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A Complete Tool for Analyzing Mutual Couplings
in Nonuniform Arrays of Rectangular

Aperture Radiators
Zhengzheng Wang, Massimiliano Simeoni, Member, IEEE, and Ioan E. Lager, Senior Member, IEEE

Abstract—A complete tool for analyzing the mutual coupling
in nonuniform (interleaved) array antennas consisting of rect-
angular aperture radiators is discussed. It relies on deriving the
coupling admittances between arbitrarily located apertures via a
two-dimensional interpolation scheme. Realistic radiators are ac-
counted for through their scattering matrix evaluated by means of
full-wave analyses. The method yields accurate results while greatly
reducing the computation time. Its validity is demonstrated against
measurements done on a medium-sized, interleaved, nonuniform
array of cavity-backed apertures.

Index Terms—Antenna arrays, aperture antennas, mutual
coupling.

I. INTRODUCTION

NONUNIFORM array antennas receive increasing atten-
tion due to their range of performance enhancements, with

shared apertures being particularly attractive for implementing
multifunctionality via subarray interleaving. Obtaining such op-
erational benefits requires intricate design methodologies. Un-
doubtedly, there are many placement strategies yielding arrays
complying to extremely challenging specifications. However,
the majority of these schemes employ ideal, isotropic radiators,
and their effectiveness drops rapidly when mutual coupling or
the behavior of realistic radiators are accounted for. The design
of large, nonuniform, realistic arrays remains a hard problem,
with [1] and [2] discussing some of the few available solutions.

This letter proposes an effective answer to this challenge. It
builds upon the generalized admittance matrix (GAM)-based
mutual coupling evaluation discussed in [3] and [4, Sec. 7.3.3]
and an interpolation technique inspired by [5] (that applied it
for reducing the complexity of array measurements), and also
used in [1] for drastically lowering run-times. The potential of
combining these elements was demonstrated in [6]. This avenue
is now used for developing a complete tool for evaluating the
mutual coupling in nonuniform array antennas. Its main novelty
elements are: 1) providing clear, effective rules for selecting
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the locations of the testing apertures employed for constructing
the interpolation scheme, and 2) embedding the behavior of
realistic radiators in the array’s scattering representation. The
tool’s performance will be validated by comparing its results
with measurement data concerning a shared aperture antenna
consisting of two interleaved, nonuniform subarrays.

II. ANALYSIS STRATEGY

The examined array antenna1 consists of Ne waveguide-end,
rectangular apertures in an infinitely extended, perfectly con-
ducting flange. The flange is at z = 0, the array radiating to-
wards z > 0. The apertures are of dimensions ai × bi (ai �
bi ), i = 1, . . . , Ne, with reference centers at r i = xi x̂ + yi ŷ
and normals n̂i = ẑ. The waveguides’ longitudinal axes are
also along ẑ. Excitation is time-harmonic, with frequency f
and angular frequency ω = 2π f . Materials are characterized
by the permittivity ε = εrε0 and the permeability μ = μrμ0.
The following quantities apply to free space: wavespeed c0 =
(ε0μ0)−1/2, wavenumber k0 = ω/c0, wavelength λ0 = c0/ f ,
and wave impedance Y0 = (μ0/ε0)−1/2.

The array may consist of Nsa subarrays of identical and
aligned radiators. In all practical cases Nsa is small (Nsa = 2
for the study in Section III). For clarity, this analysis is confined
to subarrays with either horizontal “H” or vertical “V” elements,
having ai edges along either x̂ or ŷ, only.

The electromagnetic (EM) examination of this type of array
antenna is known to be a hard problem: 1) resorting to an an-
alytic representation via Floquet modes [7] is ruled out by the
configuration’s irregularity; and 2) a full-wave study via stan-
dard EM software becomes quickly computationally prohibitive
even for medium-sized arrays.

To sidestep these roadblocks, the EM field at the waveguide-
ends is expanded in terms of rectangular waveguide modes as
defined in [8, Ch. 1]. The modal coupling admittances can be
calculated analytically, but the procedure is computationally ex-
tremely expensive. Nevertheless, waveguide-end radiators can
be construed as minimally scattering according to the interpre-
tation in [9]. The coupling admittances between any identical
pair of modes can then be expressed via a two-dimensional
interpolation based on only nine reference couplings that are
evaluated analytically. For small Nsa’s, this strategy allows as-
sembling expeditiously the GAMrad of the complete radiating

1Position in the configuration is specified by the coordinates {x, y, z} with
respect to a background Cartesian reference frame with origin O and three
mutually orthogonal unit vectors {x̂, ŷ, ẑ} that, in this order, form a right-handed
system. The position vector is r = x x̂ + y ŷ + z ẑ, with |r| = r .

1536-1225 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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aperture even for very large, nonuniform arrays, with GAMrad
yielding, in turn, the array’s scattering matrix. These steps will
be henceforth elaborated upon.

A. Coupling Admittance Between Rectangular Apertures

For convenience, the double-index notation of rectangular
waveguide modes is coalesced into a single-index notation m
(m � M), with the modes being ordered in increasing cutoff
frequency fc;m sequence. With this notation, following [3], the
coupling admittance Y (m, i, n, j) between the mode m on the
aperture Ai and the mode n on the aperture A j reads

Y (m, i, n, j) = jk0Y0

[Y (m, i)Y (n, j)]−1/2

×
∫∫

Ai

dxdy
∫∫

A j

[�(m, i) · �(n, j)] G(|r − r ′|) dx ′dy′

(1)

in which Y (p, q) is the longitudinal (wave) admittance of the
mode p in the waveguide q, with Y (p, q) = Y0 γ (p, q)/k0 for
TE-modes and Y (p, q) = Y0 εr(q) k0/γ (p, q) for TM-modes

�(p, q) = h(p, q) + ẑγ (p, q)hz(p, q)/k0 (2)

with h(p, q) and hz(p, q) being the transverse and longitudinal
modal vector components [8], respectively, and

G(|r − r ′|) = exp
(−jk0|r − r ′|) /4π |r − r ′| (3)

is the free-space Green’s function, with r ∈ Ai and r ′ ∈ A j .

γ (p, q) = [
k2

0εr(q) − k2
c (p, q)

]−1/2
(4)

is the propagation constant of the mode p in the waveguide q,
with k2

c (p, q) being the corresponding cutoff wavenumber [8].
The expression in (1) can be transformed as (see [3])

Y (m, i, n, j) = 2π2j k0Y0 Am,n Am ′,n′
∑

α=x,y,z

cα Iα (5)

in which Ap,q are given in [8, Table 1.2], cα are given in [3,
Table 1], and[

Ix
Iy
Iz

]
=

∫∫
Ai

dxdy
∫∫

A j

dx ′dy′ G(|r − r ′|)

×
[

sin
cos
cos

(
mπx

ai

) cos
sin
cos

(
nπy

bi

) sin
cos
cos

(
m ′πx ′

a j

) cos
sin
cos

(
n′πy′

b j

)]
.

(6)

As in [3], the quadruple integral in (6) is reduced to a dou-
ble integral by using the change of variables in [10, Sec. 6.1]
and analytically effectuating two of the ensuing integrals. The
resulting expression was implemented in a MATLAB code.

B. Interpolation Approach to the Analysis of Arrays
Consisting of Rectangular Apertures

The direct evaluation of couplings via (6) becomes quickly
computationally prohibitive as the number of coupled apertures
increases. This situation is effectively precluded via an interpo-
lation strategy inspired by [5]. In line with [6], a reference aper-
ture Ai0 , centered at r i0 = x0 x̂ + y0 ŷ, is first selected. Let then
another aperture A j centered at a location r j complying to the
condition ϕ = arccos (r ′ · x̂/r ′) ∈ [0, π/2], with r ′ = r j − r i0

and r ′ = |r ′|. The coupling admittance between the mode m on
Ai0 and the mode n on A j is generically expressed as

Ỹ (m, i0, n, j) = exp(−jk0r ′)

× [ (
A1/ξ + A2/ξ

2 + A3/ξ
3
)

cos2 (ϕ)

+ (
A4/ξ + A5/ξ

2 + A6/ξ
3
)

sin2 (ϕ)

+ (
A7/ξ + A8/ξ

2 + A9/ξ
3
)

sin2 (2ϕ)
]

(7)

where A1, . . . , A9 are interpolation coefficients and ξ = k0r ′.
Clearly, the applicability of (7) can be extended to any aperture
A j by making use of the relation’s even symmetry with respect
to the planes x = x0 and y = y0.

The interpolation coefficients are inferred from the m → n
coupling admittances between Ai0 and nine testing apertures
At;1, . . . ,At;9 that are congruent with A j and centered:

1) At;1÷3: at (x0 + dx ;1, y0), (x0 + dx ;2, y0) and (x0 +
dx ;3, y0), with 0 < dx ;1 < dx ;2 < dx ;3;

2) At;4÷6: at (x0, y0 + dy;1), (x0, y0 + dy;2) and (x0, y0 +
dy;3), with 0 < dy;1 < dy;2 < dy;3;

3) At;7÷9: along the bisector of y = y0 and x = x0, at dis-
tances 0 < di;1 < di;2 < di;3 from r i0 and with x0 < xi ;1 <
xi;2 < xi ;3 (“right” of r i0 ).

The nine reference couplings calculated via (6) for
At;1, . . . ,At;9 are filled in (7), and A1, . . . , A9 then follow by
solving the resulting system of nine linear equations. The over-
head of calculating the reference couplings is quickly recovered
for large arrays, the evaluation of (7) requiring insignificant time.
Moreover, A1, . . . , A9 can be stored and reused for studying any
array comprising the relevant combination of apertures.

Experience shows that the interpolation scheme’s accuracy
is largely influenced by the choice for the locations of the test-
ing apertures. The following heuristic rules for selecting the
reference centers of At;1, . . . ,At;9 were arrived at based on sim-
ulations carried out on a wide range of element placements:

1) “H”↔“H” couplings (also applicable to “V”↔“V” cou-
plings, by applying a π/2 rotation)
dx ;1 = δ1 = (ai0 + a j )/2, dx ;2 = 0.84λ0, dx ;3 = 3λ0;
dy;1 = δ2 = (bi0 + b j )/2, dy;2 = 0.84λ0, dy;3 = 3λ0;
di;1 = √

2 min(δ1, δ2), di;2 = λ0, di;3 = 3λ0.
2) “H”↔“V” couplings

dx ;1 = δ = (ai0 + b j )/2, dx ;2 = λ0, dx ;3 = 2.8λ0;
dy;1 = δ, dy;2 = λ0, dy;3 = 2.8λ0;
di;1 = √

2
[
min(ai0 , b j )/2 + δ

]
, di;2 = λ0, di;3 = 3λ0.

The interpolation accuracy was assessed based on the de-
viation �Y = ||Y (m, i, n, j)| − |Ỹ (m, i, n, j)||/ max(|Y (m, i,
n, j)|), with Y (m, i, n, j) being calculated via (6) and
Ỹ (m, i, n, j) via (7). For nonoverlapping apertures of the type
examined in Section III, �Y < 1.5% for “H–H” couplings and
�Y < 20% for “H–V” couplings. The larger “H–V” �Y ’s are
due to several “H–V” Y (m, i, n, j)’s being zero in both x̂- and
ŷ-directions, leaving only the diagonal couplings as a basis
for interpolation–this does not apply to “H–H” combinations.
However, �Y decreases rapidly with increasing spacing, and the
deviation was below 0.2% for the entire array in Fig. 1.

C. Assembling of the Array’s Scattering Matrices

GAMrad directly yields the radiation scattering matrix Srad
that, by using the analytic expressions of the EM field radiated
by rectangular waveguide modes [11, Sec. 18.1], allows assess-
ing the array’s radiation and scanning performance. Next, the
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Fig. 1. Polarization-agile antenna—front view, with the element counting, per
subarray. The lattice is uniform in the x̂- and ŷ-directions, with identical lattice
steps � = 15 mm.

Fig. 2. Polarization-agile antenna element. (a) Cross section showing the
internal stratification; (b) scale illustration of the radiator. Main dimensions:
a = 9.7 mm, b = 4.3 mm d = 11.7 mm; the through-vias are spaced at vs =
2.925 mm; the embedded patch has the dimensions px = 8.4 mm and py =
8.4 mm, is symmetrically placed with respect to the x = 0 plane, and it is off-
center by sy = 1.6 mm. Pi and Po denote the feeding coaxial port (input) and
the rectangular aperture, radiating port (output), respectively.

elementary radiators are accounted for, with [4, Sec. 7.3.3] or
[12] providing guidelines to this end. However, a more realis-
tic avenue is employing the scattering matrices Sel of genuine
radiators derived via back-to-back, full-wave simulations. The
combination of Srad and Sel yields the complete array’s scatter-
ing matrix Sarr and, thus, the active reflection coefficients at the
feeding ports. These combined facilities render this strategy in-
strumental for embedding full EM characterization within array
optimization schemes.

III. PRACTICAL APPLICATION

The strategy discussed in Section II is now applied to the
study of an array antenna consisting of radiating rectangular
apertures. The effectiveness of the computational approach is
assessed by comparing simulated and measured results.

A. Polarization-Agile Array Antenna

The investigated device is a shared aperture array implement-
ing the polarization agility principle introduced in [13, Sec. 6].
The array is partitioned into two interleaved subarrays of 32 and
31 identical elements, respectively (see Fig. 1). The elements
in the subarrays are rotated by 90◦ with respect to each other
for generating the vertical (“V”) and horizontal (“H”) EM field
components. This study is confined to the antenna front end,
each element being individually accessible via SMA connec-
tors. The radiators are cavity-backed aperture antennas excited
by embedded pin-fed patches (see Fig. 2). The array is fab-
ricated in printed circuit board (PCB) technology by using a

Fig. 3. Measured reflection coefficients for the subarrays in Fig. 1.

multilayer sandwich of RO4350B laminates [14]. All through-
vias are metal-plated through holes. The SMA connectors are
soldered with a pick-and-place machine.

The reflection coefficients at all 63 feeding ports were mea-
sured via a setup comprising an Agilent Technologies E8364B
vector network analyzer and an Agilent Technologies 87050-
K24 full 2 × 24 crossbar mechanical switch test-set. The switch
test-set was connected to the elementary radiators via 2 m cali-
brated cables, with the remaining ports being closed on matched
loads. The array was placed inside an enclosure with absorber-
padded inner walls for minimizing environmental impact. The
measurement results are reported in Fig. 3. The variations in
the elements’ embedding are clearly visible—they translate in
both variable matching levels and in slight variations of the
pertaining resonant frequencies. The best matching is observed
for the elements H21 and H27 (H-subarray) and V7, V14, and V29
(V-subarray). Note that these elements have an almost uniform
immediate neighborhood. Another interesting feature concerns
the linear array H4, H7, H10, H16, H23, H27, and H31, the only
full column pertaining to the same subarray. In it, matching runs
from |SM

11| ≈ −9 dB for H7
2 up to |SM

11| ≈ −11 dB for H27, with
no regularity. The resonant frequencies vary between 13.11 and
13.25 GHz, with a mean of fr;m = 13.19 GHz and a standard
deviation σ = 28.4 MHz. This behavior is illustrative for the
challenges entailed by the design of such highly irregular arrays.

B. Numerical Implementation

The computational strategies in Sections II-A and II-B were
implemented in MATLAB. The couplings between the TEM
mode at Pi and the aperture modes at Po (see Fig. 2) were evalu-
ated via a back-to-back, time-harmonic CST Microwave Studio
(CST) simulation. Assembling GAMrad via interpolation, cal-
culating Srad and aggregating Sarr were all coded in MATLAB.
The feature computation times on a workstation with a 3.1 GHz
processor and 32 GB internal memory are given in Table I. The
most remarkable observation is the 2200-fold run-time reduction
when assembling GAMrad via interpolation, when compared to
the direct analytical evaluation. As for purely computational
approaches, comparisons are immaterial since coding the inves-
tigated configuration in commonly used EM analysis packages
exceeds the memory capabilities of even large workstations.
Note that the overhead steps 1 and 2 are needed only once for
any given aperture antenna type, that data being amenable to
being saved and reused. Only the computationally extremely
effective steps 3, 4, and (possibly) 5 need being repeated in
optimization iterative schemes.

2The reflection coefficient at any coaxial feeding port is generically referred
to as S11, supplemented by the port’s identifier. The descriptive superscripts
“M” and “S” denote “measured” and “simulated,” respectively.
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TABLE I
FEATURE COMPUTATION TIMES FOR 100 FREQUENCY SAMPLES

Algorithm’s block Computation time

1 Reference aperture modal coupling evaluation
4 coupling types × 9 apertures × 10 modes

29 ½ min

2 Calculation of Sel via CST simulation 12 ½ min

3 Assembling GAMrad via interpolation
63 apertures × 10 modes

5.7 s

4 Converting GAMrad into Srad 19.1 s

5 Combining Srad and Sel into Sarr 110 s

Assembling GAMrad by analytical evaluation
63 apertures × 10 modes

35½ h

Fig. 4. Simulated reflection coefficients for the subarrays in Fig. 1.

Fig. 5. Deviations between measured and simulated results. (a) Compari-
son of |SM

11| and |SS
11| for the elements with the best (V7) and worst (H27)

approximations; (b) resonant frequency deviations. �|S11|(i) = |SM
11,dB(i) −

SS
11,dB(i)|/ max

∀i ′
(|SS

11,dB(i ′)|), mean calculated over the frequency band.

C. Validation of the Numerical Analysis

The accuracy of the proposed computational approach was
validated by comparing the simulated reflection coefficients at
the individual input ports with the measured results in Fig. 3.
The simulated results are shown in Fig. 4. Note that a relative
permittivity tuning was needed for fitting the simulated results,
the computational relative permittivity of the material being
known to slightly deviate from the measured one [14].

The overall features of the plots in Figs. 3 and 4, namely
the matching level patterns and resonant frequency fluctuations,
concur. However, the simulated resonance |S11| levels are about
3–4 dB below the measured ones. To better illustrate this, the
smallest and largest differences are shown in Fig. 5(a). This
discrepancy is attributed to: 1) the additional reflections caused
by the actual SMA connectors and mounting imperfections that
were not included in the CST model; 2) the simulations assume
an infinitely extended flange and cannot account for reflections
caused by the edges of a finite flange; and 3) the measurement

results were also affected by small, but nonnegligible reflections
from the enclosure’s walls.

As a quantitative measure of the good agreement between
the simulated and measured results, the relative deviation � fr

between the simulated f S
r (i) and measured f M

r (i) resonant fre-
quencies pertaining to the input ports i = 1, . . . , Ne is plotted
in Fig. 5(b). The maximum deviation is less than 0.5%, which
is a convincing proof of the simulation’s accuracy.

IV. CONCLUSION

A complete tool for evaluating the mutual coupling in
nonuniform (interleaved) array antennas of rectangular aperture
radiators was presented. The proposed two-dimensional interpo-
lation scheme was shown to yield (well) under 10% deviations
between interpolated and exact coupling admittances for techno-
logically realistic arrays. Practical radiators were accounted for
via their scattering matrix calculated with full-wave EM analy-
sis tools. A 2200-fold computation time reduction with respect
to a direct admittance calculation was observed. Comparisons
with measurements effectuated on a medium-sized, interleaved,
nonuniform array of cavity-backed apertures evidenced lower
than 0.5% deviations between the simulated and measured res-
onant frequencies at the feeding ports. The advocated approach
allows embedding full EM characterization within array opti-
mization schemes.
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