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A B S T R A C T   

In the modern aircraft design process numerical simulation is one of the key enablers. However, computational 
time increases exponentially with the level of fidelity of the simulation. In the EU Horizon2020 project AGILE 
different aircraft design analysis tools relative to different levels of fidelity are used. One of the challenges is to 
reduce the computational time - e.g. to facilitate an efficient optimization process - by processing the analysis 
data of various fidelity levels in a global surrogate model. This paper focuses on fusion of data sets via an 
automatic iterative process embedded in the collaborative multidisciplinary analysis (MDA) chains as applied in 
AGILE. Surrogate modeling techniques are applied, taking into account the optimal sampling and the corre
sponding fidelities of the samples. This paper will detail the different steps of the proposed collaborative 
approach. As a test case handling qualities analysis of the AGILE reference conventional aircraft is performed, by 
fusing the computed aerodynamic coefficients and derivatives. A full set of aerodynamic data computed either 
with different levels of fidelity or with only a low-fidelity tool has been derived and evaluated. The data set with 
multiple levels of fidelity significantly improved the accuracy of the flight performance analysis, especially for 
the transonic region in which the low fidelity aerodynamic method is not reliable. Moreover, the test case shows 
that by combining a collaborative surrogate modeling approach with fusion of the data sets, the fidelity of the 
analysis data can be significantly improved giving maximum relative prediction error less than 5% with minimal 
computing efforts.   

1. Introduction 

Today’s latest large airliners in service, e.g., the A-380 and A-350, 
have over 6 million of parts and have 150000 design changes per year 
[1]. They show both outstanding performance and a reduced environ
mental impact. This is the result of a continuous optimization of the 
air-frame design and a progressive mastering by engineers of the in
teractions between systems and disciplines on the same configuration 
[2]. Aircraft design nowadays is a mature process based on an integrated 
approach, to handle the complexity of the product. However, given the 
level of maturity of the classical “tube and wing” configuration, evolving 
business models for developing new aircraft only by improving upon 

existing practices, has the consequence that engineers have small mar
gins for improvements and future targets will be difficult to attain. 
Therefore, research centers and industry need to work together in the 
exploration of new integrated design concepts that can provide a 
disruptive approach and offer in this manner various possibilities for 
safer and greener vehicles. The current design of aircraft is an extremely 
interdisciplinary activity incorporating simultaneous consideration of 
complex, tightly coupled systems, functions and requirements. The 
design task is to achieve an optimal integration of all components into an 
efficient, robust and reliable aircraft with high performance that can be 
manufactured with low technical and financial risks, and has an 
affordable life-cycle cost. 

To help achieve this goal, today’s aeronautics market requires a 
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manufacturer to develop more complex products by exploiting all op
portunities provided, e.g., high fidelity multidisciplinary tools and 
frameworks and powerful High Performance Computing (HPC) capa
bilities [3]. Over the past 25 years the aeronautical industry has been 
transforming its operations to what can be called a system-oriented 
approach, instead of a functional-oriented approach. The primary focus 
becomes one of integration of all disciplines. To help meet the challenge, 
the core activities in the new paradigm, against the traditional analysis 
activities considered as “design-verification activities”, now become to 
numerically “flight-test” a virtual aircraft with all its multi-disciplinary 
interactions in a computer environment as given by its different data
bases (aerodynamic, loads, stability and control) [1–3]. This new 
development paradigm has been identified in the ACARE Strategic 
Research and Innovation Agenda (SRIA) [4] as a major challenge to 
make the design of a complete virtual aircraft up to certification a re
ality. Several outstanding EU Framework RTD projects have addressed 
the notion of developing conceptual design methods with advanced 
close coupling of the aerodynamics, structures and flight control disci
plines upon a series of evolutionary MDO systems. The FP6 STReP 
SimSAC (Simulating Aircraft Stability And Control Characteristics for 
Use in Conceptual Design) [5,6], VIVACE, CRESCENDO [7,8] and 
TOICA are some of those projects at both research and industry levels. 
Keep in mind, that current engineering analysis methods in designing 
complex systems rely very heavily on the knowledge and intuition of the 
individual designer. There still exist information gaps between the 
specialist component designs and the system level [2]. The challenge is 
to bridge the gaps and mitigate their effects so that the design process 
becomes smoother and more efficient. 

The way to solve this is to establish a robust, collaborative and in
tegrated framework with all disciplines involved to carry out the real 
MDO. Ciampa and Nagel [1] have identified that major obstacles in the 
current generation of MDO systems are related to the efforts required to 
setup complex collaborative frameworks. Up to 60–80% of the project 
time may be necessary to setup such a process. The 3rd generation MDO 
systems will rely on the integration of expertise in the collaborative 
optimization and knowledge formalization of processes and disciplinary 
domains. The EU funded H2020 research project AGILE, Aircraft 3rd 
Generation MDO for Innovative Collaboration of Heterogeneous Teams 
of Experts [9] builds upon the projects mentioned above. It addresses the 

challenges by developing a next generation of aircraft MDO processes 
that target significant reduction in aircraft development costs and time 
to market. AGILE has formulated a novel design methodology, the 
so-called “AGILE Paradigm”, which accelerates the deployment of 
collaborative, large-scale design and optimization frameworks. 

The “AGILE Paradigm” emphasizes collaboration and integration by 
building a smooth design and analysis tool chain to carry out MDA 
(Multi-Disciplinary Analysis) processes. The MDA process shall includes:  

(1) the collaboration and integration of the tools, data and outputs 
from different disciplines;  

(2) the collaboration and integration of the analyses from one 
discipline from different tools of various fidelities. One major 
discipline - addressed in the paper - concerns the construction of 
the aerodynamic database for stability and control analysis. 

Assessment of aircraft maneuverability and agility at the conceptual 
design stage brings great challenges in the design process regarding the 
stability and control analysis over the entire flight envelope. A large 
look-up table of forces and moments must be constructed by Computa
tional Fluid Dynamics (CFD) while we have to address the computa
tional cost. A useful look-up table for stability and control analysis, the 
so-called aerodynamic database, needs thousands of entries because of 
the high dimensionality of the parameter space. 

“Brute-force” calculation would be far too costly. But there are ways 
to reduce the computational time. The first step is to use different CFD 
methods, from Large-Eddy Simulation via Reynolds-Averaged Navier- 
Stokes models, down to potential flow models, or even empirical 
methods from handbooks. Using the simplest method and geometry 
compatible with the level of accuracy required for each flight state can 
dramatically reduce the computational cost. 

The whole spectrum of computational models is widely used in 
modern aerospace industry. In order not to lose too much accuracy while 
saving computational cost, the simplifying assumptions made to solve 
the standard Navier-Stokes equations should be acceptable for each 
single entry. For example, for low speed and non-accelerated small angle 
of attack flight, the in-compressible potential flow models can give 
acceptable predictions with significant time saving compared with Euler 
or RANS models. 

Nomenclature 

AGILE Aircraft 3rd Generation MDO for Innovative Collaboration 
of Heterogeneous Teams of Experts 

API Application Programming Interface 
ACARE Advisory Council for Aeronautics Research in Europe 
SRA Strategic Research Agenda 
CAD Computer Aided Design 
CFD Computational Fluid Dynamics 
CSM Computational Structural Mechanics 
CPACS Common Parametric Aircraft Configuration Schema 
DOE Design Of Experiments 
DACE Design and Analysis of Computer Experiments 
EIF Expected Improvement Function 
FFD Free-Form Deformation 
FTP File Transfer Protocol 
IP Intellectual Property 
LES Large-Eddy Simulation 
MDA Multidisciplinary Analysis 
MDO Multidisciplinary Design Optimization 
MOE Mixture of Experts 
PHALANX Performance, Handling Qualities and Loads Analysis 

Toolbox 

PIDO Process Integration and Design Optimization 
RANS Reynolds Average Navier-Stokes 
(R)MSE (Root) Mean Square Error 
RSM Response Surface Model 
RCE Remote Component Environment 
SM Surrogate Model 
SMR Surrogate Model Repository 
S & C Stability and Control 
VLM Vortex Lattice Method 
XML eXtensive Markup Language 
csv Comma Separated Values 
lo-fi Low fidelity (data) 
hi-fi High fidelity (data) 
sp Short Period mode 
ph Phugoid mode 

Symbols 
α or AoA Angle of Attack [deg] 
β Sideslip Angle [deg] 
δ Elevator deflection angle [deg] 
Cp Pressure Coefficient [− ] 
ω frequency [rad/s] 
z damping ratio [− ]  
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The second step concerns all the data obtained by the different CFD 
methods over the entire flight envelope. In the database, dense low-cost 
and low-fidelity data indicating the trend must be fused with sparse high- 
cost and high-fidelity data correcting the low-fidelity data values [10]. 

The multi-fidelity modeling method is a means to navigate the flight 
state parameter space and cover the entire flight envelope in an effective 
way. A procedure is devised to integrate the results from different 
simulation tools based on different methods and having different 
complexity levels. Building the multi-fidelity model involves two main 
steps:  

1. Populate the aerodynamic database over the whole flight envelope 
by dense low-fidelity data samples;  

2. Correct the data using sparse high-fidelity samples. 

A method is developed for building a reliable aerodynamic database 
using low-fidelity data and with a minimum number of high-fidelity 
samples including automatically chosen new sample points. The term 
data fusion refers to integrating data from multiple data sources to 
combine them into a single, comprehensive model [11]. It is a useful 
technique in many fields. This paper addresses aero-data fusion by using 
the aerodynamic data-sets obtained from different sources (e.g. CFD 
tools) to produce an efficient and effective surrogate model with mini
mal computational cost. 

Data fusion builds surrogate models based on data fitting when data 
is not easily directly to obtain. The important issue is the accuracy of the 
model, namely, how well the surrogate model represents the real data/ 
model. The surrogate model can be used for many cases, and the un
certainties analyzed to examine the accuracy of the surrogate model. 

This paper focuses on the establishment of a collaborative architec
ture (CA) for aerodynamic data fusion by generating surrogate models 
and the handling qualities analysis by the fused data. Section 2 describes 
the AGILE collaborative framework and the different aerodynamic 
computations. Section 3 reviews the aero data fusion work done before 
through a number of previous EU projects, and their similarity and 
differences compared with the work in AGILE. The theoretical basis for 
constructing a surrogate model is reviewed. Section 4 details how to 
establish the data fusion technology through collaborative surrogates. 
Section 5 discusses the means of the choice of design of experiments 
(DOEs). Applications of data fusion in the AGILE framework are pre
sented in Section 6, and Section 7 summarizes and concludes the work. 

2. AGILE project overview 

AGILE is an EU funded Horizon 2020 project coordinated by the 
Institute of Air Transportation Systems of the German Aerospace Center 
(DLR). Its objective is to implement the 3rd generation of multidisci
plinary optimization through efficient international multi-site collabo
ration in overall design teams. The 19 partners bring different 
knowledge and competences regarding aircraft design and optimization. 
In this context the use of surrogate models is interesting to efficiently 
assemble results coming from various sources and levels of fidelity. 

Data fusion aims to handle the large amount of data to be computed 
for each design cycle in the Multidisciplinary Design Optimization 
(MDO) process by constructing surrogate models from the data produced 
by variable fidelity analysis tools in the MDO framework. Methods like 
kriging, co-kriging, and adaptive modeling techniques are used for fusing 
the outputs of each tool. This technique is well established (see for 
instance the recent review [12]) and constitutes its own challenges in 
applying multi-fidelity MDA in AGILE. 

This paper uses the nomenclature L* to indicate the fidelity Level of a 
simulation model: 

L0: empirical or handbook methods; 
L1: linearized-equation methods, e.g. linear aerodynamics, or the 
vortex lattice method (VLM); 

L2: higher fidelity equation solvers with less simplifications, 
nonlinear-equation methods (e.g. Euler equation solvers); 
L3: highest fidelity equation solvers (e.g. RANS equations). 

The following part of this section will show the tools and mechanisms 
to be used to establish the collaborative surrogate models within the 
AGILE framework. 

2.1. Tools for establishing the collaborative workflow 

This section introduces the collaboration tools that were developed 
and applied and that support the AGILE collaborative surrogate 
modeling. 

2.1.1. Collaborative work language CPACS 
During the collaborative and integrated design process, data need to 

be exchanged. Managing the interconnections is complex and prone to 
errors. Adoption of a standardized, data-centric scheme for storage of all 
data improves consistency and reduces risks of misconceptions and er
rors in the process. It however requires an initial effort to make in
terfaces between analysis modules and the data archive. The CPACS 
(Common Parametric Aircraft Configuration Schema) [13–15] is widely 
used in the frame of AGILE. 

CPACS is an XML-based representation of an aircraft design. In 
AGILE the aircraft design is contained in a single CPACS file. The anal
ysis tools available from the various partners must read the input from 
the CPACS file and produce the output in the form of aggregating the 
data in the updated CPACS file. Making a tool available for sharing in 
AGILE requires wrapping the tool to map CPACS onto the tool’s legacy 
input and output. The CPACS tools TIGL and TIXI [15] support inte
gration, use and inspection of CPACS information. 

2.1.2. RCE 
The RCE integration environment and workflow manager [16] im

plements the sequence of analysis modules and manages the local data 
exchange and translation as well as logging the process. RCE makes it 
easy to set up and run a local workflow also using modules in which the 
engineers are not discipline-experts. Creating collaborative workflows 
as collections of local RCE workflows is done via Brics [17], which al
lows to “call” a module or a tool (and so produce results) remotely on 
“the specialist” computer. The remote specialist receives a request for 
some calculation or analysis. The input is generally a CPACS file con
taining all the information required. The new data generated are added 
to the CPACS file and sent back to the requester. 

2.1.3. Brics 
The interconnection mechanism available in AGILE is Brics [17,18], 

developed by NLR. Brics provides technology for interconnecting PIDO 
environments and for defining and streamlining workflows that cross 
organizational borders, while complying with the security constraints 
and dealing with the security measurements of the collaborating part
ners. Brics comprises protocols and middleware that facilitate remote 
execution of sub-processes from within a process, independent of the 
local PIDO environment (i.e., workflow manager) being used. Brics is 
based on a “single-task” protocol that arranges the execution and data 
flow between an orchestrating (“master”) process in one organization 
and a remote (“slave”) sub-process in another organization under con
trol of a specialist who is notified to start the sub-processes. To cater for 
iterations, Brics supports the notion of a “multi-task” protocol, enabling 
a remote specialist to easily deal with series of similar sub-processes. 
Brics also supports easy experimentation with different set-ups of 
collaborative scenarios to support the Design Campaigns and configu
ration of services involved. Its nonintrusive character facilitates easy 
integration with existing COTS as well as in-house developed tools and 
solutions. It enables the AGILE partners to experience collaborative 
scenarios. 
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2.1.4. AGILE collaborative architecture (CA) steps 
Ciampa et al. [18] reviewed the whole collaborative architecture 

used to support AGILE framework, which is also supporting the collab
orative data fusion technology. The Collaborative Architecture deploy
ment steps are as follows [18]:  

1. CPACS compliance for all tools;  
2. Process integration by RCE;  
3. Provide accessibility by Brics. 

All the tools used in CAmust be made CPACS compatible, in other 
words, the integration framework (RCE) must support different fidelity 
tools per discipline and tools for different disciplines. Zhang [19] shows 
the study of CPACS compliance for the variable fidelity aerodynamic 
tools, with one of the applications being data fusion. Within AGILE 
frameworks CPACS is used as common data format for tools interaction. 
Usually the workflow (including tools operated by different specialists) 
is integrated into some workflow environment, such as RCE, with tools 
callable using Brics. 

Fig. 1 shows the Brics application from a client workflow and a server 
workflow, to enable a specialist to respond to a request to run the “tool”, 
and to accomplish remote tool execution. The (input) CPACS file is 
downloaded (from a server of e.g., a customer) using Brics, and it is sent 
to the “Tool” operated by a local specialist. After execution, the (output) 
CPACS file is sent back and uploaded (to the customer who calls for this 
service) using Brics. Since the data fusion service involves many tools 
those are not operated by a single site, the communication between the 
tools is made by Brics calls as illustrated in Fig. 1. The numbered arrows 
indicated the actions. First, the input files for the remote service are 
uploaded to the central data server in a neutral domain (1). Next, the 
remote specialist gets notified (2), who in response may start the service 
(3). The service first retrieves the input files from the data server (4), 
runs the tool that implements the service (5), and uploads the output 
files to the data server (6). Finally, the output files are downloaded to the 
client’s side (7), and the client workflow continues. For proof of concept, 
partners in AGILE have formed teams to apply data fusion as part of RCE 
workflows via Brics, which will provide data fusion solutions for the 
whole AGILE MDA system. More details about the AGILE collaborative 
approach can be found in Refs. [18,20,21]. 

2.2. Surrogate Model Repository 

Many surrogate models of various types have been created in the 
AGILE project, e.g. to support reuse of knowledge and models, efficient 
optimizations and partner collaborations. The question then arises how 
to manage, share and deploy these models which must be applied with 
care. Bounds on the allowed input space for the surrogate model need to 
be clearly specified, e.g. to avoid extrapolation. Furthermore the pre
diction accuracy of the outputs must be specified, so that the user has a 
clearer idea of its applicability, quality and limitations. To address these 
aspects a specific Surrogate Model Repository (SMR) has been developed 
as part of the AGILE Development Framework. The SMR is a central 
broker for registration, storage, deployment and usage of surrogate 
models so that these may be shared and reused in collaborations in a 
managed way. SMR development details can be found in Refs. [20,22]. 

With respect to the sharing of surrogate models two cases have been 
considered in the frame of AGILE and are supported by the SMR.  

• Full share: Share all of the compiled binary code of a surrogate model 
(SM) to support its use by others. In this case the complete SM 
implementation, e.g., an executable program such as Mixture of 
Experts (MOE) is uploaded to the SMR with meta-information 
describing its usage. The SM may be used by downloading its code 
and running it.  

• Partial share: Share only the usage of a SM, others may use the SM ‘as 
a service’ while the code remains at the owner’s or developer’s site. 
In this case only the meta-information of the SM is uploaded to the 
repository. The SMR provides a user interface to directly use this SM 
by calling the remote service. 

In addition to the sharing capabilities, the SMR can export a neutral 
XML format (i.e., CMDOWS [21]) that supports usage of the SM as part 
of a workflow system without further intervention of the SMR. As such 
the SMR can interface to other components in the AGILE Development 
Framework. An illustration of this export facility is described in 
Ref. [23]. The SMR may also function as a broker with respect to the 
creation of surrogate models. The user of the SMR may indicate that a 
specific surrogate model instead of a high-fidelity model must be used 
within an analysis. If the desired surrogate model does not exist already, 
the SMR initiates a surrogate model creation process behind the scenes. 
The role of the SMR both for sharing and for triggering the creation of 

Fig. 1. Schematic overview of Brics application in AGILE from within a client workflow and a server workflow, to accomplish remote tool execution [20].  

Fig. 2. The Surrogate Model Repository as library for sharing surrogate models and as broker for creating surrogate models on demand.  
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surrogate models is depicted in Fig. 2. 
Section 6.2.2 will describe an example of surrogate model deploy

ment through the SMR, using a surrogate model that was developed with 
the data fusion service. A partial share is applied: the SM is provided “as a 
service”. This process can be semi-automatic, which is depicted in Fig. 3, 
and facilitated by Brics, a common building block for the realization of 
collaborative workflows and part of the AGILE development framework 
[20]. 

3. Review of the aero data fusion applications 

Using CFD frameworks for aero-table generation and model assess
ment is not new. In this section the authors will review the work have 
been done before through a number of EU projects for aero-table gen
eration using surrogate models, or aero-data fusion. The similarities and 
differences compared with the current work (within AGILE framework) 
will also be discussed. 

Zhang [24] presented a method for efficient creation of the aero
dynamic database for the X-31 experimental aircraft, from low fidelity 
(Euler) and high fidelity (RANS) CFD sources. The challenge is to make 
reasonable predictions at extremes of the flight envelope. A co-Kriging 
interpolation model is used for aerodynamic moments, forces and 
span loads, with a “decision support system” based on the root mean 
squared error (RMSE) and expected improvement function (EIF). Proper 
Orthogonal Decomposition for data reduction is used to predict 
aero-loads. This work was done within FP7 project ALEF, Aerodynamic 
Loads Estimation at Extremes of the Flight Envelope [25]. 

Da Ronch et al. [26] have constructed the aero-table used for flight 
dynamics by kriging-based surrogate model based on CFD computa
tions. The aerodynamic models are of various fidelities from 
semi-empirical prediction method to CFD by different solvers. The 
sampling space is enriched by iterative sampling based on the root mean 
squared error (RMSE) and expected improvement function (EIF) which 
is discussed as the “fill-in strategy” in Ref. [27]. Five test cases are shown 
for aero-table generation and the flight handling qualities analysis. The 
work provides a quite complete reference for the aero-table generation 
technology by data fusion of various fidelity aerodynamics. However, 
the aerodynamic models with different levels of fidelities are prone to 
data-loss by communicating with different tools/solvers. 

Ghoeryshi et al. [28] solved this mis-matching by addressing the 

geometry and mesh treatment using a high level conceptual aircraft 
description, i.e., a so-called XML-aircraft description used in software 
CEASIOM (the Computerized Environment for Aircraft Synthesis and 
Integrated Optimization Methods) [6,29]. Kriging was used to construct 
all of the aero-table entries and co-kriging was used to update the 
aero-table with additional samples calculated. The sampling method 
used is to identify non-linearities in the force and moment tables. The 
flight handling qualities are thus predicted and analyzed by the Simu
lation and Dynamic Stability Analyser (SDSA) [30]. 

Similar work was done in Ref. [31] for the Standard Dynamic Model 
(SDM), with filling up the tables by co-kriging [27]. For example, to 
construct the lateral coefficients in the baseline table, the handbook 
code DATCOM [32] is used to generate the initial static tables as low 
fidelity data, and co-kriging with a few Euler results are used to update 
the tables. The prediction of the aerodynamic forces from the static 
tabular model and the slow motion replay show close agreement as 
expected. The slow motions used are trimmed level flight, pull-ups with 
constant and varying angle of attack, wingover and 90-deg turns. 
Disagreement appears at fast maneuvers with the presence of unsteady 
terms. The work shows the usefulness of the limits of the tabular aero
dynamic models by co-kriging surrogates. 

The work has been extended at the University of Liverpool, and 
applied to 3 test cases, namely, the Standard Dynamic Model, the Ranger 
2000 jet trainer, and the Stability and Control Unmanned Combat Air 
Vehicle [33]. For each case, a tabular aerodynamic model is constructed 
based on CFD predictions nd a kriging interpolator to populate the ta
bles, with validation against wind tunnel experiments and flight test 
measurements. 

Da Ronch et al. [34] have investigated the methodology for 
aero-loads generation by surrogates and applied to the Transonic Cruiser 
aircraft (TCR). The basic rule is to predict an effective model with a 
minimum number of samples (namely, minimal computing time). 
Kriging is used to predict the surrogate model. Two design of experi
ments strategies were investigated. The first one is a traditional Latin 
Hypercube approach, and the second strategy is the adaptive design of 
experiments (ADOE) technique. The result shows that ADOE provides 
better predictions especially for complex and non-linear engineering 
phenomena, such as pitch moment coefficient and aerodynamics at 
transonic speeds. The ADOE approach is adapted into the DOE tech
nology for the current work, details can be seen in Section 5. 

Fig. 3. Depiction of the “under the hood” process for an “as a service” calculation.  
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The work by Da Ronch [26], Ghoeryshi [28,31] and Vallespin [33] 
within the FP6 project SimSAC started in year 2006, Simulating Aircraft 
Stability And Control Characteristics for Use in Conceptual Design [5,6]. 
It was applied to various aircraft models, the Transonic Cruiser model 
(TCR), an Asymmetric aircraft model, the DLR-F12 model, a B747-like 
model, the Ranger 2000 aircraft, the Standard Dynamic Model (SDM), 
and the Stability and Control Unmanned Combat Air Vehicle (SACCON). 
Table 1 summarizes the data fusion from some of the previous EU pro
jects mentioned above as well as the current AGILE projects. As AGILE is 
built upon the previous projects, the data fusion technology is improved 
in a number of aspects with the outcomes used for handling qualities 
analyses. The outstanding features are to bring it into the collaborative 
architecture, with all the tools loosely coupled and integrated by RCE 
and accessible by Brics (see Section 2.1). The DOEs strategies (see Sec
tion 5) have been improved, and data can be stored and retrieved 
through SMR, see Section 2.2. The application will be discussed in 
Section 6. 

4. Data fusion through collaborative surrogates 

4.1. Surrogate models overview 

A surrogate model is a cheap-to-evaluate function ŷ = g(x) approx
imation to the exact but expensive-to-evaluate function y = f(x). 
Another name is Response Surface Model (RSM). A used-to-be-well- 
known example is the table of logarithms which reduces arduous 
exact manual calculation to much quicker approximate calculations by 
repeated table lookup, interpolation, and addition. 

In this paper data fusion means the integration of results from 
different simulation models into a single surrogate model. In AGILE the 
surrogate models are constructed by different methods provided by 
partners. In the context of this paper the RSM function is specified as: 

[force and moment coefficients] =RSM(α, β,Alt,Mach,…,D) (1)  

where the aerodynamic variables are α the angle of attack, β the sideslip 
angle, Alt the flight altitude and the Mach number. The data set is 
denoted by D. 

Surrogate modeling has two distinct steps, first the training to pro
duce the g − function, and second, the use of the generated g-function. 
The data set D is the training set. In this paper y represents the com
putations of forces, moments, structural deformations and stresses, etc., 
associated with a particular flight state of a defined aircraft configura
tion which is the x. Evaluation of y requires at least a flow solution, and 
possibly a complete aero-servo-elastic simulation. The training should 
produce a RSM with maximal accuracy and minimal cost is required for 
producing the training set. This is done by the choice of f (multi-fidelity 
modeling characterized by fidelity level, L0–L3) and by the choice of a 
training set. Much effort has been devoted to algorithms for the choice of 
an optimal training set, as described in Ref. [35]. 

Evaluation of a surrogate model requires the input x and the corre
sponding results of the training, e.g. a set of polynomial coefficients, or a 
look-up table with the whole flight envelope (flight states, or x), pro
cessed in to the function g: 

ŷ(x)= g(x,D) (2) 

It is assumed that the evaluation will be made for many (thousands) 
values of x for a single D. The training, including the choice of the 
training set, is an iterative process. In a single iteration k, an algorithm M 
increments/fuses the training set with a set {x, y}k and updates D: 

Dk+1 =M(Dk, {x, y}k) (3) 

For the new D, another algorithm S suggests new samples for testing 
the accuracy requirements: 

{x}k+1 = S(Dk+1). (4) 

Both the M and S algorithms make frequent use of g. 
A typical RSM kit contains computer codes for an RSM evaluator g, 

data fuser algorithm M and sampling algorithm S, plus a proviso (see 

Table 1 
Projects.   

AGILE (2015–2018) ALEF (2009–2012) SimSAC (2006–2009) 

Aero. Models CPACS Standard CAD CEASIOM-based XML 

CFD Tools Multi-Fidelity CPACS-compliance Mid-to-High Fidelity Multi-Fidelity CEASIOM-compliance 
Surrogate Models various surrogates co-kriging/MoE/etc. External co-kriging External co-kriging 
CA platform RCE & Brics can across firewall – CEASIOM 
Collaborative Process features Brics, SMR PIDO at diff. sites/locations via Emails & FTP etc via Emails & FTP etc.  

Fig. 4. Workflow for data fusion in the MDA chain, interchangeable modules exchanging data using Brics.  
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Section 5.1) to evaluate f. A developed instance, the data fusion process, 
which is ready to run, and improved on further, will contain g, M, S and 
the data set D. Fig. 4 shows an example of a module-independent data 
fusion workflow exchanging data using Brics. It should be noted that 
exchanging D for each call is impractical in general, due to the size of D. 
Therefore, in the standard use cases, D is built on one partner’s network/ 
machine, and then made available. The f − samples however can easily 
be exchanged using Brics since the large discretization and solution files 
(CFD mesh, finite element mesh for CSM) are usually only stored locally. 
However, for the purpose of tracking possible bugs, etc., the parameters 
used in mesh generation and simulation should be accessible also “after 
the fact” to the network. 

Use of an existing developed instance requires (access to) computer 
code g and data set D. The g and M functions are in principle well known 
and open. S may involve some proprietary tools which raises IP and 
access issues, and as D embodies information about a design, it also has 
distribution and access restrictions. Within AGILE a specific Surrogate 
Model Repository (SMR) was developed that deals with theses issues, see 
Ref. [22] and Section 2.2. 

4.2. Surrogate models description 

There are various ways to build surrogate models, the popular ones 
are for example, polynomial interpolations, the Radial Basis Function 
(RBF) and Kriging interpolation. In this section it describes two of the 
mostly used surrogate models in AGILE. Note that, in AGILE framework, 
the various surrogate models are free to choose to build the CA as long as 
they follow the steps described in Section 2.1.4. 

4.2.1. Kriging and co-kriging 
Kriging is a method for scattered data interpolation which sees the 

data to be predicted as a stationary stochastic field with correction of the 
predictions depending only on their relative location. The co-kriging 
process provides a technology for the multi-fidelity results where a great 
quantity of low-fidelity data is coupled with a small amount of high- 
fidelity data to enhance the accuracy of a surrogate model. The 
approximation is obtained by updating the correlation ψ and the cor
relation matrix Ψ to the co-variance c and co-variance matrix C between 
the low (cheap) and high-fidelity (expensive) observations. The co- 
kriging estimation ŷ at x∗ is: 

ŷco

(
x∗
)
= F̃ )

(
β, x∗

)
+ cT C− 1

(
y − F̃ ) (5)  

where F̃ is the mean value obtained by the regression model predicted 
in the same pattern as kriging, by considering both lo-fi and hi-fi sam
ples. If the prediction is made at the ith high-fidelity points, and the lo-fi 
data have mc design sites, then c is the mc + ith column of C. Eq. (5) is an 
interpolator of the hi-fi data just like ordinary kriging, but the lo-fi data 
will regress in a well defined sense unless it coincides with the expensive 
observations ye. Details about kriging, co-kriging and Gaussian Process 
can be found in Refs. [27,36]. 

4.2.2. Mixture of experts 
The Mixture of Experts (MOE) is a technique which combines local 

surrogate models in order to approximate heterogeneous functions (flat 
and steep regions, first and zero order discontinuities) dividing the 
problem space into homogeneous regions. In the context of this paper, 
the mixture of experts techniques is used to mix multi-fidelity models as 
co-kriging. The main idea of mixture of experts is to provide a clustering 
of the training basis into regions where the function to be approximated 
is expected to be continuous or at least more simple. In this specific case, 
the local experts ̂yk dedicated to each cluster k, which are the co-kriging 
models defined in Eq. (5). As explained in Refs. [37,38], the Gaussian 
mixture model provides a way to create a global model and predict its 
value at a new point xnew of the design space as a recombination of the 
local models: 

ŷ(xnew)=
∑K

k=1
P(κ= k|x= xnew)ŷk (xnew) (6) 

In this Eq. (6), K is the number of clusters, P(κ= k|x= x∗) denoted by 
gating network, is the probability to lie in cluster k knowing that x =

xnew and ŷk is the local expert built on cluster k. The number of clusters K 
is chosen automatically to minimize the generalization error on a vali
dation data set [39]. MOE has been made available to AGILE partners for 
different applications as a remote service [40,41]. MOE has also been 
wrapped using the Brics connection protocols to enable the transfer of 
models (constructed on data provided by the user) and not only the 
results of the evaluation of the models. 

Fig. 5. Data fusion service in the MDA chain with 3 stages.  
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4.3. Data fusion within the collaborative MDA chain 

As described at the beginning of the paper, in overall MDO, some 
tools may need large amounts of data, for instance, the flight simulation 
tool used for Stability and Control (S&C) analysis needs a complete 
aerodynamic-database as its input. Some entries in the database can be 
computed by high-fidelity analysis modules, but not all of them, there
fore we need data fusion between various fidelity levels. The fused 
database, thereafter, will be delivered to the e.g. flight simulation tool. 

The data fusion used for AGILE project is implemented as a process, 
and it calls for other tools to run the process. The whole fusion procedure 
is iterative. 

This section shows how the surrogate-based data fusion is imple
mented in the MDA chain, and how deployment and application of the 
surrogate model is facilitated by the Surrogate Model Repository. 

Fig. 5 shows how the datafusion workflow is executed, the three 
modules (described later in the paragraph) can be execute at different 
locations by specialists. This workflow is implemented with RCE which 
allows to use the Brics plug-in to share information between the main 
computer and specialist’s computer, in the way as Fig. 1 describes. 

The data fusion package includes the development/delivery of: (1) 
the surrogate model builder/fuser M and model evaluator g; (2) the 
sampling module S; (3) the samples computation module f (aerodynamic 
module); (4) the graphic feedback module. 

This package can be used for fusing computed tables of forces and 
moments for the purpose of aero-dataset construction. Namely, it can be 

used for fusing the aerodynamic coefficients data from different tools 
(sources) and fidelities, and storing the surrogate models. 

Fig. 5 spells out the data fusion service in the MDA chain. It has three 
core modules shown below, the graphic feedback module can be used 
separately and is not included in the MDA chain.  

• Preparation Module: It prepares the training data storing in the 
CPACS file design study branch, or in two separate column-based csv 
files 

• Surrogate Modeling Module: The surrogate model builder is pro
vided by different tools/partners. This module also includes the 
“sampling service”. The surrogate modeling techniques are  
(1) co-kriging [27] is provided by Airinnova AB in Matlab based on 

the DACE toolbox [42], or its alternative Python’s built-in 
persistence Model (scikit-learn), containing the co-kriging 
model parameters corresponding to the co-kriging surrogate 
trained with incoming training data. The resulting Model file 
(both Matlab-based and Python built-in) can be read by Python 
and used by the Python scikit-learn toolbox. So that it can be 
stored, transferred, shared and re-produced by partners via SMR 
without Matlab license.  

(2) Mixture of Experts (MOE) method for surrogate modeling is 
provided by ONERA [39] as an executable file. It will output one 
(binary) file containing the MOE model parameters corre
sponding to the MOE surrogate trained with incoming training 
data. The MOE strategy [37,38] recalled in Section 4.2.2 has 

Fig. 6. The “smart sampling” technology workflow.  

Fig. 7. The initial samples of the domain for the Test Case and its transformation, at altitude 10 km.  
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been made available to AGILE partners for different applications 
[41,43,44].  

• Aerodynamic Module: In this module the new samples are 
computed by the aerodynamic tools. In this paper, the L1 aero
dynamic data are provided by Tornado, which is a Vortex Lattice 
Method code [45]; L2 aerodynamic data are provided by SU2 [46] 
which is a computational fluid dynamics simulation software. Both 
of the tools are operated by different specialists at different sites. 
Other aerodynamic tools can be integrated into this MDA chain by 
modifying their API to the data fusion package, through the 3 steps 
described in Section 2.1.4. 

5. Design of experiments 

This section discusses the issues about the design of experiments, 
including the sampling algorithm and the design domain validity used in 
the collaborative data fusion described in Section 4.3. 

5.1. Smart sampling algorithm 

The “smart sampling” is employed to determine new sampling lo
cations and to choose the tools (variable fidelity). The smart sampling 
scheme uses a mixture of sampling methods with the stopping criteria by 
examining the MSE or the RMSE (Root Mean Square Error). The sam
pling identifies a number of sampling locations. The response at the 
sampling points can be evaluated in parallel, with a constraint to ensure 

Fig. 8. Initial DOE defined in the CPACS files. Black dot: low-fidelity data; blue cross: high-fidelity data. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 9. (a) The unstructured volume mesh with 5.9 million cells of the test case configuration, created by sumo [48] and TetGen [49]; (b) the Cp contour of the 
horizontal tail of the test case aircraft from Euler solutions computed by SU2, Mach = 0.78, α = 0∘ with elevator deflection δ = 4∘. The elevator deflection is modelled 
by deforming the mesh defining by FFD. 
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that the sample locations found having a significant distance between 
each other to avoid overemphasis of the interpolation on a small portion 
of the predicted function. Due to the inherent nature of the sampling 
algorithm S (shown in Fig. 6), it is strongly coupled with the RSM 
evaluator g, namely, kriging or co-kriging surrogate models. 

Fig. 6 shows the workflow of the smart sampling technology. For 
each iteration, the new samples (low-fidelity, or lo-fi & high-fidelity, or 
hi-fi) are merged so that the surrogate model is updated and the RMSE is 
computed and compared with the defined tolerance, or tol, chosen by the 
user. If the stopping criteria are met, the iteration ends. Otherwise new 
samples are suggested according to the listed methods in Fig. 6 and 
described in the following. The new suggested samples will be computed 
by the corresponding tools and will be added to the samples to update 

the surrogate model. The computational tool fidelity is also suggested. 
The methods used to suggest new samples are described below, and 

the rules are understood as a hierarchical sequence (from 1 to 5):  

1. Borders: only applies when loading the initial samples. Check the 
“borders” of the DOE domain, if the hi-fi samples are missing at any 
of the border locations, add them (computed by hi-fi tools). This 
must be done at the first step of the sampling, because Kriging relies 
on the assumption of constant mean and variance within the domain 
of interest, and is not performing well at extrapolation. The low- 
fidelity data tends predicts the wrong trends, that the high-fidelity 
samples must be added to correct the wrong trend especially at the 
borders of the design domain to avoid extrapolation. 

Fig. 10. The co-kriging surrogate model re
sults of AGILE reference aircraft for CL, CD 
and C, with elevator deflection δ = 0 deg. 
Notations: dot: lo-fi samples; cross: hi-fi 
samples; line: the response surfaces. 
Figures (a), (c) and (e): the response surfaces 
and sampled data over the flight envelope. 
Figure (b), (d) and (f): the cuts for Mach 
number 0.5 (black), 0.8 (blue) and 0.9 (red) 
from the response surfaces, and their corre
sponding sampled data. (For interpretation 
of the references to colour in this figure 
legend, the reader is referred to the Web 
version of this article.)   
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2. MaxMin: finds the local maximum or minimum of the surrogate 
model and the new samples will be added there. The position of the 
local maxima or minima is computed by considering the full surro
gate model, comparing any function values with all the points inside 
a sphere of radius previously computed and centered in it. The sphere 
radius is initially computed as minimum of the Euclidean norms of 
any two points with all non-equal coordinates. If the function value is 
bigger or smaller than all the others in the sphere, the point is marked 
as local maximum or minimum respectively [47]. The “MaxMin” 
method can at a time recommend n-set of samples (defined by the 
user). The new samples shall be computed by L1 tool (lo-fi) by 
default if tool fidelity is not specified. 

3. MaxHessian: finds/computes the maximum curvature of the surro
gate model and the new samples will be added there. The new 
samples shall be computed by L1 tool (lo-fi) by default. Computation 
details can be found in Appendix in Ref. [40]. This method only 
becomes active if MaxMin fails.  

4. EIF: finds the Expected Improvement Function (EIF) location [27] 
and the new samples will be added there only when the MaxMin and 
MaxHessian fail to add the effective samples, i.e., the new samples 
suggested by previous methods are already or very close to the 
existing samples via a distance criterion threshold chosen by the 
user. The new samples shall be computed by L1 tool (lo-fi) by default.  

5. MaxLoc: finds the maximum RMSE locations and new samples will be 
added there. This method is used only when the maximum RMSE is 
not significantly improved compared with the previous iterations: 

RMSE(k+ 1)> ν⋅RMSE(k) (7)  

where 0 < ν < 1 is the improvement factor chosen by the user, thus the 
sampling method shall be “switched” to MaxLoc. 

As stated above, except Borders, the new samples suggested by all 
other methods will be computed by L1 tools (lo-fi) by default. There is a 
hierarchy of models and the highest fidelity one is considered as the 
truth, i.e., we have no error estimate between the highest fidelity models 
and the “reality”. We wish to use lower fidelity (lo-fi) models where they 
give results close to the hi-fi models, so first use the lo-fi until error 
estimate satisfies the lo-fi criterion. Then the hi-fi points are filled in 
until the error estimate between response surface and the hi-fi is small 
enough (i.e., fulfills the hi-fi criterion). Note that this may “waste” the 
lo-fi calculations in regions where the lo-fi is bad so the hi-fi is necessary. 

The hierarchical sequence of choosing samples is based on an 
investigation and combination of methods stated in Refs. [27,34,47], the 
goal being to improve the surrogates using a minimum number of 

samples, i.e., minimal computing efforts. First check the borders to avoid 
extrapolation, then enrich the surrogate models by infilling the points 
suggested by MaxMin and MaxHessian, which allows the predicted 
models quickly converge upon a maximum/minimum value, or a 
peak/dip of the true function [27,47]. This is particularly useful when 
the model to be predicted is highly non-linear, such as CL, Cm aero co
efficient curves especially for transonic flight conditions. If the above 
two methods fail, which means the search only finds a local optimum, or 
does not even find a local minimum/maximum (for example, the large 
portions of the surrogate function landscape are flat), the surrogate 
model does not approximate the whole function well, a sampling strat
egy that can search away from the current minimum and explore other 
regions is required. The EIF is error based exploration which is suitable 
for the situation stated above. In many situations, the EIF function would 
give the same recommended sampling locations as the Max/Min and 
MaxHessian. However, the EIF may be not so efficient when the pre
diction “thinks” that the function is very smooth [27] that EIF function 
diminishes to a very small value, with a very small estimated error 
RMSE. The small error leads to an overemphasis on exploitation of the 
prediction and the sampling approach falls into the trap because the 
unknown Kriging model based parameters is assumed to be estimated 
correctly. MaxLoc is used to improve the surrogates at the locations with 
the largest MSE values if the maximum RMSE is not significantly 
improved by Find EIF. The source fidelity for the samples also needs to be 
upgraded accordingly. The infilling samples suggested by the maximum 
MSE locations tends to make a uniform distribution over the design 
domain, which may “waste” samples. The ideal scenario is to find the 
best fitted model as quickly as possible, that the sampling points get 
“clustered” at the non-linear parts, and get “scattered” at the linear 
parts. 

It shall be possible to choose freely between source tools with 
different fidelity levels. The criteria for going to the next fidelity level 
and to switch methods are:  

• If the new suggested samples are already in the hi-fi sampled domain, 
switch to the next method level. For example, if the MaxMin suggests 
a new sample that is already in the hi-fi sampled domain, we then use 
the MaxHessian.  

• If the new suggested samples are already in the lo-fi sampled domain 
but not in the hi-fi sampled domain, upgrade the fidelity.  

• If a low fidelity tool fulfills the lo-fi accuracy criteria, for example, if 
the maximum RMSE is small enough, go to the next fidelity level, 
namely, Lk “upgrades” to Lk+1, where k is the current fidelity level.  

• Another indication is that the maximum RMSE is not significantly 
improved compared with the previous iteration as described with Eq. 
(7). This means either the methods shall be “switched” or the fidelity 
shall be improved. 

This “smart” sampling algorithm needs now to be associated with a 
re-scaling of the design domain in order to ensure that points are added 
throughout the domain. 

5.2. Domain validity issues 

The problem of fusing the aerodynamic characteristics, it relates the 
flight envelope identification, or the identification of the domain val
idity of the surrogate models. Usually, the DOE techniques are designed 
to work on rectangular (cubic for 3D) domains. Moreover, the inherent 
characteristics of the CPACS file definition only supports the uniform 
distribution of the samples. Therefore, the initial samples, are computed 
with regular sampling. However, the physical flight envelope is just part 
of the “CPACS envelope” [40]. For instance, the test case which will be 
used in this paper, the AGILE reference aircraft, as a conventional 
transport airliner, its physical flight envelope, will not cover, the high 
angles of attack at high Mach numbers. The parameter space should be 
chosen as the physical flight envelope, otherwise the sampling rules will 

Fig. 11. Final DOEs for building the surrogate models, viewed in a 2D space.  
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fail and the new suggested samples will always locate around the edges 
of the (rectangular) domains since they are highly non-linear (but not 
realistic). This section will spell out how to cope with the domain val
idity issues. 

In this paper, the physical domain is defined by the flight mechanics 
specialist co-author, as the dashed line bounds shown in Fig. 7a for a 
two-dimensional parameter space. The sample points on the physical 
domain will be re-scaled to fit the new domain within the interval [-1,1] 
in both dimensions, see Fig. 7b. All samples which are left out of the 
physical domain will be excluded. During the surrogate modeling pro
cess, the design domain will firstly be re-scaled and exclude the 
parameter space which are left out of the physical domain, before 
building a surrogate model and iterate the sampling procedures. This 
will provide a better “coverage” of the area of the domains that are 
typically difficult to model (extreme flight conditions). 

6. Application to the collaborative aerodynamic surrogate 
modeling 

6.1. Aerodynamic model and handling quality tool descriptions 

The test case aircraft configuration is the AGILE reference aircraft, a 
regional jet-liner, which was analyzed and simulated using the AGILE 
MDA system, without experimental data being available. This aircraft 
does not correspond to an existing one, but it is in the range of an Airbus 
320 or Boeing 737. The reference aircraft is defined in CPACS [14] 
format. 

Some previous numerical simulations have been performed for this 
aircraft to test the data fusion tool [40], however the primary control 
surfaces were not modelled. In the test case of this paper, the aero
dynamic coefficients and derivatives for the longitudinal analysis are 
computed by L1 and L2 tools, including the elevator deflections. Those 
computational results are fused as an aerodynamic-database for the 

Fig. 12. Meta information of an example surrogate model available through the SMR. In the text, its is mentioned that this is a SM resulting from the test/ 
experiments. 
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longitudinal flight simulation using the flight simulator PHALANX, 
which will be described in the last part of this section. 

The L1 aerodynamic tool used for the data fusion workflow is the 
Vortex Lattice Method (VLM) code Tornado [45], which solves the 
linearized equations and considers the flow compressibility by taking 
the Prandtl-Glaurent rule [?]. The L2 aerodynamic tool used is the 
open-source code SU2 developed by the Stanford University, which is a 
fluid dynamics solver for solving the incompressible/compressible and 
inviscid/viscous flows. In this paper the SU2 is used as L2 level, namely, 
as an Euler equation solver for solving the inviscid compressible flows. 
Both of L1 and L2 tools have been fully adapted to the CPACS format, 
integrated onto RCE and are callable using Brics. Details can be found in 
Ref. [19]. 

As stated in Section 5.2, the initial DOEs from the CPACS files are 
uniformly distributed, then the valid domain is selected according to the 
physical flight envelope. Fig. 8 spells out the initial DOEs defined in the 
CPACS files by regular sampling, which consist of two sets of data from 
both the low-fidelity (L1) and the high-fidelity (L2) tools. The low- 
fidelity data are symmetrically distributed in the range of angle of 
attack [-5, 5], and sparser at higher angle of attack. This is because the 
L1 solver is based on linearized equations and its prediction is ques
tionable at higher angles of attack where nonlinear aerodynamic is 

dominant, so that the L1 sample locations at high angles of attack are 
trivial. The parameter space is three-dimensional: the angle of attack α, 
Mach number and the elevator deflection δ. The flight altitude is fixed at 
10 km and the sideslip angle is 0◦. Again, the initial DOEs which are 
defined/stored in the CPACS files exceed the bounds of the design 
domain, which means some of the computations (data) are “wasted” and 
will be ignored in the future fusion process. 

The CPACS file of the AGILE reference aircraft is converted into 
another type of XML definition geometry to be opened with the mesh 
generator software sumo [48]. A surface mesh is created automatically 
by sumo and it calls TetGen [49] to create an unstructured Euler mesh. 
The mesh used for this study has been chosen following a mesh sensi
tivity analysis performed in Ref. [50]. It is an unstructured mesh with 
5.9 million tetrahedrons, see Fig. 9a. 

In order to compute the elevator deflections, the SU2 built-in mesh 
deformation function SU2_DEF is used to deform the mesh around the 
elevator locations on the horizontal tail. A Free-form deformation (FFD) 
[51] box is defined at the elevator locations. With the hinge line location 
specified, the mesh in the FFD box can be deformed around the hinge 
line within a certain angle. To avoid high aspect ratio cells (or even 
negative volume) usually small deflection angle is preferred. According 
to authors experience, with a deflection angle less than 8◦ the deformed 

Fig. 13. SMR user interface for the “as a service” calculations with the surrogate model.  

Fig. 14. Angle of attack, elevator deflection and the throttle setting between the L1 data and the fused data in the horizontal trimmed flight at 10 km altitude, as a 
function of Mach number. 
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mesh can give well-converged solutions. In this paper we limit the 
deflection angle within 4◦ for the high speed flight at the high altitude. 

Tornado usually takes less than 1 min to make one single VLM 
analysis on a modern laptop, and the Euler solver takes around 4 min on 
a 32-cores work station for the reference aircraft. The computational 
cost ratio is at least 128 (provided that the SU2 parallel computing 
speed-up is linear). In this test case, L1 solver is chosen as low-fidelity 
data source and L2 solver is chosen as high-fidelity data source, so 
that the low-fidelity samples are very cheap to generate. Even the 
“expensive” samples are fast to obtain because of the relatively coarse 
mesh. The reason why the cheap samples are not generated at all loca
tions before co-Kriging begins is, there are not always tools to provide 
cheap samples as fast as the L1 tool (e.g. Tornado). For example, in the 
study of surrogate model generation for aero-data and aero-loads of X-31 
aircraft [24], the cheap samples are provided by the Euler solver (L2) 
and the expensive samples are provided by the RANS solver (L3) on the 
very fine grids, with computational time substantially increased. Similar 
case was also found in Ref. [28]. In these situations, it is not possible to 
generate even the low-fidelity samples at all locations in the design 
domain, because the computation cost for the low-fidelity samples is still 
not cheap. The generation of surrogate models also includes to populate 
the aerodynamic database over the whole flight envelope by the rela
tively “dense” low-fidelity data samples, as stated in Section 1. The 
method and technology described in this paper show a generic way of 

data fusion including sampling strategies, with the goal of data fusion by 
surrogate modeling with minimal computing efforts keeping in mind. 

The Performance, Handling Qualities and Loads Analysis Toolbox 
(PHALANX) is a selective fidelity flight mechanics modeling and anal
ysis tool. It is specifically designed to be used in a multidisciplinary 
design optimization framework [52] and to support the analysis of 
future novel aircraft designs [53,54]. PHALANX has the capability to 
automatically construct and analyze aircraft models within an MDO 
environment [55,56]. This makes it possible to analyze the flight me
chanics of many different variants of novel aircraft and configurations 
without a user in the loop. The aircraft models are nonlinear simulation 
models which serve as virtual flight test vehicles. An extensive analysis 
suite is available to evaluate aircraft performance characteristics, to 
perform handling assessments and to simulate loads resulting from both 
intentional manoeuvres and atmospheric conditions. 

6.2. Results 

The section shows the results obtained from the collaborative aero
dynamic data fusion framework, including the fused aerodynamic co
efficients, and flying qualities prediction from the fused data, and the 
application of SMR. 

6.2.1. Fused aerodynamic characteristics 
Fig. 10 shows the fused CL, CD and Cm aero-coefficient results of the 

AGILE reference aircraft model from the both fidelities with the elevator 
deflection δ = 0∘ over the flight envelope. The dot sign (⋅) represents the 
lo-fi samples and the cross sign (× ) represents the hi-fi samples. 
Fig. 10a,c and e show the response surfaces from the surrogate models as 
well as the sampled data over the flight envelope in the three- 
dimensional space. Fig. 10b,d and f represent the two-dimensional 
cuts for Mach number 0.5 (black), 0.8 (blue) and 0.9 (red) from the 
response surfaces, and their corresponding sampled data. Note that for 
M = 0.8 there are no hi-fi samples computed, instead there are hi-fi 
samples computed at M = 0.78, which are shown and marked in the 

Fig. 15. A step input on the elevator and its dynamic motion for a single Mach number M = 0.7.  

Table 2 
The characteristics of short period and phugoid modes comparison between L1 
and the fused data for Mach = 0.7 at altitude 10 km.  

- L1 Fused 

ωsp [rad/s]  2.7063 2.3476 
zsp [− ]  0.2319 0.2656 
ωph [rad/s]  0.0766 0.0632 
zph [− ]  0.0084 0.0591  
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figures. 
Fig. 10a and b shows the surrogate models (response surfaces) for CL. 

The co-kriging predicts the non-linear behaviors at higher angles of 
attack, as the hi-fi samples indicate. 

Fig. 10c and d shows the prediction for CD. The surrogate model 
predicts higher drag than the lo-fi samples show, since they cannot 
predict wave drag. It is a promising sign that the surrogate model picks 
up the compressible phenomena from the hi-fi samples. 

The surrogate model for Cm is shown in Fig. 10e and f. Note again 
that the surrogate model predicts the non-linear trends at high AoA, as 
expected. The coarse hi-fi samples correct the response surfaces 
significantly. 

The co-kriging predicts 238 × 2 cases in the physical domain which 
are selected from a rectangular domain with 324 × 2 cases with α from 
− 5◦ to 12.5◦, and Mach from 0.5 to 0.9 for elevator deflection δ = 0∘. 
The full surrogate prediction has 238 × 3 cases with elevator deflection 
from − 3◦ to +3◦. The computation time of the surrogate model is ≈ 0.05 
s on a desktop computer with four CPUs. The surrogate model is reliable 
with max(RMSE) = 0.048 < 5%. The final DOEs for building the sur
rogate models have been shown in Fig. 11, with 22 × 3 hi-fi samples and 
35 × 3 lo-fi samples for elevator deflection from − 3◦ to +3◦. It is viewed 
in a 2D space since for each elevator deflection, the samples are at the 
same AoA and Mach locations. 

The static coefficients are computed by L1 and L2 tools, and the 
database is generated by co-kriging, as stated above. However, the dy
namic stability derivatives are only computed based on L1 tool Tornado 
in order to reduce the computing efforts while demonstrating the ben
efits of the fused data. 

6.2.2. Example of surrogate model deployment with SMR 
Using the AGILE Data Fusion service a surrogate model has been 

derived that predicts the aerodynamic lift coefficient CL as a function of 
angle of attack (AoA) and Mach number. The meta-information of this 
surrogate model has been stored at the SMR, see Fig. 12. The meta- 
information includes a description of the purpose and the background 
of this surrogate model. Furthermore, the input and output variables are 
specified. For the input variables the allowable range is specified. For 
the output variables the verification result is given, as such providing 
information on the accuracy of the surrogate model. 

By setting the toggle in the bottom (see Fig. 12) the surrogate model 
can be invoked. Input values for AoA and Mach are provided. Under the 
hood, the SMR translates these values into a CPACS file, uploads the file 
to a shared location and sends a notification (e.g. by email) to the 
specialist that provides the surrogate model calculation service. The 
specialist downloads and reads the CPACS file with input values, per
forms the calculation and writes and uploads the output in the same 
CPACS format to the shared location. From here the SMR retrieves the 
output value and projects it in the output value field, see Fig. 13. 

6.2.3. Prediction of flying qualities from fused data 
The flight performance and flight dynamics are analyzed by PHA

LANX and compared between the fused data (by co-kriging from L1 and 
L2 tools) and the L1 data alone. PHALANX is written in Matlab and 
makes extensive use of the Simulink©platform, its toolboxes and the 
Simscape©environment for modeling and simulating physical systems. 
For the current test case, the equations of motion are modelled using 
multi-body dynamics. Thereby, the mass and inertia of the empty 
aircraft can be modelled separately from the payload and fuel. The 
aerodynamics are modelled using a database in the form of look-up ta
bles. These tables are a function of angle of attack, pitch rate and 
elevator deflection. The propulsion system (thrust and fuel consump
tion) is modelled based on engine performance maps which are a 
function of Mach number, altitude and throttle setting. The resulting 
nonlinear simulation model is used to assess the trim condition (e.g. the 
prediction of flight envelope limits and power required as function of 
Mach number) and a handling qualities assessment. The analysis results 

for various flight conditions and aircraft configurations are written in 
the CPACS file. 

Fig. 14a shows the angle of attack and elevator deflection in trimmed 
flight for the whole range of Mach numbers at 10 km altitude. One can 
clearly see that the elevator deflection results start to deviate at higher 
Mach numbers. This is caused by the differences in the static moment 
coefficient between the two databases. The required lift coefficient is 
relatively small and for the this range of lift coefficients, the fused 
database and L1 database give similar predictions for the angle of attack. 
As a consequence, the control authority of the elevator at high speed 
flight is better predicted by the fused database. 

Fig. 14b shows the throttle setting in trimmed flight as a function of 
Mach number. The fused data shows a shape which is to be expected. 
The L1 results are completely wrong at high Mach numbers since it is 
rather obvious that Tornado cannot predict CD properly at high Mach 
numbers due to the presence of the wave drag. 

For a single Mach number M = 0.70, a step input of 3◦ on the elevator 
is performed. Actuator dynamics are included in the simulation, see 
Fig. 15. As a result one can see the dynamic motion. Again there are 
differences between the L1 and the fused model. The first observation 
that can be made is a difference in control power. The results based on 
the fused data show a larger attitude change for the same elevator 
change. This is caused by the combination of a lower static moment 
coefficient and a slightly different control derivative. 

Table 2 shows the characteristics of the Short Period mode and the 
Phugoid mode comparison between L1 and the fused data. The Phugoid 
mode is largely determined by the lift over drag ratio for conventional 
aircraft. The main reason that the Phugoid frequency is reduced and the 
damping is increased is because the fused database with L2 correction 
taking the compressibility/nonlinearity into account, thus it has a 
decreased L/D compared to the L1-Tornado results. 

The short period depends to a large extent on the dynamic derivative 
Mq, which is identical for both databases since they are produced by L1 
tools for both. The small differences of the results are due to the dif
ferences between the static lift coefficient and the static moment 
coefficient. 

7. Conclusion and perspectives 

The paper has presented a collaborative and surrogate-based data 
fusion technology for generating the aerodynamic database for the 
handling qualities analysis. This data fusion technology is implemented 
in a collaborative MDA workflow, utilizing the existing tools within 
AGILE, establishing an iterative and collaborative, distributed process. 
The surrogate models which are built from the data fusion service can be 
stored and deployed for reuse with the Surrogate Model Repository 
(SMR). An example was given for running a surrogate model “as-a-ser
vice” through the SMR. A regional jet defined within AGILE project as a 
reference aircraft is used as the test case for the data fusion tool. A full 
spreadsheet of aerodynamic data computed either with different levels 
of fidelity or with only a low-fidelity tool has been derived using the data 
fusion package. It has been shown that the quality of the flight perfor
mance simulation was significantly improved especially for the tran
sonic region in which the low fidelity aerodynamic method is not 
reliable. The test case shows that by using a surrogate model based the 
data fusion technique, the fidelity of the analysis data can be signifi
cantly improved with minimal computing efforts. 

The data fusion process, integrated in the AGILE collaborative MDA 
chain with different tools or modules interconnected via Brics and RCE, 
can be used as a well-established and ready-to-use service to be applied 
to any other aircraft for generation of aerodynamic databases and flying 
qualities analyses, in order to reduce the computational time and in
crease the overall prediction accuracy. 
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