.637 0.234 0.403
Baseline 0.470 0.148 0.322 0.474 0.135 0.340

From Table 10.4 we see that with Cllr ’s of 0.664 and 0.637, the BERTje-based model outperforms
the 0.764 and 0.811 of the RobBERT-based model on RFM and FIDA, respectively. However, both
models underperform the baseline significantly, which reaches 0.470 on RFM and 0.474 on FRIDA.
This is surprising, as the BERT-based models did outperform the baseline in F1-score. If we look at the
breakdown into Cmin

llr and Ccal
llr we see that the baseline model outperforms the BERT-based models

for both metrics, but that this gap is the largest for the Cmin
llr .

It is unexpected that the discriminative power of the BERT-based models is significantly worse than
the baseline, especially as they outperformed the baseline in F1-score on the computational authorship
attribution task. A possible explanation could be that the FAA task more closely resembles the under-
lying architecture of the baseline and SVM model. Remember that in the FAA task, all texts from the
suspect are in one class (Hp) while all other texts belong to the Hd class. As a result, this problem is
identical to one of the many classifiers created with the One-vs-Rest strategy by the SVM and baseline
models in the CAA task. For the BERT-based models, in the FAA case, a different model is created
by finetuning with only two labels instead of one for each author, which leads to a different architecture
than in the CAA case. Therefore, the resulting SVM and baseline models in the FAA task might more
closely resemble the models in the CAA task compared to the BERT-based models. This could have
led to the discriminative power being better transferable between the tasks for the SVM and baseline
models than for the BERT-based models.

We also notice that the Ccal
llr is larger for the BERT-based models than for the baseline. We sus-

pect this is caused by the use of cross-calibration in combination with the randomness present in the
BERT model. In the finetuning of our BERT-based models, we use dropout to reduce overfitting. As
a result, finetuning the same type of BERT model on the same data twice leads to two different final
models. Therefore, the change in calibration texts during cross-calibration can lead to a larger effect
on the BERT-based models than that caused by just the change in training data. On the other hand,
the SVM and baseline models are deterministic, so given the same training data, the same resulting
model is always returned. This could cause poorer calibration for the BERT-based models compared
to SVM models and the baseline. Due to the low number of training texts under Hp in our datasets, we
cannot eliminate the cross-calibration step to get better results with BERT-based models. In cases with
much more known texts written by the suspect, this might be a possibility. Another possible method
to lower this effect might be to fix which nodes are turned off by dropout for which training text during
the finetuning of each model during cross-calibration, but this requires a serious alteration in the inner
working of the BERT models and was therefore outside the scope of this thesis.

Performance per author
In Figure 10.4 boxplots of the Cllr, Cmin

llr and Ccal
llr per author are shown for four models on FRIDA. As

previously mentioned, the results of the BERTje-based model in Figure 10.4c are not cross-validated
and therefore not directly comparable to the other three figures, especially for the Cmin

llr and Ccal
llr .

10.2. Forensic authorship attribution 52

(a) Character SVM, Nf = ∞ (b) Character SVM, Nf = 200

(c) BERTje mean pooling, 10 epochs (d) Baseline

Figure 10.4: Boxplots of the Cllr , Cmin
llr and Ccal

llr per author of three authorship attribution methods.

For the SVM and baseline models, we notice that the Ccal
llr is similarly distributed, without large

outliers. For the Cllr and Cmin
llr we notice that the character SVM models have significant outliers, with

much larger values compared to the averages. However, the maximal values of these outliers for the
Cllr, 0.512 in Figure 10.4a and 0.695 in Figure 10.4b, are still smaller than the largest value of Cllr

for the baseline (0.823), where no outliers are seen. Such outliers are likely caused by authors with a
similar writing style to other authors.

For the BERTje-based model (Figure 10.4c) we notice an outlier of the Cmin
llr with a value of 1. This

point represents 9 outliers plotted on top of each other, with each a value of exactly 1. This is the
maximal possible value for the Cmin

llr and attained when the model is recalibrated to the reference sys-
tem during PAV recalibration. So for these 9 authors, the performance of the BERTje-based likelihood
ratio system was so poor that the reference system would have outperformed it. We notice that for all
included SVM and baseline models no individual author has a Cllr greater than 1. From this, we can
conclude that for these models it is always beneficial to use the authorship attribution likelihood ratio
system over the reference system when judging the value of evidence.

10.2.2. Tippett plots
Tippett plots on RFM
To study the likelihood ratio systems more visually we will look at some of the corresponding Tippett
plots. In Figure 10.5 four Tippett plots are shown, corresponding to the character SVM model with
no masking, the character SVM model with Nf = 200, the BERTje-based model with mean pooling
strategy and the baseline. These are created on the RFM dataset.

Note that the Tippett plot of the BERTje-based model in Figure 10.5c is less smooth than the other
plots as fewer likelihood ratios are included due to the lack of cross-validation. However, the general
trends are still comparable between all four models. We notice that the maximal and minimal attained
LRs are the same in all 4 plots. This is due to the lower and upper bounds of the LRs we have calculated

10.2. Forensic authorship attribution 53

(a) Character SVM, Nf = ∞ (b) Character SVM, Nf = 200

(c) BERTje mean pooling, 10 epochs (d) Baseline

Figure 10.5: Tippett plots of 4 types of authorship attribution models on the RFM dataset. The red and blue lines show the
cumulative proportion of LRs that is smaller than that LR for the texts under Hd and Hp, respectively.

in Chapter 7.5.1. Due to the difference in the number of samples under Hp and Hd, the lower bound
on the LRs is much tighter than the upper bound.

The Tippett plots of the likelihood ratio systems with a low Cllr, like the SVM models, differ in two
ways from those with a higher Cllr, like the baseline and BERTje model. We notice this the best when
we compare the SVM model without masking in Figure 10.5a and with the BERTje model in Figure
10.5c. Firstly there are fewer misclassifications in Figure 10.5a. This means the red line crosses the
log10(LR) = 0 boundary lower, and the blue line higher. We notice that for the character-based SVM
model without masking less than 5 % of the samples under Hp are misclassified, while this is more
than 30% for the BERTje-based model. For the samples under Hd the difference in misclassifications
between these two models is much smaller. Secondly, the correctly classified texts have an LR closer
to log10(LR) = 0, meaning that the evidence strength is lower, for systems with a high Cllr, like the
BERTje-based system. In Figure 10.5c, we see that for the BERTje-based system while more than
60% of the samples under Hp are classified correctly, only around 40% of them have an LR greater
than 10. If we compare this to the SVM model without masking in Figure 10.5a, 95% of the samples
under Hp are correctly classified and more than 90% of these samples also have an LR greater than
10. So next to having a higher percentage of correctly classified samples, the ratio of these correctly
classified samples with a high value of evidence is also higher for a better-performing likelihood ratio
system.

Tippett plots on FRIDA with outside authors
Another interesting sub-question is how the model handles texts from authors outside of the training
set. In the hypothesis Hd the entire background population is included, but before we only looked at
test texts of the 50 authors included in the training set. For the LRs to be accurate, the authors included
in the training set under Hd must be a representative subset of the background population. To study
these effects, we evaluate the Tippett plots on FRIDA with an additional third line, corresponding to

10.2. Forensic authorship attribution 54

LRs generated on texts written by authors outside the training set. These plots can be seen in Figure
10.6. As these additional texts are not written by the suspect, these texts are under Hd. If the authors
in the training are indeed a representative subset of the additional authors, we expect the curve to be
similar to that of the Hd curve.

(a) Character SVM, Nf = ∞ (b) Character SVM, Nf = 200

(c) BERTje mean pooling, 10 epochs (d) Baseline

Figure 10.6: Tippett plots of 4 types of authorship attribution models on the FRIDA dataset. The red and blue lines show the
cumulative proportion of LRs that is smaller than that LR for the texts under Hd and Hp, respectively. In green the same is

shown for texts by 50 authors outside of the training set, which is also under Hd.

We notice that the green line for the texts written by the additional authors stays slightly above the
red line for the authors in the training set. This is not unexpected, as it is harder to classify texts by a
not previously seen author as underHd than a text by an author for which reference material is present
in the training set. The difference is quite small, and it does not change the performance order of the
models. Lowering the number of authors in the reference set worsens the performance of all models on
texts written by authors outside of the training set, as the reference set becomes a less representative
sample of the population. It is important to keep these effects in mind when constructing and validating
likelihood ratio systems for forensic authorship attribution.

10.2.3. ECE plot
In Figure 10.7 the ECE plots of the baseline, two SVM methods with character n-grams as features
and masking with Nf = ∞ or 200 as well as the BERTje-base model are shown. Additionally, the ECE
plot of the reference system, where every sample is given an LR of 1, is included as the dashed blue
line for comparison.

Recall that a method with a lower empirical cross-entropy is preferable. We notice that none of the
lines intersect. Therefore, as the lines have the ordering reference, BERTje, baseline, char SVM (Nf =
200) and char SVM (Nf = ∞) from top to bottom, this means that the character SVM without masking
strictly outperforms the character SVM method using masking with Nf = 200, and both outperform
the baseline for all priors. The BERTje model performs worse than the baseline for all priors, but still

10.2. Forensic authorship attribution 55

Figure 10.7: ECE plot of four different authorship attribution models. In the dashed line the ECE plot of the reference system,
where every sample is given an LR of 1, is included. Results are generated on the FRIDA dataset.

outperforms the reference system.
An interesting observation is that the peak of the ECE plot for the character SVM method without

masking is further to the right in comparison with the other methods. As a result, the relative perfor-
mance difference between this method and other methods is lower when the prior odds are higher than
1, meaning that the suspect is more likely to be the perpetrator than the background population based
on the initial non-scientific evidence.

10.2.4. PAV plots
In Figure 10.8 PAV plots using the first author as the suspect are shown for three different models on
FRIDA. The reason we show these plots for the results of a specific author is the choice to compute
the Cmin

llr and Ccal
llr per author, which we made in Chapter 8.2.5. The PAV plot of the BERTje-based

model is not included, as due to the lack of cross-validation this includes only one sample under Hp,
which completely determines the recalibration. As a result, we cannot show general trends based on
this plot.

We notice a similar structure in all three plots, with some distinctive differences. Firstly, for both SVM
methods, the largest and smallest LRs are recalibrated to positive infinity and 0 respectively, meaning
that none of the samples with the highest or lowest LR were misclassified. This effect is especially
significant for the low LR, whereas no samples underHp are given an LR smaller than 1, all LR smaller
than 1 are recalibrated to 0, leading to a significant number of samples far below the x = y-diagonal.

For the baseline model, we see that all values with an LR smaller than 10 are given the same value,
but here this is not 0 but around 0.125. This occurs due to one sample under Hp being completely
misclassified and given a low LR. Still, all points with an LR smaller than 10 pre-calibration lie below
the diagonal, meaning that their LR was too high before calibration. This is the main cause of calibration
error for our likelihood ratio system and is likely caused by the high bandwidth in the KDE estimation
of the samples under Hp due to the low amount of data under Hp during calibration.

10.3. Topic and conversation impact 56

(a) Character SVM, Nf = ∞ (b) Character SVM, Nf = 200

(c) Baseline

Figure 10.8: PAV plots of 3 types of authorship attribution models on the FRIDA dataset.

10.3. Topic and conversation impact
To study the relation between the metrics of topic impact and conversation impact we compute these
metrics for 25 different models. The chosen models are 15 SVM models, namely all the combinations
of word, character and combined feature sets with no masking, or masking everything but either the
5000, 1000, 200 or 100 the most frequent words. Additionally, 10 BERT-based models are evaluated:
mean pooling methods with 10, 20, 30, 40 or 50 epochs of finetuning with either RobBERT or BERTje
as the starting BERT model.

We computed the conversation impact of these models on the FRIDA corpus and their topic impact
on abc_nl1. In Figure 10.9, the conversation topic on FRIDA is plotted against the topic impact on
abc_nl1. We notice a general trend between the conversation impact on a model and the topic impact
on themodel. The correlation coefficient ρ of this relation is 0.68. The interpretation of such a correlation
coefficient is difficult, as we cannot expect an exact, physical law-like relation and therefore do not
expect a ρ very close to 1. It could also be possible that a non-linear relation between the two impact
metrics is present, although we do not directly expect this based on the metrics’ definitions.

We think it is best to judge the correlation based on Figure 10.9. We can conclude that a model
that slightly (≤0.05) outperforms another model in conversation impact does not directly imply that it
has a higher topic-robustness. However, for large (>0.05) differences in conversation impact between
two models, a plausible argument can be made that the model with lower conversation impact has a
higher topic-robustness.

10.3. Topic and conversation impact 57

Figure 10.9: Plot of the conversation impact against the topic impact for 25 different authorship attribution.

We want to highlight two interesting additional results in the correlation between topic and conver-
sation impact. Firstly, in Figure 10.10 the results from the SVM models are highlighted and grouped by
the number of frequent words left after masking, Nf . We notice that both the topic impact and the con-
versation impact are larger for models with a high Nf . This corresponds with what we would expect, as
the 100 or 200 most frequent words in both the frequency list created for FRIDA and the SUBTLEX-NL
list used for the abc_nl1 corpus contain no topic-related words. In the SVM models with fewer masked
words, more content-related words are not masked and therefore we would expect a higher topic and
conversation impact.

Figure 10.10: Plot of the conversation impact against the topic impact for 25 different authorship attribution. The results of the
SVM models using masking are highlighted, with labels for the number of words that are unmasked.

We will now look deeper into the conversation impact on several SVM models. In Figure 10.11 the
conversation impact for the word, character and combined SVM models are shown against the number
of unmasked words, for both RFM and FRIDA. Also, the baseline is included as the continuous red line,
independent of Nf . We notice that in both corpora the models using character n-grams as features
have a significantly lower conversation impact than the models using word n-grams. The performance
of the combined SVM models is in between the other two types of SVM models. The model using
character n-grams as features also had better or equivalent F1-scores to the SVM models using word

10.3. Topic and conversation impact 58

n-grams or combined features. Therefore, it is clear that it is preferable to use character n-grams as
features, as models using these features have a lower conversation impact while also attaining a larger
F1-score.

(a) RFM (b) FRIDA

Figure 10.11: Conversation impact of three types of SVM models against the number of unmasked words, Nf , on the datasets
RFM and FRIDA. In red impact on the baseline is included, which is independent of Nf .

We again see the pattern that the conversation impact increases when the number of unmasked
words increases. It is important to note that a lower topic or conversation impact does not directly
correspond to a better-performing model. For example, a model that attributes every text to author
a1 has a topic and conversation impact of 0, but also an extremely low F1-score. As the F1-scores
increase when Nf increases it becomes clear that there exists no value for Nf that is optimal for both
the F1-score as the topic impact. Instead, a trade-off between a low conversation impact and a high F1-
score should be made before choosing which model to utilize in real forensic cases. In forensic cases
where all texts cover the same topic, this choice might lean toward a model with better performance
but a higher topic impact. On the other hand, in cases where the unknown text and the reference texts
cover different topics, a more topic-robust model might be preferable, even if this comes at a cost in
performance.

Figure 10.12: Plot of the conversation impact against the topic impact for 25 different authorship attribution. The results for the
models based on BERTje and RobBERT are highlighted in blue and orange.

In Figure 10.12, the second additional result in the correlation between topic and conversation
impact is shown. Here the results of the BERTje and RobBERT-based models are highlighted. We
notice that BERTje-basedmodels have a significantly higher topic and conversation impact compared to

10.3. Topic and conversation impact 59

RobBERT-basedmodels. Permodel type, the dots represent the impact at 10, 20, 30, 40 and 50 epochs
of finetuning. No relation was found between the length of finetuning and the topic or conversation
impact.

We are not sure what causes this large distinction between BERTje and RobBERT-based models.
One cause could be the training material. BERTje is pre-trained onWikipedia articles, news articles and
books, which are in general written more in a more generic style with fewer style differences between
the texts. On the other hand, RobBERT is pre-trained on an internet scrape, which is likely to contain a
much larger variety of individual writing styles. Therefore, during pre-training BERTje sees texts which
differ more in topic than in style, while RobBERT sees texts that differ greatly in topic and style. This
could lead BERTje to rely more on the topic of texts to attribute them then RobBERT in the difficult
confusion case.

11
Conclusions and Recommendations

11.1. Conclusions
We studied the performance of two state-of-the-art types of models and a baseline on the computational
authorship attribution task, where a text must be attributed to a specific author. The studied model types
were support vector machines with feature vectors, BERT-based methods and the baseline, a model
using logistic regression with the 100most frequent words as features. We conclude that on forensically
relevant Dutch corpora support vector machines with character 2 to 5-grams as features currently result
in the best performance. Specifically, we received an F1-score of 0.880 on the RFM dataset and 0.957
on the FRIDA dataset, which both consist of 50 authors and 8 texts per author. Compared to the
baseline values of 0.427 and 0.547 this gives a significant improvement.

We also constructed a score-based likelihood ratio system to compute the value of evidence of texts
suspected to be written by a specific author, which is the forensic authorship attribution task. Cross-
calibration was used to be able to compute kernel density estimators even when only 7 texts were
available for training and calibration. This method can be used jointly with all studied computational
authorship attribution methods. In general, the relative performance of models used as part of the
likelihood ratio system was similar to that on the computational authorship attribution task. One big
difference was the performance of BERT-based methods, which performed significantly worse than
the baseline in a likelihood ratio system while outperforming the baseline in the F1-score evaluation.
As a result, BERT-based methods are currently not a good alternative for the baseline in likelihood ratio
systems where cross-calibration is used.

Additionally, we introduced two metrics to measure the topic-robustness of authorship attribution
methods on both topic-controlled and conversational datasets. We found a correlation of 0.68 between
the proposedmetrics ‘topic impact’ and ‘conversation impact’, but this correlation was not strong enough
to decisively conclude whether the conversation impact can indeed be used as a proxy for the topic
impact to measure topic-robustness on conversational datasets or not.

Masking, a technique where infrequent words are replaced by hashtags, was used to improve the
topic-robustness of models. This decreased the performance of models, especially if only 200 or fewer
of the most frequent words were left unmasked. However, using masking did decrease the topic impact
and conversation impact on models, with this effect being the largest when only 100 words were left
unmasked. The support vector machine with character n-grams as features with 100 unmasked words
had a similar conversation impact to the baseline while outperforming it in performance on both the
computational and forensic authorship attribution tasks. Therefore, we recommend using a support
vector machine with character n-grams as features in practice. This model can be used in combination
with features found manually by linguists, which is also currently done at the Netherlands Forensic
Institute in combination with the baseline.

To choose the specific number of most frequent words that should be left unmasked, a consideration
has to be made between performance and topic-robustness. We leave this choice to forensic scientists
to decide on a case-by-case basis, as this decision can be heavily influenced by aspects that differ
between forensic cases. For example, whether the topics of the training texts and the unknown text
are the same or not. Therefore, additional case-specific factors should be kept in mind to avoid bias

60

11.2. Future research 61

based on topic and the possible false convictions or acquittals that could result from it. With the metrics
topic impact and conversation impact, we developed an additional tool to assist in these considerations.

11.2. Future research
Many avenues of research into forensic authorship attribution remain. In this section, we want to high-
light possible research questions or methods for future research that occurred to us during our study
but were out of scope for this project.

We noticed that to have a topic-robust authorship attribution model, it is necessary to mask uncom-
mon words from the texts, as they contain relatively much topic-related information. However, as we
currently mask all words outside of frequent word lists, misspelt versions of the words on the frequency
list still get masked, even though the word contains no topic information. As consistent, uncommon
misspellings could indicate authorship, we lose information by masking these misspellings. To make
an authorship attribution model with masking able to capture these features, it might be possible to
first correct spelling errors in a text using a large language model, then mask the text using the most
frequent words, before reverting the texts to their original spelling. This way, misspelt versions of fre-
quent words are kept in the text. A possible drawback of this method is that a misspelling of a frequent
word could be the same as a misspelling of a much less frequent word, leading to some less frequent
words not being masked, possibly lowering the topic-robustness of the method. In forensic cases, such
features might also be found by the manual search by language experts. These features can then be
added to the feature set.

A drawback of using BERT-based methods for authorship attribution is that all pre-training tasks
focus more on the text’s topic and sentence structure than on the author’s style. To possibly improve
the performance of these methods on the authorship attribution task a style-related pre-training task
could be performed. For example, a task where the BERT model is given two sentences and has to
determine whether they have been written by the same author or not. This would prime the BERT
model for tasks about authorship before being finetuned on the specific texts of a group of authors.
However, pre-training a new BERT model specifically for authorship attribution would have a very high
computational cost.

There is also room for further research into the metrics we introduced and their relationship. We
found that the ‘topic impact’ and ‘conversation impact’ were correlated for our authorship attribution
methods, but that this correlation is not strong enough to be able to draw strong conclusions about
the topic-robustness of models based on the conversation impact. Further research, which could for
example include more authorship attribution methods or test the hypothesis on different corpora, could
support or disprove our theory about the use of conversations to measure the topic-robustness of
authorship attribution methods.

References

[1] Malik Altakrori, Jackie Chi Kit Cheung, and Benjamin CM Fung. “The topic confusion task: A novel
evaluation scenario for authorship attribution”. In: Findings of the Association for Computational
Linguistics: EMNLP 2021. 2021, pp. 4242–4256.

[2] Miriam Ayer et al. “An empirical distribution function for sampling with incomplete information”. In:
The annals of mathematical statistics (1955). Publisher: JSTOR, pp. 641–647.

[3] Harald Baayen et al. “An experiment in authorship attribution”. In: 6th JADT. Vol. 1. Citeseer,
2002, pp. 69–75.

[4] Douglas Bagnall. Author Identification using Multi-headed Recurrent Neural Networks. Aug. 16,
2016. arXiv: 1506.04891[cs].

[5] Georgios Barlas and Efstathios Stamatatos. “Cross-Domain Authorship Attribution Using Pre-
trained LanguageModels”. In: Artificial Intelligence Applications and Innovations. Vol. 583. Series
Title: IFIP Advances in Information and Communication Technology. Cham: Springer International
Publishing, 2020, pp. 255–266.

[6] Georgios Barlas and Efstathios Stamatatos. “A transfer learning approach to cross-domain au-
thorship attribution”. In: Evolving Systems 12.3 (Sept. 2021), pp. 625–643.

[7] R. E. Barlow and H. D. Brunk. “The Isotonic Regression Problem and its Dual”. In: Journal of the
American Statistical Association 67.337 (Mar. 1972), pp. 140–147.

[8] Dasha Bogdanova and Angeliki Lazaridou. “Cross-Language Authorship Attribution.” In: LREC.
Citeseer, 2014, pp. 2015–2020.

[9] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. “A training algorithm for optimal
margin classifiers”. In: Proceedings of the fifth annual workshop on Computational learning the-
ory. COLT92: 5th Annual Workshop on Computational Learning Theory. Pittsburgh Pennsylvania
USA: ACM, July 1992, pp. 144–152.

[10] Niko Brummer and Johan du Preez. The PAV algorithm optimizes binary proper scoring rules.
Apr. 8, 2013. arXiv: 1304.2331[cs,stat].

[11] Niko Brümmer and Johan Du Preez. “Application-independent evaluation of speaker detection”.
In: Computer Speech & Language 20.2 (2006). Publisher: Elsevier, pp. 230–275.

[12] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A library for support vector machines”. In: ACM
Transactions on Intelligent Systems and Technology 2.3 (Apr. 2011), pp. 1–27.

[13] Pieter Delobelle, Thomas Winters, and Bettina Berendt. RobBERT: a Dutch RoBERTa-based
Language Model. Sept. 16, 2020. arXiv: 2001.06286[cs].

[14] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. May 24, 2019. arXiv: 1810.04805[cs].

[15] Ian W. Evett. “Towards a uniform framework for reporting opinions in forensic science casework”.
In: Science & Justice 3.38 (1998), pp. 198–202.

[16] Maël Fabien et al. “BertAA: BERT fine-tuning for Authorship Attribution”. In: Proceedings of the
17th International Conference on Natural Language Processing (ICON). 2020, pp. 127–137.

[17] Gerda Frankenhuis. NFI blaast na doorbraak ‘vergeten’ vakgebied nieuw leven in. Telegraaf.
Apr. 26, 2024. URL: https://www.telegraaf.nl/nieuws/34104946 (visited on 05/23/2024).

[18] Jade Goldstein, RansomWinder, and Roberta Sabin. “Person identification from text and speech
genre samples”. In: Proceedings of the 12th Conference of the European Chapter of the ACL
(EACL 2009). 2009, pp. 336–344.

[19] Helena Gómez-Adorno et al. “Document embeddings learned on various types of n-grams for
cross-topic authorship attribution”. In: Computing 100.7 (July 2018), pp. 741–756.

62

https://arxiv.org/abs/1506.04891 [cs]
https://arxiv.org/abs/1304.2331 [cs, stat]
https://arxiv.org/abs/2001.06286 [cs]
https://arxiv.org/abs/1810.04805 [cs]
https://www.telegraaf.nl/nieuws/34104946

References 63

[20] Tim Grant. The Idea of Progress in Forensic Authorship Analysis. 1st ed. Cambridge University
Press, May 19, 2022.

[21] Trevor Hastie, Jerome Friedman, and Robert Tibshirani. The Elements of Statistical Learning.
Springer Series in Statistics. New York, NY: Springer New York, 2001.

[22] Shunichi Ishihara. “A likelihood ratio-based evaluation of strength of authorship attribution evi-
dence in SMS messages using N-grams.” In: International Journal of Speech, Language & the
Law 21.1 (2014).

[23] Shunichi Ishihara. “Strength of linguistic text evidence: A fused forensic text comparison system”.
In: Forensic Science International 278 (Sept. 2017), pp. 184–197.

[24] Patrick Juola. “Authorship attribution”. In: Foundations and Trends® in Information Retrieval 1.3
(2008). Publisher: Now Publishers, Inc., pp. 233–334.

[25] Patrick Juola. “Verifying authorship for forensic purposes: A computational protocol and its vali-
dation”. In: Forensic Science International 325 (Aug. 2021), p. 110824.

[26] Patrick Juola and R. Harald Baayen. “A controlled-corpus experiment in authorship identification
by cross-entropy”. In: Literary and Linguistic Computing 20 (Suppl 2005). Publisher: EADH: The
European Association for Digital Humanities, pp. 59–67.

[27] Mike Kestemont et al. “Overview of the cross-domain authorship attribution task at {PAN} 2019”.
In:Working Notes of CLEF 2019-Conference and Labs of the Evaluation Forum, Lugano, Switzer-
land, September 9-12, 2019. 2019, pp. 1–15.

[28] Emmanuel Keuleers, Marc Brysbaert, and Boris New. “SUBTLEX-NL: A new measure for Dutch
word frequency based on film subtitles”. In:Behavior ResearchMethods 42.3 (Aug. 2010), pp. 643–
650.

[29] Moshe Koppel, Jonathan Schler, and Shlomo Argamon. “Computational methods in authorship
attribution”. In: Journal of the American Society for Information Science and Technology 60.1
(Jan. 2009), pp. 9–26.

[30] Moshe Koppel, Jonathan Schler, and Shlomo Argamon. “Authorship attribution in the wild”. In:
Language Resources and Evaluation 45.1 (Mar. 2011), pp. 83–94.

[31] Maarten Lambers and Cor J. Veenman. “Forensic Authorship Attribution Using Compression
Distances to Prototypes”. In: Computational Forensics. Vol. 5718. Series Title: Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 13–24.

[32] Anna Jeannette Leegwater et al. “From data to a validated score-based LR system: a practi-
tioner’s guide”. In: Forensic Science International (2024). Publisher: Elsevier, p. 111994.

[33] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach. July 26, 2019.
arXiv: 1907.11692[cs].

[34] Kim Luyckx and Walter Daelemans. “The effect of author set size and data size in authorship
attribution”. In: Literary and linguistic Computing 26.1 (2011). Publisher: Oxford University Press,
pp. 35–55.

[35] Didier Meuwly, Daniel Ramos, and Rudolf Haraksim. “A guideline for the validation of likelihood ra-
tio methods used for forensic evidence evaluation”. In: Forensic science international 276 (2017).
Publisher: Elsevier, pp. 142–153.

[36] Frederick Mosteller and David L. Wallace. “Inference in an Authorship Problem: A Comparative
Study of Discrimination Methods Applied to the Authorship of the Disputed Federalist Papers”.
In: Journal of the American Statistical Association 58.302 (June 1963), pp. 275–309.

[37] Benjamin Murauer and Günther Specht. “Developing a benchmark for reducing data bias in au-
thorship attribution”. In: Proceedings of the 2ndWorkshop on Evaluation and Comparison of NLP
Systems. 2021, pp. 179–188.

[38] Benjamin Murauer and Günther Specht.DT-grams: Structured Dependency Grammar Stylometry
for Cross-Language Authorship Attribution. June 10, 2021. arXiv: 2106.05677[cs].

[39] Lukas Muttenthaler, Gordon Lucas, and Janek Amann. “Authorship Attribution in Fan-Fictional
Texts given variable length Character and Word N-Grams”. In: (2019).

https://arxiv.org/abs/1907.11692 [cs]
https://arxiv.org/abs/2106.05677 [cs]

References 64

[40] Danica M. Ommen and Christopher P. Saunders. “Building a unified statistical framework for the
forensic identification of source problems”. In: Law, Probability and Risk 17.2 (2018). Publisher:
Oxford University Press, pp. 179–197.

[41] John Platt. Sequential minimal optimization: A fast algorithm for training support vector machines.
1998.

[42] Alec Radford et al. Improving language understanding by generative pre-training. Publisher: Ope-
nAI. 2018.

[43] Daniel Ramos et al. “Deconstructing cross-entropy for probabilistic binary classifiers”. In: Entropy
20.3 (2018). Publisher: MDPI, p. 208.

[44] Anderson Rocha et al. “Authorship Attribution for Social Media Forensics”. In: IEEE Transactions
on Information Forensics and Security 12.1 (Jan. 2017), pp. 5–33.

[45] Victor Sanh et al. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.
Feb. 29, 2020. arXiv: 1910.01108[cs].

[46] Upendra Sapkota et al. “Not all character n-grams are created equal: A study in authorship attri-
bution”. In: Proceedings of the 2015 conference of the North American chapter of the association
for computational linguistics: Human language technologies. 2015, pp. 93–102.

[47] Nelleke Scheijen. “Forensic speaker recognition”. Master’s thesis. Delft University of Technology.
[48] Eleni-Konstantina Sergidou et al. “Frequent-words analysis for forensic speaker comparison”. In:

Speech Communication 150 (May 2023), pp. 1–8.
[49] Bernard W. Silverman. Density estimation for statistics and data analysis. Routledge, 2018.
[50] Efstathios Stamatatos. “A survey of modern authorship attribution methods”. In: Journal of the

American Society for Information Science and Technology 60.3 (Mar. 2009), pp. 538–556.
[51] Efstathios Stamatatos. “Authorship attribution using text distortion”. In: Proceedings of the 15th

Conference of the European Chapter of the Association for Computational Linguistics: Volume
1, Long Papers. 2017, pp. 1138–1149.

[52] Efstathios Stamatatos. “Masking topic-related information to enhance authorship attribution”. In:
Journal of the Association for Information Science and Technology 69.3 (Mar. 2018), pp. 461–
473.

[53] William J. Teahan and David J. Harper. “Using Compression-Based Language Models for Text
Categorization”. In: Language Modeling for Information Retrieval. Dordrecht: Springer Nether-
lands, 2003, pp. 141–165.

[54] Jacob Tyo, Bhuwan Dhingra, and Zachary C. Lipton. On the State of the Art in Authorship Attri-
bution and Authorship Verification. Oct. 5, 2022. arXiv: 2209.06869[cs].

[55] David Van der Vloed et al. “NFI-FRIDA–Forensically realistic interdevice audio database and intial
experiments”. In: 27th Annual Conference of the International Association for Forensic Phonetics
and Acoustics (IAFPA). 2018, pp. 25–27.

[56] Hans Van Halteren et al. “New Machine Learning Methods Demonstrate the Existence of a Hu-
man Stylome”. In: Journal of Quantitative Linguistics 12.1 (Apr. 2005), pp. 65–77.

[57] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information processing
systems 30 (2017).

[58] Peter Vergeer et al. “Numerical likelihood ratios outputted by LR systems are often based on
extrapolation: When to stop extrapolating?” In: Science & Justice 56.6 (2016). Publisher: Elsevier,
pp. 482–491.

[59] Wietse de Vries et al. BERTje: A Dutch BERT Model. Dec. 19, 2019. arXiv: 1912.09582[cs].
[60] Yonghui Wu et al. Google’s Neural Machine Translation System: Bridging the Gap between Hu-

man and Machine Translation. Oct. 8, 2016. arXiv: 1609.08144[cs].

https://arxiv.org/abs/1910.01108 [cs]
https://arxiv.org/abs/2209.06869 [cs]
https://arxiv.org/abs/1912.09582 [cs]
https://arxiv.org/abs/1609.08144 [cs]

A
Proof that the weighted average of the
Cllr of two sets is the same as the Cllr

of their union

Suppose we have the sets V1 and V2, consisting of likelihood ratios underHp, (V1,p, V2,p), and likelihood
ratios under Hd, (V1,d, V2,d) and the set V = V1 ∪V2, with disjoint subsets, Vp and Vd. We want to proof
that the Cllr of V is equal to weighted average of the Cllr of V1 and V2, under the condition that the ratio
of samples under Hp and under Hd is equal for each set, so

|V1,p|
|V1,d|

=
|V2,p|
|V2,d|

=
|Vp|
|Vd|

(A.1)

We first rewrite this to find the following equality’s, which we set equal to new constants a and b

|V1,p|
|Vp|

=
|V1,d|
|Vd|

= a,
|V2,p|
|Vp|

=
|V2,d|
|Vd|

= b (A.2)

Note that a+ b = 1. Recall the definition of the log-likelihood-ratio cost Cllr

Cllr(V) =
1

2|Vp|
∑

LR∈Vp

log2
(
1 +

1

LR

)
+

1

2|Vd|
∑

LR∈Vd

log2 (1 + LR) . (A.3)

We can rewrite this as follows:

Cllr(V) =
1

2|Vp|
∑

LR∈Vp

log2
(
1 +

1

LR

)
+

1

2|Vd|
∑

LR∈Vd

log2 (1 + LR)

=
1

2|Vp|

 ∑
LR∈V1,p

log2
(
1 +

1

LR

)
+

∑
LR∈V2,p

log2
(
1 +

1

LR

)
+

1

2|Vd|

 ∑
LR∈V1,d

log2 (1 + LR) +
∑

LR∈V2,d

log2 (1 + LR)

=

|V1,p|
|Vp|

1

2|V1,p|
∑

LR∈V1,p

log2
(
1 +

1

LR

)
+

|V1,d|
|Vd|

1

2|V1,d|
∑

LR∈V1,d

log2 (1 + LR)

+
|V2,p|
|Vp|

1

2|V2,p|
∑

LR∈V2,p

log2
(
1 +

1

LR

)
+

|V2,d|
|Vd|

1

2|V2,d|
∑

LR∈V2,d

log2 (1 + LR)

65

66

= a

 1

2|V1,p|
∑

LR∈V1,p

log2
(
1 +

1

LR

)
+

1

2|V1,d|
∑

LR∈V1,d

log2 (1 + LR)

+ b

 1

2|V2,p|
∑

LR∈V2,p

log2
(
1 +

1

LR

)
+

1

2|V2,d|
∑

LR∈V2,d

log2 (1 + LR)

= aCllr(V1) + bCllr(V2)

As a + b = 1, this is a weighted average. So we have proven that the Cllr of a set V is equal to the
weighted average of the Cllr of its subsets V1 and V2, under the condition that the ratio of samples
under Hp and Hd is equal for V and its subsets.

B
Tables of results presented in figures

This appendix contains tables corresponding to all results presented as figures in Chapter 10.

Table B.1: F1-scores of 15 SVM models with varying feature types and number of unmasked words. These values correspond
to Figure 10.1. The highest value in each column is included in boldface.

Corpus RFM FRIDA
Feature type Word Character Combined Word Character Combined
Nf

∞ 0.770 0.880 0.850 0.891 0.957 0.952
5000 0.742 0.855 0.834 0.885 0.945 0.938
1000 0.699 0.850 0.826 0.885 0.940 0.938
200 0.480 0.710 0.682 0.805 0.874 0.902
100 0.368 0.603 0.589 0.692 0.775 0.770
Baseline 0.427 - - 0.547 - -

Table B.2: F1-scores of several BERT-based models with varying epochs of training on the datasets RFM and FRIDA. These
values correspond to Figure 10.2. The highest value in each column is highlighted in boldface.

(a) RFM

Epochs 10 20 30 40 50

BERTje
Truncated 0.260 0.470 0.576 0.633 0.658
Averaging 0.280 0.478 0.583 0.640 0.653
Mean pooling 0.274 0.519 0.594 0.663 0.661

RobBERT
Truncated 0.233 0.558 0.661 0.718 0.690
Averaging 0.267 0.540 0.680 0.734 0.727
Mean pooling 0.280 0.550 0.674 0.718 0.727

(b) FRIDA

Epochs 10 20 30 40 50

BERTje
Truncated 0.201 0.333 0.424 0.455 0.475
Averaging 0.186 0.350 0.429 0.495 0.520
Mean pooling 0.226 0.464 0.554 0.577 0.629

RobBERT
Truncated 0.116 0.201 0.284 0.367 0.434
Averaging 0.083 0.197 0.334 0.441 0.488
Mean pooling 0.104 0.312 0.483 0.563 0.620

67

68

Table B.3: Cllr , Cmin
llr and Ccal

llr of SVM models with character n-grams as features and varying Nf on two datasets, FRIDA
and RFM. These values correspond to Figure 10.3. The lowest value in each column is highlighted in boldface.

Corpus RFM FRIDA
Metric Cllr Cmin

llr Ccal
llr Cllr Cmin

llr Ccal
llr

Nf

∞ 0.205 0.071 0.134 0.158 0.038 0.120
5000 0.218 0.090 0.128 0.166 0.052 0.114
1000 0.237 0.104 0.133 0.168 0.042 0.126
200 0.311 0.172 0.139 0.221 0.084 0.138
100 0.392 0.246 0.145 0.284 0.145 0.139
Baseline 0.526 0.372 0.154 0.469 0.308 0.161

Table B.4: Ratio of attributions to the other or partner group for abc_nl1 and FRIDA corpus, respectively. The topic or
conversation impact can be computed from these numbers by subtracting the value for the confusion case from that for the

standard case. These values correspond to Figure 10.9. The lowest value in each column is highlighted in boldface.

Corpus abc_nl1 FRIDA

Model type Model
specification Standard case Confusion case Standard case Confusion case

SVM models Nf
so

sc+ss+so
so

sc+ss+so

sp
sc+sp+sr

sp
sc+sp+sr

Character

∞ 0.271 0.583 0.024 0.115
5000 0.292 0.542 0.031 0.090
1000 0.25 0.562 0.042 0.097
200 0.229 0.521 0.049 0.090
100 0.396 0.417 0.042 0.090

Word

∞ 0.188 0.688 0.056 0.128
5000 0.146 0.625 0.056 0.125
1000 0.25 0.521 0.049 0.118
200 0.396 0.562 0.056 0.097
100 0.292 0.542 0.076 0.111

Combined

∞ 0.208 0.646 0.024 0.122
5000 0.229 0.625 0.038 0.097
1000 0.188 0.458 0.035 0.094
200 0.312 0.583 0.038 0.090
100 0.312 0.417 0.059 0.083

BERT-based
models # of epochs

BERTje

10 0.407 0.667 0.163 0.225
20 0.312 0.634 0.128 0.198
30 0.281 0.634 0.093 0.202
40 0.282 0.583 0.089 0.202
50 0.270 0.552 0.074 0.195

RobBERT

10 0.368 0.533 0.170 0.205
20 0.257 0.473 0.142 0.191
30 0.212 0.423 0.142 0.163
40 0.226 0.384 0.121 0.191
50 0.191 0.336 0.128 0.163

69

Table B.5: Conversation impact of 15 SVM models with varying feature types and number of unmasked words. These values
correspond to Figure 10.11. The lowest value in each column when excluding the baseline is included in boldface.

Corpus RFM FRIDA
Feature type Word Character Combined Word Character Combined
Nf

∞ 0.153 0.078 0.090 0.131 0.093 0.100
5000 0.127 0.067 0.079 0.142 0.065 0.100
1000 0.112 0.038 0.070 0.080 0.045 0.065
200 0.066 0.033 0.045 0.025 0.020 0.048
100 0.055 0.025 0.048 0.031 0.030 0.036
Baseline 0.032 - - 0.021 - -

C
Tables of additional experiments

results

This chapter contains the results of some small experiments ran during this thesis to make decisions
about which strategies to focus on in the actual results (Chapter 10). The choices based on these
results have been motivated in Chapter 4.

Table C.1: F1-scores of SVM model with character n-grams as features and varying Nf for two multiclass classification
strategies. Highest value in each row is highlighted in boldface. Created on the FRIDA corpus.

Nf One-vs-Rest One-vs-One
∞ 0.957 0.659
5000 0.945 0.648
1000 0.940 0.567
200 0.874 0.459
100 0.775 0.396

Table C.2: F1-scores of SVM model with character n-grams as features and varying Nf for two different SVM kernels. Highest
value in each row is highlighted in boldface. Created on the FRIDA corpus.

Nf Linear kernel Gaussian kernel
∞ 0.957 0.795
5000 0.945 0.795
1000 0.940 0.885
200 0.874 0.859
100 0.775 0.744

Table C.3: F1-scores of SVM model with character n-grams as features and varying Nf for two different masking strategies.
Highest value in each row is highlighted in boldface. Created on the FRIDA corpus.

Nf Single masking Multiple masking
5000 0.945 0.954
1000 0.940 0.934
200 0.874 0.890
100 0.775 0.759

70

71

Table C.4: F1-scores of a RobBERT-based model with mean pooling strategy for various epochs of training, either using no
masking or masking with Nf = 1000. Highest value in each column is highlighted in boldface. Created on the FRIDA corpus.

Epochs 10 20 30 40 50
No masking 0.104 0.312 0.483 0.563 0.620
Masking, Nf = 1000 0.047 0.232 0.416 0.505 0.563

	Preface
	Summary
	Nomenclature
	Introduction
	Structure

	Related Work
	Linguistics
	Computational Authorship Attribution
	The State of Computational Authorship Attribution before 2010
	Developments in Authorship Attribution
	Recent comparative studies

	Forensic Science
	Authorship Attribution in Dutch

	Corpora
	FRIDA
	RFM
	abc_nl1

	Feature-based Authorship Attribution
	Features
	Summary statistics
	Function words
	Word n-grams
	Character n-grams
	POS n-grams
	Special characters

	Support vector machines
	Hard margin SVM
	Soft margin SVM
	The SMO algorithm
	Multiclass SVM
	Kernels

	Implementation
	Feature vector
	SVM

	Masking
	Background vocabulary
	Baseline

	BERT
	Model architecture
	Tokenization
	Encoding
	Multi-head attention
	Feed-forward neural network
	Pre-training

	BERT models for authorship attribution
	Subverting the token limit
	Truncation
	Averaging classifications
	Mean pooling before classification layer

	Dutch BERT models

	Likelihood Ratio Framework
	Common Source problem
	Specific Source problem
	The CS and SS problem in authorship identification
	Likelihood Ratio

	Likelihood Ratio Systems
	Binary scorer
	Kernel Density Estimation
	Cross-calibration

	Feature-based likelihood ratio systems
	Dataset Balance
	Bounding
	Bounds on the optimal LR system

	Validation
	Metrics in computational authorship attribution
	Validation in forensic sciences
	Accuracy
	Discriminating power
	Calibration
	Graphical representations
	The choice of Lg

	Topic and Conversation Impact
	Topic impact
	Conversation impact
	Practical implementation

	Results and Discussion
	Computational authorship attribution
	Feature vector and SVM models
	BERT-based models
	Comparison
	Influence of text length, number of texts and number of authors

	Forensic authorship attribution
	Log-likelihood ratio cost
	Tippett plots
	ECE plot
	PAV plots

	Topic and conversation impact

	Conclusions and Recommendations
	Conclusions
	Future research

	References
	Proof that the weighted average of the Lg of two sets is the same as the Lg of their union
	Tables of results presented in figures
	Tables of additional experiments results

