ALVARORODRIGUEZGARCIA

COMPUTATIONAL DESIGN METHOD based on **MULTIDISCIPLINARY DESIGN** optimization and optioneering techniques for **ENERGY EFFICIENCY AND COST EFFECTIVENESS**

INTRODUCTION

PROBLEMDEFINITION

(Left) Pollution in Mexico City, (Right) Resources shortage in La Paz Potosí Bolivia

PROBLEM DEFINITION

"ARCHITECTURE IS THE WILL OF AN EPOCH TRANSLATED INTO SPACE " - Mies van der Rohe

RESEARCHQUESTIONS

How architects and designers can benefit from the use **computational design techniques** to integrate specific performative aspects in an energy and cost efficient conceptual design for complex buildings such as Sports halls.

- How can computer aided conceptual design can support the generation of \bullet geometric design alternatives?
- To what extend can computer aided design support the designers learning process and be easily understandable and interactive for the future users?
- Can an automated performance-based computational design method be \bullet able to achieve an optimal balance between energy regulations, sustainable rankings, restricted budgets and the return of investments?

METHODOLOGY

RESEARCH

RESEARCH BY DESIGN

1. Current practice

2. Performance based design

3.Sports venues design

4.Optimization & design exploration

5. Workflow definition

6.Case study

VALIDATION

1 1

7. Workflow comparison 8. Users validation

BACKGROUNDRESEARCH

TRADITIONAL WORKFLOW

JULIO ENDARA MASTER STUDENT TUDELFT MASTER IN ARCHITECTURE

TUDelft

1. What is your background?

I am Julio Endara, a 30 year old student at TU Delft-Faculty of Architecture and the Built Environment. I am doing my master on the Architecture track and I am specializing on Dwelling. Before I came here I worked for 5 years at my home country (Ecuador)

2. How do you use the computer for design purposes?

I use the computer for most of the process. After I pass the sketching stage I rely on the computer for all the design work. I first create 2D basic drawings and after that I simultaneously combine the 2D and 3D explorations. When I finish my design drawings I make a post production process for my final product.

3. What kind of software do you normally use for your projects?

OFFICE(Basic tools)	⊠3D Modelling	□Structural (Specify)
⊠CAD	⊠3D Visualization /VR	Climate/Energy(Specify)
□BIM	□3D Parametric Modelling	□Cost estimation(Specify)
		□Optimization(Specify)

- 4. How do you deal with sustainability, energy and costs aspects, at which stage of the design process, do you implement these considerations, please clarify?
- Conceptual (Early)

Construction documentation(Late) ⊠Development

5. What do you think about Performance -based architecture (Quantitative /numerical assessment of a design) and Multidisciplinary design optimization desian strategies.?

I feel that Performance-based architecture is an essential need for the future of the profession. Its really useful to rely on numerical data to organize your work an to have a solid backup for the decisions you take on the design and construction process. I also feel that Multidisciplinary design is efficient and should be more applied, specially on big offices.

6. How do you see the future of the architect in a technological era?

I wish that in the future I could learn more about these new techniques. At the moment I don't use them, but it is definitely imperative for the Architect to get involved with the technological solutions as the world in every sense is getting more involved with it. My plans are to learn about numerical assessment methods and programs and implement that knowledge into the development of myself as an architect.

SEBASTIANNAVARRO ARCHITECT AND CEO PARELI ON DE AROUITECTURA

PABELLON de groui ecturo

1. What is your background?

In the office we make a lit of bit of all, since the conceptual to the construction with all the details, included furniture

2. How do you use the computer for design purposes?

At the begin we use computer to general investigation like context, orientation, and some simple things, then the process starts with put our ideas in a model to look the 3d model, and the we devolp the idea in SketchUp or AutoCad to advance with the function, it's a two ways process.

Finally we use the model to make renders and a presentation, and then if the idea its approved we make a Cost estimation in excel or neodata

3. What kind of software do you normally use for your projects?

OFFICE(Basic tools)	⊠3D Modelling	□Structural (Specify)
⊠CAD	□3D Visualization /VR	□Climate/Energy(Specify)
BIM	□3D Parametric Modelling	⊠Cost estimation(Specify)NEODATA
		Optimization(Specify)

4. How do you deal with sustainability, energy and costs aspects, at which stage of the design process, do you implement these considerations, please clarify?

Conceptual (Early) Development ⊠Construction documentation((ate)

5. What do you think about Performance -based architecture (Quantitative /numerical assessment of a design) and Multidisciplinary design optimization design strategies.?

It's an interesting idea but very complex for us, we really don't know first how to use it, and second the paper of the architect behind of this technology, although we know it's the future

We think that it's a very useful tool for the architects if they really know how to use it

6. How do you see the future of the architect in a technological era?

The future of the architecture will be different in several things, first in the materials, that don't mean that the stone or wood won't be used any more, but will appear new elements to work, like already exist different types of concrete with nanotechnology o different chemical combinations.

In the process of design we know we aren't actualized in the BIM technology and we don't use Revit or other programs, but the environment with other firms its complicate

And finally with the process of design we think that the architects will have a lot of tools, more easily to work and make changes, were orientation, structure, cost will be integrated, but like a tool, not to replace the architect role, maybe in little constructions will be more easy to supplant, but not totally

LEO STUCKARDT EXPERIMENTAL TECHNOLOGIES RESEARCH UNIT MVRDV

1. What is your background?

OFFICE(Basic tools)	D
⊠CAD	D

⊠BIM

Modelling in particular).

How do you deal with sustainability, energy and costs aspects, at which stage of the design process, do you implement these considerations? please clarify.

Conceptual (Early)

5. What do you think about Performance -based architecture (Quantitative /numerical assessment of a design) and Multidisciplinary design optimization desian strategies.?

up rather than narrowing it down. computed, optimum state. even building envelopes.

Bsc. and Msc. Arch. from TU Berlin and TU Delft. I started with experimental computational design during my studies with The Why Factory at TU Delft.

2. How do you use the computer for design purposes?

Digital tools are part of the design process starting from the earliest design stages. From testing ideas in Photoshop and 3d modeling software to quantitative design evaluation (Grasshopper/Dynamo/Excel) and prototyping (CAM).

3. What kind of software do you normally use for your projects?

3D Modelling	□Structural (Specify)
13D Visualization /VR	⊠Climate/Energy: <u>Grasshopper Ladybug/Honeybee</u>
3D Parametric Modelling	⊠Cost estimation: <u>Grasshopper/Dynamo + Excel</u>
	©Optimization: <u>Genetic Algorithms (GH).</u> experimenting with Neural Network architectures

Although the software listed above covers most requirements for regular architectural and urban designs, some projects offer the opportunity to add tools from other industries or develop custom plug-ins and scripts (within BIM / 3D

The use of game engines (Unity, Unreal), video editing (After Effects, Premiere) and simulation software (Houdini) can help to develop a compelling narrative and develop a project from different angles.

⊠Development

Construction documentation(Late)

Clearly all of those aspects need to be considered from early sketch design onwards. However their relevance in each of the design phases depends on so many project characteristics (client, context, competition/commission/...) that it is difficult to answer the question in such a broad way.

In general I am skeptical of the notion of optimization and much more interested in the use of algorithms to create design variations, effectively opening design space

In addition the term optimization suggests that certain solutions are superior to other design variations although even multi-objective optimization algorithms can only optimize for a limited range of (usually) geometric constraints. The subjective definition of those constraints (it is still a designer, who defines the inputs of optimization algorithms) gets obscured behind the seeming neutrality of a

Having said that we quantify every design project in various ways and have used Genetic Algorithms to improve façade/cantilever configurations and occasionally

PERFORMANCE BASED DESIGN

\$

PERFORMANCE BASED DESIGN

STRUCTURE

PERFORMANCE BASED DESIGN

SO THEY NEED TO BE DESIGNED IN AN EFFICENT WAY AND THIS REPRESENTS A CHALLENGE

STRUCTURE

20% CONSTRUCTION COSTS

DESIGNOPTIMIZATION

AEROSPACE

TARGET MASS

SIMULATION-BASEDOPTIMIZATION

PRE-PROCESSING

1. PRE-PROCESSING 2. PROCESSING 3. POST-PROCESS

ALGORITHM DESIGN

+Teabag + a Cup of Boiling Water + Sugar (Optional) = a Cup of Tea

PRE-PROCESSING

1. PRE-PROCESSING

EVOLUTIONARY ALGORITHMS

Number of generations

PROCESSING

. PRE-PROCESSING

2. PROCESSING

3. POST-PROCESSING

PROCESSING

. PRE-PROCESSING

2. PROCESSING

3. POST-PROCESSING

PROCESSING

. PRE-PROCESSING

2. PROCESSING

3. POST-PROCESSING

TYPESOFOPTIMIZATION

1. PRE-PROCESSING 3. POST-PROCESSING 3. POST-PROCESSING

	Single objective	Multiple objectives
Single discipline		
Multiple disciplines		

TYPESOFOPTIMIZATION

1. PRE-PROCESSING 3. POST-PROCESSING 3. POST-PROCESSING

	Multiple objectives

MULTI-OBJECTIVEOPTIMIZATION

2. PROCESSING

NON DOMINATED PARETO FRONT

POST-PROCESSING

```
1. PRE-PROCESSING 2. PROCESSING 3. POST-PROCESSING
```


POST-PROCESSING

QUESTIONNAIRE (PERFORMANCE-BASED DESIGN SPECIALIST) JAN DIERCK X

Foster + Partners

FOSTER AND PARTNERS - SPECIAL MODELLING GROUP

1. What is your background?

I did a double degree in civil engineering and architecture. I liked this because it combines the aesthetics of design with the efficiency of engineering. After that I did a year out in RWTH in Germany where I became very accustomed with compute aided tools and digital manufacturing. This lead to my postgraduate at the Bartlett in London which was very design oriented but backed by computational analysis.

2. How do you use Computational design in your office?

We use computational design for almost everything. The design philosophy of Foster + Partners is one of integrated design, where things don't only look beautiful but also are performative. We use a lot of solar, shading, view analysis to optimize facades which usually directly influence parametrically designed options.

3. Which are the most common aspects or disciplines that you normally apply performance simulations and optimization strategies?

The two most common aspects are structural efficiency and energy efficiency. We look at making the best possible use out of the materials we choose and vary geometry and buildup to make this possible

4. What kind of software do you use for energy and cost simulation and which one for optimization purposes?

We use a multitude of tools to achieve an optimal design and are always looking to expand and improve our knowledge. Our team uses a lot of Grasshopper and Dynamo which we usually auament with our own custom tools.

5. Why do you think Performance-based generative design (Quantitative /numerical assessment of a design) and design optimization procedures are still a not that common practice in most of the architectural firms?

Architecture and especially construction is a slow-moving field, not adjusting as guick as product and industrial design. Although many of the new generation of architects has some knowledge of performance-based design, it will take some time for this to become mainstream. For now it is limited to very large projects in big practices, where there is scope to hire specialist, and budget to look into optimization

6. How do you see the future of the architect from a technological point of view?

I feel an architect will increasingly be enabled to make informed decisions to design in a more performative way. Creativity will always come from the human mind, but computers can assist a great deal in helping us to see things from a different perspective and open up solutions we might not have thought of ourselves

WALTER WOODINGTON SENIOR ENGINEER

Thornton

Tomasetti

1. What is your background?

BS-Civil Engineering (concentration on structures) MS-Building Engineering (TU Delft, interest in special structures and façade structures)

Professional-Glass (stairs, structural fins, facades). Cable and membranes (shading structures, bicycle wheel stadia) Grid shells(steel, domes and shells, small and large). EFTE cushion facades and structures. Façade engineering (mullions, system selection, glass sizing). Forensic (Glass breakages). Field inspections (anchorages, splices, etc.) Pneumatic/inflatable structures.

2. How do you use Computational design in your office?

The office is quite large an uses computational design to varying degrees between groups and projects. Generally: Parametric design is used to aid the architect in formal and structural exploration as well as a way to produce drawings, this involves vary many computer programs (grasshopper, dynamo, Catia, excel and others) At the early stages of design computational design is used as a way to open up formal/geometric options to architect, at mid stages these tools are used to evaluate design options and narrow the design space, at later stages these tools are used to adjust and improve the design, towards the end of a project these tools are used to finalize engineering design and eventually produce drawings.

3. Which are the most common aspects or disciplines that you normally apply performance simulations and optimization?

These concepts are used in very many different dearees based on topic. For thermal and energy aspects the results of simulations are used more generally to assess massing and façade properties. These optimizations can lead to glass frit pattern variation to reduce solar heat gain or glare. Commonly optimization is done for lateral design of tall buildings, for example setting drift targets can lead to the design of a core to the level of wall thickness, outrigger location, and guidance on core penetration percentages. For grid shells, tensile structures, and other structurally driven forms simulation/optimization could be called "form finding" which we apply at very early stages of a project to set certain criteria (such as rise/span ratio and boundary conditions) which must be architecturally suitable but however we also perform this for inflatable structures and bending structures(see images above)

4. What kind of software do you use for structural design, energy and costs simulations and which one for optimization procedures?

MS Excel works very well for everything, tying into it with python and other scripts allows us to impose optimization and other techniques into most other software. Within my group in the office we typically use grasshopper to narrow down formal aspects with architects early on. Then we move on to SOFiSTiK for more complicated form finding/force finding, and preliminary sizing, global buckling checks and eigen mode analysis are also checked here for confirmation with the wind consultant, to understand the structure from a stiffness standpoint, from there we move on to SAP EASY, Strand7 and other software to validate our previous analysis, check against code, and to proceed with detail design.

QUESTIONNAIRE (TECHNOLOGY DEVELOPER) MINGRO PENG COLIBRI & DESIGNEXPLORER DEVELOPER

1. What is your background?

environmental building design

2. Which kind of algorithms do you normally use for optimization problems related to Buildings design?

4. What kind of software do you use for energy and cost simulation and which one for optimization purposes?

For the energy, I use EnergyPlus along with Honeybee and OpenStudio. I don't do any cost simulation, that is usually done by our façade team.

sensitivity test as I mentioned above.

5. Why do you think Performance-based generative design (Quantitative /numerical assessment of a design) and design optimization procedures are still a not that common practice in most of the architectural firms?

Well, first I think the performance based design is not common yet, but it is moving toward it. Second, what we can say about performance-based design is mainly focusing on daylight and energy, which are two aspects currently feasible to do alone with architecture design process. Designing a building is not only about daylight and energy, there are more others consideration that cannot be easily quantified. Just as same as "AI" world, AI can do everything except the art, which is the part that still require human to be involved. Third, even though we want to generate a building only focusing on energy, there are still too many parameters to test without cloud computing ability. But this one will be generally available in next five years, I believe

6. What do you think about the phrase "the designer as a tool builder"

adaptive.

7. Do you think that in a near future Artificial intelligence and Machine learning will replace the designers or trigger a jobless future?

Mentioned above in 5.

VELOP

DE

HNOLOGY

I studied Architecture in Bachelor and Master, and my second Master is

I don't use any algorithm specifically in my daily work. What I do the most is parameter sensitivity test, and this is what Colibri and Design Explorer mainly do. They are designed to assist the design process, instead of providing the answer.

3. Which are the most common aspects or disciplines that you apply performance simulations and optimization procedures?

I use annual daylight simulation (sometime use point-in-time daylight simulation when designer is hard to understand the annual matric), point-in-time glare study, along with cooling and heating peak load for hvac sizing.

I wouldn't say I do any optimization work, most of my work is exploring study and

I totally agree with it, or "the designer should be a tool builder", which I believe is similar to "everyone should learn a computer langrage". It is a different thinking process than "doing one thing", instead, it requires designer to abstract the common rules from "dong one thing" and make this process or "tool" reusable or

POST-PROCESSING

WORKFLOW DEFINITION

CONVENTIONAL WORKFLOWS

CONVENTIONAL WORKFLOWS

CONVENTIONAL WORKFLOWS

CASESTUDY

CONTEXT

CUITLÁHUAC PARK, IZTAPALAPA, MEXICO CITY

CONTEXT

General

MEX_MEXICO_CITY_IWEC	
Source	IWEC
Country	MEXICO
Filename	MEX_MEXICO CITY_IWEC.epw
Details	
Latitude (*)	19.43
Longitude (*)	-99.06
WMO station identifier	766790
ASHRAE climate zone	3B
Summer	
Summer start month	apr
Summer end month	jun
Extreme hot week, starting	may-27
Typical hot week, starting	may-20
Cooling degree-days (Base 10°C) (Degree days	
Winter	
Winter start month	oct
Winter end month	dec
Extreme cold week, starting	dec-3
Typical cold week, starting	nov-12
Heating degree-days (Base 18°C) (Degree days	

REQUIREMENTS

Floorplans

Isometric without spectators space Iso

Situation 1 (Without spectators)

Area : 1,536 m2

Volume : 16,896 m3

Program: -3 Basketball courts -2 Volleyball courts

Situation 2 (With possible spectators)

Area: 2,640 m2

Volume: 44,880 m3

- -1 Soccer space
- -1 Circulation space
- -1 Steps space

Isometric with possible spectators space

CLIMATE ANALYSIS

DESIGNOBJECTIVES

DESIGNOBJECTIVES

4. Improve Daylight quality

DESIGN VARIABLES

HVAC systems

Lighting systems

DESIGN VARIABLES

SHAPE	STRUCTURE	ENVELOPE
Building depth	Beam depth	WWR Ration (walls)
Building width	Column depth	WWR Ration (Roof)
Building height	Chord diameter	Opaque material - wall
Height of the peak	Chord thickness	Opaque material - roof
Position of the peak	Web diameter	Window material
Lateral connection thickness	Web thickness	Orientation
Divisions of the beam	Lateral connection diameter	Number of sshadings
	Divisions of the colum	_ _
	Number of frames	

DESIGNSTRATEGY

SEQUENTIAL

STAGE 1: MASSING

STAGE 2: STRUCTURE STAGE 3: ENVELOPE

DETAILED COSTS SIMULATIONS / ESTIMATIONS

STAGE 4: SYSTEMS

INTEGRATED

Size

Shape Structural performance Passive design implementations Active design implementations

TOOLSCOMBINATION

TOOLS COMBINATION

DESIGN EXPLORATION

Parameters

COOLING

LIGHTING

EQUIPMENT

HEATING

ECT EXPANSION A/C	\$
CHILLER	\$\$
ER HEATING (COP .9)	\$
IC BASEBOARD (COP 1)	\$\$
OURCE HEAT PUMP (COP 4)	\$\$\$
UAL SWITCH \$	
TE SWITCH OFF \$\$	

\$\$\$

PARAMETRIC SIMULATION MODELING

×	×	×	×
×	×	×	×
×	×	×	×
*	*	×	×
×	×	×	×
×	×	×	×
×	×	×	×

PARAMETRIC SIMULATION MODELING

CALIBRATION/INTERCOMPARISON

	HONEYBEE MODEL	DESIGN BUILDER MODEL
General		
Location (weather file)	Mexico City.iwec	Mexico City.iwec
Orientation	N-S	N-S
Geometry		
Height	11m	11m
Widht	36m	36m
Depth	48m	48m
WWR Skylight	10%	10%
	1078	40%
	4078	4078
Materials		
FIOOr	Soummins. 200mm Heavy weight concrete	Soumm ins. 200mm Heavy weight concrete
	100MM lightweight concrete, f05 ceiling air	100MM lightweight concrete, f05 ceiling air
Roof	space resistance , f16 acoustic tile	space resistance , f16 acoustic tile
Walls	100mm concrete 1/2" Gypsum	100mm concrete 1/2" Gypsum
Windows	3mm clear glas-13mm ai gap r-3mm clear glass	3mm clear glas-13mm ai gap r-3mm clear glass
Activity		
Occupancy schedule	6am-9pm (Monday-Sunday)	6am-9pm (Monday-Sunday)
Occupancy density	50m2/person	.02ppl/m2
Heating setpoint	28°C	28°C
Heating setback	8°C	8°C
Cooling setpoint	22°C	22°C
Cooling setback	28°C	28°C
Metabolic rate	120W	120W
Equipment	2W/m2	2W/m2
Lighting density	11W/m2	11W/m2
	1100/11/2	1107/112
Infriltration rate	000257 m2/c/m2	085 A ch
	.000237 1113/3/1112	.000 ACIT
	Aiwdys 011	Aiwdys off
Mech veni. Per person	.00132411375	15.24 is/person
HVAC System	Ideal Loads-Ivel hatural gas/electricity from grid	ideal Loads-ivel hatural gas/electricity from grid
Supply temperatures	Heating 35°C / Cooling 12°C	Heating 35°C / Cooling 12°C
Heat recovery	Yes (./)	Yes (./)
Economizer	None	None
Results		
Area	1728m2	1728m2
Volume	18816m3	19008
Wall area	3060m2	3573m2
Window area	395.52m2	450m2
Annual Cooling demand	42.70 kWh/year	45.09 kWh/year
Annual Heating demand	0.011 kWh/year	0.015 kWh/year
Annual Lightina demand	64.24 kWh/vear	60.22 kWh/vear
Total Annual energy		
demand	102.935 kWh/m2/year	106.395 kWh/m2/year

EUI

102.93 kWh/m2/y 106.39 kWh/m2/y

SEQUENTIAL STRATEGY

STAGE	NUMBER OF PARAMETERS	NUMBER OF GENERATIONS	DESIGN SPACE	DOMINATED / NON DOMINATED	COMPUTATIONAL TI
	5 Parameters	6 Generations 100 Population	313-576	115 Non-dominated 73 Dominated	15 Minutes

IME

● 2D ○ 3D 🔀 🗶

Attributes

Building Widht [m] : 35.0 Building Depth [m] : 66.0 Building height [m] : 12.0 Height of the Peak (m] : 2.5 Poetition of Peak : 2.0 Construction Costs [\$] : 1965600.0 Energy Costs [\$] : 2555200 Energy use [kwh] : 273349.989066 EUI [kWhim2/y] : 125.160251 Arrea [m] : 1244 Volume [m3] : 32802 Rating : 0

Sort by: Height of the Peak [m] 🔻 0

OO v8,v9,v10,v11,v12,13

STAGE	NUMBER OF PARAMETERS	NUMBER OF GENERATIONS	DESIGN SPACE	DOMINATED / NON DOMINATED	COMPUTATIONAL TIN
	13 Parameters	50 Generations 100 Population	3200 from 118125000	140 Non-dominated 60 Dominated	2.5 Hours

٨E

® 2D © 3D 5€ ¥ ©★★★★★

Attributes

Hpeak[m] : 3.0 Pospeak : 2.0 Frames : 8.0 Divbeam : 16.0 Wthpiliar : 2.0 Dibeam[m] : 2.0 ChordDm[mm] : 12.0 ChordThick[mm] : 4.0 Webthick[mm] : 8.0 Connethick[mm] : 8.0 StructureCett[s] : 1672760 Disp[m] : 0.040746 Rating : 0

			-
	the second second		
		T maining	
- Marine	AND ALL ADDRESS	a hitse	LT. ANTON

	and the state	9	
		Contraction and	
1	7	1	
	the states		and the second s

		-•3•••

STAGE	NUMBER OF PARAMETERS	NUMBER OF GENERATIONS	DESIGN SPACE	DOMINATED / NON DOMINATED	COMPUTATIONAL T
e e e e e e e e e e e e e e e e e e e	10 Parameters	7 Generations 100 Population	900 from 2774800	60 Non-dominated 64 Dominated	1.5 Days

ΓIME

EUI [kWh/m2/year]

® 2D © 3D 🚼 🗙 ©★★★★★

Attributes

WWRRoof[%]: 1.0 WWREat[%]: 0.0 WWR South[%]: 0.0 WWRNoth[%]: 0.0 WWRNoth[%]: 0.0 MatRoof: 0.0 MatRwills: 1.0 MatWills: 1.0 Orientation[]: 0.0 #\$hades: 2.0 Construction costs [§]: 6911351.0 Energy Costs An [§Y]: 524470.0 Total LCC Energy Costs [§]: 15734100.0 Total LCC Cenergy Costs [§]: 15734100.0 Total LLC Costs [§]: 22645451.0 EUI [KWIm2Y]: 160.130474 UDL[%]: 60.441558 Rating: 5

			 -			
- 1		· +	10.00	3		
	9 G	•	9	1	1 + + +	

				١.
 101				1.
	CEC (Contract)	D T THINK		
1. 1000-		interior in the second	The second	

STAGE	NUMBER OF PARAMETERS	NUMBER OF GENERATIONS	REDUCTION	DOMINATED / NON DOMINATED	COMPUTATIONAL TI
	3 Parameters	1 Generations 100 Population	24-24	23 Non-dominated 106 Dominated	5 Hours

IME

🖲 2D 🛛 3D 👯 🗙 **◎★★★★★**

Attributes

Cooling System : 1.0 Heating System : 0.0 Lighting System : 1.0 Const Costs [\$] : 1860880.0 Energy Costs Annual [\$/y] : 242316.0 Total LLC Energy Costs [\$]: 7269480.0 Total LCC Costs [\$] : 9130360 EUI [kWh/m2/y] : 74 Rating : 5

sts 00.

Total L

24]

FINAL DESIGN

INTEGRATED STRATEGY

INTEGRATED STRATEGY

INTEGRATED STRATEGY

INTEGRATED STRATEGY

STAGE	NUMBER OF PARAMETERS	NUMBER OF GENERATIONS	DESIGN SPACE	DOMINATED / NON DOMINATED	COMPUTATIONAL TIME
	18 Parameters	10 Generations 100 Population	1200 from 97820835840000	88 Non-dominated 1 Dominated	2.5 Days

INTEGRATED STRATEGY

EUI [kWh/m2/year]

INTEGRATED STRATEGY

🖲 2D 🛛 3D 🚼 🗶 0*****

Attributes

Width[m]: 41 Depth[m] : 56 Height[m] : 12.0 PeakHeight : 2.5 PeakPos : 8 #Frames : 10.0 Divbeam : 20.0 DepthBeam[m]: 2.7 WWRRoof: 1.0 WWRWalls : 0 MatRoof : 1 MatWalls : 2.0 Matwin : 1.0 Orient[°] : 180.0 #Shades : 1 HVAC Syst: 1 LightingSyst : 3.0 ConstCosts[\$]: 19348645 EnergyCosts [\$/y] : 174902 EUI[kWh/m2/y] : 46 UDLI[%]: 60.323232 SalePrice[\$] : 25153238 Rating : 5

STRATEGIES COMPARISON

STAGE	NUMBER OF PARAMETERS	NUMBER OF GENERATIONS	DESIGN SPACE	DOMINATED / NON DOMINATED	COMPUTATION
	10 Parameters	7 Generations 100 Population	313-576	72 Non-dominated 245 Dominated	1.5 Hours
	13 Parameters	50 Generations 100 Population	3200 from 118125000	140 Non-dominated 60 Dominated	2.5 Hours
o contraction of the second se	10 Parameters	7 Generations 100 Population	900 from 277544800	60 Non-dominated 64 Dominated	1.5 Days
	3 Parameters	1 Generations 100 Population	24-24	23 Non-dominated 106 Dominated	5 Hours

STAGE	NUMBER OF PARAMETERS	NUMBER OF GENERATIONS	DESIGN SPACE	DOMINATED / NON DOMINATED	COMPUTATION
	18 Parameters	10 Generations 100 Population	1200 from 97820835840000	88 Non-dominated 1 Dominated	2.5 Day

AL TIME

ys

DANIEL LAREDO ARCHITECT	THIS SHAPE FITS THE STRUCTURE I CHOSE.	I WAS LOOKING FOR A STRUCTURE WITH THE LOWEST AMOUNT POSSIBLE OF SUPPORTS.	THE BUILDING WILL BE MOSTLY USED ON DAY TIME, SO IT TAKE ADVAN- TAGE OF SOLAR ENERGY AND SUN LIGHT.	LOW COST.	THIS SYSTEM COMBINES FUNCTION, ENERGY EFFICIENCY AND THE LOCATION OF THE BUILDING.
ISRAEL HERNÁNDEZ ARCHITECT	SHAPE WITH AVERAGE VOLUME	AVERAGE COST OF STRUCTURE WITH THE FIRST SHAPE.	LOWER COST OF ENERGY FOR ORIENTATION	ONLY NEED LIGHTING SYSTEM, AND COOLLING SYSTEM,	THE MOST SIMILAR BETWEEN SHAPE AND STRUCTURE WITH A AVERAGE ENERGY COST.
JAYANTI JUÁREZ ARCHITECT	I WAS LOOKING A TALL PEAK	I WAS LOOKING FOR FEW FRAMES AND DIVISION OF THE BEAMS	C IPREFER AN OPTION WITH LITTLE USE OF ENERGY	I DON'T UNDERSTAND IF THE SYSTEMS ARE NATURAL, IF THEY'RE NOT I PREFER USE COOLING SYSTEM THAN HEATING AND LIGHTING SYSTEM	I TRIED TO COMBINE ALL THE ASPECTS BEFORE WRITTEN
MONSERRAT MARTÍNEZ ARCHITECT	BY FORM H	EIGHT AND NUMBER OF FRAMES	ORIENTATION AND LOWER USE OF ENERGY	LOW USE OF COOLING AND LIGHTING	COMBINES ALL THE ASPECTS
SELENE GUERRA ARCHITECTURE STUDENT	IRREGULAR FORM	Low Cost	LOW ENERGY CONSUMPTION	LOW ENERGY COST	CONSUMPTION
SEBASTIÁN NAVARRO ARCHITECT	BY FORM	LOW COST	ORIENTATION AND LOW COST	ONLY USE OF COOLING AND LIGHTING	I CHOSE FOR THE LIGHTING, STRUCTURE, SHAPE AND HEIGHT.
HÉCTOR FUENTES ARCHITECT	BY FORM	STRUCTURE ACCORDING TO FORM	LOWER ENERGY USE	Low COST	LOW COST

USERS QUESTIONNAIRE Name: Israel Hernández Pérez Background: Architect 1. How complex do you consider the interface?			USERS QUESTIONNAIRE Name: Jayanti Juárez Barragán Background: Architect			USERSQUESTIC Name: Sebastian Navar	
			1. How complex do	you consider the interface	ə?	Background: Architect	
□Easy	⊠Medium	□High	□Easy	X Medium	□High		
2. Which stage wa	ıs more helpful when talking	about decision support?	2. Which stage was r	nore helpful when talking	about decision support?		
□Stage 1_Massing			□Stage 1_Massing			2. Which stage was	
⊠Stage 2_Structure	9		Stage 2_Structure			□Stage 1_Massing	
□Stage 3_Envelope	е		□Stage 3_Envelope			⊠Stage 2_Structure	
□Stage 4_Systems			□Stage 4_Systems			⊠Stage 3_Envelope	
3. Which stage wa	is more complicated to und	lerstand or to deal with it?	3. Which stage was r	nore complicated to und	erstand or to deal with it?	□Stage 4_Systems	
□Stage 1_Massing			□Stage 1_Massing				
□Stage 2_Structure	9		□Stage 2_Structure			3. Which stage was	
⊠Stage 3_Envelope	e		⊠Stage 3_Envelope			□Stage 1_Massing	
□Stage 4_Systems			□Stage 4_Systems			□Stage 2_Structure	
						□Stage 3_Envelope	
4. In a scale of 1 to 5 how did each section helped you to take a design decision?			4. In a scale of 1 to 5 decision?	how did each section he	elped you to take a design	⊠Stage 4_Systems	
Stage 1_Massing:			Stage 1_Massing:			4. In a scale of 1 to	
Stage 2_Structure:			Stage 2_Structure:			decision?	
Stage 3_Envelope:			Stage 3_Envelope:			Stage 1_Massing:	
Stage 4_Systems:			Stage 4_Systems:			Stage 2_Structure:	
5 When comparing the two different approaches (Stages / Complete) which		hes (Stages / Complete) which				Stage 3_Envelope:	
one do you prefer?			5. When comparing the two different approaches (Stages / Complete) which one do you prefer?			Stage 4_Systems:	
Stage division □ Complete ⊠ 6. For which phase helpful	e of the project would you th	hink this strategy would be more	Stage division □ Complete ⊠ 6. For which phase o helpful	f the project would you th	nink this strategy would be more	5. When comparing one do you prefe	
⊠Conceptual	⊔Developmer	IT Documentation	□Conceptual	X Development		Stage division ⊠	
7. What else would -It would be nic	d you also include inside the e to have the possibility to s	e interface? ee the volume (m3)	7. What else would y in the parameters	ou also include inside the table	e interface? More specifications	6. For which phase helpful	

o you consider the interface?

⊠Medium

□High

s more helpful when talking about decision support?

s more complicated to understand or to deal with it?

5 how did each section helped you to take a design

 $\Box \Box \Box \boxtimes \Box$

- $\Box \Box \Box \Box \Box \boxtimes$
- $\Box \Box \Box \Box \Box \boxtimes$
- $\Box \Box \boxtimes \Box \Box$

ng the two different approaches (Stages / Complete) which fer?

Complete \Box

of the project would you think this strategy would be more

USEFULNESS SCALE 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 Stage 1: Massing Stage 2: Structure Stage 3: Envelope Stage 4: Systems

WORKFLOW COMPLEXITY

2.5

2

1.5

1

0.5

PROJECT PHASE APPLICATION

SEQUENTIAL VS INTEGRATED

DISCUSSION & CONCLUSIONS

CONCLUSIONS

1. There is no one **ideal optimization** workflow (flexibility , available data & company)

- 2. The most critical part of the entire process is the beginning, designing the problem defining what will change or not, besides clarifying the specific needs and having the right information at the right **time** is a fundamental consideration.
- 3. It is necessary to work together with the specialists of the diverse fields to define the different parametric models and set up the **performance** simulations.
- 4. Computers can effectively work as design decision supporters and as educational tools for architects and designers. Specifically when talking about cost and energy, it can help in finding good **balanced solutions** based on **performance** analysis in combination with **aesthetic** aspects. In this process, it is crucial also to involve the designers intuition and expertise.
- 5. Technology is already there we just only need to change and improve the way we use it and apply it.

