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Abstract

Force field is widely used to model the potential energy in atomistic simulation systems.
Despite force fields have a concise mathematical form, a good set of force field parameters
usually requires extra care of calibration. Besides, numerous ionic force field parameters
are reported from various sources as researchers have specific target properties for their
interests. Previous studies mainly used brute force optimization to find the most desired
set of parameters in ionic solution. However, these methods are not efficient since the
evaluation of the performance of a parameter set is time-consuming.

This work used a stochastic optimization routine in machine learning to tackle the
problem of black-box function optimization. This method shows excellent performance
of locating the optimum regions of the black-box cost function in only a few iterations. To
evaluate the performance of a set of ionic force field parameters, MD simulations are car-
ried out in LAMMPS to compute ionic properties. The solvation free energy and ion oxygen
distance are selected as the primary targets while the self-diffusion coefficient and contact
ion pairs are regarded as the secondary targets. The optimum region of primary targets are
found by direct optimization, then secondary targets are studied with optimized param-
eters of the primary targets. There have been found discrepancies between the optimum
regions of different targeted properties. The dependence studies of individual ionic force
field parameters (ε,σ, q) are analyzed and parameterization trends are found out. Base on
these trends, the final calibration model is proposed.
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1
Introduction

1.1. Motivation

The water from our daily life always contains a certain amount of dissolved salts. There-
fore, research into aqueous electrolyte solutions is of great significance for both industrial
applications and research understandings. In industrial applications, ions affect various
physical chemistry phenomena, including altering the reaction rate and changing solubil-
ity limit of the solution. In seawater, for example, salts can play a big part in determining the
solution quality and the subsequent water processing. In life sciences, the study of aque-
ous electrolyte solutions can be beneficial to understand the thermodynamic properties
of living organisms [7, 36, 81]. However, drastic variations of aqueous electrolyte solutions
from system to system make the direct experimental measurement unfeasible. Alterna-
tively, computer simulations can be of great assistance to gain a better understanding for
various system conditions.

In the early stage of computer simulation, the solvent water was described implicitly as
a continuum model with no structure[16]. The presence of water was taken into account
only by its dielectric constant. This way of treating solvent has an advantage of low re-
sources demand, since water is the richest component in the aqueous electrolyte solution.
However, this way might not work well where the salt concentration is high. Some impor-
tant ionic properties, e.g., the solubility limit, requires a good representation of ion-ion and
ion-water interactions. Therefore, more accurate simulation routine should be carried out.

To acquire more robust information of concerned phenomena, researchers prefer to
use systems with extensive sizes, long simulation duration, and complex combinations of
species. Therefore it is prohibitively expensive to use quantum mechanics approximations
for every configuration one has encountered. The use of empirical formulas is a prefer-
able alternative[2, 21]. Classical molecular simulations employ these empirical formulas
to reproduce the results from quantum calculations or experimental measurements[66],
and collectively model the potential of an atomistic simulation system[24, 36, 66, 81]. The
functional form and parameter sets of these empirical formulas are termed as the force
fields. Although the form of empirical force fields is concise, the determination of a good
force field is not a trivial task. The accuracy of simulation outcomes depend heavily on the
selected force field. If not parameterized with care, a highly biased force field might yield
results that deviate the target value by several orders of magnitude. Optimizing a good force

1
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field subsequently has significant research values. The end goal of the force field optimiza-
tion is to find the simplest essentially representation of an atomistic system, which allows
researchers to carry out simulations in an efficient and accurate way.

Once a good force field is developed, researchers can gain understandings for configu-
rations where the experimental measurements are inaccessible. Moreover, simulation re-
veals information of microscopic properties, e.g. single ion properties, that can be difficult
to obtain from experiments.

1.2. Goals

Force field optimization is a tedious process as it requires a lot of trial and errors to find
the best parameters for an empirical formula. Many researchers have put much effort to
only gain a slight improvement in the performance of a force field. Moreover, due to the
empirical nature of the force field, there is no perfect parameterization and trade-offs must
be made. The need exists for a more efficient calibration model regarding the time costly
parameterization process. To fulfil this purpose, the goals of the present study are:

• (1) Formulate an efficient alternative approach to sample the force field parameters
with the help of a probabilistic Machine Learning model.

• (2) Explore the ionic force field parameter space and estimate the parameterization
trends of target ionic properties.

• (3) Identify the possible cheap simulation setup for speeding up the parameterization
process.

• (4) Propose the major procedures for ionic force field parameters design. Balance the
trade-offs for selecting different properties.

1.3. Thesis Outline

This thesis is organized as follows. In Chapter 2, we provide a literature survey about the
related study in this research community. Then, we discuss the background in two sepa-
rate chapters. Chapter 3 covers some techniques in Molecular Dynamics (MD) simulation
and computational methods for 4 target properties: solvation free energy (SFE), ion-oxygen
distance (IOD), ionic self diffusivity (Di ), and contact ion pairs (CIP). Chapter 4 introduces
Gaussian Processes (GP) and Bayesian Optimization (BO). In Chapter 5, we will discuss the
methodology and the setup for MD simulations. Due to the time-costing parameteriza-
tion process, we search for the best simulation setup to balance the efficiency vs. accuracy
dilemma. In chapter 6, we will first introduce the optimization model. Then we will pro-
vide the optimum region of force field parameters we have found for different ionic species
and evaluate the performance of our model based on MD results from literature[18, 36].
Next, parameterization trends are found to evaluate different parameter sets for various
properties. Finally, we summarize the findings in this study and provide future recommen-
dations.



2
Literature Survey

2.1. Force Fields

Force fields usually refer to the functional forms and parameter sets of the selected po-
tential energy function. Since force fields are usually optimized through empirical fitting,
they only approximate the bonded and non-bonded interaction in an atomistic system.
Through representing the potential energy of a system in this simple way, we can carry out
simulation with different spatial and temporal scales. The most common terms in the func-
tional form are Lennard-Jones, Coulombic, bond, angle, and torsion terms, as it is shown
in Equation 2.1.

U = ∑
bonds

1

2
kr

(
ri j − r0

)2 + ∑
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1

2
kθ

(
θi j k −θ0

)2

+ ∑
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∑
n

kφ,n
[
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(
nφi j k`+δn

)+1
]+ ∑
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[
qi q j

4πε0ri j
+ Ai j

r 12
i j

− Bi j

r 6
i j

] (2.1)

This expression of potential can be viewed as the spring sphere system in classical mechan-
ics plus the non-bonded interactions. The stretch of bonds between molecules, the bend of
two bonds, or even the torsion of a single bond can contribute to the potential energy. The
very last term in Equation 2.1 represents the non-bonded potential in atomistic systems,
i.e. vdW and electrostatic potentials.

The functional forms employed for describing particular terms in the potential function
might vary in mathematical format, but the underlying physics is essentially the same. For
example, the repulsion in Lennard-Jones potential is represented by r−12 like term, whereas
in the Buckingham potential, it is represented by an e−r like term. Hence, it should be
pointed out the fitting these functional forms might contain biases from the very begin-
ning.

2.2. Water Models

Water molecular models are designed to compute various properties in biophysics sim-
ulations. For the ionic force field parameterization, the first concern is to select a good

3



2.2. Water Models 4

water model. There are pros and cons for polarizable and non-polarizable water models,
as well as the flexible and non-flexible water models. Good summaries can be found in
the two references[64, 76]. The polarizable water models theoretically have a better per-
formance in describing the Coulombic interactions. However, a good parameterization of
polarizable water model comes at the expense of extra efforts and additional computing
resources[7, 81]. Despite this, the performance of a good non-polarizable water model is
quite similar to that of a state-of-art polarizable water model[7, 64, 81]. Therefore, rather
than putting hope to optimize a perfect polarizable force field[7, 81], many researchers
still prefer to devote their energy into parameterizing a good rigid non-polarizable water
model[7, 42–44, 79, 81].

The commonly used rigid non-polarizable water models are SPC/E (Berendsen et al.,
1987[8]), TIP3P (Jorgensen et al, 1983[35]), TIP4P (Jorgensen et al, 1983[35]), TIP4P-Ew
(Horn et al., 2004 [29]), and TIP4P/2005 (Vega et al., 2005[1]). SPC/E and TIP3P have 3
charge sites located at the 3 atom positions of the water molecule, as well as one Lennard-
Jones site located at the oxygen atom. The 3-site water models are widely used for their
computational efficiency[8, 35, 36]. With the increasing of computing power, more efforts
have also been devoted to the parameterization of higher sites water model, i.e, 4 sites.
The TIP4P (transferable intermolecular potential with 4 points) water model represents a
family of the 4 sites water models[1, 29]. These water models have 2 hydrogen atoms, 1
oxygen atom, and 1 dummy atom along the bisector of HOH angle. One L-J interaction site
locates at the oxygen position, while three Coulombic interaction sites locate at two hydro-
gen positions and one dummy atom position. This treatment allows a better description
of electrostatics distribution around water molecules. A variety of 4 site water models have
been developed. For examples, the TIP4P-Ew is a reparameterized version of the TIP4P
model for the use of Ewald summation methods[29]. TIP4P/2005 water model, proposed
by Abascal and Vega, is used to simulate the entire phase diagram of condense water. Table
2.1 gives an overview about force field parameters of these two water models.

Figure 2.1: The structure of TIP4P water model, picture is taken from [68].
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Table 2.1: Force-Field parameters for water models.

TIP4P-Ew TIP4P/2005
H-O-H [◦] 104.52 104.52
r (O-H) [Å] 0.9572 0.9572
σO-O[Å] 3.16435 3.1589
σH-H[Å] 1.00000 1.00000

r (O-M) [Å] 0.125 0.1546
εO-O [Kcal/mol] 0.16275 0.185205
εH-H [Kcal/mol] 0.00000 0.00000

qo[e] -1.04844 -1.1128
qH [e] +0.52422 +0.5564

2.3. Parameterizations

After selecting a good water model, researchers focus on optimizing the ionic force field pa-
rameters to match this choice[7, 23, 36, 81]. Then with some so-called combination rules,
a good description of water-water, ion-ion, and water-ion interactions can be found. The
ion-water interactions play an important part in determining ionic properties like solvation
free energy and ion oxygen distances, so a good water model is of vital importance for rep-
resentative simulations. Many previous studies have developed ionic force field parameters
with water models like TIP3P and SPC/E, however, a few studies have optimized ionic force
parameters with newly developed water model TIP4P/2005. The parameterization of ionic
force field with rigid water models only concerns the non-bonded term, i.e., Coulombic po-
tential and Lennard Jones potential in Equation 2.1. For many years, ionic parameters that
fit the target properties were developed through trial and error process.[7, 23, 36, 48, 79, 81].
This is because tuning the empirical parameters of ions to fit quantum calculations or ex-
perimental results is a systematic trial-and-error process. Moreover, the conventional ionic
force field parameters are optimized for a limited range of species. This way of parameter-
ization is not systematic, and it clearly has some drawbacks like misbalances of the target
properties and other properties. The obtained parameter sets cannot reproduce simulation
results that match all properties simultaneously since different researchers might have dif-
ferent interests. Therefore an ion force field are developed to serve specific purposes only,
e.g., reproduce the solubility according to the experimental measurements[7, 36, 79, 81].

The pioneer studies of ion force field development can be traced back to the work of
Smith-Dang-Garrett and Åqvist in the 1990s [3, 15, 69]. The parameterizations of these
pioneers are included in famous MD and force field software, e.g. the AMBER [13] and
CHARMM[12]. Interestingly, as the ionic parameters are developed, the targeted experi-
mental results have also been improved as more accurate measurements have been achieved.
These parameterizations that existed in these packages are somewhat arbitrary and incon-
sistent. This inconsistency leads to some non-physical phenomena like direct cation-anion
clustering even at a low concentration, which can underestimate the solubility limit. [5, 36].

After observing the drawbacks of the existing parameters, Joung and Cheatham[36] per-
formed an early reparameterization study in 2008. They performed L-J parameterizations
of different monovalent ions with the solvation free energy and lattice energy of salt as the
initial targets. Then the optimization procedures were extended to different combinations
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of water models and ions. The significance of their work is that they scanned the L-J pa-
rameter space , which shows different combinations of L-J parameters can yield the same
solvation result. After Joung’s work, many studies related to ionic force field parameter-
ization followed this procedure of finding the correlation of L-J parameters, simply for it
provides a good criterion for parameterization [23, 28, 45, 48, 79]. They usually first deter-
mine this correlation, then shift the attention to other ionic properties so the final optimal
set can be obtained.

For many years, solvation and structural properties were regarded as the golden stan-
dards for ionic force field parameterization[3, 23, 28, 36, 45, 48, 79]. Until recently some
studies have aimed for other exotic properties, e.g., osmotic pressure, activity coefficient,
dynamical properties, and solution properties [7, 23, 48, 81]. These studies greatly explored
the capability of existing ionic parameters, and they have shown that there are still needs
for developing more sound force fields. Leontyev and co-workers recently challenged the
conventional idea that ionic charge should be an integer; they believe that non-polarizable
models do not account for the electronic contribution to the dielectric constant. By sim-
ply scaling ionic charge, one can include the electronic screening effect of the medium and
improve the simulation performance. This scaling charge treatment is termed as the Elec-
tronic Charge Correction (ECC)[42, 43]

The pioneer studies which applied electronic charge correction to parameterize solu-
tion properties are carried out in Vega’s group [7, 81]. The force field developed by them
is known as the Madrid force field. Benavides et al. proposed a parameter set for sodium
chloride with the TIP4P/2005 water model[7]. Their primary target properties were the
concentration dependency of solution density and a variation of solubility determined by
the difference between the chemical potential in solid and solution states. It is worth not-
ing that they tried a multidimensional Taylor expansion technique to determine optimums
for some properties[7]. But this gradient based approach did not worked well due to that
the derivative formation for the target properties is a prohibitively expensive task. Their
final strategy was to start with a Taylor expansion for a few properties, followed by many
trial and error calibrations. Benavides’ study have revealed that implementation of ECC in-
deed have a positive effect on improving the performance of some targets[42, 43]. From the
same group, Zeron et al. expanded the investigation of the Madrid force field with scaled
charge to a next level[81]. They started by targeting the density of aqueous solution at dif-
ferent concentrations, then targeting the structural properties and the contact ion pairs
that could indirectly indicate the solubility limit[81]. It is also important to point out when
they were developing the force field parameters; they abandoned the conventional idea
that the cross interaction between different species must follow some so-called combi-
nation rules. They specifically parameterized the interactions between different species,
and therefore the force field performance is improved greatly. Their work has revealed that
the scaling charge and directly parameterized ion-ion interaction can solve the unphysical
phenomenon that salts will spontaneously aggregate below the solubility limit[5, 81].

Correlation of L-J parameters

In the work of Joung and Cheatham, 2008[36], it was first found that the optimums for sol-
vation free energy locate on a curve like region in the L-J parameter space. This is because
the effect of increasing the ions σ parameter can be countered by decreasing the ions ε pa-



2.3. Parameterizations 7

rameter, so different combinations of (ε,σ) can yield the same solvation free energy result.
In this type of approach, one can follow a well-designed procedure since the correlation
between two L-J parameters can reduce the degrees of freedom of force field parameters
by one, because two L-J parameters are correlated with each other, e.g. ε= f (σ). First, they
find parameters that give the solvation results match the experimental values. Then other
targets were taken into account base on the correlation of L-J parameters for solvation en-
ergy. The correlation map of two independent variables can give useful guidance for the
parameterization process. It provides critical information for selecting the new parameter
set. Researchers can also use these maps as good references for their specific purposes:
either to optimize a new parameter set that matches the desired property or to avoid ex-
ploring the irrelevant region and narrow down the search extent.

Many previous studies that considered the solvation free energy as a target property
found this optimum region with brute force methods like the grid search. This is because
the ionic target property is a black-box of the force field parameters. For this considera-
tion, the grid search method is reliable at the expense of additional computing resources.
Take the study of Joung and Cheatham for an example[36]. To find parameters fitting the
experimental solvation free energy, they first chose a large range of ε and σ to constrain the
calculation domain. Then intervals of sigma and epsilon are chosen to generate the grid
points. The total number of grid points in the work of Joung and Cheatham is around 400-
500. Next, for each grid point in the mesh, the hydration free energy is calculated. The best
matches with experiments are then chosen as the optimal parameter sets. These sets can
further be fitted with a mathematical formula as a function of sigma and epsilon. However,
one issue is that the quality of the correlation between two variables depends hugely on
the density of the mesh. Another drawback of this method is that only a small portion of
computer power (1/L, L being the mesh length for grid points) is spent near the optimum
region for finding the optimums. The grid search samples the data at the grid points, so
computing power will increase drastically if the search domain becomes large.

After the work of Joung and Cheatham[36], other studies of designing ionic parameter
sets based on the correlation of L-J parameters had also been reported[23, 28, 36, 45, 46, 48].
In the year 2009, Netz and co-workers published a series of papers regarding force field
parameter design using L-J parameters correlation [23, 28, 48]. They mapped out the sol-
vation free energy (∆Gsol) and solvation entropy (∆Ssol) hypersurfaces[28] in one of their
studies[28]. Then, in their subsequent works, they specifically designed force field param-
eters for divalent cations[48] by using the solvation free energy hypersurface as a first start-
ing point. Next, the radial distribution function (RDF) is used as a check for the structural
properties. Finally, the activity derivatives are calculated via the Kirkwood-Buff solution
theory to determine the final optimal L-J parameter[48]. They directly mapped the solva-
tion free energy as a function of L-J parameters, G = f (ε,σ). Unlike finding the correla-
tion of (ε,σ), the hyper-surface fitting is considered non-robust and prone to errors[22],
since the mathematical expression is pre-defined which might fail in capturing the true
shape of the underlying data. Li et al[45] also have adopted this way of parameterizing
ionic force fields. They extended the design of L-J parameters for +2, +3 and even +4 metal
cations[45, 46]. They determined the final parameters set with the help of L-J parameters
of noble gas. Their optimization framework has proved that this way of considering sol-
vation as the primary target then fitting the secondary targets according to some criteria
can be generalized to optimize exotic force field combinations, e.g. high charge metal ions,
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and achieve promising results. Yagasaki et al. revisited this correlation and performed a
parameterization study to reproduce the solubility of NaCl and KCl[79]. In their first treat-
ment for starting optimization, the correlation between ε and σ is found by first fixing ε as
a constant and then moving σ to match the experimental results. They reiterate this proce-
dure for different ε, so a set of optimal (ε,σ) can be found. Finally, the solubility is matched
according to crystalline potential energy. However, their optimization process is still essen-
tially a variation of the "grid search". Since it went through combinations of (ε,σ) in a one
by one manner.

Transferability

Testing performance for combinations of force field parameters from different sources are
usually referred as the transferability study. This is typically important for evaluating com-
plex ionic systems. The transferability study of ion parameters has been favored by re-
searchers [18, 23, 36]. This is because: (1) An optimized parameter set only satisfies specific
target properties, whereas it requires a lot of efforts. (2) There are many existing parameter-
ization works that have been done previously in this community. (3) Many of these works
have optimized the ion parameters independently. Therefore researchers always prefer to
cross-evaluate the existing ion parameters than actually carry out systematic parameteri-
zation. However, it should be noted that this inconsistent way of parameterizing and mix-
ing parameters from different sources naively is the culprit for degraded performance of
complex ionic systems.

Many new parameterizations that have been done are developed based on previous
works [7, 36, 48, 79, 81]. One particularly interesting case of all these parameterizations is
the Li+ with TIP4P like water: parameters taken from TIP4P/2005&Madrid (water&ion force
field combination) [81] is exactly the same as the parameters taken from TIP4P-Ew&JC [36],
both as (ε, σ) = (0.10398 Kcal/mol, 1.43970Å).

Machine Learning of Force Fields

Due to its empirical nature, tuning a force field to match experimental results requires tons
of trials, as well as insightful understandings into the physical chemistry phenomena from
the researchers. Given the blooming of artificial intelligence technologies in recent years,
many researchers have put their efforts to find alternative automatic ways of solving com-
plex atomic simulation tasks. These methods can be divided into two categories: (1) Learn-
ing complex potential with the help of deep neural networks[27, 70, 77]. (2) Kernel-based
surrogate models[6, 51, 52].

The first type of method can directly predict system’s potential, and it has gained much
popularity in recent years. The most representative work of potential learning with deep
neural networks can be found in a series of papers published by Zhang and co-workers[77,
82–84]. The key idea is to feed the pair-wise distances to the deep neural network for learn-
ing the system potential. This can avoid the pair-wise potential calculation and gives al-
most linear scalability of operation complexity to the system size (∼ O(N )). This model
requires ab initio data, and it is first principle based. Representing the system potential via
machine learning methods can not only reduce the time consumed on MD simulations but
also make good use of the existing optimized learning algorithms to speed up the calcula-
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tions.
The early study of using the Bayesian statistic approach for automated force field de-

velopment of coarse-grained models can be found in the work of Liu et al.[47], in which
they searched a better coarse-grained model from the parameters region where the sam-
pling numbers are limited. Later on, Dequidt[17] also utilized Bayesian inference to se-
lect the most desired coarse-grained force field model in their work. Recently, studies of
force field parameterization with Bayesian optimization have also been carried out by Mc-
Donagh and co-workers[51, 52], they have shown that from millions of discrete candidates,
a good force field parameterization can be reached via dozens of Bayesian iterations. It
should be pointed out that the force field optimization itself is a time-consuming prob-
lem. For example, the time cost of designing a targeted force field is brought down from
16 weeks human calibrations to 1.5 weeks automatic Bayesian searching in McDonagh’s
work[52]. The key idea of all these Bayesian based methods is to search for a superior force
field result with less human labor involved.



3
Molecular Simulation

This chapter includes used MD simulation techniques and computational methods for dif-
ferent ionic properties. Section 3.1 introduces several important concepts of atomistic sim-
ulation. Section 3.2, 3.3 and 3.4 introduces the computational methods for solvation free
energy, self diffusivity and structure related properties.

3.1. Atomistic Simulation

Molecular Dynamics

This study used Molecular Dynamics simulation to compute ionic properties. Through MD
simulations, one can verify the observations from experiments and carry out simulations
under extreme conditions, e.g. extreme temperature and toxic environment. The role of
simulation is to apply certain amount of assumptions to the mathematical model and ob-
tain results within some accuracy limits according the computation budget. Essentially,
the MD simulation solves Newtonian physics through numerical time integration, parti-
cles will transfer energy and momentum to each other via electrostatics and van der Waals
interaction during the simulation. This way of solving Newtonian dynamics can provide
pretty good results for numerous system properties. There are 3 main steps in a typical MD
simulation: (1) Initialization. (2) Equilibration. (3) Production.

In the initialization stage, a good starting system should resemble the state of interest
in equilibrium.. If one starts the simulation at an irrelevant configuration then he might
spend most of resources to equilibrate the system. The configurations of local energy min-
imum can be found through many minimization algorithms[67]. Then the initial velocities
that follow Maxwell-Boltzaman distribution at the given temperature can be assigned to
particles. The role of equilibration is to bridge the initial system and the system of inter-
ests. After the system reached the thermodynamic equilibrium, one can decide what data
to store and develop specific post-processing procedures, this phase is usually referred as
the production.

10
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The potential

The system of our interests contains rigid water molecules with 1 L-J sites and 3 point
charge sites, ions with 1 L-J site and 1 point charge site. Thus, the total non-bonded po-
tential of the system is the summation of L-J potential and the Coulomb potential, which
has an explicit expression:

ui j = 4εi j

[(
σi j

ri j

)12

−
(
σi j

ri j

)6]
+∑

l

∑
m

ql qm

4πε0rlm
(3.1)

where the ui j represents the potential energy between particle i and particle j , l and m
represent the number of point charge sites in each molecule. The double summation in
Equation 3.1 represents summing over all charge sites in i th and j th particle. σi j is the L-J
size parameter, it can be viewed as the diameter of the particle. εi j is the energy param-
eter, which represents the depth of the potential well, or the minimum energy of the L-J
potential. ε0 is the vacuum permittivity.

A detail representation of two L-J parameters can be found in Figure 3.1. At r = σ, the
inter-molecule potential is 0, while at rm = 21/6σ, the potential reaches the energy mini-
mum. The inter-molecule forces can be obtained by taking the derivative of the potential
F (r ) = −dU (r )/dr . The expression of L-J potential contains two terms: the 12th power
term is the repulsion term while the 6th power term is the attraction term. When r < rm,
the interaction is dominated by repulsion, When r > rm, the interaction is dominated by
attraction.

Figure 3.1: L-J potential and corresponding inter-molecule force.

To account the pair-wise potential between different species, the Lorentz-Berthelot (LB)
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combining rules can be used:

σi j =
σi i +σ j j

2
εi j =

√
εi iε j j

(3.2)

Long range interactions

For a system containing N particles, the computational complexity of calculating pair-wise
potential is of ∼O(N 2). The L-J interaction at long distance is negligible since the attrac-
tion decrease with (1/r )6. Only a small magnitude of the L-J potential exist at long range,
see Figure 3.1. Account all these values whose magnitude close to zero is not necessary.
Therefore, a cut off from which the long range potential can be turned off is introduced.
Smit and Frenkel suggested a cut off rc = 2.5σ to truncate the potential [21]. This empirical
choice of cut off is useful, at r = rc , the potential is only ε/60, see Figure 3.1. The expression
of a truncated L-J potential is:

ui j ,truncated(r ) =
{

ui j (r ), r ≤ rc

0, r > rc
(3.3)

The computational complexity will be reduced to roughly O(N ) after applying the cut off,
but the dominant resource requirement is still calculating the pair-wise distances inside the
cut off rc . The remaining tail correction can be calculated and added to the final expression.
A shifted form, which moves the entire curve upper, is applied to the potential to avoid the
discontinuity at r = rc . It is worth noting that the choice of cut-off should also consider the
types of target property [21, 74]. For properties only depend on free energy, it is desirable
to choose a long rc since they are very sensitive to the cut-off distance. While for other
properties related to forces, the 2.5σ choice is sufficient. This is due to that the derivative
of potential after the truncated modification remains the same within the cut-off range,
there is only a small discontinuity of derivative at the cut-off location.

The electrostatic interactions are treated as point charge model which has the expres-
sion that scales with (1/r ) as it can be seen in Equation 3.1. This decay slowly converges
to zero at long distances. So a simple truncation of electrostatic interactions will cause
artifacts. The particle-particle-particle-mesh (PPPM) can be employed for dealing with
long-range forces. The PPPM method deals with short range interactions in real space,
while the long range interactions are transformed into the Fourier space. This allows one
to make use of highly efficient numerical Fast-Fourier Transform (FFT) for computing the
long-range interactions, which gives a speedup compared to direct summation. The com-
putation complexity drops from O(N 2) to O(N log(N )) with PPPM method employed.

Periodic boundary conditions

With a fixed system size, the ratio between surface and volume (1/L) is much larger than it
is in the real scenario. To fix the unreal surface volume ratio, periodic boundary conditions
(PBC) are implemented. Take a cubic box for example, the box is replicated in all spatial di-
rections and a pair-wise interaction is considered only for the shortest distance of all these
images, see figure 3.2. It should be pointed out that the PBC is applied with a spherical cut-
off in MD, this is not shown in this figure. If the minimum image convention is used, then
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the pair-wise interaction in the nearest image is considered, which results in non-constant
potential on the surface [21].

Figure 3.2: Periodic boundary condition, picture is taken from [21].

Integrators

We cannot find the analytical solutions to dynamics of complex atomistic system. So we
should approximate equations of motion in a discrete manner. Numerical integration can
be used to solve discretized equations of motion. During the approximation, one crucial
property of integrator is that it must preserve phase-space volume, which makes sure the
ensemble of interest is conserved.

There are many well designed algorithms available to be used for time integration [2,
21], among which one popular type is the Verlet like algorithms. These integrators expand
the atomic positions up to the second-order term, i.e., including the forces, to update the
positions and velocities of particles in the system.[21]

An appropriate timestep should also be selected for the integrator. If the timestep is too
large, the integrator might fail to capture fast dynamics. Even worse, the energy might ex-
plode due to the overlap of atoms when solving the equations of motion. If the timestep is
too small, it will cost too much time to achieve the same simulation length. Even worse, the
truncation error due to loss of precision during the scientific computation will be accumu-
lated. To maintain the accuracy while solving equations of motion, one should determine
the length of timestep according to the fastest dynamics in the system, which is usually the
bond (e.g., O-H bond) vibration. In our simulations, we have used rigid water models with
the SHAKE algorithm to constrain the geometry. These rigid models allow a larger timestep
to be involved, and therefore the computational efficiency is also improved.

Thermostat

In MD simulation, the common ways of regulating system variables can be sorted to 3
types: (1) Constrain the system variables (e.g. temperature) to some preset distributions.
(2) Rescale system variables (3) Extend system variables. Among all these regulating meth-
ods, the Nosé-Hoover (NH) thermostat or barostat based on extending system variables
to include temperature or pressure are considered to be most popular and reliable. This
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method introduces a fictitious degree of freedom which has the dimension of mass and can
interact with the system. This way of weak coupling can make sure the dynamics of system
is well-preserved. But due to this extra mass is fictitious, the fluctuation of controlled vari-
ables is obvious. The performance of a Nosé-Hoover thermostat and other control methods
can be found in Figure 3.3.

Figure 3.3: Temperature response of different thermostat, picture is taken from [75]

3.2. Solvation Free Energy

There are many MD based routines to simulate and analyze the solvation result[39], among
which the numerical thermodynamic integration with perturbation-based esimation is quite
popular[2, 21, 39, 67].

Finite difference thermodynamic integration

To estimate the solvation free energy of ions, one needs to calculate the energy differences
between two aqueous states with and without ions. However, the free energy of a state
is not merely a function of the coordinates. Instead, it is related to the partition function
for that thermodynamic state. Therefore we cannot simply perform algebraic operations
between two potential energy values to get free energy difference of two states. A thermo-
dynamic integration can be employed to pave the path between the two thermodynamic
states. Then the free energy difference is calculated by constructing a free energy path and
integrating over ensemble-averaged enthalpy change along this path[2, 21]. While con-
structing this path, the conventional treatment is to find as many alchemical intermediate
states as possible so that the two end states can be smoothly connected to each other. In
term of our case, we have one end state where there is only solvent in the system. While at
the other end state, the solute (the ion) interacts with the solvent (water molecules). Water
molecules will surround this single ion due to polarity, so a hydration shell of water will be
formed.

There are only non-bonded interactions between ions and water molecules in the ionic
solutions. They are, specifically, the van der Waals interactions and electrostatic interac-
tions. So a two-stage thermodynamic integration is formalized as follows. In the first stage,
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the ion was slowly neutralized by reducing the charge step by step with the soft Coulomb
potential, see Figure 3.6a . Then in the second stage, the vdW potential is slowly removed
with the soft L-J potential, see Figure 3.6b. In both stages, a coupling parameter λ is intro-
duced that varies from 1 to 0 to bridge the end states. A good representation of effect of this
λ can be found in Figure 3.4.

(a) λ= 1 (b) λ= 0.6 (c) λ= 0.3 (d) λ= 0.1

Figure 3.4: The effect of interaction parameter λ to the system. While λ= 1 the interaction is fully on. While
λ= 0 the interaction is off. Thisλ parameter controls how much the ion is allowed to interact with the system.

By considering the Helmholtz free energy as a function of coupling parameter λ, the
fundamental theorem of calculus states:

A1 − A0 =
∫ 1

0

∂A(λ)

∂λ
dλ (3.4)

The expression for Helmholtz free energy is found to be:

A(λ) =−kB T ln
∫

exp(−U (q,λ)/kB T )d q (3.5)

where Z (T,V , N ) = ∫
exp(−U (q,λ)/kB T )d q is the partition function for canonical ensem-

ble. Substitute Equation 3.5 to Equation 3.4 one can get

∆A =
∫ 1

0

〈
∂U (λ, q)

∂λ

〉
λ

dλ (3.6)

Note that the accurate ensemble average should be used here is the one considering the
volume change, which has the explicit form[2, 67]:

∆1
0 A =−kT

n−1∑
i=0

ln

〈
V exp

(
−U (λi+1)−U (λi )

kT

)〉
λi

〈V 〉λi

(3.7)

In practice, the volume fluctuation in the equilibrated state is negligible[2]. The results
of using Equation 3.6 and 3.7 are nearly identical. Therefore Equation 3.6 is chosen for
calculating the solvation free energy for the isothermal–isobaric (NPT) ensemble.

To evaluate the derivative of potential energy with respect toλ term inside the ensemble
average brackets, one can use the perturbation method[54, 67]. In this method a very small
perturbation parameter δ is chosen to approximate the derivative term numerically. Then
the free energy is found to be:∫ λ=1

λ=0

〈
∂U (λ)

∂λ

〉
λ

dλ≈
n−1∑
i=0

wi

〈
U (λi +δ)−U (λi )

δ

〉
λi

(3.8)
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where wi are the weights of numerical quadrature. In a evenly sample λ system, these
weights all equal to one. These intermediate states are usually referred as the alchemical
state due to the fact that they served as the the path between two end states, thus they are
considered to be unphysical. Figure 3.5 shows the variations of λ parameters in our two
stage TI.

Figure 3.5: The two stages thermodynamic integration. First stage the Coulombic interaction is turned off, in
the second stage the vdW interaction is turned off.

The soft potential

Contrast to the normal 6-12 potential, a soft potential is used to model the system with
varying coupling parameter λ as shown in the Figure 3.4. The aim of this special treatment
of the soft core is to avoid the singularities scenario where atoms are overlapped during
the free energy calculation when the interaction sites are created or eliminated [10]. The
modified L-J and Coulomb potential are respectively:

E =λn4ε

 1[
αLJ(1−λ)2 + ( r

σ

)6
]2 − 1

αLJ(1−λ)2 + ( r
σ

)6

 r < rc (3.9)

E =λn C qi q j

ε
[
αC(1−λ)2 + r 2

]1/2
r < rc (3.10)

One can see that when λ= 1, the potentials are degraded to the normal form. While λ= 0,
the interactions are turned off. The different potential shapes with respect to the varying
coupling parameter λ can be found in Figure 3.6. The λ in these figures varying from 0.9 to
0.1. The transition between two states are smoothed by the function form in Equation 3.9,
and 3.10.
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(a) L-J potential (b) Coulomb potential

Figure 3.6: Plots of soft potential by ranging the interaction parameter λ.

Accuracy vs. efficiency dilemma

Once the alchemical states are determined, equilibrium Molecular Dynamics are carried
out for desired ensemble. Typically, the term ∂U /∂λ, the potential change with respect to
λ is calculated. The number of alchemical states not only affects the accuracy of the final
free energy results, but also influences the resource requirements. With number of these
alchemical states dozens times larger than number of end states, calculating the solvation
free energy is always considered to be an expensive endeavour [36, 39]. As one needs to
spend a whole bunch of additional resources for computing these intermediate states. This
is a typical accuracy vs. efficiency dilemma that many researchers have faced in computer
simulation. We will discuss the effort to find the most suitable configuration for our case in
Chapter 5.

Finite size correction

It has been found that finite correction term for the single ion configuration is negligible[18].
Therefore, the finite size correction for solvation free energy is not considered in our imple-
mentation.

3.3. Self Diffusivity

Derivations

The diffusion of a tagged molecule among the same species is usually referred to as the
self-diffusivity. From a macroscopic point of view, Fick’s second law of diffusion relates the
Brownian particle’s density ρ at location r and time t :

∂ρ(r, t )

∂t
−D∇2ρ(r, t ) = 0 (3.11)

ρ is the particle’s density, D represents the diffusion coefficient. This equation states that
the material balance of a given system. Assume at time equal to zero the tagged molecules



3.3. Self Diffusivity 18

are concentrated at the origin of the coordinate of interest, which can also be presented
as the boundary condition: ρ(r,0) = δ(r ) where δ(r ) is the Dirac delta function with the
property:

∫
δ(r )dr = 1. With this boundary condition, Equation 3.11 has a direct solution

of form[2, 21]:

ρ(r, t ) = 1

(4πDt )d/2
exp(− r 2

4Dt
) (3.12)

Where d represents the dimensionality. If we view this solution as a probability density
function (PDF) and set the dimenionality as d = 1, then the mean and standard deviation
of this PDF is µ = 0, and σ = p

2Dt . Hence essentially, the mean squared displacement
of a set of particles is the variance of their distribution over time. Figure 3.7 gives these
Gaussian profiles of the dimensionality d = 1 (single line) case. One can interpret particles’
mean squared displacements as the variance (σ2) of their Gaussian distribution, 〈r 2(t )〉 =
2∗1∗Dt .

Figure 3.7: Diffusion of density profiles according to time. The concentration profile will diffuse though time,
thus the initial sharp Gaussian will become flatten as time progress. The variance or second moment of the
particles’ distribution, which is 2dDt, representing the level of diffusion through time. It is also the mean
square displacement for that time instance.

From the above analysis, we can find the mean square displacement equals the second
moment of the Brownian particle’s distribution [21]:

〈r 2(t )〉 ≡
∫
ρ(r, t )r 2dr (3.13)

Multiplying equation 3.11 by r 2 and integrating over all space [21] can give us the expres-
sion for time evolution of 〈r 2(t )〉 after some mathematical manipulation. The detailed
proof can be found in the book of Frenkel and Smit[21]:

∂〈r 2(t )〉
∂t

= 2dD (3.14)

Equation 3.14 is well known as the Einstein’s relation. Although the diffusion D is a macro-
scopic transport coefficient, 〈r 2(t )〉has a microscopic interpretation: it is the means squared
displacement of the tagged molecules at time t . This sheds light on calculating the diffusion
coefficient in a computer simulation[21]. For every specie we measured, we can store their
mean square displacement at time t , MSD(t ), then we plot the relation of mean squared
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displacement against time. We can interpret the slope of MSD-t plot to get the self diffu-
sion coefficient of each species. The accuracy of diffusivity would increase with simulation
length increases as shown in Figure 3.8.

Dself = lim
t→∞

1

6N t

〈
N∑

i=1
[ri (t )− ri (0)]2

〉
(3.15)

where t is the simulation time, N is the number of molecules and angle brackets is the
ensemble average.

Figure 3.8: Diffusivity as time steps progress, picture is taken from [78]. The deviation of diffusivity reduces
as the simulation time increase.

Ensemble average

As the Einstein relation is widely used in computer simulations, most diffusion coefficient
calculations follow the MD-based evaluation analysis. The angle brackets for the mean
squared displacement calculation have the interpretation as the ensemble average. From
statistical scope, to have good results, one needs to use the mathematical expected value for
squared displacement, i.e. E(〈r 2〉), in the analysis. This expected value means one needs
to average over all different molecules, time origins, and diverse independent cases as well
to get the final expression of r 2. However, having multiple solute molecules in the system
means we need to increase the number of solvent molecules or the concentration would
be changed. Another way to go for improving the statistics is to have multiple indepen-
dent cases to average the MSD data or to have long simulation length, both of which are
resources demanding. Equation 3.14 requires a statistical limit of sampling as time ap-
proaches infinity. The conventional treatment is to select a specific segment to sample
data and apply the Einstein Equation 3.14 [21].

Order n like algorithm

The conventional way to measure the transport coefficient with Einstein relation, or in-
tegral of a velocity autocorrelation function (VACF) is inefficient as the measurement fre-
quency is pre-defined[21, 31, 38]. Using a short time interval to sample data may capture
all dynamics in trajectory, but the CPU and memory needs are high. In contrast, use a large
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time interval may miss the fast dynamics correlations[21, 31]. To solve this dilemma, we
can use an efficient sampling algorithm like order-n algorithm[21] or recently equivalent
implementations, like Window technique (WT) and multiple window technique (MWT)
suggested by Dubbeldam et al[19].

Figure 3.9: Window technique with MSD approach[19]. Red square element is the position value at time step
100 and the first element in the window r (−10∆t ), therefore it serves as the time origin. The green square
data are correlated to the time origin to compute the MSD. The accumulated MSD divided by the number of
window sampled is the current average MSD.

Figure 3.10: Multiple window technique with MSD approach[19]. Different blocks store data at different time
scales. Block 0 samples data at every ∆t , block 1 samples data at every 10∆t , and block 2 sample data at
every 100∆t . Each block is used to compute the MSD for that time interval and diffusivity. Each time interval
contribute to a part of the final MSD plot.

In the window technique approach, a block with a pre-defined size is chosen to store
the position data. The first element in the block serves as the origin in time, and other posi-
tions are relative to the origin. At the update stage, this block will be shifted thus sampling
different time origins. Figure 3.9 shows schematically the window technique. One problem
with window technique is that the block size is fixed, thus unflexible. The fixed sampling
frequency cannot capture the dynamics at different time scales [21, 31]. Dubbeldam et
al.[19] proposed multiple window algorithm following the same idea behind conventional
order-n algorithm.
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Figure 3.10 shows schematically how MWT works. The key idea of multiple windows
is still to have as many as time origins as possible while keeping good use of the data
available[19, 21]. The traditional order n algorithm coarse-grained velocity at previous
time in different blocks to update the positions, ∆r = ∆t ×∑

v , while the implementation
of multi-window technique from Dubbeldam et al. coarse-grained positions rather than
the sum of velocities to yield the mean-square displacement.[19, 21]. Both of these two al-
gorithms give a speed up in terms of memory requirement compared to the conventional
sampling strategy of diffusion coefficient. The multiple window technique uses different
sizes of blocks to sample the phase space, typically at a different order of time scale[19].

Finite size correction

The accuracy of calculated property under periodic boundary conditions (PBC) can have
a vast dependence on the system size[2]. This dependence is due to the slowly decaying
of Coulombic interactions. One direct way to tackle this problem is to increase the system
size so that the screening effect of neighbor atoms is reduced[2]. However, the problem
accompanying with larger system size is much higher computer power requirement since
simulation time is proportional to the square of the number of particles: t ∼ N 2 ∼ L6.

Yeh and Hummer proposed an analytic correction formula for diffusion coefficient based
on the hydrodynamic self-interaction effect[80].

Di ,self = Di ,PBC + ξkB T

6πηL
(3.16)

Here, ξ is the Madelung constant in a Wigner lattice, kB is the Boltzmann constant, T is the
temperature in Kelvin. η is the viscosity of the solvent. Equation 3.16 has lightened the way
to counter the finite size effect for calculating diffusivity. We can simply add a correction
term ξkB T

6πηL to diffusivity obtained from periodic boundary condition simulations. Figure
3.11 shows the dependence of the magnitude of this correction term to the system size for
calculating the diffusivity of TIP3P water.

Figure 3.11: Finite size dependence of self-diffusivity[80]. The circles are the calculated diffusion coefficient
from periodic boundary condition simulations, the squares are the results after applying finite size correction
of Equation 3.16
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3.4. Structural Properties

Figure 3.12: A typical radial distribution function.

A radial distribution function (Figure 3.12) describes the number density variation from the
targeted center particle. From the RDF, one can derive structure related properties like ion
oxygen distance (IOD), coordination numbers (CNs), and contact ion pairs (CIPs).

The ion oxygen distance (IOD) is defined as the distance between the center ion and
the oxygen site of first hydration shell. This property measures the size of hydration shell
and gives information about ions local structure. It is also considered as an important pa-
rameterization criterion in many former studies[3, 36, 81]. The common way of obtaining
the IOD is through finding the first peak location of the ion oxygen RDF.

The coordination numbers (CNs) is defined as the number of water molecules in the
first hydration shell as:

CNs = 4πρO

∫ rmin

0
gion-Ow (r )r 2dr ′ (3.17)

where ρO is the number density of water molecules, gion-Ow is the ion-oxygen RDF, and
rmin is the location of first minimum in gion-Ow . It should be pointed out the coordination
number is closely correlated to the IOD for a same ionic solution system. This is simply due
to the fact that they are extracted from the same RDF. Moreover, The experimental values of
CNs also vary a lot from different sources because that accurately determine the integration
upper bond of Equation 3.17 is difficult[18, 36, 49, 79].

Contact ion pairs are defined as:

nCIP = 4πρ±
∫ rmin

0
g±(r )r 2dr ′ (3.18)

where ρ± is the number density of cations or anions, g± is the ion-ion RDF, and rmin is the
location of first minimum in g±. Notice that when counting the CIP number, one can either
use the cation or anion as the center particle. Many former studies prefer to use the cation
as the center[7, 23, 79, 81], so we follow the same choice for consistency.

It has been reported in literature [5, 7, 36, 48, 79, 81] that there is invariably unreal ion
precipitation phenomenon in simulations even at low concentrations. These aggregations
of molecules are not observed in experiments; they are considered to be a nonphysical phe-
nomenon that happens in molecular simulations. The contact ion pairs (CIP) can indicate
the level of precipitation in the ionic solution.



4
Bayesian Optimization

This chapter will discuss the Machine Learning technique used in this project. It starts with
Section 4.1 introducing Bayesian Optimization. Then it covers the two major parts, namely,
the Gaussian Process in Section 4.2 and acquisition function in Section 4.3. Section 4.3 also
discusses the exploration vs. exploitation trade-offs.

4.1. Introduction

Bayesian Optimization is used in many applications, including robotics, deep learning ar-
chitecture configuration search, reinforcement learning, drug trial, and particle physics
[30, 50, 73]. This optimization routine was initially suggested by Kushner [41] and Močkus
[55]. Then it was refined and made popular by Jones and coworkers [34].

This stochastic optimization routine is typically used to optimize functions with high
costs (long time to evaluate). The strength of Bayesian Optimization is that it can perform
optimization without any presumed knowledge about the target function. This type of tar-
get function is of subtle importance and they can be seen in our everyday pictures. For
example, an advertising system always ask customers to rate. The preference of a customer
can be viewed as the target function. In this process the information is exchanged only
through querying customers some questions. And here the target function is essentially a
"black-box", since the advertising system can only probe the viewers’ preference. It is dif-
ficult to build a precise mathematical model to describe such a black-box function. More
specifically, in practice these black-box functions usually require a high cost to evaluate,
they do not have any closed-form expression, the derivative of the black-box function is
not accessible, and their convexity properties are unknown[11, 20]. Bayesian optimization
routines are well known for their efficiency of sampling the unknown black-box function,
which stems from the fact that they use a probability model to approximate the search and
target space[11].

It is called Bayesian because the fundamental idea is the same as the Bayes’ theorem:

P (H | E) = P (E | H) ·P (H)

P (E)
(4.1)

P (H | E) ∝ P (E | H) ·P (H) (4.2)

23
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where H represents a hypothesis of a model and E represents the evidence found. The
Bayes’ theorem states the posterior of a hypothesis given evidence P (H | E), is proportional
to the likelihood P (E | H) , and the prior of the hypothesis P (H). P (E) is the marginal like-
lihood, since this term is same for different hypothesis considered, it does not contribute
to the probability of different hypothesis.

Formation

A typical optimization problem in the engineering world requires a methodology to evalu-
ate the objective function in a constrained domain, which states

max
x∈A⊂Rd

f (x) (4.3)

where A is the optimization region , d is the dimensionality and f (x) is the objective func-
tion, the following considerations apply to our force field optimization scheme:

• The inputs x (parameters for empirical force field formula ) are bonded inside a con-
strained domain.

• f (x) is expensive to evaluate via MD simulation.

• No closed or analytical form are known regard to f (x) and no convexity information
can be presumed. This function is known as a "black-box function".

• Every time we query f (x) with a new point xt , we get a corresponding function value.

• We search the global optimum of function f (x) inside the bonded domain.

In Bayesian Optimization, the prior distribution of functions and likelihood will be used
to construct a posterior distribution of functions that best describe the function algorithm
knows. As the number of observations grows, the quality of the posterior distribution
improves. The algorithm becomes more certain which region in the parameter space is
worth exploring and which is not. Assume we sample black-box f (x) in our optimization
process and get results: f (xi ), i = 1,2, ..., t . The observations are accumulated in a set
D1:t = {x1:t , f (x1:t )}. Then the Bayes’s theorem (Equation 4.2) can be re-written as:

P
(

f |D1:t
)∝ P

(
D1:t | f

)
P ( f ) (4.4)

where the posterior distribution is proportional to the likelihood and prior distribution. As
the optimization goes on, more information of the objective function will be acquired and
optimums can be approached by an external statistical model.

Core parts

Two parts construct the Bayesian Optimization: one statistical model called gaussian pro-
cess for estimating the objective function, and the acquisition function (or utility function)
to define which point to query in each sampling stage.
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4.2. Gaussian Process

4.2.1. Fundamental Concepts

The multivariate Gaussian distribution or multivariate normal distribution is a variation
of one dimensional Gaussian distribution by ascending the order to higher dimensions[11,
20, 59, 62]. It is described by a vector mean µ and covariance matrix Σ. A random variable
X subjects to multivariate Gaussian is usually written as:

X ∼N (µ,Σ) (4.5)

where N (µ,Σ) stands for a normal distribution with µ as the mean, and Σ as the covariance
matrix. The covariance defines the shape of the distribution in terms of the expected value:

Σ= Cov
(
xi , x j

)= E[(
xi −µi

)(
x j −µ j

)T
]

(4.6)

To represent function values, the best treatment is to use a high dimensional vector. For
example, if a n dimensional variable follows a n-dimensional multivariate Gaussian distri-
bution, then the i -th subdimension variable can be used to represent a discrete function
value. In other words, we can model a function f (x) such that the discrete points of f (x)
are samples which follow the multivariate Gaussian distribution. The number of indepen-
dent variables in our function equals to the dimension of the multivariate Gaussian distri-
bution. Figure 4.1 gives a schematic view of a sample from a 100-dimensional Gaussian
distribution. Each point in this figure is a sub-dimension of that 100-dimensional Gaus-
sian variable. Though this way of representation, different function values can be easily
approximated by a Gaussian sample and most importantly, they are cheap. The prediction
of Gaussian process narrows down to draw samples from a multivariate Gaussian distribu-
tion.

Figure 4.1: A 100 dimensional Gaussian sample for function representation.

Note that for two neighbor points x, and x′, they are considered to be very similar in the
kernel function so the corresponding function value f (x), f (x′) generated by GP are nearly
identical. Therefore it looks like as if it is a continuous function.
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Covariance

A covariance function or kernel function measures how similar different variables are[11,
59, 61]. It pair-wise measures this similarity among all data points by returning a scalar.
The covariance matrix is constructed by going through all pairwise combinations of test
points as its matrix entries. A very common choice of covariance function is the squared
exponential function[11, 59]

k
(
xi ,x j

)= exp

(
−1

2

∥∥xi −x j
∥∥2

)
(4.7)

The returns are close to 1 if xi and x j are similar, while the returns are close to 0 if xi and
x j are different. In the covariance matrix, the diagonal entries σi i represent the variance
of the i -th variable, while the off diagonal entries σi j are the correlation between i -th and
j -th variable. The covaiance matrix has the property of being symmetric and positive semi-
definite[59].

Conditioning and marginalization

A crucial operation in Gaussian statistics is the conditioning. The Gaussian distribution
has the algebraic property of being closed after conditioning[4, 59], meaning that a condi-
tioned Gaussian is also Gaussian. Condition operation is usually denoted as "|", e.g., P(X
| Y). The conditioning operation can be regarded as cutting through a higher dimension
Gaussian distribution. The result of this cutting is another Gaussian distribution at a lower
dimension. This property is of crucial importance since it allows the Bayesian inference in
Gaussian process.

Figure 4.2: Marginalization (left) and Conditioning (right) of a 2D Gaussian distribution, picture is taken
from [4].

Another important operation is marginalization, in which one can retrieve the partial
information of a distribution. We can marginalize a joint Gaussian distribution by inte-
grating all the possible outcomes of one variable. For example in Equation 4.8, we can
marginalized the joint distribution by integrating through all possible situation of x to get
marginalized distribution of y . Figure 4.2 illustrates the marginalized (left) and conditioned
(right) distribution of a joint 2D Gaussian distribution.

pY (y) =
∫

x
pX ,Y (x, y)d x =

∫
x

pY |X (y | x)pX (x)d x (4.8)
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4.2.2. Gaussian Processes

Gaussian Process is a stochastic process that extends the formation of multivariable Gaus-
sian distribution to the infinite dimension[11, 59]. Any finite linear combination would
still follow a Gaussian distribution. Like the Gaussian distribution is a distribution of vari-
ables, determined by its mean and covariance, the Gaussian process is a distribution over
functions, specified by it’s mean function and covariance function.

f (x) ∼GP
(
m(x),k

(
x,x′))

m(x) = E[ f (x)]

k
(
x,x′)= E[

( f (x)−m(x))
(

f
(
x′)−m

(
x′))T

] (4.9)

Here the m(x) is mean function for the given x, k
(
x,x′) is the kernel function which mea-

sures the similarity between two variables.

Bayesian inference

For simplicity and focus on the effect of kernel function, we assume the mean function of
a GP is zero, m(x) = 0, and covariance matrix is K. If we sampled x1:t and obtained their
corresponding function values f (x1:t ). These samplings will give us a set {x1:t , f (x1:t )} that
satisfy a multivariate Gaussian distribution N (0,K),

f1:t ∼N (0,K) (4.10)

where the K is the kernel matrix:

K =

 k (x1,x1) . . . k (x1,xt )
...

. . .
...

k (xt ,x1) . . . k (xt ,xt )

 (4.11)

To update our sampling with bayesian optimization, we first look at the previous sampled
points and decide what point should be sampled in the next query. The mechanism that
updating the next query stems from an outside model (acquisition function) that will be
discussed in section 4.3. Here we only focus on getting the mean and covariance of the
predicted distribution. Assume the next sample point is {xt+1, f (xt+1)}. From the properties
of GP we know that f1:t and ft+1 are jointly Gaussian, with 0 mean and another covariance
matrix. [

f1:t

ft+1

]
∼N

(
0,

[
K k

kT k (xt+1,xt+1)

])
(4.12)

where the cross term is: kT = [k(xt+1,x1), k(xt+1,x2), . . . , ,k(xt+1,xt )]. Then the pre-
dicted distribution of function value at xt+1 can be obtained through conditioning the prior
distribution

P
(

ft+1 |D1:t ,xt+1
)∼N

(
µ (xt+1) ,σ2 (xt+1)

)
where µ (xt+1) = kT K−1f1:t

σ2 (xt+1) = k (xt+1,xt+1)−kT K−1k

(4.13)

For the sake of brevity the derivation of Equation 4.13 is not shown, the details of deriva-
tion of this formula can be found in Williams or Murhpy’s book[59, 63]. The key takeaway
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from Equation 4.13 is that we can follow this relation to get the mean and variance of a
conditioned distribution. This is the key of Bayesian inference.

(a) (b) (c)

Figure 4.3: Functions draw from prior distribution and the conditioned distribution of functions, sub-figure
(c) gives the predicted mean and 95% confidence level.

This process can be better understood in Figure 4.3. Sub-figure 4.3a gives the 10 sam-
ple of functions generated by a Gaussian process with zero mean and exponential 2 norm
kernel (Equation 4.7). These functions will revolve around the mean (which is zero here),
and the kernel function will specifically determine the shape of the generated functions. To
find the posterior distribution, one can think that the functions that do not pass the sam-
pled data points are eliminated. There will be another distribution after this elimination
(or conditioning), which can give some sampled functions in Sub-figure 4.3b. Hence, the
new sampled data will constrain the prior distribution and the posterior distribution is up-
dated at each step of Bayesian optimization. Equation 4.13 allows us to get the mean and
covariance of one test point. If we extent other test points instead of just one, we get the
figure 4.3c. The predicted distributions of unknowns are modeled by the shaded area and
the solid line gives a surrogate prediction of the mean for the objective function.

All the assumptions so far have not considered the case with noise. In a real world
scenario, the measurement might not always be accurate so the training data can contain
noise. One can take the noise into account by adding a noise term to the function values:

y = f (x)+ε, where ε∼N (0,σ2
y ) (4.14)

This can be substituted into Equation 4.13, which gives a modified mean and variance of
predicted distribution

µ(xt+1) = kT (K+σ2
y I)−1y1:t

σ2(xt+1) = k (xt+1,xt+1)−kT (K+σ2
y I)−1k

(4.15)

4.2.3. Learning the kernel parameters

With the kernel being selected, there are still hyper-parameters to be determined for a good
fit of data. Hyperparameters in kernel function are introduced to give control over the it’s
behaviour for measuring similarity. For example, the Squared exponential kernel has the
following form of hyperparameters:

k
(
xi ,x j

)=σ2
f exp

(
−

∥∥xi −x j
∥∥2

2l 2

)
+σ2

nI (4.16)
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where l ,σ2
f ,σ2

n are three hyperparameters. Figure 4.4 gives the different behaviour of pre-
dicted distribution with this kernel under different hyperparameters. Clearly, parameters
in figure 4.4c has the largest likelihood here.

(a) (l ,σ2
f ,σ2

n ) = (0.223,1,0.01) (b) (l ,σ2
f ,σ2

n ) = (2.236,1,0.316) (c) (l ,σ2
f ,σ2

n ) = (1,1,0.031)

Figure 4.4: The effect of varying kernel’s hyper-parameters.

These hyperparameters are learned by maximizing the log marginal likelihood of func-
tion observation given the kernel parameters input. The term marginal likelihood here
refers to marginalization (integration) over all noise. Since the function values follows a
normal distribution: y ∼N (0,K+σ2

nI) and it has an explicit expression of probability den-
sity function in the form like Equation C.1. Hence the expression of log marginal likelihood
can be obtained as:

logp(y | X) =−1

2
yT(K+σ2

nI)−1y− 1

2
log

(∣∣K+σ2
nI

∣∣)− N

2
log(2π) (4.17)

note here p(y | X) represents the marginal likelihood with y as observations, X as the model
inputs containing the kernel parameters. K is the noise free kernel matrix. In Equation 4.17,
the first term is the data fit term, the second term is the complexity penalty, the last term is
a constant depending on the number of samples [59, 63]. The penalty term works with the
fitting term to avoid over-fitting. It makes sure the model not being too complex, so it can
fit the data "just right".

4.3. Acquisition Function

The GP serves as the role of modelling the objective function. With GP we can update the
prior distribution as the new observations are discovered. Another part of Bayesian Opti-
mization is called acquisition function, which serves the role of guiding the algorithm to
search the optimums. The reason it is called acquisition function is because it evaluates
the acquisitions for the potential improvement at given points in the objective function. A
high mean (expected value) or high variance (uncertainty) can both give rise to high acqui-
sitions. To some extents, the original goal of optimizing objective function can be achieved
by a surrogate model which optimizes the much cheaper acquisition function at each op-
timization step. This section will introduce 2 acquisition functions involved in this project:
expected improvement and the upper bond confidence.
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4.3.1. Expected improvement

The expected improvement (EI) acquisition function is an improved version of the prob-
ability improvement (PI, Appendix C.2) . The green shaded area in Figure 4.5 represents
the probability of getting a better result than the current optimum for one test point. Its
magnitude will be close to 1 near the optimums. In Figure 4.5, at the near right region of
x+ the CDF will yield higher return, compared with the far right region where the uncer-
tainty is high. This is likely to cause the algorithm exhaustively search around the local
optimum[11, 33].

Figure 4.5: Schematic figure of the probability of improvement, figure is taken from [11]. The black dot
points are the observations with x+ being the maximum. Integrate the predicted distribution from the

maximum of observations gives the probability of getting higher function value for the test point.

Apart from only accounting for the probability of improvement, the EI method also
accounts for the magnitude of improvement [11, 57]. The utility function proposed by
Mockus is [56]:

u(x) = max
{
0, f (x)− f (x+)

}
(4.18)

where the u(x) is the difference between the probed prediction and the best function value
that has been found. If the probed prediction is higher than the best function value from
current observation, u(x) returns positive values, otherwise 0. Then the acquisition func-
tion is the expected utility:

a(x) = E[u(x) |D1:t ] =
∫ ∞

f (x+)
( f (x)− f (x+))N (µ(x),σ(x))d f (x)

=σ(x)

[
µ(x)− f

(
x+)−ξ

σ(x)
Φ

(
µ(x)− f

(
x+)−ξ

σ(x)

)
+φ

(
µ(x)− f

(
x+)−ξ

σ(x)

)] (4.19)

whereΦ andφ stand for the cumulative distribution function and probability density func-
tion. Notice here the ξparameter is artificially added by the users to balance the exploration
vs. exploitation trade off, which will be discussed in a later section. Then one can select the
next query point by finding xt+1 = argmax

x
a(x).

4.3.2. Upper bound confidence

We can also direct balance the exploration vs. exploitation trade off using an so called upper
confidence bound[11, 71, 73] criteria. The acquisition function is formulated as:

a(x) =µ(x)+κσ(x) (4.20)
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where κ> 0 is the balance parameter. Equation 4.20 explicitly balance the exploration and
exploitation trade-offs through κ. The formation κ is to minimize the cumulative regret in
the optimization process. In the study of Srinivas[71], one can find the details of this trade
off parameter. The idea of upper bond confidence bound is that the σ(x) term is a measure
of uncertainty of the test points. The acquisition function being maximized is thus sort of
the upper bound on the possible true value of the test point[73].

4.3.3. Exploration vs. exploitation trade off

In a GP based Optimization, any test point has two quantities derived from the statistical
model: mean µ(x) and uncertainty σ(x). In principle, if the acquisition function regards
the mean as more important, then it will more likely probe the region where the predicted
mean is high. This way of optimization is usually referred as exploitation since the algo-
rithm tries hard to exploit the known information at current circumstance to find better
optimums. On the other hand, if the acquisition function regards the uncertainty as more
important, then it will more likely to probe the region where the predicted uncertainty is
high. Therefore the whole landscape of the domain are more likely to be inspected thor-
oughly, and possibly a better solution can emerge from the black-box function.

Figure 4.6 gives a good example of well-balanced optimization strategy. One can see
after 10 iterations, the algorithm successfully found the locations of two local maximum,
and it spent most of resources near the optimum region. Maximizing acquisition function
is used to selected which point to sample in each optimization step. The sub-figure in the
second grid of Figure 4.6 gives the acquisition at current optimization step, from which it
suggests the next most promising query point locates at x = 8.

It is of great interests to balance the exploration and exploitation trade-off when op-
timizing the objective function. Find a good balance between this trade-off is the key to
many leaning based optimization routines[11, 73]. This balance is essentially achieved by
adding a controllable parameter in the final acquisition function, for example ξ in Equation
4.19 and κ in Equation 4.20. These controllable variables change the formation of acquisi-
tion function so the search strategies are also changed.

Figure 4.6: Exploration vs. exploitation dilemma in optimization problem[62].



5
Methodology

This chapter discusses the proposed approaches. Section 5.1 and 5.2 cover the methodol-
ogy for carrying out the parameterization. Sections 5.3-5.6 introduce the detailed setup for
calculating different ionic properties, the search of the most appropriate configuration, and
the validation of a single simulation. Formulating an accurate and efficient MD simulation
scheme first so we can use them in the final optimization stage.

5.1. Optimization Formation

In order to generalize the cost function so it can be used for different properties and ion
species, the absolute relative error is employed to evaluate the cost between simulation and
experimental results, see Equation 5.1. In the optimization stage, optimization algorithm
will minimize this cost function so that the error between the experimental and simulation
results will be brought down to the minimum. For each ionic property, combination of ion
species, and water model, the cost function to be optimized is given by:

Fi (ε,σ) =
∣∣∣∣1−Ωisim (ε,σ)

Ωiexp

∣∣∣∣ (5.1)

Here, Ω sim is the simulation result, while Ω exp is the experimental result, subscript i
represents different properties. For a point that matches the experimental results perfectly,
Equation 5.1 will be zero. So the smallest value in this cost function formation is zero.

Gradient free optimization

The most straightforward optimization procedures would be going for a derivative-based
routine, like gradient descent method[25, 61]. The problem is to find force field parameters

satisfy: ∇F =
(
∂F
∂ε , ∂F∂σ

)
= 0. However, the derivatives ∂F /∂ε, and ∂F /∂σ of our formalized

cost function are inaccessible. The function F is only known each time we query it with a
set of force field parameters (ε,σ). Therefore, we use gradient-free optimization to deal with
this black-box function. In our problem, calculate ionic properties is costly to evaluate. We
can query the cost function with input parameter set and get its corresponding costs every
time we need, but we cannot find its derivatives, and in particular, we cannot presume any

32
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analytical form of F . The ultimate objective for designing force field parameters is to find
the optimum points (ε,σ)opt = argmin(F ) with less computational resources spent than the
conventional trial-error scheme.

Compare search methods

In black-box optimization, grid search method is the least favorable. This is because grid
search method repeatedly sample the same value for a given dimension, so it can miss
potential better results easily. In contrast, the random search can probe the black-box
function more thoroughly, so better results could be found. Suppose we have a black-box
function with some importance distributions along the vertical and horizontal axes as it
is shown in Figure 5.1. Nine trials using grid search only give 3 distinct samples over the
horizontal dimension. In contrast, nine trials using random search give 9 distinct samples
over the horizontal dimension, and one almost gets the highest reward. The inefficient
sampling of grid search is even severe for force field optimization problems with higher di-
mensions. Guided random search like Bayesian Optimization can have greater potentials
to track optimums.

Figure 5.1: Comparison of grid search and random search method. The green and yellow shaded area
represent an approximated importance at horizontal and vertical sub dimension. Picture is taken from

Ref.[9]

5.2. Method

In this section we will introduce the procedures for carrying out the optimization.

Mapping the isolines with Bayesian

An gradient free optimization algorithm can be employed to minimize Equation 5.1[60, 62].
The calculated property values are compared with results found in literature[18, 36, 49, 79,
81]. It has been examined that our configuration can yield results with a low level of noise
(less than 1%) for solvation free energy and ion oxygen distance.

In contrast to the conventional grid search, we have used well-designed optimization
algorithms with heavy engineered Gaussian Processes to perform the search [11, 62, 73].
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The Bayesian Optimization is implemented in the framework of Nogueira et al.[62], which
utilizes scikit-learn as the backend for GP. We first train a model with normalized data to
balance the exploration and exploitation trade-off. The determined balance parameter is
applicable to all optimization cases because we normalized the data into same order of
magnitude (∼O(1)). Then this model is implemented with the LAMMPS simulation pack-
age, which will perform the Molecular Dynamics simulations. The Bayesian optimization
will guide the package to sample different parameters set during the computation. The
well-trained model can significantly reduce the optimization steps needed to reach an op-
timum. After observing enough data, we can use the prediction from our model to formal-
ize the correlation of L-J parameters. Properties need human interaction are considered
as secondary targets. They are optimized with brute force using optimum parameters of
primary targets. The flow chart of this process can be found in Figure 5.2.

Figure 5.2: Flowchart of the parameterization process
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Find the dependence trend of diffusivity and contact ion pairs

Ionic self diffusivity and contact ion pairs are not suitable to be included in the Bayesian
optimization framework. So we consider them as the secondary properties. In other words,
we optimize these properties with brute force based on optimum parameters of primary
properties we have found.

Diffusivity calculation contains high uncertainties, which will greatly deteriorate per-
formance of the optimization algorithm. Different starting conditions could lead to differ-
ent isoline locations. Using a long simulation length can significantly reduce the level of
uncertainty, but the computer power requirement could be too high to be affordable. This
high certainty has been reported in many previous studies[7, 58, 81], regardless they have
employed considerable long simulation length (up to 100 ns) and large system size (around
4000 molecules).

We cannot formulate an automatic way to read CIP result from machine either. The CIP
calculation requires human interaction to determine the minimum location, since height
of the first peak in ion-ion RDF is varying for different parameter sets. The strategy to deal
with self diffusivity and CIP is to study their dependence of force field parameters (ε, σ, q).

5.3. Simulation Details

Molecular Dynamics simulations are carried out in the open-source Large-scale Atomic/-
Molecular Massively Parallel Simulator[67]. A cubic box of length 25.5 Å with periodic
boundary conditions was used in simulations for solvation free energy and RDF related
properties. The cut-off is set to be 8 Å for both Lennard-Jones and Coulombic interactions.
Except for simulating anions with large particle diameters, where the cut off is set to be 12Å.
The neighbor list distance is set as 2Å. The particle-particle particle-mesh (PPPM) method
with a relative precision of 1e-3 is used to treat long-range electrostatic interactions. This
box length will result in a system containing 555 water molecules in total. This choice of
system size is useful because 10 ions in the system corresponds to 1M concentration of
that species. Moreover, computer power requirements are acceptable with this choice. The
molecules are first put into a lattice then ions are inserted into the system. The Polak-
Ribiere version of the conjugate gradient algorithm is used to find the energy minimum for
provided coordinates. There are two stages in the bulk simulation, where the equilibrium
and structural properties are determined. The isothermal–isobaric (NPT) ensemble is used
for equilibrating the system, the pressure for equilibrating the system is set to 1 atm and
the temperature is fixed at 298 K. After the density is stable, the canonical (NVT) ensem-
ble is used to perform the production run. As for the thermodynamics integration cycle,
the isothermal-isobaric (NPT) ensemble is used alone to mimic the experimental solvation
condition. The timestep was fixed as 2 fs. The Nose-Hoover thermostat and barostat have
been used, with relaxation parameters set to be 100 dt for NVT simulation and 1000 dt for
NPT simulations. The Verlet algorithm is used as the time integrator for solving Newton’s
equation of motion[67]. For all systems, the SHAKE algorithm has been used to constrain
the geometry of water molecules[67]. In all simulations, the Lorentz-Berthelot mixing rules
are used for pair potential.

There are also some specific configuration setups for each concerned property to speed
up parameterization process. They will be discussed in detail in the subsequent sections,
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here we first include them for consistency. For solvation free energy, The thermodynamic
integration contains 8 stages, i.e, λ= 1.000,0.666,0.333,0.000 both for Coulombic potential
disappearing stage and vdW potential disappearing stage. Each sub-state is first equili-
brated 100 ps, followed by another 100 ps production. The perturbation parameter for the
finite different TI cycle is settled as 0.002. For diffusivity calculation with OCTP[31], the
number of block elements is chosen as 15. Two independent cases are used to get better
statistics of diffusivity. For structural properties, the number of bins is selected as 1000 for
RDF representation. The final RDF data is sampled from the last 500ps with a frequency of
every 2fs. The system is equilibrated for 200 ps for diffusivity and RDF related calculations;
this choice has guarantees the density will reach a stable level. The production length is 10
ns for diffusivity and 1 ns for structural properties.

The effect of scaled charge was also put into investigation. As it is was adopted for
TIP4P/2005 water model by Vega’s group[1, 7, 81], the charge scaling ratio for monvalent
ions is 0.85, and for divalent ions is 1.7[43, 44].

5.4. Solvation Free Energy

The main resource requirement of solvation free energy calculation is due to the need for
alchemical states for smooth transitions. In thermodynamic integration, the free energy is
computed by a weighted sum of ensemble averages of the free energy change with respect
to the coupling parameter λ. The analysis of the final solvation energy results requires
one to interpolate the discrete sampled intermediate alchemical states along the thermo-
dynamic path. The performance analysis depends on the nature of underlying data struc-
tures, i.e., the shape of ∂U /∂λ curve. Therefore, the search of the cheapest configuration
while maintaining the accuracy of results should be carried out.

We first perform a simulation with a relatively expensive configuration. A Na+ taken
from TIP4P-Ew&JC force field is used to reproduce the solvation free energy result. The
system size is fixed as 25.5Å, and the production time for each alchemical state is 500ps.
Totally 30 intermediate alchemical states are selected to pave the path for thermodynamics
integration. The corresponding result we get is 88.1 kcal/mol, which is considered to be
quite close to the experimental value of 87.2 kcal/mol from Marcus[49]. Then we decrease
the number of intermediate alchemical states, box size, and simulation time for each sub-
states window to narrow down search of the cheapest configuration setup.

The thermodynamic integration paths for different configurations are shown in Figure
5.3. One can find the results of solvation free energy by integrating this curve with respect
to λ. Clearly, we can exploit the system size, sub-state simulation length, and the number
of intermediate states to get a more efficient configuration. The underlying data structure
of the integration path is very close to linear relationship for the Coulomb potential disap-
pearing stage in Figure 5.3. This is why we can use a more sparse sampling of alchemical
states while keeping the accuracy. It is also worth noting that the free energy contribution
from the van der Waals disappearing stage is rather small. In fact, this part is nearly negli-
gible in the whole picture.



5.5. Self Diffusion Coefficient 37

(a) TI path as a function of Alchemical states (b) TI path as a function of system size (c) TI path as a function of simulation time

Figure 5.3: Effects of different configuration setups to the two stages TI. From left to right along x axis, in
the first stage the coulomb potential was turned off, in the second stage the Van der Waals potential was
turned off. The shape of TI path with different numbers of intermediate alchemical states, system size, and
the simulation time of sub-states are compared with each other. The cut-off is also changed accordingly to
be less than half of the box size.

Table 5.1 gives a numerical comparison of results from this wok, MD simulation from
Döpke et al. Ref[18], and the experiment values from Marcus Ref.[49]. Force field combi-
nation are TIP4P-Ew&JC and TIP4P-2005&Mamatkulov for validation.

Table 5.1: Solvation free energy obtained of different ions for validation. Force field combination are
TIP4P-Ew&JC and TIP4P-2005&Mamatkulov for MD simulation of ours and Ref[18]. Units are Kcal/mol.

Li+ Na+ K+ Rb+ Cs+ F− Cl− Br− Mg2+ Ca2+ Ba2+

This work 113.7 89.2 71.3 66.5 62.0 120.2 88.4 80.3 409.3 342.7 285.3
Ref.[18] 114.2 89.0 71.1 66.1 60.5 119.4 89.8 83.1 415.0 344.0 289.4
Ref.[49] 113.5 87.2 70.5 65.7 59.8 111.1 81.3 75.3 439.3 362.1 300.7

5.5. Self Diffusion Coefficient

The simulation length for diffusivity is to be determined. Different initial configurations of
molecules are formed to realize the independent simulation cases. If the simulation time
is too short, the obtained results will be very noisy since ions have no preferential direction
in this system. In contrast, if the simulation time is long, the high requirement of resources
will become unaffordable.

It is well-known that the beginning stage of MSD-time is the ballistic region and it will
overpredict the diffusivity value. Thus it should be excluded from the calculation. On the
other hand, the data from later simulation segment only contains a few sampled cases,
these data are not good for determining the MSD-t slope in order-n algorithm framework.
Therefore, a log-log plot can be used to determine which region the MSD follows a linear
relation with respect to time. A typical log-log plot can be found in Figure 5.4. From this
plot, we determine the region that has slope 1 to sample data. From the investigation of
different simulation lengths, it has been found that the third block of our OCTP setup shows
good linear trends, corresponding to 5 ps - 68 ps section in Figure 5.4. After verifying this,
we can fix the choice of the block in simulations and let the machine automatically read
data.
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Figure 5.4: OCTP LAMMPS plugin of MWT from Jamali et al.[31], notice here we have several blocks together
formulating this whole log-log plot. The linear region is chosen to determine the slope for diffusion coeffi-
cient calculation. No finite size correction has been added yet.

Figure 5.5: Different diffusivity of TIP4P2005/Zeron Na+ as a function of the simulation time duration. The
green dash line represents the experimental results from Marcus[49].

To quantify the level of uncertainty, we compute the deviation of diffusivity for differ-
ent simulation lengths by performing 10 independent runs. Then the deviation level is
calculated empirically from these 10 data sets. From a 1ns simulation with a single Na+

and TIP4P/2005&Madrid force field combination, a deviation of 0.06956 [1e-9 m2/s] is ob-
tained. The simulation time is then increased to 3ns, 5ns, 10ns, and 20ns. The correspond-
ing deviations are found as 0.06037, 0.03535, 0.03038, and 0.02687 [1e-9 m2/s]. Finally, the
simulation length is chosen as 10 ns for calculating diffusivity. It should be noted that this
way of determining the deviation might not be accurate due to the limitation of sample
cases. Figure 5.5 shows the diffusion coefficient under different configuration setups with
force field combination of TIP4P/2005&Madrid for Na+. We can see that getting an accurate
result requires a long simulation length. This figure also shows the diffusivity dependence
on the ionic charge, which will be discussed further in the results chapter.



5.6. Ion Oxygen Distance 39

The performance of two diffusivity calculation algorithms (MW and MWT) are com-
pared with each other for efficiency improvement. Window technique is implemented
in the post-processing stage using the MD analysis package[53], while the Multi-window
Technique implementation is from the LAMMPS plugin of Jamali et al. [31]. We use a
force field combination of TIP4P/2005&Madrid for validating Na+ diffusivity. It has been
found that MWT and WT both give results that match the experimental values. These two
methods give similar diffusivity results. But WT requires a pre-defined window length, and
the obtained slope contains noise, which could harm the quality of regression. Therefore,
the MWT is employed. To further validate our configuration across all different chemical
species. Table 5.2 gives a numerical comparison of results from this wok, MD simulation
from Döpke et al. Ref.[18] and the experimental values from Marcus Ref.[49]. It shows
clearly the ionic self diffusivity of MD simulations deviates from source to source.

Table 5.2: Self diffusivity obtained of different ions for validation. Force field combination are TIP4P-Ew&JC
and TIP4P-2005&Mamatkulov for MD simulation of ours and Ref[18]. Units are 1e-9 m2/s.

Li+ Na+ K+ Rb+ Cs+ F− Cl− Br− Mg2+ Ca2+ Ba2+

This work 1.28 1.08 1.85 2.00 1.89 1.17 1.73 1.77 0.84 0.95 0.80
Ref.[18] 1.12 1.04 1.41 1.58 1.85 1.04 1.40 1.56 0.85 0.86 0.75
Ref.[49] 1.03 1.33 1.96 2.07 2.06 1.48 2.03 2.08 0.71 0.79 0.85

5.6. Ion Oxygen Distance

The structural properties of ion oxygen distance, coordination numbers and contact ion
pairs are obtained in equilibrium MD through the either ion-water RDF or ion-ion RDF.
The configuration setup is described as before in section 5.3. Table 5.3 gives IOD results
calculated by our configuration setup and reference values from Döpke et al.[18] and Mar-
cus [49].

Table 5.3: Obtained ion-oxygen distance for validation. Force field combination are TIP4P-Ew&JC and
TIP4P-2005&Mamatkulov for MD simulation of ours and Ref[18]. Units are Å.

Li+ Na+ K+ Rb+ Cs+ F− Cl− Br− Mg2+ Ca2+ Ba2+

This work 1.92 2.35 2.72 2.88 3.03 2.69 3.16 3.31 2.00 2.36 2.71
Ref.[18] 1.91 2.34 2.70 2.86 3.02 2.69 3.15 3.30 1.99 2.36 2.70
Ref.[49] 2.08 2.36 2.80 2.89 3.14 2.63 3.19 3.37 2.09 2.41 2.75



6
Results and Discussions

This chapter contains optimization search results of different ions with TIP4P/2005 water
model. We implement the Bayesian optimization algorithm to efficiently sample the (ε,σ)
parameter space and identify the optimum region. Section 6.1 presents the search map,
optimization setup and the corresponding optimum regions for solvation free energy (SFE)
and ion-oxygen distance (IOD). Next, in section 6.2, we evaluate the dependence of dif-
fusivity upon single force field parameter. This treatment allows us to have a peek over
the hyper-surface of diffusivity with limited computing power. After that, the optimiza-
tion results of structural properties are discussed in section 6.4. RDFs of ion-water and
cation-anion are shown. Then we conclude the dependence of ionic properties on force
field parameters in section 6.5, which can provide a good guide for the parameterization.
Finally, we select the parameter set base on our model and evaluate the performance in
section 6.6.

6.1. The correlation maps

This section starts with introducing the procedures of carrying out the parameter search
in sub-section 6.1.1. Then the results are presented for monovalent cations, monovalent
anions and divalent cations in the sub-section 6.1.2, 6.1.3, and 6.1.4 respectively. Section
6.1.5 summaries the findings of the correlation maps. For each ion group, we present the
optimum regions for SFE and IOD, each under two different charge conditions, i.e. q =
0.85, and q = 1.00. With different charge conditions, we can understand the effect of scaling
charge for ionic force field parameterization. We also apply a SFE correction treatment sug-
gested by Döpke et al[18]. This correction multiplies the obtained SFE results by εel (high
frequency dielectric constant). The derivation of electronic charge correction for MD simu-
lation can be found in Appendix D.1. For each obtained map, we use the isolines to identify
the location of a selected parameter set from literature. Then we compare the prediction of
GP with MD results appeared in the literature. [18, 36, 48].

6.1.1. Optimization Setup

To find the location of optimum regions, we first determine the search domain by checking
common force field parameters found in the literature [36, 79, 81]. It is also desirable to go

40



6.1. The correlation maps 41

for a larger search domain as a first step. So the log(ε) range is chosen as [-3, 0], [-4, -1], and
[-3, 0] for monovalent cations, anions and divalent cations respectively. The large search
extent will provide us a good transferability for the whole domain because the Gaussian
Process prediction will not work well where the observations are not made. Moreover, a
large search extent may find potentially good results. Data normalization scales the results
from different orders to relative errors, e.g. ∆Gsol ∼O(100) while ri o ∼O(1). This normal-
ization not only gives us intuitively insights about the hypersurface, but also improves the
performance of optimization. The effective dimensionality of ε is low, so we used a base 10
logarithm to scale this feature.

When the search starts, log10(ε) and σ parameters are fed to the LAMMPS MD simula-
tion package. First 3 random samples are drawn among the parameter space to initiate the
optimization, followed by 27 optimization steps to query the parameter space. This choice
is more than enough for locating the optimum regions. The kernel function is chosen as
the MA5 kernel, Appendix C.3. In most cases, the acquisition function is selected to be the
expected improvement with the balance parameter of ξ = 3e-3. In some rare cases which
algorithm overexploit one optimum, ξ is increased to 1e-2, or the upper bond confidence
acquisition function is employed. The same configuration are used to calculate the SFE
and IOD, while L-J parameters are determined by the optimization framework and charge
of ions are predetermined to be either 0.85e or 1.00e.

Figure 6.1 breaks down the search process into steps. Bayesian optimization framework
will use acquisition function as a guidance to search the optimums of the given black-box
function. Contour plots in this figure represent the GP predicted mean and standard devia-
tion (test points) of the cost function. The black circles are sampled observations (training
points) in this optimization run. As the number of observations grows, one can see the
Gaussian processes become more confident about the shape of the objective function. The
standard deviations are brought down to a very low level near the optimum region where
most of the observations are made. By emphasizing search on the optimum domain, one
can obtain more solid information for the desired region so that the final isoline can be
obtained in an efficient and reliable way. The convergence of the L-J correlations can be
found in Figure 6.2. In this figure, there is a slight difference between the isoline using 20
and 30 observations. The location of this difference happens to be the region where the
uncertainty is high in Figure 6.1. There are no significant improvements for the obtained
correlation after about 30 observations.

Because there is no standard L-J correlation function with TIP4P/2005 water model
available, we use the best correlation we have found as a reference to measure the effi-
ciency gain. We calculate the R2 score using the correlation in each optimization iteration
while setting the best correlation as the reference. The random search method and its result
is also shown for comparison. Figure 6.3 compares the performance of these two search
methods for Na+. Clearly, as a guided search strategy, Bayesian Optimization can converge
faster than the random search method.
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Figure 6.1: The mean and standard deviation of Gaussian Process for different observations during search.
This biased sampling reveals more information near the optimum region.
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Figure 6.2: The obtained correlation for different observations.

Figure 6.3: The R2 score between our model and random search. Target is Na+ SFE isoline.

Extend methodology to other ion species and properties

With the optimization framework being settled, we can extend this methodology for differ-
ent ion species: Li+, Na+, K+, Rb+, Cs+, Cl−, F−, Br−, Mg2+, Ca2+, Ba2+. We also find the
optimum regions with 2 charge conditions and 1 charge correction [18], their notations are
defined as: (1) Unscaled ion charge case, q = 1.00. (2) Scaled charge proposed by Leontyev
et al.[42, 43] q = 0.85. (3) Scaled charge with the SFE compensation treatment proposed by
Döpke et al.[18] q = 0.85crc. For all simulation cases, the experimental values are taken from
Marcus et al.[49] unless stated otherwise. The search history for a particular ion species can
be found in the Appendix A.3.
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Compare the results with other studies

Figure 6.4 give an overview about performance of test parameter sets [18, 36, 48] reported
from different sources. Due to the empirical nature, even the most accurate simulation re-
sult with force fields can deviate from the experimental values. So rather than considering
the experimental results as the sole reference, it is more rational to also refer to MD simula-
tion results in other studies. These test parameter sets [18, 36, 48] are shown as circle points
in Figure 6.5, 6.6, 6.8. The prediction results of these test parameter sets can be found in
Table B.1, B.2, and B.3. Discussions are carried out with the isoline map in the subsequent
sections.

Note the water model employed is different for these selected references. Our training
points are generated with TIP4P/2005 water model. Ref.[36] used TIP4P-Ew water model.
Ref.[48] used SPC/E water combining with divalent cations. Ref.[18] used TIP4P/2005 water
model. We compare force fields with different water models not only because there are
very few studies that have reported the MD results of the TIP4P/2005 water model, but
also because it has been found that there is a good transferability between TIP4P like water
models[18].

(a) (b)

Figure 6.4: Using test parameter sets to evaluate the prediction accuracy of SFE (left) and IOD (right),
compared with results from previous studies. Numerical values can be found in Table B.1, B.2, and B.3.

6.1.2. Monovalent cations results

Figure 6.5 gives an overview of the obtained isolines for monovalent cations: Li+, Na+, K+,
Cs+, Rb+. Figure A.13 and A.14 give the search history, prediction from GP and correspond-
ing found isolines for the monovalent alkali metal ions. Monovalent cation is believed to
be the most representative ion species group. Many previous studies have parameterized
these ions with early developed water models [7, 23, 36, 81]. In the correlation maps, the
parameter sets from the left side of the SFE isoline give SFE results larger than the exper-
imental values, while the sets from the right side of SFE isoline give results smaller than
experimental values. The trend for IOD isoline is inverted. The parameter sets from the left
side give IOD results smaller than experimental values, and parameter sets from the right
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side give IOD results larger than experimental values. One can also obtain the prediction
of target ionic properties for test points from search figures in Appendix A.3.

Figure 6.5: Isolines for monovalent cations. The solid and dash-dot lines, e.g. LiG , q = 1.00 and Lir , q = 1.00,
represent the isolines of SFE and IOD under charge equal to 1. The dash and dot lines, e.g. LiG , q = 0.85crc

and Lir , q = 0.85, represent the isolines of SFE and IOD under charge equal to 0.85, with SFE result applied
compensation treatment. The experimental value are from Marcus[49].

Lithium: In the Figure 6.5, JC Li+ (test parameter set) [36] lies near the SFE isoline, while
it is relatively far left of the IOD isoline. This can be explained by that JC’s parameteriza-
tion of Li+ prioritize SFE. It is also very interesting to find the parameterization study from
Zeron [81] also used exactly same parameter set for Li+. For this parameter set, deviations
from experimental IOD result in these two references are found as -7.7% and -5.8%, while
prediction of our model gives a deviation of -6.2% [18, 36].

Sodium: Location of JC Na+ is close to the intersection of SFE and IOD optimum re-
gions in Figure 6.5, suggesting this parameter can be safely transferred to use with TIP4P/2005
water model. Using this parameter set, the deviations are found as +0.8% and -0.4% for SFE
and IOD.

Potassium: In the Figure 6.5, JC K+ matches the SFE isoline, while it locates to the left of
the IOD isoline. This can be explained by that JC K+ gives lower IOD results as it is verified
in these two references (-3% and -3% respectively)[18, 36].

Rubidium: In Figure 6.5, one can find that the JC Rb+ is near the intersection of SFE
and IOD isoline. It further suggests that JC’s parameterization is perfect in terms of SFE
and IOD property. As this parameter set can simultaneously yield results that match the
experimental values for these two properties. This agreement can also be found in these
two references [18, 36].

Caesium: Our model overpredicts the experimental SFE result by 4.1% and underpre-
dicts experimental IOD value by 2.9%, see Figure 6.4a and 6.4b. The IOD result from our
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model agrees with Ref.[18] and Ref.[49], but the SFE result overpredicts both of these two
references.

6.1.3. Anions results

Figure 6.6 shows the correlation map found for F−, Cl−, and Br−. The anions have a larger
discrepancies between different target properties, compared with the monovalent cations.
Moreover, due to more dispersive electron cloud structure, the anions generally have large
size parameters.

Figure 6.6: Isolines for anions. The solid and dash-dot lines, e.g. FG , q = 1.00 and Fr , q = 1.00, represent the
isolines of SFE and IOD under charge equal to 1. The dash and dot lines, e.g. FG , q = 0.85crc and Fr , q = 0.85,

represent the isolines of SFE and IOD under charge equal to 0.85, with SFE result applied compensation
treatment. The experimental value are from Marcus[49].

Fluoride: In Figure 6.6, the JC F− locates to the right of IOD isoline and to the left of SFE
isoline. Specifically, our GP mean prediction deviates +9.7% for SFE and +2.3% from exper-
imental values. Ref.[18] suggests these two deviations are +9% and +2.3%, while Ref.[36]
gives these two deviations as +8% and +2.3% .

Chloride: The JC Cl− locates to the left of both SFE and IOD isoline, which indicates our
predictions are lower than the experimental IOD value and higher than the experimental
SFE value, see Figure 6.6. Specifically, our prediction gives +9.3% deviation for SFE and -
1.0% for IOD. This agrees with the MD results from the selected two references (+10.7% and
-1.0% from Ref.[18], +9.7% and -1.0% from Ref.[36]).

Bromide: JC Br− locates to the left of both IOD isoline and SFE isoline, with devia-
tion from SFE larger. This indicates the the predicted MD results overestimated SFE target
while underestimated IOD target, see Figure 6.6. Specifically, the deviation found for SFE is
+9.3%, for IOD is -2.4% in our model, which agrees with the deviations from the references
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in Figure 6.4a and 6.4b.

Effect of different target values

From the solvation free energy results of anions in Figure 6.4a, one can see that the devi-
ations for anions F−, Cl−, and Br− are surprisingly much larger (∼ 10%) than that for the
cation species. This is because there are two experimental sources that disagree with each
other quite a lot[49, 65]. To further quantify this deviation, we have performed optimiza-
tions of cations with the Schmid values [65] as the target and the Marcus values [49] as the
target. It turns out that JC’s parameterization for anions will pass the isoline targeting the
Schmid values, see Figure 6.7. This is one of the reasons that the discrepancies for anions
are large in Figure 6.6. It should be noted that this deviation is not an accident, as many
parameterizations of anions with TIP4P like water models: Studies of Jensen, Smith, and
Joung [32, 36, 69] have all obtained SFE results closer to the Schmid values. The reason for
targeting different experimental values is that the shift of one target property can gain per-
formance of other properties. In other words, the discrepancy between the IOD and SFE
isolines can be narrowed down by shifting to a more reasonable target value.

It is worth noting that here we used the TIP4P/2005 water model while JC calculated
their results with TIP4P/Ew water model. This similarity again shows that there is a good
transferability between the TIP4P/2005 water and TIP4P-Ew water[18].

Figure 6.7: Shift of SFE isolines due to change of target values. First row contains search results with Marcus
values as the target. Second row contains search results with Schmid values as the target.
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6.1.4. Divalent cations results

Figure 6.8: Isolines for SFE and IOD of divalent cations. The notations are same as before.

In the case of divalent cations, we use the Mamatkulov parameter sets to examine the per-
formance of the GP predictions. The MD simulation results of TIP4P/2005&Mamatkulov
force field combination have been reported in Ref[18]. The predictions for all the divalent
cations studied in this project (Mg2+, Ca2+, Ba2+) yield satisfying results compared with
references, see Figure 6.4a and 6.4b.

The Mamatkulov parameter sets locate to the right of SFE isoline and to the left of IOD
isoline for all three divalent cation species, Mg2+, Ca2+, and Ba2+. This indicates that all
these parameter sets underpredict both SFE and IOD results with TIP4P/2005 water. One
can quantitatively compare our GP predictions with MD results from Ref.[18] in Figure 6.4a,
6.4b, and Table B.3.

6.1.5. Conclusions of correlation maps

Figure 6.5, 6.6, and 6.8 give a clear view of force field performance discrepancies between
two target properties: SFE and IOD. The monovalent cations (Li+, Na+, K+, Rb+, Cs+) have
the lowest discrepancies between SFE and IOD isoline, compared with divalent cations
(Mg2+, Ca2+, Ba2+) and anions (F−, Cl−, Br−). This is also reflected by that monovalent
cations have clear intersections of SFE and IOD isoline, while the other ion species do not.
Monovalent anions are parameterized with large size parameters, so they could be eas-
ily polarized. Thus a high level of discrepancy between target properties can be found.
Moreover, the choice of reference data[49, 65] also contributes to this discrepancy. Small
and high charge ions like Mg2+ and Ca2+ have low polarizability, but they will polarize the
water in the system due to high charge density. Therefore the polarizable water model is
more advisable for narrowing down the discrepancy of high charge ions. The charge scaling
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treatment will reduce SFE results significantly, while the compensation of Döpke et al.[18]
shows good performance. This can be reflected in the correlation map that the isolines with
ECC and compensation are close to the isolines with unscaled charge, suggesting the SFE
results of scaled charge cases are compensated correctly to the unscaled charge cases. The
charge scaling treatment will also slightly increase the IOD results. These correlation maps
provide a clear idea of how the 4 force field parameters (ε, σ, q , m) will influence the ionic
target properties. From Figure 6.4a and 6.4b, we can also conclude that the test parameter
sets [36, 48] performed very well with SFE. However, due to that they did not consider IOD
as a target, their force fields perform very poorly in terms of IOD.

For the sake of easy representations, some studies have approximated the optimum
region with mathematical equations[36, 79]. Here we use the following expression :

ε= 10
∑3

i=0 ci∗(σ)i
(6.1)

The coefficients ci for different isolines are listed in Appendix B.5. Since the parameter sets
on the isoline are all optimums of a specific property, the original 2D multiple objective
optimization problem can be simplified through finding this isoline. We can reduce the
number of independent variables by one because two L-J parameters are correlated with
each other.

The discrepancies between force field simulation results of different properties have
also been reported in other studies [23, 48]. These discrepancies are imposed by the em-
pirical formalization of Lennard-Jones 6-12 potential rather than errors from our model.
The balance of discrepancies between different ionic properties is a very delicate job, as it
is not possible to find a parameter set that gives an agreement between all target proper-
ties. There must be some trade-offs. We can combine the isolines of different properties to
achieve a better representation of trade-offs. For each ion species, we can use the GP pre-
diction to generate costs of mean for test points in the unsampled domain. After the data
normalisation, the costs of different properties are at the same order of magnitude. We add
these costs together to get the combined cost:

Total costs =∑
i

costi (6.2)

The location where the combined cost is the lowest can be used to locate the mixed isoline.
This combined isoline finds its location between the SFE and IOD isoline, so it will not give
the perfect SFE and IOD results simultaneously. But the costs of these two properties will
not be too high.

6.2. Diffusivity

We use two references to cross-validate the combined isoline of the primary targets: ex-
perimental results from Marcus et al.[49] and MD simulation results from Döpke et al.[18]
with force field combination as TIP4P/2005&Madrid. We only show the diffusivity results
using L-J parameters along the isoline in Figure 6.9, 6.10 and 6.11. The off isoline cases are
attached in Appendix A.
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Figure 6.9: Self diffusivity of cations with ionic L-J parameters along their combined isoline.

Monovalent cations: The charge scaling treatment can significantly improve the self
diffusivity results, except for Li+. This is because the unscaled charge cases usually under-
estimate the self diffusion coefficient of monovalent cations. Consequently, ECC treatment
improves the performance of ionic diffusivity results by increasing them, see Figure 6.9.
The Li+ is an exception because MD result of unscaled charge cases already seems to over-
shoot the experimental value. The variation of self diffusivity result is quite small along
the isoline. In terms of parameterization trend off the isolines for monovalent cation ions,
we have found that diffusivity will increase as the L-J σ parameter increase, this effect is
most pronounced for Na+ and K+. While the diffusivity will increase as the L-J ε parameter
increase, this effect is most pronounced for K+, Rb+, and Cs+, see Figure A.1 and A.2.

Anions: In Figure 6.10, the variation of ionic diffusivity along the combined isoline is
also very small. It can be seen that MD results along the isoline all underpredict experi-
mental values. This discrepancy is found to be the largest for Cl−, which almost reaches
25% of the experimental value. The charge scaling treatment can compensate for these
underpredictions, gives nearly the same results as the experimental values. As for the pa-
rameterization trend off the isolines, the increase of both the L-J parameters can cause the
diffusivity to increase. This effect can be observed for all anions that have been studied, see
Figure A.1 and A.2.

Divalent cations: We can see that the diffusivity of all three divalent ion species has
increased by about 0.15 [1e-9 m2/2] after scaling charge from 1.00 to 0.85. However, the
performance of Mg2+ and Ca2+ has not been improved because the unscaled Mg2+ and
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Ca2+ already matches the experimental value well. The performance of Ba2+ has been im-
proved after the charge scaling treatment. As for the off isoline region, a slightly increasing
trend is found only for Ba2+ when we are varying the L-J ε parameter. This indicates that L-J
parameters are not the dominant factors for determining self diffusivity of divalent cations
Mg2+, Ca2+, and Ba2+, see Figure A.1.

Figure 6.10: Self diffusivity of anions with ionic L-J parameters along their combined isoline.

Figure 6.11: Self diffusivity of divalent cations with ionic L-J parameters along their combined isoline.

6.3. Conclusions for diffusivity calculations

Probing along the optimum region of primary targets, we have found the diffusivity results
tend to underpredict the experimental values, except for Li+, Mg2+, and Ca2+. The use of
scaling charge can improve the result of obtained ionic diffusivities. This phenomenon has
also been reported in the study of Benavides et al.[7], where they performed calculation
of concentration dependence of self diffusivities for Na+ and Cl−. We have extended this
calculation for other common ion species and it shows that scaling charge can increase
diffusivity result to a mount of 0.1 - 0.4 [1e-9 m2/s] for L-J parameters from the optimum
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regions of corresponding ion species. Therefore, a force field with scaled charge treatment
should be considered when the diffusivity is aimed for a target.

For ions with small size parameters like Li+, Mg+, and Ca2+, their diffusivity results al-
ready overshoot the experimental values. This is because these ions have high charge den-
sities so the polarization of water molecules is significant.

6.4. Structural Properties

Now we investigate the structural properties. We use the radial distribution function (RDF)
to describe the ion-water structure and ion-ion structure in section 6.4.1 and 6.4.2.

6.4.1. Ion-water structure

Figure 6.12: Cation oxygen RDF at different locations in the parameter space and their corresponding
integration plots. The water model used here is TIP4P/2005

Figure 6.12 shows the RDF plot for 5 different locations, describing the ion-water structure
with different force field parameter sets. The water model used here is TIP4P/2005. It re-
veals that the radii of the first hydration shell are indeed the same for all cases along the
isoline, as shown by the peak position of locations 1, 2, and 3 in Figure 6.12. Furthermore,
the height of peak will decrease as the σ increase, and the coordination number will also
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slightly decrease asσ increase. The location and size of the second hydration shell as well as
the other parts of the RDF are nearly the same for simulation results along the isoline. This
similarity suggests the local structures for ions along the IOD isoline are nearly identical.

At location 4, where both of the L-J parameters are small, the IOD result is smaller than
that from the isoline. The height of the first peak is higher than that along isoline, and yet
the integration value is lower. At location 5, the height of the first peak is rather low and the
second peak has disappeared, suggesting that the nested shell structure around the center
ion has almost vanished.

6.4.2. Ion pairing

Ion pairing is commonly used by researchers to deduce the the solubility limit of electrolyte
solution.[7, 23, 36, 79, 81] Figure 6.15 shows the cation-anion RDF. Inside the cut-off range,
one can observe two peaks. The peak height indicating the probability of finding a dis-
tribution particle at that distance, relative to the average density of the system. The first
peak represents the direct ion pairing where the cation and anion directly formed a cluster.
The second peak represents the solvent separated ion pairing. Figure 6.13 shows these two
types of ion pairs schematically. There is a long standing problem in ionic solution simu-
lation that the direct ion pairing will lead to unphysical ion precipitation even at a low salt
concentration[5, 7, 36, 79, 81]. Figure 6.14 gives an example of ion cluster under solubility
limit. Once this ion-ion complex is formulated, involved ions will not be separated. This
phenomenon can deteriorate the performance of a system and underpredict the solubil-
ity limit. Therefore, one should be extra careful with the direct ion pairs when performing
force field parameterization [7, 23, 79, 81].

(a) Direct ion pairs. (b) Solvent separated ion pairs.

Figure 6.13: Two different types of ion pairing

Figure 6.14: A typically ion cluster in MD simulation. One Ba2+ attracts three Cl−. Involved ions will not be
separated again.
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It should be pointed out that the experimental data for the cation-anion contact pairs
are generally non-accessible, so we take empirical criteria to measure the level of precip-
itation in the solution. An approach proposed by Benavides et al. has been accepted by
various studies. [7, 79, 81]. In this method, the contact ion pairs are employed to judge
the level of ion aggregations. This is achieved by computing the CIP results near the salt
solubility limit. A system without notable precipitations should have a low CIP value. They
also proposed a threshold of 0.5 for checking [7, 81].

Conventional way of determining CIP number requires a large system size and a long
simulation length such that the full precipitation can be observed. Moreover, at the solubil-
ity limit, the amount of ions could be at the same order of magnitude as the number of wa-
ter molecules, e.g., LiCl has a solubility of 19.95 M. Such high amount of additional particles
will increase the computation complexity and make the system being hard to equilibrate.
Therefore, apart from using the 0.5 criteria from Benavides et al. [7], we also determine the
precipitation with the aid of observing the shape of cation-anion RDF. From our investi-
gations, we have found that the shape of cation-anion RDF is very similar for systems of
different concentrations. In other words, if the first peak is higher than the second peak at
a high concentration, then the height of the first peak will also be higher at a low concen-
tration. This similarity between the RDF shape has also been reported in the study of Fyta
et al. [23] and Benavides et al.[7]. This can be explained by the probability of finding distri-
bution atoms around the central atom will be influenced simultaneously by the change of
salt concentration. A system without obvious precipitation usually has a low height of first
peak, see Figure 6.15 for the first case. Therefore, we use the height comparison and CIP
result to determine the level of precipitation.

Figure 6.15: Contact ion pairs of NaCl. The counter Cl− is taken from JCTIP4P-Ew force field. L-J parameters
follow the combined isoline, the σ is increasing from left to right. The blue cases represent the ion-oxygen

RDFs and orange cases represent the ion-ion RDFs.

Figure 6.15 also shows parameterization trends along the isoline. We only take the



6.5. Parameterization trends 55

cation as the center atom and determine the cation-anion RDF for verifying the param-
eterization trends. The JCTIP4P-Ew Cl− is used as the counterion. Zeron et al.[81] and
Benavides et al.[7] have suggested that the location of the upper integration limit of ion-
ion RDF (the first minimum) should be very similar to that of ion-water RDF, so we plot
them together for comparison. One can see clearly the height of the first peak increasing
drastically as the force field parameters probe to the right segment of the isoline (larger σ
and small ε). This trend has been found for monovalent cations and Ba2+, see Appendix A.2
for other salt species.

Using parameters from the isolines, Mg2+ and Ca2+ barely see any variation of CIP re-
sults, see Appendix A.2. This can be attributed to the charge density for Mg2+ and Ca2+

is very high as they are divalent ions with small σ parameters. They strongly attract the
surrounding anions in simulation so the L-J parameters have no significant effect here.

6.5. Parameterization trends

The 4 force field parameters (σ,ε,m, q) control the overall performance of a L-J ion. This
section provides reasoning for the parameterization trends of ε,σ, q . Mass of ions will not
be considered as a variation here since it is fixed for a specific ion species. The general
trend for dependence of mass is that heavy ion species from the same group will tend to
have large L-J parameters. The significance of understanding the parameterization trends
is to have a guide for the final calibrating. This is helpful for the cases where we cannot
probe the full landscape of the target properties (Di , CIP), but we still want to include them
into the parameterization. Table 6.1 first summarize the trend. In the subsequent sections
we will provide reasoning for these trends. In this table, "+" stands for the property increase
with the force field parameter increase, while "-" stands for the property will decrease with
the force field parameter increase. Note for CIP computation, the parameter trends are
found for L-J parameters of the center cations.

σ ε q
∆Gsol - - +

ri o + + -
Di + + -

nCIP + - +

Table 6.1: The qualitatively dependence of 4 properties on ions force field parameters.

6.5.1. Solvation Free Energy

The SFE (absolute value) of ion will decrease as the L-J parameters increase. This depen-
dence trend has also been backed in many studies [23, 28, 36, 45, 46, 48, 79]. The charge
of an ion will greatly influence its solvation results, because the charge magnitude is the
major influence of Coulombic interaction in the two-stage TI.

The reason for the dependence on the L-J σ parameter can be attributed to the shift
of ion size, which will result in a change of the hydration shell and cavity size. Hence the
Coulombic potential will change accordingly. As the ion-water distance becomes large, the
Coulombic potential will become weak. So the magnitude of solvation free energy drops.
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As for the dependence on the L-J ε parameter, one needs to consider the potential in
the system as well as the local environment near the first hydration. The change of the L-J
ε parameter will indirectly affect the free energy result by altering the electrostatic poten-
tial. The strong Coulombic interaction causes the water around the ion to change their
orientation to either the hydrogen or oxygen atom towards the central ion. The van der
Waals potential here provides a repulsion to balance the Coulombic attraction. An increase
in the ε parameter will cause strong repulsions so the IOD result will increase. Therefore,
the increase in distance in return triggers the Coulombic interaction to become weaker, so
the solvation free energy drops. The weak dependence of ε parameter also agrees with this
indirect triggering effect.

6.5.2. Ion Oxygen Distance

The dependence of Ion-oxygen distance on these 3 force field parameters can be closely
related to local structure near the ion. A large L-J σ parameter will give rise to a large IOD
result, but the IOD result will not exceed the distance at minimum energy depth: ri o <
σi j ∗21/6 (σi j = (σi +σ j )/2) in our simulations. Figure 6.16 provides a quantitative relation
between the ri o and the σi j ∗21/6. The fact that ri o is smaller thanσi j ∗21/6 also reveals the
van der Waals part of water-ion interaction is repulsion.

Figure 6.16: The ion-oxygen radii and distance at minimum energy depth vs. the L-J σ parameter of sodium
ion. The energy parameter is set be a large constant (0.316 Kcal/mol) to maximize IOD. Water model used is

TIP4P/2005.

The dependence of IOD on the L-J ε parameters is explained before in the section 6.5.1.
The dependence of IOD on ionic charge can be understood by the Coulombic inter-

action of ion and water. The scaled charge treatment (reduce the ion charge magnitude)
will cause the ion-water Coulombic attractions become weak, so IOD result becomes large.
This can be verified in our correlation map, where the scale charge treatment shift the iso-
line to the left bottom location.

6.5.3. Self Diffusivity

Figure 6.17 shows the local structure of the first hydration shell, which will influence the
transport property of ion significantly. A compact hydration shell will hinder the Brown-
ian motion of center ions, whereas a relative loose hydration structure will result in more
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notable Brownian motion.
Due to the strong Coulombic attraction, the water around the cations will form a struc-

ture in which the oxygen orient towards the ions, see Figure 6.17a. This structure is consid-
ered to hinder central ions’ motion since the net dipole moment of water are point to the
center, and the second hydration shell can also be formulated in a similar orientation. In
contrast, the local structure of the anions is very loose. One hydrogen site of water will ori-
ent towards the center anion while another hydrogen site will be attracted to the oxygen site
from second hydration shell. Compared to the first structure where the total water dipole
are point center, this kind of local structure is less stable. Moreover, the size parameteri-
zation of monovalent anions (∼ 5Å) is much larger than that of monovalent cations (∼ 2Å).
The local structures of anions will have less constrain of the center ion. As for the influ-
ence of ionic charge, ion will diffusive more after reducing the charge magnitude. This is
because the Coulombic interaction, which hinders the ions motion through the hydration
shell, will be less pronounced after scaling charge.

(a) Cation.
(b) Anion.

Figure 6.17: The orientation of first hydration shell around cations and anions.

The increase of both L-J parameters can give rise to higher ionic self diffusion coeffi-
cients. This could be partially attributed to the fact that a large L-J σ parameters causes
an increase of IOD, which makes the hydration shell become loose. Large L-J ε parameters
cause the vdW repulsion stronger so ionic diffusion coefficients are increased. Appendix
A contains the parameterization trends of diffusivity. The reason that one does not see
monotonically increasing trends for all ion species can be attributed to that self diffusiv-
ity is a non-linear black-box function of force field parameters. Only for certain force field
parameter combinations one can observe increasing trends.

6.5.4. Contact Ion Pairs

According to our MD results, along the isoline, a very low L-J εparameter or a very high L-Jσ
parameter for cations will lead to the nonphysical direct ion clustering, see the ion-ion RDF
in Figure 6.15 and Appendix A.2. This trend was also reported in the study of Fyta et al.[23].
This tendency can be explained by that a large cation size will attract more anions. Whereas
a small energy parameter will expose the Coulombic interaction in the system so the ion-
clustering phenomenon will become more significant. This trend makes CIP result along
the isoline very distinguishable, along which the parameterization from the left segment
(large ε) has a small CIP value and parameterization from the right segment has a large CIP
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value.

6.6. Design Force Field Parameters

We can now select parameters from model that we have built so far. This section gives
our solution for designing the 12-6 L-J parameters. It should be noted that the design of
L-J parameters can have different criteria[7, 23, 36, 45, 48, 79, 81] and our design is only
based on the single ion and ion-ion properties that we have studied in this project. Here
our purpose is to illustrate the procedures of designing ionic force field parameters. Based
on the L-J correlation we have found, although we can pick various points along the com-
bined isoline or either one of the single isoline. It is still problematic to determine a specific
single final parameter set from these correlations. Even if we introduce more ionic proper-
ties to find more optimum regions and parameter correlations, we still need to balance the
costs of choosing one parameter set over another. The optimum regions of different targets
would not cross for the same set of force field parameters. There are always some discrep-
ancies between optimum regions of different target properties. There is no such perfect
parameter set for us to select; trade-offs must be made.

The determination of the final parameters varies from different research groups. Joung
and Cheatham[36] used the solid-state properties of ions crystals as a reference for their
design. Yagasaki et al. calibrated their parameter set to match the salt solubility according
to the crystalline potential energy[79]. Mamatkulov et al. determine their parameter set
by calculating the activity derivatives through the Kirkwood-Buff (KB) solution theory and
choose the one that yields the closest result to the experimental values[48]. Li et al. used
L-J parameters of noble gas to narrow down the search range[45]. Inspired by Li’s work, we
believe it is reasonable to select the parameters according to chemical species group, e.g.
the alkali ions group, and use L-J parameters of neighboring ion species to narrow down
the search range.

The 12th power term in L-J potential describes the Pauli repulsion due to the overlap of
electron orbitals in the short range. The 6th power term represents the van der Waals attrac-
tion in the long range. Clearly, chemical species from the same group have the electronic
structures differ in the number of orbitals. A more dispersive electron cloud means both
of the L-J parameters should be large. Take ions from the earth alkali group as an example.
In our study, ions from this group should have L-J parameters smaller than the Cs+, since
Cs+ has the largest number of electrons in this project. Moreover, the parameterization of
Rb+ should be located between the parameterization of K+ and Cs+. Hence we could use a
curve to connect the parameterization of ions from same group. This curve represents the
σ and ε relation for the ions with similar electron cloud structures. Essentially it provides
stability for the force field parameters of ions. Together with the previously found isolines
of SFE and IOD, which essentially provides stability for the force field parameter of water,
the force field design problem will be easy to tackle. The dependence study we have carried
out also gives us significant assistance for calibrating the force field parameters.

Finally, we calibrate our force field parameters according to the following procedures:

• Near the combined isoline for SFE and IOD.

• Between the existing L-J parameterizations from the same element group.



6.6. Design Force Field Parameters 59

• A low value of direct contact ion pairs.

• Closest self diffusivity to the experimental value.

The first attempt is to select the parameters near the intersection of the SFE and IOD iso-
line. This applies to all of the alkali metal cations except for Li+, in which case there is no
clear intersections in the chosen domain. For these cases with no clear intersections, we
chose the parameters along the combined isoline. Then the selection is based on tuning
parameters for the diffusion coefficient and CIP. Take the sodium as a concrete example,
the first choice is ε = 0.11630 [Kcal/mol], the CIP near the solubility limit is found to be
0.49, which is quite close to the 0.5 threshold. So we went for a larger energy parameter and
calibrated it with the diffusivity trends. The final parameter set is (ε,σ) = (0.18425 Kcal/mol,
2.20253 Å).

We also use one metric suggested by Vega et al. [76] to evaluate the L-J parameter of our
design.

M = max

{(
10−

∣∣∣∣ X −Xexp

PtolXexp

∣∣∣∣) ,0

}
(6.3)

Where the Ptol is the relative tolerance for property X . The score is 10 if the relative error is
within 0.5 times the tolerance. The score is 0 if the relative error is 10 times the tolerance.
The tolerance is set to be Ptol = 1% for SFE and IOD, Ptol = 10% for self diffusion coefficient.

Table 6.2: Selected parameters and corresponding obtained ionic property values. The units for values of
SFE, IOD, and Di are Kcal/mol, Å, and 1e-9m2/s

ε[Kcal/mol] σ[Å]
value

SFE IOD Di
Li+ 0.11247 1.55087 110.4 2.00 1.27
Na+ 0.18425 2.20253 87.7 2.37 1.06
K+ 0.83278 2.75247 71.3 2.80 1.68

Rb+ 0.98174 2.94043 67.8 2.92 1.82
Cs+ 0.86889 3.36745 61.7 3.12 1.93
F− 0.00060 4.84700 121.0 2.68 1.33
Cl− 0.00618 5.14400 87.7 3.17 1.63
Br− 0.00874 5.43700 80.8 3.37 1.74

Mg2+ 0.44770 1.30519 431.6 1.93 0.73
Ca2+ 0.69720 2.16307 351.1 2.36 0.80
Ba2+ 0.83068 2.92288 298.3 2.72 0.78

We conclude the evaluation of the final design force field parameters on four properties
in Table 6.2. The performances of these parameter sets are compared with the transferred
TIP4P-Ew optimized parameter sets from Ref.[36]. Figure 6.18 compares the performance
scores between optimized parameters and transferred parameters, evaluated by Equation
6.3. Figure 6.19 summarizes obtained CIP values using the optimized parameter sets un-
der different concentrations of salts. For LiCl, the solubility limit is too high (19 M) so we
abandoned calculation of its CIP value near the solubility limit.

The transferred parameters [36, 48] performed well for SFE. But their performances are
not so good for IOD and CIP. Therefore, we use the parameterization trends and optimum
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regions that have been developed so far to balance the trade-offs. It should be pointed
out that we are able to simultaneously optimize SFE, IOD, and diffusivity. Since there are
clearly intersections between the optimum regions of SFE and IOD, and diffusivity results
near that region are also quite good. However, we still tend to deviate from that parameter
region in order to gain performance for CIP. The biggest SFE compromisations are made
for Rb+ and Cs+ since their ion aggregation phenomena are the most severe among all
monovalent ions species. After optimization, the performance of IOD, diffusivity, and CIP
see notable improvements. The optimized parameter sets for RbCl and CsCl give CIP values
of 0.410 and 0.770 at a moderate concentration of 4.5 M. Using the optimized parameters,
the spontaneous ion aggregation issue has been eased. For anions, the performance is very
poor for SFE due to the inappropriate target values as it has been discussed in section 6.1.3.

From Figure 6.18 and 6.19, we can see that there is great potential for optimizing better
parameter sets for divalent cations. Our optimized parameters sets can simultaneously
improve the performance of SFE, IOD, diffusivity, and CIP for divalent ions. Except IOD
result of Mg2+ is deteriorated slightly. Although salt with high charge density cation like
Mg2+ seems hard to achieve a good CIP result. Salts with large size cation can have huge
potential for easing the ion clustering issue. The CIP results are reduced to a low level both
for CaCl2 and BaCl2 using the optimized parameters.

Figure 6.18: Comparsion of scores between the transferred parameters and optimized parameters.

Figure 6.19: Comparsion of CIP results between the transfered parameters and optimized parameters.
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Conclusion and Outlook

7.1. Conclusion

Parameterization of the ionic force field with nonpolarizable rigid water model TIP4P/2005
has been studied in this project. Now if we look back at the research objectives in the first
chapter, we can answer them as the following

• (1) Formulate an efficient alternative approach to sample the force field parameters
with the help of a probabilistic Machine Learning model.

An alternative efficient parameterization method based on Bayesian inference has been
studied. This gradient-free optimization routine uses acquisition functions to guide the
sampling and Gaussian Process to estimate the unknown parameter space. With the help
of this probabilistic machine learning model, we can find the optimum solution for a force
field design problem quickly. The efficiency gain is demonstrated by searching the opti-
mum parameter sets in only a few optimization steps, compared to hundreds of iterations
from the conventional grid search method from previous studies [28, 36, 45]. This method
has a huge potential in tackling complex force field design problems with only a few itera-
tions, in which case the number of parameters that need to be considered might be dozens.

• (2) Explore the ionic force field parameter space and estimate the parameterization
trends of target ionic properties.

Four ionic properties have been investigated for force field parameter design, they are sol-
vation free energy, ion oxygen distance, self diffusivity, and contact ion pairs . The corre-
sponding MD simulations are carried out in the LAMMPS. We have found the optimum re-
gions of SFE and IOD, which match the Marcus experimental values[49], through Bayesian
Optimization. We have struggled in finding optimum regions for some other properties
because accurately acquiring these data is not a trivial task. Specifically, the determination
of ionic self diffusivity and CIP requires a certain level of human interaction. For diffusiv-
ity, the high statistical uncertainty causes the final result is not precisely described. For
CIP, the height of the first peak varies for different simulation configurations, and one has
to read the result via human interactions. To properly including diffusivity and CIP into
optimization framework, we have used MD simulations to verify their parameterization

61
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trends, which gives us a direction for further calibration. The dependence study is focused
on the combined isoline of the primary targets. For ion species that have been studied, it
has been found variations of self diffusivity are small within the common parameterization
range along the isoline. Whereas the CIP results vary drastically, a small L-J σ parameter
or a large energy parameter can significantly ease the direct ion-pairing phenomenon. The
discussion of dependence has been reported in section 6.5.

We studied three ionic force field parameters in this project, namely, two L-J parame-
ters (ε, σ) and the charge of the ion, q . It shows the σ parameter has a more significant
influence than the ε parameter on the ionic properties here. In other words, the effective
dimensionality of the ε parameter is low, so we used a base 10 logarithm to scale this di-
mension. The optimization formation after this scaling is much better. Scaling charge of
0.85 is an educated design for TIP4P/2005 water to include the electronic continuum con-
tribution into consideration, so we computed ionic properties with scaled charge of 0.85
to investigate the influence of ionic charge. Our primary targets of SFE and IOD perform
very well for unscaled charge cases. The scaled charge treatment only improves the perfor-
mance of secondary targets. However, applying the charge scaling naively will damage the
performance of the solvation property. This problem is subsequently tackled by a study of
Döpke et al[18]. in which they derived theoretically that the correction of solvation property
can be compensated through multiplying the raw solvation results by εel (which is 1/0.852

adopted by Zeron). We have used MD simulation to prove this correction shows excellent
performance, and it can be used as a solid correction in further study where the scaling of
ion charge is involved.

• (3) Identify the possible cheap simulation setup for speeding up the parameterization
process.

To balance the efficiency vs. accuracy dilemma for our force field optimization problem,
we have explored different configuration setups and have chosen the cheapest configura-
tion while guaranteed the accuracy, as it was discussed in Chapter 5. We have also used an
order-n like algorithm implemented by Jamali et al[31]. to speed up the diffusion calcula-
tion. It shows clearly that we can exploit the configuration setup to gain efficiency. This
is especially helpful for speeding up parameter selection process. The configurations were
chosen differently for each specific property.

• (4) Propose the major procedures for ionic force field parameters design. Balance the
trade-offs for selecting different properties.

First, one should select representative properties as the targets. The ideal properties should
require no human interactions for an accurate description. Second, one should balance the
costs of choosing different properties. Systematical parameterizations of more ion species
should be carried out in the future. Finally, one needs to calibrate the model by cross-
validation.

The conventional force field parameter sets are biased on specific target properties, e.g.,
solvation free energy. To address these misbalances, we could use the correlation map as a
guidance to find better parameter sets. Our calculation has shown that there is still poten-
tial for finding better parameter sets for monovalent cations in terms of SFE and IOD. Since
these optimum regions intersect in the parameter space, and the transferred parameters
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clearly deviate from the intersected optimum region. However, the problem with heavy
ions Rb+ and Cs+ is that the direct ion-pairing phenomenon is severe, even we have cho-
sen a larger L-J ε parameter. The most pronounced improvements have been found for
divalent cations, in which case there are no transferred parameter sets that are optimized
for TIP4P water model. [36, 81].

7.2. Outlook

Abandon the mixing rules:
The conventional way of innocent applying mixing rules should be reevaluated. The in-
teraction between ion-ion, ion-water, and water-water should be explicitly parameterized.
For example, we can tackle the ion aggregation problem while keeping a good performance
of single ion properties through parameterizing the ion-ion interaction and ion-water in-
teraction separately. As a result of abandoning the conventional mixing rules, we can nar-
row down the discrepancies of different target properties.

Addition of more ionic properties:
More ionic properties can be considered in the future. Many recent parameterization stud-
ies have revealed limitations of existing ionic force field parameters with some exotic ionic
properties[7, 36, 48, 81]. Besides, choosing an appropriate set of target properties is very
important in the force field parameterization. Select feasible target properties according to
the computing budget will be helpful for more productive parameterizations.

Perform systematic ionic force field parameterization:
More systematic optimizations should be carried out in the future. The conventional way
of mixing force field parameters from different sources should be avoided. Due to com-
puting power limitations, this work only performed optimization with TIP4P/2005 water
model and 11 ion species. A more thorough parameterization of different ion species can
be carried with an efficient Bayesian search.

Feature selection:
In this work, we have two correlated features, ε and σ. After scaling ε, the optimum regions
are identified in the parameter space. A more interesting study could be carried out using
implicit features like the forces and energies for force field optimization. This can be done
via neural network learning QM data.

Use one cost function for multi-objective optimization:
Complex loss function can be involved for parameterization. Suppose we can acquire all
the target properties in a precise way. In that case, we can build a loss function containing
all the costs in terms of different properties for a parameter combination.

L(ε,σ, q) =∑
i

ci ∗Xi (7.1)

Where the ci is the importance assigned to property i and Xi is the corresponding relative
error has been found under force field parameters (ε,σ, q). By directly minimizing Equation
7.1, one can automatically design the force field parameter through Bayesian Optimization.
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Further development of ECC and correction terms :
The charge scaling treatment is a hot topic in this community. More ECC studies can be
conducted for different ionic properties in the future. Besides, another good way to bal-
ance costs of different properties is to develop more reasonable compensation terms. The
correction of MD results can narrow the discrepancies between different properties using
one force field parameter set. Appropriate compensation terms could make one parameter
set represents all the target properties.

Use a more direct calibration form:
Instead of the conventional ε−σ form, a more direct calibration form like the AB form
can be used for specific target properties, e.g. transport properties, which might not be
popular for previous parameter studies. This is not only because high uncertainty of self
diffusivity causes quantifying the performance of a force field difficult, but also due to that
conventional L-J parameters cannot represent the balance of attraction and repulsion. The
ε has roles to play both in the attraction and repulsion term in the L-J potential expression.
Hence variation of this parameter has little effect on the overall balance. Instead, the AB
form can balance the repulsion and attraction more easily. See Equation 7.2.

ui j =4εi j

[(
σi j

ri j

)12

−
(
σi j

ri j

)6]
= A

r 12
− B

r 6

With A = 4εσ12, B = 4εσ6

(7.2)

Where the A and B term represent the repulsion and attraction in the L-J potential. This
collective description of potential performance makes the force field parameterization for
more straightforward. Besides, once A and B are determined, the ε andσ can also be deter-
mined.
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Additional Figures

A.1. Self diffusivity cut plane

Figure A.1: Monovalent cations self diffusivity result of varying σ while holding ε as the JC parameters[36].
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Figure A.2: Monovalent cations self diffusivity result of varying ε while holding σ as the JC parameters[36].

Figure A.3: Anions self diffusivity result of varying σ while holding ε as the Joung and Cheatham
parameters[36]

Figure A.4: Anions self diffusivity result of varying ε while holding σ as the Joung and Cheatham
parameters[36].



A.1. Self diffusivity cut plane 67

Figure A.5: Dications self diffusivity result of varying σ while holding ε as the Mamatkulov
parameterization[48]

Figure A.6: Dications self diffusivity result of varying ε while holding σ as the Mamatkulov
parameterization[48].
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A.2. Cation-anion RDF alone the isoline

Figure A.7: Cation-anion RDF along the combined isoline of K+.

Figure A.8: Cation-anion RDF along the combined isoline of Rb+.
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Figure A.9: Cation-anion RDF along the combined isoline of Cs+.

Figure A.10: Cation-anion RDF along the combined isoline of Mg2+.
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Figure A.11: Cation-anion RDF along the combined isoline of Ca2+.

Figure A.12: Cation-anion RDF along the combined isoline of Ba2+.
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A.3. The search history

Figure A.13: The SFE and IOD isolines found under different charge conditions for Li, Na, and K.
Experimental values from Marcus[49].
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Figure A.14: The SFE and IOD isolines found under different charge conditions for Rb and Cs. Experimental
values from Marcus[49].
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Figure A.15: Search results of anions with TIP4P/2005 water. The q = 0.85crc stands for applying correction of
scaled charge proposed by Döpke et al[18]. Experimental values from Marcus[49].
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Figure A.16: The SFE and IOD isolines found under different charge conditions for dications. Experimental
values from Marcus[49].



B
Additional Tables

B.1. Results of test parameter sets compared with different
sources

Table B.1: Compare the cation results of JCTIP4P-Ew parameter set from different sources. The percentage
value inside round brackets are the deviation from the Marcus experimental values [49]. The force field

combination is TIP4P/2005&JCTIP4P-Ew for our predictions and Ref [18], TIP4P-Ew&JCTIP4P-Ew for Ref
[36]. Units for ∆G , rio are [Kcal/mol], [Å].

Prediction of GP Dopke[18] JC[36] Marcus[49]
SFE IOD SFE IOD SFE IOD SFE IOD

Li
114.6

(+1.0%)
1.95

(-6.2%)
112.6

(-0.8%)
1.92

(-7.7%)
113.7

(+0.2%)
1.92

(-7.7%)
113.5
(0%)

2.08
(0%)

Na
87.9

(+0.8%)
2.35

(-0.4%)
88.4

(+1.4%)
2.35

(-0.4%)
89.0

(+2.1%)
2.35

(-0.4%)
87.2
(0%)

2.36
(0%)

K
72.4

(+2.7%)
2.72

(-2.8%)
70.4
(0%)

2.72
(-2.9%)

70.7
(+0.3%)

2.72
(-2.9%)

70.5
(0%)

2.80
(0%)

Rb
67.1

(+2.1%)
2.88

(-0.3%)
65.6
(0%)

2.87
(-0.7%)

65.6
(-0.2%)

2.87
(-0.7%)

65.7
(0%)

2.89
(0%)

Cs
62.3

(+4.1%)
3.05

(-2.9%)
60.2

(+0.6%)
3.04

(-3.2%)
60.1

(+0.5%)
3.04

(-3.2%)
59.8
(0%)

3.14
(0%)

75
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Table B.2: Compare the anion results of JCTIP4P-Ew parameter set from different sources. The percentage
value inside round brackets are the deviation from the Marcus experimental value [49]. The force field

combination is TIP4P/2005&JCTIP4P-Ew for our simulation and Ref. [18], TIP4P-Ew&JCTIP4P-Ew for Ref.
[36]. Values in the round brackets are the percentage deviation from Marcus values. Units for SFE, and IOD

are [Kcal/mol], and [Å].

Prediction of GP Döpke[18] JC[36] Marcus[49]
SFE IOD SFE IOD SFE IOD SFE IOD

F
121.9

(+9.7%)
2.69

(+2.3%)
121.2
(+9%)

2.69
(+2.3%)

119.8
(+8.0%)

2.69
(+2.3%)

111.1
(+0%)

2.63
(+0%)

Cl
88.9

(+9.3%)
3.16

(-1.0%)
90.0

(+10.7%)
3.16

(-1.0%)
89.2

(+9.7%)
3.16

(-1.0%)
81.3

(+0%)
3.19

(+0%)

Br
82.3

(+9.3%)
3.29

(-2.4%)
83.8

(+11.2%)
3.30

(-2.0%)
82.8

(+10.0%)
3.31

(-2.0%)
75.3

(+0%)
3.37

(+0%)

Table B.3: Compare the anion results of Mamatkulov parameter set from different sources. The percentage
value inside round brackets are the deviation from the Marcus experimental value [49]. The force field

combination is TIP4P/2005&Mamatkulov for our simulation and Ref. [18], SPC/E&Mamatkulov for Ref. [48].
Values in the round brackets are the percentage deviation from Marcus values. Units for SFE, and IOD are

[Kcal/mol], and [Å].

Prediction of GP Döpke[18] Mamatkulov[48] Marcus[49]
SFE IOD SFE IOD SFE IOD SFE IOD

Mg
420.0

(-4.4%)
1.99

(-4.8%)
415.0

(-5.5%)
1.99

(-4.8%)
439.1
(0%)

1.96
(-6.2%)

439.3
(0%)

2.09
(0%)

Ca
346.1

(-4.4%)
2.35

(-2.5%)
344.0

(-5.0%)
2.36

(-2.1%)
362.1
(0%)

2.38
(-1.2%)

362.1
(0%)

2.41
(0%)

Ba
287.6

(-4.4%)
2.71

(-1.5%)
289.4

(-3.8%)
2.70

(-1.8%)
300.7
(0%)

2.69
(-2.2%)

300.7
(0%)

2.75
(0%)

B.2. Obtained CIP along isoline

Table B.4: Calculated CIP near solubility limit. Total 6 samples are made along the combined isoline evenly
according to σ parameter.

0 1 2 3 4 5 Extent(σ)
Na 0.11 0.31 0.48 0.94 1.41 1.91 [2.1, 2.6]
K 0.12 0.30 0.45 0.66 0.98 1.25 [2.6, 3.1]

Rb 0.40 0.65 0.93 1.29 1.64 1.94 [2.8, 3.3]
Cs 1.63 1.98 2.13 2.37 2.71 3.27 [3.3, 3.8]
Mg 1.83 1.80 1.80 1.78 1.77 1.77 [1.3, 1.8]
Ca 1.95 2.05 2.04 2.13 2.17 2.27 [2.3, 2.8]
Ba 0.17 0.45 0.89 1.00 1.47 1.53 [3.0, 3.5]
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B.3. Regression coefficients for different properties with Equa-
tion 6.1

Table B.5: The regression coefficients

c3 c2 c1 c0

Li
SFE -0.240207 1.922921 -6.999021 5.797023
IOD -0.078759 0.800124 -4.395506 4.562202

Comb. -0.159483 1.361522 -5.697264 5.179613

Na
SFE -0.202580 2.247030 -9.952319 12.539170
IOD -0.044321 0.599527 -4.176320 6.032138

Comb. -0.123450 1.423279 -7.064319 9.285654

K
SFE -0.484852 6.084543 -26.688975 37.397897
IOD -0.028188 0.497136 -4.158313 8.185990

Comb. -0.256520 3.290840 -15.423644 22.791943

Rb
SFE -1.295657 15.349315 -61.920486 82.453647
IOD -0.115113 1.422862 -7.446152 12.418612

Comb. -0.705385 8.386089 -34.683319 47.436130

Cs
SFE -1.344221 18.261828 -83.634556 126.198375
IOD 0.006775 0.128691 -3.023407 8.388813

Comb. -0.668722 9.195260 -43.328981 67.293594

F
SFE -0.148382 2.231751 -12.485548 22.140828
IOD 0.022549 -0.200914 -0.964690 3.383862

Comb. -0.062916 1.015418 -6.725119 12.762345

Cl
SFE -0.191372 3.409747 -21.320186 43.613033
IOD -0.014158 0.300453 -3.262071 8.629494

Comb. -0.102765 1.855100 -12.291128 26.121263

Br
SFE -0.249607 4.650339 -29.916454 63.421296
IOD 0.004773 0.018573 -1.939185 7.238161

Comb. -0.122416 2.334456 -15.927819 35.329729

Mg
SFE -0.747950 4.531075 -11.120492 7.364099
IOD -0.126790 1.098908 -5.054092 5.808132

Comb. -0.437370 2.814992 -8.087292 6.586116

Ca
SFE -0.281717 2.741611 -10.563583 12.311047
IOD -0.008574 0.260896 -3.129491 5.696672

Comb. -0.145146 1.501253 -6.846537 9.003860

Ba
SFE -0.438271 5.266515 -22.575666 31.748379
IOD -0.015047 0.310779 -3.321552 7.426878

Comb. -0.226659 2.788647 -12.948609 19.587629



C
Mathematical Background

C.1. PDF and CDF

The probability density function specify the probability of random variable fall into particle
range of values, the probability of that range can be obtained by integrating over PDF for
that range. Suppose a random variable X follows normal distributions with µ as mean and
σ2 as the variance, X ∼N (µ,σ2) , it’s PDF has an explicit expression of probability density
function as:

f (x;µ,σ) = 1

σ
p

2π
e− (x−µ)2

2σ2 (C.1)

Cumulative distribution function of variable X at x is defined as the probability that X
take value less than x. Conventionally it is written asΦ(x). Suppose X ∼N (µ,σ2), then the
CDF can be obtained as:

Φ(x;µ,σ) = 1

σ
p

2π

∫ x

−∞
exp

(
− (t −µ)2

2σ2

)
d t (C.2)

C.2. Probability improvement

One famous acquisition is the probability of improvement or PI[11, 41]. The utility function
is defined as:

u(x) =
{

1 f (x) ≥ f (x+)
0 f (x) ≤ f (x+)

(C.3)

The utility is 1 if the probed function value is larger than the best function value than have
been found. Otherwise the uility is 0. Then the acquisition function is the mathematical
expectation of the utility given the observations :

a(x) = E[u(x) |D1:t ] =
∫ ∞

f (x+)
N (µ(x),σ(x))d f (x)

=Φ
(
µ(x)− f (x+)

σ(x)

) (C.4)
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where x+ = argmax
xi

f (xi ), xi ∈ x1:t , Φ() is the normal cumulative distribution function, µ(x)

and σ(x) are the mean and standard deviation of the normal distribution at the test points.
The interpretation of this function is to model the probability of getting better results than
the previous observations. This is why cumulative distribution function is used in Equation
C.4. A better understanding can be found in Figure 4.5, where the algorithm sampled three
points in the parameter space. The maximum of the observation found at this step is lo-
cated at x+. Therefore, the probability of improvement is found by integrating the normal
cumulative distribution function from the maximum function value f (x+), which can be
represented by the green shaded area in Figure 4.5.

C.3. Matern class of kernel functions

Some researchers have suggested that the infinitely differentiable property of squared ex-
ponential (SE) kernel makes the results sometimes unreasonable[72]. Thus, a more realistic
Matern class is proposed for engineering applications. The Matern kernels class is a gener-
alization of SE kernel. It has the from like:

k
(
xi , x j

)= 1

Γ(ν)2ν−1

(p
2ν

l
d

(
xi , x j

))ν
Kν

(p
2ν

l
d

(
xi , x j

))
(C.5)

where d() is the Euclidean distance, Kν() is the modified Bessel function, Γ(ν) is the Gamma
function. If ν→∞ then this expression becomes the normal SE kernel. The most notable
intermediate values are ν= 3/2 (MA3 kernel) and ν= 5/2 (MA5 kernel).

C.4. R2 score

In statistics, the Coefficient of Determination or the R2 score can evaluate level of regres-
sion accuracy. If a data set yi = [y1, y2, , , , , yn] and the corresponding given references (fitted
model) are fi = [ f1, f2, , , , , fn]. Then the R2 score is defined as:

R2 = 1− SSres

SStot

with SSres =
∑

i

(
yi − fi

)2 ,SStot =
∑

i

(
yi − ȳ

)2
(C.6)

SSres is the sum squared total errors of data and their means. SStot is the sum squared re-
gression errors of data and their corresponding fitted values. The R2 score measures how
good is a regression compared to a simple horizontal line. If the R2 score is 1, the regres-
sion matches the data perfectly. If the R2 score is 0, the regression is the same as using a
horizontal line to interpret data. If the R2 score is less than 0, the regression is worse than a
horizontal line.



D
Physics Derivation

D.1. Electronic Charge Correction

Since 2009, Leontyev published a series of papers about the ECC, dedicating to account the
electronic polarizability effect with a non-polarizable model[42–44]. The key argument is
that scaling the charge of ions can include the electronic continuum contribution.

The dielectric constants of water in MD simulation is less than that of real measure-
ment. Specifically, the dielectric constant of water at 298 K and 1 atm is ε0 = 78.4, while the
dielectric constant of TIP4P/2005 water at same temperature and pressure is εsi m = 60[14].
This gives εel = ε0

/
εsi m = 1.31. Therefore, the electronic continuum contribution could be

included by scaling the effective charge:

qe f f = q
/p

εel (D.1)

where εel is the high frequency dielectric constant of water. After the scaling charge, the
Coulombic energy for two charged sites at distance r can be calculated by

q2
e f f

/
εsi mr = q2

/
εsi mεel r = q2

/
ε0r (D.2)

, this form automatically matches the Coulombic energy with dielectric constant of real
water molecules. The scaling factor is therefore 1

/p
εel = 0.87. Some sources reported

εsi m = 57[37], thus the scaling factor becomes 1
/p

εel = 0.85.

D.2. Equivalence between MSD and VACF Approach

The Velocity Auto-correlation Function Approach

The Green-Kubo expression gives the the diffusion coefficient as the infinite time integral
of an equilibrium correlation function of form:

D = 1

3

∫ ∞

0
〈v(t ) · v(0)〉dt (D.3)
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Green and Kubo[26, 40] initially formalized this expression. It reveals the relation between
the diffusion coefficient and the velocity autocorrelation function (VACF). The VACF essen-
tially measures how strong one property of an atom is correlated to itself over time. VACF
tells us the temporal pattern by taking advantage of the time series sample. Same as the
MSD approach, VACF only applies to the equilibrium molecular dynamics. By integrating
the VACF from 0 to infinity, one can find the diffusivity.

However, the Green-Kubo relation is rarely used. The formation of the integral of VACF
is a bad idea to be carried out in computer simulations. Unlike in the MSD approach, in
which we can store dispersed displacement data directly, treatment of the integral term is
usually accompanied with loss of accuracy. Another issue with the VACF approach is that
the tail part is very slowly converging towards zero despite the simulation length[31], which
makes it challenging to identify the integral’s upper bound.

Equivalence between Two Approaches

The Einstein relation and Green-Kubo equation are in equivalence. More specifically, the
formation of diffusion coefficient from MSD approach is:

D(t ) ≡ Dx(t )+D y (t )+Dz(t )

3
= 1

6

d

d t

[
∆x2(t )+∆y2(t )+∆z2(t )

]
(D.4)

D(t ) ≡ Dx(t )+D y (t )+Dz(t )

3
= 1

3

∫ t

0

[
Cxx(τ)+Cy y (τ)+Czz(τ)

]
dτ (D.5)

Here, D(t ) represents the diffusion coefficient at time t , Dx represents the diffusion at x
direction, ∆x(t ) represents the MSD at x direction at time instance t , Cxx(τ) is the VACF at
x direction. To proof two approaches are in equivalence:

D ≡ 1

6

d

d t

[
∆x2(t )+∆y2(t )+∆z2(t )

]= 1

3

∫ t

0

[
Cxx(τ)+Cy y (τ)+Czz(τ)

]
dτ (D.6)

Dx(t ) =
∫ t

0
Cxx(τ)dτ

D y (t ) =
∫ t

0
Cy y (τ)dτ

Dz(t ) =
∫ t

0
Czz(τ)dτ

(D.7)

The displacement between two time instance with time origins at t0 = 0 for a single particle
in one direction e.g. x is:

xi (t )−xi (0) =
∫ t

0
ui (τ1)dτ1 (D.8)

Mean square displacement can be formulated as:

[xi (t )−xi (0)]2 =
∫ t

0
ui (τ1)dτ1

∫ t

0
ui (τ2)dτ2 (D.9)

Subscript i represents for i th particle in the system, u represents the velocity projection at
x direction. Here t is the variation and t0 = 0 is the time origin and is regarded as fixed.
Mean square displacement at x direction can be formulated as:

∆x2(t ) = 〈
[xi (t )−xi (0)]2〉 (D.10)
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The angle bracket here represents the ensemble average, meaning it averages over all dif-
ferent particles i and all different time origins. The ensemble average and the time integral
are exchangeable in calculations, thus Equations D.9 and D.10 yield:

∆x2(t ) =
∫ t

0
dτ1

∫ t

0
dτ2 〈ui (τ1)ui (τ2)〉 (D.11)

Thus,

Dx(t ) = 1

2

d

d t
∆x2(t )

=
∫ t

0
dτ1 〈ui (τ1)ui (t )〉

=
∫ t

0
dτ1 〈ui (τ1 − t )ui (0)〉

=
∫ 0

−t
〈ui (τ3)ui (0)〉dτ3

=−
∫ 0

t
〈ui (τ4)ui (0)〉dτ4

=
∫ t

0
〈ui (τ4)ui (0)〉dτ4

(D.12)

The third equality in Equation D.12 use the fact that VACF only measures the time differ-
ence between two velocities, thus 〈ui (τ1)ui (t )〉 = 〈ui (τ1 − t )ui (0)〉. The fourth equality in
Equation D.12 used integration by substitution τ3 = τ1 − t . The fifth equality used another
integration by substitution τ4 =−τ3. Following the same procedure, one can proof:

D y (t ) =
∫ t

0
〈vi (τ)vi (0)〉dτ (D.13)

Dz(t ) =
∫ t

0
〈wi (τ)wi (0)〉dτ (D.14)

Hence, two formations of MSD approach and VACF approach are in equivalence.



E
L-J Parameterizations and Experimental

Values

E.1. Common L-J parameter sets in literature

Table E.1: L-J parameter sets

TIP4P/2005&Madrid TIP4P-Ew&JC Mamatkulov

Li+ σ[Å] 1.43970 1.43969 -
ε[Kcal/mol] 0.10398 0.10398 -

Na+ σ[Å] 2.21737 2.18448 -
ε[Kcal/mol] 0.35190 0.16843 -

K+ σ[Å] 2.30140 2.83305 -
ε[Kcal/mol] 0.47460 0.27946 -

Rb+ σ[Å] - 3.04509 -
ε[Kcal/mol] - 0.43314 -

Cs+ σ[Å] - 3.36403 -
ε[Kcal/mol] - 0.39443 -

F− σ[Å] - 4.52220 -
ε[Kcal/mol] - 0.00157 -

Cl− σ[Å] 4.69906 4.91776 -
ε[Kcal/mol] 0.01838 0.01166 -

Br− σ[Å] - 4.93201 -
ε[Kcal/mol] - 0.03037 -

I− σ[Å] - 5.25986 -
ε[Kcal/mol] - 0.04170 -

Mg2+ σ[Å] 1.1629 - 1.63(1), 2.63(2)
ε[Kcal/mol] 0.87282 - 0.141013(1), 0.000956(2)

Ca2+ σ[Å] 2.6656 - 2.41
ε[Kcal/mol] 0.12122 - 0.224665

Ba2+ σ[Å] - - 3.820
ε[Kcal/mol] - - 0.017686
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Table E.2: Experimental values, units for ∆G , rio, and, Di are [Kcal/mol], [Å], and [1e-9m2/2] respectively.

Marcus Schmid
∆G rio Di ∆G rio Di

Li+ 113.5 2.08 1.03 113.8 - -
Na+ 87.2 2.36 1.33 88.7 - -
K+ 70.5 2.80 1.96 71.2 - -

Rb+ 65.7 2.89 2.07 66.0 - -
Cs+ 59.8 3.14 2.06 60.5 - -
F− 111.1 2.63 1.48 119.7 - -
Cl− 81.3 3.19 2.03 89.1 - -
Br− 75.3 3.37 2.08 82.7 - -
I− 65.7 3.65 2.04 74.3 - -

Mg2+ 439.3 2.09 0.71 - - -
Ca2+ 362.1 2.41 0.79 - - -
Ba2+ 300.7 2.75 0.85 - - -



Bibliography

[1] Jose LF Abascal and Carlos Vega. A general purpose model for the condensed phases
of water: Tip4p/2005. The Journal of chemical physics, 123(23):234505, 2005.

[2] Michael P Allen and Dominic J Tildesley. Computer simulation of liquids. Oxford
university press, 2017.

[3] Johan Aqvist. Ion-water interaction potentials derived from free energy perturbation
simulations. The Journal of Physical Chemistry, 94(21):8021–8024, 1990.

[4] Distill article. "a visual exploration of gaussian processes". URL
https://distill.pub/2019/visual-exploration-gaussian-processes#Multivariate, 2019.

[5] Pascal Auffinger, Thomas E Cheatham, and Andrea C Vaiana. Spontaneous formation
of kcl aggregates in biomolecular simulations: a force field issue? Journal of chemical
theory and computation, 3(5):1851–1859, 2007.

[6] Albert P Bartók, Mike C Payne, Risi Kondor, and Gábor Csányi. Gaussian approxima-
tion potentials: The accuracy of quantum mechanics, without the electrons. Physical
review letters, 104(13):136403, 2010.

[7] AL Benavides, MA Portillo, VC Chamorro, JR Espinosa, JLF Abascal, and C Vega. A
potential model for sodium chloride solutions based on the tip4p/2005 water model.
The Journal of chemical physics, 147(10):104501, 2017.

[8] HJC Berendsen, JR Grigera, and TP Straatsma. The missing term in effective pair po-
tentials. Journal of Physical Chemistry, 91(24):6269–6271, 1987.

[9] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
The Journal of Machine Learning Research, 13(1):281–305, 2012.

[10] Thomas C Beutler, Alan E Mark, René C van Schaik, Paul R Gerber, and Wilfred F
Van Gunsteren. Avoiding singularities and numerical instabilities in free energy cal-
culations based on molecular simulations. Chemical physics letters, 222(6):529–539,
1994.

[11] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization
of expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

[12] Bernard R Brooks, Robert E Bruccoleri, Barry D Olafson, David J States, S a Swami-
nathan, and Martin Karplus. Charmm: a program for macromolecular energy, min-
imization, and dynamics calculations. Journal of computational chemistry, 4(2):187–
217, 1983.

85



Bibliography 86

[13] David A Case, Thomas E Cheatham III, Tom Darden, Holger Gohlke, Ray Luo, Ken-
neth M Merz Jr, Alexey Onufriev, Carlos Simmerling, Bing Wang, and Robert J Woods.
The amber biomolecular simulation programs. Journal of computational chemistry,
26(16):1668–1688, 2005.

[14] Martin Chaplin. 2020. http://www1.lsbu.ac.uk/water/water_models.html.

[15] Liem X Dang and Bruce C Garrett. Photoelectron spectra of the hydrated iodine anion
from molecular dynamics simulations. The Journal of chemical physics, 99(4):2972–
2977, 1993.

[16] Telma Woerle de Lima, Antonio Caliri, Fernando Luís Barroso da Silva, Renato
Tinós, Gonzalo Travieso, Ivan Nunes da Silva, Paulo Sergio Lopes, Eduardo Marques
de Souza, Alexandre Cláudio Botazzo Delbem, Vanderlei Bonatto, et al. Some model-
ing issues for protein structure prediction using evolutionary algorithms. Evolutionary
Computation, page 153, 2009.

[17] Alain Dequidt and Jose G Solano Canchaya. Bayesian parametrization of coarse-grain
dissipative dynamics models. The Journal of chemical physics, 143(8):084122, 2015.

[18] Max F Döpke, Othonas A Moultos, and Remco Hartkamp. On the transferability of
ion parameters to the tip4p/2005 water model using molecular dynamics simulations.
The Journal of Chemical Physics, 152(2):024501, 2020.

[19] David Dubbeldam, Denise C Ford, Donald E Ellis, and Randall Q Snurr. A new per-
spective on the order-n algorithm for computing correlation functions. Molecular
Simulation, 35(12-13):1084–1097, 2009.

[20] Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811,
2018.

[21] Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms
to applications, volume 1. Elsevier, 2001.

[22] Jun Fujiki, Shotaro Akaho, Hideitsu Hino, and Noboru Murata. Robust hypersurface
fitting based on random sampling approximations. In International Conference on
Neural Information Processing, pages 520–527. Springer, 2012.

[23] Maria Fyta, Immanuel Kalcher, Joachim Dzubiella, Luboš Vrbka, and Roland R Netz.
Ionic force field optimization based on single-ion and ion-pair solvation properties.
The Journal of chemical physics, 132(2):024911, 2010.

[24] MA González. Force fields and molecular dynamics simulations. École thématique de
la Société Française de la Neutronique, 12:169–200, 2011.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[26] Melville S Green. Markoff random processes and the statistical mechanics of time-
dependent phenomena. ii. irreversible processes in fluids. The Journal of Chemical
Physics, 22(3):398–413, 1954.

http://www1.lsbu.ac.uk/water/water_models.html
http://www.deeplearningbook.org


Bibliography 87

[27] Katja Hansen, Franziska Biegler, Raghunathan Ramakrishnan, Wiktor Pronobis,
O Anatole Von Lilienfeld, Klaus-Robert Muller, and Alexandre Tkatchenko. Machine
learning predictions of molecular properties: Accurate many-body potentials and
nonlocality in chemical space. The journal of physical chemistry letters, 6(12):2326–
2331, 2015.

[28] Dominik Horinek, Shavkat I Mamatkulov, and Roland R Netz. Rational design of ion
force fields based on thermodynamic solvation properties. The Journal of chemical
physics, 130(12):124507, 2009.

[29] Hans W Horn, William C Swope, Jed W Pitera, Jeffry D Madura, Thomas J Dick, Greg L
Hura, and Teresa Head-Gordon. Development of an improved four-site water model
for biomolecular simulations: Tip4p-ew. The Journal of chemical physics, 120(20):
9665–9678, 2004.

[30] Philip Ilten, Mike Williams, and Yunjie Yang. Event generator tuning using bayesian
optimization. Journal of Instrumentation, 12(04):P04028, 2017.

[31] Seyed Hossein Jamali, Ludger Wolff, Tim M Becker, Mariette de Groen, Mahinder
Ramdin, Remco Hartkamp, Andre Bardow, Thijs JH Vlugt, and Othonas A Moultos.
Octp: A tool for on-the-fly calculation of transport properties of fluids with the order-
n algorithm in lammps. Journal of chemical information and modeling, 59(4):1290–
1294, 2019.

[32] Kasper P Jensen and William L Jorgensen. Halide, ammonium, and alkali metal ion
parameters for modeling aqueous solutions. Journal of Chemical Theory and Compu-
tation, 2(6):1499–1509, 2006.

[33] Donald R Jones. A taxonomy of global optimization methods based on response sur-
faces. Journal of global optimization, 21(4):345–383, 2001.

[34] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization
of expensive black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

[35] William L Jorgensen, Jayaraman Chandrasekhar, Jeffry D Madura, Roger W Impey, and
Michael L Klein. Comparison of simple potential functions for simulating liquid water.
The Journal of chemical physics, 79(2):926–935, 1983.

[36] In Suk Joung and Thomas E Cheatham III. Determination of alkali and halide mono-
valent ion parameters for use in explicitly solvated biomolecular simulations. The
journal of physical chemistry B, 112(30):9020–9041, 2008.

[37] ZR Kann and JL Skinner. A scaled-ionic-charge simulation model that reproduces
enhanced and suppressed water diffusion in aqueous salt solutions. The Journal of
chemical physics, 141(10):104507, 2014.

[38] Christoph Kirse, Moritz Kindlein, Frederik Luxenburger, Ekaterina Elts, and Heiko
Briesen. Analysis of two common algorithms to compute self-diffusion coefficients in
infinite dilution from molecular dynamics simulations and application to n-alkanes
(c1 to c35) in water. Fluid Phase Equilibria, 485:211–219, 2019.



Bibliography 88

[39] Pavel V Klimovich, Michael R Shirts, and David L Mobley. Guidelines for the analysis of
free energy calculations. Journal of computer-aided molecular design, 29(5):397–411,
2015.

[40] Ryogo Kubo. Statistical-mechanical theory of irreversible processes. i. general theory
and simple applications to magnetic and conduction problems. Journal of the Physical
Society of Japan, 12(6):570–586, 1957.

[41] Harold J Kushner. A new method of locating the maximum point of an arbitrary mul-
tipeak curve in the presence of noise. 1964.

[42] Igor Leontyev and Alexei Stuchebrukhov. Accounting for electronic polarization in
non-polarizable force fields. Physical Chemistry Chemical Physics, 13(7):2613–2626,
2011.

[43] IV Leontyev and AA Stuchebrukhov. Electronic continuum model for molecular dy-
namics simulations. The Journal of chemical physics, 130(8):02B609, 2009.

[44] IV Leontyev and AA Stuchebrukhov. Electronic polarizability and the effective pair
potentials of water. Journal of chemical theory and computation, 6(10):3153–3161,
2010.

[45] Pengfei Li, Benjamin P Roberts, Dhruva K Chakravorty, and Kenneth M Merz Jr. Ratio-
nal design of particle mesh ewald compatible lennard-jones parameters for+ 2 metal
cations in explicit solvent. Journal of chemical theory and computation, 9(6):2733–
2748, 2013.

[46] Pengfei Li, Lin Frank Song, and Kenneth M Merz Jr. Parameterization of highly charged
metal ions using the 12-6-4 lj-type nonbonded model in explicit water. The Journal of
Physical Chemistry B, 119(3):883–895, 2015.

[47] Pu Liu, Qiang Shi, Hal Daumé III, and Gregory A Voth. A bayesian statistics approach
to multiscale coarse graining. The Journal of chemical physics, 129(21):12B605, 2008.

[48] Shavkat Mamatkulov, Maria Fyta, and Roland R Netz. Force fields for divalent cations
based on single-ion and ion-pair properties. The Journal of chemical physics, 138(2):
024505, 2013.

[49] Yitzhak Marcus. Ion properties. CRC Press, 1997.

[50] Ruben Martinez-Cantin, Nando De Freitas, Eric Brochu, José Castellanos, and Arnaud
Doucet. A bayesian exploration-exploitation approach for optimal online sensing and
planning with a visually guided mobile robot. Autonomous Robots, 27(2):93–103, 2009.

[51] James L McDonagh, Arnaldo F Silva, Mark A Vincent, and Paul LA Popelier. Machine
learning of dynamic electron correlation energies from topological atoms. Journal of
chemical theory and computation, 14(1):216–224, 2017.

[52] James L McDonagh, Ardita Shkurti, David J Bray, Richard L Anderson, and Edward O
Pyzer-Knapp. Utilizing machine learning for efficient parameterization of coarse
grained molecular force fields. Journal of chemical information and modeling, 59(10):
4278–4288, 2019.



Bibliography 89

[53] MDAnalysis. 2020. https://www.mdanalysis.org/.

[54] M Mezei. The finite difference thermodynamic integration, tested on calculating the
hydration free energy difference between acetone and dimethylamine in water. The
Journal of chemical physics, 86(12):7084–7088, 1987.
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