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Abstract

This master thesis is concerned with Large Deviation Theory in combination with
Lagrangian and Hamiltonian dynamics. In particular, the Large Deviation be-
haviour of the empirical distribution of n independent two-state continuous-time
Markov processes is studied. We start by looking at the general theory of Large
Deviations in both the finite dimensional case as well as for infinite dimensional
stochastic processes. After this, the connection is shown of Large Deviation The-
ory with Lagrangian and Hamiltonian dynamics. The Hamiltonian of the empiri-
cal distribution of n independent two-state Markov processes is derived and using
this, via the Hamilton equations, the dynamics of this process are derived. That
is, the most likely path that is taken when in time T we force the path to start in
state a and end in state b. The main goal of this thesis is to find out more about
the dynamics of this process (behaviour of the trajectories) and to derive an explicit
equation for the so-called Action integral. We want to compute the Action for the
general case. That is, the case in which the rate going from state one to state two
can differ from the rate going from state two to state one. Once the Action integral
is computed we look at the asymptotic behaviour of this Action integral. This is
important as it says something about the probability of some trajectories occurring
for T an extreme. We look at the asymptotics for both T → 0 and the T → ∞.
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General Introduction

The great mathematician Jacob Bernoulli showed around 1689 that them mean of independent and
identically distributed random variables converges to the expected value. Sometimes however, the
unexpected happens. For finite sample size n, the mean can substantially deviate from the expecta-
tion, of course with small probability. This is where the theory of Large Deviations comes in. Simply
put, Large Deviation Theory deals with such rare events. It is an important and active field in proba-
bility theory with applications in many different areas. Examples of such deviations of the mean from
the expectation in a very general context are queuing theory, financial mathematics, thermodynam-
ics, statistical mechanics and biology. The earliest work in this area dates back to Laplace (1749-1829)
and Cramér (1893-1985) but the ideas and concepts got coherently introduced and formally defined
only in 1966 in a paper by the Indian American mathematician Varadhan.

In this thesis Large Deviation Theory is combined with Lagrangian and Hamiltonian dynamics. As
will be shown, there is a nice connection between the two areas. Lagrangian and Hamiltonian dy-
namics describe the motions and interactions of a system of particles. They are another way of look-
ing at the well known equation of motion, derived by Newton namely F = ma. This equation is
known as the second law of mechanics. The theory will be useful, in connection with Large Deviation
Theory, when we look at the Large Deviation behaviour of stochastic processes. Stochastic processes
represent the evolution of a random variable over time, which in the continuous case leads to con-
tinuous random paths. The stochastic process that is of main interest in this report is the two-state
continuous-time Markov process. More specifically, we look at the measure of the ratio of particles
in state 1 and 2 respectively. An important distinction that is made is between the symmetric and
asymmetric case. In the symmetric case, the rate of jumping from state 1 to state 2 is the same as vice
versa while in the asymmetric case these rates differ.

An important part is to find, in the symmetric as well as the asymmetric case, the path that will be
taken (the most probable path) given some distribution a of particles at time t = 0 and distribution
b at time t = T . To illustrate this with an example, we can consider a chemical solution with a large
number of particles n. The particles pass (approximately) independently of each other from state 1
to state 2 and vice versa with rates γ1 and γ2 respectively. Now, taking T big enough, the particles
will eventually be distributed according to the equilibrium values. That is, γ2

γ1+γ2
will be the fraction

in state 1 and γ1
γ1+γ2

will be the fraction in state 2. However the goal is to find, if we assume we start
with some distribution a and end with a distribution b, the most probable path among all of these
atypical paths from a to b. We will see that this path is the path that minimizes the so-called action
(the action will be formally defined in chapter 2) over all paths starting from a and going to b. An-
other important part of this report is to find an explicit expression of the action and the asymptotic
behaviour of this action for T being very small or very large.

In the first chapter of this report the basics of Large Deviation Theory are treated, focussing on those
parts that will be used in later chapters. The first part of the chapter deals with Large Deviations in
finite dimensions. Here Cramer’s Theorem is stated and proved. Cramer’s Theorem is important as
it tells something about Large Deviation behaviour of empirical means of independently and iden-
tically distributed random vectors. Later it is shown that there is a more general condition for the
LDP to hold, this is the content of the Gärtner-Ellis Theorem. Here the independence of the random
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variables is not longer required. After this we go on with large Deviation Theory for whole random
processes evolving over time. Mogulskii’s theorem and Schilder’s theorem (following very quickly
once Mogulskii’s theorem is proved) are stated and proved. Mogulskii’s theorem relies on the finite
dimensional result and the fact that using projective limits (Dawson-Gärtner theorem) this can lifted
to the infinite-dimensional case. Projective limits, and in particular the Dawson-Gärtner theorem, are
treated in the last section of chapter one.

In the first section of chapter two the Lagrangian and Hamiltonian formalism is treated. We only look
at the special case when energy is a conserved quantity. We will prove the Principle of Least Action
which states that the path taken by a particle is the path that minimizes the so-called Action. Later
in this chapter the connection between Lagrangian and Hamiltonian dynamics on the one hand and
Large Deviation theory on the other hand is explained. In the last part of this chapter we use this
theory to derive the so-called Hamiltonian of the two-state continuous-time Markov process. This
will be very useful in the last chapter.

In the last chapter of this report we use the theory of the previous two chapters and use it on the two-
state continuous-time Markov process. With the derived Hamiltonian the dynamics of the process,
that is the evolution of the process over time given some boundary conditions, are derived. We will
see that this goes a lot easier in the symmetric case compared with the asymmetric case. Having
derived the equations that govern the dynamics of the process explicitly, graphs can be drawn of the
trajectories. The behaviour of the trajectories are very interesting and depend highly on the amount
of time the system has to evolve. After this the Action Integral is calculated and the asymptotic
behaviour is examined.
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Chapter 1

Basics of Large Deviation Theory

1.1 Introduction

Large Deviation Theory is concerned with the asymptotic behaviour of so called rare events of se-
quences of probability measures. In order to illustrate the basic idea, let X1, X2, ..., Xn be an i.i.d. se-
quence of random variables on a probability space (R, B(R), P) where B(R) is the Borel sigma-field
on R. Let µ := E X1 and σ2 := Var X1. Furthermore let Sn denote the partial sums, i.e. Sn = X1 + ...+Xn.
We know, from the two fundamental theorems in probability theory, that for this sequence,

Strong Law of Large Numbers (SLLN)

1
n

Sn −−−→
n→∞

µ Palmost surely (1.1)

Central Limit Theorem (CLT)

1
σ
√

n
(Sn−µn)−−−→

n→∞
Z Palmost surely (1.2)

From the SLLN we see that the empirical average 1
n Sn converges to µ as n→ ∞. The CLT shows the

probabilty the partial sums differ from µn and that this goes in distribution to the Gaussian distribu-
tion. We see from (1.2) that deviations of the size

√
n are ”normal”. Now we can look what happens if

the deviations are of order n, i.e. the event {Sn ≥ αn}, where α := µ+ l and l > 0. As n tends to infinity,
the probability of this event goes to zero of course (the distribution of Sn

n converges to the degenerate
distribution at µ), but the goal is to specify the rate of this. It can be expected that the probability
decays exponentially. After all, if we assume we start with Gaussian distributed random variables
we get,

P(X1 + ...+Xn ≥ (µ+ l)n) = P(
Sn

n
≥ α) =

√
n√
π

∫
∞

α

e−
nx2

2 dx = e−
nα2

2 +o(n) ' e−nI(α) (1.3)

Where I(α) = α2

2 . By I we denote a rate function, which is explained below. By the symbol ' we
mean that the two sequences are exponentially equivalent. Two sequences of positive numbers (αn)
and (βn) are exponentially equivalent iff1,

lim
n→∞

1
n
(logαn− logβn) = 0.

This form of I(α) above reflects the fact that the distribution of the Xi was Gaussian to begin with. We
will see in the following that, under some condition on the distribution of X1, in general it holds that
the decay is exponential in n and we have,

P

(
1
n

n

∑
i=1

Xi ≈ α

)
' e−nI(α). (1.4)

1In definition 3 we define exponentially equivalence, this however is for probability measures
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1.2. THE BASICS OF LDT IN FINITE DIMENSIONS

Now we will start explaining the basics of Large Deviation Theory and give some of the most impor-
tant theorems. For the theorems in this chapter we follow for a large part the book “Large Deviations
Techniques and Aplications” by Dembo and Zeitouni (later to be referred to as [1]). First we will
look at the finite dimensional case. It is defined what is meant if a sequence of probability measures
satisfies the Large Deviation Principle (LDP). Furthermore Cramer’s Theorem and the Gärtner-Ellis
Theorem are explained. After this, the large deviation behavior of sequences of paths of random
processes are studied. This leads to the theorems of Mogulskii and Schilder. The last section deals
with projective limits and the Dawsnon-Gärtner Theorem. This can be used to generalise an LDP
from one topological space to another topological space and is used to proof Mogulskii’s Theorem.

1.2 The basics of LDT in finite dimensions

Let {µε} be a family of probability measures on a probability space (X ,B). Here X is a topological
space so open and closed subsets of X are well defined. Now large deviation theory, and in particular
the large deviation principle (LDP), characterizes the limiting behaviour of the family of probability
measures {µε} as ε→ 0. For the definition of the large deviation principle we need to define what is
called a rate function.

Definition 1 (Rate Function). A rate function I is a lower semicontinuous mapping I : X → [0,∞] such that
for all α ∈ [0,∞), the level set ψI(α) := {x : I(x)≤ α} is a closed subset of X . A rate function is called a good
rate function if all level sets as defined above are compact subsets of X . We define the effective domain DI of I
as the set of points in X of finite rate, i.e. DI := {x : I(x)< ∞}. When no confusion occurs we refer to DI as the
domain of I.

With this definition we can now define what is meant by a set of probability measures satisfying
the large deviation principle. For a set Γ, Γ̄ denotes the closure of Γ, Γ◦ the interior of Γ, and Γc the
complement of Γ. The infimum of a function over the empty set is defined as ∞.

Definition 2 (Large deviation principle). {µε} satisfies the large deviation principle with a rate function I
if, for all Γ ∈ B ,

− inf
x∈Γ◦

I(x)≤ liminf
ε→0

ε logµε(Γ)≤ limsup
ε→0

ε logµε(Γ)≤− inf
x∈Γ̄

I(x) (1.5)

When, in the following, we say that µε satisfies the LDP we mean that the above holds for some rate
function I. It is easy to see that if µε satisfies the LDP and Γ ∈ B is such that

inf
x∈Γ◦

I(x) = inf
x∈Γ̄

I(x) := IΓ

then:
lim
ε→0

ε logµε(Γ) =−IΓ

A set Γ that satisfies the above is called an I continuity set. Note that since µε(X ) = 1 for all ε, it fol-
lows from the LDP that infx∈X I(x) = 0 for the upper bound to hold (note I is a non-negative function).
Now when I is a good rate function it follows that there exists at least one point x for which I(x) = 0,
so good rate functions attain their minimum. Furthermore note that when infx∈Γ̄ I(x) = 0 the upper
bound trivially holds and that when infx∈Γ◦ I(x) = ∞ the lower bound trivially holds. We can use this
to reformulate the LDP given above into an equivalent statement, namely,

(a) (Upper bound) For every α < ∞ and every measurable set Γ with Γ̄⊂ ψI(α)
c,

limsup
ε→0

ε logµε(Γ)≤−α. (1.6)

(b) (Lower bound) For any x ∈DI and every measurable Γ with x ∈ Γ◦,

liminf
ε→0

ε logµε(Γ)≥−I(x). (1.7)

4



1.2. THE BASICS OF LDT IN FINITE DIMENSIONS

Cramér’s Theorem
Assume we have n d-dimensional random i.i.d. vectors X1, X2, ....,Xn distributed according to the
probability law µ and with the logarithmic moment generating function defined as:

Λ(λ) := logE[e〈λ,X1〉] (1.8)

Cramér’s theorem specifies the LDP for the laws µn of the empirical mean Ŝn := 1
n ∑

n
j=1 X j of these i.i.d.

d-dimensional random vectors X1, X2, ....,Xn. in particular it shows that the rate function satisfying
this LDP is given by the Fenchel-Legendre transform of the logarithmic moment generating function
Λ(λ). This Fenchel-Legendre transform of Λ(λ) is given by:

Λ
?(x) := sup

λ∈Rd
{〈λ,x〉−Λ(λ)}. (1.9)

The proof will be given for the one dimensional case (d=1). For the general case we refer to [1], p.26.
First we state the one-dimensional Cramér theorem.

Theorem 1 (Cramér’s Theorem). Let X1, X2, ....,Xn be a set of i.i.d. random vectors in R. The sequence of
measures {µn} (measures of the empirical mean of n vectors as defined above) satisfies the LDP with convex
rate function Λ?(.), namely:
(a) For any closed set F ⊂ R,

limsup
n→∞

1
n

logµn(F)≤− inf
x∈F

Λ
?(x). (1.10)

(b) For any open set G⊂ R,

liminf
n→∞

1
n

logµn(G)≥− inf
x∈G

Λ
?(x). (1.11)

In order to get a feeling for this theorem we use Cramer’s theorem on a collection of i.i.d. Gaussians.
In the introduction of this chapter we have seen what Large Deviation behaviour to expect.

Example 1 (Cramér’s Theorem applied on Gaussians). Before we will prove the above theorem, first let us
go back to the situation where we start with standard normally distributed random variables X1,X2, ...,Xn. Let
µn be the distribution of the mean of n such random variables. We can look again at the event that P(X1 + ...+
Xn ≥ (µ+ l)n) = P(Sn

n ≥ α) = µn[α, ∞), like in the introduction, but now using Cramér’s Theorem. We have
in this case,

Λ(λ) = logE eλX1 = loge
λ2
2 =

λ2

2
.

So we get,

Λ
?(x) = sup

λ∈R
{λx− λ2

2
}= x2− 1

2
x2 =

1
2

x2.

Where the last equality can be seen by noting that if we take the derivative with respect to λ and equating to
zero we get λ = x. So Cramér’s Theorem tells us now that ,

limsup
n→∞

1
n

logµn(F)≤− inf
x∈F

1
2

x2 =−α2

2

Where F = [α, ∞). On the other hand, from the lower bound (1.11) from Theorem 1 it follows that,

liminf
n→∞

1
n

logµn(G)≥− inf
x∈G

1
2

x2 =−α2

2

Where G = (α, ∞). Combining the two bounds it is clear that,

µn(α, ∞)' e−
nα2

2

Which is the same as we found in the introduction.
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1.2. THE BASICS OF LDT IN FINITE DIMENSIONS

To prove the stated theorem above we first need the following lemma which states some usefull
properties of Λ?(.) and Λ(.).

Lemma 1. (a) Λ is a convex function and Λ? is a convex rate function.
(b) If DΛ = {0}, then Λ? is identically zero. If Λ(λ)< ∞ for some λ > 0, then x̄ < ∞ (possibly x̄ =−∞), and for
all x≥ x̄, Λ?(x) is a nondecreasing function given by:

Λ
?(x) = sup

λ≥0
[λx−Λ(λ)] (1.12)

Similarly, if Λ(λ)< ∞ for some λ < 0, then x̄ >−∞ (possibly x̄ = ∞), nd for all x≤ x̄, Λ?(x) is a nonincreasing
function given by:

Λ
?(x) = sup

λ≤0
[λx−Λ(λ)] (1.13)

When x̄ is finite, Λ?(x̄) = 0, and always.
inf
x∈R

Λ
?(x) = 0. (1.14)

(c) Λ(.) is differentiable in D◦
Λ

with

Λ
′
(η) =

1
M(η)

E[X1eηX1 ] (1.15)

and
Λ
′
(η) = y =⇒ Λ

?(y) = ny−Λ(η). (1.16)

Proof of lemma 1. (a) To show Λ is convex we can use Hölder’s inequality, namely for any θ ∈ [0, 1]:

Λ(θλ1 +(1−θ)λ2) = logE[(eλ1X1)θ(eλ2X1)(1−θ)]≤ log{E[eλ1X1 ]θE[eλ2X1 ](1−θ)}= θΛ(λ1)+(1−θ)Λ(λ2)

The convexity of Λ? follows from its definition, namely Λ? is a supremum of linear functions:

θΛ
?(x1)+(1−θ)Λ?(x2) = sup

λ∈R
{θλx1−θΛ(λ)}+ sup

λ∈R
{(1−θ)λx2− (1−θ)Λ(λ)}

≥ sup
λ∈R
{(θx1 +(1−θ)x2)λ−Λ(λ)}= Λ

?(θx1 +(1−θ)x2).

To show that Λ? is a rate function note that Λ(0) = 0 and because Λ?(x) is a supremum over all λ we
clearly have Λ?(x)≥ 0x−Λ(0) = 0. To show lowersemicontinuity fix a sequence {xn} converging to x.
Now, for every λ ∈ R,

liminf
xn→x

Λ
?(xn)≥ liminf

xn→x
[λxn−Λ(λ)] = λx−Λ(λ)

Thus in particular,
liminf

xn→x
Λ
?(xn)≥ sup

λ∈R
[λx−Λ(λ)] = Λ

?(x)

(b) If DΛ = {0}, then Λ?(x) =−Λ(0) = 0 for all x ∈R. If Λ(λ) = logM(λ)< ∞ for some λ > 0, then using
Jensen’s inequality we see that ∞ > M(λ)/λ = E eλX1/λ ≥ eE[λX1]/λ > E[λX1]/λ = E[X1] = x̄ (possibly
x̄ =−∞). Furthermore, for all λ ∈ R, by using Jensen’s inequality for concave functions we see,

Λ(λ) = logE[eλX1 ]≥ E[logeλX1 ] = λx̄

If x̄ = −∞, then Λ(λ) = ∞ for λ negative, and (1.12) clearly holds in this situation. When x̄ is finite, it
follows from the preceding inequality that,

Λ
?(x̄) = sup

λ∈R
{λx̄−Λ(λ)} ≤ sup

λ∈R
{λx̄−λx̄}= 0

From which it follows, because Λ? ≥ 0, that Λ?(x̄) = 0. In this case, for every x≥ x̄ and every λ < 0,

λx−Λ(λ)≤ λx̄−Λ(λ)≤ Λ
?(x̄) = 0

6



1.2. THE BASICS OF LDT IN FINITE DIMENSIONS

So we see (1.12) holds. Note that from (1.12) it follows that Λ?(x) is a nondecreasing function of x
∀x ∈ (x̄,∞). When Λ(λ) < ∞ for some λ < 0 we can proof (1.13) and the fact that Λ?(x) is a nonin-
creasing function of x ∀x ∈ (−∞, x̄) by using the same arguments as above. It remains to show that
infx∈R Λ?(x) = 0. This is already shown for the situation when DΛ = {0} and when x̄ is finite. Now
assume x̄ =−∞ while Λ(λ)< ∞ for some λ > 0. Then by Chebycheff’s inequality and (1.12),

logµ([x, ∞]) = logE[IX1−x≥0]≤ inf
λ≥0

logE[eλ(X1−x)] =−sup
λ≥0
{λx−Λ(λ)}=−Λ

?(x).

Hence,
lim

x→−∞
Λ
?(x)≤ lim

x→−∞
{− logµ([x, ∞])}= 0.

And we see that (1.14) also holds in this case. The validity of (1.14) in the situation that x̄ = ∞ while
Λ(λ)< ∞ for some λ < 0, can be proved in the same way.
(c) The identity (1.15) follows by interchanging the order of differentiation and integration. Namely,
assuming this is allowed we see,

d
dη

Λ(η) =
1

M(η)

d
dη

E[eηX1 ] =
1

M(η)
E[

d
dη

eηX1 ] =
1

M(η)
E[X1eηX1 ]

To justify the interchanging we use the dominated convergence theorem. Note that fε(x) := (e(η+ε)x−
eηx)/ε converges pointwise to d

dη
eηx for ε→ 0. Furthermore ∀ε ∈ (−δ, δ),

| fε(x)| ≤
eηx(eδ|x|−1)

δ
=: h(x)

Note that h(x) is integrable as we assume we are in D◦
Λ

(so Λ(λ)< ∞) and we can choose a δ > 0 small
enough.

To show (1.16), let Λ
′
(η) = y and consider the function g(λ) := λy−Λ(λ). We showed that Λ(λ) is

a convex function, and since g(λ) is a straight line minus this convex function, g(λ) is concave. Note
that g

′
(η) = y−Λ

′
(η) = 0 from which it follows that,

g(η) = sup
λ∈R
{λy−Λ(λ)}= Λ

?(y)

Proof of Cramër’s Theorem. (a) Let F be a non-empty closed set. Note that (1.10) trivially holds when
IF = in fx∈FΛ?(x) = 0. Assume that IF > 0. From the lemma 1 it follows that x̄ exists, possibly as an
extended real number. An application of Chebycheff’s inequality yields ∀x,λ≥ 0

µn([x, ∞]) = E[IŜn≥0]≤ E[enλ(Ŝn−x)]

= e−nλx
n

∏
i=1

E[eλX1 ] = e−n[λx−Λ(λ)].
(1.17)

So, in particular µn([x, ∞])≤ e−nsupλ≥0[λx−Λ(λ)]. Therefore, if x̄ < ∞, then by (1.12), for every x > x̄,

µn([x, ∞))≤ e−nΛ?(x). (1.18)

By a similar argument, if x̄ >−∞ then for every x < x̄,

µn((−∞,x])≤ e−nΛ?(x). (1.19)

Now when x̄ is finite, Λ?(x̄) = 0, and because we assumed IF > 0 it must be the case that x̄ ∈ Fc (Fc

is open as F is closed). Let (x−, x+) be the union of all the open intervals (a, b) ∈ Fc that contain x̄.
Note that x− < x+ with either x− or x+ finite since both Fc and F are non empty. If x− is finite, then

7



1.2. THE BASICS OF LDT IN FINITE DIMENSIONS

x− ∈ F , and thus Λ?(x−) ≥ infx∈F Λ?(x) = IF . Likewise when x+ is finite, Λ?(x+) ≥ IF . Applying (1.19)
for x = x+ and (1.18) for x = x− we get:

µn(F)≤ µn((−∞,x−])+µn([x+, ∞))≤ 2e−nIF

Taking the natural logarithm of the above, dividing by n and taking the limit as n→ ∞ gives the
desired upper bound as stated in (1.10).
Now suppose that x̄ = −∞. Then, we see from part (b) of the above lemma that Λ? is nondecreasing
and limx→−∞Λ?(x) = 0. Because we assumed IF > 0 we must have x− = −∞ and x+ = in f{x : x ∈ F}.
Again we have that x+ ∈ F and consequently Λ?(x+)≥ IF . Moreover, F ⊂ [x, ∞) and thus we can use
(1.18) to get:

µn(F)≤ µn([x+, ∞))≤ e−nIF

Taking the natural logarithm of the above, dividing by n and taking the limit as n→ ∞ gives the de-
sired upper bound as stated in (1.10).The case where x̄ = ∞ can be handled analogously. This shows
that the upper bound holds.

(b) To prove the lower bound (1.11) we prove that for every δ > 0 and every marginal law µ ∈M1(R),

liminf
n→∞

1
n

logµn(−δ, δ)≥ inf
λ∈R

Λ(λ) =−Λ
?(0). (1.20)

Now we look at the transformation Y = X + x which results in ΛY (λ) = Λ(λ)−λx, and
Λ?

Y (.)= supλ∈R[λ(.+x)−Λ(λ)] =Λ?(.+x). Applying inequality (1.20) on Y we find, with ν the marginal
law of Y , the following

liminf
n→∞

1
n

logνn(−δ, δ)≥−Λ
?
Y (0).

And since νn(−δ, δ) = µn(x−δ, x+δ) and Λ?
Y (0) = Λ?(x),

liminf
n→∞

1
n

logµn(x−δ, x+δ)≥−Λ
?(x). (1.21)

Which holds for every δ > 0 and every x. Now if we have an arbitrary open set G we can take the
supremum over all x ∈ G and all δ such that (x−δ, x+δ)⊂ G, we get,

sup
x∈G

δs.t.(x−δ,x+δ)⊂G

liminf
n→∞

1
n

logµn(x−δ, x+δ) = liminf
n→∞

1
n

logµn(G)

≥ sup
x∈G

δs.t.(x−δ,x+δ)⊂G

−Λ
?(x) = sup

x∈G
−Λ

?(x) =− inf
x∈G

Λ
?(x).

Which shows us we get the lower bound (1.11). It remains to prove (1.20). First suppose that
µ((−∞, 0)) > 0, µ((0, ∞)) > 0. From this it follows that Λ(λ)→ ∞ as |λ| → ∞. Secondly, suppose that
µ is supported on a bounded subset of R from which it follows that Λ(.) is finite everywhere. Now
it follows from part (c) of lemma 1 that Λ(.) is a continuous differentiable function and hence there
exists a finite η such thatΛ(η) = infλ∈R Λ(λ) and Λ

′
(η) = 0.

Define a new probability measure µ̃ in terms of µ via

dµ̃
dµ

(x) = eηx−Λη (1.22)

Note that this is indeed a probability measure because

∫
R

dµ̃ =
1

M(η)

∫
R

eηxdµ =
M(η)

M(η)
= 1.

8



1.2. THE BASICS OF LDT IN FINITE DIMENSIONS

This change of measure with the optimal η is called “Cramer’s trick”. Now let µ̃n be the law govern-
ing S̃n when Xi are i.i.d. random variables of law µ̃. Note that for every ε > 0,

µn((−ε, ε)) =
∫
|∑n

i=1 xi|<nε

µ(dx1)...µ(dxn)

≥ e−nε|η|
∫
|∑n

i=1 xi|<nε

exp(η
n

∑
i=1

xi)µ(dx1)...µ(dxn)

= e−nε|η|enΛ(η)µ̃n((−ε, ε)).

(1.23)

By (1.15) and the choice of η,

Eµ̃[X1] =
1

M(η)

∫
R

xeηxdµ = Λ
′
(η) = 0

Hence, by the law of large numbers,

lim
n→∞

µ̃n((−ε, ε)) = 1.

Now, from (1.23), taking the logarithm, dividing by n and the limit as n goes to infinity, that for every
0 < ε < δ,

liminf
n→∞

1
n

µn((−δ, δ))≥ liminf
n→∞

1
n

µn((−ε, ε))≥ Λ(η)− ε|η|,

Taking the limit ε→ 0 and noting that, using (1.16) of lemma 1 from which it follows that Λ(η) =
−Λ?(0), gives us (1.20).

Now suppose that µ is of unbounded support and still µ((−∞, 0)) > 0, µ((0, ∞)) > 0. There exists
an M < ∞ big enough such that µ((−M, 0))> 0 as well as µ((0, M))> 0. Let

ΛM(λ) = log
∫ M

−M
eλxdµ.

Let ν denote the law of X1 conditioned on {|X1| ≤ M}, and νn be the law of the corresponding Ŝn

conditioned on {|Xi| ≤M, i = 1, ...,n}. Then, for all n and every δ > 0,

µn((−δ, δ))≥ νn((−δ, δ))µ([−M, M])n. (1.24)

Now the preceding proof holds for νn and so (1.20) holds for νn. The logarithmic moment generating
function associated with ν is

logE[eλX1 | |X1| ≤M] = log
E[eλX1IX1≤M]

µ([−M, M])
= log

∫ M
−M eλxdµ

µ([−M, M])
= ΛM(λ)− log(µ([−M, M])). (1.25)

Now,

liminf
n→∞

1
n

µn((−δ, δ))≥ logµ([−M, M])+ liminf
n→∞

1
n

νn((−δ, δ))

≥ logµ([−M, M])+ inf
λ∈R

[ΛM(λ)− log(µ([−M, M]))]

= inf
λ∈R

ΛM(λ)

Where the first inequality follows from (1.24) and the second inequality follows from combining
(1.25) with the result (1.20) for νn. Now let IM =− infλ∈R ΛM(λ) and I? = limsupM→∞ IM. It follows that

liminf
n→∞

1
n

µn((−δ, δ))≥−I?. (1.26)

Note that ΛM(.) and thus so is−IM. Moreover, −IM ≤ΛM(0)≤Λ(0) = 0 and hence−I? ≤ 0. Now since
−IM is finite for M large enough, −I? >−∞. From this, it follows that the level sets {λ : ΛM(λ)≤−I?}

9



1.2. THE BASICS OF LDT IN FINITE DIMENSIONS

are non-empty, compact sets that are nested with respect to M. So there is a point, say λ0, in the in-
tersection of the above sets. By Lebegue’s monotone convergence theorem, Λ(λ0) = limM→∞ λM(λ0)≤
−I?. So using (1.26) we get

liminf
n→∞

1
n

µn((−δ, δ))≥−I? ≥ Λ(λ0)≥ inf
λ∈R

Λ(λ).

Showing (1.20) for µ of unbounded support.

Now in the case that either µ((−∞, 0)) = 0 or µ((0, ∞)) = 0, then Λ(.) is a monotone function with
infλ∈R Λ(λ) = logµ({0}). In this case (1.20) follows from

µn((−δ, δ))≥ µn({0}) = µ({0})n.

There is a multivariate version of Cramér’s theorem dealing with the large deviations of the empirical
means of i.i.d. random vectors in Rd . For the prove see [1], p. 36. Cramér’s theorem is limited to
the case where all stochastic variables are i.i.d.. However, there is an extension to the case where the
random variables are not i.i.d.. Consider a sequence of random vectors Zn ∈ Rd , where Zn posseses
the law µn, and logarithmic moment generating function

Λn(λ) := logE[e〈λ,Zn〉]. (1.27)

Assumption 1. We make the following assumption about the logarithmic moment generating functions. For
each λ ∈ Rd , the logarithmic moment generating function, defined as the limit

Λ(λ) := lim
n→∞

1
n

Λn(nλ)

exists as an extended real number. Further, the origin belongs to the interior of DΛ := {λ ∈ Rd : Λ(λ)< ∞}.

Note that we can see the sequence of vectors Zn as the empirical mean of n vectors in the sequence
of vectors {Xn} (and µn as the corresponding law of the Zn). Now when the Xn are i.i.d., µn is the law
of the empirical mean Ŝn of the i.i.d. random vectors Xi ∈ Rd . We see, in this situation, that for every
n ∈ Z+,

1
n

Λn(nλ) =
1
n

logE[en〈λ,Zn〉] =
1
n

logE[en〈λ, X1+..+Xn
n 〉] =

1
n

log E[en〈λ,X1〉]

=
1
n

logE[e〈λ,X1〉]n = logE[e〈λ,X1〉 =: Λ(λ)

and assumption 1 holds when 0 ∈ D0
Λ

. Now, let Λ? be the Fenchel-Legendre transform of Λ(.) with
DΛ? = {x ∈ Rd : Λ?(x)< ∞}. The following theorem states the LDP for the measures µn of the random
vectors Zn ∈ Rd (that not necessarily are i.i.d.)

Theorem 2 (Gärtner-Ellis). Let assumption 1 hold. (a) For any closed set F,

limsup
n→∞

1
n

logµn(F)≤− inf
x∈F

Λ
?(x). (1.28)

(b) For any open set G,

liminf
n→∞

1
n

logµn(G)≥− inf
x∈G∩F

Λ
?(x), (1.29)

where F is the set of exposed points2 of Λ? whose exposing hyperplane belongs to D◦
Λ

.

(c) If Λ is an essentially smooth3, lower semicontinuous function, then the LDP holds with the good rate
function Λ?(.).

2for the definition of exposed points and exposing hyperplane see [1] p.44
3for the definition of essentially smooth see [1] p.44
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1.3. SAMPLE PATH LARGE DEVIATIONS

The proof is left out of this paper but the above shows the key properties for the logarithmic moment
generating function for an LDP to hold. Namely, the properties stated in assumption 1 together
with the property that the logarithmic moment generating function is an essentially smooth, lower
semicontinuous function. Without the latter assumption still the upper bound, stated in theorem 2
part (a), and a weaker lower bound, stated in theorem 2 part (b), hold.

1.3 Sample Path Large Deviations

In the above we have seen finite dimensional LDP’s for the empirical means of a sequence of random
variables. Often, we are interested in rare events that depends on a whole random process that
evolves over time. For instance, the probability that the path of a random process is an element
of some set. Again when looking at the average of a sequence of random paths, this average will
converge to some deterministic path. We can look what happens if the path is different from this
deterministic path, in particular the rate the probability of such a path goes to zero as the number of
paths n in the sequence increases.

1.3.1 Introduction and Mogulskii’s Theorem

We can now look at a sequence of n random processes {Zn(t)}, starting at t = 0 and ending at t = T .
Given some conditions on the sequence of random processes, this sequence converges to a determin-
istic path for n→ ∞. Now we can look what happens to the probability if the path of this random
process is an element of a set of ”a-typical” paths, say Γ. Of course, for n→ ∞ this probability goes to
zero. But we are interested in the rate of the decay. We will see below, that under suitable conditions,
we find again an exponential decay in n of the following type,

P(Zn(t) ∈ Γ)' e−n infγs∈Γ

∫ T
0 L(γs, γ̇s)ds. (1.30)

Here, L(γs, γ̇s) can be seen as the cost of a particular path on time s. The γs’s are the different possible
paths. Here, the connection with Langrangian dynamics becomes clear as we can see

∫ T
0 L(γs, γ̇s)ds

as the action of the path {γ(s)}. Again we look at a sequence X1, X2, .. ∈ Rd of i.i.d. random vectors
with Λ(λ) := logE(e〈λ,X1〉) < ∞ ∀λ ∈ Rd . As we have seen, Cramér’s theorem allows the analysis of
the large deviations of the empirical mean 1

n ∑
n
i=1 Xi of the sequence of the i.i.d. random vectors. Now

we will consider the large deviations joint behaviour of a family of random variables indexed by t.

Define

Zn(t) :=
1
n

|nt|

∑
i=1

Xi, 0≤ t ≤ 1, (1.31)

and let µn be the law of Zn(.) in L∞[0, 1]. Note that, taking the limit of n→ ∞the random process con-
verges to a deterministic path. Namely the path starting at zero and going linearly to the expected
value of X1 which is attained for t = 1.

Throughout, |x| :=
√
〈x, x〉 denotes the Euclidean norm in Rd , || f || denotes the supremum norm on

L∞[0, 1] and Λ?(x) := supλ∈Rd [〈λ, x〉−Λ(λ)] denotes the Fenchel-Legendre transform of Λ(.). Further-
more, the following definitions will be used,

Definition 3 (Exponentially equivalent). Let (Y , d) be a metric space and {µε} and {µ̃ε} sequences of
probability measures on Y . The probability measures {µε} and {µ̃ε} are exponentially equivalent if there exist
probability spaces {Ω, Bε, Pε} and two families of Y -valued random variables {Zε} and {Z̃ε} with joint proba-
bility laws {Pε} and marginals {µε} and {µ̃ε}, respectively, such that the following is satisfied:

For each δ > 0, the set {ω : (Z̃ε, Zε) ∈ Γδ} is Bε measurable, and

limsup
ε→0

ε logPε(Γδ) =−∞, (1.32)
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1.3. SAMPLE PATH LARGE DEVIATIONS

where
Γδ := {(ỹ,y) : d(ỹ,y)> δ} ⊂ Y ×Y (1.33)

Definition 4 (Exponentially Tight). Suppose that all the compact subsets of X belong to B . A family of
probability measures {µε} on X is exponentially tight if for every α < ∞, there exist a compact set Kα ⊂ X such
that

limsup
ε→0

εµε(K c
α)< α (1.34)

Definition 3 is important as it allows to pass an LDP from one sequence of probability measures to
another sequence of probability measures. This is a consequence of the following theorem4,

Theorem 3. If an LDP with a good rate function I(.) holds for the probability measures {µε}, which are
exponentially equivalent to {µ̃ε}, then the same LDP holds for {µ̃ε}.

Definition 4 is important because of the following corrolary5,

Corollary 1. Let {µε} be an exponentially tight family of probability measures on X equipped with the topology
τ1. If {µε} satisfies an LDP with respect to a Hausdorff topology τ2 on X that is coarser than τ1, then the same
LDP holds with respect to the topology τ1.

Below the theorem is stated that specifies the Large Deviation Principle for the defined Zn(t). In
particular, it specifies the rate function I(φ) with which this LDP holds.

Theorem 4 (Mogulskii). The measures µn satisfy in L∞[0, 1] the LDP with the good rate function

I(φ) =

{∫ 1
0 Λ?(φ̇(t)dt if φ ∈ AC ,φ(0) = 0

∞ otherwise,
(1.35)

Where AC denotes the space of absolutely continuous functions, i.e.,

AC := {φ ∈C([0, 1]) :
k

∑
l=1
|tl− sl| → 0, sl < tl ≤ sl+1 < tl+1⇒

k

∑
l=1
|φ(tl)−φ(sl)| → 0}.

Note that φ : [0, 1]→ Rd absolutely continuous implies that φ is differentiable almost everywhere, in
particular, φ is the integral of a function in L1([0, 1]) (Fundamental Theorem of Calculus for Lebesgue
Integrals).

The proof of Mogulskii’s theorem has the following structure. First we will show that there exists
a continuous stochastic process Z̃n(.) in L∞([0, 1]) whose measures are exponentially equivalent (see
definition 3) with the measures of Zn(.) in L∞([0, 1]). Next, X is defined, consisting of all the maps
f : [0, 1]→ Rd mapping t = 0 to the origin. These maps f : [0, 1]→ Rd can be identified with paths of
Z̃n(.). Now it can be shown that the measures of Z̃n(.) satisfy the LDP with good rate function (1.35)
on X equiped with the topology of pointwise convergence on [0, 1]. This is done by first proving
the LDP for all finite projections p j from the functions f to ordered j-dimensional vectors (specified
in lemma 6). For this finite-dimensional LDP we use the Gärtner-Ellis Theorem and the Contraction
Principle. Now using projective limits via consistency we show that the LDP also holds in the infinite-
dimensional space X (follows from the Dawson-Gärtner Theorem). The LDP then also holds for these
measures on C0([0, 1]) with the topology induced by X , i.e. the pointwise convergence topology (This
topology can be identified with τ2 in corollary 1). This topology can then be strengthened in this space
to the supremum norm topology (via corollary 1, the supremum norm topology can be identified
with τ2), using that the measures are exponentially tight in C0([0, 1]) equipped with the supremum
norm topology. Subsequently, it can be shown that the same LDP holds on L∞([0, 1]). And by the
exponentially equivalentness of the measures for Z̃n(.) and Zn(.) we can show the LDP holds for µn.
For the proof of Theorem 4 we need the following four lemma’s.

4The proof of theorem 3 can be found in [1], p.130
5The proof of corollary 1 can be found in [1], p.129
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Lemma 2. Let ξ be a measurable subset of X such that µε(ξ) = 1 for all ε > 0. Suppose that ξ is equipped with
the topology induced by X .
(a) If ξ is a closed subset of X and {µε} satisfies the LDP in ξ with rate function I, then {µε} satisfies the LDP
in X with rate function I

′
such that I

′
= I on ξ and I

′
= ∞ on ξc.

(b) If {µε} satisfies the LDP in X with rate function I and DI ⊂ ξ, then the same LDP holds in ξ. In particular,
if ξ is a closed subset of X , then DI ⊂ ξ and hence the LDP holds in ξ.

Lemma 3. Let µ̃n denote the law of Z̃n(.) in L∞[(0, 1]), where

Z̃n(t) := Zn(t)+(t− [nt]
n

)X[nt]+1 (1.36)

is the polynomial approximation of Zn(t). Then the probability measures µn and µ̃n are exponentially equivalent
in L∞[(0, 1]).

Lemma 4. Let X consist of all the maps from [0, 1] to Rd such that t = 0 is mapped to the origin, and equip X
with the topology of pointwise convergence on [0, 1]. Then the probability measures µ̃n of lemma 3 (defined on
X by the natural embedding) satisfy the LDP in this Hausdorff topological space with the good rate function
I(.) as stated in (1.35).

Lemma 5. The probability measures µ̃n are exponentially tight in the space C0([0, 1]) of all continuous func-
tions f : [0, 1]→ Rd such that f (0) = 0, equipped with the supremum norm topology.

We will now proof the above lemma’s.

Proof of Lemma 2. First of all, in the topology induced on ξ by X the open sets in ξ are of the form
G ∩ ξ with G ⊆ X open. Similarly, the closed sets in the topology are the sets of the form F ∩ ξ with
F ⊆ X closed. Furthermore, for all Γ ∈ B we have µε(Γ) = µε(Γ∩ξ).
(a)Suppose that an LDP holds in ξ, which is a closed subset of X . Extend the rate function I to be
a lower semicontinuous function on X by setting I(x) = ∞ for any x ∈ ξc. We see that in fx∈Γ)I(x) =
in fx∈Γ∩ξI(x) for any Γ⊂ X and the large deviations lower and upper bound holds.
(b) Suppose that an LDP holds in X . If ξ is closed, then DI ⊂ ξ by the large deviations lower bound
because µε(ξ

c) = 0 for all ε > 0 and ξc is open. Thus for the lower bound to hold we need I(x) =
∞ ∀x ∈ ξc. Now, DI ⊂ ξ impies that in fx∈Γ)I(x) = in fx∈Γ∩ξI(x) for any Γ ⊂ X and the large deviation
lower and upper bounds hold for all measurable subsets of ξ. Furthermore, since the level sets ψI(α)
are closed subsets of ξ, the rate function I remains lower semicontinuous when restricted to ξ.

proof of Lemma 3. The sets {ω : ||Z̃n− Zn|| > η} are clearly measurable. Note that at times t where
[nt] in Z, the processes are equal. At the rest of the times Zn(t) stays the same while Z̃n(t) moves
(t− [nt]

n )X[nt]+1. From this we see |Z̃n(t)−Zn(t)| ≤ |X|nt|+1|/n. Thus, for any η > 0 and any λ > 0,

P(||Z̃n−Zn||> η)≤ nP(|X1|> nη)≤ nE(eλ|X1|)e−λnη.

Taking logarithms of the above and dividing by n, it now follows, since DΛ = Rd , by considering
n→ ∞ and later λ→ ∞ that for any η, λ > 0,

limsup
n→∞

1
n

logP(||Z̃n−Zn||> η) =−∞.

Therefore, the probability measures µn and µ̃n are exponentially equivalent (see definition 3).

The proof of lemma 4 relies on an important theorem, the Dawson-Gärtner Theorem, which we will
state and prove at the end of the chapter. First, we need to show a finite dimensional LDP. Using the
Dawson-Gärtner Theorem we can use this finite dimensional result to lift the finite dimensional LDP
to an infinite dimensional LDP for the measures µ̃n. We will start with proving the following finite
dimensional result.
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1.3. SAMPLE PATH LARGE DEVIATIONS

Lemma 6. Let J denote the collection of all ordered finite subsets of (0, 1]. For any j = {0 < t1 < t2 < ... <
t| j| ≤ 1} ∈ J and any f : [0, 1]→ Rd , let p j( f ) denote the vector ( f (t1), f (t2), ..., f (t| j|)) ∈ (Rd)| j|. Then the
sequence of laws {µn ◦ p−1

j } satisfies the LDP in (Rd)| j| with the good rate function

I j(z) =
| j|

∑
l=1

(tl− tl−1)Λ
?(

zl− zl−1

tl− tl−1
), (1.37)

where z = (z1, ...,z| j|) and t0 = 0, z0 = 0.

proof of lemma 6. Fix j ∈ J and observe that µn ◦ p−1
j is the law of the random vector

Z j
n := (Zn(t1),Zn(t2), ...,Zn(t| j|).

Let
Y j

n := (Zn(t1),Zn(t2)−Zn(t1), ...,Zn(t| j|−Zn(t| j−1|).

Now the LDP for Y j
n follows from the Gärtner-Ellis theorem (theorem 2). Let λ := (λ1, ...,λ| j|). Since

by the independence of the Xi we have

lim
n→∞

1
n

logE[en〈λ,Y j
n 〉] = lim

n→∞

1
n

logE(enλ1Zn(t1))E(enλ2(Zn(t2)−Zn(t1)))...E(enλ| j|(Zn(t| j|)−Zn(t| j|−1)))

= lim
n→∞

1
n

logE(enλ1X1)[nt1]E(enλ2X1)[nt2]−[nt1]...E(enλ| j|X1)[nt| j|]−[nt| j|−1]

= lim
n→∞

| j|

∑
l=1

1
n
([ntl]− [ntl−1])Λ(λl) =

| j|

∑
l=1

(tl− tl−1)Λ(λl) =: Λ j(λ).

By the Gärtner-Ellis theorem, the rate function of Y j
n is given by the Fenchel-Legendre transform of

the finite and differentiable function Λ j(λ). Thus we have,

Λ
?
j(y) = sup

λ∈(Rd)| j|
{〈λ, y〉−Λ j(λ)}= sup

λ∈(Rd)| j|
{
| j|

∑
l=1

(〈λl, yl〉− (tl− tl−1)Λ(λl))}

=
| j|

∑
l=1

(tl− tl−1) sup
λl∈Rd
{〈λl,

yl

tl− tl−1
〉−Λ(λl)}

=
| j|

∑
l=1

(tl− tl−1)Λ
?(

yl

tl− tl−1
).

Since the map Y j
n 7→ Z j

n of (Rd)| j| onto itself is continuous and one to one, the specified LDP in (1.37)
for Z j

n follows directly by the contraction principle from an LDP for Y j
n .

The probability measures {µn ◦ p−1
j } and {µ̃n ◦ p−1

j } are exponentially equivalent in (Rd)| j| which fol-
lows by lemma 3. As an immediate consequence we have the following corrolary.

Corollary 2. For any j ∈ J, {µ̃n ◦ p−1
j } satisfies the LDP in (Rd)| j| with the good rate function (1.37) (which

follows from Theorem 3).

We will now proof lemma 4.

Proof of Lemma 4. A partial order by inclusions is defined on J as follows. For i, j ∈ J, i = {s1, ...,s|i|} ≤
j = {t1, ..., t| j|} iff for any l, sl = tq(l) for some q(l). In other words, i≤ j iff the partition of i is included
in the partition of j. Then, for i≤ j ∈ J, the projection

pi j : (Rd)| j|→ (Rd)|i|

is defined in the natural way. Let X̃ denote the projective limit of {Y j = (Rd)| j|} j∈J with respect to the
projections pi j i.e., X̃ = lim←−Y j. We can identify X̃ with the space X . Indeed each f ∈ X corresponds

14



1.3. SAMPLE PATH LARGE DEVIATIONS

to (p j( f )) j∈J which belongs to X̃ since pi( f ) = pi j((p j( f ))) for i ≤ j ∈ J. In the reverse direction,
each point x = (x j) j∈J of X̃ may be identified with the map f : [0, 1]→ Rd , where f (t) = x(t) for t > 0
and f (0) = 0. Furthermore, the projective topology on X̃ coincides with the pointwise convergence
topology of X , and p j as defined in lemma 6 are the canonical projections for X̃ . The LDP for {µ̃n} in
the Hausdorff topological space X follows by applying the Dawson-Gärtner theorem in conjunction
with corollary 2. (Note that (Rd)| j| are Hausdorff spaces and I j are good rate functions.)
The rate function governing this LDP is

IX ( f ) = sup
0=t0<t1<t2<...<tk≤1

k∈N

k

∑
l=1

(tl− tl−1)Λ
?(

f (tl)− f (tl−1)

tl− tl−1
). (1.38)

Since Λ? is nonnegative, without loss of generality, assume now that tk = 1. It remains to be shown
that IX (.) = I(.). First we show I(φ)≥ IX (φ). Note that we can see

1
ti− ti−1

∫ ti

ti−1

Λ
?(φ̇(t))dt

as the expectation of the stochast Λ?(φ̇(t)) with uniform density. Now the convexity of Λ? implies by
Jensen’s inequality

1
ti− ti−1

∫ ti

ti−1

Λ
?(φ̇(t))dt ≥ Λ

?(
1

ti− ti−1

∫ i

ti−1

φ̇(t)dt) = Λ
?(

φ(ti)−φ(ti−1)

ti− ti−1
)

Now taking the sum for l = 1 to k such that tk = 1 and taking the supremum over all partitions we get
I(φ)≥ IX (φ). For the reversed inequality, consider φ ∈AC . Let g(t) := dφ(t)/dt ∈ L1[0, 1] and, for k≥ 1,
define

gk(t) := k
∫ [kt]/k

([kt]−1)/k
g(s)ds t ∈ [0, 1), gk(1) = k

∫ 1

1−1/k
g(s)ds.

Now we can look at (1.38) taking only values of ti = i/k (where we consider k points of time with
tk = 1). So we have tl− tl−1 = 1/k. Observe that we have

IX (φ)≥ liminf
k→∞

k

∑
l=1

1
k

Λ
?(k[φ(

l
k
)−φ(

l−1
k

)]) = liminf
k→∞

k

∑
l=1

1
k

Λ
?(gk(

l
k
))

= liminf
k→∞

∫ 1

0
Λ
?(gk(t))dt.

(1.39)

By Lebesgue’s theorem we have limk→∞ gk(t) = g(t) almost everywhere in [0, 1]. Hence, by Fatou’s
lemma and the lower semicontinuity of Λ?(.),

liminf
k→∞

∫ 1

0
Λ
?(gk(t))dt ≥

∫ 1

0
liminf

k→∞

Λ
?(gk(t))dt

≥
∫ 1

0
Λ
?(g(t))dt = I(φ).

(1.40)

From which we find, combining (1.39) and (1.40), IX (φ)≥ I(φ).

Finally, suppose that φ ∈ X and φ /∈ AC . We need to show IX = ∞. In this situation there exist a
δ > 0 and {sn

1 < tn
1 ≤ ...≤ sn

kn
< tn

kn
} such that ∑

kn
l=1(t

n
l − sn

l )→ 0, while ∑
kn
l=1 |φ(tn

l )−φ(sn
l )| ≥ δ. Note that

since Λ? is nonnegative,

15



1.3. SAMPLE PATH LARGE DEVIATIONS

IX (φ) = sup
0<t1<t2<...<tk

λ1 ,...,λk∈Rd

k

∑
l=1

[〈λl, φ(tl)−φ(tl−1)〉− (tl− tl−1)Λ(λl)]

≥ sup
0≤s1<t1≤s2<t2≤...≤sk<tk

λ1 ,...,λk∈Rd

k

∑
l=1

[〈λl, φ(tl)−φ(sl)〉− (tl− sl)Λ(λl)].

Hence, for tl = tn
l , sl = sn

l , and λl proportional to φ(tl)−φ(sl) and with |λl|= ρ, the following bound is
obtained:

IX (φ)≥ limsup
n→∞

{ρ
kn

∑
l=1
|φ(tn

l )−φ(sn
l )|− [ sup

|λ|=ρ

Λ(λ)]
kn

∑
l=1

(tn
l − sn

l )} ≥ ρδ.

(Recall that Λ(.) is continuous everywhere.) The arbitrariness of ρ implies that in this situation IX (φ)=
∞, completing the proof of lemma 4.

It remains to prove lemma 5. The proof relies on the following one-dimensional result.

Lemma 7. Let X be a real valued random variable distributed according to the law ν. Then E[eδΛ?
ν(X)]< ∞ for

all δ < 1.

The proof can be found in [1], lemma 5.1.14 on p.181.

Proof of Lemma 5. To show the exponential tightness of µ̃n in C0([0, 1]) equipped with the supremum
norm topology, denote X j

1 the jth component of X1, define

Λ j(λ) := log(E[exp(λX j
1 )]),

with Λ?
j(.) the Fenchel-Legendre transform of Λ j(.). Fix α > 0 and

K j
α := { f ∈ AC : f (0) = 0,

∫ 1

0
Λ
?
j( ḟ j(θ))dθ≤ α},

where f j(.) is the jth component of f : [0, 1]→Rd . Now let Kα := ∩d
j=1K j

α. Note that dZ̃n(t)/dt = X[nt]+1
for almost all t ∈ [0, 1). Thus,

µ̃n(Kc
α)≤ d

d
max
j=1

P(
1
n

n

∑
i=1

Λ
?
j(X

j
i )> α).

Since {Xi}n
i=1 are independent, it now follows by Chebycheff’s inequality that for any δ > 0,

1
n

log µ̃n(Kc
α)≤−δα+

1
n

logd +
d

max
j=1

logE[eδΛ?
j(X

j
1 )].

It follows by considering δ = 1
2 and α→ ∞ that, because we know E[eδΛ?

j(X
j

1 )]< ∞, that
limα→∞ limsupn→∞

1
n log µ̃n(Kc

α) =−∞. So, for every α < ∞ there exists a set Kα ⊂ X such that

limsup
n→∞

1
n

log µ̃n(Kc
α)< α

It remains to show Kα is compact. By the Arzeli-Ascoli theorem this follows if Kα is a bounded set of
equicontinuous functions. For the equicontinuity, notice that if f ∈ Kα, then the continuous function
f is differentiable almost everywhere, and for all 0≤ s < t ≤ 1 and j = 1,2, ...,d,

Λ
?
j(

f j(t)− f j(s)
t− s

)≤ 1
t− s

∫ t

s
Λ
?
j(

˙f j(θ))dθ≤ α

t− s
.

Since Λ?
j(x)≥M|x|−{Λ j(M)∨Λ j(−M)} for all M > 0, it follows that for all (t− s)≤ δ,
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1.3. SAMPLE PATH LARGE DEVIATIONS

| f j(t)− f j(s)| ≤
1
M
(α+δ{Λ j(M)∨Λ j(−M)}). (1.41)

Since Λ j(.) is continuous on R, there exist M j = M j(δ) such that Λ j(M j)≤ 1/δ and Λ j(−M j)≤ 1/δ, and
limδ→0M j(δ) = ∞. Hence, ε(δ) := max j=1,...,d(α+ 1)/M j(δ) is a uniform modulus of continuity for the
set Kα. Finally, Kα is bounded by regarding equation (1.41) and taking for instance s= 0 and δ= 1.

Having proved the lemma’s 2-5 we can now prove the theorem which we set out to prove in the
beginning, namely Mogulskii’s theorem.

Proof of Mogulskii’s Theorem. From lemma 4 we know that the {µ̃n} satisfies the LDP in X . The domain
DI ⊂C0([0, 1]), and µ̃n(C0([0, 1])) = 1 for all n. It follows now from lemma 2 that the LDP for {µ̃n} also
holds in the space C0([0, 1]) equipped with the topology induced by X . This topology is the pointwise
convergence topology. It is generated by the sets Vt,x,δ := {g ∈C0([0, 1]) : |g(t)− x|< δ} with t ∈ (0, 1],
x ∈ Rd and δ > 0. Each Vt,x,δ is an open set under the supremum norm, i.e. the supremum norm
topology is a stronger topology than the pointwise convergence topology. Now the exponential
tightness of the {µ̃n} in C0([0, 1]) equipped with the supremum norm topology (by lemma 5) together
with corollary 1 allows the strengthening of the LDP on C0([0, 1]) equipped with the supremum norm
topology. Because C0([0, 1]) is a closed subset of L∞([0, 1]) this same LDP holds also in L∞([0, 1]) by
using again lemma 2 (now in the opposite direction). The LDP for {µn} in the metric space L∞([0, 1])
follows from the one for {µ̃n} by using the exponential equivalentness of the two sets of measures
and using theorem 3.

Mogulskii’s Theorem can be extended to the laws νε of

Yε(t) = ε

[ t
ε
]

∑
i=1

Xi, 0≤ t ≤ 1. (1.42)

Now Zn(t) and µn(t) correspond to the special case where ε = n−1. The extension can be proved by
showing that the measures of µn(t) and νε are exponentially equivalent and using theorem 3. For the
full proof see [1], p.183.

1.3.2 Large Deviations of Brownian Motion Paths

A well-known stochastic process is of course the standard Brownian Motion. For this process we
can look for an LDP as well. We consider a sequence of Brownian motions scaled with parameter ε

in order to get a converging sequence when ε→ 0. Let {wt , t ∈ [0, 1]} denote a standard Brownian
motion in Rd . Now the scaled process is defined as follows:

wε(t) =
√

εwt (1.43)

where we let vε be the probability measures induced by wε(t) on C0([0, 1]). It can be shown that an
exponential equivalent process to wε(t) is the process Yε(t) in (1.42) for a particular choice of the Xi.
But first we state the theorem below for the LDP of the process stated in (1.43).

Let H1 := {
∫ 1

0 f (s)ds : f ∈ L2([0, 1])} denote the space of all absolutely continuous functions with
square integrable derivative equipped with the norm ||g||H1 = [

∫ 1
0 |ġ(s)|2ds]

1
2 . The following theorem

holds.

Theorem 5 (Schilder). {νε} satisfies, in C0([0, 1]), an LDP with the good rate function

Iw(φ) =

{
1
2
∫ 1

0 |φ̇(t)|2dt, φ ∈ H1

∞ otherwise.
(1.44)
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1.3. SAMPLE PATH LARGE DEVIATIONS

Proof. Define the process

ŵε(t) := wε(ε[
t
ε
])

Note that if we let {Xi} be a collection of i.i.d. N (0, 1) random variables, we have for t ∈ [0, 1] and
ε > 0,

ŵε(t) =
√

εw(ε[
t
ε
]) = εN (0, [

t
ε
]) = ε

[ t
ε
]

∑
i=1

Xi.

So this is merely the process Yε(.) defined in (1.42) where the Xi are standard normally distributed. So
from the above we know now that the probability measures corresponding to ŵε(.) satisfy the LDP
in L∞([0, 1]) with the good rate function I(.) stated in Theorem 4. We have, for the standard normal
variables considered here,

Λ(λ) = logE[e〈λ,X1〉] =
1
2
|λ|2,

from which it follows that, for each x ∈ Rd

Λ
?(x) = sup

λ∈Rd
{〈λ, x〉− 1

2
|λ|2}

This supremum is easy to compute by looking at each component separately . In this case we want
to find supλ∈R{λx− 1

2 λ2}. Taking the derivative with respect to λ and equating to zero gives us λ = x.
As this holds for every component we can write now,

Λ
?(x) =

1
2
|x|2.

Hence, from this it follows that DI = H1 (square integrable derivative), and the rate function I(.) of
Theorem 4 specializes to Iw(.) of (1.44). It remains to show the exponential equivalentness of the
measures of ŵε and wε as then we have the LDP for wε by Theorem 3 in L∞([0, 1]). Now this can be
restricted to C0([0, 1]) by lemma 2 as wε(.) ∈C0([0, 1]) with probability one.

For the exponential equivalence of the measures we look at P(||wε− ŵε|| ≥ δ) , δ > 0. Observe that for
t ∈ {kε : k ∈ N} the two processes are equal. For this we only have to consider t ∈ [0, ε]. Furthermore,
ŵε stays constant in this interval of time and starts at the same point as wε. As t ≤ 1 we have at most
([1/ε]+1) intervals to consider, and hence we can write for any δ > 0,

P(||wε− ŵε|| ≥ δ)≤ ([1/ε]+1)P( sup
0≤t≤ε

|wε(t)| ≥ δ)

Next we make use of an inequality we will state here but leave the proof to the reader (it also can be
found in [1], p.185). We have that for any integer d and any τ,ε,δ > 0,

P( sup
0≤t≤τ

|wε(t)| ≥ δ)≤ 4de−δ2/2dτε. (1.45)

Using the above inequality (1.45) we find the following,

P(||wε− ŵε|| ≥ δ)≤ 4d(ε−1 +1)e−δ2/2dε2

Taking the logarithm, multiplying by ε and taking the limit supremum for ε→ 0 gives us now,

limsup
ε→0

ε logP(||wε− ŵε|| ≥ δ) =−∞.

This concludes the proof of the Schilder Theorem.
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1.4 Projective limits and the Dawson Gärtner Theorem

Projective limits in the context of Large Deviations are used to lift a collection of LDPs in “small” finite
dimensional spaces into the LDP of some “large” space X . The idea is to identify X with the projec-
tive limit of a family of spaces {Y j} j∈J . Now it seems likely that the LDP will hold for a given family
{µε} of probability measures on the space X if the LDP holds for any projection of µε to {Y j} j∈J . We
will see this is indeed the case and it is stated in the Dawson Gärtner Theorem. The Dawson Gärtner
Theorem is also proved below.

We will first define the notion of a projective limit. Let (J,≤) be a partially ordered, possibly un-
countable, right filtered set (the latter means that for any i, j ∈ J there exist a k ∈ J such that both i≤ k
and j ≤ k). A projective system (Y j, pi j)i≤ j∈J consists of Hausdorff topological spaces {Y j} j∈J and
continuous maps pi j : Y j→ Y〉 such that for i≤ j≤ k, pik = pi j ◦ p jk. The projective limit of this system,
denoted by X = lim←−Y j, is the subset of the topological space Y = ∏ j∈J Y j consisting of all the elements
x=(y j) j∈J for which yi = pi j(y j) whenever i≤ j equipped with the topology induced by Y . We already
encountered projective limits in the proof of lemma 4 and lemma 6. In this case we wrote the space
X of all functions f : [0, 1]→ Rd with f (0) = 0 equipped with the pointwise convergence topology
as the projective limit of {(Rd)| j|} j∈J . With (Rd)| j| we can imagine that we take | j| time values from
a fucntion mapping to Rd . As stated in the proof of lemma 4 we can define a partial order and the
projections pi j in a natural way such that the projective limit of {(Rd)| j|} j∈J exactly yields the space X .

Now we will state the Contraction Princicple. This Theorem shows that the LDP is preserved under
a continuous mapping f : X → Y between two Hausdorf topological spaces X and Y . This Theorem
is used in the proof of Lemma 6, furthermore it is used to proof the Dawson Gärtner Theorem below.

Theorem 6 (Contraction Principle). Let X and Y be Hausdorf topological spaces and f : X → Y a contin-
uous function. Consider a good rate function I : X → [0, ∞].
(a) For each y ∈ Y , define

I
′
(y) := inf{I(x) : x ∈ X , y = f (x)}. (1.46)

Then I
′
is a good rate function on Y , where as usual the infimum over the empty set is taken as ∞.

(b) If I controls the LDP associated with a family of probability measures {µε} on X , then I
′

controls the LDP
associated with the family of probability measures {µε ◦ f−1} on Y .

Part (b) of the Contraction Principle can be used in the proof of the Dawson-Gärtner Theorem which
we will state and prove now. The proof of the Contraction principle can be found in [1], p.126.

Theorem 7 (Dawson-Gärtner Theorem). Let µε be a family of probability measures on X , such that for any
j ∈ J the Borel probability measures on µε ◦ p−1

j on Y j satisfy the LDP with good rate function I j(.). Then {µε}
satisfies the LDP with good rate function

I(x) = sup
j∈J
{I j(p j(x))}, x ∈ X . (1.47)

Proof of Dawson-Gärtner Theorem. As I j(.) is nonnegative, clearly I(x) is nonnegative. For any α ∈
[0, ∞) and j ∈ J, let ψI j(α) denote the compact level set of I j, i.e. ψI j(α) := {y j : I j(y j)≤ α}. Note that
for any i ≤ j ∈ J, pi j : Y j → Yi, is a continuous map and µε ◦ p−1

i = (µi ◦ p−1
j )◦ p−1

i j . Now we can, with
the help of the Contraction Principle, relate the rate functions Ii and I j. namely, by the Contraction
Principle, the rate function Ii in a point yi is the infimum of the rate function I j taken over all the points
y j that map to yi, i.e. Ii(yi) = in fy j∈p−1

i j (yi)
I j(y j). Or, equivalently, we can write ψIi(α) = pi j(ψI j(α)).

Therefore,

ψ j(α) = X ∩∏
j∈J

ψI j(α) = lim←−ψI j(α). (1.48)
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And I(x) is a good rate function as the projective limit of compact subsets of Y j, j ∈ J, is a compact
subset of X (by Tychonoff’s Theorem).

Now that we know I(x) is a good rate function we will show the bounds hold. First, to show the
lower bound, it suffices to show that for every measurable set A ⊂ X and each x ∈ A◦, there exists a
j ∈ J such that

liminf
ε→0

ε logµε(A)≥−I j(p j(x)).

Because then surely ,

liminf
ε→0

ε logµε(A)≥− sup
j∈J
{I j(p j(x))}= I(x) ∀x ∈A◦.

Since the collection {p−1
j (U j) : U j ⊂ Y j is open} is a base of the topology of X , there exists some j ∈ J

and an open set U j ∈ Y j such that X ∈ p−1
j (U j)⊂A◦. Thus, by using the large deviations lower bound

for {µε ◦ p−1
j } (second inequality below),

liminf
ε→0

ε logµε(A)≥ liminf
ε→0

ε log(µε ◦ p−1
j (U j))

≥− inf
y∈U j

I j(y)≥−I j(p j(x)),

as desired.

Considering the large deviations upper bound, fix a measurable set A⊂ X and let A j := p j(A). Then
Ai = pi j(A j) for any i≤ j, implying that pi j(A j)⊆Ai (since the pi j are continuous). Hence, A⊆ lim←− A j.
To prove the inverse inclusion, assume x in not an element of A, i.e. x ∈ (A)c. We need to show that
now also p j(x) /∈A j for some j ∈ J. Since (A)c is an open subset of X , there exists some j ∈ J and an
open set U j ⊆ Y j such that x ∈ p j−1(U j)⊆ (A)c. Hence, for this value of j, p j(x) ∈U j ⊆Ac

j, implying
that p j(x) /∈A j.
From the above two inclusions it follows A = lim←−A j.

Combining this identity with (1.48), it follows that for every α < ∞,

A∩ψI(α) = lim←−(A j ∩ψI j(α)).

Now fix α < in fx∈AI(x), for which A∩ψI(α) = /0. Now it also must hold that A j ∩ψI j(α) = /0 for some
j ∈ J (by Theorem B4 in [1], p.346). Therefore, as A ⊆ p−1

j (A j), by the LDP upper bound associated
with the Borel measures {µε ◦ p−1

j },

limsup
ε→0

ε logµε(A)≤ limsup
ε→0

ε logµε ◦ p−1
j (A j)≤− inf

x∈A j

I j(x)≤−α.

This inequality holds for every measurable A and α<∞ such that A∩ψI(α)= /0. Note that A∩ψI(α)=
/0 means that A ⊆ (ψI(α)

c. We see from (1.6) that this yields the LDP upper bound for {µε}. Which
proves the Dawson-Gärtner Theorem.

1.5 Short Summary and Conclusion

We have seen that for many different measures often a Large Deviation Principle (LDP) exists. This
principle describes bounds using a so called rate function for the measures µn or more generally µε

if n→ ∞ or ε→ 0 respectively. In the case of finite dimensions we have looked at the LDP of the
empirical mean of independently an identically distributed random variables. Here it was seen that
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the rate function was equal to the Fenchel-Legendre transform of the logarithmic moment generating
function of the stochastic variables. Later, with Gärtner-Ellis theorem, it was shown that it is not
needed for the variables to be i.i.d. but that whenever a less restrictive condition (assumption 1)
for the measures holds the above LDP holds. After this the large deviation behaviour of stochastic
processes was analysed with as main result the Theorem of Mogulski. This theorem deals with the
process,

Zn(t) =
1
n

|nt|

∑
i=1

Xi, 0≤ t ≤ 1

Where the Xi are again assumed to be i.i.d.. In this case rate functions are functionals that have a
function φ as argument. Mogulski’s theorem states that he rate function I(φ) that describes the LDP
for the measures corresponding to the process of Zn is the integral with respect to time over the
Fenchel-Legendre transform of the logarithmic moment generating function of Xi evaluated at the
time derivative of φ(t). The proof of Mogulski relies on the finite dimensional result using projective
limits. Namely, first the LDP can be derived for the sequence of laws {µ̃n ◦ p−1

j }, where p j projects any
function f : [0, 1]→ Rd to a finite vector of elements of this function evaluated at a finitely ordered
subset of time points. Subsequently the LDP can be shown to hold for µ̃n on the space of all functions
f : [0, 1]→ Rd by applying the Dawson-Gärtner theorem. The Mogulski Theorem is later used for
the proof of the Schilder theorem which deals with the LDP for (scaled) Brownian motion paths. It
is shown that a process, exponentially equivalent to the scaled Brownian motion process, is a special
case of the process where Mogulski Theorem deals with.

In the chapter below the connection is shown between Lagrangian and Hamiltonian dynamics and
Large Deviation Theory. We have seen that the rate function for stochastic processes has an integral
form. As it turns out, this rate function can be identified with the so called Action integral in La-
grangian dynamics. In large deviation theory we looked at the infimum of this rate function over
all functions in some set we are looking at (for instance all paths starting at a point a end ending
in a point b). This can be identified with the Principle of least action in the context of Lagrangian
dynamics as will be discussed below.
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Chapter 2

Langrangian and Hamiltonian dynamics
and the connection with LDT

2.1 Introduction

Langrangian and Hamilton dynamics are different ways to look at the famous equation of motion
given by Newton’s second law F = ma and do mechanics. As we know, Mechanics deals with the
motion of particles. A big advantage of the Lagrangian and Hamiltonian formalism is that the equa-
tions of motion hold in any coordinate system (not only in inertial frames of reference). As was briefly
mentioned, there is a nice connection between Lagrangian and Hamiltonian dynamics and Large De-
viation Theory. This will be used in our final chapter to analyse the Large Deviation behaviour of
a particular stochastic process. This process is given by the empirical distribution of n independent
copies of a continuous-time Markov chain with two states. The first part of this chapter follows to
some extent the book Classical Dynamics by David Tong, later referred to by [3]. First a very brief
introduction in Newtonian mechanics is given in order to define the basic quantities used in the rest
of this chapter and to show how the Lagrangian and Hamiltonian equations arise from Newton’s
equation. After this the Lagrangian and Hamiltonian formalism respectively are explained. In sec-
tion 2.3 the connection between Lagrangian and Hamiltonian dynamics on the one hand and Large
Deviation Theory on the other hand is explained and clarified using examples with the Brownian
motion process.

2.2 Newtonian Mechanics, a very brief introduction

Lets look at a system of N particles. Particle i has mass mi and position ri. Newton’s Law now reads:

Fi = ṗi. (2.1)

Where pi = mṙi is the momentum of the ith particle. We assume that m doesn’t depend on t. The
total kinetic energy of this system of particles is T = 1

2 ∑i miṙi · ṙi. We can write the time derivative of
T as follows dT

dt = ∑i miṙir̈i = ∑i(F
ext
i +∑ j 6=i Fi j) · ṙi

1. The change in total kinetic energy in the system of
particles between times t1 and t2 is given by,

T (t2)−T (t1) =
∫ t2

t1

dT
dt

dt =
∫ t2

t1
∑

i
(Fext

i +∑
j 6=i

Fi j) · ṙi dt = ∑
i

∫ r2

r1

Fext
i ·dr+∑

i
∑
j 6=i

∫ r2

r1

Fi j ·dr (2.2)

We will, in this chapter, assume we deal with conservative forces. We show that then necessarily the
total energy of the system is conserved. Note that for conservative forces we can write,

1Here we split up the force in an external force Fext
i and forces of the particles in the system that are acting upon each

other
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Fext
i =−∇iVi(r1, ...,rN)

Fi j =−∇iVi j(r1, ...,rN)
(2.3)

for some potential Vi and internal potentials Vi j. To get Newton’s third law Fi j =−F ji to hold togehter
with the requirement that these forces are parallel with the vector (ri− r j), the internal potentials
should satisfy Vi j =Vji and Vi j =Vi j(|ri−r j|). Where the latter means that the internal potential Vi j only
depends on the distance between the ith and the jth particle. Furthermore we restrict Vi(r1, ...,rN) =
Vi(ri), which means that the external force on the ith particle does not depend on the positions of the
other particles. Using this and filling (2.3) in (2,2), we get,

T (t2)−T (t1) = ∑
i

∫ r2

r1

−∇iVi(ri) ·dr+∑
i

∑
j 6=i

∫ r2

r1

−∇iVi j(|ri− r j|) ·dr =

−∑
i
(Vi(t2)−Vi(t1))−∑

i
∑
j 6=i
(Vi j(t2)−Vi j(t1)) =

−(∑
i

Vi(t2)+∑
i

∑
j 6=i

Vi j(t2))+(∑
i

Vi(t1)+∑
i

∑
j 6=i

Vi j(t1)) =−V (t2)+V (t1)

From which it follows that,

V (t1)+T (t1) =V (t2)+T (t2)≡ E (2.4)

Where E is the energy of the system, which we see here is a conserved quantity. This is basic Newto-
nian mechanics. When all forces are known the paths can be calculated. In the next section we will
explain Langrangian mechanics and the Principle of least action. Here the vector notation is changed
in favour of a more general coordinate system.

2.3 Langrangian and Hamiltonian Mechanics

2.3.1 The Lagrangian Formalism

As in the above, let us assume we have a system of N particles with coordinates ri for the ith particle.
We can rewrite the positions of these N particles by taking 3N coordinates xi with i ∈ {1,2, ..,3N}.
Now Newton’s equation read,

ṗi =−
∂V
∂xi

(2.5)

Where pi =miẋi. This can be associated with a 3N dimensional space known as configuration space C.
One point in C specifies all positions of the N particles and a path in C corresponds with the dynamics
of this system of particles. Now we define the Langrangian L(xi, ẋi) of this system of particles, which
is a function of the positions xi and velocities ẋi.

Definition 5 (Langrangian).
L(xi, ẋi) = T (ẋi)−V (xi) (2.6)

Where as in the above T (ẋi) is the kinetic energy of xi and V (xi) the potential energy of xi. Langrangian
mechanics now makes use of the so called Principle of Least Action. This is equivalent to Newton’s
equations but another way of looking at this. Namely, we will see that the path taken by the system
of particles is the one that minimizes the action S (as defined below). The action can be seen as a cost
calculated for each path, the path with the lowest cost is the path that will be taken by the system2.

2It does not necessarily have to be the minimum cost, but an extremum. In practice it often is a minimum hence the
name Principle of Least Action

24



2.3. LANGRANGIAN AND HAMILTONIAN MECHANICS

Definition 6 (Action). Let ti and t f be the initial and final time respectively. Let xi(ti) := xinitial
i be the initial

position and xit f := x f inal
i the final position. The Action of the system in this time period for the paths xA(t) is

given by,

S[xi(t)] =
∫ t f

ti
L(xi(t), ẋi(t))dt. (2.7)

Theorem 8 (Principle of Least Action). The actual path taken by xi is an extremum of S.

Proof. Consider the path xi(t) starting at xinitial
i and ending at x f inal

i . We consider now the slightly
varied path, xi(t)→ xi(t)+δxi(t). But we fix the endpoints so that δxi(ti) = δxi(t f ) = 0. Now the change
in action is,

δS = δ[
∫ t f

ti
Ldt] =

∫ t f

ti
δLdt

=
∫ t f

ti

∂L
∂xi

δxi +
∂L
∂ẋi

δẋidt

=
∫ t f

ti
(

∂L
∂xi
− d

dt
(

∂L
∂ẋi

))δxidt +[
∂L
∂ẋi

)δxi]
t f
ti

=
∫ t f

ti
(

∂L
∂xi
− d

dt
(

∂L
∂ẋi

))δxidt

Where for the next to last equality we used integration by parts and for the last equality the fact that
δxi(ti) = δxi(t f ) = 0. Now if S would be at an extremum we would have δS = 0. This holds if and only
if

∂L
∂xi
− d

dt
(

∂L
∂ẋi

) = 0. (2.8)

Now note that ∂L
∂xi

=− ∂V
∂xi

and ∂L
∂ẋi

= pi. So (2.8) is equivalent with

d
dt

pi =−
∂V
∂xi

And this is exactly Newton’s equation. So we see that the action is an extremum if and only if
Newton’s equation hold and the proof is complete.

Now the proof holds of course for all paths {xi : i = 1, ..,3N}. The equations holding for all i ∈
{1, ...,3N} in (2.8) are called the Euler-Lagrange equations. These equations hold in any coordi-
nate system which follows directly from the action principle as this is a statement about paths and
not about coordinates. This means the Euler-Lagrange equations also hold in non-inertial reference
frames (for instance rotating frames of reference) as opposed to Newton’s equations.

2.3.2 The Hamiltonian Formalism

Note that with the Euler-Lagrange equations we have 3N second order differential equations (for
every general coordinate xA an equation). The Hamiltonian approach transforms this in a problem
where 6N first order differential equations have to be solved. In the following, we assume with-
out loss of generality we deal with N general coordinates. Recall that we have for the generalised
momenta,

pi =
∂L
∂ẋi

i ∈ {1,2, .., N}. (2.9)

Now if we rewrite the Euler-Lagrange equation with these generalised momenta we get,

ṗi =
∂L
∂xi

i ∈ {1,2, .., N}. (2.10)
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The idea is to remove ẋi in favour of pi. Note that the pair {xi, pi}i∈{1,..,N} determines the state of the
system. That is, the positions of the particles at moment t but also the future evolution of the system.
The pair {xi, pi}i∈{1,..,N} is a point in 6N-dimensional space, the so called phase space. Note that paths
in this space can never cross as one point in this space also determines the future evolution.

The Legendre Transform

We will define the Hamiltonian as the Legendre transform of the Lagrangian with respect to ẋi. Con-
sider an artbitrary two-dimensional function f (x,y). Define now u(x,y) = ∂F

∂x . The Legendre transform
Lx[ f (x, y)] := g(u,y) of f (x,y) with respect to x is now given by,

Lx[ f (x, y)] := g(u,y) = ux(u,y)− f (x(u,y),y). (2.11)

The geometrical interpretation of the Legendre transform is that for fixed y we take for every value u
the maximal distance between the curves ux and f (x,y). This is easily seen by noting that maximizing
this distance we have,

d
dx

(ux− f (x)) = 0 =⇒ u =
∂ f
∂x

.

In order to be able to have an inverse of the Legendre transform we need that the function on which
the Legendre transform is applied is convex. From the above it follows that we can also define the
legendre transform Lx[ f (x, y)] as,

Lx[ f (x,y)] := sup
x
[ux− f (x, y)] (2.12)

Such that it is not necessary to explicitly calculate the partial derivative ∂ f
∂x = u and inverting this to

write x as a function of u and y. Note that the two definitions (2.11) and (2.12) are the same when the
supremum in (2.12) is a maximum.

Taking the Legendre transform doesn’t lead to losing information. We can get the original function
f (x, y) back from the Legendre transform g(u, y). The way to do this is to take again the Legendre
transform of the Legendre transformed function. Note that:

∂g
∂u

= u
∂x
∂u

+ x(u, y)− ∂ f
∂x

∂x
∂u

= x(u, y) (2.13)

Where we used the chain rule and the fact that u = ∂ f
∂x . Furthermore, we have:

∂g
∂y

= u
∂x
∂y
− ∂ f

∂x
∂x
∂y
− ∂ f

∂y
=−∂ f

∂y
(2.14)

Now note that taking the Legendre transform of g(u, y) with respect to u gives:

L2
x [ f (x, y)] = Lu[g(u, y)] =

∂g
∂u

u(x,y)−g(u(x, y), y) = xu(x, y)− [xu(x, y)− f (x, y)] = f (x, y) (2.15)

Which shows that applying the Legendre transform twice gives back the original function.

The Hamiltonian and the Hamilton equations

Now we will define the Hamiltonian to be the Legendre transform of the Lagrangian. Applying the
Legendre transform on the Lagrangian with respect to the ẋi variables, we get,

H(xi, pi, t) = ∑
i

∂L(xi, ẋi, t)
∂ẋi

ẋi−L(xi, ẋi, t) = ∑
i

piẋi−L(xi, ẋi, t) (2.16)

We remove ẋi from the above equation in favour of pi. Note that we can always write ẋi as a function
of xi, pi and t because pi =

∂L
∂ẋi

= pi(xi, ẋi, t) which we can invert to write ẋi as a function of xi, pi and t.
Now looking at the variation of H we get,
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dH = (ẋid pi + pidẋi)− (
∂L
∂xi

dxi +
∂L
∂ẋi

dẋi +
∂L
∂t

dt)

= ẋid pi−
∂L
∂xi
− ∂L

∂t
dt.

(2.17)

On the other hand we can write the variation of H as,

dH =
∂H
∂xi

dxi +
∂H
∂p

d p+
∂H
∂t

dt. (2.18)

Equating terms gives the following,

ṗi =
∂L
∂xi

=−∂H
∂xi

ẋi =
∂H
∂pi

−∂L
∂t

=
∂H
∂t

(2.19)

Where we used (2.10) above. These equations are the Hamilton equations. Going from the Euler-
Lagrange to the Hamilton equations we have replaced n second order differential equations for xi

by 2n first order differential equations for xi and pi. Note that from (2.15) it follows that taking the
legendre transform of the Hamiltonian H(xi, p, t) with respect to p we get back the Lagrangrian.
The Hamiltonian is associated with the energy E of the system and is assumed constant over time
(conservation of energy). Indeed, we see that using (2.19),

∂E
∂t

=
∂

∂t
H(xi, p, t) = ∑

i

∂H
∂xi

ẋi +
∂H
∂pi

ṗi = ∑
i
−ṗiẋi + ẋi ṗi = 0 (2.20)

So in the remaining of this chapter we can write the Hamiltonian H(xi, p) without time dependence.

Maupertuis principle

We use the last part of this paragraph to write the action defined in (2.7) in another way, that will be
usefull later on, using the Hamiltonian. We look at a one-dimensional system (but it is easily gener-
alised to n dimensions) with the positiion and velocity indicated at time t by γt and t γ̇t respectively.
Now we can write the Hamiltonian as follows,

H(γt , p) = pγ̇t −L(γt , γ̇t , t). (2.21)

Integrating between the starting time to = 0 and t f = T we get,∫ T

0
H(γt , p)dt =

∫ T

0
pγ̇tdt−

∫ T

0
L(γt , γ̇t , t)dt. (2.22)

Note that we have seen in (2.20) that H(γt , p, t) := E is constant over time. Furthermore, we recognize∫ T
0 L(γt , γ̇t , t)dt as the action ST [γt ]. So we can write equation (2.22) as follows:

ET =
∫ T

0
pγ̇tdt−ST [γt ]. (2.23)

Rearranging terms, we get,

ST [γt ] =
∫ T

0
pγ̇tdt−ET =

∫ T

0
pdγt −ET (2.24)

Now we see that when the energy is conserved, minimizing
∫ T

0 pγ̇tdt is equivalent with minimizing
the Action. This is known as Maupertuis principle.

27



2.4. THE CONNECTION WITH LARGE DEVIATION THEORY

2.4 The connection with Large Deviation Theory

In chapter 1 we have seen that for sample path large deviations, we can write (in a somewhat sugges-
tive notation) the probability of a random process {Zn(t)}, for which the LDP holds with rate function
I, between times ti = 0 and t f = 1 following a path γt in the set Γ as,

P(Zn(t) ∈ Γ)' e−n infγt∈Γ

∫ 1
0 L(γs, γ̇s)ds. (2.25)

So the rate function I(γt) is equal to the integral
∫ 1

0 L(γs, γ̇s)ds. Note that the probability is determined
by the path that minimizes this integral. Minimizing this integral gives namely the path with the
highest probability. This corresponds exactly with minimizing the Action in order to find the path
that is taken by the system. So we can also see the integral

∫ 1
0 L(γs, γ̇s)ds as the Action. Now lets

assume we want to find the path γt that is most likely given that γti = A and γt f = B. Let Γ contain all
possible paths between A and B. We want to find,

inf
γt∈Γ

∫ 1

0
L(γs, γ̇s)ds. (2.26)

So (2.26) shows we are looking at an extremum of the action S[γt ]. Lagrangian and Hamiltonian dy-
namics tell us now that this path has to satisfy the Euler-Langrange equations and the Hamiltonian
equations respectively. This can be used to find the path γt .

In the special case of Mogulskii’s theorem we have,

P(Zn(t) ∈ Γ)' e−n infγ̇t∈Γ

∫ 1
0 Λ?(γ̇s)ds, (2.27)

For the process Zn(t) defined in (1.31). In this case, when we want to find the most likely path between
A and B we look for,

inf
γt∈Γ

∫ 1

0
Λ
?(γ̇s))ds. (2.28)

Which we again can see as the extremum of the action S[γt ] =
∫ 1

0 Λ?(γ̇s)ds with the Lagrangian Λ?(γ̇s)
(which in this case only depends on γ̇s). In the below we will give an example where we calculate the
most likely Brownian path between the points A and B. This example is illustrative as all values can
be computed explicitly.

Example 1 (Brownian Motion). We look at the process wε(t) as defined in (1.43). Let Γ be the sets of all
paths γt of wε(t) such that γ0 = A and γ1 = B. Now we know from Schilder’s Theorem (Theorem 5) that,

P(wε(t) ∈ Γ)' e−n infγt∈Γ
1
2
∫ 1

0 |γ̇s|2ds (2.29)

So we want to find,

inf
γt∈Γ

1
2

∫ 1

0
|γ̇s|2ds. (2.30)

So we have L(γs, γ̇s) =
1
2 γ̇2

s . We can find the extremum of the action by solving the Euler-lagrange equations
(2.8). We find:

0 =
∂L
∂γt

=
d
dt
(

∂L
∂γ̇t

) = γ̈t

This means the time derivative of the optimal path γ?t is a constant. And we have γ?t =C1t +C2.

To find the values for C1 and C2 we can use the conditions that γ?ti = A and γ?t f
= B. Let ti = 0 and t f = T where

T is some positive constant. Filling in the beginpoint we find that C2 = A. Filling in the endpoint we must
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have that C1 =
B−A

T . So the optimal traject for a Brownian motion between the points A and B, i.e. the traject
with the lowest cost, is given by,

γ
?
t = A+

B−A
T

t. (2.31)

A second way to calculate this optimal trajectory is by using the Hamiltonian equations. Note that ∂L
∂γ̇t

= γ̇t , so
by (2.9) we have pt = γ̇t and we can write using (2.21):

H(γt , pt) = p2
t −L(γt , γ̇t) = p2

t −
1
2

γ̇
2
t = p2

t −
1
2

p2
t =

1
2

p2
t . (2.32)

From the Hamilton equations in (2,19) we find now that,

ṗt =−
∂H
∂γt

= 0

γ̇t =
∂H
∂pt

= pt

From this we find that pt = p is a constant and that γt = pt+C1. Calculating the two constants p and C1 again
we of course find the same values, namely C1 = A and p = B−A

T , leading to the same optimal trajectory γ?t .

The Hamiltonian for stochastic processes

We have seen that the Hamiltonian is the Legendre transform of the Lagrangian. We will now show a
way to compute the Hamiltonian directly for a stochastic process Xn(t). This is often a good strategy
to find the Lagrangian of a stochastic process and with this the action integral. We have seen in
example one that we could derive the Lagrangian directly for the Brownian motion process using
Schilder’s Theorem. For general processes however such an easy derivation does not exist and the
best way for computing the Lagrangian is by taking the legendre transform of the Hamiltonian. This
Hamiltonian can be found by the method shown below. For this we first state the following lemma.

Lemma 8 (Varadhan). Let the measures {µn} satisfy the LDP on X with rate function I. Let F : X → R be a
continuous function that is bounded from above. Then,

lim
n→∞

1
n

log
∫

X
enF(x)dµn(x) = sup

x∈X
[F(x)− I(x)]. (2.33)

The proof of this lemma can be found in [2], p.32. Now let Xn(t) be a stochastic process for which the
LDP holds with rate function I(.), and we assume Xn(0) = x. The Hamiltonian H(xt , pt) of this process
can be calculated as follows:

H(x, p) = lim
n→∞

lim
T→0

1
nT

logEx[en(Xn(T )−Xn(0))p] (2.34)

Where Ex[.] := E[.|Xn(0) = x]. This can be seen as follows. Take F(γ) = (γT − γ0)p. By Varadhan’s
lemma we have that,

lim
n→∞

1
n

logEx[en(Xn(T )−Xn(0))p] = sup
γ

[(γT − γ0)p− I(γ)]

= sup
γ

[
(γT − γ0)p−

∫ T

0
L(γs, γ̇s)ds

]
.

Note that for small T this is approximately equal to,

sup
γ

[
(γT − γ0)p−

∫ T

0
L(γs, γ̇s)ds

]
≈ sup

γ̇

[T γ̇0 p−T L(γ0, γ̇0)]
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Dividing by T and taking the limit of T → 0 we get,

lim
n→∞

lim
T→0

1
nT

logEx[en(Xn(T )−Xn(0))p]

= lim
T→0

1
T

sup
γ̇

[T γ̇0 p−T L(γ0, γ̇0]

= lim
T→0

sup
γ̇

[γ̇0 p−L(γ0, γ̇0]

= sup
ẋ
[pẋ−L(x, ẋ)]

(2.35)

Where in the last equality we replaced γ̇0 by ẋ. So we see, as we have at the right part in the above
equation the Legendre transform of the Lagrangian with respect to ẋ (i.e. the Hamiltonian) that
equation (2.34) holds. To come back to the example of the Brownian motion above. Another way we
could compute the Hamiltonian is by using (2.34). We will do this in the following example.

Example 2 (Brownian Motion revisited). We have again the process wε(t) = 1√
ε
w(t), where w(t) is a stan-

dard Brownian motion. We will now directly compute the Hamiltonian by using (2.34). We have,

H(x, p) = lim
ε→0

lim
T→0

1
T ε

logEx[eεwε(T )p] = lim
ε→0

lim
T→0

1
T ε

logEx[e
√

εw(T )p] (2.36)

We used that wε(0) = 0. Now, using the fact that
√

εw(T ) is a normally distributed random variable with
expectation 0 and variance εT together with the fact that the moment generating function (MGF) of a normally
distributed random variable X with mean µ and standard deviation σ is given by:

MGF := Ex etX = eµT+ 1
2 σ2t2

,

we have,

lim
ε→0

lim
T→0

1
T ε

logEx[e
√

εw(T )p2
] = lim

ε→0
lim
T→0

1
T ε

loge
1
2 εT p2

= lim
ε→0

lim
T→0

1
T ε

1
2

εT p2 =
1
2

p2.

(2.37)

So taking (2.36) and (2.37) together we have,

H(x, p) =
1
2

p2 (2.38)

And from this the Lagrangian can be obtained by noting that it is the Legendre transform of the Hamiltonian
with respect to p. So we have,

L(γs, γ̇s) = sup
p
[pγ̇s−H(x, p)] (2.39)

To calculate this we fill out H(x, p), take the derivative with respect to p and equating to zero.

∂

∂p
[pγ̇s−

1
2

p2] = 0 =⇒ p = γ̇s

This leads to:

L(γs, γ̇, ys) =
1
2

γ̇
2
s (2.40)

So, as expected, we find the same Lagrangian and Hamiltonian as in example 1.
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Two-state continuous-time Markov processes

In the rest of this report we will look at the large deviation behaviour of a particular type of stochastic
process, namely the continuous-time Markov process with two states. Markov processes are charac-
terized by the property that, given the present state, the future is independent of the past. In other
words, let {X(t)} be a continuous-time stochastic process taking the value 1 or 2. The process {X(t)}
is a continuous time two-state Markov chain if for all s, t ≥ 0, 0≤ u < s and i, j, x(u) ∈ {1, 2},

P(X(t + s) = j|X(s) = i, X(u) = x(u)) = P(X(t + s) = j|X(s) = i)

Furthermore, we assume the Markov chain is time-homogeneous, i.e. P(X(t + s) = j|X(s) = i) is
independent of s. Now let Ti, i ∈ {1, 2} be the time that the process stays in state i before making a
transition. From the Markov property it now follows that,

P(Ti > s+ t|Ti > s) = P(Ti > t).

From this we see the random variable Ti is memoryless and thus exponentially distributed. We can
now define {X(t)} as a process going from state 1 to state 2 in exponential time with rate λ1 = γ and
from state 2 to state 1 with rate λ2 = 1. Note that without loss of generality we can assume that
λ2 = 1 as for the behaviour of the process only the relative rates matter. We are interested in the large
deviation behaviour of the trajectory of,

(µn
1, µn

2) = (
1
n

n

∑
i=1

I(Xi(t) = 1),
1
n

n

∑
i=1

I(Xi(t) = 2)). (2.41)

Here I is the indicator function. We see from this that µn
2 = 1−µn

1. For n→∞ the above trajectory goes
to a deterministic constant path, namely the path governed by the kolmogorov forward equations,

µ̇1 =−γµ1 +µ2

µ̇2 = γµ1−µ2
(2.42)

The above equations are very intuitive as we know that we go with rate λ from state 1 to state 2 and
with rate 1 from state 2 to state 1. Defining x := µ1− µ2 we can convert the above two first order
differential equations to one first order differential equation for x. Note that we easily retrieve the
values of µ1 and µ2 from x as we know that 1= µ1+µ2 and x= µ1−µ2. This gives µ1 =

1+x
2 and µ2 =

1−x
2 .

The differential equation for x becomes,

ẋ = µ̇1− µ̇2 =−2γµ1 +2µ2 =−(γ+1)x+(1− γ) (2.43)

Solving this equation and using the boundary condition that x0 = a, we get,

xt = (a− 1− γ

1+ γ
)e−(γ+1)t +

1− γ

1+ γ
(2.44)

This solution is the so-called typical path of x. Note that in the symmetric case (γ = 1), the typical path
is given by xt = ae−2t . We are interested in the Large Deviation behaviour if x follows atypical paths.
We see that we are dealing just like in the case of Cramer’s Theorem with the mean of a stochastic
variable I(Xi(t) = 1). However in this case the process is not continuous as I(Xi(t) = 1) fluctuates
between 0 and 1. We would like to be able to calculate the optimal paths for µµµn := (µn

1, µn
2) given that

we start in some point xxx0 and end in some point xxxT . That is, we would like to calculate the path
that has the highest probability of all paths between xxx0 and xxxT . For this, first we need to compute
the Hamiltonian of the process that jumps with rate γ from state xxx := ( i

n ,
n−i

n ) for some i ≤ n to state
yyy1 := ( i−1

n , n−i+1
n ) and with rate 1 from state xxx to state yyy2 := ( i+1

n , n−i−1
n ). We do this using (2.34). So we

know, the Hamiltonian is given by,

H(xxx, ppp) = lim
n→∞

lim
T→0

1
nT

log e−nxxx·pppExxx0 [e
nµµµn·ppp] (2.45)
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Now, taking T small enough we may assume at most one jump happens as the probability that
multiple jumps will happen goes to zero much more rapidly for T → 0. So we may write,

e−nxxx·pppExxx0 [e
nµµµn·ppp] = e−nxxx·ppp[enxxx·ppp(1−Pxxx,yyy1−Pxxx,yyy2 ])+ enyyy1·pppPxxx,yyy1 + enyyy2·pppPxxx,yyy2 ]. (2.46)

Now note that Pxxx,yyy1 , the probability that a jump occurs from state xxx to state yyy1 (i.e. the first jump goes
from state 1 to state 2), scales up to a constant with γ

i
n T . The probability that a jump occurs from state

xxx to state yyy2 (i.e. the first jump goes from state 2 to state 1) scales with (1− i
n)T . Note that µ1 =

i
n and

µ2 = (1− i
n). As we will later take the logarithm, the scaling constants will not matter, and we can fill

out the unscaled probabilities in (2.46) to obtain,

e−nxxx·pppExxx0 [e
nµµµn·ppp] = e−nxxx·ppp[enxxx·ppp(1− (γµ1 +µ2)T )+ enyyy1·pppγµ1T + enyyy2·pppµ2T ]

= [1+T
(

γµ1(enppp·(yyy1−xxx)−1)+µ2(enppp·(yyy2−xxx)−1)
)
].

(2.47)

Taking the logarithm and using the fact that log(1+T c)≈ T c+o(T ), we get,

log e−nxxx·pppExxx0 [e
nµµµn·ppp] = T (γµ1(enppp·(yyy1−xxx)−1)+µ2(enppp·(yyy2−xxx)−1)). (2.48)

Note that the inner product ppp ·(yyy1−xxx) is equal to ppp ·(−1
n ,

1
n) =

p2−p1
n . And the inner product ppp ·(yyy2−xxx)

is equal to ppp · (1
n ,−

1
n) =

p1−p2
n . Using this, dividing by T and taking the limit for T → 0 and n→ ∞ we

obtain:

H(xxx, ppp) = γµ1(ep2−p1−1)+µ2(ep1−p2−1). (2.49)

The above Hamiltonian will be used in the next chapter together with the derived Hamilton equa-
tions to determine the optimal paths of the two-state Markov jump process described above. For a
more rigorous derivation of the above Hamiltonian we refer to [8].

2.5 Conclusion

We have seen in this chapter that the Principle of Least Action governs the path that is taken by the
system as this is equivalent with Newton’s equation of motion. The Action of a certain path is the
Lagrangian of this path integrated over the time. The Principle of Least Action tells us that the path
that is taken is the path that is an extremum of the Action. This is exactly where the connection
with large deviation theory comes in. Here we also see that we look for a path that minimizes the
rate function as only this path has influence on the value of the measure on some set of (unlikely)
paths as we take the limit of n→ ∞. In other words, the probability of some set of (unlikely) paths is
governed by the most likely path in the set. So, the Rate Function can be identified with the Action
Integral. The Euler-Lagrange equations arising from the Principle of Least Action gives a system of
second order differential equations. In the Hamiltonian formalism this is converted using a Legendre
transform into a system of first order differential equations (but doubling the number of equations).
Via a Legendre transform we can move back and forth between the Lagrangian and Hamiltonian. In
section 2.4 a useful technique was shown to compute the Hamiltonian for stochastic processes. This
is later used to compute the Hamiltonian of the two-state continuous-time Markov process This is
the process we will analyse in the next chapter. Using the Hamiltonian and Hamilton equations we
can derive the optimal paths (most likely path of all the paths in the set). Furthermore the Action
Integral will be computed and the aymptotic behaviour of this Action Integral is analysed.
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Chapter 3

Research

3.1 Introduction

In this chapter we will go on with the large deviations of the optimal trajectories for the empirical
distribution of n independent 2-state Markov chains between starting time t = 0 and ending time
t = T , i.e. the optimal trajectories of,

(µn
1(t), µn

2(t) = (
1
n

n

∑
i=1

I(Xi(t) = 1),
1
n

n

∑
i=1

I(Xi(t) = 2)) 0≤ t ≤ T. (3.1)

Where, the {Xi(t), i = 1, ..,n} are independently distributed continuous time two-state Markov pro-
cesses flipping from state 1 to state 2 with rate λ and from state 2 to state 1 with rate 1. As we have
seen, in section 3 of the previous chapter (2.49), the Hamiltonian of the above process (Feng Kurtz
Hamiltonian) is given by,

H = γµ1(ep2−p1−1)+µ2(ep1−p1−2) (3.2)

We are interested in computing the optimal paths, i.e. the paths with the lowest action, for the pro-
cess defined in (3.1) between a starting point a and an ending point b. In the Brownian motion case
we have seen that this is just a straight line between starting and end point. The interpretation of
this is that the costs get higher when the trajectory moves away from a towards b (which makes
sense as standard Brownian motion “wants” to stay around the same value, in this case a) and rapid
movements are penalized relatively much. Hence, the lowest penalty (cost) is obtained when the
trajectory is a straight line. This optimal trajectory is very intuitive. For the process (3.1) above it is
more difficult to see how an optimal trajectory between two points would look like.

In this chapter we go on with the paper “Hamiltonian Dynamics and optimal transport for probabil-
ity measures on two-point sets”, by Frank Redig, in the following referred to as [4]. We will start by
stating the Hamilton equations which will give 4 first order differential equations (two equations for
µi and two equations for pi). After this we will solve these equations for the symmetric case γ = 1 and
later look at the general case. Furthermore, asymptotic behaviour of the action is examined.

3.2 Dynamics of the jump process

3.2.1 The Hamilton equations

The Hamilton equations corresponding to the Hamiltonian stated in (3.2) are given by,

ṗi =−
∂H
∂µi

µ̇i =
∂H
∂pi

(3.3)
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3.2. DYNAMICS OF THE JUMP PROCESS

Defining u1 = ep1 , u2 = ep2 we obtain using the Hamilton equations in (3.3),

u̇1 = u1 ṗ1 = u1(−γ(ep2−p1−1)) =−γu1(
u2

u1
−1) = γ(u1−u2)

u̇2 = u2 ṗ2 = u2− (ep1−p2−1) = (u2−u1)

µ̇1 =−γµ1ep2−p1 +µ2ep1−p2 =−γµ1
u2

u1
+µ2

u1

u2

µ̇2 = γµ1ep2−p1−µ2ep1−p2 = γµ1
u2

u1
−µ2

u1

u2

(3.4)

As in chapter 2, we define x := µ1−µ2. Furthermore we define ξ := u1
u2

. Remember that from x we can
always go back to µ1 and µ2 via µ1 =

1+x
2 and µ2 =

1−x
2 . Now we can rewrite the Hamiltonian as,

H =
1+ x

2
γ(ξ−1−1)+

1− x
2

(ξ−1) (3.5)

Note that if we take the derivative with respect to time in the above equation as well as taking this
derivative in equation (3.2) we get zero. This means that energy is conserved and we can legitimately
use the equations (3.4) stated in chapter 2 to describe the motion of the above system. Now using
(3.4) we get the following two first order differential equations for x and ξ,

ẋ = µ̇1− µ̇2 =−γξ
−1 +ξ+ x(−γξ

−1−ξ)

ξ̇ =
u2u̇1−u1u̇2

u2
2

=−γ+(γ−1)ξ+ξ
2 (3.6)

3.2.2 The Symmetric Case

In the symmetric situation γ is equal to one. In this case the Hamilton equations reduce to,

ẋ =−ξ
−1 +ξ+ x(−ξ

−1−ξ)

ξ̇ =−1+ξ
2

(3.7)

Taking the time derivative in the first equation of (3.7) we get rid of ξ, indeed,

d2x(t)
dt2 v = ξ̇+ξ

−2
ξ̇+ ẋ(−ξ

−1−ξ)+ x(ξ−2
ξ̇− ξ̇)

= ξ̇+ξ
−2

ξ̇+(−ξ
−1 +ξ+ x(−ξ

−1−ξ))(−ξ
−1−ξ)+ x(ξ−2(−1+ξ

2)+1−ξ
2)

= ξ
2−1+ξ

−2(ξ2−1)+(ξ−2−ξ
2)+ x(ξ2 +ξ

−2 +2−ξ
2−ξ

−2 +1+1)

= 4x

(3.8)

The solution of the above differential equation is easily found. Let’s take x = ert . We get r2x−4x = 0,
from which it follows that r = 2 or r =−2. The general solution is thus given by,

x(t) = c1e2t + c2e−2t (3.9)

Note that we can also write the solution in terms of hyperbolic sines. Furthermore, the solutions of
the above equation are time reversible. That is, if sinh(2t) is a solution then also sinh(2(T − t)). So the
unique optimal trajectory starting from x(0) = a and arriving at x(T ) = b is given by,

x(t) = b
sinh(2t)
sinh(2T )

+a
sinh(2(T − t))

sinh(2T )
(3.10)

Note that for T << 1 and thus also t << 1 we can use the linear approximation of sinh(2T ) and we
get,

x(t)≈ b
t
T
+a

T − t
T

= a+
t
T
(b−a) (3.11)
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3.2. DYNAMICS OF THE JUMP PROCESS

So x(t) goes for T << 1 approximately linearly from a to b. We will later plot the trajectories of x and
see that for small T this is indeed the case.
From the first equation in (3.7) we can solve for ξ, we see

(1− x)ξ− ẋ− (1+ x)ξ−1 = 0

Multiplying both sides of the above equation with ξ we get a quadratic equation in ξ with the follow-
ing solution,

ξ =
ẋ+
√

ẋ2 +4(1− x2)

2(1− x)
(3.12)

Note that ξ is always positive and that
√

ẋ2 +4(1− x2) is also positive and bigger than ẋ (because
x ∈ [−1, 1]). So only one solution holds for ξ and that is the one with the plus sign above. Again
rewriting the equation in (3.7) we get

ξ
−1 =

−ẋ+ξ(1− x)
1+ x

Filling out (3.12) in the above equation, we find

ξ
−1 =− ẋ−

√
ẋ2 +4(1− x2)

2(1+ x)
(3.13)

Using (3.5) together with (3.12) and (3.13) we find the following relationship between the conserved
energy E (the Hamiltonian), the position x and the velocity ẋ

2E +2 =
√

ẋ2 +4(1− x2) (3.14)

So we see that the above quantity E, the energy, is a constant of motion along Hamiltonian trajecto-
ries. The relationship between ξ and the energy is given by

ξ =
ẋ+2E +2
2(1− x)

(3.15)

Graphing the trajectories

Now that we have the equation for x and we know the relationship between x and the measures µ1
and µ2 we can draw the trajectories for some values of a and b. Note that in the symmetric case, the
typical behaviour is that x = ae−2t . So starting at a = 0, typically we will stay at zero. Now let us see
what happens if we begin at x = 0 but go to x = 0.5. We include both the graph for the trajectory of x
as well as the graphs for the trajectories of the measures µ1 and µ2.

(a) Trajectory of x (b) Trajectory of the measures

Figure 3.1: Trajectories for a=0, b=0.5 and T=10
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3.2. DYNAMICS OF THE JUMP PROCESS

We see in the above figure that x stays a long time at the typical value 0 till a certain point were it goes
exponentially fast to the value b were it should be at t = T . So, as we can see, for the values of the
measures it means that both are starting at the equilibrium value 0.5 and stay there for about three
quarters of the time after which they run off to µ1 = 0.75 and µ2 = 0.25.

Now we will look what happens if we start at µ1 = 0.3 and µ2 = 0.7 (x =−0.4) and we go to µ1 = 0.1
and µ2 = 0.9 (x =−0.8). The reason these values were chosen is because in this case we start already
under the typical value of x and the end value is even lower. It is interesting to see what the trajec-
tory of x will look like. It may stay around the starting value and later decrease further to the ending
value (like we saw in the picture above), it can also directly start descending towards the ending
value. Another possibility is that it first increases to the typical value x = 0 and later decreases again.

(a) Trajectory of x (b) Trajectory of the measures

Figure 3.2: Trajectories for a=-0.4, b=-0.8 and T=10

We see that the latter is the case. The trajectory of x first goes back from its starting value x =−0.4 to
its typical value x = 0 and then decreases to the ending value −0.8. Now let us look what happens if
x has less time to go from a to b. We take instead of ending time T = 10 the ending times T = 1 and
the more extreme ending time T = 0.1. We get the following results,

(a) Trajectory of x (b) Trajectory of the measures

Figure 3.3: Trajectories for a=-0.4, b=-0.8 and T=1
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3.2. DYNAMICS OF THE JUMP PROCESS

(a) Trajectory of x (b) Trajectory of the measures

Figure 3.4: Trajectories for a=-0.4, b=-0.8 and T=0.1

We see that in figure 3.3, the time is too short to ’push’ the trajectory to the equilibrium value. The
trajectory of x increases however a little bit but then starts to decrease to its ending value x = −0.8
before hitting equilibrium. In figure 3.4 we see that the descend starts immediately and is roughly
linear as we would expect from (3.11).

In a later section we will also look at the action integral of the trajectories of the symmetric case. We
will now first look at the dynamics of x in the asymmetric case.

3.2.3 The Asymmetric Case

In this section we will look at the asymmetric situation. In this case the rate of going from state 1
to state 2 is different than the rate of going from state 2 to state 1. For this reason the typical value
of x will not be zero anymore. To derive the trajectories of x we go back to the following differential
equations for x and ξ with γ 6= 1,

ẋ =−γξ
−1 +ξ+ x(−γξ

−1−ξ)

ξ̇ =−γ+(γ−1)ξ+ξ
2

(3.16)

Furthermore we can see using (3.5) the expression below for the energy E holds. Note that the Hamil-
tonian and thus the expression below is a constant of motion.

2E = x(γξ
−1−ξ)+ γξ

−1 +ξ+(1− γ)x− (1+ γ)

= (1− x)(ξ−1)+(1+ x)γ(ξ−1−1)
(3.17)

Again, as in the symmetric case, we take the time derivative of the first equation of (3.16). In the
symmetric case this led to the elimination of ξ. As we will see now, this will not happen in the
asymmetric case. We get,

ẍ = (1− x)ξ̇− ẋξ+(1+ x)γ
ξ̇

ξ2 − ẋ
γ

ξ

= (1− x)ξ̇− ((1− x)ξ− (1+ x)γξ
−1)ξ+(1+ x)γ

ξ̇

ξ2 − ((1− x)ξ− (1+ x)γξ
−1)

γ

ξ

= (1− x)(ξ̇−ξ
2− γ)+(1+ x)(γ+ γ

ξ̇

ξ2 +
γ2

ξ2 )

(3.18)

Concentrating on the terms multiplied by (1−x) and (1+x) respectively seperately, and filling out ξ̇,
we see for the factor of (1− x),

ξ̇−ξ
2− γ =−γ+(γ−1)ξ+ξ

2−ξ
2− γ

= (γ−1)ξ−2γ
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And for the factor of (1+ x) we get,

γ+ γ
ξ̇

ξ2 +
γ2

ξ2 = γ+ γ
−γ+(γ−1)ξ+ξ2

ξ2 +
γ2

ξ2

= γ(
ξ2

ξ2 +
−γ+(γ−1)ξ+ξ2

ξ2 +
γ

ξ2 )

= (γ−1)γξ
−1 +2γ

So we obtain the following expression for ẍ

ẍ = (1− x)((γ−1)ξ−2γ)+(1+ x)((γ−1)γξ
−1 +2γ) (3.19)

Now we isolate the terms containing (γ−1) and rewrite this in terms of the energy 2E.

(γ−1)((1− x)ξ+(1+ x)γξ
−1) = (γ−1)((1− x)(ξ−1)+(1+ x)γ(ξ−1−1)+(1− x)+ γ(1+ x))

= (γ−1)(2E +(γ−1)+(1− x)+ γ(1+ x))

= (γ−1)(2E +(1+ γ))+ x(γ−1)2

Note that all the terms with ξ dropped out of the equation (but of course the energy is dependent of
ξ). We can now write the secornd order differential equation for x in terms of the energy and the rate
γ as follows,

ẍ = (γ−1)(2E +(1+ γ))+ x(γ−1)2−2γ(1− x)+2γ(1+ x)

= (γ−1)(2E +1+ γ)+ x(γ+1)2 (3.20)

Solving the above second-order differential equation with boundaries x(0) = a and x(T ) = b we find

x(t) =C1eδt +C2e−δt +C3 (3.21)

with,

C1 =
(b−C3)− (a−C3)e−δT

2sinh(δT )

C2 =
(a−C3)eδT − (b−C3)

2sinh(δT )

C3 =−
(δ−2)(2E +δ)

δ2

δ = 1+ γ

(3.22)

We can rewrite this in terms of all hyperbolic sines as follows,

x(t) = (b−C3)
sinh(δt)
sinhδT

+(a−C3)
sinh(δ(T − t))

sinhδT
+C3 (3.23)

When T << 1 and thus also t << 1 we can write sinh(δt) ≈ δt and we see that the dynamics of x are
approximately equal to,

x(t)≈ (b−C3)
δt
δT

+(a−C3)
δT −δt

δT
+C3 = a+

t
T
(b−a) (3.24)

Note that the constants C3 and δ drop out of the equation. So again we get the same linear behaviour
for T << 1 as in the symmetric case
.
In the following we will write C := C3. Notice that in this case our solution is dependent on the
energy (via the constant C) and this still has to be determined. In the symmetric case we didn’t have
this problem as the second-order differential equation for x did not depend on ξ anymore. In order
to find the value of the energy we look at time t = 0 (note that the energy is a constant). At this point
we have, filling out that x(0) = a

38



3.2. DYNAMICS OF THE JUMP PROCESS

ẋ0 =−γξ
−1
0 +ξ0 +a(−γξ

−1
0 −ξ0)

2E = a(γξ
−1
0 −ξ0)+ γξ

−1
0 +ξ0 +(1− γ)a− (1+ γ)

(3.25)

Note that we can combine the two equations in (3.25) to write the energy as a function of ẋ0 and by
doing this ξ0 is removed from the equation. We get,

2E =
√

ẋ2
0 +4γ(1−a2)− (1+ γ− (1− γ)a). (3.26)

Note that in general the following expression is constant over time (doing the same as above but now
not filled out t = 0),

2E =
√

ẋ2
t +4γ(1− x2

t )− (1+ γ− (1− γ)xt). (3.27)

The typical speed ẋ0 at time zero with x0 = a and γ unequal to one is easily calculated. Note that in
this case µ̇1(0) = −γµ1(0)+ µ2(0) = −γ

1+a
2 + 1−a

2 and µ̇2(0) = γµ1(0)− µ2(0) = γ
1+a

2 −
1−a

2 . So we have
ẋ0 = µ̇1(0)− µ̇2(0) =−γ(1+a)+(1−a). Filling this out in the equation (3.26) for the speed we see that
the energy becomes zero as it should. Furthermore, note that the typical speed at time zero is equal
to zero if we fill out for a the equilibrium value of a = 2−δ

δ
. Which of course makes sense as in this

case the x will not have to move to come on its equilibrium value.

taking the first equation of (3.16) we can solve for ξ again. First multiplying with ξ and rewriting the
equation we get,

(1− x)ξ2− ẋξ− γ(1+ x) = 0 (3.28)

and thus,

ξt =
ẋt +

√
ẋ2

t +4γ(1− x2
t )

2(1− xt)
. (3.29)

Using (3.27) we find the following relation between ξ, ẋ and the energy E

ξt =
ẋt +2E +(1+ γ)− (1− γ)xt

2(1− xt)
. (3.30)

Still we want to solve for 2E in order to get an explicit formula for the motion x. To do this, note that
we can use (3.23) to find an additional relation between ẋ0 and the energy E. We see differentiating
(3.23) and filling out t = 0,

ẋ0 = δ(b−C)
1

sinhδT
−δ(a−C)

cosh(δT )
sinhδT

.

Solving for C we get,

C =
sinh(δT )

δ(cosh(δT )−1)
ẋ0 +

acoshδT −b
cosh(δT )−1

Now filling out C which depends on the 2E and solving for 2E leads to the following equation be-
tween ẋ0 and E.

2E = Aẋ0 +B

A =
δ

2−δ

sinh(δT )
cosh(δT )−1

B =
δ2

2−δ

acosh(δT )−b
cosh(δT )−1

−δ

(3.31)

We can equate now the first expression of (3.31) and the expression in (3.26) and solve for ẋ0. Filling
out this value of ẋ0 in the first expression of (3.31) gives the value of 2E which is needed to finally

39



3.2. DYNAMICS OF THE JUMP PROCESS

get an explicit equation for the trajectory x. Defining D = B+δ− (2−δ)a, we get equating (3.26) and
(3.31), √

ẋ2
0 +4γ(1−a2) = Aẋ0 +D

⇐⇒ ẋ2
0 +4γ(1−a2) = A2ẋ2

0 +2ADẋ0 +D2

⇐⇒ (A2−1)ẋ2
0 +2ADẋ0−4γ(1−a2)+D2 = 0

Solving this quadratic equation we get,

ẋ0 =
−AD+

√
4γ(1−a2)(A2−1)+D2

(A2−1)
. (3.32)

Now filling out the values for A and D, we find after some algebra,

ẋ0 =
aδsinh(δT )− δ3

(2−δ)2 coth(1
2 δT )(acosh(δT )−b)

( δ2

(2−δ)2 −1)cosh(δT )+( δ2

(2−δ)2 +1)
+

(2−δ)2

δ2 coth2(1
2 δT )− (2−δ)2

·

[
δ4

(2−δ)2

(−b+acosh(δT )
cosh(δT )−1

)2

−2δ
2a ·
(−b+acosh(δT )

cosh(δT )−1

)
+(2−δ)2a2 +4(δ−1)(1−a2)

(
δ2

(2−δ)2 coth2(
1
2

δT )−1
)] 1

2

(3.33)
With this we can use (3.31) to solve for 2E and using this we can determine the constant C in (3.23)
with which we can calculate the trajectory of x. We find after some algebra that,

2E = Aẋ0 +B =

δ2

(2−δ)a(cosh(δT )+1)− δ4

(2−δ)3 coth2(1
2 δT )(acosh(δT )−b)

( δ2

(2−δ)2 −1)cosh(δT )+( δ2

(2−δ)2 +1)

+
δ(2−δ)sinh(δT )

4(δ−1)cosh(δT )+δ2 +(2−δ)2 ·

[
δ4

(2−δ)2

(−b+acosh(δT )
cosh(δT )−1

)2
−2δ

2a ·
(−b+acosh(δT )

cosh(δT )−1

)

+(2−δ)2a2 +4(δ−1)(1−a2)
(

δ2

(2−δ)2 coth2(
1
2

δT )−1
)] 1

2

+
δ2

(2−δ)

acosh(δT )−b
cosh(δT )−1

−δ

Now with this it is not hard to calculate the constant C which is given by,

C =
(2−δ)2a(cosh(δT )+1)−δ2 coth2(1

2 δT )(acosh(δT )−b)
4(δ−1)cosh(δT )+(δ2 +(2−δ)2)

+
(2−δ)sinh(δT )

4δ(δ−1)cosh(δT )+δ3 +δ(2−δ)2 ·

[
δ

4
(−b+acosh(δT )

cosh(δT )−1

)2
−2δ

2(2−δ)2a ·
(−b+acosh(δT )

cosh(δT )−1

)

+(2−δ)4a2 +4(δ−1)(1−a2)
(

δ
2 coth2(

1
2

δT )− (2−δ)2
)] 1

2

+
acosh(δT )−b
cosh(δT )−1

(3.34)
Note that when we are in the symmetric case γ = 1, and thus δ = 2, a lot of the terms in the above
equation immediately drop out and we get,

C =−4coth2(T )(acosh(2T )−b)
4(cosh(2T )+1)

+
acosh(2T )−b
cosh(2T )−1

=−
cosh(2T )+1
cosh(2T )−1(acosh(2T )−b)

cosh(2T )+1
+

acosh(2T )−b
cosh(2T )−1

=−acosh(2T )−b
cosh(2T )−1

+
acosh(2T )−b
cosh(2T )−1

= 0

like we should get.
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Graphing the Trajectories

Now that the equation of motion of x is explicit we can look at the behaviour of the trajectories of both
x and the measures µ1 and µ2. In the asymmetric case the bigger the value of γ the faster particles jump
from state 1 to state 2 (relative to the particles jumping from state 2 to state 1). The system typically
converges to the distribution µ1 = 1

γ+1 and µ2 = γ

γ+1 . The first graphs plotted start on this typical
equilibrium values for γ = 7 (so x0 =−6

8 ) and the ending value is x(T ) = 0.

(a) Trajectory of x (b) Trajectory of the measures

Figure 3.5: Trajectories for a =−6
8 , b = 0, T = 1 and γ = 7

We see that x and the measures stay very close to the equilibrium value and later, after three quarters
of the time has passed, the measures are going towards their destined value b.

Below, in figure 3.6 the graphs are shown for again γ= 7 but now starting above the equilibrium value
for x and ending even higher above this equilibrium value. It can be seen that also in this asymmetric
case the trajectory first goes towards the equilibrium value, and thus moves away from the destined
value. On the last moment it moves rapidly to the destined value.

(a) Trajectory of x (b) Trajectory of the measures

Figure 3.6: Trajectories for a =−0.2, b = 0.5, T = 1 and γ = 7

Now we will draw the graphs again for a =−0.2, b = 0.5 and γ = 7 but now letting T be very small,
namely for T = 0.01. From (3.24) we expect the trajectories now to be approximately linear. We see
below that this is indeed the case,
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(a) Trajectory of x (b) Trajectory of the measures

Figure 3.7: Trajectories for a =−0.2, b = 0.5, T = 0.01 and γ = 7

The last two graphs shown below are for the case that γ = 1
7 . So the roles are reversed between

the measures µ1 and µ2. In this case the equilibrium value for x is 6
8 . In the graph we look at the

situation that we start above the equilibrium value, namely a = 0.9 and go below the equilibrium
value towards b = 0.1. In this case the trajectory of x descends first to the equilibrium value and stays
close to this value until it descends rapidly towards its destined value.

(a) Trajectory of x (b) Trajectory of the measures

Figure 3.8: Trajectories for a = 0.9, b = 0.1, T = 10 and γ = 1
7

3.2.4 The trajectories for large T

We have seen that in the case T is very small, the trajectories are approximately linear between start-
ing point a and ending point b. Furthermore we have seen that when T is big enough, the trajectory
first goes from starting point a to the equilibrium value, stays here a while and subsequently goes to
the ending value b. We suspect that Comparing the figures of the last two sections we see that the
bigger the value of T is,the longer the trajectory stays close to the equilibrium value. In other words,
the time period in which the trajectory goes up to its ending value seems to get relatively shorter for
increasing T . We want to find the behaviour of this, in particular for T → ∞.

Looking at (3.21) we see that for T >> 1 and t >> 1, we can write,

x(t)≈ (b−C)
eδt

eδT +C. (3.35)

Now we know from the pictures that x(t) will go for t big enough but smaller than T to its equilibrium
value 2−δ

δ
. This suggests that for large T , C→ 2−δ

δ
. This will be confirmed in paragraph 3.3.2. We see

in this case from (3.35) that for 1 << t << T that x(t) is approximately equal to its equilibrium value.
For t increasing, the trajectory will move a tiny bit towards its ending value b. But we want to know
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when it properly starts moving towards b. Too define what we mean by this, fix a number r ∈ [0, 1].
Now we say that the trajectory has started moving towards b iff we have moved a distance r|b−C|
in the direction of b. We see that for this to hold, we need to have that,

r =
eδt

eδT . (3.36)

We denote the time at which we start moving towards b with t∗. From (3.36) it follows that,

t∗ = T − 1
δ

log(r−1) (3.37)

The relative period of moving towards b is thus given by.

T − t∗

T
=

1
δ

log(r−1)

T
(3.38)

For T very big we see that this period gets arbitrarily small. Furthermore, we see that each time we
double the ending time T , the relative period of moving towards b is halved. In order to check this
behaviour numerically, we looked at the case a = 0, b = 0.8 and γ = 1. We plotted x for 6 different
values of T , each time doubling T . After this we computed the point of intersection of the trajectory
with the line k = 0.08. Note that this corresponds with taking r = 0.1. The following table was
obtained.

T T−t∗
T

5 0.229
10 0.114
20 0.057
40 0.028
80 0.013
160 0.006

Table 3.1: Relative times of moving towards b

We see in the above table that it confirms our calculation above. For every time we double the ending
time T we see in the table that we more or less halve the relative time of moving towards b. In the
next section we will look at the Action and compute an explicit value for the Action. Furthermore we
will look what happens in the case T → 0 and T → ∞.

3.3 The Action Integral and its Asymptotics for T → 0 and T → ∞

Recall from chapter 2 that the Action integral is the Langrangian of the system integrated over time.
By the Principle of Least Action it is known that the optimal trajectory is the trajectory that mini-
mizes this action integral. Although we already calculated the optimal paths for the symmetric and
asymmetric case in the previous section we would like to see the behaviour of the Action Integral.
In particular the asymptotics for T → 0 and T → ∞. Note that we find from the example for Brow-
nian motion (paragraph 2.3, example 1, p.28) that the Action integral for the optimal path is easily
calculated and is given by,

ST (a, b) =
∫ T

0

1
2

γ̇
2
s ds =

∫ T

0

1
2

((a−b)
T

)2
ds =

(a−b)2

2T

The asymptotics here are easily seen and intuitive. The action is zero for a = b as in this case the
path is typical. Otherwise, for T → 0 the Action goes to infinity. This is intuitive because the shorter
the time the process has to go from a to b, the steeper has to be the ascend or descend and the least
likely is the path. On the other hand for T →∞ the Action goes to zero because the ascend or descend
comes arbitrarily close to zero, so the path from a to b comes arbitrarily close to the typical path. In
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the case of the two-state Markov process we expect the same but we want to check this and we also
want to find at which rates the Action integral goes to zero or infinity respectively. The action of the
optimal trajectory γs starting at γ0 = a and arriving at γT = b is given by,

ST (a, b) =
∫ T

0
L(γs, γ̇s)ds

=
∫ T

0
p1(s)dµ1(s)+

∫ T

0
p2(s)dµ2(s)−ET

=
1
2

∫ T

0
p1(s)− p2(s)dx(s)−ET

=
1
2

∫ T

0
log(ξ(s))dx(s)−ET

(3.39)

Where the second equality follows directly from Maupertuis’s Principle. The third equality follows
by remembering that µ1 =

1+x
2 and µ2 =

1−x
2 and thus dµ1 =

1
2 dx and µ2 = −1

2 dx. The fourth equality
follows directly by noting that ξ = ep1

ep2 .

We state now directly the value of the Action ST (a, b), i.e. the solution of the above equation (3.39) as
the calculation is too elaborate to include in the main body of the text. For the calculation we refer to
appendix A at the end of this report. We find the following explicit expression of the Action ST (a, b),
only dependent on a, b, γ, T , s and the explicit constant C,

2ST (a, b)+2ET =

s
2γ

(
tan−1

(1
s

[2γ(b−C)eδT −2γ(a−C)

sinhδT
+

4γC
1− γ

])
− tan−1

(1
s

[2γ(b−C)−2γ(a−C)e−δT

sinhδT
+

4γC
1− γ

]))

− s
2

(
tan−1

(1
s

[2(b−C)e−δT −2(a−C)

sinhδT
+

4γC
1− γ

])
− tan−1

(1
s

[2(b−C)−2(a−C)eδT

sinhδT
+

4γC
1− γ

]))

+
[ C

2−δ
+

(b−C)eδT − (a−C)

2sinh(δT )

]
log
((b−C)(γe2δT +1)− (a−C)eδT δ

sinh(δT )
+

4eδT γC
2−δ

)
+
[
− Cγ

2−δ
+

(a−C)− (b−C)e−δT

2sinh(δT )

]
log
((b−C)(e−2δT + γ)− (a−C)e−δT δ

sinh(δT )
+

4e−δT γC
2−δ

)
−a log

((b−C)δ− (a−C)(γe−δT + eδT )

sinh(δT )
+

4γC
(2−δ)

)
+(a−b) log(2)−δT (b−C) tanh−1(δT )

+δT (a−C)sinh−1(δT )+(1−b) log(1−b)− (1−a) log(1−a).
(3.40)

3.3.1 Small Time Asymptotics

We can look at the small time asymtotics of the above formula, so for T → 0. For this we first have to
look what happens to the constant C for T → 0. Note that in the above formula the term C

2−δ
appears

a lot. Determining the small time asymtotics for the case δ = 2 has to be handled separately. In the
previous section it has been shown that C converges to zero for δ→ 2. However, it also needs to be
determined what happens to C

2−δ
for δ→ 2. First we look at what happens to C for T → 0.

We will use the following notation. Two function f (T ) and g(T ) are asymptotically equivalent if and
only if limT→0 | f (T )

g(T ) |= 1. In this case we write f ≈ g. From equation (3.34) we get,
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C =
(2−δ)2a(cosh(δT )+1)−δ2 coth2(1

2 δT )(acosh(δT )−b)
4(δ−1)cosh(δT )+(δ2 +(2−δ)2)

+
(2−δ)sinh(δT )

4δ(δ−1)cosh(δT )+δ3 +δ(2−δ)2 ·

[
δ

4
(−b+acosh(δT )

cosh(δT )−1

)2
−2δ

2(2−δ)2a ·
(−b+acosh(δT )

cosh(δT )−1

)

+(2−δ)4a2 +4(δ−1)(1−a2)
(

δ
2 coth2(

1
2

δT )− (2−δ)2
)] 1

2

+
acosh(δT )−b
cosh(δT )−1

≈−δ
2 cosh(δT )+1

4(δ−1)cosh(δT )+(δ2 +(2−δ)2)
· acosh(δT )−b

cosh(δT )−1
+

acosh(δT )−b
cosh(δT )−1

+
(2−δ)sinh(δT )

2δ3

√
δ4
(−b+acosh(δT )

cosh(δT )−1

)2

≈ (2−δ)(b−a)
δ3T

(3.41)
Where we assumed b > a. For a > b the same expression holds only a and b switch places. To obtain
the second to last equality we used the fact that in the square root the highest order term is the first
term in the square root. Furthermore, it was used that,

coth2(
1
2

δT ) =
cosh(δT )+1
cosh(δT )−1

.

For the last equality, note that

lim
T→0

cosh(δT )+1
4(δ−1)cosh(δT )+(δ2 +(2−δ)2)

=
1
δ2

Note that when δ = 2, C = 0 but the fraction C
2−δ
≈ b−a

δ3T for T → 0. Now that we have obtained the
asymptotic behaviour of C we can look at what happens to ST (a,b)+ET . First of all we can see from
(A.4) in the appendices that for T → 0,

s≈
√

4(γC2 +C2)

T 2 ≈ 2(2−δ)(b−a)
δ2T 2

Now if we look at the first part of (3.40) we see that,

tan−1
(1

s

[2γ(b−C)eδT −2γ(a−C)

sinhδT
+

4γC
1− γ

])
− tan−1

(1
s

[2γ(b−C)−2γ(a−C)e−δT

sinhδT
+

4γC
1− γ

])
≈ cT 2

as eδT and e−δT both converge to 1. In line 1 of equation (3.40) this is multiplied with s
2γ

and from this
we see that line 1 is of order 1. Exactly the same argument shows that also line 2 of equation (3.40) is
of order 1.

Now going to the third line of equation (3.40) we get,[ C
2−δ

+
(b−C)eδT − (a−C)

2sinh(δT )

]
log
((b−C)(γe2δT +1)− (a−C)eδT δ

sinh(δT )
+

4eδT γC
2−δ

)
≈
[ C

2−δ
+

(b−C)eδT − (a−C)

2sinh(δT )

]
· log(

(b−C)δ− (a−C)δ

T
+

4γ(b−a)
δ3T

)

≈
[ C

2−δ
+

(b−C)eδT − (a−C)

2sinh(δT )

]
· log(T−1)

For the fourth line we can do the same. The logarithm converges the same and we can combine
terms. In this way we write for the third and fourth line,
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[ C
2−δ

+
(b−C)eδT − (a−C)

2sinh(δT )
− Cγ

2−δ
+

(a−C)− (b−C)e−δT

2sinh(δT )

]
· log(T−1)

=
[
C+

(b−C)2sinh(δT )
2sinh(δT )

]
· log(T−1)

= b log(T−1)

The logarithm on the fifth line has the same asymptotic behaviour as the logarithm above. The rest
on lines five and six in (3.40) are of order one or higher. Combining all the lines for T → 0, and noting
that ET → 0 for T → 0, we find the following small time asymptotics for the action,

ST (a, b)≈ |b−a|
2

log(T−1) (3.42)

As follows from the above these small time asymptotics follow for all γ, thus for the symmetric as
well as the asymmetric case. The asymptotic behaviour for small T found above corresponds with
the results in the paper [4], p.5. Here the small time asymptotics are found by noting that for small
T , b > a,

ST (a, b)≈ ξ0(b−a)−ET (3.43)

Now, as ξ0 only depends on ẋ0 and the energy E, the asymptotics can be found by filling out the
asymptotics of these two quantities in the formula for ξ0.

3.3.2 Large Time Asymptotics

Now that we have seen what happens for T → 0 we also want to know what happens if the time
T goes to infinity. In other words, the amount of time the system has to go from state a to state b
becomes arbitrary big. First, we look again at the asymptotic behaviour of C for T → ∞.

We will use similar notation as before. Two function f (T ) and g(T ) are asymptotically equivalent if
and only if limT→∞ | f (T )

g(T ) |= 1. Again, in this case, we will write f ≈ g. From equation (3.34) we get,

C =
(2−δ)2a(cosh(δT )+1)−δ2 coth2(1

2 δT )(acosh(δT )−b)
4(δ−1)cosh(δT )+(δ2 +(2−δ)2)

+
(2−δ)sinh(δT )

4δ(δ−1)cosh(δT )+δ3 +δ(2−δ)2 ·

[
δ

4
(−b+acosh(δT )

cosh(δT )−1

)2
−2δ

2(2−δ)2a ·
(−b+acosh(δT )

cosh(δT )−1

)

+(2−δ)4a2 +4(δ−1)(1−a2)
(

δ
2 coth2(

1
2

δT )− (2−δ)2
)] 1

2

+
acosh(δT )−b
cosh(δT )−1

≈−a+
2−δ

4(δ−1)

√
δ4a2−2δ2(2−δ)2a2 +(2−δ)4a2 +16(δ−1)2(1−a2)+a

=
2−δ

4(δ−1)

√
16

(δ−1)2

δ2

=
2−δ

δ
(3.44)

Note that this limit of C for T →∞ is exactly equal to the equilibrium value of x. Looking at the trajec-
tory of x in (3.23) in section 3.2.3 we see that this value of C is what to expect. Namely, for t far away
from zero but not close yet to the final time T both terms sinh(δt)

sinh(δT ) and sinh(δ(T−t))
sinh(δT ) are approximately

zero and we have for this t that x(t)≈C. In other words this confirms that x moves to its equilibrium
value. Now we can look at what happens to s in (A.4) for T →∞. It is easily seen that the first fraction
in the square root goes to zero. For the second fraction we get a constant such that s for T → ∞ is
given by,
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s =

√
−16γ2

( C
2−δ

)2
= i ·D3 (3.45)

From this we see that s goes to an imaginary number for T → ∞ (D3 is defined in appendix A, (A.2),
p.53). Now we use the fact that we can rewrite an inverse tangens as a natural logarithm using the
following equation1,

tan−1(z) =
1

2 · i
log
(

1+ i · z
1− i · z

)
. (3.46)

Combining (3.45) and (3.46) and looking at the asymptotic behaviour, we can write the first line of
(3.40) as,

s
2γ

(
tan−1

(1
s

[2γ(b−C)eδT −2γ(a−C)

sinhδT
+

4γC
1− γ

])
− tan−1

(1
s

[2γ(b−C)−2γ(a−C)e−δT

sinhδT
+

4γC
1− γ

]))

≈ D3

4γ

[
log

(
2+ (2−δ)(b−C)

C

− (2−δ)(b−C)
C

)
− log

(
2+ (2−δ)(b−C)e−δT

C

− (2−δ)(b−C)e−δT

C

)]

≈ 1
δ

[
log
(

2+δ(b−C)

−δ(b−C)

)
− log

(
2+δ(b−C)e−δT

−δ(b−C)e−δT

)]

=
1
δ

log

((
2+δ(b−C)

)
e−δT

2+δ(b−C)e−δT

)
.

The same can be done for the second line of (3.40). We get,

− s
2

(
tan−1

(1
s

[−2(b−C)e−δT +2(a−C)

sinhδT
+

4γC
1− γ

])
− tan−1

(1
s

[−2(b−C)+2(a−C)eδT

sinhδT
+

4γC
1− γ

]))

≈−D3

4

log

2+ (2−δ)(a−C)e−δT

γC

− (2−δ)(a−C)e−δT

γC

− log

2+ (2−δ)(a−C)
γC

− (2−δ)(a−C)
γC


≈− γ

δ

log

2+ δ(a−C)e−δT

γ

− δ(a−C)e−δT

γ

− log

2+ δ(a−C)
γ

− δ(a−C)
γ


=− γ

δ
log

 2+ δ(a−C)e−δT

γ(
2+ δ(a−C)

γ

)
e−δT

 .

Now going to the third line of (3.40) we have,

[ C
2−δ

+
(b−C)eδT − (a−C)

2sinh(δT )

]
log
((b−C)(γe2δT +1)− (a−C)eδT δ

sinh(δT )
+

4eδT γC
2−δ

)
≈
[ C

2−δ
+(b−C)

]
lim

T→∞
log
(
(γ(b−C)+

2γC
2−δ

)2eδT
)

=
[ C

2−δ
+(b−C)

](
log
(

γ(b−C)+
2γC
2−δ

)
+ log(2)+δT

)
.

Where we split the logarithm in three parts for reasons that become clear later on. We see in the
above that this part diverges for T → ∞. Again this can be done for the fourth line, resulting in,

1See as a reference for instance http://mathworld.wolfram.com/NaturalLogarithm.html
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[
− Cγ

2−δ
+

(a−C)− (b−C)e−δT

2sinh(δT )

]
log
((b−C)(e−2δT + γ)− (a−C)e−δT δ

sinh(δT )
+

4e−δT γC
2−δ

)
≈− Cγ

2−δ

(
log
( 4γC

2−δ

)
−δT

)
.

And going to the first part of the fifth line we get,

−a log
((b−C)δ− (a−C)(γe−δT + eδT )

sinh(δT )
+

4γC
(2−δ)

)
≈−a

(
log
( 2γC

2−δ
− γ(a−C)

)
+ log(2)

)
.

Finally, for the rest on line five and line six of (3.40) we get,

[
(a−b) log(2)−δT (b−C) tanh−1(δT )+δT (a−C)sinh−1(δT )+(1−b) log(1−b)− (1−a) log(1−a)

]
≈ (a−b) log(2)−δT (b−C)+(1−b) log(1−b)− (1−a) log(1−a)

Now we can combine everything to get the asymptotic behaviour of ST (a, b). Note that we have to
add ET to (3.40) first. Doing this we get the following expression,

ST (a, b)≈ 1
2

[
1
δ

log

((
2+δ(b−C)

)
e−δT

2+δ(b−C)e−δT

)
− γ

δ
log

 2+ δ(a−C)e−δT

γ(
2+ δ(a−C)

γ

)
e−δT


+
[ C

2−δ
+(b−C)

](
log
(

γ(b−C)+
2γC
2−δ

)
+ log(2)+δT

)
− Cγ

2−δ

(
log
( 4γC

2−δ

)
−δT

)

−a

(
log
( 2γC

2−δ
− γ(a−C)

)
+ log(2)

)
+(a−b) log(2)−δT (b−C)+(1−b) log(1−b)

− (1−a) log(1−a)−2ET

]

≈ 1
2

(−δ

δ
− γδ

δ
+

Cδ

2−δ
+(b−C)δ+

Cγδ

2−δ
−δ(b−C)−2E

)
T

=
1
2

(
−1− γ+

δ2C
2−δ

−2E
)

T

=
1
2

(
−δ+2E +δ−2E

)
T

= 0+O(1)

(3.47)

This is what we would expect for the Action. Because we have seen in the previous section that the
system goes to the equilibrium value if T >> 1. Furthermore, we have seen that the relative period
of moving towards b goes to zero for T → ∞. Now if we look at the velocity of the trajectory at t = 0
for T → ∞, we get,

ẋ0 =
aδsinh(δT )− δ3

(2−δ)2 coth(1
2 δT )(acosh(δT )−b)

( δ2

(2−δ)2 −1)cosh(δT )+( δ2

(2−δ)2 +1)

+
(2−δ)2

δ2 coth2(1
2 δT )− (2−δ)2

·

[
δ4

(2−δ)2

(−b+acosh(δT )
cosh(δT )−1

)2
−2δ

2a ·
(−b+acosh(δT )

cosh(δT )−1

)

+(2−δ)2a2 +4(δ−1)(1−a2)
(

δ2

(2−δ)2 coth2(
1
2

δT )−1
)] 1

2

(3.48)
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≈
aδ− δ3

(2−δ)2 a
δ2

(2−δ)2 −1
+

(2−δ)2

4(δ−1)

√
a2 δ4

(2−δ)2 −2δ2a2 +(2−δ)2a2 +16
(δ−1)2

(2−δ)2 (1−a2)

=−δa+
(2−δ)2

4(δ−1)

√
16

(δ−1)2

(2−δ)2

=−δa+(2−δ)

This is exactly the typical speed that we found in section 3.2 on page 39. Now filling out this typical
speed in log(ξ(t)), and noting that when we take T → ∞, that C is equal to the equilibrium value. We
see for log(ξ(t)) at t = 0,

lim
T→∞

log(ξ(0)) = log
(−δa+(2−δ)+2E +(1+ γ)− (1− γ)a

2(1−a)

)
= log

(−δa+(2−δ)+ δ2C
2−δ
− (1− γ)a

2(1−a)

)
= log

(−δa+(2−δ)+δ− (1− γ)a
2(1−a)

)
= log

(−2a+2
2(1−a)

)
= 0

(3.49)

This holds for any finite t as we can treat this point as the starting point. Say at some time t = t∗ we are
in some point f . Now the speed in this point will be−δ f +(2−δ) and with the same computation we
see that log(ξ(t∗)) = 0. This argument can also more directly be shown by looking at equation (3.21).
This equation gives x(t) and taking the derivative with respect to time we get ẋ(t). Using this we see
directly that for T → ∞,

x(t) = (a−C)e−δt +
2−δ

δ

ẋ(t) =−δ(a−C)e−δt =−δx+(2−δ)

(3.50)

and thus, that ẋ(t) has the typical speed for all finite t and limT→∞ log(ξ(t)) = 0. Now we needed to
check this by computing the integral as it may not be allowed to interchange limit and integral. In
appendix B, at the end of this report, we compute the Action integral for the special case that γ= 1 (i.e.
the symmetric case). In this case we are able to use equation (3.15). We show that for some values of a
and n we can not just fill them out in the expression of the Action but we need a more subtle approach
to attain the correct value of the Action. Furthermore we show here that for all typical paths in the
symmetric case, the Action is equal to zero.

3.4 Conclusion

In this chapter we have looked at the large deviation behaviour of the continuous-time two-state
Markov process. We have computed the trajectories of this process. These trajectories move, if time
allows it, from there starting value a towards the equilibrium value and subsequently to there ending
value b. If the ending time T is very small, the trajectories become approximately linear between be-
gin and end-point. For large T we have seen that the relative time that the process moves towards b
goes to zero, and this time halves for doubling T . After this, the Action Integral was examined. First,
the Action was computed by solving the integral. After this the limiting behaviour was investigated
for T → 0 and T → ∞. In the first case, we have seen that the limiting behaviour of ST (a, b) goes like
|a−b|

2 log(T−1). So, ST (a, b) gets very big for small values of T . This is intuitive, as for small values of
T the paths to move from a towards b have to be very abrupt (and thus the probability of this gets
very small). Only in the case that b = a, the path becomes typical for very small T as in this case
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obviously we don’t have to move. In the case T → ∞ we see that the Action vanishes. Also this is in-
tuitive. We know after all that the trajectory goes to the typical path and can stay here arbitrarily long.

As a follow-up it would be interesting to look at the case where the number of states of the Markov-
process get extended. In this case the dynamics can get a lot more complicated as there are more ways
(via more states) to get to the equilibrium position or the ending position. However, it is suspected
that also in this case, for T big enough, the system returns to equilibrium and subsequently goes to
its ending value. The way it goes towards equilibrium and towards the ending value is of course the
way that has the highest probability, i.e. minimizes the Action. Another interesting addition would
be if the parameter γ would be dependent of the time. The difficulty that then arises however is that
the Hamiltonian is not longer time independent, i.e. the energy is not a conserved quantity any more.

50



Appendices

51





Appendix A

Calculation of the Action Integral

In this first appendix we are going to derive an explicit equation for the Action integral. This can
then be used for determining the asymptotic behaviour for T → 0 and T → ∞. To derive the explicit
equation we see from (3.39) that we have to compute the integral over log(ξ(t)) with respect to x.
Using equation (3.21) and equation (3.30) from the previous chapter we get,

log(ξ(t)) = log
( ẋ(t)+2E +(1+ γ)− (1− γ)x(t)

2(1− x(t))

)
= log(D1eδt +D2e−δt +D3)− log(2(1− x(t)))

(A.1)

where,

D1 =C1δ− (1− γ)C1 = 2C1γ

D2 =−C2δ− (1− γ)C2 =−2C2

D3 = 2E +(1+ γ)− (1− γ)C

(A.2)

and where the constants C1, C2 and C are as in the equations (3.22) p.38 in the previous section. From
this it is seen that the Action is of the following form.

2ST (a, b)+2ET =
∫ T

0
log(ξ(t))dx(t)

=C1δ

∫ T

0
log(D1eδt +D2e−δt +D3)eδT dt

−C2δ

∫ T

0
log(D1eδt +D2e−δt +D3)e−δT dt−

∫ b

a
log(2(1− x))dx

=C1δ

∫ T

0
log(D1eδt +D2e−δt +D3)eδT dt

−C2δ

∫ T

0
log(D1eδt +(1−b) log(1−b)− (1−a) log(1−a)

=C1δ

∫ T

0
log(D1eδt +D2e−δt +D3)eδT dt

−C2δ

∫ T

0
log(D1eδt +D2e−δt +D3)e−δT dt +(b−a) log(

e
2
)

+(1−b) log(1−b)− (1−a) log(1−a)

(A.3)

Looking at the first integral in the bottom two lines above we find,
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C1δ

∫ T

0
log(D1eδt +D2e−δt +D3)eδT dt

=C1

∫ T

0
(log(D1eδt +D2e−δt +D3)+δt)δeδT −δ

2teδT dt

=C1

∫ T

0
(log(D1e2δt +D3eδt +D2)δeδT dt−C1

∫ T

0
δ

2teδT dt

=C1

∫ eδT

1
(log(D1u2 +D3u+D2)du+C1

(
−δTeδT −1+ eδT )

=C1

[
1

D1

√
4D1D2−D2

3 tan−1
( 2D1u+D3√

4D1D2−D2
3

)

−2u+
( D3

2D1
+u
)

log(D1u2 +D3u+D2)

]eδT

1

+C1
(
−δTeδT −1+ eδT )

Where in the next to last equality we substituted u = eδT . Doing the same for the second integral (but
now substituting u = e−δT ) in the last equation in (A.3) we get,

−C2δ

∫ T

0
log(D1eδt +D2e−δt +D3)e−δT dt

=C2

∫ e−δT

1
log(D2u2 +D3u+D1)du−C2

(
−δTe−δT +1− e−δT )

=C2

[
1

D2

√
4D1D2−D2

3 tan−1
( 2D2u+D3√

4D1D2−D2
3

)

−2u+
( D3

2D2
+u
)

log(D2u2 +D3u+D1)

]e−δT

1

−C2
(
−δTe−δT +1− e−δT )

Now we take the first part of the two integrals together. We will write s :=
√

4D1D2−D2
3. We get

C1

[
1

D1
s tan−1

(2D1u+D3

s

)]eδT

1

+C2

[
1

D2
s tan−1

(2D2u+D3

s

)]e−δT

1

=
s

2γ

(
tan−1

(1
s

[2γ(b−C)eδT −2γ(a−C)

sinhδT
+

4γC
1− γ

])
− tan−1

(1
s

[2γ(b−C)−2γ(a−C)e−δT

sinhδT
+

4γC
1− γ

]))

− s
2

(
tan−1

(1
s

[2(b−C)e−δT −2(a−C)

sinhδT
+

4γC
1− γ

])
− tan−1

(1
s

[2(b−C)−2(a−C)eδT

sinhδT
+

4γC
1− γ

]))
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For s the following formula holds,

s =

[
4γ

(
(b−C)2 +(a−C)2−2(b−C)(a−C)cosh(δT )

sinh2(δT )
− 16γ2C2

(2−δ)2

] 1
2

(A.4)

Note that C in the above equations is the same as in the previous section (C3 in (3.22), p.38) which we
made fully explicit. Now we write the second parts of the two integrals together, where again after
some algebra we obtain

C1

[
−2u+

( D3

2D1
+u
)

log(D1u2 +D3u+D2)

]eδT

1

+C2

[
−2u+

( D3

2D2
+u
)

log(D2u2 +D3u+D1)

]e−δT

1

=
[ C

2−δ
+

(b−C)eδT − (a−C)

2sinh(δT )

]
log
((b−C)(γe2δT +1)− (a−C)eδT δ

sinh(δT )
+

4eδT γC
2−δ

)
+
[
− Cγ

2−δ
+

(a−C)− (b−C)e−δT

2sinh(δT )

]
log
((b−C)(e−2δT + γ)− (a−C)e−δT δ

sinh(δT )
+

4e−δT γC
2−δ

)
−a log

((b−C)δ− (a−C)(γe−δT + eδT )

sinh(δT )
+

4γC
(2−δ)

)
+2(a−b)

Finally, looking at the third parts of the two integrals we get,

C1
(
−δTeδT −1+ eδT )−C2

(
−δTe−δT +1− e−δT )

=
(b−C)(eδT − e−δT )− (a−C)(eδT − e−δT )− (b−C)δT (eδT + e−δT )+2δT (a−C)

2sinh(δT )

= (b−a)−δT (b−C) tanh−1(δT )+δT (a−C)sinh−1(δT )

Taking everything together that we found in (A.3) we obtain the following formula for ST (a, b)+ET
only dependent on a, b, γ, T , s and the explicit constant C.

2ST (a, b)+2ET =

s
2γ

(
tan−1

(1
s

[2γ(b−C)eδT −2γ(a−C)

sinhδT
+

4γC
1− γ

])
− tan−1

(1
s

[2γ(b−C)−2γ(a−C)e−δT

sinhδT
+

4γC
1− γ

]))

− s
2

(
tan−1

(1
s

[2(b−C)e−δT −2(a−C)

sinhδT
+

4γC
1− γ

])
− tan−1

(1
s

[2(b−C)−2(a−C)eδT

sinhδT
+

4γC
1− γ

]))

+
[ C

2−δ
+

(b−C)eδT − (a−C)

2sinh(δT )

]
log
((b−C)(γe2δT +1)− (a−C)eδT δ

sinh(δT )
+

4eδT γC
2−δ

)
+
[
− Cγ

2−δ
+

(a−C)− (b−C)e−δT

2sinh(δT )

]
log
((b−C)(e−2δT + γ)− (a−C)e−δT δ

sinh(δT )
+

4e−δT γC
2−δ

)
−a log

((b−C)δ− (a−C)(γe−δT + eδT )

sinh(δT )
+

4γC
(2−δ)

)
+(a−b) log(2)−δT (b−C) tanh−1(δT )

+δT (a−C)sinh−1(δT )+(1−b) log(1−b)− (1−a) log(1−a)
(A.5)
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Appendix B

The Action for the Symmetric case

Now we will compute the Action in the special case that γ = 1, i.e. the symmetric case. In order to
be able to use equation (3.15) we compute the action for the symmetric case separately. Now we can
combine (3.14) and (3.15) to obtain ξ(t) and recalculate the Action. We have,

log(ξ(t)) = log
( ẋ(t)+

√
ẋ2 +4(1− x2)

2(1− x)

)
= log

(2C1e2t −2C2e−2t +
√

(4−16C1C2)

2(1−C1e2t −C2e−2t)

(B.1)

So, to obtain the action we compute the following integral,

∫ T

0
log
( ẋ(t)+

√
ẋ2 +4(1− x2)

2(1− x)

)
dx =

∫ T

0
log
(2C1e2t −2C2e−2t +

√
(4−16C1C2)

2(1−C1e2t −C2e−2t)

)(
2C1e2t −2C2e−2t

)
dt

=C1

∫ eδT

1
log
(

2C1u2 +
√

(4−16C1C2)u−2C2

)
− log

(
2u−2C1u2−2C2

)
du

+C2

∫ e−δT

1
log
(
−2C2u2 +

√
(4−16C1C2)u+2C1

)
− log

(
2u−2C2u2−2C1

)
du

(B.2)
Where for the last equality we used the same integration by parts strategy as before. Note that when a
and b are zero also C1 and C2 are zero and the above integrals vanish. Not only because the constants
before the integrals are zero but also because the terms inside the integrals exactly cancel each other
(
√

4−16C1C2 = 2 for a and b equal to zero). Computing the above integral gives,

2ST (a,b)+2ET =

[√
−4
2

tan−1
(4C1u+ k√

−4

)
+

k
4

log(2C2−u(2C1u+ k))+C1u log(2C1u2 + ku−2C2)

−C1u log(−2C1u2 +2u−2C2)+
1
2

log(C1u2−u+C2)−
√

4C1C2−1tan−1
( 2C1u−1√

4C1C2−1

)]eδT

1

+

[√
−4
2

tan−1
(4C2u− k√

−4

)
− (

k
4
−C2u) log(2C1 +uk−2C2u2)−C2u log(−2C1−2C2u2 +2u)

+
1
2

log(C1 +C2u2−u)−
√

4C1C2−1tan−1
( 2C2u−1√

4C1C2−1

)]e−δT

1
(B.3)
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=

[
1
2

log

(
1+2C1u+ 1

2 k

1−2C1u− 1
2 k

)
+

k
4

log(2C2−u(2C1u+ k))+C1u log(2C1u2 + ku−2C2)

−C1u log(−2C1u2 +2u−2C2)+
1
2

log(C1u2−u+C2)+
k
4

log

(
k
2 +2C1u−1
k
2 −2C1u+1

)]eδT

1

+

[
1
2

log

(
1+2C2u− 1

2 k

1−2C2u+ 1
2 k

)
− (

k
4
−C2u) log(2C1 +uk−2C2u2)−C2u log(−2C1−2C2u2 +2u)

+
1
2

log(C1 +C2u2−u)+
k
4

log

(
k
2 +2C2u−1
k
2 −2C2u+1

)]e−δT

1

Where we use k :=
√

4−16C1C2. Furthermore we used again the fact that the inverse tangens of a
complex number can be written as a complex natural logarithm as follows,

tan−1(z) =
1

2 · i
log
(

1+ i · z
1− i · z

)
.

Finally we used that
√

4C1C2−1 =−i ·
√

1−4C1C2.

Now we take the special situation with a = b = 0 and consequently C1 =C2 = 0 and k = 2. Filling this
out directly in the above solution of the integral, a lot of terms cancel and the following remains,

2ST (0,0) =
1
2

log(−2eδT )− 1
2

log(−2)+
1
2

log(−eδT )− 1
2

log(−1)− 1
2

log(2e−δT )+
1
2

log(2)

+
1
2

log(−e−δT )− 1
2

log(−1)

=
1
2

log(eδT )+
1
2

log(eδT )+
1
2

log(eδT )+
1
2

log(e−δT )

= δT

(B.4)

Now we see, we get two contradicting results. On the one hand, before calculating the integral, we
see that filling out a = b = 0 in (B.2) we get two definite integrals over the zero function which clearly
should be zero. On the other hand, after calculating the integral and filling out these values for a and
b directly not all terms cancel and a δT term remains. The reason for this is that we can not fill out
a and b directly. This can be seen by the fact that although the logarithms that replaced the inverse
tangens’ do not depend on u when a = b = 0 and thus drop out by taking the bounds of integration,
the logarithms are taken over 0 or 1

0 respectively. To properly calculate the action we need to use a
more subtle approach. Note that in general, the value of b is the typical value to be attained after
time T if b = ae−2T (Note that a = b = 0 is a special case of this typical behaviour). Now We can fill
out this value for b, and look what happens with the expression for ST (a,b). Again we suspect the
action has to vanish as the Lagrangian of this system is the zero function. Filling out this value for C1
and C2 we get C1 = 0 and C2 = a. So in this case still k = 2. We fill this out in equation (B.3) and the
following remains,

2ST (a,ae−2T )+2ET =

[
1
2

log(2a−2u)+
1
2

log(a−u)

]eδT

1

+

[
1
2

log
(

2au
2−2au

)
− (

1
2
−au) log(2u−2au2)

−au log(−2au2 +2u)+
1
2

log(au2−u)+
1
2

log
(

2au
2−2au

)]e−δT

1
(B.5)
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=

[
1
2

log(2(a−u)2)

]eδT

1

+

[
log
(

2au
2−2au

)
− 1

2
log(2u−2au2)+

1
2

log(au2−u)

]e−δT

1

=
1
2

log

(
2(a− eδT )2

2(a−1)2

)
+ log

(
2ae−δT

2−2ae−δT

2−2a
2a

)
This holds for all values of a and b such that b = ae−2T , so specifically for a = b = 0. Now taking the
limit of a→ 0 (and thus also b→ 0) we see that we get,

lim
a→0

2ST (a,ae−2T )+2ET = lim
a→0

1
2

log

(
(a− eδT )2

(a−1)2

)
+ log

(
e−δT −ae−δT

1−ae−δT

)
= δT −δT = 0 (B.6)

But of course we should have that the action is always zero for b = ae−2T , not only when taking the
limit for a→ 0. To see that this is the case note that,(

(a− eδT )2

(a−1)2

)− 1
2

=
a−1

a− eδT =
ae−δT − e−δT

ae−δT −1
=

e−δT −ae−δT

1−ae−δT .

From this it immediately follows that the action is indeed zero for all a and b such that b = ae−2T (in
the symmetric case).

59



60



Bibliography

[1] Amir Dembo and Ofer Zeitouni, Large Deviations Techniques and Applications, 1998, Springer-
Verlag New York

[2] Frank den Hollander, Large Deviations, 2000, The American Mathematical Society, Providence
Rhode Island

[3] David Tong, Classical Dynamics, University of Cambridge part II Mathematical Tripos, 2004, Univer-
sity of Cambridge

[4] Frank Redig, Hamiltonian Dynamics and optimal transport for probability measures on two-point sets,
2015, Delft Institute of Applied Mathematics

[5] Frank Redig and Feijia Wang, Gibbs-Non-Gibbs Transitions via Large Deviations: Computable Exam-
ples, 2012, Springer

[6] Frank Redig, Basic Techniques in interacting particle systems, 2014, Delft Institute of Applied Math-
ematics

[7] Jean-Dominique Deuschel and Daniel W. Stroock, Large Deviations, 1989, Academic Press INC.
London LTD.

[8] Jin Feng and Thomas G. Kurtz, Large Deviations for Stochastic Processes, 2005, American Mathe-
matical Society, Providence RI

61


