

A Broadband Silicon-Integrated Chopper for Passive Terahertz Cameras

Hoogelander, Martijn; Llombart, Nuria; Spirito, Marco; Alonso-Delpino, Maria

10.1109/IRMMW-THz60956.2024.10697714

Publication date

Document Version Final published version

Published in

2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2024

Citation (APA)

Hoogelander, M., Llombart, N., Spirito, M., & Alonso-Delpino, M. (2024). A Broadband Silicon-Integrated Chopper for Passive Terahertz Cameras. In 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2024 (International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz). IEEE. https://doi.org/10.1109/IRMMW-THz60956.2024.10697714

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policyPlease contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

A Broadband Silicon-Integrated Chopper for Passive Terahertz Cameras

Martijn Hoogelander
Terahertz Sensing Group, Microelectronics Dept.
Delft Universtiy of Technology
Delft, The Netherlands
m.hoogelander@tudelft.nl

Marco Spirito

Electronic Circuits and Architectures Group, Microelectronics

Dept.

Delft University of Technology

Delft, The Netherlands

Abstract— In this contribution, we describe a reconfigurable surface, designed in 130um SiGe technology, to realize a fully-electronic, planar chopper aiming at passive terahertz imaging applications. This surface consists of subwavelength metallic patches that are interconnected using FET-based varactors. By switching the bias voltage of the varactors between 0V and 1.2V, the reconfigurable surface can switch between a transmissive and opaque state, respectively. The expected transmissivity is simulated to be between 0.2 and 0.9 over a wide frequency band, from 250 GHz to 550 GHz. This chopping solution would enable a high degree of system integration for future passive terahertz cameras.

Keywords—passive imaging, terahertz, modulator, chopping, SiGe, reconfigurable surface.

I. INTRODUCTION

Direct-detection terahertz imagers are slowly approaching passive and near real-time performance [1]. Integrating a high density of these detectors in a focal plane array imaging system, would allow for a THz camera with both a high spatial and thermal resolution. In these imaging systems, or in radiometers in general, the (thermal) signal of interest is ON-OFF modulated, or 'chopped', to discriminate it against the background and to prevent noise-equivalent power degradation due to flicker noise, drift and offset errors.

This chopping operation is usually implemented in passive imaging using either a mechanical chopping wheel between the source and the antenna, or via a Dicke-switch between the antenna and the detector/known load. However, a chopping wheel is bulky, cannot be integrated and limits the chopping frequency. A Dicke-switch is usually used in conjunction with a (narrowband) LNA driving the detector. Since the LNA would require a large silicon area [2], it highly limits the detector density in focal plane array imager concepts and thus the spatial resolution of the camera. In case of a broadband power detector using active illumination, the modulation is implemented in the source itself [1], [3]. Evidently, none of these options allow for a THz camera that is passive, fully-integrated and has high spatial resolution.

In this contribution, we propose a reconfigurable layer, operating as a quasi-optical chopper, that can be integrated between a silicon lens and a focal plane detector array. Since it is located directly on top of the detector chip, the effective area of the chip is comparable (albeit slightly larger) than the detector array chip, making this a very compact solution.

Nuria Llombart
Terahertz Sensing Group, Microelectronics Dept.
Delft University of Technology
Delft, The Netherlands

Maria Alonso-delPino
Terahertz Sensing Group, Microelectronics Dept.
Delft Universtiy of Technology
Delft, The Netherlands

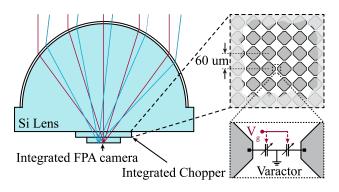


Fig. 1 Terahertz camera consisting of a silicon lens, chopper integrated in 130um SiGe technology and focal plane detector array [3] in the same technology. The inset shows the chopper layer, which consists of subwavelength metal patches loaded with varactors

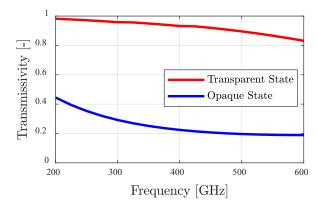


Fig. 2 Simulated power transmission for transparent and opaque states of the chopper, where varactors are biased with V_a =0V.and 1.2V, respectively

Moreover, the design concept is also ultrawideband, operating between 250 and 550 GHz.

II. DESIGN OF SILICON-INTEGRATED CHOPPER

The imaging system architecture, including the proposed integrated chopper is shown in Fig. 1. The chopper is designed in a 130um SiGe technology, and consists of an array of sub-wavelength $(0.28\lambda_{Si}$ at 400GHz) metal patches arranged in a chessboard [3] configuration. A varactor, connected to the gaps between adjacent elements, is used to control the transmissivity of the chopping layer. These varactors are realized using a differential pair of NMOS devices of which the bulk, drain and source terminals are

shorted to the ground while gates are connected to the metallic patches.

The bias voltage across the gates, V_g , via the FET channel capacitance, controls the transmissivity of the array layer, and thus can be used to switch between a transparent and opaque state of the array. A large capacitance corresponds to the opaque state, since the geometry comes to resemble a dense wire-grid (i.e., a high-pass filter) with a cut-off frequency beyond the operational band. When the varactor capacitance is very small, the array is in its transparent state. The power transmission through the chopping layer, when embedded in silicon, as extracted from full-wave simulations is shown in Fig. 2, for both the transparent $(V_g = 0V)$ and opaque $(V_g = 0V)$ 1.2V) states. The difference of these two transmission parameters give the total modulation depth of the chopper. It can be seen that, although the chopper achieves moderate modulation depth, it is operational over a large bandwidth. In the lower half of the band, the losses are dominated by the opaque state, and vice versa for the upper half of the operational band.

This chip has been designed and it is currently being fabricated. The measurements are expected to be presented in the conference.

ACKNOWLEDGMENT

We would like to thank the Leibniz Institute for High Performance Microelectronics (IHP) for the technology access and support

REFERENCES

- [1] M. Andree, V. Jagtap, J. Grzyb and U. Pfeiffer, "A Broadband Dual-Polarized Low-NEP SiGe HBT Terahertz Direct Detector for Polarization-Sensitive Imaging," 2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Montreal, QC, Canada, 2023, pp. 1-2
- [2] J. W. May and G. M. Rebeiz, "Design and Characterization of W-Band SiGe RFICs for Passive Millimeter-Wave Imaging," in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 5, pp. 1420-1430, May 2010
- [3] M. Hoogelander et al., "Chessboard Focal Plane Array for a CMOS-Integrated Terahertz Camera," in IEEE Transactions on Terahertz Science and Technology, vol. 13, no. 6, pp. 704-717, Nov. 2023.