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Abstract

Radiotherapy is one of the primary modalities for treating cancer of the prostate. The most
common radiotherapy technique for treating prostate cancer is photon external beam radiotherapy.
In the last two decades low values for the α/β ratio for prostate cancer have been reported. The
α/β for the organs at risk (OAR) surrounding the prostate is postulated to be larger. The low α/β
ratio for the prostate and the high α/β ratio for the surround organs suggest that hypofractionated
treatments with large fraction size should spare the OARs better while delivering an isoeffective
dose to the prostate compared to conventionally fractionated radiotherapy.

For hypofractionated treatments the propagation of the systematic and random error in treat-
ment dose parameters is less known and needs to be quantified. No commonly used margin recipe
exist that gives an indication what the needed margin is given a systematic and random error. The
validity of the well known linear van Herk recipe to hypofractionated treatment is clearly debatable
as it assumes a large number of treatment fractions.

In this work Polynomial Chaos Expansion was used to model dose distributions. Polynomial
chaos methods approximate the dose by sets of polynomials that are functions of the errors involved
in radiotherapy. This meta-modelling approach makes the costly evaluation of the clinical dose
engine obsolete and allows fast computation of dose distributions. Polynomial Chaos Expansion
have been shown to model the dose distribution delivered by VMAT and Cyberknife accurately in
prostate cancer treatment.

With the use of the meta-models fractionation effects and effects of setup errors on the planning
target volume, clinical target volume and three organs at risk have been studied for treatment
plans of Cyberknife prostate cancer patients. The treatment plans prescribe a hypofractionated
treatment in 4 fractions of 9.5 Gy that spare the urethra. The near minimum dose D98 to the
prostate and the near maximum dose D2 to the urethra, bladder and rectum have been determined
under various setup errors for various fractionation regimes ranging from hypofractionation to
conventional hyperfractionation.

It was found that the 98th percentile of the near maximum dose to the organs at risk increases
for increasing systematic and random error and for decreasing fraction number. For large fraction
numbers an increase in the 2nd percentile of the near minimum dose to the prostate has been
observed for increasing random error for systematic errors that are not too large. The increase
in the second percentile of the near minimum dose to the CTV is believed to be caused by dose
blurring effects in the urethra that give rise to high urethra doses.

Polynomial Chaos Expansion has been used to construct margin recipes for various fractionation
regimes. The margin recipes dictate what setup errors ensure that at least 98% of the simulated
population receives for at least 98% of the CTV the full prescription dose for a CTV-PTV margin
MPTV of 3, 4 or 5 mm. The margin recipes were found to be highly non linear and strongly
dependent on the fraction number. The margin recipes are given by:

Σ(σ,MPTV ) =
P1(MPTV ) ∗ σ + P2(MPTV )

σ2 + P3(MPTV ) ∗ σ + P4(MPTV )
(1)

where P1, P2, P3 and P4 are polynomials given in Equations 36 to 39 with coefficients tabulated in
Table 7. The margin recipes have been tested on ten patients and were shown to be valid for eight
out of ten patients.

Finally, the constructed margin recipes are compared to the linear simplified van Herk recipe.
It was found that the van Herk recipe is not valid for the investigated hypofractionated urethra
sparing dose distribution.
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1 Introduction

1.1 Radiation Therapy for prostate cancer

Prostate cancer is the development of cancer in the prostate, a gland in the male reproductive
system. It is the most common cancer among men. In the Netherlands the majority of prostate
cancer diagnosis are among men aged 65 to 79 years old [1]. In many cases thanks to modern
technology it can be treated successfully, the five year survival rate is 90%, the mortality increases
with increasing age of diagnosis [2]. Localised prostate tumours can be treated surgically (radical
prostatectomy), with external beam radiation therapy, with brachytherapy or left untreated as it
is a slow developing type of cancer.

Radiotherapy is one of the primary modalities for treating cancer of the prostate. The most
common radiotherapy technique for treating prostate cancer is external beam radiotherapy, the
latter will be the focus of this work. External beam therapy is is a radiation therapy modality
that locally treats a patient. Before a patient can be treated many preparatory steps have to be
undertaken. After the diagnosis of the cancer the tumour has to be biomedically imaged, delineated
and a treatment plan for the treatment has to be made. The delivered radiation dose is planned
carefully to optimise the success of the treatment.

1.2 Radiotherapy treatment planning and dealing with uncertainties

The goal of radiotherapy treatment planning is to design a beam configuration which will deliver
a homogeneous dose to the specified planning target volume (PTV), ensuring that normal tissue
receives a reasonably low dose and that critical organs receive less than their tolerance doses
[3]. Optimisation in beam energy, beam arrangement, beam compensation or conformal methods
have to be performed. Conformal methods shape the radiation dose distribution to the tumour
morphology which allows it to deliver higher doses of radiation than standard dose conventional
external beam RT [4].

Unfortunately, one also has to deal with uncertainties in radiotherapy, these are taken into
consideration in making a treatment plan. Correctly dealing with uncertainties of RT is a crucial
aspect in successful treatment outcome. Usually a dose of radiation is divided into several, smaller
doses over a period of several days, to minimise toxic effects on healthy normal tissues [5]. A
typical hyperfractionated radiation dose is divided into 37 units delivered every weekday [6]. Dose
escalation by hypofractionation, i.e. delivering higher doses of radiation in fewer fractions, in
prostate cancer has been increasingly popular as a result of relative new findings in the radiobiology
of the prostate [7].

In the delivery of a fractionated dose two types of uncertainties can be distinguished, treatment
execution uncertainties of a fraction, often called random variations, and treatment preparation
uncertainties, often called systematic variations. Random variations vary from day to day whereas
systematic uncertainties are systematic for a single radiotherapy course of a single patient, but
they are stochastic over a group of patients [5].

The conventional way to deal with these uncertainties is to apply margins to clinically defined
volumes to be irradiated. A well-established van Herk margin recipe [8] can provide the margin
that needs to be used for given errors in patient positioning. However, this recipe has been derived
for traditional hyperfractionated RT treatment regimens, typically consisting of 35-45 treatment
fractions. For hypofractionated treatment no margin recipe has been established.

1.3 Goals of this research

Previous work [9, 10] was performed for external intensity modulated proton therapy (IMPT). For
proton therapy both the errors in patient setup and proton range could result in no treatment
to parts of the tumour as proton dose distributions are highly conformal due to the shape of the
proton Bragg peak. Therefore, the robustness of treatment plans is crucial in successfully treating
patients in IMPT. Conventional methods in photon therapy to cope with uncertainties cannot be
applied to proton therapy due to the differences in dose deposition, therefore, robust treatment
planning was introduced.
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Treatment plans obtained by robust treatment planning include worst case scenarios of setup
errors in the plan optimisation. For each iteration of the optimisation, nine different dose distribu-
tions are computed. These dose distribution each correspond to the dose for positive and negative
setup uncertainties along the three patient axis, i.e. anteroposterior, lateral and superior-inferior,
for positive and negative range uncertainty and the nominal dose distribution [11]. In previous
work [9, 12] robustness recipes were derived that indicated the required setup robustness setting
that should be used for certain systematic and random errors.

Setup robustness analysis was performed using a method called Polynomial Chaos Expansion
(PCE), it was proven to be accurate and fast [10]. Polynomial chaos constructs a meta-model of the
delivered dose by replacing the exact model with a set of polynomials that allow fast evaluations.
During the course of this master thesis this method will be extended to Stereotactic Body Radiation
therapy (SBRT), a RT modality that utilises a low number of fractions. For treatments conducted
using a linear accelerator range errors are less relevant as photon depth dose distributions do not
show steep dose fall off. However, SBRT is characterized by sharp dose gradients and high doses
per fraction, thus small geometric errors in a single fraction can affect the dose considerably.

This work has two main focuses. First the effects of fractionation on the delivered dose are
investigated and second, the required margins that deal with certain setup errors are derived. The
latter will be achieved by constructing a margin recipe, which prescribes the required margins for
known values of the random and systematic variations.

1.4 Structure of this work

As basis for the motivation of this research an introduction in key concepts in radiobiology is
presented in Chapter 2. It provides the rationale behind fractionated radiotherapy, introduces
the errors involved in radiotherapy and a way to deal with these errors and it introduces two RT
modalities that are relevant to this work. Chapter 3 touches shortly on probability theory and
discusses the theory behind Polynomial Chaos Expansion and steps involved in its construction.
Treatment planning and meta-modelling treatment plans is discussed shortly after in Chapter 4.
The steps involved in constructing Polynomial Chaos Expansion meta-models for RT are explained
more thoroughly and ways to compare the resulting meta-model to the clinical treatment plan are
introduced. Chapter 5 described how the obtained meta-models are used to study fractionation
effects and how margin recipes are derived. The results are presented in Chapter 6, the analysis
on fractionation effects on the dose in the prostate and adjacent critical organs is presented first
and thereafter the constructed margin recipes are shown. Finally, in Chapter 7 the results are
discussed and suggestions for future research are discussed.
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2 Radiotherapy

Radiotherapy is the clinical use of ionising radiation as part of palliative or curative treatment of
malignant tissues. It is used for various types of cancer, the subspecialty concerned with prescribing
radiotherapy doses is called radiation oncology. Both photon and particle beams can be used to kill
malignant cells. Radiation could arise from external beams and from internally implanted radio
sources. In the scope of this research, only external photon beams are considered for prostate
cancer (PCa) treatment.

Often the prescribed radiation dose is given in multiple treatments, so called fractions, of low
doses. Conventionally the dose is hyperfractionated with a prescription of 38 to 40 fractions of
2 Gy, but more recently published research has found strong indications that a hypofractionation
scheme of less than five fractions might be beneficial in PCa treatment. This section provides basic
insights behind the rationale of fractionated radiotherapy [6].

2.1 Radiobiology

Photons can induce biological damage on tissues in a direct and indirect way. Direct interaction of
photons with tissues causes ionisation and excitation of its constituent atoms. This could lead to a
chain of physical and chemical interactions that eventually cause biological damage. In the indirect
way incident photons deposit their energy via interactions with electrons due to the photoelectric
effect, Compton scattering, and pair production. The electrons deposit energy on the target while
passing through it [13].

Energy deposition to the tissues’ molecules could result in free radicals. Water is the most
prevalent molecule within the cell as about 80% of a cell is composed of water. Most of the
free radicals are produced by the radiolysis of water. Free radicals are unstable as they possess
unpaired valence electron(s). These highly reactive radicals can diffuse through the cell causing
damage to parts of the cell. All components of the cell will be damaged in this way: proteins,
enzymes, membrane components but damage to a cell’s DNA has the most impact to the viability
of a cell. Direct evidence that DNA damage is a critical event for cell viability has been established
by experiments where short range Auger-emitting isotopes were substituted into DNA. It has been
shown that these isotopes were far more toxic than when the same type and amount of radioactivity
was substituted in other parts of the cell [14].

2.1.1 Cell survival curves

The radiation dose is a determining factor of success in clinical RT. In principle any tumour can be
controlled if the dose is sufficiently high, but these high doses are not possible to give as it would
be very toxic or lethal for the patient. A dose that is too low on the other hand may not cure the
patient at all.

From published in-vitro data for different irradiated tumour cell lines surviving fractions are
known. A curve can be fitted to these data points, these curves are known as cell survival curves. A
typical survival curves is shown in Figure 1. This curve is a linear quadratic curve for the surviving
fraction SF :

SF = e−αD−βD
2

(2)

where the radiation dose is denoted by D and α and β are fit parameters. Equation 2 is known
as the linear quadratic (LQ) model. A linear alpha component and a quadratic beta component
can be distinguished. The alpha and beta parameter can be calculated for different cell lines.

2.1.2 The 5Rs of radiotherapy

The biological factors that influence the response of normal and benign/malignant tissues to frac-
tionated radiotherapy can be summarised as the 5Rs of radiotherapy :

• Repair: cellular recovery hours post exposure.

• Reassortment: progression of the cell cycle.
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(a) Linear axis (b) Logarithmic axis

Figure 1: An example of a typical cell survival curve on linear axis (a) and logarithmic axis (b).

• Repopulation: proliferation of tumour cells that survived.

• Reoxygenation: increase of oxygen in cells that were hypoxic during treatment. and sur-
vived

• Radiosensitivity: of a certain type of tissue to a certain fractionation scheme

These factors will be discussed in Sections 2.1.2.1 and 2.1.2.2.

2.1.2.1 Repair, repopulation and reassortment of normal tissue

Different classifications of radiation damage are distinguished:

• Lethal damage, which is irreversible, irreparable and leads to cell death

• Sublethal damage, which can be repaired in hours unless additional sublethal damage is
added that eventually leads to lethal damage;

• Potentially lethal damage, which can be repaired under certain conditions.

Cells that are exposed to low doses of radiation experience repairable sublethal damage. Most
tissue repair occurs in about 3 hours and up to 24 hours after receiving radiation. For various
tissue types, the radiation dose to produce damage and the timing of the expression of damage
varies greatly.

Through repair of sublethal damage between dose fractions and repopulation of cells normal
tissue is believed to have a therapeutic advantage over tumour cells in hyperfractionated RT
regimes. A balance must be achieved between the response of tumour and early and late responding
normal tissues such that a fraction dose spares late reacting tissues and the time between doses
allow for regeneration of early responding tissues. It must also be noted that tumour cells may
also show intra fraction repopulation [15].

2.1.2.2 Reoxygenation and radiosensitivity

Experiments have shown that if oxygen is present during radiation exposure the detrimental effects
are enhanced. The levels of oxygen differ among cells within tissue due to local differences in blood
flow and pressure. Cells that have comparatively high oxygen levels are called oxic whereas cells
that have comparatively low oxygen levels, are called hypoxic.

The oxygen effect during radiation exposure can be quantified through the oxygen enhancement
ratio (OER), which is simply the ratio of radiation doses for hypoxic cells compared to oxic cells
for the same biological effect. It was found that oxygen does not need to be present during the
irradiation to sensitise but could be added shortly afterwards [16].

Irradiation of a tumour will inevitably kill more oxic than hypoxic cells. After just a single large
radiation dose, the hypoxic fraction may approach 100% as oxic cells are more radiosensitive leaving



2 RADIOTHERAPY 5

parts of the tumour thus untreated. Reoxygenation refers to the process by which these hypoxic
cells become better supplied with oxygen. Fractionated treatments allow cells to reoxygenate,
cells that were hypoxic at the time of one radiation-dose fraction may be oxic by the time of a
subsequent dose fraction. For inter-fraction times that are sufficiently long the presence of hypoxia
may be compensated for [17].

2.1.3 Fractionation and biological effective dose

Intrinsic radiosensitivity differences for tissue types rates to the different components of that tissue.
Tissues can be roughly divided into two categories, early and late responding tissues. Early-
responding tissues show the effects of radiation damage within a few weeks of being irradiated,
examples include skin, intestines and bone marrow. Late-responding tissues expresses the response
to radiation damage in months to years post exposure, examples include lung, kidney, and spinal
cord. The early effects arise due to damage to cells that have a short functional life span. Damage
to late responding tissues may often be the result of damage to connective tissues, especially blood
vessels. Repair of sublethal damage is greater for late responding tissues, the repopulation of cells
is greater for early responding tissues.

The differences can be quantified via the α/β ratio. For fractionated doses Equation 2 can be
rewritten as

SFkd = e−αBED (3)

where k denotes the fraction number such that the total dose is given by D = k ∗ d. By doing this,
a new quantity is introduced:

BED = D(1 +
d

α/β
) (4)

called the biological effective dose (BED) [18].
All fractionated treatments with equal BED have equal biological effect. The α/β ratio deter-

mines the fractionation sensitivity of the irradiated tissue.
Late-responding normal tissues show greater changes in sensitivity in response to a change in

dose per fraction than early-responding tissues. Early responding tissues are more sensitive to
fractionation which corresponds to a lower α/β ratio [15]. Most tumours have an α/β ratio larger
than for normal tissue. The practical implication of this is that in cases where a large volume
of normal tissue will be exposed to radiation, small doses per fraction are used to reduce normal
tissue complications. If the α/β ratio of the tumour is equal or even lower than the α/β ratio of
surrounding normal tissue, larger doses per fraction are more beneficial [19].

2.1.4 Fractionation of radiotherapy for prostate cancer treatment

In the last two decades comparatively low values for the α/β ratio for prostate cancer have been
reported [7]. The low α/β values suggest a greater sensitivity to increasing fraction size. The α/β
for the organs at risk (OAR) surrounding the prostate is postulated to be larger. These findings
together with the linear quadratic formalism suggest an improvement of the therapeutic ratio can
be achieved by larger fraction doses. Hypofractionated treatments with large fraction size should
therefore theoretically spare the OARs better while delivering an isoeffective dose to the prostate
compared to conventional RT [20].
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2.2 Target definition and errors inherent to radiotherapy

Sophisticated advances in computational and biomedical engineering make it possible to highly
conform doses. It is of high importance for the patients’ health that toxic doses are exclusively
delivered at the tumour site, sparing surrounding organs. Definition of the tumour and adjacent
organs at risk is therefore an essential part of treatment planning process to ensure that beam
properties such as size, number, angle and weighting are optimised.

The International Commission on Radiation Units and Measurements (ICRU) 62 report stipu-
lates standard protocols for recording and reporting radiotherapy treatments [21]. Clinical volume
definition and related uncertainties will be discussed in Section 2.2.1.

2.2.1 Target definition

The volumes defined in the ICRU 62 report are summarised in Figure 2. A brief description of the

structures can be found in this subsection.

Figure 2: Target definition as defined by
ICRU 62 [21].

Figure 3: A schematic overview of the OARS
involved in PCa treatment

Gross tumour volume (GTV)
The GTV encompasses the gross, palpable, visible or clinically demonstrable loca-
tion and extent of the malignant growth. The GTV is delineated by the oncologist
after thorough examination including 2D or 3D imaging.

Clinical target volume (CTV)
The CTV consist of the GTV and a margin that takes into account suspected sub-
clinical malignant disease. The additional margin accounts for possible microscopic
extension of the primary tumour or regional lymph node spread. Since it is not pos-
sible to determine the degree of microscopic spread around tumour non-invasively,
the CTV may not be defined separately but considered when defining the planning
target volume (PTV).

Internal target volume (ITV)
The ITV consists of the CTV plus an internal margin that takes into account the
variations in the size and position of the CTV relative to the patient’s bony anatomy.
These variations could be due to organ motions and bladder or bowel/rectal filling.
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Planning target volume (PTV)
The PTV is the geometrical volume that encompasses the CTV with an additional
safety margin to compensate for the different types of variations and uncertainties
of the dose distribution relative to the CTV. The PTV is constructed by adding a
concentric margin, determined from uncertainty analysis, around the GTV/CTV.
The margin is a compromise between ensuring sufficient CTV coverage and limiting
toxic doses to the OARs. These margins are different across types of tumour and
tumour sites and could for certain tumour sites be anisotropic.

Organ at risk
Organs at risk are organs adjacent to the PTV. These organs, as they do not contain
malignant cells, should ideally receive zero dose. In practice OARs are spared as
much as possible during treatment planning but receive dose. Damage to these
organs may lead to substantial toxicity and morbidity. The most important OARs
for prostate tumours are the bladder, rectum and urethra, the critical organs that
are involved in treating PCa patients, are depicted in Figure 3.

Many OARs have a defined tolerance dose that should not be exceeded to avoid
late radiation morbidity. These tolerance levels are taken into account during treat-
ment planning. Some OARs demonstrate a volume effect, meaning that an increas-
ing loss of function is observed for an increasing irradiated organ volume. Other
organs, often organs that have a serial structure, for example the spinal cord, should
not receive a high dose even for a small volume as these organs could demonstrate
serious functional loss if one of its sub-volumes is damaged.

Treated volume (TV) and Irradiated Volume (IV)
The TV and is the volume of tissue enclosed by an isodose surface selected and
specified by the clinician as being appropriate to achieve the aim of treatment.
The TV should not be significantly larger than the PTV as treatment planning
on the TV will then ensure PTV coverage whilst sparing surrounding OARs. The
IV encompasses all tissue volume that receives a radiation dose that is considered
significant in relation to normal tissue tolerance [3].

2.2.2 Errors inherent to radiotherapy

Conformal radiotherapy has been widely used for treatment of the prostate. Iden-
tifying and quantifying uncertainties in RT is a crucial in steering the treatment
outcome as target volumes are defined by the magnitude of the uncertainties. We
distinguish systematic and random errors in the setup of the patient. Gross errors
that can be caught with standard quality assurance protocols are not considered in
this work.

Delineation of the tumour and the ICRU volumes is a crucial part of treatment
planning. Although defining these volumes is performed based on high resolution
images (Magnetic resonance imaging, computer tomography, etc.), uncertainties in-
herent to biology, patient setup and the treatment delivery site exists. For some
tumours the tumour boundary may not be clear and the GTV may be hard to
define. Some tumours peripheries may be poorly defined because of diffuse infil-
tration or because the tumour has a similar radiographic density compared to the
surrounding normal tissue making it hard to resolve.

Deviations at the treatment delivery site could arise from geometric errors, these
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(a) Dose blurring by the random error (b) Dose shifting by the systematic error

Figure 4: This figure shows the difference in effect the different setup errors have. The random
error blurs the dose whereas the systematic error causes an isocenter offset between the CTV and
the dose distribution.

could include deviations in laser alignment, data transfer from treatment planning
to the linear accelerator, couch position, image resolution, margin expansion al-
gorithms, multi leaf collimator (MLC) position and sequence and collimator angle
accuracy.

Systematic patient setup errors could arise from displacement of (internal) mark-
ers with respect to the planning images or treatment execution on a different couch
over the course of a treatment. The systematic error is assumed to be constant over
a treatment course and therefore patient specific. Over a population of patients the
systematic error is assumed to be Gaussian distributed.

The random error is a deviation that can vary in direction and magnitude for
each delivered treatment fraction. Random errors could arise from organ motion
and patient setup variations for every fraction. The prostate is a moderately fixed
organ, its position is dependent on bladder and rectal filling and could differ for
every fraction [22].

Random and systematic errors affect the dose in different ways. Random errors
’blur’ the dose distribution, making the edges less sharp. The blurring of the dose
distribution by the random error can be quite accurately described as a convolution
of the dose distribution with the probability distribution function of the random
error [23]. Systematic errors simply cause a shift of the cumulative dose distribution
relative to the target, as illustrated in Figure 4.

The standard deviation of the systematic error and the random error is denoted
by vectors. The systematic error is denoted by ~Σ = (Σx,Σy,Σz) and the standard
deviation of the random error is denoted by ~σ = (σx, σy, σz). The subscripts x,
y, and z represent the standard deviation along the three axes of the Cartesian
coordinate system.
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2.2.3 Margin recipe for hyperfractionated RT

Van Herk et al. [8] published an article in which the different effects of the systematic
and random error on the target dose were analytically described to derive a margin.
The recipe states that required margin is dependent on the standard deviations of the
systematic and random error and the penumbra width σp, the latter is defined as the
distance between the 95% and 50% isodose surface of the planned dose distribution.
The margin recipe for isotropic margins reads:

MPTV = µΣ + νσ − νσp (5)

where µ and ν are numerical constants that depend on the dimension of the dose
distribution and patient confidence levels. In this recipe the standard deviation of
the systematic and random error are vectors allowing a non-isotropic margin that
can handle non-isotropic geometric uncertainties and. Van Herk et al. also provide
a simplification to this recipe that reads:

MPTV = αΣ + γσ′ (6)

σ′ =
√
σ2
m + σ2

m (7)

where the combination standard deviation σ′ is a combination of the standard de-
viation of all random variations including both setup and organ motion. Assuming
that the dose distribution is three-dimensional, with the clinically acceptable crite-
rion set at a minimum dose to the CTV of 95% of the prescribed dose for 90% of
the patient and that σp = 3.2 mm the margin recipe is simplified to:

MPTV = 2.5Σ + 0.7σ′ (8)

which is approximately valid for random errors up to 5 mm. The simplicity of this
margin recipe comes at a cost in terms of its validity. Simplifications and assumption
were introduced in the derivation of this recipe, these include:

1. The patient population was assumed to have the same standard deviation for
the setup errors

2. The dose is delivered in many fractions making the average random error zero.

3. The irradiated target was assumed to be spherically symmetric

4. Rotations and shape variations of the tumour were neglected

5. Errors were assumed to be isotropic

6. Different sources of errors were taken statistically independent

7. The considered errors were assumed to be distributed normally
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2.3 Hypofractionated RT: Stereotactic body radiotherapy

The relevant RT modality in this work is Stereotactic body radiotherapy. SBRT
is a radiotherapy modality in which low number of fractions is used (and therefore
a much higher dose per fraction) compared to conventional RT. Multiple external
photon beams of various intensities aimed from different angles deliver dose to the
tumour site.

The goal is to conform the dose to the tumour morphology as much as possible,
this could be done with the aid of compensating wedges, collimators, pencil beams
etc., which allows higher doses to be delivered at once. The term stereotactic refers
to three-dimensional localisation of a particular point in space by a unique set of
coordinates that relate to a fixed, external reference frame.

Two SBRT modalities that deliver doses in hypofractionated schemes are consid-
ered in this work: Volumetric Modulated Arc Therapy (VMAT) and Cyberknife.

2.3.1 Volumetric Modulated Arc Therapy

Over the past few decades radiotherapy delivery has been subjected to leaps of
improvement in terms of accuracy. Sophisticated imaging techniques have led to
improved target definition and delineation, precise linear accelerators for clinical
use have been developed, advances in treatment planning systems have reduced
normal tissue dose and many beam shaping techniques have been introduced.

These advances in technology gave rise to intensity modulated radiotherapy
(IMRT) techniques in which variable intensity across multiple radiation beams leads
to the construction of highly conformal dose distributions. In IMRT multiple beams
are used, the radiation fluence per beam is delivered by multiple beamlets that each
have an individual intensity which allows higher target volume conformity than
conventional radiotherapy, particularly in volumes with complex concave shapes. A
downside of IMRT is that it can come with an increase in the amount of low dose
radiation to the rest of the body compared with conventional conformal RT plans.

Arc based therapies, including volumetric modulated arc therapy (VMAT), have
been of interests to tackle this problem. Arc therapy is essentially an alternative
form of IMRT, where radiation is delivered from a continuously rotating radiation
source. Patients can be treated from a large range of beam angles which allows
highly conformal dose distributions, a reduction in treatment delivery time and
possibly a reduction of the integral radiation dose to the rest of the body compared
depending on the number of beams that IMRT utilises [24], meaning OARs sparing.
VMAT utilises conventional linear accelerators but by varying the gantry rotation
speed, treatment aperture shape via movement of multi leaf collimator leaves and
the dose rate, conformal distributions can be delivered [25].

2.3.2 Cyberknife

The Cyberknife (developed by Accuray) is a frameless stereotactic radiosurgery sys-
tem, meaning that it does not require patients to be fixated by a frame. The
Cyberknife characterised by image guided manipulation of a high-energy linear ac-
celerator by a robotic arm. A Control loop between the imaging and beam delivery
systems allows the Cyberknife beams to follow a moving target real-time within a
patient. This makes rigid fixation of the patient obsolete.
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(a) VMAT treatment plan dose distribution with
Dmean(Prostate) = 48.7 Gy, Dmean(PTV3mm) =
48gray.

(b) Cyberknife treatment plan dose distribution with
Dmean(Prostate) = 48.7 Gy, Dmean(PTV3mm) =
45.4 Gy.

Figure 5: This figure shows a comparison between a VMAT and a Cyberknife plan for a PCa
patient.

Continuous image guidance makes the Cyberknife system capable to real-time
check the target position and adjust the treatment accordingly if the target moves
during a treatment. Frameless target positioning utilises the patient’s bony anatomy
or implanted markers but plans are made based on planning images. Real-time
imaging during treatment is provided by X-ray devices. The images are registered
to translate the position of the treatment site to the coordinate frame of the linear
accelerator to assure accurate targeting.

The high degree of mobility of the robotic arm allows for non isocentric and non
coplanar dose delivery resulting in conformity in the delivered dose distributions.
Targets of many shapes can be conformed using this technique without the use of
multiple overlapping isocenters [26].

Figure 5 shows a comparison between a coplanar VMAT plan and a non coplanar
Cyberknife plan for a particular patient. A larger normal tissue volume is irradiated
if the patient is treated with Cyberknife.
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3 Uncertainties and uncertainty propagation

In Chapter 3 fractionation, different errors inherent to radiotherapy and conventional
ways to deal with these errors were introduced. In this section Polynomial Chaos
will be introduced, which will be used to quantify the effects of uncertainties in RT.
First some background in probability theory will be discussed to better understand
the stochastic nature of uncertainties.

3.1 Introduction to probability theory

In probability theory the set, Θ, of all possible outcomes of a particular experiment
is called the sample space of the experiment. Any collection of possible outcomes of
an experiment, meaning any subset of θ ∈ Θ, is called an event.

Sampling i.e. conducting the experiment may lead to different outcomes or some
outcomes may repeat. This ”frequency of occurrence” of an outcome can be thought
of as a probability. For each event θ in the sample space Θ a number between zero
and one can be associated with θ that will be called the probability of θ, denoted
by p(θ), meaning for each θ ∈ Θ it gives the probability that θ occurs [27].

3.1.1 Random variables

In most cases it is more convenient to deal with a quantity of interest than the entire
sample space. In probability theory situations can be described for which precise
values of variables are unknown, but the variables are expected to be distributed in
some way. These variables are referred to as a random variables. It is a function
that maps from a sample space Θ into the real numbers. The likelihood that the
random variable will have a certain value is called the probability.

Variables that can take on an uncountably infinite number of possible outcomes
are called continuous random variables, these are described by their probability den-
sity function (PDF). The mean and variance of a random variable can be calculated
using the PDF. The mean µX and variance σ2

X for a random variable X and its
probability density P (x) are given in Equation 9 and 10

µX =

∫ ∞
−∞

xP (x)dx (9)

σ2
X =

∫ ∞
−∞

P (x)(x− µX)2dx (10)

(11)

Probability models often involve more than one random variable. A random
vector consisting of several random variables can be defined similarly to its univariate
counterpart. An n-dimensional random vector is a function that maps from a sample
space into and N -dimensional Euclidean space Rn. The random vector is described
by a multivariate joint probability density function [28].

3.1.2 Normal distribution

A very popular continuous probability distribution for random real valued contin-
uous variables is the normal or Gaussian distribution, which is a symmetric bell
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shaped distribution making it very suitable for population models. It has the ad-
vantage that it is very tractable analytically. Complete information about the exact
shape and location of the distribution are given by its only two parameters, namely
the mean and the variance. The PDF of the normal distribution is given by:

P (x) =
1√

2πσ2
X

e
− (x−µX )2

2σ2
X (12)

A variable with a Gaussian distribution is notated as X ∼ N (µX , σ
2
X).

Among the many uses of the normal distribution, an important one is its use
as an approximation to other distributions (which can partially be justified by the
Central Limit Theorem) [28].

3.2 Spectral methods for stochastic quantities

A well established method to quantify the effects of uncertainties on a system are
Monte Carlo methods. These methods rely on large amounts of pseudo-random
sampling, by the law of large numbers properties it can estimate the expectation
value and variance of the response of a system. When the number of sampling points
is sufficiently large the expectation value and variance obtained from Monte Carlo
sampling are close to the actual mean and variance of the system.

Samples are selected randomly from the sample space, the probability density
function that depends on the random vector dictates the probability of a sample
point being chosen to obtain response of the system. This sampling should be per-
formed on the entire sample space to determine the global variability to uncertainty.
This simplicity comes at a cost of having a slow convergence rate with the number
of realisations (M). The convergence of variance estimates behaves as 1√

M
.

Spectral methods are based on a different approach, these methods are based on
constructing the dependence of the stochastic quantity realisations on the random
vector. The idea is to write the dependence of a system on the random input vari-
ables as a sum of certain basis vectors and then to choose the coefficients in the sum
in order to satisfy the system’s response. The main feature of the spectral methods
is to take various orthogonal systems of global functions as trial functions for differ-
ent problems. Different trial functions lead to different spectral approximations [29].

3.3 Polynomial chaos expansion

Polynomial Chaos Expansion (PCE) is a spectral modelling approach to approx-
imate stochastic model outputs. It is used to describe the output of a model in
terms of its mean value, variance, etc. [30]. By doing so the goal is to investigate
the variability of certain model parameters as a function of the uncertain variables
characterising the modelled phenomenon. The input variables are assumed to be
second order random variables, meaning that they have a finite variance.

3.3.1 Input variables

The goal is to model stochastic processes. To meet this end the responses of the mod-
elled phenomenon are investigated as function of the uncertain parameters charac-
terizing it, the uncertain parameters correspond to distinct sources of uncertainties.
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The variability of the response is therefore assumed to be depended on the input
variables that characterises the modelled phenomenon. The number of uncertain
inputs directly determines the dimensionality of the model and they are assumed to
belong to a certain probability density function.

We define Θ to be a sample space containing all possible random events θ ∈ Θ and
{ξi(θ)}di=1 to be the set of d random variables that can also be described by a random
vector. In this work the random variables are assumed to be independent normalised
Gaussian variables described by their Gaussian probability density function. The

joint probability density function (PDF) p(~ξ) is in this case given in Equation 13
which is a product of all PDFs.

p(~ξ) =
d∏
i=1

1√
2πσ2

i

e
− (ξi−µi)

2

2σ2
i (13)

The expansion of a stochastic response of interest R(θ) consists of basis vectors
Ψk and expansion coefficients rk:

R(~ξ(θ)) =
∞∑
k=1

rkΨk(~ξ), ~ξ = (ξ1, ξ2, ..., ξd) (14)

where conventionally Ψ0 = 1 and d is the number of random inputs that are consid-
ered. In this work the stochastic response is real valued, it maps from the sample
space into the real numbers. The responses are assumed to belong to the L2 space
of functions for which the integral of the square of the absolute value is finite.

As the number of input variables must be finite, the sum in Equation 14 is
truncated at P . From Equation 14 it can be seen that PCE expansion resembles
ordinary Fourier expansion.

3.3.2 Polynomial chaos basis vectors

The basis vectors in PCE are polynomials from the subspace of polynomials in all
possible combinations of the random variables {ξi(θ)}di=1 up to a degree p. The
choice of the polynomials is directly related to the probability distribution of each
random input variable. For each input variable a univariate polynomial is selected
based on the distribution of the input variable. They are chosen according to the
PDF of the input random variable as specified in the Askey scheme [31]. Following
this scheme for Gaussian distributed input variables, probabilists’ Hermite polyno-
mials are deemed most suitable for fast convergence. The probabilists’ Hermite
polynomials are given by:

Hen(ξ) = (−1)ne
ξ2

2
dn

dξn
e−

ξ2

2 (15)

The Hermite polynomials Hen(ξ) are a set of orthogonal polynomials over the do-
main (−∞,∞), the first polynomials are illustrated in figure 6.

The space spanned by these polynomials is a subset of the L2 space, called the
p-th Homogenous Chaos. All polynomials are mutually orthogonal with respect to
the joint PDF: [30]:

〈Ψk,Ψl〉 =

∫
Ψk(~ξ)Ψl(~ξ)p(~ξ) = δk,l〈Ψk,Ψl〉 = h2

kδk,l (16)
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Figure 6: This figure shows the first six Hermite polynomials i.e.Hen for n = 0, 1, 2, 3, 4, 5

with hi being the norm of Ψi. The PC basis vectors must form a Hilbert space such
that the convergence of equation 14 is full filled.

Finally, the PC basis vectors Ψk are constructed by tensorisation of the univariate
polynomials. Each PC basis vector can be characterized by a multi-index {γk,j}Nj=1

which differentiate between the different polynomial families corresponding to the
different random variables of different orders:

Ψk(~ξ) =
N∏
j=1

ψj,γk,j(ξj) (17)

where the first index corresponds to the different random variables and the second
index γk,j corresponds to different orders in each variable. A traditional choice is to
include all multi-dimensional polynomials having a combined order of at most PO.
The number of basis vectors in the expansion in Equation 14 can be expressed by

P + 1 =
(N + PO)!

N !PO!
(18)

To illustrate this, suppose PO = 2 and N = 2. For PO=2 there would be 6 basis
vectors according to Equation 18. The multi indices of all six basis vectors would be
(0, 0), (1, 0), (0, 1), (1, 1), (2, 0) and (0, 2). The number on the left and right in the
bracket represent the order of the included univariate polynomial in that direction.

In practice many of the higher order multidimensional PC basis vectors can be
excluded without affecting the accuracy of the PCE as not all input parameters are
equally important and not all interactions between them must be included to reach
desired accuracy. The sparsity of effects principle [32] dictates that responses are
usually dominated by a few important parameters and most high-order interactions
are negligible.

Full PCE basis sets can be avoided to reduce computational cost and memory
without affecting the accuracy too much. Numerous ways have been introduced to
select the basis vectors to be included in a sparse PCE [27].

3.3.3 Calculation of the PCE coefficients

Next the expansion coefficients rk must be determined. By exploiting the orthogo-
nality of the PC basis, the expansion coefficients can be determined using spectral
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projection. This projection of Equation 14 with substitution of the definition of the
L2 inner product is given by [33, 34, 27]:

rk =
〈R(~ξ),Ψk(~ξ)〉
〈Ψk(~ξ),Ψk(~ξ)〉

=

∫
D(Θ)

R(~ξ)Ψk(~ξ)p~ξ(
~ξ)d~ξ

〈Ψk(~ξ),Ψk(~ξ)〉
(19)

where the numerator is a multi-dimensional integral over the domain D(Θ) of the
random variables describing the θ sample space. This integral in Equation 19 must

be approximated as it contains the unknown dependence of the response R(~ξ) on
the input parameters.

3.3.3.1 Quadratures

The integral is approximated numerically using a quadrature rule. A quadrature rule
is a numerical approximation of the definite integral of a function. Many different
quadrature rules are available in literature.

The quadrature approximation Q(1) of a one dimensional integral is simply a
weighted summation over function evaluations with the subscript (1) denoting single
dimensionality. The function f(ξ) is evaluated on predefined integration points
ξj, called quadrature points, weighted with predefined weighting coefficients wj as
expressed in Equation 20 [29].∫ a

b

pξ(ξ)f(ξ)dξ ≈ Q(1)f =

nlev∑
j=1

wjf(ξj) (20)

The quadrature points and weights depend on the chosen quadrature rule and the
probability function pξ which also determines the accuracy of the approximation.
With increasing quadrature level lev, more and more quadrature points are taken
into consideration in approximating the integral, making the approximation more
accurate. The level corresponds to a quadrature rule with nlev = 2·lev−1 quadrature
points, the subscript (j) denotes the jth quadrature point and weight contained in
the quadrature.

Many different quadrature rules are available in literature. In this work Gauss
quadratures were used as the weighting coefficients and quadrature points can be
chosen such that they are exact for Hermite polynomials up to order 2 ·nlev−1 [35].

3.3.3.2 Cubatures

To approximate the multi-dimensional integral in Equation 19 a cubature formula
can be used, which is constructed by tensorisation from one-dimensional quadra-
tures. In each direction a quadrature rule of level lev is used which results in a
summation over all possible combinations of quadrature points. If the independent
random variables have different distributions, different quadratures rules can be used
along the different integration directions [29]. For an Ndim integral the tensorisation
is given by Equation 21

QNdim
lev f =

(
Q

(1)
lev1
⊗ ...⊗Q(1)

levNdim

)
f (21)

=

nlev1∑
j1=1

...

nlevNdim∑
jNdim=1

f
(
ξ

(j1)
1,lev1

, ..., ξ
(jNdim
1,levNdim

)
wj1lev1 ...w

jNdim
levNdim

(22)
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where lev is a multi-index indicating the different quadrature levels that are used
for each direction of integration.

In each direction dir a quadrature rule of level levdir is used which results in a
summation over all possible combination of quadrature points, that span a multidi-
mensional grid of points, as expressed in Equation 21. The order of this grid GO,
indicates the level of the quadrature points that that span the grid. The higher the
grid order, the higher the level of quadratures constituting it and the higher the
accuracy. Including quadratures with a higher level in the cubature also means that
more function evaluations have to be performed.

3.3.4 Smolyak sparse grids

From Equation 21 one can observe that the total number of cubature points is∏Ndim
dir=1 levdir. Hence the needed evaluations of the integrand grows exponentially

with the dimension of the problem, this is the curse of dimensionality. This problem
can be alleviated by leaving out high order integration grids that correspond to high
order interaction of input variables [27]. If the high order interactions do not play an
important role in the modelled phenomenon, a sparse grid that neglects high order
interaction will result roughly the same accuracy as the full grid.

In this work extended Smolyak sparse grids will be used [36]. The Smolyak sparse
grids are based on cubatures that use difference formulas of quadratures instead of
the original quadratures in the construction. This difference is also a quadrature
rule.

∆
(1)
levf = Q

(1)
levf −Q

(1)
lev−1f (23)

Q
(1)
0 ≡ 0 (24)

The quadrature rules can be expressed as the sum of the difference formulas

Q
(1)
levf =

lev∑
l=1

∆
(1)
l f (25)

using Equation 25 the cubature formula in Equation 21 can be rewritten as

Q
(Ndim)
lev f =

lev1∑
l1=1

...

levNdim∑
lNdim=1

(
∆l1=1 ⊗ ...⊗∆

(1)
lNdim

)
f (26)

where lev again denotes different quadrature levels along different directions and l
the different grids.

Sparse grids can significantly reduce the computational costs by having to eval-
uate the integrand at significantly less points. Using the sparse grids, the number
of evaluation points and subsequently the computationally cost is greatly reduced.

3.3.5 Extended sparse grids

The sparse grids obtained in Section 3.3.4 can be extended to achieve higher accuracy
achieved without adding too much extra computational burden. The extension of the
grid is done by extending only the single dimensional grid, a higher quadrature level
will then be used for this direction leaving the multi-dimensional grids unchanged.
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Extended grids compared to conventional Smolyak sparse grids offer higher ac-
curacy along the single dimensions. Higher order univariate polynomials can be
included by doing this whilst the increase in calculation burden is minimal, as an
extension of EL levels adds 2 ·Ndim · EL extra quadrature points only.

(a) Full grid (b) Smolyak sparse grid
(c) Smolyak sparse grid ex-
tended with one level

Figure 7: The comparison between a full grid, sparse grid and an extended sparse grid for a second
order grid [36].

3.4 Hyperbolic trimming

In this work basis vectors that represent high order interactions are cut out a priori.
When the dimensionality of the polynomial basis vectors is bigger than the grid
order, the PCE coefficients can not be accurately determined. A hyperbolic trimming
is applied in this work, only basis vectors that satisfy the quasi norm given in
equation 27 are included. For decreasing q values higher order cross terms are
penalized more, therefore more of them will get cut out. In the case q = 1 the full
PC basis set will be used.

||γk||q ≡
( N∑
j=1

γqk,j
) 1
q ≤ GO q ∈ (0, 1] (27)

The maximum grid order and polynomial order included in the PCE basis vectors
affect the accuracy of the PCE. As the use of one extra extended level is shown to
improve the accuracy at a computationally cheap cost [27], this will be used. The
maximum polynomial order PO will be chosen such that it satisfies:

PO = GO + EL = GO + 1 (28)

to ensure that the expansion coefficients can be determined accurately.
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4 Treatment planning and robustness analysis

This section will first give a short introduction in treatment planning of the dose
distributions that were modelled, then some background in quantitative comparison
of dose distributions using different metrics and finally it will explain how PCE
was used to compute the effects of uncertainties on different dose metrics and the
construction of margin recipes.

4.1 Treatment planning

Treatment planning is a multidisciplinary process in which a team consisting of both
medical clinical experts (i.e. oncologists, therapist etc.) and medical physicists plan
an adequate radiotherapy treatment. In this thesis all treatment plans were planned
for external beam therapy for PCa patients. Treatment planning aims at planning
a dose distribution that delivers a prescribed dose in one or multiple fractions to the
CTV that maximizes the tumour control probability whilst taking into consideration
normal tissue complication.

Treatment planning is patient specific and gives a prescription of the to be de-
livered treatment and its parameters. During treatment planning the beam setup is
determined, the number of beams, beam angles, isocenters and intensity/weight are
determined through optimisation. All treatment plans were image guided plans, i.e.
CT and MRI data were available, planned in an inverse manner.

In inverse planning the clinical volumes are delineated in image data and prescrip-
tion doses and maximum tolerance levels are set. Through optimisation a treatment
plan is constructed which best fits all input criteria. This could be done manually
but also automatically. All plans in this project were generated automatically us-
ing Erasmus-iCycle: a novel algorithm for integrated, multicriterial optimization of
beam angles, and intensity modulated radiotherapy (IMRT) profiles developed at
Erasmus Medical Center [37].

4.1.1 Erasmus-iCycle

A multicriterial plan optimization in terms of beam orientations selection and beam
profile optimisation is based on a prescription called wish-list. Wish-lists are con-
structed by the physician and contain pre-defined hard constraints and prioritised
optimisation objectives. The higher an objective priority is, the higher the prob-
ability that the corresponding objective will be achieved during the optimisation
process. The wish list for PCa patients in this work is shown in Figure 8.

Beam directions are selected from an input set of candidate directions, these sets
could be coplanar or non-coplanar. Beams are added sequentially in an iterative
procedure. Each iteration loop starts with the selection of an orientation to be added
to the treatment plan. All candidate beam directions that have not been selected
yet are evaluated one-by-one by solving for each of them an optimisation problem
for beam arrangement consisting of the candidate plus the previously selected beam
directions. The orientation with the most favourable scores is selected as the beam
direction to be added for that particular iteration.

Then a pareto-optimal IMRT plan is generated for the beam setup of that iter-
ation that includes all selected beam directions up to that iteration. For the next
selection, all not yet selected candidate directions are temporarily added to the
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Figure 8: This figure shows the wishlist that was used to optimise the plans for a PCa patient
treated with Cyberknife.

plan, an optimisation problem, derived from the Lagrangian that is obtained with
the pareto-optimal plan, is solved. This iteration continuous until addition of beams
does no longer result in significant plan quality improvement [37].

4.1.2 Treatment plans for SBRT prostate patients

For malignancies in the prostate it is the usual to treat the whole organ making the
entire prostate the CTV. The primary tumour is hard to resolve from surrounding
tissue. The PTV is obtained from the CTV by expanding the CTV isotropically
with a certain margin.

In this project we looked at two types of treatment plans: coplanar VMAT
treatments and non-coplanar Cyberknife treatments. For the coplanar VMAT plans
only treatment plans with 3 mm CTV to PTV margins were considered. For the
Cyberknife plans chosen margins were 3, 4 and 5 mm. Treatment plans for the
Cyberknife were optimised using the same wish list for CTV to PTV margins of 3,
4 and 5 mm. The Cyberknife treatment plans were optimised for a CTV to PTV
margin of 3 mm, the same beam configuration was used for all other margins.

The organs at risk surrounding the prostate are the bladder which lies below the
prostate, the urethra which runs through the prostate and the rectal wall behind
the prostate. Serious life quality limiting complications could come to expression if
these OARs are damaged, therefore both the delivered dose to the prostate and the
OARs will be of interest for this project.

4.2 PCE meta-modelling of dose distributions

Polynomial Chaos Expansion will be used to quantify effects of uncertainties on the
delivered dose in SBRT. It will be used to model the dose distribution, which will
be the stochastic quantity of interest R, as a function of the uncertainties which
characterise it, the uncertain input parameters. The uncertain input in this work
will be the setup errors.
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4.2.1 PCE construction

To investigate the effect of margin size and fractionation on several dose parameters,
PCEs were constructed for treatment plans with different CTV to PTV margins.
This was done by using the Polynomial Chaos Expansion For Radiotherapy (PC-
FORT) algorithm written by Zoltán Perkó . It constructs PCE for a dose distribution
in a patient using non intrusive spectral projection and Polynomial Chaos Expan-
sion. The construction of the PCE by PCFORT can be described by the following
consecutive steps:

1. Inputs: these include standard deviations of all random input variables and the
chosen polynomial (PO) and grid order (GO) and the q value for hyperbolic
trimming.

2. Construction of the cubatures

3. Construction of the basis vectors

4. Construction of a dose mask: determine the voxels included in the PCE

5. Calculation of the PCE coefficients

6. Construction of the PCE

4.2.1.1 Initialisation of a PCE

The first steps in constructing a PCE model is choosing the family of polynomials
for each stochastic input variable and choosing an appropriate polynomial and grid
order, quadrature level extension and hyperbolic trim.

Choice of polynomial order A higher polynomial order means that more complex
dose distributions can be modelled, but it also means that a higher grid order is
needed to determine the expansion coefficients accurately. This extra accuracy
comes at a price, higher order PCEs take longer to sample and construct. Choosing
the appropriate polynomial order is done by comparing the clinical dose distribution
to the dose distributions resulting from PCEs of different orders. Dose distribution
comparison will be discussed in Section 4.3.

A trade off between calculation time, cost and accuracy will determine the optimal
order. The maximum polynomial order PO will be given in the input settings
for the chosen grid order plus extended level such that PO = GO + 1. After
the determination of the polynomial order that provides the desired accuracy is
determined, the PCE can be used to sample dose distributions.

Collapsing input variables Any shift of the patient during every treatment day with
respect to the planning images is a combination of the systematic error and random
error of that day. The input variables in this work are the errors in patient position
in three dimensions, these are assumed to be Gaussian distributed and are hence
characterised by their standard deviations, which is used in the construction. The
standard deviation for the systematic and random error are assumed to be isotropic.
The real dose that is delivered is depending on the combination in each direction,
therefore in each of the three directions the systematic and random setup errors can
be substituted by a combined setup error.
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For a setup error in direction i with the standard deviations Σi and σi and
expectation values µi and Mi, the new combined setup variation would be ∆i ∼
N (µi + Mi,Σ

2
i + σ2

i ). This reduces the number of input standard deviations from

six (~Σ = (Σx,Σy,Σz) and ~σ = (σx, σy, σz)) to three. The resulting PCE is a

”compressed” PC model depending on ~ξ ∼ (∆x,∆y,∆z), which is computationally
cheaper as the number of cubature points decreases drastically.

Cubature construction and PCE object initialisation Next, cubatures are generated
which will be needed for the numerical approximation of the integral in Equation
19 to obtain the expansion coefficients. For different random variables the best
quadrature rules corresponding to their probability density function will be used
in the respective directions. As this work only deals with Gaussian distributed
variables, Gauss quadratures of maximum level GO and an extra level EL will be
used in every direction.

Multi indices of all sparse grids that make up the final cubature are generated.
Cubatures are formed by tensorisation of the quadratures, the final cubatures used
for integration are formed by summing over the sparse grids.

In the last step of the initialisation a PCE object as defined by a PCE class
is initialised. In this step basis vectors are constructed from all multidimensional
polynomials up to a maximum degree PO and a hyperbolic trim is performed. Using
an initial guess, in this work q = 0.861, the q value is calculated in accordance to
Equation 27 such that only basis vectors remain for which the integration scheme in
the multi index can be supposed to be accurate which will cut out the basis vectors
representing high order interactions. Details about the PCE that were used as input
are also saved in this object, the resulting PCE objects has the properties:

• A structure that contains the details of the PCE

• PCE basis which is a matrix of multi indices representing the PCE basis vectors

• A multidimensional orthogonal polynomial object that represent the basis vec-
tors

• An initialisation of the PCE coefficients matrix

• The polynomial type of each direction

4.2.1.2 Dose mask and the calculation of PCE coefficients.

To model the clinical dose distribution a PCE must be constructed for every voxel.
The patients’ CT scans contained about 30 to 55 million voxels. It would be compu-
tationally unfeasible to construct a PCE for all voxels as determining the expansion
coefficients is very costly. To alleviate the amount PCEs, voxels are only included
if the voxels receive a dose exceeding a certain threshold Dcut−off for the nominal

setup and setup errors of magnitude 3σ∗, where σ∗i =
√
σ2
i + Σ2

i for i ∈ (x, y, z), in
positive and negative directions of a 3D Cartesian coordinate system, the six setup
errors and the nominal setup are tabulated in Table 1.

The six setup errors are simulated by changing the isocenter of the different
beams that deliver dose. setup variation up to 3σ∗ corresponds to the errors that
lie within three standard deviations of the mean and within 99.73% confidence. In
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x̂ ŷ ẑ
0 0 0

3σ∗x 0 0
−3σ∗x 0 0

0 3σ∗y 0

0 −3σ∗y 0

0 0 3σ∗z
0 0 −3σ∗z

Table 1: This table shows all scenarios of isocenter variations that are evaluated for the dose mask
construction where σ∗i =

√
σ2
i + Σ2

i for i ∈ (x, y, z).

this project the threshold dose was chosen to be Dcut−off = 0.1 Gy. Roughly 12
million voxels are included in the dose mask, this number depends on the standard
deviations used in building the PCE.

For all voxels included in the dose mask the dose is evaluated for the cubature
points to obtain the PCE coefficients. These points belong to a space spanned
by the random input variables and represent therefore in the case of patient setup
errors as input variable certain perturbations in setup expressed as shifts in the dose
distribution with respect to the patient. The dose corresponding to these perturbed
patient setups is calculated using the dose engine of the treatment planning system.
Finally, the coefficients are saved in the PCE object and the PCE object is saved.

4.3 Validation of PCE dose distributions

In order to investigate the effects of uncertainties in SBRT using PCE modeling,
one must first construct a model that mimics the dose distribution and ensures that
the discrepancy between the PCE meta-model and the original dose distribution is
sufficiently small. This section is dedicated to the construction of the PCE meta
model based on the original clinical dose distribution and the validation of the PCE
meta model to be used for further analysis. This is done by comparing it to the
clinical dose distribution. PCE models were validated with different tools that can
compare dose distributions. These tools are discussed below.

4.3.1 Dose difference

A very straightforward way of comparing dose distributions is by testing the dose dif-
ference between the distributions. The numerical dose difference is simply computed
voxel by voxel and can be presented by a histogram or table. It can be computed
for the nominal plan or for certain patient displacements. A limitation of the dose-
difference test is that it becomes overly sensitive in steep dose gradient regions as
small spatial differences can cause large absolute dose differences in these regions.
The dose differences can also be presented in a relative cumulative frequency, the
fraction of voxels that exhibit at least a dose difference of ∆D can be determined
easily from these diagrams.

Instead of considering all included voxels, one could also compare the dose re-
ceived by a single voxel under displacement in three directions for the exact and
PCE dose distribution. These graphs can give a sense of the quality of the PCE for
non nominal cases.
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Figure 9: Dose volume histograms showing two dose volume histograms: the dose volume his-
togram for a Cyberknife treatment in solid lined and for a VMAT treatment in dotted lines.
Multiple structures/organs are included.

4.3.2 Dose volume histograms

A Dose Volume Histograms (DVH) is a great tool for interpreting 3D treatment
plans. The 3D Dose distributions as calculated by 3D treatment planning systems
can be difficult to interpret when displayed as isodose curves on several planes.
DVHs summarise the delivered 3D dose distribution of a treatment plan within a
defined volume of interest. A (cumulative) DVH shows the volume receiving a dose
greater than, or equal to, a given dose, against dose. The volume accumulates
starting at the highest dose bin continuing towards zero dose, eventually reaching
100% of the total volume. For a certain patient comparison between DVHs can give
a quick insight in the median dose D50 within a structure and other dose metrics
such as the dose that at least 98% of a volume receives D98, known as the near
minimum dose and the dose that at least 2% of a volume receives D2, known as
the near maximum dose. A DVH comparison for a VMAT and Cyberknife plan is
shown in Figure 9.

DVHs can be used to investigate the quality of a treatment plan as it shows
whether the dose is adequate and uniform throughout the target volume an OARs,
however they do not display positional information. DVHs will be used to test the
PCE dose distribution against the exact dose distribution.

4.3.3 Gamma evaluations

The sensitivity of dose difference analysis to steep dose gradients led to the devel-
opment of the distance-to-agreement test. This test evaluates dose distributions
independently for each reference point. For a specific reference point, the evaluated
dose distribution is searched to locate the nearest point with the same dose value.
Unlike the dose difference method, it is not overly sensitive in steep-dose gradient
regions. However, in shallow dose gradient regions, a large distance-to-agreement
value may be computed even for relatively small dose differences as shallow dose gra-
dient regions typically are larger than steep dose gradient regions. For this reason,
the distance-to-agreement could exceed the agreed clinically acceptable criterion. A
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commonly used method to compare dose distributions in radiotherapy, the Gamma
evaluation, incorporates both the dose and distance criteria [38].

Gamma evaluation provides a numerical quality index in comparing an evaluated
dose with a reference dose. It can quantify the disagreement in the dose regions
that fail and the acceptance in dose regions that pass. Passing criteria for the dose
difference and distance-to-agreement must be selected beforehand. The Gamma
value is computed voxel by voxel in accordance to equation 29.

γ(~rr) = min{Γ(~re, ~rr)},∀{~re} (29)

Γ(~re, ~rr) =

√
r2(~re, ~rr)

∆d2
+
δ(~re, ~rr)

∆D2
(30)

where the symbols are defined as:

• γ(~rr) the minimised general Γ for the set of points belonging to the reference
distribution

• Generalized Γ function, computed for all evaluated positions ~re and reference
positions ~rr

• r(~re, ~rr) = |~re−~rr| Spatial distance between evaluated and reference dose points

• ∆δ The distance to agreement criterion

• δ(~re, ~rr) Difference between evaluated dose De(~re) at position ~re and reference
dose Dr(~rr at ~rr

• ∆D Dose difference criterion

This gamma calculation is done for each voxel in the reference distribution. The
passing-fail criterion for this method will be:

γ(~rr) ≤ 1, voxel passes

γ(~rr) > 1, voxel fails

meaning that the comparison of two dose distributions using a gamma evaluation
will determine for each voxel whether it has passed or failed.

By using the passing-fail criterion the results of a Gamma evaluation can easily
be visualised in a plot. The worst differences that still passes are either two voxels
that have the same position but a dose difference of exact the chosen dose difference
criterion δ(~re, ~rr) = ∆D or two voxels that receive the same dose but are exact the
distance to agreement criterion apart|~re− ~rr| = ∆δ. In this work the evaluated and
reference dose distributions will be the PCE dose and the dose according to the dose
engine.
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5 Margin recipe construction using Polynomial Chaos The-
ory

The previous chapter gave an overview in how PCE meta models are constructed.
This chapter discusses the use of polynomial chaos expansion to compute dose met-
rics and derive margin recipes for fractionated treatments.

5.1 Modelling fractionation effects

The PCEs that are constructed based on a certain treatment plan are PCEs that
depend only on the combined setup error in each direction as the systematic and
random errors are collapsed in each direction. From this ”compressed” PCE the
different effects that systematic and random errors have on a dose distribution can
still be investigated as it is possible to analytically derive the PCE depending on
the original six variables. One could derive from this compressed PCE a PCE that
depends on only the random setup variations for a specific value of systematic error.
This specific value must be chosen from the Gaussian distribution with the same
standard deviation for the systematic setup as given in the input settings during
construction. The PCE that one obtains could be considered as a patient’s PCE.
As discussed earlier the systematic error is patient specific and constant throughout
a treatment.

Suppose a PCE that is constructed for certain values of Σ and σ, making the
combined error
sigma∗c =

√
Σ2 + σ2. A synthetic patient population of Npatients that receive treat-

ments in FN fractions can be simulated. For this population Npatients realisations
of the systematic errors are drawn from a Gaussian distribution N (0,Σ2) and for
each systematic error FN random errors are drawn from a Gaussian distribution
N (0, σ2). To simulate the treatment PCEs are built for the drawn systematic setup
error and evaluated for the FN different random errors, the responses of these PCEs
are averaged over these FN fractions to yield the final dose distribution for the frac-
tionated treatment. By doing this population percentiles of treatment parameters
such as:

• Dα: dose that at least α% of the voxels receive

• V O
β : the fraction of voxels belonging to organ O that receive at least β% of the

prescribed dose

can be determined. In this work the near minimum dose D98% to the PTV and
prostate, near maximum dose D2% to the OARs and dose coverage V100 of the
prostate will be investigated. The near minimum and maximum doses are chosen
as dose metrics instead of the absolute extrema because the latter would only hold
for a few voxels, which would be meaningless on a scale of millions of voxels.

By doing this for different number of fractions, fractionation effects on the desired
dose metrics for organs or volumes of interest can be studied. Suppose the fraction-
ation schemes of interest are {FN1, FN2, ..., FNmax}, an efficient way to do this is
to calculate the PCE response of FNmax random errors for each systematic error.
By averaging over FN PCE responses per systematic error, the PCE response of an
FN fractionated treatment can be obtained for all fractionation schemes of interest
at once. Figure 10 summarises this process.
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Figure 10: A flow chart that summarises how fractionation effects can be modelled for an entire
patient population using a single PCE. The purple block can be appended if one is interested in
values at certain percentiles of the patient population or omitted if one is interested in the full
distribution over the entire population.

5.2 Constructing margin recipes

PCE for radiotherapy can be used for the construction of a margin recipe. A margin
recipe describes the needed CTV to PTV margin MPTV that is needed to deal with
certain setup errors. Using PCE methods it is possible to simulate large populations
of patients to construct these recipes at an affordable computational cost.

First a criterion has to be defined regarding what is clinically acceptable as treat-
ment outcome in terms of a CTV dose parameter. Within this work a treatment
was considered successful if the probability P of getting the full prescribed dose for
at least 98% of the CTV is greater than or equal to 98%:

P
(
V CTV

100 ≥ 98%
)
≥ 98% (31)

For the margin recipes it is of more interest when this criterion is violated as it gives
the maximum systematic and random error a certain margin can handle. Hence,
the criterion, i.e. at least 98% of the simulated patient population receives at least
the full prescribed dose in 98% of the CTV, that was used in determining what
combination of Σ and σ are clinically acceptable, was:

97.95% ≤ P
(
V CTV

100 ≥ 98%
)
≤ 98.10% (32)

meaning that for a given margin the combination of Σ and σ are determined such
that the probability of successful target coverage (V CTV

100 ≥ 98%) is in [97.95, 98.10].
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5.2.1 Sampling PCE responses for margin recipes

For a certain PTV-CTV margin an initial guess on what values for Σ and σ would
meet the criterion in Equation 32 for the lowest fraction number FNmin of interest
was made. PCEs were based on treatment plans that have this value for MPTV with
the initially guessed values for Σ and σ. After the construction of a PCE, the CTV
dose distribution, of 105 fractionated treatments was obtained and multiplied by a
scaling factor that will be explained in Section 5.2.1.1. The CTV dose for each of
the simulated treatments was calculated using a different systematic setup error and
FN random errors representing the different fractions sampled using the Gaussian
distributions with mean zero and standard deviations Σ and σ. From the CTV dose
distribution the probability P

(
V CTV

100 ≥ 98%
)

was calculated.
If the probability did not satisfy Equation 32, a second and sometimes a third

guess was made based on the value of the P
(
V CTV

100 ≥ 98%
)

corresponding to the
initial guess. If the probability of successful treatments is less than 97.95%, the
systematic error for a certain random error is apparently too big and was decreased
for the next iteration. When the probability is more than 98.1% the systematic
error is increased. A new PCE is then constructed for the same plan using the
new guesses for the systematic error and treatments are simulated and evaluated
again. These steps are repeated until the passing criterion is achieved. Figure 11
summarises these steps.

5.2.1.1 Scaling factor

The margin recipe is obtained from sampling PCE responses that are models for
the dose that a single patient receives under certain setup errors and thus patient
specific. To illustrate why this is suppose patient 1 has a PTV coverage of 99% in
the nominal case (V PTV

100 = 99%) and patient 2 has a PTV coverage of 95% in the
nominal case. The treatment plans are optimised to satisfy a certain PTV constraint
that will lead to successful CTV coverage. Sampling what combinations of setup
errors still result in a clinically acceptable CTV coverage would be different for these
patients. Due to the intrinsically better PTV coverage for patient 1, larger setup
errors for patient 1 would satisfy Equation 32 than for patient 2. A recipe based on
patient 1 will therefore allow greater setup errors than a recipe based on patient 2
and validating a margin recipe based on patient 1 for patient 2 would give negative
results.

In order to make the recipe valid for an entire cohort of PCa patients, some
measure has to be undertaken to ensure the plan quality is the same for the patient
the recipe is based on and patients the recipe is validated for. In the scope of this
work the PCE response for the dose for all simulated treatments is scaled with a
fixed scaling factor. This scaling factor is chosen such that the PTV coverage in the
nominal scenario satisfies Equation 33 exactly.

V PTV
100 = 95% (33)
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Figure 11: This figure summarises the iterative manner of finding error combinations that yield
the desired passing probability
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5.2.2 Estimating Σ and σ for the next iteration

A smart estimation for the next value of Σ that hopefully does satisfy Equation 32
decreases the number of needed iterations and therefore computational costs. After
the first iteration cycle an estimation must be made based on P

(
V CTV

100 ≥ 98%
)
.

This could be done in multiple ways.
If there is only a single value known for P

(
V CTV

100 ≥ 98%
)
, the value for the

standard deviation for the systematic error for the next iteration round is simply
based on P

(
V CTV

100 ≥ 98%
)
. The increment or decrement in Σ is based on how much

this probability deviates from the criterion in Equation 32, this is tabulated in Table
2. If there are at least 2 values for P

(
V CTV

100 ≥ 98%
)

known for a certain random
error, the systematic error for the next iteration can be determined by a first order
gradient method.

Condition for P
(
V CTV100 ) ≥ 98%

)
∆ΣNext

P ≤ 97% & Σ ≥ 0.2 -0.2
P ≤ 97.95% & Σ > 0.1 -0.1
P ≤ 97.95% & Σ ≥ 0.05 -0.05
P ≤ 97.95% & Σ ≥ 0.1 -0.1
P = 100% +0.5
98.10 ≥ P ≤ 98.9% +0.05
98.10 ≥ P ≤ 99.10% +0.1
P ≥ 99.10% +0.2

Table 2: Choice of the systematic error for the next iteration if there is only a single value for
P
(
V CTV100 ≥ 98%

)
known. The next systematic error is given by Σ + ∆ΣNext based on the value

for P
(
V CTV100 ≥ 98%

)
that is denoted as P . The conditions for P are checked in priority from the

top to bottom.

The fastest way to construct a recipe is to estimate multiple values for the systematic
error for an array of random errors. Based on the P

(
V CTV

100 ≥ 98%
)

values of these
error combination a good estimation for the systematic error can be made by fitting
the data to these points. For example, one could start with the error combinations
as tabulated in Table 3, these combinations could be educated guesses based on a
previously sampled fraction number or margin.

σ Σ1 Σ2 Σ3

0 1.20 1.40 1.60
0.50 0.50 0.80 1.00
0.80 0.40 0.60 0.80

Table 3: This table shows an example array of systematic setup errors that one could try for a
certain random error as an initial approach to converge to the desired combination of Σ and σ that
will satisfy Equation 32

Based on for example the P
(
V CTV

100 ≥ 98%
)

values for the third row , a prediction for
Σ that will give the desired probability can be made by fitting a polynomial of the
form P

(
V CTV

100 ≥ 98%
)

= a+ b ·Σ+ c ·Σ2 to the data, this is illustrated in Figure 12.
By solving this fit for p = 98%, the value for the systematic error was predicted to
be Σ = 0.51, which turned out to exactly meet the passing criterion. The advantage
of using this method is that it requires less iteration points and therefore it decreases
the number of PCEs that need to be constructed. This is probably because it can
consider a non linear dependence as at least three points will be used for the fit.
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Figure 12: An example fit of different systematic errors and their passing probabilities.

5.2.3 Estimating Σ and σ for higher fraction numbers

Suppose we are interested in treatments that are fractionated in 2, 3, 4 and 10
fractions. Due to averaging effects a treatment that is fractionated in more frac-
tions is able to handle larger errors. Now suppose we build a PCE for a certain
combination of setup errors for a treatment fractionated in only 2 fractions and the
P
(
V CTV

100 ≥ 98%
)

value turns out to be 2%. Although this combination did not meet
the desired passing probability, it might do for another higher fraction number.

If P
(
V CTV

100 ≥ 98%
)
≤ 97.5% the PCE was reused for the remaining higher

fraction numbers to calculate P
(
V CTV

100 ≥ 98%
)
. An efficient way of doing this is by

constructing a scenario matrix for the largest fraction number of interest FNmax,
this matrix will contain 105 values for the systematic setup errors obtained from
a Gaussian distribution with standard deviation Σ and for each systematic error
FNmax random errors from a Gaussian distribution with standard deviation σ. The
responses of in total 105∗FNmax treatments are averaged over all fraction numbers of
interest up to FNmax, this means that the P

(
V CTV

100 ≥ 98%
)

for all fraction numbers
of interest up to FNmax can be simulated at once. When the results are obtained,
they can be saved and the PCE is no longer needed.

These results can be used to make better initial estimations for the standard
deviations a plan with the same margin can handle if the treatment is delivered in
more fractions for future use. This is indicated in Figure 11 with gray arrows.
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6 Results

6.1 Choice of maximum included polynomial order

For the PCE to mimic the dose distribution in a way that doses can be recalculated
for different patient setup up variations using only the PCE dose distributions, suf-
ficiently high order polynomials must be included in the expansion. The higher the
polynomial order that is included, the more accurate but computationally costly the
PCE construction and sampling becomes. A higher polynomial order requires higher
level quadratures to determine the coefficients accurately. PCE dose distributions
were constructed with polynomials up to 6th order. These PCEs were compared
to the clinical dose distribution, results of this comparison are presented in this
subsection.

PCEs were constructed for the 3 mm VMAT plans for Σ = σ = 3 mm for max
polynomial order PO ∈ {2, 3, 4, 5, 6}. For the Cyberknife plans the same polynomial
orders were investigated. For each polynomial order the minimal required grid order
GO plus extra quadrature level EL that results in accurate PCE coefficients was
used:

PO = GO + EL = GO + 1 (34)

To differentiate between PCEs of different grid and polynomial orders, the fol-
lowing notation is adapted:

GOτELνPOφ

where τ denotes the used grid order, ν denotes the grid extension, which will be 1
throughout this work, and φ denotes the maximum included polynomial order.

An overview of the construction time and the needed evaluations of the clinical
dose engine for each PCE is given in Table 4.

POELGO RT modality Construction time (hh:mm) # Evaluations
GO2EL0PO2 VMAT 00:23 7
GO2EL1PO3 VMAT 00:52 13
GO3EL1PO4 VMAT 01:32 37
GO4EL1PO5 VMAT 03:12 111
GO5EL1PO6 VMAT 09:29 303
GO2EL0PO2 cyberknife 00:35 7
GO2EL1PO3 cyberknife 00:50 13
GO3EL1PO4 cyberknife 01:22 37
GO4EL1PO5 cyberknife 03:38 111
GO5EL1PO6 cyberknife 15:06 303

Table 4: The construction time for PCEs with different maximum included polynomial orders.
The used standard deviations for VMAT and Cyberknife were Σ = σ = 3 mm and Σ = σ = 2 mm
respectively. One can see that the construction time scales about linearly with the number of
needed clinical dose evaluations that are needed to calculate the coefficients as that is the most
computationally expensive and time consuming step in PCE construction. The construction time
between the Cyberknife PCEs of order GO4EL1PO5 and GO5EL1PO6 did not scale linearly as
not enough memory was reserved, only 90 gb were reserved while 130 gb was used.

6.1.1 Gamma Evaluation

Gamma Evaluations to compare the different PCEs constructed for several selected
patients to the clinical real dose distribution were performed for 50 combined setup



6 RESULTS 33

variations that lie on the surface of the ellipsoid that is constructed by 99% of
the combined errors. Seven patients’ VMAT treatment plans and four Cyberknife
treatment plans were analysed. Since all input variables are assumed to be Gaussian,
these 50 combined set up variations lay in the upper 99th percentile of the Chi-square
distribution with three degrees of freedom. The dose difference ∆D and distance to
agreement criterion ∆d in all gamma evaluations were chosen to be ∆D = 0.1Gy
and ∆δ = 1 mm.

(a) VMAT (b) Cyberknife

Figure 13: Γ − evaluation comparison between different grid and polynomial orders for a PCE
VMAT dose (a) and a PCE cyberknife dose (b).

From Figure 13 it can be seen that for increasing maximum included grid and
polynomial order, the PCE models the clinical dose distribution better and better.
A large improvement is made going from GO = 2, PO = 3 to GO = 3, PO = 4
whereas the improvement between GO = 4, PO = 5 to GO = 5, PO = 6 is more
subtle.

For PCEs of order GO4EL1PO5 gamma evaluations have been performed for
multiple patients to verify whether this order gives the desired accuracy across pa-
tients, these results for VMAT and Cyberknife dose distributions are depicted in
Figure 14. The results from the gamma evaluation show that this grid order is
comparably accurate among the evaluated patients.

(a) VMAT (b) Cyberknife

Figure 14: Intra patient Γ − evaluation comparison between the clinical true dose and the PCE
dose for VMAT (a) and Cyberknife (b), where the polynomial and grid order were GO4EL1PO5.

To investigate where the PCE dose distribution lacks accuracy within the patient,
the dose difference between the clinical and PCE dose distribution have been plotted.
This was done for the scenario with the least amount of accepted voxels out of the 50
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(a) VMAT (b) Cyberknife

Figure 15: The absolute dose difference between PCE and dose engine for the scenario with the
least number of accepted voxels 99% confidence ellipsoid of the gamma evaluations for VMAT (a)
and a PCE cyberknife (b). The polynomial and grid order were GO4EL1PO5.

combined set up variations for patient 1. The absolute dose difference for the worst
performing slice within the patient for the worst performing scenario of the gamma
evaluations is depicted in Figure 15. As seen in Figure 15 there is no particular
structure/organ where the PCE dose performs poor. The largest dose differences in
the VMAT dose was observed on the rectum side of the prostate, where the dose
distribution is steep. The largest dose difference for the Cyberknife dose are for
certain voxels, about evenly distributed within the PTV and for certain beams.

6.1.2 Dose Volume Histograms

Dose volume histograms could also be used to compare between the PCE dose
distribution and the clinical dose distribution. DVHs were constructed for 3 mm
VMAT plans and for 3 mm Cyberknife plans. This was done for all polynomial
orders that were used in the gamma evaluations for the same patient. DVHs were
compared in absence of patient set-up errors and for the worst performing scenarios
in the gamma evaluations.

The DVHs of the worst performing scenario for the VMAT treatment plans for
maximum included polynomial order four, five and six are shown in Figure 16.
As expected, the DVHs overlap more for increasing maximum included polynomial
order, meaning the PCE dose distribution models the clinical dose distribution better
and better. The largest difference in the DVHs for both RT modalities are observed
for the Urethra. The urethra is situated at around the center of the prostate and
is a very small organ. Due to its small size, deviations in the received dose lead to
largest discrepancies in the DVH with respect to the clinical true dose DVH, though
this difference becomes negligible for GO4EL1PO5 and GO5EL1PO6.
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(a) VMAT: GO3EL1PO4 (b) VMAT: GO4EL1PO5

(c) VMAT: GO5EL1PO6
(d) Cyberknife: GO3EL1PO4

(e) Cyberknife: GO4EL1PO5 (f) Cyberknife: GO5EL1PO6

legend

Figure 16: DVH comparison between the VMAT and Cyberknife true dose and the corresponding
PCE dose for different polynomial and grid orders. The comparison is made for the scenario with
the least number of accepted voxels from the 50 scenarios on the 99% confidence ellipsoid.
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6.1.3 Dose comparison for a single voxel under spatial translation

For a certain voxel in the prostate the PCE dose has been calculated under simu-
lated spatial translation of the patient in six directions, namely left, right, anterior,
posterior, superior and inferior, i.e. along the positive and negative x, y, z axes.
The translated dose has been calculated for all polynomial orders included in the
gamma evaluations.

This dose represents the dose that a certain voxel within the CTV would receive
under a certain patient setup error (which has a systematic and random component).
A comparison can be made between the voxel dose according to the clinical dose
engine and the PCE dose under that respective shift to see whether the PCE behaves
as desired. This was done for multiple randomly selected voxels within the CTV,
for a certain voxel results are shown in Figure 17.

(a) (b)

(c)

Figure 17: Voxel dose according to the clinical dose engine in yellow, and PCEs that include
different polynomial degrees for voxel translation along the x-axis (a), y-axis (b) and z-axis(c).

For increasing polynomial order, the response of the PCE dose under spatial
translation becomes better, a leap in improvement is observed going from PO = 3
to PO = 4 in agreement with the results from the gamma evaluations. The points
for the nominal scenario (i.e. no shift) do not overlap as the expected squared
difference for all scenarios included in the construction of the PCE is minimised in
the construction of the PCE.

For both RT modalities it can be seen in Figure 13 and 16 that PCEs of order
GO4EL1PO5 and GO5EL1PO6 have a very similar performance. The number of
dose engine calculations and therefore the construction time does increase drastically
for GO5EL1PO6 as seen in Table 4, these PCEs are also more than twice as large
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Patient 1 2 6 12 17 19 20
Rate 0.9809 0.9760 0.9766 0.9772 0.9806 0.9811 0.9807

Table 5: The passing rates for the VMAT plans of the scenario with the least number of accepted
voxels on the 99% confidence sphere. The gamma evaluation was performed on the dose engine
dose and a PCE of order GO4EL1PO5.

in terms of storage memory, namely roughly 10GB for GO4EL1PO5 and 25GB
for GO5EL1PO6. Based on these numbers and validation results the maximum
included orders for the PCE is chosen to be GO4EL1PO5.

The gamma passing rates for the scenario with the least number of accepted voxels
on the 99% confidence sphere for all patients considered in the gamma evaluation
performed on VMAT dose distributions is tabulated in Table 5. For the chosen order
GO4EL1PO5 the passing rate of the worst scenario was around 98%.

A side by side comparison of the nominal case between the PCE dose distribution
and clinical dose distribution is depicted in Figure 18 and 19. More gamma Eval-
uations and DVH comparisons were performed for five other patients, these show
similar results.

(a) PCE dose distrubution nominal scenario (b) Treatment plan dose distribution

Figure 18: The PCE dose distribution in absence of patient errors and the clinical treatment plan
dose distribution for a coplanar VMAT treatment.

(a) PCE dose distrubution nominal scenario (b) Treatment plan dose distribution

Figure 19: The PCE dose distribution in absence of patient errors and the clinical treatment plan
dose distribution for a non coplanar cyberknife treatment.
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6.2 Sampling patients’ PCEs

By building different patients’ PCEs as described in Section 5.1 one could simulate
fractionated treatments for a chosen number of fractions for a large patient popula-
tion with certain setup and random errors. The expectation value for near minimum
dose that the prostate receives, the near maximum doses for several OARs and the
expectation value for the CTV coverage was investigated for different treatment
plans. By doing this for different number of fractions, the effects of fractionation on
the received dose can be quantified.

The fractionation analysis was performed on both VMAT and Cyberknife treat-
ment plans. Because the results for both RT modalities was so similar, only the
results for Cyberknife are shown in this section, as for the margin recipes construc-
tion shown in Section 6.3.1 Cyberknife plans were used.

6.2.1 CTV coverage

The averaged percentages of voxels within the CTV that receive at least the full
prescribed dose was sampled for several treatment plans for both RT modalities for
different combination of systematic and random setup errors. These expectation
values for a systematic error of 0.5 mm against the random error σ are depicted
in Figure 20 for 10.000 fractionated treatments. The effects of fractionation on
the CTV coverage can be clearly observed from Figure 20, the higher the fraction
number, the higher the expected CTV coverage for that particular combination of
systematic and random set-up error.

Figure 20: The averaged value of the V100 of the CTV in a Cyberknife plan as function of σ for
different fraction numbers for Σ = 0.5 mm.

Another observation from Figure 20 is that the expected CTV coverage increases
for small patient shifts with respect to the nominal clinical plan for an increasing
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random set-up error. This increase was observed for random errors up to 3 mm for
Σ = 0, 0.5 mm and 1 mm, though for Σ = 2 mm this increase was observed up to
a random error of 2 mm. For large number of fractions in the case σ > 1 mm and
Σ ≤ 1 mm the coverage was higher than for the nominal scenario. The expected
CTV coverage decreases for an increasing systematic error at a certain value for the
random error. This phenomenon has been observed for both RT modalities.

6.2.2 Near minimum prostate dose

The near minimum prostate dose has been determined for a systematic error of
0, 1 and 1 mm and a random error between 0 and 3 mm. It was observed that for
small systematic set up errors the minimum dose increases for increasing random
error and that this effect becomes stronger for an increasing fraction number.

To check whether the increased D98 is an artefact of the PCE dose distribution,
dose calculations for different combinations of (Σ, σ) have been performed with the
clinical dose engine. The D98 of the true dose was also found to be higher than for
the planned nominal dose for certain combinations of setup errors. The results for
(0.5, 1) are depicted in Figure 21. What can also be observed from this figure is that
the D98 values of the PCE are in good agreement with the true dose.

Figure 21: D98 comparison for 20 patient shifts from Gaussian distributions with (Σ, σ) = (0.5, 1)

Figures 22a to 22c show the effect of fractionation on the 2nd percentile of the
prostate near minimum dose. If we look at the second percentile of the D98 of
the prostate, an increase with the random error is also observed for treatments
fractionated in more than 10 fractions. This effect was observed for a systematic
setup error of 0, 0.50, and 1 mm and weakens with increasing systematic error. For
Σ = 1 mm this effect breaks down for 10 fractions at σ > 1 mm and for even higher
fraction numbers it breaks down at σ > 1 mm. For Σ = 2 mm this effect is not
observed any more, though the plot in Figure 22c is noisy due to sampling noise.

Another observation from Figures 22a to 22c is that the second percentile of the
D98 of the prostate decreases for increasing systematic error given a certain random
error.

For a certain value of σ the second percentile of the D98 decreases for increasing
Σ. To really see the dependence on Σ and σ more thoroughly, surface plots were
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(a) The 2nd percentile of the D98 for the prostate as function of the random error in absence of a systematic
error.

(b) The 2nd percentile of the D98 for the prostate as function of the random error for a systematic error
of 1 mm.

(c) The 2nd percentile of the D98 for the prostate as function of the random error for a systematic error
of 2 mm.

Figure 22: The second percentile of the simulated poppulation’s D98 distribution as function of σ
for different fraction numbers for Σ = 0, 1 and 2 mm.



6 RESULTS 41

created for different fraction numbers where the second percentile of the D98 was
plotted as function of Σ and σ. Plots for 4, 10, 15 and 35 fractions are depicted in
Figure 23.

(a) 4 fractions (b) 10 fractions

(c) 15 fractions (d) 35 fractions

Figure 23: The second percentile of the prostate D98 distributions for 4 fractions (a) 10 fractions
(b) 15 fractions(c) and 35 fractions (d) as function of Σ and σ

From the surface plots in Figure 23 we see that the second percentile of the D98

decreases faster with increasing systematic error than it does for increasing random
error. In the case of 4 fractions no increase in the second percentile of the D98 is
observed for increasing values of the setup errors. In the case of 10 fractions an
increase in the second percentile of the D98 is observed for random errors between
1 and 2 mm with a systematic error between 0.7 and 0.8 mm with respect the case
of 4 fractions. In the case of 15 and 35 fractions the area of the increased second
percentile of the D98 extends to a random error of 3 mm. From Figure 23 it is clear
that the increase in the second percentile of the D98 with respect to the case of four
fractions, becomes stronger with increasing fraction number.

Histograms of the distribution of the D98 were also generated for all combinations



6 RESULTS 42

of systematic and random set up errors that are displayed in Figure 23, two of these
histograms are depicted in Figure 24. The width of the distributions widens for
increasing random error and increasing systematic error. The distribution of the
D98 for the PTV and CTV/prostate was found to be asymmetric as its tail extends
to lower doses.

(a) Histogram D98 prostate for Σ = 0.5 mm and σ =
2 mm

(b) Histogram D98 prostate for Σ = 2 mm and σ =
2 mm

Figure 24: A comparison of the distribution of the D98 of a simulated population that receives 3,
4, 5, 10, 15, 20, 25 and 35 fractions. The systematic setup error is 2 mm combined with a random
error of 0.5 mm (a) and 2 mm (b). Note that the axes are scaled differently.

For large values of the systematic error, the widening of the D98 distribution with
increasing fraction number becomes negligible compared to the widening effect of
the increased systematic error.



6 RESULTS 43

6.2.3 Near maximum dose

Patients’ PCEs were also sampled to investigate the effect of fractionation on the
distribution of the D2 of the rectum, urethra and bladder. Especially for serially
structured organs like the urethra it is important to have high control over the
maximum dose it receives. Because the high doses are in the OARs are of interest,
the 98th percentile of the distribution of the D2 was calculated.

For the simulated treatments with a certain fraction number the 98th percentile
of the near maximum dose D98 for the organs at risk has been plotted as function of
Σ and σ. This resulting surface gives the dependence of the near maximum dose as
function of the different set up error. For a treatment given in four fractions these
plots are depicted in Figure 25. For a fixed systematic error Σ = 0.5mm the results
are depicted in Figures 26a to 26c.

(a) Urethra D2 98th percentile in case of 4 fractions (b) Rectum D2 98th percentile in case of 4 fractions

(c) Bladder D2 98th percentile in case of 4 fractions

Figure 25: The 98th percentile of the D2 distributions for the urethra (a), rectum(b) and the
bladder (c) in a treatment that is fractionated in four fractions as function of the systematic and
random error.
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From Figure 25 it can be observed that the 98th percentile of the high dose in the
OARs increases with increasing random error and systematic error. The increase is
stronger for increasing systematic error than for increasing random error. The high
dose in the rectum was found to increase strongly for increasing systematic error.
In the urethra for a systematic error of 2mm the 98th percentile of the high dose
stays about constant for random errors between 0 and 3mm.

The 98th percentiles of the D2 have also been plotted for a fixed systematic error
of 0.5 mm and varying random error for fractionated treatments in 3, 4, 5, 10, 15,
20, 25 and 35 fractions, these plots are depicted in Figures 26a to 26c. From Figures
26a to 26c it can be seen that the 98th percentiles of the D2 decrease for increasing
fraction number for all investigated combinations of the systematic and random
error. The difference becomes less pronounced for increasing fraction number.

The D2 distribution has been plotted for all investigated fraction numbers all
the combinations of (Σ, σ) that were investigated, in Figure 27 the results of the
combinations (0.5, 2) and (2, 2) are shown. From Figure 27 we observe that the
mean value for the near maximum dose for the organs at risk is about independent
of the fraction number but, the spread of the D2 distributions widens for increasing
fraction number. For increasing σ and a fixed value of Σ the distribution was also
found to widen. For Σ > 2 the distributions are wider than for smaller Σ but the
widening effect with increasing fraction number becomes negligible.

The shape of the distributions of 3,4 and 5 fractions and of 15, 20, 25 and 35
were found to be very similar. Especially for the urethra a shape difference of the
distributions is observed going from 5 fractions to > 10 fractions.

The distribution of the D2 for the urethra is asymmetric in the sense that its
tails extent to high doses. The distribution of the D2 for the rectum and bladder
was found to be (nearly) symmetric.
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(a) 98th percentile of the urethra D2

(b) 98th percentile of the rectum D2

(c) 98th percentile of the bladder D2

Figure 26: A comparsion between the 98th percentile of the D2 in the urethra (a), rectum (b)
and bladder (c) for treatments fractionated in 3, 4, 5, 10, 15, 20, 25 and 35 fractions for a fixed
systematic error of 0.5 mm against the random error.



6 RESULTS 46

(a) (b)

(c) (d)

(e) (f)

Figure 27: The distribution of the D98 of the prostate and the D2 of the urethra, bladder and
rectum for the standard deviations (Σ, σ) (0.5, 2) and (2, 2)
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6.3 Margin recipes

Recipes were constructed as explained in Section 5.2 for Cyberknife plans with 3 mm,
4 mm and 5 mm isotropic CTV to PTV margin for fraction numbers 2, 3, 4, 10, 30
and 39. Unfortunately no margin recipe was derived for VMAT as treatment plan
optimisation (explained in Section 4.1.1) did not converge for larger margins than
3 mm for the desired constraints and objectives. For a given fraction number the
margin recipes indicate the required margin that is needed to have the probability
for the CTV coverage at P (V CTV

100 ≥ 98%) ≥ 97.95%. The margin recipes were
validated for 10 other patients, the results of the recipe validation are shown in
Section 6.3.2. This chapter ends with a comparison between the margin recipes for
the given fraction numbers and the linearised van Herk recipe in Section 6.3.3.

6.3.1 Margin recipes fits

The points that meet the chosen criterion (Equation 32) are fitted to the function
in Equation 35. The fitting function was chosen to be a rational relation between
the CTV-PTV margin, systematic setup error and the random setup error. This
function was the same function as used in the work of C. Ter Haar [12] for the setup
robustness recipes as the points appeared to follow more or less the same trend.
It contains a polynomials of degree one and two in σ and coefficients P1, P2, P3

and P4 that are third order polynomials of the CTV to PTV margin MPTV . The
polynomials P1, P2, P3 and P4 are given by Equations 36 to 39.

Σ(σ,MPTV ) =
P1 ∗ σ + P2

σ2 + P3 ∗ σ + P4

(35)

P1 = a ∗M3
PTV + b ∗M2

PTV + c ∗MPTV + d (36)

P2 = e ∗M3
PTV + f ∗M2

PTV + g ∗MPTV + h (37)

P3 = i ∗M3
PTV + j ∗M2

PTV + k ∗MPTV + l (38)

P4 = m ∗M3
PTV + n ∗M2

PTV + o ∗MPTV + p (39)

The fits for all investigated fraction numbers are depicted in Figure 28, the cor-
responding fit parameters together with their standard error, t-statistic and p-value
are given in Table 6a to 6f. The corrected total degree of freedom (DF) and reduced
chi squared statistic χ2

Red of the fits are tabulated in Table 7.

From Figure 28 we see that as the fraction number increases, the data is fits
worse to Equation 35. This seems especially true for 39 fractions and MPTV =
3 and 4 mm. From Table 7 we can observe that the t-statistic increases for increasing
fraction number and that the p-value decreases for increasing fraction number.

For all margin recipes a couple of parameters could be set to 0 and still result in
a good fit. For the fits performed for 2 and 3 fractions very large standard errors
in the fit parameters are observed, the small values for the t-statistics and large
values for the p-value suggest the data being over fitted. Omitting up to three of
the parameters that have a very small absolute t-statistic was found to still result in
a good fit. For 2 fractions one could for example omit parameters c, e and f which
still results in a good fit and a slight increase in the χ2

Red statistic. For 3 fractions
a, b, d and e could be omitted, by doing this the χ2

Red becomes 1.51923e-3.
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For the fit performed for 4 fractions the standard error and p-values for the
estimated fit parameters have become smaller with respect to the 2 and 3 fractions
case. It was observed that omitting 5 parameters still results in good fit. It is hard
to tell what parameter should be neglected, looking up from a table for the t value
of a two sided distribution at 95% confidence one finds t = 2.110. By omitting
the parameters e, g, h, i and k the function still fits well, though the values of
the t statistic are much larger than 2.110. After omitting these variables, the χ2

Red

statistic becomes 1.51923e-3, which is still very small. Omitting other combinations
of equal number of parameters also works.

Moving on to 10, 30 and 39 fractions a decrease in the p-values is seen in Table
7 but if one parameter gets removed some P-values for other parameters increases.
Omitting three to four fit parameters still result in a good fit if chosen wisely.
Ideally one would fit all data to one function Σ(MPTV , FN, σ) that is a function of
the margin MPTV , fraction number FN and the standard deviation of the random
error σ but no functional has been found yet to fit the data accurately. For the three
investigated values of MPTV the margin required per fraction number have been
plotted together in Figure 29a to 29c, these plots have been obtained by combining
all fits belonging to the same margin from Figure 28.
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Value Standard Error t-Statistic P-Value
a 6.55549 18.8496 0.347779 0.786927
b -59.053 139.012 -0.424806 0.744266
c 143.498 188.752 0.760245 0.586181
d -77.3502 175.971 -0.439561 0.736351
e 3.37695 26.6311 0.126805 0.919702
f -62.1651 196.297 -0.316689 0.804751
g 349.431 266.439 1.31149 0.414725
h -578.796 248.412 -2.32998 0.258094
i -77.4709 17.6116 -4.39885 0.142306
j 950.5 129.915 7.31629 0.0864781
k -3812.53 176.444 -21.6076 0.0294417
l 4972.17 164.49 30.2277 0.0210531
m 19.8117 28.9792 0.68365 0.618239
n -267.986 213.717 -1.25392 0.42858
o 1185.01 290.19 4.08356 0.152889
p -1675.92 270.541 -6.19468 0.10189

(a) 2 fractions

Value Standard Error t-Statistic P-Value
a -0.0644863 2.94771 -0.0218768 0.98392
b -2.12085 24.4454 -0.0867587 0.93633
c 16.0602 41.2722 0.389127 0.723159
d -35.9705 37.2636 -0.965299 0.405601
e 0.218043 3.64867 0.0597597 0.956105
f 2.13917 29.8537 0.071655 0.947386
g -14.7069 49.729 -0.29574 0.786717
h 29.1512 44.9717 0.648212 0.563039
i 1.0556 4.56005 0.231488 0.831826
j -15.0055 38.0361 -0.394507 0.719579
k 69.5477 64.5857 1.07683 0.360438
l -116.416 58.2734 -1.99776 0.139629
m -2.0781 6.08806 -0.34134 0.755357
n 26.382 50.5774 0.521616 0.637999
o -105.226 85.5046 -1.23065 0.306146
p 152.284 77.1881 1.97289 0.143043

(b) 3 fractions

Value Standard Error t-Statistic P-Value
a -4.51544 0.764291 -5.90801 0.0274743
b 44.9938 5.2594 8.55493 0.0133898
c -151.719 6.98977 -21.7059 0.00211575
d 169.022 6.53362 25.8696 0.0014909
e -7.72964 2.16385 -3.57217 0.0702139
f 125.566 14.3878 8.72725 0.0128764
g -581.538 18.2263 -31.9066 0.000980844
h 827.757 17.1824 48.1747 0.000430607
i 17.0342 0.645502 26.3891 0.0014329
j -209.595 4.72897 -44.3215 0.000508675
k 834.267 6.84065 121.957 0.0000672264
l -1082.13 6.30718 -171.571 0.0000339694
m 16.7386 1.7792 9.40791 0.0111104
n -181.342 12.3579 -14.6742 0.00461187
o 659.777 16.5956 39.756 0.000632094
p -791.245 15.4857 -51.0954 0.000382814

(c) 4 fractions

Value Standard Error t-Statistic P-Value
a 0.29507 0.419507 0.703372 0.504539
b -2.95904 3.0835 -0.959636 0.369204
c 3.40927 4.21285 0.809254 0.445001
d 5.6994 3.92295 1.45283 0.189579
e 0.141591 1.55841 0.0908557 0.930152
f 0.955382 11.3894 0.0838834 0.935498
g 14.0384 15.4488 0.908705 0.393715
h -46.9262 14.4031 -3.25806 0.0139015
i 13.9208 0.460237 30.2469 1.113538e-8
j -163.897 3.41714 -47.9634 4.480258e10
k 625.902 4.73834 132.093 3.759006e-13
l -785.286 4.40139 -178.418 4.585748e-14
m 30.4375 1.62496 18.7313 3.069752e-7
n -372.613 12.0008 -31.0489 9.282821e-9
o 1505.82 16.4934 91.2985 4.981889e-12
p -1972.19 15.3434 -128.537 4.549955e-13

(d) 10 fractions

Value Standard Error t-Statistic P-Value
a -0.133594 0.106257 -1.25727 0.229224
b 0.534658 0.759855 0.703632 0.493199
c -1.10723 1.05113 -1.05337 0.310014
d -1.41113 0.97615 -1.44561 0.170298
e 0.229324 0.554937 0.413244 0.685688
f 6.83968 3.86687 1.76879 0.098701
g -41.9584 5.17404 -8.1094 1.168764e-6
h 72.0294 4.83154 14.9082 5.520126e-10
i 1.38368 0.0968151 14.292 9.632448e-10
j -16.6116 0.727092 -22.8466 1.758269e-12
k 64.2008 1.07493 59.7258 2.928147e-18
l -89.9781 0.987993 -91.0716 8.088319e-21
m 3.02422 0.468477 6.45542 0.0000150904
n -33.4954 3.42111 -9.79081 1.21299e-7
o 130.051 4.87469 26.6789 2.0996930e-13
p -146.454 4.50559 -32.505 1.377848e-14

(e) 30 fractions

Value Standard Error t-Statistic P-Value
a -2.89843 0.236273 -12.2673 1.494306e-9
b 32.8263 1.65907 19.7859 1.129564e-12
c -126.128 2.23099 -56.5348 7.4580157e-20
d 158.189 2.08171 75.9898 6.681822e-22
e -9.99652 1.3264 -7.53657 1.192142e-6
f 137.268 9.1043 15.0772 7.074208e-11
g -569.731 11.9137 -47.8214 1.069612e-18
h 756.154 11.1683 67.7054 4.213610e-21
i -11.1596 0.194444 -57.3922 5.868314e-20
j 133.771 1.43468 93.2409 2.548717e-23
k -525.971 2.06128 -255.167 2.606467e-30
l 666.413 1.90288 350.212 1.645614e-32
m -159.593 1.03916 -153.579 8.760496e-27
n 1920.78 7.43159 258.461 2.122976e-30
o -7525.54 10.2517 -734.077 1.186039e-37
p 9620.41 9.52513 1010. 7.191991e-40

(f) 39 fractions

Table 6: Tables (a) to (f) show the estimated values for the fit parameters together with their
standard error, t-statistic and P-value for each fraction number individually.

FN 2 3 4 10 30 39
χ2
Red 6.72972e-4 9.7863e-5 1.36326e-4 1.90028e-4 3.13934e-4 1.433754e-3

DF 16 18 17 22 29 31

Table 7: The tabulated values of the corrected total degrees of freedom DF and the reduced chi
squared statistics corresponding with the different fits depicted in Figure 28
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(a) FN = 2 (b) FN = 3

(c) FN = 4 (d) FN = 10

(e) FN = 30 (f) FN = 39

Figure 28: The margin recipes fitted for different fractions (a) to (f). The corrected total degrees
of freedom DF and the reduced chi squared statistics are tabulated in Table 7, the parameter
values are tabulated in Table 7
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(a) MPTV = 3 mm

(b) MPTV = 4 mm

(c) MPTV = 5 mm

Figure 29: Points that were used to construct the margin recipes in Figure 28 collected per margin
on a single plot. Curves are drawn to connect the points.
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6.3.1.1 Patient dose distribution under spatial translation

From the margin recipes it can be observed that for treatments fractionated in
more than 10 fractions, the CTV coverage increases meaning that the dose the
CTV receives increases. This phenomenon is accordance with the increase that
was observed for the expected PTV coverage and the 2nd percentile of the D98 as
depicted in Figure 20, 22 and 23.

To investigate where dose difference arises between a case where an increase
in the CTV dose is observed with increasing setup errors, the dose difference has
been calculated for a certain scenario that results in a higher CTV dose, this dose
difference is depicted in Figure 30. The dose difference was calculated with use of
the clinical dose engine. For this particular fraction the total setup error of the dose
distribution was:

− 1.1122x̂− 0.62675ŷ − 0.9842ẑ (40)

where the unit vectors in Equation 40 denote the displacement of the isocenters of
the beams along the right-left, dorsal-ventral and caudal-cranial direction for x̂, ŷ,
ẑ respectively. The dose difference was computed by subtracting the nominal dose
from the dose in the translated scenario. The median dose difference in the prostate
was found to be 0.017 Gy.

The dose difference for voxels with a positive dose difference is plotted in Figure
30 in the transverse, saggital and coronal plane on top of the patient’s CT. The
largest dose differences In Figure 30 within the prostate are observed around the
urethra. Especially in the transverse and saggital plane it appears that the urethra
receives a much higher dose under translation of the dose distribution with respect
to the nominal scenario and that this increase in the dose is not compensated for
by lower dose on the edge of the prostate. The latter suspicion could be confirmed,
in Figure 18 and 19 it can be seen that the voxel dose just outside the edge of the
of the prostate is equal to or larger than in the center of the urethra. Another large
discrepancy in the voxel dose Figure 30 can be observed around the rectum, where
the dose gradient is large.
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(a) Transverse plane

(b) Coronal plane (c) Saggital plane

Figure 30: Dose difference plots for a patient under spatial translation that resulted in a higher
CTV coverage depicted on the transverse plane (a) coronal plane (b) and saggital plane (c).The
arrows indicate the dose distribution shift within that plane, the delineation of the prostate an
urethra are also depicted, these organ positions belong to the nominal plan.

6.3.2 Validation of the margin recipes

After the construction of the margin recipe based on patient 1, the validity of it must
be investigated for all other patients. Ten other patients were randomly selected for
this purpose. To compensate for intra patient variations in the plan quality, patient
treatment plans are rescaled.

6.3.2.1 Rescaling patient plans

For the validation of the constructed margin recipes 10 other patients’ treatment
plans were randomly selected. These treatment plans are scaled in the same way as
for the construction of the margin recipes, i.e. V PTV

100 = 95%.
A comparison of the DVH between patient 1 and patient 2 for the PTV, prostate

and urethra of the nominal plan with and without scaling is shown in Figure 31.
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Although the treatment plans are scaled the same way, the DVHs are very different
due to intra patient anatomical variations. In nominal scenario we see that a larger
volume of the PTV and prostate of patient 1 receives a high dose≥ 52Gy than
for patient 2. If the plans are rescaled this coverage difference for the high doses
vanishes, the treatment plan of patient 2 after rescaling a difference can be observed
in the 38 Gy to 54 Gy region in the prostate and PTV.

(a)

(b)

Figure 31: DVH comparison of the recipe patient, patient 1, and one of the validation patients,
named patient 2 of the nominal treatment plan (a) and the rescaled plan (b). Scaling was performed
in accordance to Equation 33, the red circle indicates the reference point of rescaling.

All treatment plans have a low dose region in the CTV that prevents over dosage to
the urethra. For the validation part it is important to investigate what percentage
of the prostate belongs to the urethra and what percentage of the prostate is under
dosed in the nominal planned dose. As the clinically acceptable criterion is chosen to
be P

(
V CTV

100 ≥ 98%
)
≥ 97.95% the under dosed part to the prostate that spares the

urethra should not be greater than 2%. To this purpose a voxel count in absolute
and relative number have been performed for all validation patients, the results have
been tabulated in Table 8.

From the first column of Table 8 we observe that there is a variation in prostate
size among patients. The largest prostate, which belongs to patient 1, is more
than twice the size of the smallest prostate, which belongs to patient 11. Another
observation is that there is a difference in plan quality among the patients in terms
of the CTV coverage, as can be seen in the fourth column of Table 8. The percentage
of the CTV that is under dosed in the nominal treatment plan ranges from about
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CTV urethraEncl % urethraEncl CTV < 38Gy % CTV < 38Gy % CTVScaled < 38Gy
Patient 1 72361 1384 1.9126 861 1.1899 0.9356
Patient 2 43028 1066 2.4775 717 1.6664 0.7228
Patient 3 74006 1295 1.7499 815 1.1013 0.5351
Patient 4 34294 961 2.8022 284 0.82813 0
Patient 5 52537 1249 2.3774 749 1.4257 0.0952
Patient 6 46611 1010 2.1669 453 0.97187 0
Patient 7 49557 1177 2.375 419 0.84549 0
Patient 8 56113 1400 2.495 581 1.0354 0
Patient 9 53529 1040 1.9429 531 0.99199 0
Patient 10 37396 1138 3.0431 464 1.2408 0.0053
Patient 11 29543 1188 4.0213 324 1.0967 0

Table 8: Absolute and relative voxel count of the prostate, the part of the urethra that is enclosed
by the prostate and the parts of the prostate that receive less than the prescribed dose of the
treatment plan. The first column shows the absolute voxel count of the CTV , which is the
prostate. The second column show the absolute voxel count of the urethraEncl which is the part
of the urethra that is contained within the CTV. The third columns shows what percentage of the
CTV is occupied by the urethraEncl. The fourth column shows the prostate voxel count for parts
that receive less than the prescription dose of 38 Gy. The fifth column shows what percentage of
the prostate gets less than the prescription dose and the sixth column shows what percentage of
the prostate gets less than the prescription dose in the rescaled nominal case.

0.8% to 1.7%.
After rescaling the under dosed voxel of the CTV ranges from 0 to about 1%.

Patient 1, the recipe patient, has the highest percentage of under dosed voxels in
the nominal plan. Patient 3 and patient 4 have the highest under dosed fraction of
the CTV among the validation patient after rescaling.

6.3.2.2 Validation

Margin recipes were validated by simulating 105 simulated treatments under set up
variations that a treatment plan can handle according the margin recipes. For all
fraction numbers and margins at least one validation point has been chosen, these
points are tabulated in Table 9. For MPTV = 4 and 5 mm a fixed random error
was chosen, for MPTV = 3 mm points used to construct the margin recipe were
reused to save time. For each validation point the probability that P

(
V CTV

100

)
≥ 98%

is satisfied and the second percentiles of the D98 for each patient are tabulated in
Table 10 to 15.

MPTV = 3 mm MPTV = 4 mm MPTV = 5 mm
Fractions Σ σ Σ σ Σ σ
2 0.4 0.52 0.86 0.5 1.39 0.35
3 0.5 0.53 0.89 0.5 1.39 0.35
4 0.55 0.6 0.91 0.5 1.4 0.35
10 0.62 0.9 0.94 0.5 1.43 0.35
30 0.67 1 0.96 0.5 1.44 0.35
39 0.71 1.2 0.97 0.5 1.47 0.35

Table 9: All chosen validation points per margin and fraction number. The points for MPTV =
3 mm were chosen to be combinations that are used for the recipe construction to save computa-
tional time, for the other margins a random error was chosen and the corresponding systematic
error was calculated using the recipes.
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2 Fractions 3 Fractions 4 Fractions 10 Fractions 30 Fractions 39 Fractions
Patient 1 98.879 98.335 98.123 98.098 98.345 98.136
Patient 2 99.768 99.668 99.506 99.424 99.445 99.307
Patient 3 99.911 99.891 99.841 99.77 99.714 99.603
Patient 4 99.347 99.071 98.662 98.332 98.372 97.821
Patient 5 99.579 99.329 99.082 98.902 98.902 98.711
Patient 6 99.922 99.921 99.873 99.841 99.858 99.816
Patient 7 99.959 99.955 99.905 99.912 99.917 99.866
Patient 8 99.845 99.719 99.601 99.467 99.503 99.35
Patient 9 99.947 99.947 99.929 99.911 99.908 99.844
Patient 10 99.875 99.773 99.724 99.637 99.672 99.608
Patient 11 99.587 99.431 99.284 99.256 99.352 99.181

Table 10: Passing probabilities for the chosen validation points on the margin recipes for MPTV =
3 mm

2 Fractions 3 Fractions 4 Fractions 10 Fractions 30 Fractions 39 Fractions
Patient 1 98.085 98.034 97.951 97.988 97.988 97.828
Patient 2 99.483 99.499 99.463 99.427 99.464 99.345
Patient 3 99.759 99.742 99.758 99.734 99.736 99.683
Patient 4 99.414 99.38 99.335 99.355 99.355 99.23
Patient 5 99.589 99.523 99.564 99.594 99.594 99.49
Patient 6 99.823 99.773 99.775 99.781 99.769 99.745
Patient 7 99.935 99.951 99.945 99.942 99.942 99.942
Patient 8 99.652 99.701 99.673 99.626 99.626 99.607
Patient 9 99.921 99.923 99.929 99.926 99.925 99.906
Patient 10 99.741 99.781 99.787 99.768 99.767 99.765
Patient 11 99.659 99.688 99.662 99.641 99.671 99.597

Table 11: Passing probabilities for the chosen validation points on the margin recipes for MPTV =
4 mm where σ = 0.50.

2 Fractions 3 Fractions 4 Fractions 10 Fractions 30 Fractions 39 Fractions
Patient 1 97.922 98.092 98.033 97.881 97.87 97.758
Patient 2 94.448 94.54 94.545 94.213 94.215 93.687
Patient 3 96.01 96.214 96.139 95.802 95.643 95.19
Patient 4 99.076 99.153 99.128 99.018 99.026 98.912
Patient 5 99.301 99.298 99.347 99.277 99.217 99.097
Patient 6 99.548 99.604 99.578 99.486 99.49 99.377
Patient 7 99.804 99.841 99.823 99.772 99.774 99.733
Patient 8 99.457 99.45 99.4 99.377 99.282 99.207
Patient 9 99.795 99.821 99.81 99.776 99.786 99.714
Patient 10 99.571 99.597 99.593 99.517 99.484 99.439
Patient 11 99.228 99.274 99.23 99.157 99.171 99.017

Table 12: Passing probabilities for the chosen validation points on the margin recipes for MPTV =
5 mm where σ = 0.35.
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2 Fractions 3 Fractions 4 Fractions 10 Fractions 30 Fractions 39 Fractions
Patient 1 37.66 37.609 37.595 37.602 37.633 37.628
Patient 2 37.938 37.888 37.849 37.846 37.89 37.882
Patient 3 38.275 38.21 38.137 38.105 38.088 38.049
Patient 4 37.927 37.848 37.755 37.7 37.702 37.611
Patient 5 37.816 37.735 37.697 37.685 37.704 37.675
Patient 6 38.269 38.227 38.181 38.204 38.226 38.193
Patient 7 38.245 38.186 38.156 38.158 38.212 38.25
Patient 8 38.076 37.985 37.929 37.891 37.906 37.882
Patient 9 38.435 38.345 38.31 38.291 38.295 38.263
Patient 10 38.044 37.995 37.957 37.956 38.005 38.023
Patient 11 38.027 37.953 37.929 37.932 37.972 37.925

Table 13: Second percentile of the D98 for the chosen validation points on the margin recipes for
MPTV = 3 mm

2 Fractions 3 Fractions 4 Fractions 10 Fractions 30 Fractions 39 Fractions
Patient 1 37.521 37.526 37.507 37.514 37.506 37.485
Patient 2 38.188 38.215 38.188 38.177 37.137 38.109
Patient 3 38.529 38.523 38.503 38.493 38.463 38.447
Patient 4 38.214 38.202 38.178 38.16 38.128 38.107
Patient 5 38.118 38.089 38.112 38.123 38.086 38.077
Patient 6 38.556 38.549 38.556 38.54 38.532 38.504
Patient 7 39.781 39.796 39.768 39.766 39.723 39.711
Patient 8 38.377 38.416 38.383 38.349 38.329 38.293
Patient 9 39.181 39.169 39.173 39.136 39.117 39.105
Patient 10 38.508 38.515 38.512 38.507 38.468 38.48
Patient 11 38.752 38.807 38.792 38.798 38.794 38.751

Table 14: Second percentile of the D98 for the chosen validation points on the margin recipes for
MPTV = 4 mm.

2 Fractions 3 Fractions 4 Fractions 10 Fractions 30 Fractions 39 Fractions
Patient 1 37.411 37.465 37.46 37.395 37.397 37.357
Patient 2 36.237 36.274 36.281 36.143 36.101 35.896
Patient 3 36.736 36.849 36.782 36.706 36.629 36.511
Patient 4 38.281 38.4 38.391 38.289 38.22 38.085
Patient 5 38.362 38.397 38.363 38.336 38.255 38.118
Patient 6 39.115 39.13 39.124 39.01 38.965 38.807
Patient 7 40.466 40.575 40.513 40.293 40.311 40.074
Patient 8 38.95 38.999 38.867 38.816 38.71 38.581
Patient 9 39.768 39.885 39.799 39.698 39.681 39.56
Patient 10 39.225 39.3 39.226 39.168 39.054 38.897
Patient 11 38.836 38.893 38.79 38.705 38.789 38.471

Table 15: Second percentile of the D98 for the chosen validation points on the margin recipes for
MPTV = 5 mm
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(a) Patient 1 (b) Patient 2 (c) Patient 3 (d) Patient 7

Figure 32: Dose distributions in the saggital plane for patient 1, the recipe patient (a), two
poor performing patients in the recipe validation for MPTV = 5 mm (c) (d) and the overall best
performing patient (d).

For MPTV = 3 mm and MPTV = 4 mm all patients have better performance than
the recipe patient, patient 1. For MPTV = 5 mm patient 2 and patient 3 have worse
performance than patient 1. The second percentiles of the near minimum dose are
given in Table 10 to 12. For many treatment plans the second percentile of the D98

is very close to the prescribed dose of 38Gy.
It appears that for MPTV = 3 mm and MPTV = 4 mm all patients have better

performance than the recipe patient, patient 1. For MPTV = 5 mm patient 2 and 3
have worse performance than patient 1, patient 7 has the best overall performance.
The worst performing fraction number for patient 3 with MPTV = 5 mm is 39 frac-
tions which is still 94.4% of the prescribed dose.The poor performance of patient 2
and 3 for MPTV = 5 mm could be due to anatomical differences, the dose distribu-
tions have been plotted for patient 1, 2, 3 and 7 in the sagittal plane for comparison
in Figure 32. The figures have other dimensions as the dimension of the CT scans
differs among patients.

From this figure it is clear that the doses to the prostate is very different from
patient to patient. The exact position of the urethra and rectum largely determine
the shape of the dose distribution. For patient 3 the urethra sparing lower dose
region is more to the front than for other patients. For patient 17 it is in the middle
enclosed by two high dose regions. For all four patients a sharp dorsal dose fall off
is observed, this dose fall off spares the rectum.

6.3.3 Comparison

in Section 2.2.3 the very well known van Herk margin recipe and its assumptions
were briefly discussed. A comparison between the simplified van Herk margin recipe
in Equation 8 and the margin recipes derived in this work is shown in Figure 33.

One must notice that the criterion for what is clinically acceptable that was used
in this work differs from what van Herk et al. [8] defined. In this work at least 98%
of the CTV should receive the full prescribed dose in at least 98% of the patients
whereas in the derivation of the margin recipe in Equation 8 the entire CTV should
receive at least 95% of the prescribed dose for at least 90% of the patients. In this
work due to the urethra sparing dose distribution, the criterion chosen by van Herk
is hard to satisfy as the dose to the urethra can be less than 95% of the prescription
dose for certain voxels.
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Due to the very inhomogeneous prostate dose, a value for the penumbra width is
hard to define. Because of this reason the margin recipes are plotted together with
the most used margin recipe for 3D dose distributions.

(a) 2 fractions (b) 3 fractions

(c) 4 fractions (d) 10 fractions

(e) 30 fractions (f) 39 fractions

Legend

Figure 33: A comparison between the margin recipes that are constructed in this work and the
simplified van Herk recipe MPTV = 2.5Σ + 0.7σ′
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Least agreement is expected for σ = 0 mm as no dose blurring occurs in absence
of the random error. For MPTV = 3 mm according to the recipes constructed in this
work the maximum systematic error that is allowed in absence of the random error is
described by Σ = 0.55 mm, according to the simplified van Herk recipe Σ = 1.2 mm
would be allowed. For MPTV = 4 and 5 mm according to the recipes constructed in
this work the maximum systematic error that is allowed in absence of the random
error is described by Σ = 0.90 and 1.40 mm, according to the simplified van Herk
recipe Σ = 1.6 and 2 mm would be allowed. For MPTV = 3 mm the simplified
van Herk recipe allows a value for Σ that is more than two times as what we deem
acceptable in this work, for MPTV = 4 and 5 mm the discrepancy is roughly a factor
of 1.4.

Another interesting feature of Figure 33 is the change of discrepancy between
the recipes constructed in this work and the simplified van Herk recipe for different
fraction numbers. The largest differences are observed for the severely hypofraction-
ated regimes as the margin recipe curves for 3, 4 and 5 fractions and the n Herk
lines never intersect. For all investigated values for the systematic and random set
up error, van Herk’s simplified recipe overestimates the errors a certain margin can
handle grossly.

As the fraction number becomes larger the van Herk recipe approaches the margin
recipe curves more and more. For MPTV = 3 mm two intersections are observed
between the van Herk recipe and the recipe constructed in this work for 30 and
39 fractions. Between the intersection points the margin recipe constructed in this
work allow larger errors to be handled. As the fraction number becomes larger the
van Herk recipe approaches the margin recipe curves more and more. For MPTV =
4 and 5 mm two intersections are observed between the van Herk recipe and the
recipe constructed in this work for 10, 30 and 39 fractions. Between the intersection
points the margin recipe constructed in this work again allow larger errors to be
handled. The intersections (Σ, σ) (in mm) for MPTV = 3 mm lie around (0.75, 1.6)
and (4, 0.07), for MPTV = 4 mm they lie around (1.1, 1.7) and (4.6, 0.3) and for
MPTV = 5 mm they lie around (1.6, 1.6) and (5.5, 0.5).
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7 Discussion and conclusion

7.1 Fractionation effects

Fractionation effects have been studied for all organs of interest in prostate cancer
treatment. For the prostate it was found that both the second percentile of the D98

and the the average of the V CTV
100 increases for increasing fraction number for both

VMAT and Cyberknife doses. This result is expected since when a dose is given in
a larger number of fractions, the impact of a single fraction that misses the target
decreases due to averaging effects.

An increase in the expectation value of the V CTV
100 was observed for fraction num-

bers 10, 15, 20, 25 and 35 for a systematic error of 0, 0.51 and 2 mm for increasing
random error. This increase was observed for random errors up to σ = 3 mm,
though for Σ = 2 mm this increase was observed up to σ = 2 mm. This result is not
expected, one would expect the CTV coverage to decrease for increasing random
setup errors as the dose on the edge of the CTV blurs out making the penumbra
wider for increasing random error.

If we look at the second percentile of the D98 of the prostate, an increase with the
random error is also observed for treatments fractionated in more than 10 fractions.
This effect weakens with increasing systematic error. One could conclude that when
the systematic error is not too large, dose blurring actually adds dose to the CTV.

The increase in CTV coverage with increasing setup errors was investigated. In
Figure 30 the largest dose differences in the prostate are observed around the urethra.
Figures 18 and 19 show that the voxel dose just outside the edge of the prostate is
equal to or larger than in the center of the urethra. It could be that the urethra
receives a much higher dose under translation of the dose distribution with respect
to the nominal scenario and that the increase in the CTV dose due to the increased
urethra dose is not compensated for by lower dose on the edge of the prostate.

Another large discrepancy in the voxel dose Figure 30a can be observed around
the rectum, which is situated at around (−10.8,−170). As the dose fall off on pos-
terior side of the prostate is very steep, small shifts can cause large dose differences.
For this particular shift, the lower dose around the rectum site of the prostate shifts
into the higher dose region causing this discrepancy.

For the organs at risk one observes that the 98th percentile of the high dose in-
creases with increasing random error and decreases with increasing fraction number.
This is as one would expect as many OAR boundaries face the high PTV voxel doses
and dose blurring on the edge causes the dose to the OAR to increase. This blur-
ring to higher doses can also be observed from the symmetry of the D2 distribution
in Figure 27 of the OARs that are adjacent to the prostate as the tails of the D2

distribution of the urethra and rectum have tails that extent to higher doses.

7.2 Margin Recipes

Margin recipes were created by fitting the functional given in Equation 35 to points
that satisfy the criterion in Equation 32. The fit parameters and their standard
error, t-statistic and p-value are given in Table 6. After the construction of the
margin recipe, it has been validated for other patient treatment plans.
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7.2.1 Over fitting of the data

The margin recipes are found to be highly non linear, this is likely due to the very
conformal dose distribution. As can be seen from Figure 28 this function can capture
the sudden steep fall off behaviour very well, but it must be noticed that the number
of data points the function fits to is barely larger than the number of fit parameters
for the lower fraction numbers. A natural question that arises is whether the data is
being over fitted, especially when one looks at the very small values for the reduced
Chi square statistic in Table 7. For all margin recipes a couple of parameters could
be set to 0 and still result in a good fit.

All data could be fitted to the function in Equation 35 even if fit parameters are
omitted, though not the same parameters for all fraction numbers. The value for
the Chi square statistic did stay very small, i.e. in the order of magnitude 10−3,
suggesting that the the data points are being over fitted.

For 10, 30 and 39 fractions the increase in CTV coverage with increasing setup
errors is noticeable in the recipes as the curves have a positive slope. The chosen
fit function fits the data worse as the number of fraction increases. This can also
be seen in the extremely small values for the p-value in Table 7, this indicated that
the chosen fit function might not be suitable for high fraction numbers.

Optically the fit function fits the data reasonably making the margin recipes
suitable to look up the needed margin from Figure 28 given the magnitude of the
setup errors and fraction numbers. The margin recipe was validated for 10 patients
using the numerical function, which will be discussed in Section 7.2.2.

7.2.2 Margin recipe validation

For the margin recipe validation 10 other treatment plans were selected and rescaled.
The validation points are tabulated in Table 9. The probability that Equation 32 is
satisfied of the validation patients is tabulated in Table 10 to 12.

7.2.2.1 Rescaling

Although patients are rescaled the same way, anatomical variations that cause dif-
ferences in plan quality appear to be hard to nullify. The percentage of underdosed
voxels still varied among patients, as can be seen in Table 8. The DVHs also did not
become more similar after rescaling, as can be seen in Figure 31. Perhaps scaling
to a similar Dβ within the PTV or CTV would be more suitable to account for this
difference in volume that receive a low dose.

7.2.2.2 Validation

From Table 8 one can see that patient 1, the recipe patient, has the highest per-
centage of under dosed voxels in the nominal plan. This could explain why many
validation patients have higher probability of V CTV

100 ≥ 98%.
Patient 3 and patient 4 are the worst performing patients among the validation

patients but also have the highest under dosed fraction of the CTV. It could be that
for larger errors the effects of anatomical differences are increasingly important.
Patient 2 has a comparatively small CTV, certain errors for patient 2 are relatively
larger than for patient 1. It could be that due to this size difference and its under
dose percentage that these patients have a worse performance. For patient 3 the
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poor performance could be due to the position of the urethra within the prostate,
as can be seen in Figure 32, the urethra is positioned more off center than for other
patients. Most of the CTV dose is deposited behind the urethra. This dose gradient
without a second high dose in front of the urethra makes the CTV very prone to
shifting out of the high dose region.

It appears that the margin recipes work well for the validation patients, although
for a systematic setup error characterised by Σ = 1.4 mm, which is large for SBRT,
the recipe breaks down for two patients. The recipe for the validation points for
MPTV = 3 and 4 mm the lowest passing probability is 97.828%. The margin recipes
appear to be valid if the setup errors are small, for large setup errors anatomical
variations may cause the validity to break down.

7.2.3 Comparison with van Herk margin recipe

Some of the assumptions made during the derivation of the Van Herk recipe are
hardly valid for the RT modality and dose distributions in this work. The assump-
tion that the dose is fractionated in many fractions obviously is not the case in
hypofrationated treatments. On top of the many fractions assumptions, the spheri-
cal irradiated target assumption also breaks down. Although one could in principle
approximate the prostate as a sphere, the planned prostate dose can hardly be taken
spherical.

In this work the planned dose distribution in the prostate is far from a spherical
isodose due to the dose constraint for the urethra, thus a large difference in the dose
distribution arises within the prostate. Some assumptions that were made during the
derivation of the van Herk recipe have also been assumed in this work. Rotations
of the prostate were neglected, setup errors were also assumed to be distributed
normally and statistically independent and errors were taken isotropic.

From Figure 33 it becomes clear that the simplified van Herk margin recipe does
not hold for SBRT. The linear van Herk recipe should not be used for hypofraction-
ated treatments as it overestimates the allowed setup errors grossly for 2, 3 and 4
fractions.

The margin recipes presented in this work show non linear behaviour, due to the
high degree of non linearity, linearisation is hardly justified. The suggestion is that
margin recipes for very inhomogeneous conformal CTV dose distributions should
not be linear. The linear van Herk recipe should not be used when the dose to the
CTV is highly conformal and inhomogeneous.

7.3 Conclusion

In this work polynomial chaos expansion was used to model dose distributions.
PCE methods have been shown to model the dose distribution delivered by VMAT
and Cyberknife accurately in prostate cancer treatment. With the use of PCE
the near minimum dose to the prostate D98 and the near maximum dose D2 to
the urethra, bladder and rectum have been determined under various setup errors
for various fractionation regimes ranging from hypofractionation to conventional
hyperfractionation. An increase in the 98th percentile of the near maximum dose to
the organs at risk has been observed for increasing systematic and random error and
for decreasing fraction number. For large fraction numbers an increase in the 2nd
percentile of the near minimum dose to the prostate has been observed for increasing
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random error if the systematic error is less or equal to 1.
Margin recipes for SBRT have been derived for various fractionation regimes,

these recipes prescribe under what setup errors a CTV-PTV margin of 3, 4 or 5 mm
should be used for a given fraction number to reach the goal of ensuring V CTV

100 ≥ 98%
for at least 98% of the simulated population. The margin recipes were found to be
highly non linear. The recipes are given by:

Σ(σ,MPTV ) =
P1 ∗ σ + P2

σ2 + P3 ∗ σ + P4

(41)

with coefficients P1, P2, P3 and P4, that are third order polynomials of the CTV to
PTV margin MPTV . The polynomials P1, P2, P3 and P4 are given by Equation 36
to 39 and the values of their coefficients are Table 7.

The validity of the margin recipes has been tested for 10 patients. It was found
that although patient dose distributions were all scaled to V CTV

100 = 95% differences in
CTV coverage still exists. The recipes were found to be valid for almost all patients,
except for MPTV = 5 mm, where the validity breaks down for two patients perhaps
because the chosen validation points has a systematic error that is too large. For the
worst performing validation point for the worst performing patient the probability
V CTV

100 ≥ 98% was greater than 94%.
Finally, the recipes were compared to the simplified van Herk recipe. It has been

demonstrated that van Herk’s simplified recipe overestimates the error a certain mar-
gin can handle for severely hypofractionated highly conformal and inhomogeneous
CTV dose distributions.

7.4 Future research

PCE extension PCE offers a fast evaluation of the dose, this could be used for more
than setup errors alone. One could extent the PCEs in this work with three extra
dimensions to incorporate prostate rotation. Each beam is described by its isocenter
in three coordinates and a beam angle in three angles. By making six dimensional
PCEs one could simultaneously simulate patient translation and prostate rotation.
Two assumptions are made in this case.

First the assumption that is made is that dose resulting from rotation of the
entire patient is equal to the dose that results from prostate rotations only. This
approximation could be a simple but effective as photon dose deposition shows a
shallow gradient within the patient. Secondly it is assumed that the prostate does
not rotate during a fraction. By incorporating the beam angles as variable, one
could do all analysis performed in this work for certain prostate rotations as well.

Verification CTV coverage increase The surprising finding that the CTV coverage
increases with increasing random error can be investigated further. One could try
to construct PCEs for a highly conformal prostate dose that does not spare the
urethra and see if the increase in CTV coverage is still observed. This could help
confirming that the behaviour of the CTV coverage is caused by the ’hole’ in the
dose distribution. Another method to verify this effect is by comparing it to the
results from Monte Carlo sampling.

Margin recipe construction The margin recipes in this work are constructed with
the goal to ensure that at least 98% of the simulated population receives for at least
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98% of the CTV the full prescription dose. This does not constrain the remaining
2% to receive a certain dose. In the most extreme case setup errors that would cause
2% of the CTV to receive no dose whilst 98% receives at least the prescription dose
to be considered acceptable. A criterion that would be based on the minimum dose
would be interesting

Scaling factor Recipes could also be constructed with a different scaling factor. In
this work it was shown that scaling to the same PTV100 does not nullify the difference
in plan quality in terms of CTV coverage. One could for example scale to the same
minimum dose for a certain fraction or volume within the PTV, making the urethra
sparing more equal among patients.
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