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Summary

The transition to renewable energy sources is essential to mitigate climate change, and floating wind
turbines (FOWTs) present a promising solution to harness offshore wind resources. Light Detection
and Ranging (LiDAR) systems mounted on nacelles provide a cost-effective and efficient means to
measure wind fields, critical for turbine performance, control and load simulation. However, FOWTs’
motion introduces complexities in LiDAR measurements due to velocity and positional changes. This
thesis focusses on developing a correction method for LiDAR measurements on FOWTs, addressing
the influence of motion on wind velocity, position, and direction. The accuracy and uncertainty of these
corrected measurements are quantified.

Simulated six degrees of freedom (6DOF) motion and a power law wind field are inserted in a numerical
LiDAR model, in which corrected and uncorrected measurement position, direction and line of sight
velocity are constructed. The corrected outputs are validated through reconstructed wind fields and the
uncertainty of the correction is quantified. In this study, significant motion-induced bias is identified in
the reconstructed wind fields. The dominant motion affecting measurement accuracy was identified as
pitch motion, especially when it exhibits a non-zero mean. The relative error of the reconstructed power
law wind field parameters is reduced by 3 orders of magnitude. Despite an increase in uncertainties
associated with the correction method applied, the correction remains effective in reducing the error in
LiDAR measurements induced by FOWT motions. The findings highlight the necessity and feasibility
of motion correction for LiDAR measurements, offering substantial improvements in the accuracy and
reliability of reconstructed wind fields for floating wind turbine applications.
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1
Introduction

It is well known that the climate is changing and the global temperature is rising. This already has
adverse effects on Earth’s population and will continue to intensify over the coming years. To bring the
warming of the Earth’s atmosphere to a halt, significant reductions in greenhouse gases are required. It
is known that in 2019 the energy sector still contributed to 34 % of global emissions in CO2 equivalents
[12]. This includes direct and indirect emissions. While the wind energy sector is growing rapidly, more
growth is required in the coming years to continue to decarbonise the energy sector and keep up with
demand. In the COP28 it was decided that the annual growth in energy production by wind energy
should roughly triple [29].

One way to contribute to the expansion of the wind energy fleet is by using floating wind turbines. These
have the advantage that they can be built in deeper waters and thus more locations become available
to extract wind energy. Next to this, the wind resource is usually higher in deeper waters as these
are generally further from shore. In fact, 80 % of the total available global wind resource is located at
water depths greater than 60 m [50]. In the floating wind energy industry, a lot of development is still
required before floating wind turbines become commercially viable. One of these aspects that needs
to be developed is the reconstruction of the wind field that reaches the turbine. This knowledge is
important for simulating the loads that the wind turbine experiences, but can also be used for control
of the turbine or to construct its power curve.

The wind field in front of the turbine can be measured with a LiDAR (Light Detection and Ranging). This
has advantages compared to simpler nacelle-mounted anemometers, such as cup or sonic anemome-
ters, as the LiDAR can measure in a larger range in front of the turbine instead of measuring just at
the mounting location of the measurement device. This provides a more complete picture of the wind
field in terms of, for example, turbulence, turbine wakes or wind shear. Knowing this can optimise per-
formance, minimise downtime and increase a wind turbine’s lifetime. Of course, a LiDAR also has its
challenges. It can, for example, not measure well when there is precipitation. Moreover, the blades of
the turbine block the laser beams sometimes, reducing measurement availability. Compared to a met
(meteorological) mast, the main advantage of using a LiDAR is the cost. A LiDAR is only a fraction of
the price of a met mast, less than half a million euros for a LiDAR compared to about 15M€for a MET
mast [44]. besides, for floating wind in deep water, a met mast is not feasible due to high installation
costs.

However, even though using a nacelle-based LiDAR on a floating turbine has high potential, it also
presents some large challenges related to the floating motion of the turbine. An additional velocity is
added to the LiDAR measurement by the movement of the LiDAR itself due to floating motions of the
turbine. Next to this, the measurement position changes, as well as the direction in which the wind
speed measurement is taken. Due to these alterations of the measurement, a correction for velocity,
position and direction is required. In this research a part of this correction method is explored.

The basis for this research is to make a simulator for the LiDAR, in which a constructed wind field and
wind turbine motion are given as inputs. The output wind velocity, direction and position are then used

1
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in a reconstruction algorithm to reconstruct the wind field again. The input and reconstructed wind field
are then compared as verification of the method. For this whole process, also the uncertainties of the
outputs are required in order to determine the reliability of the correction and the measurement itself.

Once the uncertainties are known, the next step can also be taken in improving themodel for generating
a correction factor.

The aim is to use this research to reconstruct the wind field of a floating wind turbine demonstrator to
simulate and validate the loads it experiences over its lifetime. The floating wind turbine demonstrator
used is the Tetraspar, located at the Marine Energy Test Centre close to the Norwegian coastal city
Karmøy. It is equipped with a pulsed coherent Doppler Wind LiDAR and an IMU to measure the global
movement of the turbine and hence the LiDAR.

1.1. Existing literature
There already exists a large body of research investigating floating LiDARs. However, these researches
are focussed on buoy-mounted LiDARs. It is hard to compare results between these studies and
nacelle-mounted LiDARs as the movement response is much less direct for the latter. The response
depends on the floater, tower and nacelle design that dedicate the stiffness and dynamics of the struc-
ture. However, for a buoy a more direct one-to-one relationship exists with the present sea-state con-
ditions and the movement response. Besides that buoy-mounted LiDARs often point upward, instead
of towards the mean wind direction, this results in orientation issues. Even though the results of buoy
mounted LiDARs do not directly compare to those of nacelle-mounted ones, the correction methods
used can still be useful to apply.

In [11] the correction for instantaneous line of sight velocity measurements is split in a correction for
orientation change and translational velocity of the buoy. For their experiments a scanning continuous
wave WindCube v2 mounted on an anchored buoy is used, and the orientation and translational veloc-
ities are measured by an IMU. First, the corrected measurement direction is found by multiplying the
LiDAR direction vector with a transformation matrix that contains the orientation change of the buoy
as measured by the IMU. The line of sight velocity is then found by multiplying the sampled wind field
velocity with a rotational matrix. This rotational matrix is defined by the angles that define the LiDAR
measurement cone, which are deduced from the rotated measurement direction vector. Next, the ve-
locity measured is corrected for the translational velocity of the buoy. This velocity, too, is projected
onto the beam, which can consequentially be added to the line of sight measurement to get the simu-
lated VLOS that the floating LiDAR would measure. In this method the change in measurement location
is not considered, but for the research in this thesis this is an important factor as well.

As found in [26], nacelle-based LiDARs can be used to determine the power curve of floating wind
turbines. A comparison study was conducted on a 2 MW floating turbine, where the 10-minute aver-
age reconstructed wind speed of the 1 Hz line of sight velocities of four LiDAR measurements was
compared to the results of a sonic anemometer. A 0.97 coefficient of determination of the correlation
between LiDAR and the sonic anemometer has been found. In addition to this, higher nacelle excita-
tions led to a larger uncertainty of the measurement. In conclusion, the paper recommends a more
detailed quantification of the uncertainty of the measurement and to apply a motion compensation in
terms of correction to decrease uncertainties. This highlights the relevance of this research and shows
a potential application to power curve calculations for floating wind turbines.

From [19] it is concluded that a correction factor is indeed necessary for floating nacelle-based LiDARs,
as a mean absolute error in the rotor effective wind speed is found to be up to 25 % for some floater
motions. In this research the LiDAR is modelled and combined with an aeroelastic model of the wind
turbine and floater. Some specific sea states are inserted, and the consequential error is calculated.
The turbulence intensity (TI) and mean error of the rotor effective wind speed (REWS) were also found
to be overestimated.

In [27] it was also found that for a LiDAR installed on a floating buoy the TI is overestimated, because an
additional variance in the measured wind speed is added due to the platform’s motion. The turbulence
intensity is influenced by both rotational displacement and translational velocities, whereas the mean
error of REWS is influenced mostly by rotational displacement resulting in a different position of the
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measurement. This is relevant to determine themost influential movement to consider when performing
this research. In this research, it is mentioned also that a detailed uncertainty quantification is desired
to increase the trustworthiness of the results. Besides, a recommendation for further research is given
to perform a parameter study exploring the effect of motion amplitudes and frequencies, together with
looking into the influence of coupling between different degrees of freedom (DOF). It should also be
noted that this research is limited to the evaluated wind and sea states and the behaviour of the floater
used.

In [21] a first approach is described to correct for the motions of a floating wind turbine in nacelle-
mounted LiDAR wind measurements. In this research a correction look-up table is constructed for
specific motions for the 10-minute average wind speed. This is done using an analytical model of the
LiDAR measurement. Next to this, a frequency filter is used for correction of floater pitch motions is
implemented for instantaneous measurements, but this method is unlikely to be generalisable. For
example, this method does not apply to varying pitch oscillations or to a combination of low pitch am-
plitudes and high periods. In [32] this was confirmed. In this research the analysis only focusses on
limited DOFs: heave, yaw, pitch and roll for the turbine motions. The wind field input is limited to a
power law wind profile for the analytical model, while turbulence is added using the Veers method in a
turbulence generator. In further research, this can be improved by considering all DOFs and the cou-
pling between them. Next to that, for the generation of a correction factor, more complicated input wind
fields can be used. The goal of this research is to obtain a correction and uncertainty for instantaneous
measurements, regardless of the floater motion or input wind field. This would be done by implementing
the correction velocity in the LiDAR simulator and transforming the measurement location and direction
vector to the global system while incorporating the local LiDAR movement. In the research by M. Grafe
[21] the numerical model is used to verify the analytical results, while in this research the numerical
model is the basis for obtaining corrected measurements of velocities and uncertainties. That can then
be used to correct real time measurement form the LiDAR on the TetraSpar. Verification is done by
reconstructing the wind field and comparing it with the input wind field.
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1.2. Research questions
From the previous discussion, it should be clear what the relevance is of correcting wind velocity mea-
surements on floating wind turbines and knowing the uncertainty of these corrections. With this applica-
tion, wind fields can be reconstructed with higher accuracy, opening up possibilities for load verification,
in-the-loop control and for better power curve calculations.

This master thesis fits into the current research by considering a nacelle-based LiDAR, which expe-
riences motions different from those of a floating buoy. While floating buoy LiDARs have been re-
searched and used more extensively for resource assessment and wind measurements in active wind
farms, nacelle-based LiDARs on a floating wind turbine are relatively unexplored.

Besides, this is the first application in which this particular correction approach has been established.
In this approach, a correction is determined through a numerical LiDAR model that incorporates a 6
DOF input for the LiDAR motion caused by wave-induced motions of the floating turbine.

Additionally, the development of a LiDAR model is relevant for SGRE, since a new model needs to be
created. This new model is required to be independent of existing models, such as ’Virtual Constrained
turbulence and LiDARmeasurements’ (ViConDar), developed by [36]. The reason for this is that it must
be integrated into the aero-hydro-elastic model: BHawC-Orcaflex, where BHawC is developed in-house
at SGRE.

All in all, these aspects create a clear research gap with the research objective of developing a cor-
rection method for the influence of floater motions on LiDAR wind speed measurements by simulating
a LiDAR. For this corrected wind velocity, the uncertainty also has to be known in order to know to
what extent the wind measurement can be trusted and used. Therefore, the following question will be
answered in this thesis:

Main question
What are the uncertainties in corrected wind speed measurements taken from a nacelle-mounted Li-
DAR on a floating wind turbine?

Sub-questions
1. How is the correction of a wind velocity LiDAR measurement on a floating wind turbine performed

with the use of a numerical LiDAR model?
2. What are the specific floater motions that influence LiDAR wind speed measurements and how

significant is their impact?
3. What are the uncertainties of the involved input parameters, that is, of the LiDAR parameters, the

LiDAR modelling and the motion input?
4. What is the most dominant source of error in the reconstructed wind field?
5. What is the remaining error of the corrected wind speed measurements?

1.3. Report Outline
In this thesis, the relevant theory required is first given to understand the methods applied. This is done
in chapter 2. A general overview of the research structure is first given. Then the different steps that
are detailed in this overview are expanded on, such as the floater motions, LiDAR measurements and
reconstruction. In addition, uncertainty quantification and test case set-up are discussed. In the next
chapter, in chapter 3 the methodology applied to correct LiDAR measurements is described. Again go-
ing over the separate components of the research structure, starting with the inputs, then focussing on
the LiDARmodel itself and then discussing the generation of the outputs, going on to the reconstruction
method of the original wind field. The results of the correction method are presented in chapter 4. Here,
first focus is again put on the different components of the correction method, that is, the motion, the
LiDAR model and the reconstruction. After that, the total uncertainty of the reconstructed wind field is
discussed. Lastly, the main conclusions that can be drawn from these results and answer the research
questions are given in chapter 5. In addition, recommendations for future work are given here.



2
Background theory

2.1. General overview
How are LiDAR measurements corrected for motions in floating offshore wind turbines? To answer this
question, the design of the correction method for the movement of the LiDAR in the LiDAR model will
be explained by means of Figure 2.1.

The measurement that the LiDAR performs is modelled as a LiDAR simulator. The simulator requires
inputs for both the movement of the LiDAR, influenced by its floating motion, and the wind field that it is
measuring. These inputs are represented by two blocks on the left side of Figure 2.1, labelled ‘floating
motion’ and ‘wind field’.

The LiDARmodel generates three key outputs: the line of sight velocity along the laser beam’s direction,
the measurement position of this velocity, and the direction vector from the LiDAR to the measurement
position. These outputs are shown as three blocks to the right of the ‘LiDAR model’ in the figure,
labelled ‘Line of Sight Velocity (VLOS)’, ‘position’, and ‘direction’. All three outputs are corrected for the
motion of the turbine within the LiDAR model.

The corrected outputs—line-of-sight velocity, measurement position, and direction—are then input into
a reconstruction algorithm to retrieve the original wind field. This process, shown in the block labelled
‘reconstruction’ to the far right of the figure, serves as a verification step for the LiDAR model. The
reconstructed wind field should closely match the original wind field input.

Figure 2.1: Overview of research set up

5



2.2. FOWT motions 6

Uncertainties are present in the input of the motion data. These uncertainties propagate through the
LiDAR model and result in uncertainties in line of sight velocity VLOS , measurement position and direc-
tion. However, also the LiDAR simulator itself has uncertainties in its modelling that add to the total
uncertainty of the output. These output uncertainties again result in uncertainties in the reconstructed
wind field. The goal of this research is to get corrected outputs and quantify their uncertainties and
error with respect to the original wind field.

In the next sections, the different details of the steps in the general overview will be described in more
detail. Diving into themotions of a FOWT, the input wind field, the LiDARmodel itself and the reconstruc-
tion algorithm. In addition to some relevant steps in between, such as the uncertainty quantification,
coordinate transformations and the set up of the floating wind turbine demonstrator that gathers the
relevant data.

2.2. FOWTmotions
Knowing how a moving FOWT can be described is an essential step to identify the floating motion input
of the research overview given in section 2.1. This section explains the movement of a floating wind
turbine and describes in a very general way what causes these motions.

The simplified motion of a FOWT is defined in 6 DOFs. A rigid bodymotion is considered for the motions
of the floater, ignoring deformations of the body itself. The translational motions are described as surge,
sway, and heave, and the rotational motions are described as roll (φRoll), pitch (θpitch) and yaw (ψyaw).
These angles should not be confused with blade pitching and nacelle yaw. The conventional directions
in which these are defined are described in Figure 2.2. For the simulated motions on the top of the
tower, where the LiDAR is located, some tower deformations will also be considered. This is further
explained in the Methodologies chapter in subsection 3.1.1.

Figure 2.2: Convention of describing floater motions of a floating offshore wind turbine

The movement of the turbine depends on the sea state in which it is situated, that is, the wave height
and wave period, but also the structure’s geometry and stiffness, the water depth, etc. On top of that,
the wind also has a high influence on the movement of a floating wind turbine, mostly contributing to
a static pitch offset from zero. Floater motions that are induced by waves can be divided into three
different categories, namely: wave frequency, high frequency and slow drift or mean drift motions. The
latter motions are caused by non-linear waves, due to the difference in frequency contributions [31]
and mostly contribute to resonance in surge, sway and yaw. The first category is associated with the
wave frequency range. In turn, the second category is mostly associated with frequencies higher than
the wave frequency, and these high frequency motions are connected to resonance in heave, pitch and
roll.
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2.2.1. Floater dependency
Floating wind turbines are much more influenced by hydrodynamic loads, compared to bottom fixed
offshore turbines. The severity of the influence of hydrodynamic loads on the turbine’s motion depends
on the floater design. As the industry has not converged yet to one design, the influence of choosing a
specific design on the turbine’s and thus the LiDAR’s motion should be taken into account when looking
at the relevant floater motions. The Tetraspar uses a spar buoy floater design. This design will most
likely experience less high wave loading compared with semi-submersible floater designs. However,
it will still experience non linear wave forces and is sensitive to rotational motions. The tension leg
platform (TLP) will have even smaller tower top motions because it will only experience small wave-
induced motions [5]. The higher wave loading will increase the response of the system, and thus result
in large relative motions of the nacelle-mounted LiDAR. These dependencies, that is, the magnitudes
and periods of the motions studied, should be taken into account when conclusions are drawn for
corrections. The magnitude of the error and uncertainty values connected to the influence of different
degrees of freedom might differ for other floater designs. This is true because the magnitudes and
periods of the dominating motions for these designs will be different.

2.3. Wind field
The wind field that is input can be modelled in multiple ways. The simplest way would be to use the
samewind field for every measured location. Often to include amore realistic windmodel a theoretically
derived log law or an empirically derived power law is used to describe the wind shear that is created
by friction with the ground, or in this case, the sea surface. In the IEC standard [3] both equations to
describe wind shear are used and for this thesis the power law is chosen, which is described in (2.1).
An example is plotted in Figure 2.3, with Uref = 10m/s, zref = 90m and α = 1

7 .

U(z) = Uref

(
z

zhub

)α

(2.1)

Figure 2.3: Power law wind profile with Uref = 10m/s and α = 1/7
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2.4. LiDAR wind measurement
The foundation that this research is based on is the LiDAR model. This section explains the working
principle of a LiDAR which is essential to correct its measurements. Next to the physical principles
of the LiDAR, the modelling of the LiDAR is clarified. This model will be directly applied to perform
corrections, with uncertainty propagated through it.

2.4.1. Working principle
Light detection and ranging (LiDAR) measurements use laser light and the Doppler shift caused by
reflection of the electromagnetic wave on air molecules and aerosols to measure wind speed. This
application is also called Doppler Wind LiDAR or DWL in short. A projection of the wind vector is
measured along the path of the laser beam. In this research the application of the coherent wave
LiDAR is used as opposed to a direct detection LiDAR, which uses a broadband Rayleigh signal with
light reflections of off molecules, and is usually used in higher parts of the atmosphere where aerosols
and cloud particles are less common [38], [43].

Doppler effect
The Doppler effect occurs if the source that emits light and the observer that receives light move relative
to each other. In the case of LiDAR, the source, the moving aerosols, move relative to the LiDAR that
emits the laser light. In the case of a floating LiDAR the observer adds another relative motion to this
as the LiDAR moves due to the floating motion. Only when the speed of the observer or LiDAR would
be close to that of the speed of light, should the complete relativistic Doppler effect be considered.

If the relative speed between LiDAR and particle is described as ∆v, the frequency of light transmitted
by the LiDAR is set to f0 and the frequency observed by the particle is set to f1, then f1 can be described
according to (2.2). In this equation c describes the speed of light.

f1 = f0 ·
(
1 +

∆v

c

)
(2.2)

Here, ∆v is described by (2.3).

∆v = vp − vL (2.3)

With vp describing the speed of the particle and vL describing the speed of the LiDAR.

Then the observed frequency f2, which is received by the LiDAR and scattered back from the particle
as f1 is described by (2.4). Here, the term (

vp

c )2 is neglected as it is much smaller than the other two
terms present.

f2 = f1 ·
(
1 +

∆v

c

)
≈ f0 ·

(
1 + 2 · ∆v

c

)
(2.4)

Now, the final difference frequency that should be detected is given by (2.5), thus describing the Doppler
shift frequency.

The relative Doppler shift ∆f/f0 is usually very small and its order of magnitude is commonly between
micro and nano Hz, which is very hard to detect [38].

∆f = f2 − f0 = 2 · f0 ·
∆v

c
(2.5)

Spectral line shape
The concept of wind can be described by the collectivemovement of particles in the air within a particular
volume in the atmosphere. These particles can be molecules, aerosols or cloud particles. On top of this
movement, there acts a so-called Doppler broadening that is caused by the movement of the individual
air particles. This causes a variance to be present in the measured wavelength or frequency shift.
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The spectral distribution commonly looks as depicted in Figure 2.4. This figure shows the spectral
distribution for an emitted wavelength of 355nm. On the axis of the graph, the Doppler shift is shown
for the wavelength change in pm(1pm = 10−12m), and VLOS in m/s, where a 1pm difference in ∆λ
is equal to a 422m/s change in VLOS . In the graph also the full-width half-maximum is indicated with
FWHM.

The broad variance (σv) seen in the signal is caused by the light that is back-scattered by molecules.
These are very light and have a relatively high speed. Air molecules namely have a mean velocity of
459 m/s at a temperature of 15◦ [38]. For aerosols, the variance in the spectral distribution is much
smaller as these are much heavier compared to air modules. In the application for relatively local wind
measurements with coherent LiDARs on earth, aerosols are used only.

Figure 2.4: Spectral distribution of VLOS , where a mean VLOS of 0m/s is depicted by the dotted line and a VLOS of 180m/s
is depicted by the bold line. [39]

Finally, the goal is to find the mean of the spectral distribution to quantify the Doppler shift and find the
line of sight velocity.

Coherent detection Doppler Wind LiDAR
As discussed in the first section of subsection 2.4.1 on the Doppler effect, the change in relative fre-
quency due to the Doppler shift is very small, requires incredibly sensitive measurement material and
would be extremely sensitive to disturbances. To solve this issue, a reference signal is used. Another
light beam is emitted that will interfere with the received signal. The frequency of the reference signal
will be subtracted from the received signal. This is shown in the schematic below in Figure 2.5. This
type of LiDAR is called coherent because of the additional coherent laser beam that is added as part
of the detection of the Doppler shift. However, in fact, all LiDARs make use of coherent lasers, as
opposed to incoherent light. This additional electromagnetic light wave has frequency fLO, where LO
signifies local oscillator.

As described in [38], the detector registers the current induced by the time-averaged square of the
electrical field of the combined and the reference signal. Here, the electrical field of the different signals
is described by (2.6), which corresponds to the sinusoidal solution of the electromagnetic wave equation.
The subscript s describes the atmospheric source signal and thus fs = f2 = f0 + ∆f . Each electric
field of the electromagnetic waves has a corresponding frequency and phase.
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ES(t) = ĒS · cos (2π · fs · t+ φS)

ELO(t) = ĒLO · cos (2π · fLO · t)
ED(t) = ES(t) + ELO(t) = ĒS · cos (2π · fs · t+ φS) + ĒLO · cos (2π · fLO · t)

(2.6)

Here, the magnitudes of the electrical field can be determined from the LiDAR equation, given in (2.7)
from [48]. This equation gives the power of the received signal depending on the LiDAR parameters.
The power of the local oscillator signal is known and constant.

P (r) = KG(r)β(r)T (r) (2.7)

As described in [48], the first two terms describe the setup of the LiDAR, while the last two summarise
the information from the atmosphere. The first component of the LiDAR equation K describes the per-
formance of the LiDAR system itself. Then G(r) contains a description of the measurement geometry
that depends on the range. For the atmosphere, β(r) identifies the backscatter for a distance r and
T (r) stands for transmission, indicating the amount of light that is lost while the light travels through
the atmosphere.

The laser photon detector receives a current that is proportional to the light intensity. The light intensity
is proportional to the square of the electrical field of the combined signal and the reference signal ED.
What this looks like is shown in (2.8), also retrieved from [38]. The last term in the second equation
of (2.8) is zero as the frequency of this term is much higher than the bandwidth of the detector. This
also holds for the direct current terms that correspond to the first two terms in ID, they contain twice
the beam frequencies (4πfLO and 4πfs). Therefore, only the beat frequency is recorded.

The efficiency ηeff that is placed in (2.8) describes the optical mixing efficiency. This parameter shows
the spatial inference of the s and LO beams and their temporal correlation. For perfect coherent beams,
ηeff would be 1. It describes the efficiency of the mode matching of the two beams. In this way, non-
coherent background noise is also filtered out, which would have a low ηeff .

ID(t) ∝ |ED(t)|2

ID(t) ∝ 1

2
Ē2

S +
1

2
Ē2

LO + ηeff ĒSĒLO

[cos (2π · (fS − fLO) · t+ φS) + cos (2π · (fS + fLO) · t+ φS)︸ ︷︷ ︸
=0

]

ID(t) ∝ 1

2
Ē2

S +
1

2
Ē2

LO + ηeff ĒSĒLO cos (2π · (fS − fLO) · t+ φS)

(2.8)

With the use of time-averaging, only the frequency difference between the received signal f2 and the lo-
cal oscillator signal fLO is recorded, this is called the beat-frequency, as shown in (2.9). It is heterodyne
if fLO ̸= f0.

fbeat, heterodyne = |f2 − fLO| = |f0 +∆f − fLO| (2.9)

(2.10) relates the LiDAR equation for power to the detected current and is retrieved from [30]. A similar
equation is also given in [49]. The power received Ps,i can be described by the LiDAR equation in (2.7).

(2.10) is the same equation as (2.8), but with the magnitude of the electric field replaced by the power of
the electric field and the power received by each particle is specified as Ps,i and summed for the mea-
surement volume. Besides that, ηrec is the receiver loss and gain factor, Fi is the collection efficiency
of the scatter from particle i and Rdiode is the responsivity of the detector.

iD(t) = 2Rdiode
∑
V

√
ηrecFiPs,iPLO cos (2π (fs,i − fLO) t+ φs) +DDC (2.10)
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The (2.11) shows the exact and not proportional relationship of the current described in terms of the
magnitude of the electrical field of (2.8). In this equation c is the speed of light and ε0 is the permittivity
in vacuum.

iD(t) = ηeff
ĒsĒLO cos (2π (fs − fLO) t+ φs)

cε0
+DDC (2.11)

Here, DDC describes the direct current according to (2.12).

DDC = ηeff
Ē2

s + Ē2
LO

2cε0
(2.12)

Figure 2.5: Schematic overview of working principle of a coherent heterodyne Doppler Wind LiDAR [38]

Signal processing
Once the signal has been received by the detector, it is converted to a digitised signal and a direct
Fourier transform is applied to obtain the power spectral density of the received signals. This signal is
then averaged for several time blocks to filter out noise. For the same purpose, a threshold is applied
to the data. Consequently, a mean of the Doppler shift can be found, and from this the relative wind
speed is calculated. All of this is visualised in Figure 2.6.

Figure 2.6: Signal processing of LiDAR detection retrieved from [43]
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Line of sight velocity
The velocity measured by one laser beam of the LiDAR is not the real wind speed vector, but the wind
speed along the direction the laser beam points in. This velocity is called the line of sight (LOS) velocity
and is shown in (2.13).

VLOS = V⃗ · d⃗n = u cos(θ) + v sin(θ) sin(ψ)− w sin(θ) cos(ψ) (2.13)

In this equation, V⃗ is the wind speed vector, d⃗n is the direction vector of the LiDAR laser beam, u, v and
w are the wind speeds in x, y and z directions. In Figure 2.7 the measurement principle is shown with
the conventional coordinate system for the nacelle-based LiDAR. The LiDAR points towards the main
wind direction in u. In addition, the direction in which the laser beam points is indicated with the zenith
angle θ and the azimuth angle ψ, as shown in Figure 2.7. These angles correspond to the angles in
(2.13). The parameter F describes the position of the range gate. In the figure a scanning LiDAR is
used, while in this research a fixed LiDAR is used measuring with four non-scanning LiDAR beams as
depicted in Figure 2.8.

In the case of the floating LiDAR the measurement device itself also has a movement and so in fact it
does not measure wind speed of the wind field directly, but rather calculates the relative speed com-
pared to its ownmovement. Therefore, in this research (2.14) is considered. In section 2.5 the inclusion
of the LiDAR movement and the transformations that accompany it will be discussed in more detail.

VLOS = (V⃗ − V⃗LiDAR) · d⃗n =

(u− ẋLiDAR) cos(θ) + (v − ẏLiDAR) sin(θ) sin(ψ)− (w − żLiDAR) sin(θ) cos(ψ)
(2.14)

Figure 2.7: Description of LiDAR measurement, here a
scanning pattern is visualised. Retrieved from [42].

Figure 2.8: Leosphere Windcube with 4 pulsed laser beams,
retrieved from the user manual [6]

2.4.2. Modelling of LiDAR
Now that the principles of LiDAR measurement are clear, the LiDAR model that will be programmed to
correct the measurements can be described in detail.

Point measurement
The LiDAR can be simplified in a model by simulating it as a point measurement. The assumption
would be that the LiDAR focusses on one point in space (or a range of points), which has a certain
radial velocity along the beam. One then assumes that one particle is present at exactly the measure-
ment point that gives the local line of sight velocity. This simplification is useful for gaining a basic
understanding as well as for the use of a test case of the more complex LiDAR model. The equation
connecting the line of sight velocity and the wind speed, given in section 2.4.1 as (2.14) can directly be
used.
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Volumemeasurement
In reality, the wind speed is not measured for one single particle at which the laser is pointed, but rather
for a number of particles enclosed in a measurement volume that the laser illuminates. This is also
shown in the spectral line shape shown in section 2.4.1, with Figure 2.4, for example.

The laser beam is modelled as a thin beam, since the width of the beam is very small compared to the
length along the pointing direction of the beam. Then the wind speeds of the particles are integrated
over an enclosed volume with a weighting function W (r, z) according to (2.15). In the following, the
derivation of this weighting function and its connection to the working principle of a LiDAR is discussed.
In addition, in subsection 3.3.3 the practical implementation of (2.15) as a quadrature is discussed.

VLOS =

∫ ∞

0

∫ ∞

0

((V⃗ (r)− V⃗LiDAR) · d⃗n)W (r, z)drdz (2.15)

The received electrical field as described in (2.6) is now modelled as a Gaussian beam and is depicted
in Figure 2.9. A Gaussian beam describes the first mode of the transverse electromagnetic modes
(TEM) as a solution of the paraxial Helmhotz equation. This is firstly an idealisation because only the
first TEM mode is considered, while in reality more modes should be present to model reality better.
In addition, in the paraxial approximation, it is assumed that the envelope of a forward-travelling wave
pulse varies slowly in time and space compared to its period or wavelength. That implies that the beam
waist is relatively large and the beam divergence small enough for this assumption to apply. Thus, if
the beam is very focused, which implies a small w0, the paraxial assumption no longer holds. The
beam waist in Figure 2.9 is exaggerated from reality for visualisation purposes. These assumptions
can induce uncertainties in the modelling and thus in the final correction factor for the measured wind
speed. For example, to increase accuracy of the model, more TEM modes could be included. It is
namely unlikely that the laser beam only makes use of the Gaussian beam, more realistically other
modes will be present at the same time. The TEM modes and the corresponding magnitudes that are
present depend on the laser resonator. The LiDAR manufacturer could be contacted to ask for the
most dominant modes in the laser.

The electrical field for a Gaussian beam is given in (2.16) from [40].

E(r, z) = E0
w0

w(z)
exp

(
− r2

w(z)2

)
exp

(
i

[
kz − arctan

(
z

zR

)
+

kr2

2R(z)

])
(2.16)

The phase of the Gaussian beam is described by (2.17) from [40], where the first term represents the
phase of a plane wave. The second term is the Gouy phase shift, which represents an extra delay of
the wavefront compared to plane waves because of the confinement of the beam in spatial directions.
The effect is largest near the focal point. The third term is connected to wavefront bending, and is
connected to a deviation of the phase of on-axis points, so when r ̸= 0.

φ(r, z) = kz − arctan

(
z

zR

)
+

kr2

2R(z)
(2.17)

The other parameters of (2.16) are described in the list below.

• E0 = peak amplitude at the origin where r = 0 and z = 0

• w0 = beam waist (see Figure 2.9)
• w(z) = the beam radius where the intensity lowers to 1/e2 or the the magnitude of the electrical
field drops to 1/e due to diffraction of light, which is calculated as:

w(z) = w0

√
1 +

(
z

zR

)2

(2.18)

• r = the radial distance from the central z-axis of the beam (in the x-y-plane).

r =
√
x2 + y2 (2.19)
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• k = wave number
• zR = Rayleigh length , indicating the distance at which the area of the beam waist has doubled,
thus the waist is increased with a factor

√
2, as indicated in Figure 2.9.

zR =
π w2

0

λ
(2.20)

• R(z) = radius of curvature of the wave fronts

R(z) = z +
zR
z

2
(2.21)

Figure 2.9: Gaussian beam geometry retrieved from [10].

Next to the beam properties close to the waist, the beam divergence in the far field, that is for z values
much larger than zR is described according to (2.22) from [40].

θdiv =
λ

πw0
(2.22)

Now in the same way as described in (2.6), the intensity or received current is proportional to the square
of the magnitude of the electrical field, which in turn is proportional to the power of the signal. Finally,
the intensity of the Gaussian beam can be written as (2.23) from [40].

I(r, z) =
2 P

π w(z)2
exp

{(
−2

r2

w(z)2

)}
(2.23)

Here, P is the total power of the beam. For a perfect Gaussian beam, P is the peak irradiance.

Knowing how to model the light intensity of the laser beam of the LiDAR is useful so that the velocity of
the particles that scatter light can be weighted with the received light intensity. This weighting function
is found using the normalised version of (2.23). For this, the following definition of total power is used
as in (2.24) from [22], with I0 the peak light intensity. If now the light intensity is assumed to be I0 = 1

πzR
,

then (2.23) can be rewritten as (2.25). Now, a multiplication of a Lorentzian profile along the z-axis of
the beam and a Gaussian profile along the radial axes of the beam is produced. In this way, there is
no need to know the power nor the peak irradiance of the LiDAR pulse. This normalisation is allowed,
because for the final calculations normalised weights are required to avoid dependency on the number
of particles. Now (2.25) is only a function of the coordinate parameters x, y, z and the Rayleigh length
zR.

P =
πw2

0

2
I0 (2.24)
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WGaussianBeam =
zR

π(z2 + z2R)
exp

{(
−2

r2

w(z)2

)}
(2.25)

Now that the weighting for the particles in the measurement volume is known, one can model which
particle’s velocity will contribute more to the final measurement of VLOS . This is done with a convolution
integral. The interaction of the input: the physical property of the speed of the particle, with the system:
the laser beam, is represented by this convolution integral. The light intensity of the Gaussian beam is
incorporated in the weighting function of the convolution integral that is described at the beginning of
this section in (2.15).

Pulsed LiDAR
Within the Doppler wind LiDARs, there exist continuous wave (CW) and pulsed LiDARs. The Tetraspar
has a pulsed LiDAR installed, so the focus in this report will be on the pulsed LiDAR. A continuous
wave LiDAR focusses on one spatial point, or volume, and measures the wind speed for that position.
Instead, a pulsed LiDAR can measure at several distances by sending out pulsed laser signals. In
this way a more complete image of the wind field is registered, but with the disadvantage that the
measurement is integrated over a larger time span, in order to guarantee a good signal-to-noise ratio
(SNR).

Now, the weighting function of (2.15) consists of the Gaussian intensity along the axial direction of
the laser beam, as well as a range gate weighting function (RWF), which describes the pulsed laser
measuring at different range gates. These two weights that describe the total weight for the convolution
integral to find VLOS in (2.15), are defined in (2.26).

W (r, z, F ) =WGaussianBeam(x, y, z)WRWF (z, F ) (2.26)

In this section, the range gate weighting functionWRWF will be explained.

The WRWF is a convolution of the pulse power profile and a measurement window. Now, under the
simplifying assumption of a Gaussian for the pulse shape as described in (2.27) and a rectangular
windowing function, (2.30) is produced. This equation has first been derived by [2] and has been used
in multiple sources in literature, such as [15], [33], [42].

In(F, z) =
1√
πrp

exp

(
− (F − z)2

r2p

)
(2.27)

In this equation rp is the half width of the pulse, represented by (2.28). The variable ∆r is the full width
at half maximum (FWHM) of the pulse width, described by (2.29) [15], for which τp is the pulse 1/e
width [14].

rp =
∆r

2
√
ln(2)

(2.28)

∆r =
√
ln(2)cτp (2.29)

With this, the weight ranging function is defined as an integration of the intensity over the range gate
range, with ∆p the length of the range gate, found with ∆tobsc

2 , with ∆tobs the total observation time [33].

WRWF (F, z) =
1

∆p

∫ +∆p
2

−∆p
2

In(F, z + s)ds (2.30)

In turn, this integral can be solved analytically with the Erf function, as described in (2.31).
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WRWF (F, z) =
1

2∆p

[
Erf

(
z − F + ∆p

2

rp

)
− Erf

(
z − F − ∆p

2

rp

)]
(2.31)

Here, the error function is used for integrating normal functions and looks like (2.32).

Erf(z) =
2√
π

∫ z

0

e−t2dt (2.32)

In summary, to model the LiDAR all required inputs repeated in the following have to be present. All
relevant LiDAR parameters have to be known, that is, the range gate length (∆p), the range gate
locations (F ) and the half width of the pulse (rp). In addition, a wind field should be simulated. Moreover,
a point cloud of particles with their respective wind speeds has to be created. For the moving LiDAR
the translational and rotational movements are also required. The real application of the weighting
functions is discussed in chapter 3 and, more specifically, in subsection 3.2.3.

2.5. Transformation from LiDAR to global coordinate frame
What makes this model different from the majority of existing LiDAR models is the movement of the
LiDAR. One of the problems that floating motion brings is the use of different coordinate systems and
the transformations required that will map one location or velocity to the other. In this section, these
different transformations will be discussed.

2.5.1. Definition of reference frames
Three major reference frames exist: that of the laser beam, as described in the Gaussian beam model,
that of the LiDAR and an inertial reference frame. First, the convention of these three will be explained,
then the transformation between them, and then the necessary operations on the input variables will
be given in terms of transformations to arrive at the desired outputs.

Firstly, the inertial reference frame is defined as a global Earth-centered, Earth-fixed (ECEF) reference
frame or Terrestrial Reference System (TRS). This frame has its origin at Earth’s centre of mass and
the z-axis is defined towards the Conventional Terrestrial Pole (CTP), the average of the poles from
1900 to 1905. Then the y-axis is directed towards the intersection of the mean Greenwich meridian
and the equator. The y-axis is then perpendicular to this. All this is retrieved from [45] and visualised
in Figure 2.10.

Figure 2.10: Terrestrial reference system from [45]

Next, if we would call the TRS the inertial frame, even though it moves with the Earth’s rotation, then
the LiDAR reference frame is defined as in Figure 2.11. The TRS will now be called the inertial frame
and will be indicated as I, while the LiDAR frame will be indicated as L.
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Figure 2.11: Definition of the LiDAR reference frame, defined in the inertial reference frame (TRS), from [20]

In the figure the angles ψyaw, θpitch and φroll represent the yaw, pitch and roll angles, relatively. The
LiDAR position with the coordinates xL,I , yL,I and zL,I is taken from either a simulation or the IMU, as
described in section 2.2. In this thesis, finally, not the inertial reference frame as described here is used,
but a global reference frame centred at the original position of the turbine tower bottom as described
later in subsection 3.2.1.

2.5.2. Transformations
There are two major transformations for this problem. That is, a transformation from the beam coordi-
nate system to the LiDAR and that from the LiDAR to a global reference frame. These reference frames
are described later in subsection 3.2.1. The wind field as input for the LiDAR model will be given in the
global reference frame, as will the movement of the wind turbine.

LiDAR to global
The normalised direction vector that points in the direction of the laser beam is described as (2.33),
which is derived from (2.13) and for which the angles are described in Figure 2.7.

d⃗n =

 − cos(θ)
− sin(θ) sin(ψ)
sin(θ) cos(ψ)

 (2.33)

Then the point of measurement, that is, the location where one VLOS is found, is defined as (2.34).
Here, F is the distance along the beam from the origin of the LiDAR reference frame to the centre of
the range gate, as used in the pulsed LiDAR weight ranging equation and described in Figure 2.7.

r⃗p =

 xp
yp
zp


L

= F d⃗n = F

 − cos(θ)
− sin(θ) sin(ψ)
sin(θ) cos(ψ)

 (2.34)

These measurement positions need to be known in the inertial reference frame in order to connect a
wind speed to these positions. Then the following transformation is applied, as shown in (2.35).

r⃗p,I(t) = r⃗LiDAR,I(t) +R(qLiDAR(t)) r⃗p,i,L (2.35)

To shorten the formula, the time dependency can be left out of the equation, but not forgetting that the
first three parameters are, in fact, time dependent, resulting in (2.36).
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r⃗p,I = r⃗LiDAR,I +R(qLiDAR) r⃗p,i,L (2.36)

If the vectors are written out fully the equation looks like (2.37).

 xp
yp
zp


I

=

 xL
yL
zL


I

+R(qL) ·

 xp
yp
zp


L

(2.37)

With the following parameters:

• r⃗p,I is the position vector of the measurement position in the inertial reference frame.
• r⃗LiDAR,I is the position vector of the LiDAR in the inertial reference frame.
• (R(qLiDAR) is a rotation matrix, a function of quaternions, defining the rotation from LiDAR to
inertial reference frame.

• qLiDAR = qO(ψyaw, θpitch, φroll) is the quaternion describing the orientation of the LiDAR.
• r⃗p,L is the position vector of the measurement position in the LiDAR reference frame.
• xmount is the distance between the mounting position of the LiDAR and the measurement of the
orientation and displacement.

The LiDAR position (r⃗LiDAR,I) is dependent on the translational movement of the FOWT. These are
found by implementing the surge, sway and heave motion of the FOWT, as expressed below in (2.38)

 xL
yL
zL


I

=

 xsurge
ysway
zheave


I

(2.38)

The rotation of the LiDAR is expressed in the yaw, pitch, and roll angles, and the rotation matrix can
be deduced from the quaternion of the rotating motion of the LiDAR. This is described in detail in [32].
However, in this thesis, rotation matrices based on Euler angles are used to simplify the implementation
of orientation changes. The Matlab function eul2rotm() is used to compute the corresponding orienta-
tion matrix, where the default axis rotation sequence of ’ZYX’ is applied. However, in further research,
quaternions should be implemented to make the rotation matrix unambiguous and more robust by not
allowing Gimbal lock, for example.

Looking back at (2.15), all parameters are now defined to find VLOS . The position of the measurement
location r⃗p,I is known, which can be used to retrieve the wind speed that is measured from the simulated
wind field. The speed of the LiDAR is also known by simulation or measurements of the IMU. The
direction vector is defined by the LiDAR beam geometry settings and can be transformed to inertial
coordinates with (2.35). Lastly,W (F, r) is fully dependent on the LiDAR properties.

2.5.3. Beam to LiDAR
For the weighting function described in (2.26) a transformation is required to move from the LiDAR
frame to the beam coordinate frame. A rotation is required. For rotation, the z-axis of the LiDAR frame
is defined by the unit vector z0 = [0, 0, 1]T should be aligned with the direction vector d⃗n. The rotation
axis can be computed by taking the cross product of these two vectors as defined in (2.39).

s⃗ = z⃗0 × d⃗n =

 dn,y
−dn,x

0

 (2.39)

Consequently, the angle of rotation is found by applying the dot product between the two vectors, as is
done in (2.40).

cos(ϕ) = z⃗0 · d⃗n = dn,z (2.40)
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Rotation along the rotation axis s with rotation angle ϕ can be performed using the Euler-Rodrigues for-
mula given in (2.41) from [9]. The rotation axis used here should be a unit vector and is thus normalised
as s⃗n = s⃗

||s⃗|| .

R = I + sinϕ[s⃗n×] + (1− cosϕ)[s⃗n×]2. (2.41)

In (2.41) [s⃗n×] represents the skew-symmetric matrix of the unit axis of rotation s⃗n, expressed as (2.42).

[s⃗n×] =

 0 −sn,z sn,y
sn,z 0 −sn,x
−sn,y sn,x 0

 (2.42)

Finally, the rotation can be applied to the position vector in the beam frame to rotate it to the LiDAR
frame. The opposite can also be achieved by multiplying by the inverse of the rotation matrix.

r⃗p,L = R r⃗p,B (2.43)

2.6. Reconstruction
When the (corrected) direction, position and LOS velocity have been computed with the LiDAR model,
a reconstruction of the measured wind field is required to complete the loop and gain some useful
knowledge on the actual wind field surrounding the turbine. To find a mean wind speed of the field as
a 10-minute average, often the least squares method is used, where the error between the VLOS and
the reconstructed wind speed along the same direction is minimised, as shown in (2.44), for the total
number of measurements or simulations N .

min
V⃗

N∑
i=1

(
VLOS,i − V⃗ (Hi) · d⃗n,i

)2
(2.44)

If the VLOS measurement is assumed to be a point measurement at the centre of its range gate, then
(2.13) can be used for reconstruction, using the direction along the laser beams. However, if instead a
volume averaged measurement is used,

For the reconstruction a model that describes the wind field is required. For example, a power law for
the wind shear can be used or a more general model using basis functions can be applied. In these
models the wind speed in vertical direction is assumed zero. Below the reconstruction based on a
power law is described.

Power law (non-linear LS)

The velocity V⃗i from (2.45) can be modelled with a power law, which is detailed as a possible input
in section 2.3. As this function is non-linear, the regular linear least squares method cannot be used.
However, it is possible to use non-linear least squares.

N∑
i=1

(
VLOS,i − Uref

(
Hi

zref

)α

· dx,i
)2

(2.45)

This function is then minimised by setting its partial derivatives for the unknown variables Uref , zref
and α to zero. This can be numerically evaluated with a Gauss-Newton algorithm.
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2.7. Uncertainty quantification
As partially the goal of this research is to find the uncertainty in the wind speed corrections, an expla-
nation of what uncertainty propagation means is required. First, a basic explanation is given, followed
by an example of Cartesian to polar coordinate transformations.

2.7.1. Analytical uncertainty propagation
The following explanation of uncertainty quantification is based on [7]. As an example, a function f is
taken with variables X1 and X2. This function is Taylor expanded to the first order, as in (2.46). This
also poses the first problem of the analytical uncertainty propagation. Usually, the higher orders are
ignored, due to which only linear error propagation is possible. This can pose problems for non-linear
models. This is discussed in more detail in subsection 2.7.4.

Y = f (X1, X2) ≈ f (µX1 , µX2) +
∂f

∂X1
(X1 − µX1) +

∂f

∂X2
(X2 − µX2) . (2.46)

The estimate of the random variable Xi is xi, while the estimate of the measured Y is y. When taking
the variance of this function, the resulting variance for y is found in (2.47), where the last term represents
the covariance between the variables x1 and x2. The partial derivatives can be seen as the sensitivity
coefficient of the uncertainty propagation because these determine how much a certain variance or
covariance of the inputs contributes to the final variance of the output.

σ2
c (y) =

(
∂f

∂x1

)2

σ2 (x1) +

(
∂f

∂x2

)2

σ2 (x2) + 2
∂f

∂x1

∂f

∂x2
σ (x1, x2) . (2.47)

This can be generalised for a function with more variables according to (2.48), where the last term
σ (xi, xj) represents the covariance of xi and xj .

σ2
c (y) =

N∑
i=1

(
∂f

∂xi

)2

σ2 (xi) + 2

N−1∑
i=1

N∑
j=i+1

∂f

∂xi

∂f

∂xj
σ (xi, xj) . (2.48)

Recall that the variance is expressed as (2.49).

σ2(x) =
1

N

N∑
i=1

xi − µ (2.49)

When two output quantities can be found through a model that have the same input values, then a
covariance matrix can be used as described in (2.50), with Ux the covariance matrix of the inputs and
Cy the covariance matrix of the outputs. The matrix Jx is the Jacobian matrix and contains the partial
derivatives, or sensitivity coefficients. Therefore, the Jacobian matrix can also be called the sensitivity
matrix. These matrices can be extended to a larger number of inputs and outputs.

Cy = JxUxJ
T
x =

[
σ2 (y1) σ (y1, y2)
σ (y1, y2) σ2 (y2)

]
with Jx =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
(2.50)

These matrices can be extended to a larger number of inputs and outputs.

2.7.2. Monte Carlo
Another way of performing uncertainty propagation is described by the Monte Carlo method. In this
method a large amount of random samples are taken for the inputs. All of these are then put through
the model, resulting in a large number of output values as well. The distribution of these output values
can then be fitted to find its mean and uncertainties. This is also illustrated with Figure 2.12.
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Figure 2.12: The principle of the Monte Carlo method

The random samples of the inputs will be generated using Pseudo-RandomNumberGenerators (PRNG).
This PRNG should comply with a few requirements in order to perform a reliable Monte Carlo uncer-
tainty analysis, as stated in [8]. Firstly, the sequence length of the PRNG after which the random
numbers will be repeated should be larger than the number of samples, generally the square of the
sample number [24]. Second, the random numbers should be independent and uncorrelated. Third,
the random values should be sampled uniformly within the range, that is, they should not be biased
towards a certain value. Finally, the random numbers should be reproducible for debugging and testing
of the model.

The advantage of this method is that no assumptions are made about the model or the inputs. In order
to check the convergence of the Monte Carlo method, a convergence plot can be used to see if the
output value stays close to one value. This process can also be automated by setting a tolerance under
which the changes in the output value should remain.

Although the Monte Carlo method does not directly use any sensitivity coefficients, they can still be
estimated. To do this, all input variables are kept constant, while the variable of interest x1 is sampled
to create a large input set. Then the output uncertainty, due to the randomly sampled variable of interest,
can be computed just like a regular Monte Carlo simulation. Now, to obtain the sensitivity coefficient,
the variance in output due to varying x1, should be divided by the variance in output where all inputs
are sampled.

2.7.3. Example Cartesian to polar coordinates
To test the application of uncertainty propagation, this method has been applied to random points
defined in Cartesian coordinates that are transformed to polar coordinates, with (2.51) and (2.52). For
this distribution a normal distribution is used with µx = 0 and µy = 1, the covariance matrix of the inputs
x and y is chosen as (2.53).

r =
√
x2 + y2 (2.51) θ = arctan

(y
x

)
(2.52)

Cx =

[
0.01 0.001
0.001 0.01

]
(2.53)

The confidence ellipse of the normal random distribution of 100,000 points is depicted in Figure 2.13.
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Figure 2.13: Confidence ellipse of input variables x and y

The confidence ellipse of the two outputs θ and r is shown in Figure 2.14, which can be compared to
the Monte Carlo method in Figure 2.15.

Figure 2.14: Confidence ellipse of output variables θ and r,
using analytical uncertainty propagation

Figure 2.15: Confidence ellipse of output variables θ and r,
using Monte Carlo

2.7.4. Limitations
Amajor limitation of analytical uncertainty propagation exists due to the first order Taylor approximation.
Non-linearities cannot be captured because of this. It can be difficult to know beforehand what the
influence of non-linearities in the model on the variance of the output is. If the variance of the inputs is
small, that is, the function is evaluated over a small range, it can be approximated as linear. However,
the larger the range, the farther from reality this becomes. This is clearly illustrated in Figure 2.16. The
function f(x) = ex is used in this example and is plotted with an x-measurement with a small variance
(left) and a high variance (right).
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Figure 2.16: Illustration of how uncertainty in inputs influences the validity of the linear approximation from [7]

The example that is used also makes use of non-linear equations. The choice of the variance of the
inputs and the choice of the mean of the inputs influence the degree to which nonlinearities play a role.
In this case, the variance should be small and the mean of the coordinates should be sufficiently far
from the origin. This in order to guarantee that the mean of r and θ is larger than their variance. In
other words σ

µ should be small. If the mean of the inputs x and y is taken at the origin, so at (0, 0), then
nonlinearities will definitely play a role, since both r and θ will be heavily influenced by the spread of
the inputs. This is illustrated in Figure 2.18 and can be compared to the linear case in Figure 2.17.

Figure 2.17: PDF of r with mx = 0 and µy = 1, non-linearity
can be ignored

Figure 2.18: PDF of r with mx = 0 and µy = 0, non-linearity
cannot be ignored

Besides linearities, another problem that the analytical method poses is that partial derivatives of the
model are required, while for some models this is not possible. This could be the case if the model is,
for example, discontinuous.

Another huge assumption that is applied in the method described above is that all inputs have a normal
distribution, this is required to perform the uncertainty propagation. However, it is very likely that for at
least one of the input variables that will be analysed the distribution is not normal. As a result of this
assumption, the output variable will also always have a normal distribution, while in reality this might
not be an accurate representation.

To overcome the assumption of a linear model, a Monte Carlo analysis can be applied. If possible, this
should always be used to check the validity of the analytical approach. However, at some point when a
lot of inputs are used that all require a large amount (1,000,000 or even more) of samples, this method
can become too computationally expensive. Another advantage of using Monte Carlo over analytical
uncertainty propagation is that the output can have another distribution then a normal distribution, as
the input samples do not have to be taken as a normal distribution.
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2.8. Set up of Tetraspar demonstrator
The case study on which this thesis is based is the Tetraspar demonstrator located off the coast of
Norway. It is equipped with a 3.6MW SGRE turbine at a water depth of around 200 m. The Tetraspar
demonstrator is shown in Figure 2.19 [4]. What makes this floating design stand out is that it consists
only of parts that can be manufactured in an industry with an already existing supply chain.

Figure 2.19: Tetraspar concept from [4] Figure 2.20: WindCube Nacelle Lon-Range LiDAR

2.8.1. LiDAR
The floating wind turbine has a four-beam pulsed LiDAR mounted on top of the nacelle. More specifi-
cally, this is the WindCube Nacelle Long-Range LiDAR Figure 2.20 developed by Leosphere, a Vaisala
company. The LiDAR has a range up to 700m, with a maximum of 20 range gates. The specifications
of the LiDAR will be further detailed in subsection 3.1.5.

2.8.2. IMU
The Tetraspar demonstrator is also equipped with an Inertial Measurement Unit (IMU), which measures
both translational and rotational acceleration and velocity using accelerometers and gyroscopes, as
well as orientation and position using GNSS data. The specific IMU used on top of the Tetraspar is the
Taxtical Grade MEMS Inertial Sensor of the Ekinox series produced by SBG systems. For application
of the correction algorithm to actual LiDAR measurements on the Tetraspar the measurements from
this system would be used. However, in this thesis only simulated motion data is applied.



3
Methodology

In this chapter, the methods used to obtain the required results for this research will be discussed. Both
the algorithm and equations themselves, as well as how to obtain the uncertainties for each step will
be presented.

First, the inputs of the model will be discussed section 3.1, that is the motions, wind field and LiDAR
properties. Next, the LiDAR model that simulates the LiDAR measurement is explained in section 3.2,
where in section 3.3 a focus is placed on the output generated by this model. These outputs are
measurement position, direction and the simulated line of sight velocity, including their (co)variance
matrices. Consequently, it is explained in section 3.4 how these outputs are used for the reconstruction
of the input wind field. Lastly, in section 3.5 an explanation is given as to how the final uncertainty of
the reconstructed wind field is obtained.

3.1. Inputs
The generation of the inputs for the LiDAR model is discussed in this section. The floater motions, the
wind field and the LiDAR properties will be covered.

3.1.1. Floater motion
The floater motions are modelled with increasing complexity, starting with simple harmonic motions that
are easy to implement and analyse. This is followed by simulated floater motions in 2DOF and then
increased to simulated motions in 6DOF. Due to time constraints, the experimental IMU data have not
been analysed, but they can be said to be close to the simulated 6DOF results.

Harmonic motions
The first motions that are implemented to test the working principle of the program are harmonicmotions.
The motions of the floater are described by simple harmonics as expressed by (3.1) and (3.2). These
describe the motions in all 6DOF, so in translation and rotation. Each motion has a specific amplitude
A and a period T . The harmonic floater motions are around the centre of gravity of the floater and need
to be transferred to hub height. If the tower is assumed to be rigid, the velocity described in (3.3) from
[47] gives the velocity at hub height, where the LiDAR is located. Now, the total translational velocity
is known in the directions x, y, and z at hub height. The hub height is equal to Hhub = 90m, which is
the hub height of the Tetraspar demonstrator.

The amplitudes and periods used in this research are based on the Response Amplitude Operators
(RAO’s) for a floating wind turbine with a square-shaped barge platform given in [1], these are sum-
marised in Table 3.1. The translational velocity at hub height in the z-direction is not a sinusoidal wave,
because sinusoidal waves with different periods are added here. The heave motion, namely, has a
larger period compared to the other motions. These are used in order to consider somewhat realis-
tic motions, but it should be noted that this differs greatly per floater design, aside from the fact that
the motions are immensely idealised by assuming harmonic motions here. Later, more complex and

25
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realistic motions will be considered.

x = A sin

(
2π

T
t

)
(3.1)

V = A
2π

T
cos

(
2π

T
t

)
(3.2)

→
V hub = [ Vx,surge +Hhubθ̇pitch cos (θpitch)−Hhubψ̇yaw cos (ψyaw) ]

→
i

+ [ Vy,sway +Hhubψ̇yaw sin (ψyaw)−Hhubφ̇roll cos (φroll) ]
→
j

+ [ Vz,heave +Hhubφ̇roll sin (φroll)−Hhubθ̇pitch sin (θpitch) ]
→
k

(3.3)

Direction Amplitude Period [s]
Surge 2.0 [m] 13
Sway 0.2 [m] 13
Heave 1.0 [m] 20
Roll 0.02 [◦] 13
Pitch 2.50 [◦] 13
Yaw 0.20 [◦] 13

Table 3.1: Input values harmonic motions

(a) Displacement (b) Rotation

(c) Translational velocity (d) Angular velocity

Figure 3.1: Harmonic motions
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2DOF BHawC floating example
To have more realistic movements a simulation in BHawC has been used. BHawC stands for Bonus
Horizontal Axis Wind turbine Code and is an aero-servo-elastic simulation tool, developed by Siemens
Gamesa tomodel loads on wind turbines. The 2DOF floater model is a separatemodel, and themotions
simulated by this tool are coupled with the tower bottom. Even though the floater motion model has
2DOF, the BHawC model still models 6DOF due to tower vibrations. The resulting motions are taken
at the top of the nacelle, close to the location where the LiDAR would be.

Here, the floater is modelled in 2 degrees of freedom and is applied to a representative floating offshore
wind turbine. The 2DOF that are used are motions in x direction: surge and x-velocity, as well as
rotations around the y-axis, meaning pitch motions. The results are shown in Figure 3.2 below. A
power law wind profile is used, with a wind speed of 10m/s at the hub height and α = 1/7 at the hub
height of zref = 86.2m, corresponding to the tower top height from which the BHawC simulation data
are taken. This is summarised in Table 3.2. It can be seen that the structure experiences decaying
oscillations either around zero for surge and x-velocity or around a non-zero mean value for pitch. This
is an inherent property of floating wind turbines that will be pitching backward due to the aerodynamic
thrust force that the turbine experiences at the rotor.

Both pitch and velocity show smaller oscillations around the larger oscillating motions. These oscilla-
tions correspond to higher structural modes. For this 2DOF model only a power law wind field is given
as input to generate floating motions, no wave loads are included here. That is why the oscillation is
quite low in Figure 3.2. This is also the reason for the motion to look like a decaying harmonic motion.
The turbine responds to the wind field and finds a new equilibrium position.

Uref [m/s] 10
Hub height (zref ) [m] 86.2
α [-] 0.1429

Table 3.2: Input data on wind field

Figure 3.2: 2 DOF motions BHawC, taken at the nacelle

6DOF BHawC-Orcaflex + turbulence
For the application of this project in reality, information is required for all six degrees of freedom instead
of only two. This is achieved by another simulation. This time using the coupled code BHawC-Orcaflex,
which models both the floater dynamics to environmental inputs, as well as the structural response of
the whole turbine, including the tower. In this code, the Tetraspar model is implemented, which allows
for better comparison with the experimental IMU measurements. Additionally, turbulence is added to
this simulation using the Mann model, which results in less predictable motions. The input conditions
for the wind field are summarised in Table 3.3. In addition to this more complicated wind field, waves
and current are added to the turbine’s environment. The most important input parameters for the ocean
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environment are documented in Table 3.4. The resulting environmental wind and wave conditions are
given in Figure 3.4. Much more inputs are given for the simulation, such as the specifications for the
Mann turbulence box and the specifications of the floater kinematics, to model the floating response to
wind and waves, but these are taken as given for the Tetraspar turbine. The results are documented
in Figure 3.3.

Uref [m/s] 18
Hub height (zref ) [m] 86.9
α [-] 0.05
Turbulence intensity (TI) [-] 0.062

Table 3.3: Input data on wind field

Wave spectrum Torsethaugen
Wave height (Hs) [m] 2.88
Wave period (T0) [s] 8.33
Ocean current speed [m/s] 0.352

Table 3.4: Input data on waves

(a) Displacement (b) Rotation

(c) Translational velocity

Figure 3.3: BHawC simulated motions, normalised to the maximum value, in 6DOF with turbulent wind field
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(a)Wind velocity in x, y and z direction (b)Wave elevation

Figure 3.4: Environmental conditions for the 6DOF motion simulation

3.1.2. Regression and uncertainty model
The data obtained through the simulations have noise, as will the real experimental data obtained from
the IMU measurement device. A regression method can be used to smooth the data as it were and in
this way get rid of the high frequency fluctuations. An advantage of using this method is that the data
will now be known continuously and any point in time can be chosen to find the corresponding motion.
This is necessary to time the motion with the corresponding LiDAR measurement.

Using this regression technique helps to quantify uncertainties in the motion data. This can be ex-
pressed by the variance of the regression model, described in (3.4).

σ2
y = σ2

ŷ + σ2
ϵ (3.4)

The derivation for this will be given in the following and is based on [25].

A linear regression model of the form shown in (3.5) is used. Where, y is a vector containing the
observed variables of the motion, such as position, velocity or orientation. Then X is the design ma-
trix, containing functions of the independent variable of time t. The vector β⃗ contains the regression
coefficients and lastly, ϵ⃗ is the noise term.

y⃗ = Xβ⃗ + ϵ⃗ (3.5)

The design matrix X contains polynomial basis functions that are a function of t. These regressors
between two data points are represented by Quintic-Hermite basis functions. These are used to guar-
antee smoothness of the fit and continuity of its first and second derivatives. This was initially set up
by Axel Matavar in [32], where he provided a fit for position, velocity and acceleration, all at the same
time. Quintic-Hermite basis functions as opposed to Cubic-Hermite basis functions were required, to
ensure continuity of the second derivative for acceleration.

yi =

6∑
j=1

βj,iHj,i(ti) + ϵi (3.6)

The noise term ϵ will represent what part of the original data is not captured, looking at the residuals of
the fit, and thus will provide information on the value of the noise of the original signal. The noise term
is assumed to be normally distributed, with mean 0 and variance σ2

ϵ , as expressed in (3.7).
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This error model of normal distributed residuals with a zero mean is a good choice for the 6DOF data,
as shown in Figure 3.5, but not for the 2DOF data. However, it will still be used for the evaluation of
the data to be consistent with the evaluation of the 6DOF data.

ϵ ∼ N (0, σ2
ϵ ) (3.7)

(a) Surge 2DOF (b) Surge 6DOF

(c) X-Velocity 2DOF (d) X-Velocity 6DOF

(e) Pitch 2DOF (f) Pitch 6DOF

Figure 3.5: Histogram of residuals of the regression fits for 2DOF and 6DOF simulated data, with a Gaussian pdf fitted to it
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The residuals or noise terms are modelled according to (3.8). Their uncertainty is computed according
to (3.9). The resultant value of this equation is also called the Mean Square Error (MSE). For (3.9), the
parameterN is the number of measurement or simulation points, which is found byN = Sample duration [s]

Sampling period [s] .
Therefore, N = 600/0.02 = 30000 for the 2DOF simulation and N = 600/0.04 = 15000 for the 6DOF
simulation. The value p represents the number of unknown parameters for the regression, which is p =
6 for the 6 regression coefficients of the Quintic-Hermite regression to arrive at an unbiased variance.

ϵ⃗ = y⃗ −Xβ⃗ (3.8)

σ2
ϵ =

(y⃗ −Xβ⃗)T (y⃗ −Xβ⃗)

N − p
(3.9)

The predicted values ŷ, which are fitted with the linear regression model, are found with (3.10).

⃗̂y = X∗ ⃗̂β (3.10)

Now, the variance of this predicted value ŷ due to model uncertainty, can be taken as (3.11). Where in
this equation, Cβ̂ is the covariance matrix of the regression coefficients andX∗ is the design matrix for
the time interval that is desired for the prediction. The design matrices X and X∗ thus have the same
coefficients for the Quintic-Hermite basis functions, but are evaluated at different time intervals. This
equation is an uncertainty propagation of the uncertainty in ⃗̂β.

Cŷ = X∗Uβ̂X
∗T (3.11)

The variance of ⃗̂β can be deduced from (3.12). For this equation, it is assumed that all noise terms
have the same variance σ2

ϵ and are uncorrelated. For the actual measurements this is not true, which
will be discussed in subsection 3.1.3. Furthermore, σ2

ϵ is given in (3.9).

Cβ̂ = σ2
ϵ (X

TX)−1 (3.12)

Now, if (3.12) is filled into (3.11), (3.13) is produced to find the variance in the model prediction.

Cŷ = σ2
ϵ

(
X∗ (XTX

)−1
X∗T

)
(3.13)

If then the variance in noise or residuals is added to that, as done in (3.4), but now in matrix form,
finally (3.14) is obtained. This thus represents the total variance in the predicted values, considering
the model error, as well as the error due to noise.

Cy = σ2
ϵ

(
X∗ (XTX

)−1
X∗T + I

)
(3.14)

Regression position and velocity
Position and velocity data are related to each other, as they are both based on accelerometer and
satellite positioning data. Position is the derivative of velocity. Therefore, the regression for these data
points is performed in one go per direction. The design matrix X thus consists of both the Quintic-
Hermite equations and their derivatives. The vector with observed variables y⃗ includes both position
and velocity data.

The difference in the uncertainty calculations presents itself in the calculation of the variance of the noise
term, in (3.9). Now only half of the design matrixX and half of the observation vector y⃗, with the position
and Quintic-Hermite relations, or the velocity and derivative of those relations are used, respectively.
N changes to the number of observations of either of the variables. Moreover, the calculation of (3.11)
changes too. Namely, the matrix X∗ now contains the Quintic-Hermite relations for position and for
velocity the derivative is used, both applied to the sampling time of the output of the regression.
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Regression orientation
For orientation the method described in the section above is used, no coupling between it’s velocity is
assumed, because this data is not always available. While for this research Quintic-Hermite regression
of the Euler angles is applied, a better approach would be to use splines for the quaternion version of
the orientation. Quaternions would be better to use, because there cannot be any ambiguity when
rotating in different reference frames and gimbal lock does not occur. More information on how to apply
quaternions within this research framework is extensively discussed in [32].

Choosing a time step for the regression
A time step for which the regression nodes are picked is set at 4s. The LiDAR measurements are
averaged over 4 seconds. Therefore, knowing the movement data more precisely for smaller time
steps does not make sense.

Moreover, with a very crude calculation, it can be assumed that the tripod installation of the LiDAR has
vibration periods in the order of one tenth of a second or smaller. If the tripod with the LiDAR mounted
on top is simplified as a cantilever beam structure and the beam is modelled as one straight leg of the
tripod, then the stiffness of the tripod can be calculated as (3.16). The material of the tripod is assumed
to be aluminium with a Young’s modulus of E = 70GPa, the length of the tripod with its legs spread
out is approximately L = 1m, the LiDAR head weighs approximately m = 25kg and lastly the diameter
of one of the legs of the tripod is approximately D = 0.05m. All this would result in an area moment of
inertia of I = 3.0710−7m4, from (3.17), a stiffness of k = 64470N/m from (3.16) and a period for the
vibration of T = 0.12s from (3.15).

T =
2π

ω
= 2π

√
m

k
(3.15)

k =
3EI

L3
(3.16)

I =
D4π

64
(3.17)

These calculations should be taken with a very large grain of salt, because they are based on far
reaching assumptions. The vibrations will, of course, be much more complex than that of a cantilever
beam. Next to that, the material of the tripod is unknown. However, the moment of inertia will be a lot
larger as the tripod’s positioning of the 3 legs increases the structure’s resistance against excitations,
which would increase the stiffness and thus decrease the potential period further. The mass and length
are taken from the LiDAR manufacturer’s manual [6] and rounded to the nearest integer.

From these calculations a guess is made that the LiDAR vibrations are in the order of 10 Hz or 0.1 s.
For IMU data, this would pose limitations in the time step of regression that can be taken, which should
not be smaller than 1s. Further research is necessary to properly quantify the vibrations of the LiDAR
mounting bracket. This could be done by comparing the frequency of the orientation changes in pitch
and roll recorded by the LiDAR with those measured by the IMU.

Taking larger time intervals in the fitting process, that is, using fewer nodes for regression, tends to
increase the residual error, as the resulting graph cannot closely fit all the data points. However, since
this error is two to three orders of magnitude smaller than the residual error, this effect is negligible.

The regression can be seen as some kind of low-pass filter, as for given regression time intervals it
filters out the higher frequency data. Having more knowledge about the motion data than the LiDAR
data does not make sense. The frequencies that are higher than the regression sampling frequency
are not captured accurately and thus introduce error in the information that is known about the motion
data. These higher frequencies are now considered signal noise. The motion error is quantified in
terms of a noise error plus a model error.
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3.1.3. Uncertainty in experimental motion data IMU
In this research, it should be noted that an assumption is made on the motion measurement, which will
come into effect here. The IMU and the LiDAR are namely not mounted at the same location. This
results in the motion measurements having to be transferred to the position of the LiDAR. To make
this transformation possible, it is assumed that the connection of the LiDAR to the nacelle is rigid. The
LiDAR is installed on a tripod, which is thus assumed to be rigid, while it will not be completely in
reality. The consequence of this assumption is that high frequency motions cannot be transformed to
the LiDAR as these are unlikely to be exactly the same at the location of the IMU and the LiDAR. It is
not clear what a good cutoff frequency would be and which frequencies can be ignored, since the order
of magnitude of the frequencies of the LiDAR bracket are unknown, the selection of this time step is
further ignored in the section below in a section of 3.1.2.

For the IMU data, it is possible to get a standard deviation for each measurement in time. This can
improve the uncertainty quantification in the motions. These standard deviations can be included in
terms of weights W , where W would be a diagonal weight matrix with each entry wi =

1
σ2
i
. This can

then be included in (3.9) to obtain (3.18), which is based on [37]. To obtain unbiased and normalised
variance, a division is necessary with the sum of the weights and the number of DOF p = 6 of the
Quintic-Hermite regression subtracted. (3.18) simplifies to (3.9) when all weights wi are equal to 1.

σ2
ϵ,w =

(y⃗ −Xβ⃗)TW(y⃗ −Xβ⃗)
m∑
i=1

wi − p

(3.18)

Similarly, (3.14) can be extended to (3.19).

Cy,w = σ2
ϵ,w

(
X∗ (XTWX

)−1
X∗T + I

)
(3.19)

3.1.4. Wind field
Power law
As a first test of the LiDAR model and correction, a power law as described by (3.20) and used in
the IEC standard [3] will be given as input for the wind field. This wind field was already described in
section 2.3. A power law is used to ease reconstruction and comparison after completing the modelling
loop. As a standard, to avoid ambiguity, the reference height is always taken as the hub height. In this
way, only the reference speed and the exponent α have to be reconstructed.

U(z) = Uref

(
z

zhub

)α

(3.20)

Figure 3.6: Power law wind profile with Uref = 10m/s and α = 1/7
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3.1.5. LiDAR properties
Pulse width
The pulse duration of the WindCube Nacelle v2.2 Long-Range configuration is found with (2.28) and
(2.29), resulting in (3.21). In this equation c is the speed of light.

rp =
cτp

4
√
ln(2)

(3.21)

The question thus is what the value of the pulse duration τp is. This value is not given by the manufac-
turer. The difference between pulse duration and observation time or in terms of distance: pulse width
or range gate length, is depicted in Figure 3.7. The pulse duration varies quite a lot depending on the
LiDAR manufacturer. For example 343ns for [15], 115ns for [16] and 150ns for a scanning WindCube
LiDAR from [28]. For the WindCube used in this research τp = 100 ns was found to be a realistic value.

Knowing the pulse duration is important for the RWF and determines how many particles within the
measuring volume are included for a specific range gate. The longer this time is, the more particles
are illuminated and more information is received, leading to a lower signal-to-noise ratio. However, for
shorter pulse durations themeasuring position is more accurately known, which is key for reconstruction
and results in less variance in wind speeds within the measurement volume.

Figure 3.7: Comparison between pulse width ∆r and range gate length ∆p from [17]

Range gate length
The difference between the pulse width and the range gate length is visualised in Figure 3.7. The range
gate length of theWindCube Nacelle v2.2 Long-Range configuration can be found in themanufacturer’s
manual as the probed length and is specified as ∆p = 30m. To obtain the observed time of the range
gate length, one can apply (3.22). Thus, resulting in an observation time∆tobs = 200ns. In this equation
c is the speed of light.

∆tobs =
2∆p

c
(3.22)

Range gate centre
The laser beams of the LiDAR can be divided into 20 range gates from 50 to 700 m. These are
described along the horizontal x-direction. As the beams are at an elevation angle of γ = 5◦, as shown
in Figure 3.8, the range gate centre along the beam is found with (3.23).

Fbeam =
F

cos(5◦)
(3.23)
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Figure 3.8: Elevation angle for the WindCube Nacelle v2.2 Long-Rang LiDAR obtained from [6]

Rayleigh length
The Rayleigh length is an important variable that is needed to determine the weighting of a Gaussian
beam. Its relation is given in (2.20) in subsection 2.4.2.

Normally, the beamwaist should be known in order to determine this value through the equation referred
to above. As the beam waist size is unknown, the Rayleigh length is found by (3.24), retrieved from
[13]. In this equation a0 is the effective aperture radius, which is unknown for the LiDAR used for the
project. Therefore, the value of a0 = 24mm characteristic of a Windscanner ZephIR continuous wave
LiDAR is taken to assume a realistic value here. This is specified in [33].

The focal length f is often not provided for pulsed LiDARs, as the range gate weighting is more dominant
for these LiDARs, as opposed to the weighting of the Gaussian beam. However, as also shown in [32],
in fact, the weighting is influenced at or close to the focal point, as can be seen in Figure 3.9.

Figure 3.9: Influence of the Gaussian-beam representation part of the weighting function at the focal point [32]

The focal point determines the spread of the light intensity along the beam. The further f , the lower
the peak intensity and the more spread the intensity. However, the opposite is true for f closer to the
laser’s origin. Due to this effect, there should be an optimum for each laser beam, depending on the
furthest and closest range gates available.

The focal point f is now taken at 100m, corresponding again to the continuous wave LiDAR by ZephIR
[33].

The wavelength λ of the WindCube Nacelle v2.2 Long-Range configuration is given in its manual as
1.54µm.
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zR =
λf2

πa20
(3.24)

Beam waist and beam radius
The beam waist can be found from the Rayleigh length, using (2.20), which results in w0 = 2.04 mm.
In turn, the beam radius w(z), described in (2.18), is dependent on the beam waist and the Rayleigh
length and varies per position z along the beam.

Zenith and azimuth
The Zenith and Azimuth angles are the angles that describe in which direction the laser beams of the
Windcube LiDAR are directed. The description of the angles defining the direction of the laser beam
is visualised in Figure 2.7. The four beams and their numbering are shown in Figure 2.8. The angles
used in (2.13) and (2.14) are specified by the Zenith angle θ and Azimuth angle ψ as given in Table 3.5.

Wavelength λ [µs ] 1.54
Focal length f [m] 100
Aperture diameter a0 [m] 0.024
Rayleigh length zR [m] 8.51
Beam waist w0 [mm] 2.04
Pulse duration τp [ns] 100
Pulse width rp [m] 9.01
Range gate length ∆p [m] 30
Azimuth LOS 0 ψ0 [◦] -71.92
Azimuth LOS 1 ψ1 [◦] 71.92
Azimuth LOS 2 ψ2 [◦] -108.08
Azimuth LOS 3 ψ3 [◦] -251.92
Zenith θ [◦] -15.74
Elevation γ [◦] 5
Number of range gates NR [−] 20
Minimum range gate Fmin [m] 50
Maximum range gate Fmax [m] 700

Table 3.5: Summary of LiDAR properties used in the model
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3.2. LiDARmodel
Now that all the inputs are known, they can be included in the LiDAR model.

3.2.1. Reference frames
Here the different reference frames used are described again. Different calculations make more sense
in different reference frames. The three most important are given below.

Global reference frame
This right-handed reference frame in Figure 3.10 has its origin at the base of the tower, x pointing in
the direction of the wind and z upwards. The motion data are transformed to this reference frame as
input for the LiDAR model. The wind field and the coordinates of the modelled particles are similarly
given in the global reference frame. In addition, the output measurement position of the LiDAR model
is given in this frame as well.

Figure 3.10: Global reference frame: G

LiDAR reference frame
This right-handed reference frame’s in Figure 3.11 origin is located at the LiDAR, directly where the
beams are emitted. Here also the x-axis points towards the wind direction, and the z-axis points upward.
This reference frame moves with the LiDAR. The direction vector of the laser beams is defined in this
frame.

Figure 3.11: LiDAR reference frame: L

Beam reference frame
This right-handed reference frame in Figure 3.12 has its z-axis pointing along the laser beam and x
points upward. This reference frame is different for each beam. The reference frame is used for the
weighting functions that determine the light intensity received for each particle.
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Figure 3.12: Beam reference frame: B

3.2.2. Generation of point distribution
The measurement volume in which the LiDAR measurements are taken is modelled by a distribution of
points that represent the aerosol particles reflecting the laser light. For this study a random distribution
is taken. The generation of these particles is simulated in a C++ script based on the thesis of Mathieu
Pellé, [35]. For this study random uniformly distributed particles are used to represent reality. These
points are generated in a bounded volume that is described by a rectangular box, starting at the origin
of the LiDAR and ending at the last range gate plus 50 metres. The radial limits are taken as five times
the beam waist 5 w0. At this location, the radial weights of the Gaussian beam will be close to zero, and
the contribution of these points to the final VLOS will be very small. The points are generated per beam
(B), described in subsection 3.2.1 and then transformed to the global reference frame (G) described in
subsection 3.2.1.

3.2.3. Weighting function
This weighting function considers the points in the beam reference frame. For each random point that
is generated, a weight is given which is a multiplication of the weights of the Gaussian beam profile
described in subsection 2.4.2 with (2.25), with the range gate weighting for the pulsed LiDAR described
in (2.31). This results in the equation of the total weight represented in (3.25), also given as (2.26) in
section 2.4.2.

wi =WGaussianBeam(xB, yB, zB)WRWF (zB, F ) (3.25)

Below, for ease of reading, the equations for WGaussianBeam and WRWF are repeated again in (3.26)
and (3.27), respectively. The LiDAR properties described above in subsection 3.1.5 are used as input
parameters for the weighting function.

WGaussianBeam =
zR

π(z2B + z2R)
exp

{(
−2

r2

w(zB)2

)}
(3.26)

WRWF (F, r) =
1

2∆p

[
Erf

(
zB − F + ∆p

2

rp

)
− Erf

(
zB − F − ∆p

2

rp

)]
(3.27)

The resulting range weighting function is depicted in 3D in Figure 3.13 and in 2D in Figure 3.14 for a
range gate at 400m. The weight in the 3D plot is visualised by colours, where the lighter colours indicate
a higher weight. The graph on the right shows the weighting function along the zB-axis only, as this
is the most dominant direction for the light intensity with the RWF. The oscillations that are visible in
Figure 3.14 are stemming from the Gaussian variation of the points that are deviating from the mean
axis of the beam, so where the coordinate values in x and y are nonzero.

By plotting the RWF it became obvious that the rp is the most dominant part of this function’s uncertainty
as it determines the width or the variance of the peak. The smaller the rp, which means the smaller the
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pulse duration σ, the smaller the variance and the more precise the measurement location is. Here it
can thus be seen how the volume measurement influences the variance of the measurement position.

Figure 3.13: RWF of 1 beam visualised in 3D for F = 400m,
5000 points and σ = 150ns

Figure 3.14: RWF of 1 beam visualised in 1D for F = 400m,
5000 points and σ = 150ns
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3.3. Outputs
In this section, the output of the LiDAR will be discussed. A description of how they are obtained is
given, as well as how the uncertainties due to volume averaging are found.

3.3.1. Position
Corrected
The correct position of the measurement is found by finding the mean position of the particles, defined
as P⃗i,G = [xi,G , yi,G , zi,G ]

T in the point cloud that models the volume averaging of the LiDAR. This
calculation is described by (3.28). A weighted sum of all points is taken. The variable m denotes the
total number of points. The sum is then divided by the weights to get the mean of all points. This is
done for all coordinates of the points, so in xG , yG and zG . The position found for the range gate at
R = 400m is depicted in Figure 3.15.

P⃗c,G =
1

m∑
i=1

wi

m∑
i=1

wiP⃗i,G (3.28)

Figure 3.15: Visualisation of the measurement location (indicated with a red dot) at range gate R = 400m, for the fourth beam.

After the definition of the measurement position vector, the accompanying covariance matrix is given
by (3.29). For which the weighted covariance matrix is used with the definition of P⃗c,G .

Cp,G = N
m∑
i=1

wi(P⃗i,G − P⃗c,G)(P⃗i,G − P⃗c,G)
T (3.29)

In this equation N is a normalisation factor given as (3.30), which is derived in Appendix A.

N =
1

m∑
i=1

wi −

m∑
i=1

w2
i

m∑
i=1

wi

(3.30)

The covariance matrix can be visualised in a confidence ellipse as in Figure 3.16. Here, the confidence
ellipse is based on the eigenvectors of the covariance matrix. The ellipse shown contains 95 % of
the weighted data points that contribute to the mean value. All points outside of this ellipse have
such a small weight that their contribution to the mean measurement position can be neglected. The
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confidence ellipse can be interpreted as a margin of error of the mean and can thus say something
about the uncertainty of the volume measurement.

The size of the variance along z in the example plot below is 180.6m, which corresponds to a standard
deviation of σ = 13.44m, while the rp of the RWF is 13.51m. This is indeed what is expected for the
given range weighting function and input parameters. However, the variance is quite large and has a
large influence on the reconstruction of the wind speed.

Figure 3.16: Confidence ellipse based on a 68.27 % confidence level of the covariance matrix Cp in the beam coordinate
frame at range gate centre F=400 m.

Uncorrected
The uncorrected position of the LiDAR measurement assumes that the LiDAR is not moving and thus
is not subject to any changes in time. Still volume averaging can be used here, but the position is taken
relative to a constant initial origin position.

Unit test
The covariance of the position vector is highly dependent on the standard deviation of the RWF, de-
scribed in subsection 3.2.3. In the beam coordinate frame the distribution of points, based on their
weights, is Gaussian in the x and y direction and therefore the variance here should be relatively small.
Along the z-direction in the direction of the beam, the variance of the points depends highly on the
RWF, which uses the pulse duration in time as an input. The smaller the pulse duration, the smaller
the variance of the position vector along the beam direction.

To quantify whether the found covariance matrix is indeed correct, it is transformed to the beam coor-
dinate system and the difference between the found measurement position and the expected range
gate centre is compared. To be able to judge this distance, it is expressed as the number of standard
deviations (of the position vector of the point cloud) from the expected value. This is applied in (3.31)
from [18], which is also called the Mahalanobis distance. This distance should be smaller than the
standard deviation used as input for the RWF.

dM =

√(
P⃗c,B − P⃗c,exp,B

)T
Cp,B

(
P⃗c,B − P⃗c,exp,B

)
(3.31)

In (3.31), x⃗c,exp,B is the expected position, which is the range gate centre along the beam, as expressed
in (3.32). How this vector is obtained is explained in section 3.1.5.
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x⃗c,exp,B =

 0
0
F

cos(5◦)

 (3.32)

3.3.2. Direction
Corrected
Now, the direction vector for the measurement position is equal to the position vector. For reconstruc-
tion, however, a normalised vector is required, as given in (3.33). This vector is required to be in the
LiDAR reference frame L. This is achieved by using (3.28), with the particle coordinates in the LiDAR
frame as such: P⃗i,L.

d⃗n,L =
P⃗c,L∣∣∣P⃗c,L

∣∣∣ (3.33)

Then the covariance for the unit direction vector is a special case, as it is desirable to only consider
the covariance along the orthogonal plane of the direction vector. In this application, the covariance
along the length of the unit vector does not make sense, as the vector should always be of length 1.
Therefore, the projection of the points in the point cloud on the plane orthogonal to the direction vector
are evaluated. In this way only the deviation in direction is being assessed, and not the deviation in
length of the direction vector. In Figure 3.17 the direction vector for a simulated point cloud is given,
along with the projection of the points on the orthogonal plane of this direction vector. A zoomed in
version of the same figure is depicted in Figure 3.18, where the unit vectors of the yellow point cloud
are also given.

Figure 3.17: Example of a direction vector pointing to the centroid of a point cloud
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Figure 3.18: Zoomed in on projection of point cloud on orthogonal plane of direction vector of Figure 3.17, showing unit vectors
of the same point cloud

The accurate covariancematrix of this yellow point cloud is given by (3.34), where the local unit direction
vector in the LiDAR frame is described by (3.35).

Cd,L = N
m∑
i=1

wi

[[
d⃗i,L −

(
d⃗i,L · d⃗n,L

)
d⃗n,L

]
− D⃗

] [[
d⃗i,L −

(
d⃗i,L · d⃗n,L

)
d⃗n,L

]
− D⃗

]T
(3.34)

d⃗i,L =
P⃗i,L∣∣∣P⃗i,L

∣∣∣ (3.35)

Here, D⃗ is given according to (3.36), which describes the mean of the yellow point cloud for which the
variation along the length of the direction factor has been subtracted, by the operation

(
d⃗i,L · d⃗n,L

)
d⃗n,L.

Mathematically it can be proven that in fact (3.36) is zero. This is also confirmed with a simple Matlab
programme modelling an example point cloud with a direction vector that was used to generate the
plots in Figure 3.17 and Figure 3.18.

D⃗ =
1

m∑
i=1

wi

m∑
i=1

wi

[
d⃗i,L −

(
d⃗i,L · d⃗n,L

)
d⃗n,L

]
= 0 (3.36)

A mathematical proof is given below in (3.37), in this equation all direction vectors d⃗n and d⃗i are given
in the LiDAR reference frame L.
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D⃗ = d⃗n − 1
m∑
i=1

wi

m∑
i=1

wi

[(
d⃗i · d⃗n

)
d⃗n

]
︸ ︷︷ ︸

E
d⃗i
(d⃗i·d⃗n)d⃗n=∫ (

d⃗i · d⃗n
)
d⃗nf(di)ddi =

∫  3∑
j=1

djidjn

 d⃗nf(di)ddi =



∫  3∑
j=1

djidjn

 dn1f(di)ddi

∫  3∑
j=1

djidjn

 dn2f(di)ddi

∫  3∑
j=1

djidjn

 dn3f(di)ddi


=



dn1

3∑
j=1

∫
djidjnf(di)ddi

...

...


=



dn1

3∑
j=1

djn

∫
djif(di)ddi

...

...


=



dn1

3∑
j=1

djnEdji

dn2

3∑
j=1

djnEdji

dn3

3∑
j=1

djnEdji


= d⃗n

(
d⃗n · Ed⃗i

)
︸ ︷︷ ︸
∥d⃗n∥2=12=1

= d⃗n

(
d⃗n · d⃗n

)
= d⃗n

D⃗ = d⃗n − d⃗n = 0

(3.37)

After this proof it can indeed be said that D⃗ = 0 and thus the covariance for the unit direction vector
can be taken according to (3.38).

Cd,L = N
m∑
i=1

wi

[
d⃗i,L −

(
d⃗i,L · d⃗n,L

)
d⃗n,L

] [
d⃗i,L −

(
d⃗i,L · d⃗n,L

)
d⃗n,L

]T
(3.38)

Uncorrected
The uncorrected direction vector that could be used for reconstruction is the direction vector that occurs
if the LiDAR would not be moving. The same method is applied as in the section above, except now
the points are not rotated or translated due to the LiDAR motion and thus Pi,L = Pi,G .

Unit test

The calculation of the mean direction vector d⃗n can be tested by comparing it to the expected direction
vector which depends on the direction the laser beams point in, using the inclination and azimuth angles
given by the manufacturer. This expected direction vector should of course also be rotated according
to the rotation of the LiDAR due to floating motions. The dot product of these two direction vectors
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should be close to 1, as expressed in (3.39). This can be checked by summing all the resulting dot
products and subtracting the total number of points. The total number of points is the number of range
gates per beam and the total time steps taken in the model. The answer should be close to 0.

∑
(d⃗n,L · d⃗expected,L) ≈ 1 (3.39)

Now, the covariance of the direction vector can be tested by taking the projection of the eigenvector
with the smallest eigenvalue, where the eigenvalue should be close to zero, and project this onto the
calculated mean direction vector. This value should be close to 1. This calculation is shown in (3.40).

d⃗Eigenvector for λ=0,L · d⃗n,L ≈ 1 (3.40)

3.3.3. LOS Velocity
Uncorrected
As reference data are not available for the measured LiDAR data on the Tetrapsar demonstrator, this
measurement should be simulated too. This can function as a validation case. To simulate the line of
sight velocity that could be measured by a moving LiDAR, the input wind field should be taken for the
particle positions that are generated to form the measurement volume, so at

(
P⃗i

dt

)
G
. From these wind

field velocities, the velocity of the moving LiDAR
(

dP⃗LiDAR

dt

)
G
should be subtracted, as to achieve the

relative wind speed to the LiDAR. The result should then be multiplied by the direction vector of each
particle to obtain the final simulated VLOS as shown in (3.41). This equation is the quadrature of (2.15).

VLOS,uncorrected =
1

m∑
i=1

wi

m∑
i=1

wi

((
P⃗i

dt

)
G

−

(
dP⃗LiDAR

dt

)
G

)
· P⃗i,L∣∣∣P⃗i,L

∣∣∣ (3.41)

Corrected
Lastly, the offset of the line of sight velocity, that is the projection of the LiDAR velocity along the laser
beams that should be subtracted from the measured VLOS as to get the VLOS with only a contribution of
the wind speed. This can be obtained per particle by taking the scalar product of the LiDAR translational
velocity along the local unit direction vector. Then the mean of each local line of sight velocity is taken,
as shown in (3.42).

VLOS,Offset =
1

m∑
i=1

wi

m∑
i=1

wi

(
dP⃗LiDAR

dt

)
G

· P⃗i,L∣∣∣P⃗i,L

∣∣∣ (3.42)

The variance is obtained by applying the accepted equation for variance, as shown in (3.43).

σ2
v = N

m∑
i=1

wi

(dP⃗LiDAR

dt

)
G

· P⃗i,L∣∣∣P⃗i,L

∣∣∣ − VLOS,Offset

2

(3.43)

Then the corrected line of sight velocity, where the velocity due to the movement of the LiDAR is taken
out, is obtained by Equation 3.44.

VLOS,corrected = VLOS,uncorrected + VLOS,Offset (3.44)
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Unit test
The application of the VLOS functions can be tested by performing the same operation, as described
above, except now the dot product is taken with the mean direction vector itself instead of with the
wind and/or LiDAR velocity, as done in (3.45). If then all resulting values are close to 1, it proves that
the weights are normalised and that the multiplication with the direction vector is correct and close to
the mean direction vector. To check if all values are close to 1, the sum of all resulting VLOS is taken
and if the difference between that and the number of points considered is close to zero, the unit test is
successful. This test can be applied to both (3.41) and (3.42).

VLOS =
1

m∑
i=1

wi

m∑
i=1

wid⃗n,L · P⃗i,L∣∣∣P⃗i,L

∣∣∣ ≈ 1 (3.45)

The variance of the line of sight velocity can be tested by checking the convergence with an increasing
number of points within the beam volume, resulting in Figure 3.19.

Figure 3.19: Convergence of the variance of VLOS
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3.3.4. Point measurement
A point measurement is a good test case for the LiDAR model. When using only a point measurement,
as described in Section 2.4.2, the uncertainty of volume averaging is removed. This case can therefore
be used as a comparison of the effect of the uncertainty of volume averaging on the uncertainty of the
reconstructed wind field.

When a point measurement is applied, the beam will consist only of particles present on the zB-axis of
the beam at exactly the range gate centres zB = Fbeam, as visualised in Figure 3.20. Practically, this
means that when applying the weighting function (3.25) for a particular F , wi ≈ 1 for each zi,B = F ,
while wi for all the other coordinates is close to zero. Therefore, the position is measured exactly at
the range gate centre location, the direction vector is the unit vector of that position. The line of sight
velocity is applied to the resultant direction vector. No variance or covariance is present in any of the
outputs.

Figure 3.20: Visualisation of the point measurement case
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3.4. Reconstruction
To reconstruct the wind field from the given VLOS , direction and measurement position from the LiDAR
model, the least squares method is used. This is also described in section 2.6. Now an explanation
will be given of the set up of the weighted non-linear least squares that is applied to the line of sight
velocity which, in turn, is described by the power law. The (3.46) should be minimised, which is the
same as (2.45) and is copied here for reading convenience. For the Gauss-Newton algorithm, (3.54)
is used to find the parameters Uref and α. The reference height zref is kept constant at the height of
the hub.

S =

N∑
i=1

(
VLOS,i − Uref

(
Hi

zref

)α

· dx,i
)2

=

N∑
i=1

(VLOS,i − f(Hi, dx,i, β⃗)
2) =

N∑
i=1

r2i (3.46)

The non-linear system, for which the values Uref and α should be determined, is governed by the
following observation equation: (3.47). In this equation Hi is the observed height, dx,i is the x-value
of the unit direction vector. VLOS,i is the corresponding response value. The vector β⃗ contains the
unknown values β⃗ = (Uref , α).

f(Hi, dx, i, β⃗) = Uref

(
Hi

zref

)α

· dx,i (3.47)

As this system is non-linear, it should be linearised with a first-order Taylor approximation, as (3.48),
where k indicates the guess of the values in βk for iteration step k.

f(Hi, dx,i, β⃗) ≈ f(Hi, dx,i, β⃗
k) +

∂f(Hi, dx,i, β⃗
k)

∂Uref
(Uref − Uk

ref ) +
∂f(Hi, dx,i, β⃗

k)

∂α
(α− αk) (3.48)

The partial derivatives of f for each observation i can be summarised in vector form as a Jacobian, as
expressed in (3.49). The Jacobian is dependent on the unknown values Uref and α and thus changes
per iteration to find the minimum of the least squares. The Jacobian is a 2XN matrix with the partial
derivatives of f with respect to Uref and α, with N the number of observations in VLOS , dx and H.

Jk =

[
∂f⃗

∂Uref
,
∂f⃗

∂α

]
=

[
−d⃗x

(
z⃗

zref

)αk

, d⃗xU
k
ref

(
z⃗

zref

)αk

ln

(
z⃗

zref

)]
(3.49)

The difference between the unknown values can be vectorised as well, resulting in (3.50).

∆β⃗k =

[
Uref − Uk

ref

α− αk

]
(3.50)

Now, the difference between the response value VLOS,i and the solution of the forwardmodel in iteration
k is found with (3.51). The solution of the forward model is equal to (3.47) with the values of the
unknown variables for the current iteration step k filled in, making β = βk and VLOS,i is approximated
by the linearised (3.48).

∆VLOS,i = (VLOS,i − f(Hi, dx,i, β⃗k) ≈ Jk∆β⃗k (3.51)

Now, the equation to be solved to find ∆β⃗k for one iteration becomes (3.52).

((Jk)TJk)∆β⃗k = (Jk)T∆V⃗LOS (3.52)

The unknown variables are then found in each iteration with (3.53).
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β⃗ = β⃗k +∆β⃗k (3.53)

This cycle of iterations is to be repeated until a certain threshold is reached, where βk is small enough.
This implies that the estimation for β⃗ and thus Uref and α does not change much more and the solution
is converged.

The iteration limit in this research is set to ∆β = 1 · 10−10.

This estimate can be improved by including the variance of ∆VLOS,i in terms of weights. The updated
version of (3.52) including the weighting changes to (3.54).

((Jk)TWJk)∆β⃗k = (Jk)TW∆V⃗LOS (3.54)

The variance in∆VLOS,i can be found by using uncertainty propagation as described in subsection 2.7.1,
applied to (3.55). This equation takes as input the variances in VLOS , dx andH, found in section 3.3. In
this analysis, it is assumed that there is no correlation between the variance of VLOS , dx and H. How-
ever, it is known that there is a correlation between these, because they all depend on the weighted
mean of the point distribution. Specifying this correlation as an output of the LiDAR model will therefore
improve the reconstruction and reduce its uncertainty.

Var(∆VLOS,i) =
∂∆VLOS

∂VLOS

2

Var(VLOS,i) +
∂∆VLOS

∂H

2

Var(Hi) +
∂∆VLOS

∂dx

2

Var(dx,i) (3.55)

Finally, the weight is taken as a diagonal matrix with sizeNXN where each diagonal entry is the inverse
of Var(∆VLOS,i) for each measurement, as to ensure that the measurements with a higher variance
have a smaller contribution to the reconstruction and vice versa.

Figure 3.21: Schematic of weighted least squares for wind field reconstruction
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3.5. Uncertainty quantification reconstructed wind field
The goal of this research is to quantify the uncertainty in the corrected wind measurements. This will
be achieved by subtracting the reconstructed wind field from the original wind field, and comparing the
error in the two reconstruction parameters. In subsection 3.1.4 it was explained that a power law is used
to quantify the input wind field, which is characterised by a reference wind speed at hub height Uref

and a power term α. These two parameters are then reconstructed according to the method explained
in section 3.4.

The error percentage between the reconstructed parameters and the original parameters is found using
(3.56). Similarly, the error for α is found with a similar equation, taking the percentage error of the
reconstructed αrec relative to the original αori.

EUref
=
Uref,rec − Uref,ori

Uref,ori
(3.56)

The effect of different parameters of the model on the final error of the reconstructed wind field is
quantified by changing only this error and determining the impact this has on the final error. To quantify
the uncertainty present in the motion measurements, a Monte Carlo simulation is performed. For the
correction model a Gaussian white noise is added to the input motion data, with a mean equal to the
motion at a corresponding time step and a variance equal to that found according to subsection 3.1.2.
This is then repeated until convergence of the Monte Carlo analysis and a mean and variance of the
reconstructed wind field error can be found.



4
Error and uncertainty of wind field

In this chapter, the results of the LiDARmodelling and uncertainty quantifications explained in chapter 3
are presented. The order of the research overview is followed as visualised in Figure 2.1 and repeated
in Figure 4.1. First, the uncertainty in the motions is quantified in section 4.1. Then the uncertainty of
the LiDAR model itself is discussed in section 4.2, touching upon the LiDAR parameters, as well as the
model outputs. After that, the uncertainty of the reconstruction is presented in section 4.3.

When the uncertainties in all separate parts are quantified, the final uncertainty of the whole model can
be quantified, so the uncertainty in the reconstructed wind field is evaluated in section 4.4. Both the
uncertainty due to the motion will be assessed, while in addition a comparison will be made on how this
uncertainty improves when using the correction method.

Figure 4.1: Research Steps Overview

51
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4.1. Uncertainty of motion input
The effect of applying the regression as explained in subsection 3.1.2 will be specified here.

The frequency response of the motions says something about which components of the motion con-
tribute most to the final plots in the time domain. In this way, it can also be shown how much the
regression captures of the motion’s frequencies.

The single-sided amplitude spectrum is plotted for the 2DOF data on the left side of Figure 4.2. Yhe
graphs are cut-off at a random frequency for confidentiality reaons. Distinct peaks are visible, which can
be expected from the sinusoidal oscillations in Figure 3.2. Different waves with different frequencies
and amplitudes are modulated on top of each other. The simulated 2DOF data has a sampling rate of
0.02s or 50Hz, while the sampling rate of the regression is set at 1s to match the LiDAR beam sampling
interval. Consequently, the orange regression curve stops at f = 0.5Hz, in accordance with (4.1) for a
single sided amplitude spectrum of the Fourier transformed data. In equation fs is the actual sampling
frequency and f is half of that, to exclude everything above the Nyquist frequency.

f =
fs
2

(4.1)

The time step for regression is set at 4 seconds, because the LiDAR data per beam is an integral aver-
age over 4 seconds too. In the graph, this corresponds to a frequency f = 0.125Hz. This is explained
more extensively in section 3.1.2. At this frequency, the peaks at higher frequencies are filtered out, as
can be seen when comparing the simulation and regression data in Figure 4.2. In addition, an artificial
peak occurs in the regression data for 2DOF motions, slightly increasing the regression fit error. These
peaks are indicated by a black circle in Figure 4.2c and Figure 4.2e.

For the 6DOF motions the data are more noisy and the peaks are less pronounced. With a regression
sampling time step of tregr = 4s and a fitted data sampling interval of tfit = 1s, the regression fails to
capture the amplitude peaks at around indicated by a circle for position, velocity and orientation. As a
side note, the velocity fit exhibits more pronounced peaks at this frequency compared to the position
fit, as the velocity is the derivative of the position data. It is suspected that the circled peak stems from
a higher tower mode.

The resulting standard deviation of the regressed motion parameters is summarised in Table 4.1 for
the 2DOF motion and in Table 4.2 for 6DOF motions.

Surge Xvel Pitch
m m/s deg

0.001 0.003 0.004

Table 4.1: Standard deviation σ due to regression fit for 2DOF simulated motions

Surge Sway Heave Xvel Yvel Zvel Roll Pitch Yaw
m m m m/s m/s m/s deg deg deg

0.011 0.011 0.001 0.041 0.037 0.003 0.022 0.020 0.013

Table 4.2: Standard deviation σ due to regression fit for 6DOF simulated motions
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(a) Surge 2DOF (b) Positions 6DOF

(c) X-Velocity 2DOF (d) Velocities 6DOF

(e) Pitch 2DOF (f) Orientation 6DOF

Figure 4.2: Single-sided amplitude spectrum obtained from FFT of simulated 2DOF data (on the left) and 6DOF data(on the
right)
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4.2. Uncertainty of LiDARmodel
In this section, the uncertainty of the LiDAR will be quantified. This will be done without including any
motion of the LiDAR to eliminate motion uncertainty and focus solely on LiDAR uncertainty.

4.2.1. Limitations
It should be noted that the uncertainty due to volume averaging is expected to be small because a
simple power law is used as an input for the simulation here. The power law which models the shear
in wind velocity. However, in reality, turbulence is present, which causes a larger variation of particle
velocities within the measurement volume and thus increases the LiDAR uncertainty due to volume
averaging.

Next to the volume averaging uncertainty, more environmental factors influence the quality of the mea-
surement. This is briefly touched upon at the beginning of this thesis report in section 2.4. The con-
sistency of the particles in the air is important. The quality of the LiDAR measurement depends on
the concentration of aerosols in the atmosphere and the question of whether there is precipitation or
fog. This will block some of the measurements. Seeing as these environmental factors change per
measurement situation, the uncertainty also fluctuates with these environmental changes.

In addition to environmental factors influencing the uncertainty, the LiDAR instrument itself also intro-
duces errors in the measurement of VLOS . That is, in terms of calibration and mounting errors, as well
as Carrier to Noise Ratio (CNR) of the LiDAR, depending on the power of the received signal.

4.2.2. Volume averaging uncertainty
The uncertainty in volume averaging is quantified by comparing the error percentages of the parameters
of the reconstructed wind field, obtained with section 3.5. The error percentage of a point measurement
as described in subsection 3.3.4 is compared to a measurement in which volume averaging is applied.
The difference between these two says something about the error due to the volume averaging effect
of the LiDAR model.

The resulting change in error percentage is shown in Table 4.4. These results are found when no
motion is applied to the system and the LiDAR model settings are applied as given in Table 4.3.

Start Range Gate [m] 50
Last Range Gate [m] 350
Range Gate Spacing [m] 50
Uref [m/s] 10
α [-] 0.1429
Hub height [m] 90

Table 4.3: Parameters of the numerical LiDAR model

When comparing the error of the point measurement with that of a volume averaged measurement of
the simulated LiDAR, it is clear that the error increases, as expected. More uncertainty is introduced
about where the measurement is taken exactly.

This uncertainty is expressed in the measurement position itself, but also in the direction vector and the
line of sight velocity, which both depend on the measurement position. How contributing covariances
and variance are found is described extensively in section 3.3.

It can be said that the error percentage of the reconstructed wind field is very small for both cases
and there is a significant increase in error of 3 orders of magnitude when including volume averaging.
However, for modelling this error only a power law is used as an input wind field. If a turbulent wind
field was included, this error would be larger. Therefore, the errors stated here are not realistic when
compared to real world examples.

From Table 4.4 it can also be deduced that the error percentage is smaller when covariance and vari-
ance are taken into account using weighted least squares to correct for uncertainty due to volume
averaging. In section 3.4 it is explained how this correction is performed with (3.55). What is also
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clear from the results in Table 4.4 is that the reference wind speed Uref is underestimated, while the
power α is overestimated. Next to that, the percentage error for α is higher. Be that as it may, the error
percentages here are still very small.

EUref
[%] Eα [%]

Point -0.0000000006 0.0000000081
Volume uncorrected for
volume (co)variance

-0.0004018400 0.0070021000

Volume corrected for
volume (co)variance

-0.0003264200 0.0048768300

Table 4.4: Reconstruction error of wind field without any motion, for a LiDAR simulated as a point measurement per range gate
and a simulation where volume averaging is included

4.2.3. Effect of LiDAR parameters
In this section, the influence of the most important LiDAR parameters on the weighting function is
discussed to evaluate volume averaging.

Pulse duration
As discussed in subsection 3.3.1, the most dominant factor in the uncertainty of the Range Weighting
Function is the pulse duration τp. TheWRWF and its parameters are described in Section 2.4.2, where
the range weighting is modelled by a Gaussian pulse and a rectangular windowing function. In Fig-
ure 4.3 the response of the weights to the change in τp is visualised for a range gate at F = 400m. The
variance and thus the uncertainty of the measurement position along the z-axis of the beam increase
with higher pulse durations. This effect is quantified in Table 4.5, where the corresponding standard
deviations of the graphs are shown in Figure 4.3 along with the analogous rp, the half width of the pulse.
In Table 4.5 also the effect on the final reconstructed wind field is shown, which consistently increases
with increasing pulse duration.

Figure 4.3: Effect of changing pulse duration τp

τp [ns] rp [m] σz,B [m] EUref
[%] Eα [%]

100 9 11 -0.0003 0.005
150 14 13 -0.0006 0.008
200 18 16 -0.0009 0.014

Table 4.5: Effect of doubling pulse duration on total uncertainty
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Gaussian beam weighting
The focal length and Rayleigh length of the project specific WindCube LiDAR are unknown and as-
sumed to be reasonable industry standard values. Therefore, it is important to consider the effect of
these values and of the Gaussian weighting itself. as was already mentioned in section 3.1.5.

A figure similar to Figure 3.9 is generated for comparison of what the resulting weights of the Gaussian
and the RWF look like in Figure 4.4. The weights are normalised to have a peak at 1, by dividing by their
maximum, for ease of comparison. For the actual application, a normalisation is applied by dividing by
their sum to ensure that all weights for a specific range gate sum up to one. Only the weights along the
z-axis of the beam are considered and deviations from zero of xB and yB contributing to the Gaussian
exponential are ignored in this figure for clarity, but are taken into account for the volume averaging. It
can be seen that only at the location where the focal length and the location of the range gate match,
that is, at 100m, the shape of the weighting function changes. The standard deviation of the position
along the z-axis of the beam drops from σz,B = 11m to σz,B = 9m. The total effect of this uncertainty
is small, since this only applies to one range gate out of 13 for range gates from 50m to 700m with a
spacing of 50m.

σz,B [m]
RWF weighting 11

RWF + Gaussian weighting 9

Table 4.6: Effect of Gaussian beam weighting on measurement position uncertainty

In literature, often the Gaussian beam weighting described here as part of the total weighting function
in (3.25) is ignored. This is done, because the effect of the change in total uncertainty due to Gaussian
beam weighting is not noticeable in the reconstructed wind field. This can be deduced from the fact that
only the weighting function where the range gate location and focal length coincide is really affected,
as is found in the analysis above.

Figure 4.4: Influence of Gaussian weighting on total RWF
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4.3. Uncertainty of WLSQ reconstruction method
The error of the reconstruction method can be quantified by quantifying the error percentage according
to section 3.5, without introducing errors anywhere before the modelling loop. This means that no
motion is introduced and point measurements as opposed to volume measurements are used for the
LiDAR model. In Table 4.4 the error percentage is given as −6E−10% for Uref and 8.1E−9%. This is
so small, especially compared to the effect of other errors that this error is not dominant for the final
reconstructed wind field uncertainty. No uncertainty arises from point measurements as the variance
of the reconstructed wind field is within machine precision.

4.3.1. Influence first guess
The first guess of the parameters Uref and α cannot be determined beforehand as the wind field is
still to be estimated. However, with physical knowledge, it can be said that the reference wind speed
should be between 0 and 50m/s, since the speed range that the LiDAR can measure ends at 50m/s,
as can be found in the manual [6]. The power law exponent is limited from 0.11 to 0.65 according to
[23]. The closer the initial guess to the actual values, the faster the system will converge. For an initial
guess that is too far off, the system might not converge at all. This is tested to within the physical limits,
by taking both very high power law exponent and a high reference wind speed and taking both these
values on the lower limit. In addition, a high reference wind speed with a low α and vice versa are
combined. For the common value used for the analysis here of Uref = 9m/s and α = 0.12, the system
converges in 4 iterations if harmonic motions are applied. For the extremities mentioned above the
convergence increases slightly to a maximum of 7 when no motion is applied and the system always
converges. Therefore, the initial guess of Uref and α is not of concern.

4.3.2. Limitations
There are some limitations to the non linear weighted least squares method, because a linear approx-
imation of a non-linear equation is used here, using a first order Taylor series. Therefore, ⃗̂β is not the
best linear unbiased estimator for β⃗. Due to the fact that ⃗̂β is non-linear, it is also not normally dis-
tributed. However, if the Taylor approximation for linearisation is a good enough approximation, that is,
the higher order terms are small, then the estimator can still be assumed to be normally distributed.
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4.4. Uncertainty of reconstructed wind field
Now that the uncertainties of the different steps in the modelling cycle are quantified, the final uncer-
tainty of the reconstructed wind field can be given, due to the uncertainties described above. First, the
uncertainty of the uncorrected motion will be presented in order to compare this to the uncertainty of
the correction method. Also, the influences of the separate DOFs are analysed, focussing on harmonic
motions. Afterwards, the uncertainty due to 2DOF motions is given and subsequently that for 6DOF
motions.

4.4.1. Comparison harmonic, 2DOF and 6DOFmotion
When movement is added as input to the LiDAR simulation and volume averaging is used, the error
percentages of the reconstructed wind field for different types of motion are given as in Table 4.7. These
are the uncorrected error percentages. Compared to Table 4.4, the error due to motion is much larger.
It is at least 2 orders of magnitude larger compared to the corrected volume averaged measurements
without motion.

The error resulting from the harmonic motions tabulated in Table 4.7 averages out very well compared
to the 2DOF and 6DOF motions. The error percentage is one to two orders of magnitude smaller
than the simulated 2DOF and 6DOF motions. The reason for this is that the harmonic motions are
fluctuating around a zero-mean for all motions. In contrast, the 2DOF has an offset for the mean in
pitch, as pictured in Figure 3.2 and the 6DOF motion as shown in Figure 3.3 has an offset for the mean
in all directions translational and rotational displacements. This will cause a bias in the effect of the
motion over a 10-minute average, resulting in higher errors. From [21] it was already concluded that
the main cause of the error is induced by the offset from the mean of the pitch angle. This will also be
confirmed in the following sections. The errors are expected to be higher if a turbulent wind field would
be analysed as an input instead of the power law here.

EUref
[%] Eα [%]

Harmonic motion -0.283 0.560
2DOF motion 2.513 -24.780
6DOF motion 2.953 -29.540

Table 4.7: Uncertainty of measurements with uncorrected motions

4.4.2. Individual DOFmotion influence on uncertainty
It is desirable to know which motions of the floating turbine would induce the largest uncertainty in the
reconstructed wind field. This has been done by leaving all harmonic motions equal to zero, except for
1 DOF. The amplitude change is analysed by changing it from 1m or 1◦ to 5m or 5◦, while keeping the
original periods as recorded in Table 3.1. For an analysis of the change in period it is changed from 10
to 50 seconds, while now the amplitudes are kept the same at 2.5m or 2.5◦. The resulting difference
between the error percentages with a higher and lower amplitude or period are given in Table 4.8 and
visualised in a histogram in Figure 4.6 for Uref and in Figure 4.7 for α. As a reminder of the different
DOF of a floating offshore wind turbine, Figure 4.5 is presented again.

EUref
[%] Eα [%]

Amp Period Amp Period
Surge 0.08 -0.02 0.67 -0.55
Sway 0.01 -0.01 0.07 -0.16
Heave 0.01 0.00 0.20 -0.05
Roll 0.19 -0.01 0.13 -0.25
Pitch 0.46 -0.03 2.47 0.92
Yaw 0.13 -0.04 1.31 -1.16

Table 4.8: Error percentage of reconstructed wind field
parameters for a 500% increase of the input parameters of

harmonic motions

Figure 4.5: DOF visualised for a floating offshore wind turbine
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Figure 4.6: Influence of separate DOF on reconstructed
reference wind speed Uref ’s uncertainty, with harmonic

motion

Figure 4.7: Influence of separate DOF on reconstructed
power law exponent α’s uncertainty, with harmonic motion

Reference wind speed vs power law exponent
Moreover, there is a clear distinction between the size of each DOF’s influence on the reconstructed
Uref and α parameters. This is also what could be noticed before in Table 4.4 and Table 4.7. That
is, the error percentage in the parameter α is much higher than in Uref . If the error of α is larger, this
means that the reconstructed wind speed further away from the hub height is more erroneous, while it
is most precise at the hub height itself.

When only interest is taken to wind speed at hub height, the uncorrected wind field velocity error per-
centage is smaller than at locations further away from the hub. Depending on the accuracy required, it
might be acceptable to not correct the data for hub height.

Influence of period vs amplitude
From Figure 4.6 and Figure 4.7 it is clear that the uncertainty increases when the amplitude of the
harmonic motions is increased. In general the opposite is true for an increase in period, save for the
pitch motion. For this motion the uncertainty increases for an increase in both amplitude and period.
From Figure 4.6 it can also be seen that the influence of increasing the period by a factor 5 has a
much smaller influence on the reconstructed Uref compared to the same increase factor applied to the
amplitude.

Surge
For the surge movement, only a change in velocity occurs, no change in direction or z-position is
present. For a positive motion backwards, the measured velocity relative to the wind turbine is smaller
than without any motion. This thus reduces the reference wind speed and power law component,
resulting in an underestimation of both.

Sway
The error percentage of the reconstructed wind field due to the sway motion is very small, because
a wind field that is described by a power law does not change for motions sideways. Only a position
change in z has an effect. Neither does a sway motion give a direction change or add to the horizontal
velocity. However, the velocity in y-direction induced by a sway motion, will be added to the VLOS by
the component of the laser beam that points in the y-direction. Therefore, still a small offset is present
for sway motions.

Heave
For a heave motion the z-position changes, meaning the LiDAR will measure higher velocities for each
beam for a positive heave motion due to the wind shear described by a power law. In addition, a small
part of the induced velocity in z-direction will contribute to the VLOS . Although the opposite is expected
to be true, here Uref is underestimated, while α is overestimated for a harmonic heave motion.
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Roll
The rolling motion of a floating wind turbine does not create any additional velocities in x-direction,
only small contributions in velocity components in y and z direction. However, a direction and position
change do occur. A rolling motion will move the hub height of the turbine down. For the rolling motion
an underestimation of the reconstructed Uref and α is present.

Pitch
From Figure 4.6 and Figure 4.7 it is clear that the pitch motion has the highest influence on the final
reconstructed wind field error. This is also predicted in [21]. The large influence of pitch motion on the
total error can be explained by the fact that when the turbine pitches, the direction in which the laser
beams of the LiDAR point changes, as depicted in Figure 4.8. A position change indicates a change
in wind speed, as a shear is present in the wind field. Next to that, the direction vector changes and
points more upwards, resulting in an overestimation of the contribution of the horizontal wind speed
to the VLOS . These direction changes do not occur for the translational DOF. In addition to this, the
pitching motion induces a horizontal (and vertical) velocity that will add to the velocity measured by the
LiDAR.

By knowing that the pitch motion has the largest effect on the reconstructed wind field uncertainty, this
could be the focus of further measurement corrections if limited motion data are available. This could
be the case when, for example, no IMU is installed on the turbine and only the inclinometer of the LiDAR
can be used, which can only measure orientation changes.

Figure 4.8: Effect of floating turbine pitching motion on LiDAR wind velocity measurement

Yaw
In yaw motion the wind turbine does not change the vertical measurement position. Each range gate
still measures at the same height. However, the direction of measurement changes, which results in
more of the wind speed vector being projected onto the laser beam than is actually measured by the
LiDAR. For the outer two beams, when looking from above, this error is larger. Therefore, a different
wind speed will be measured for the same height. Next to an error in direction, also an offset of the
wind speed is present due to the yawing motion of the turbine.

In summary, from the analysis above, it can be said that a velocity change in x-direction has the largest
effect, because the laser beams generally point in that direction. This occurs for surge and, in a lesser
sense, for pitch movements and even slighter for yaw movements. For a similar reason the direction
changes in pitch and yaw have a larger effect, as these turn away from the x-axis, along which the
main part of the laser beams point. The only position change relevant for a power law input wind field
is a position change in z, because the wind field only changes with height. This occurs for pitch, heave
and, in a lesser sense, for roll motions.

It should be noted that this analysis has only been applied to separate DOF, while in reality the motions
are coupled and so is their effect on the reconstructed wind field error percentages. However, it does
give a clear indication of the major actors on error and uncertainty caused by motions of the LiDAR.
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4.4.3. Uncertainty 2 DOF simulated motion & power law
Now that the effect of different parameters on the uncorrected wind field has been explored, also the
uncertainty of the corrected reconstructed wind field can be determined. In this section the focus will
be on the 2DOF motion input data. For a Monte Carlo simulation with 500 simulations for a Gaussian
varying motion input into the correction algorithm as described by Table 4.1, the output uncertainty is
described by Table 4.9.

It is clear that the correction algorithm greatly reduced the the error percentage. At the same time
in correcting the measurements, uncertainty is added to the reconstructed wind field, because of the
uncertainty present in the motion data, quantified in Table 4.1. In the second row of Table 4.9, the
motion correction results are presented for when no correction of the volume averaging uncertainty is
taken into account. The third row presents the case for the results of motion correction where also
the uncertainty of the volume averaging is corrected for. This correction is done using weighted least
squares as described with (3.55) in section 3.4.

EUref
[%] Eα [%]

Uncorrected 2.5130 -24.7800
Uncorrected volume (co)variance +
Corrected motion +

-0.0004 ± 0.0013 -0.0029 ± 0.0212

Corrected volume (co)variance +
Corrected motion

-0.0003 ± 0.0014 -0.0030 ± 0.0212

Table 4.9: Reconstruction error of wind field with 2 DOF motion with uncertainty as in Table 4.1, for a LiDAR simulated with
volume averaging

The convergence of the Monte Carlo simulation in Uref and α can respectively be seen in Figure 4.9
and Figure 4.10. Here, α converges faster than Uref . Also, it is clear that both parameters are under-
estimated here, which is also indicated by the minus sign in Table 4.9.

Figure 4.9: Convergence of Uref with Monte Carlo
simulation of varying 2DOF motion in correction algorithm

Figure 4.10: Convergence of α with Monte Carlo simulation
of varying 2DOF motion in correction algorithm

The wind field over height, corresponding to the power law parameters of the wind fields, is visualised
in Figure 4.11. The uncertainty of the corrected wind field velocity is too small to see in the graph, but
the corrected mean overlaps with the two tolerance lines separated by σ. A striking fact to deduce
from this graph is that for this specific motion, the difference in velocity is highest for the lowest altitude
graphed, while the original and uncorrected wind field overlap around a height of 175m. At this height
the bias in the measurements cancel out and thus the uncorrected and corrected graph overlap. At a
hub height of Hhub ≈ 90m the offset between the original and the uncorrected wind speed should be
2.5%, according to Table 4.9, resulting in a wind speed of 10.25m/s for the uncorrected wind speed,
compared to the 10m/s of the original wind speed. The portion of the wind field that is measured above
the LiDAR is larger than the portion below, because the wind turbine is offset by a mean pitch of around
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2.82◦, as depicted in Figure 3.2. This results in a vertical measurement offset of approximately 35m for
the furthest range gate.

Figure 4.11: Reconstructed wind field for 2DOF, showing uncorrected and corrected with standard deviation

As was concluded in subsection 4.4.2, the pitch motion has the largest effect on the error percentage
of the uncorrected motion. Therefore, it might be interesting to see what the effect of pitch is here.
Especially, because an offset from zero is present, as shown in Figure 3.2, which would increase the
pitch motion’s influence on the error of the reconstructed wind field parameters. In [21] it was found
that the mean pitch amplitude has the largest effect on the error between the reconstructed wind field
and the original.

This effect is researched by applying the 2DOF to a point measurement as described in subsection 3.3.4,
so without applying any volume averaging. With the result of nu volume averaging uncertainty to be
present and thus assuming that the LiDAR perfectly models the measurement. The variance of these
results in Table 4.10, because only point measurements are considered. First, all motions of the 2DOF
are included, that is, surge, pitch and x-velocity. The outcome is then compared to a simulation in which
only the 2DOF pitch is applied. The last case considered is the same pitch motion, but centred around
a zero mean. The results are summarised in Table 4.10. As expected, the resulting error of only the
pitch motion is almost the same as when all 3 motions are applied. This confirms the dominance of a
mean pitch.

EUref
[%] Eα [%]

Surge, Pitch, Vx 1.410 -27.370
Pitch only 1.403 -27.370
Pitch around zero mean 0.000 -0.001

Table 4.10: Effect of pitch 2DOF motion on point measurement

The difference between the original wind field and the uncorrected or corrected reconstructed wind
fields is given as an error percentage for the wind velocity per height in Figure 4.12 and Figure 4.13,
respectively. The x-axis of Figure 4.13 is a much smaller range than that of Figure 4.12, meaning the
error percentage is smaller. The error decreases with height because for higher heights the power law
exponent has a smaller influence. The shear in the wind field, namely, decreases with wind height. In
Figure 4.13 the effect of correcting for the (co)variance of volume averaging can be seen by comparing
the graph where a weighting based on the volume averaging variance is used and the one where this
correction is not applied. The percentage of error in the velocity of the wind field U is larger for the
uncorrected volume variance. When comparing the graphed results to Table 4.9 it is interesting to
see that even though indeed the EUref

is smaller for the corrected volume averaging variance, the Eα

is slightly larger. This difference is so small that the effect of an increase in Eα cannot be seen, the
decrease in EUref

prevails.
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Figure 4.12: Uncorrected error percentage of reconstructed
wind field for 2DOF motions

Figure 4.13: Error percentage of reconstructed wind field for
corrected 2DOF motions

4.4.4. Uncertainty 6 DOFmotion
The same results for a 2DOF will now be presented for a simulated 6DOF case. The uncertainties
given in Table 4.2 are implemented as the standard deviation of Gaussian white noise to the correction
algorithm. The motion parameters are randomly sampled from this Gaussian distribution for 500 times.
The resulting outputs of the reconstructed wind field are summarised in Table 4.11. Similarly to the
2DOF case, the error in the reconstructed wind field parameters for uncorrected floater motions is
compared to the erro for corrected motions. In the second row of Table 4.9, the uncertainty due to
volume averaging is not corrected using (3.55) from section 3.4, while row 3 does have this correction
applied.

For the 6DOf motion case also a clear increase in uncertainty can be seen for the case where volume
averaging uncertainty is corrected. This is expected as the more corrections are applied, the more
uncertainties are added to the model. The fact that this uncertainty is so large even increased the error
percentage for Uref . In the last paragraph of this section this is explored further.

It is clear that the error of the reconstructed wind field is greatly reduced when the motion correction
algorithm is applied. The errors for the corrected case are so small because a power law wind profile
is used as an input. This is a simplified representation of a realistic wind field, and the error due to
volume averaging, as well as the uncertainty would increase if a turbulent wind field were applied.

EUref
[%] Eα [%]

Uncorrected 2.953 -29.540
Corrected motion + Uncorrected
volume (co)variance

0.001 ± 0.019 -0.028 ± 0.310

Corrected motion + Corrected volume
(co)variance

0.003 ± 0.085 -0.018 ± 0.605

Table 4.11: Reconstruction error of wind field with 6 DOF motion with uncertainty as in Table 4.2, for a LiDAR simulated with
volume averaging

The convergence of the Monte Carlo simulation applied to obtain the results in Table 4.11 is shown in
Figure 4.14 and Figure 4.15, for Uref and α, respectively. Unlike the convergence of the 2DOF results,
the reference wind speed Uref converges faster than α. For this particular motion case, also Uref is
overestimated, while α is underestimated.
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Figure 4.14: Convergence of Uref with Monte Carlo
simulation of varying 6DOF motion in correction algorithm

Figure 4.15: Convergence of α with Monte Carlo simulation
of varying 6DOF motion in correction algorithm

A noticeable fact to be deduced for this more complicated motion case that is closer to reality, is that
the standard deviation of the reconstructed wind field increased, when compared to 2DOF data. This
can also be found in Figure 4.16, where the mean and its standard deviation are pictured. The reason
for this is that a larger standard deviation is applied to the input of motions in the correction algorithm
as recorded in Table 4.2.

Comparable to the 2DOF case in Figure 4.11, the difference between the original and uncorrected wind
field is largest for the lowest height pictured. Again, close to 175m the two graphs cross. This crossing
also means that for larger heights, above 175m, the uncorrected wind field underestimates the original
wind speed. For lower heights the opposite is true.

Figure 4.16: Reconstructed wind field for 6DOF, showing uncorrected and corrected with standard deviation

The influence of the pitching motion on the error percentage of the uncorrected wind field is researched
by taking pitching motion only as an input. The result is recorded in Table 4.12. As was the case for the
2DOF case and as explored in subsection 4.4.2 indeed the pitch motion is the largest source of error
in the reconstructed wind field.

EUref
[%] Eα [%]

6DOF motions 0.133 -18.270
Pitch only 0.071 -17.220

Table 4.12: Effect of pitch 6DOF motion on uncorrected point measurement
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Lastly, also a visualisation of the error percentage of the wind field over height is given for the uncor-
rected wind field in Figure 4.17 and for the corrected one in Figure 4.18. There is quite a large difference
of the error percentage for different heights, due to the error in the power law exponent. Leaving much
larger errors at lower heights, compared to the upper heights, as is also confirmed in the difference be-
tween the corrected and uncorrected graphs in Figure 4.16. When the difference between the corrected
wind fields is compared in Figure 4.18, where for one correction of variance due to volume averaging
is applied, as done in (3.55) from section 3.4 and for the other it is not, then the corrected version has
a higher error up until a height of 158m. In Table 4.11 it is clear that while indeed Euref

is increased
for the volume averaging variance correction, Eα is reduced. However, from Figure 4.18 it can be said
that for the most part the error percentage of the fully corrected reconstructed wind field is higher.

Figure 4.17: Uncorrected error percentage of reconstructed
wind field for 6DOF motions

Figure 4.18: Error percentage of reconstructed wind field for
corrected 6DOF motions

4.4.5. Comparison to real data uncertainties
The results presented in this chapter so far show a very positive outlook on the effect of correcting the
LiDAR measurements for the movements of the floating turbine, showing a large reduction in error with
a small variance. Although this is true, the analysis has thus far been limited to simulations, and a
comparison with real-world conditions is necessary.

In practice, motion uncertainty is larger than that captured by regression. An uncertainty is present
within the IMU measurement device, for example. In addition, the LiDAR’s uncertainty is not only
dependent on volume averaging, but additional sources of error occur, such as errors due to turbulent
fluctuations.

In Table 4.13 the uncertainties in motion found with regression of the simulated 6DOF motion data are
compared with the uncertainties of the IMU as found in [41]. The specifications of the IMU uncertainty
hold for marine and subsea applications and refer to post-processed data with an outage duration of
GNSS satellite contact of 30 seconds. In reality, this standard deviation depends on many factors and
changes for each measurement, but this comparison provides a useful baseline for assessing order-
of-magnitude differences. For the velocities and angles, the comparison in Table 4.13 confirms that
the simulated noise levels are within the expected range. However, for positional changes, the simula-
tion yields a much smaller standard deviation than that reported in the IMU manual. This discrepancy
could pose a problem when correcting for positional changes. As discussed in subsection 4.4.2, po-
sitional changes have a relatively minor impact on overall error compared to orientation changes. If
also the wind field uncertainty due to the uncertainty of these position measurement exceeds the bias
caused by position changes, applying a correction may not be beneficial. The total effect of applying
the uncertainties as the maximum standard deviations of the IMU in all DOF’s is studied in this section.
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Surge Sway Heave Xvel Yvel Zvel Roll Pitch Yaw
m m m m/s m/s m/s deg deg deg

Simulation 0.011 0.011 0.001 0.041 0.037 0.003 0.022 0.020 0.013
IMU 1.000 1.000 0.300 0.050 0.050 0.030 0.040 0.040 0.050

Table 4.13: Standard deviation σ due to regression fit for 6DOF simulated motions

In reality, also the uncertainty in the line of sight velocity will be higher because of additional uncertain-
ties due to more complex and detailed wind fields and LiDAR models. For example, time averaging in
the LiDAR or turbulent fluctuations in the wind field will add to the total LiDAR model uncertainty. For
an order of magnitude comparison, the mean standard deviations of the line of sight velocities of real
measurements of the WindCube Nacelle Lon-Range LiDAR mounted on the Tetraspar demonstrator
over a period of 1 hour are compared with the computation of volume averaged uncertainty in the VLOS

in Table 4.14. This uncertainty is then applied in a similar way as how the motion uncertainty is applied.
The standard deviation in Table 4.14 for the actual WindCube LiDAR is used in a Gaussian white noise
that is added to the modelled VLOS . By increasing the uncertainty in VLOS , a more realistic test case
can be simulated, providing insight into how the results would appear under real-world conditions

σVLOS
[m/s]

Simulation 0.0124
Actual WindCube LiDAR 1.0000

Table 4.14: Comparison of mean standard deviation of VLOS

The resulting error percentages in the reconstructed Uref and α for the corrected motion data are given
in Table 4.15. The comparison is done without volume averaging, assuming to measure at the exact
location of the range gates. This is done because the uncertainty due to volume averaging is replaced
by the uncertainty given in Table 4.14. This is applied by taking the exact VLOS for a given point and
adding a Gaussian white noise with a standard deviation of σ = 1m/s to it.

EUref
[%] Eα [%]

Simulation 0.003 ± 0.085 -0.018 ± 0.605
Reality 0.349 ± 0.185 -0.552 ± 5.571

Table 4.15: Reconstruction error of wind field with 6 DOF motion with uncertainty as in Table 4.13, for a LiDAR simulated with
exact point measurements that are not volume averaged

When accounting for higher uncertainties in the modelling process, both the standard deviation and
the error of the reconstructed wind field increase. As shown in Figure 4.19, this wind field exhibits a
greater variance from the mean, and the mean deviates more from the original wind field compared to
Figure 4.16. Nevertheless, the correction still improves accuracy compared to the uncorrected wind
field, even when one standard deviation is added to the corrected mean. Thus, with 68 % confidence,
the correction method produces a wind field measurement that is closer to reality. For heights between
88 and 200m, where the mean of the uncorrected wind field falls within one standard deviation of the
corrected wind field, the uncertainty exceeds the bias correction. However, applying this correction,
despite the increase in variance, remains preferable to leaving the bias uncorrected.



4.4. Uncertainty of reconstructed wind field 67

Figure 4.19: Velocity wind field with σ added to motion and VLOS based on real measurements



5
Conclusion and recommendations

After having presented the background theory, the methodology used for the correction and the final
results, the final conclusions to answer the research question can be drawn. In addition, recommenda-
tions for further research have been identified.

5.1. Conclusion
The objective of developing a correction algorithm for the influence of floater motions on LiDAR mea-
surements and quantifying the uncertainty of this method was captured in the following research ques-
tion: What are the uncertainties in corrected wind speed measurements taken from a nacelle-mounted
LiDAR on a floating wind turbine?

This question will be answered in this concluding chapter with the help of the results and methodologies
presented in the previous chapters. First, the sub-questions that will guide the answer to the main
research question will be answered.

SQ1. How is the correction of a wind velocity LiDAR measurement on a floating wind
turbine performed with the use of a numerical LiDARmodel?
This question has been answered by developing a numerical LiDAR model. The principles of LiDAR
measurements are explained in section 2.4, while the correction method is detailed in section 3.2. The
main takeaway from these sections is that all three outputs of the LiDAR measurement should be
corrected. That is, the measurement position, the direction in which the laser beams point, and VLOS .

SQ2. What are the specific floater motions that influence LiDAR wind speed measure-
ments and how significant is their impact?
The motions of a floating offshore wind turbine are briefly described in section 2.2. Then the specific
motions used in this thesis, namely the simulated harmonic motions, 2DOF and 6DOF motions, are
detailed in subsection 3.1.1. Each successive motion model introduces increasing complexity, with the
6DOF motion being the most realistic.

Among these motions, pitch motion has the most significant impact on the reconstructed wind field.
This is primarily because pitch motion has a non-zero mean, leading to a bias in the measured wind
speed. For a harmonic motion, a pitch motion with a zero mean results in an increase in the error
percentage of Uref and α of 0.46% and 2.47%, respectively, due to an increase in pitch angle from 1 to
5◦. This change is fairly large compared to the mean error percentage of a 500% change in amplitude
for each individual DOF of 0.15% and 0.81%.

For a 2DOF motion, it can be concluded from Table 4.10 that the largest portion of the error of the
reconstructed wind field stems from the pitch motion. If no mean pitch would be present, the error is
reduced a lot from 1.403000% to 0.000003% for Uref and from −27.370% to −0.001% for α.

The reconstructed velocity field that is uncorrected for the motion experiences a similar dependency

68



5.1. Conclusion 69

on the pitch motion, where in Table 4.12 again the largest part of the error can be attributed to the pitch
motion.

SQ3. What are the uncertainties of the involved input parameters, that is, of the LiDAR
parameters, the LiDARmodelling and the motion input?
The uncertainty of the motion input is calculated with a least-squares regression method as explained
in subsection 3.1.2 and the resulting uncertainties are given in section 4.1. The uncertainty of the mea-
surements depends on the sampling time chosen for the regression method. The larger the sampling
frequency, the less oscillations are captured, and more of the motion is defined as noise. The sampling
time is set at 4 seconds to match the time over which the LiDAR measurements are averaged.

No uncertainty is assumed to be present in the wind field described by a power law.

The uncertainty of the LiDAR parameters is unknown, but a sensitivity study of the effect of different
parameters is performed in section 4.2. From this, it can be concluded that the range weighting function
has the largest effect on the error in the correction of the reconstructed wind field. The LiDAR parameter,
which in turn influences this weighting the most, is the pulse duration, which induces an uncertainty of
the measured position along the laser beam of σz,B11m, for the applied pulse duration of τp = 100ns.

The error induced by the LiDAR model was found by excluding motions and their uncertainties, and
the resulting error due to volume averaging was found to be −0.0004% for Uref and 0.0070% for α, the
variance connected to these values is within machine precision.

The uncertainty of the reconstruction method as explained in section 3.4 is within machine precision,
and the error percentage caused by only the reconstruction method is very small, too, in the order of
E−9 and E−10. This is documented as the error percentages for a point measurement in Table 4.4,
as explained in section 4.3. This holds because a lot of wind speed measurements that deviate only
slightly per height are available for the reconstruction of a 10-minute average of a wind field described
by a power law.

SQ4. What is the most dominant source of error in the reconstructed wind field?
From the results in chapter 4 it is clear that the largest source of error in the cases analysed here is
the motion of the LiDAR. Especially for the more complicated BHawC motions that also have a non-
zero pitch. The error percentage is between 20 and 30% for the power law exponent and above 2%
for the reference wind speed. The motion with the biggest influence is then the mean pitch motion,
as is answered in the first sub-question. The error due to motion is much larger than the error due to
volume averaging, for the case of a power law wind field. The error of volume averaging will increase
if a turbulent wind field is present, inducing larger variations within the LiDAR’s measurement volume.
However, it is expected that the error caused by motions will remain larger than the error due to volume
averaging. If the different factors of volume averaging are compared, then the pulse duration in the
range gate weighting function has the largest effect. When the pulse duration is doubled, the error
percentage approximately triples for both Uref and α.

SQ5. What is the remaining error of the corrected wind speed measurements?
The remaining error of the correction is quantified in error percentages as described in section 3.5.
The reconstructed wind field is compared to the input wind field and the relative error is tabulated in
percentages. The error percentage for 2DOFmotion is reduced from 2.5130% to−0.0003% for Uref and
from −24.7800% to −0.0030% for α. This is summarised in Table 4.9. For the 6DOF motion, a similar
reduction in error is present, from 2.953% to 0.003% for the reference wind speed and from 29.540% to
−0.0018% for the power law exponent. These results are also summarised as in Table 4.11. It is clear
that the correction method used in this thesis is very effective in reducing the error of the LiDAR wind
speed that occurs due to floating turbine motions because the errors are greatly reduced. Now, the last
thing to do is to answer the main research question by putting this correction in to perspective in terms
of additional uncertainties that arise from performing this correction.

RQ: What are the uncertainties in corrected wind speed measurements taken from a
nacelle-mounted LiDAR on a floating wind turbine?
Uncertainties in the reconstructed wind field increase whenmore parameters are corrected. This can be
concluded from Table 4.11, where an uncertainty increase of the reconstructed wind field was found for
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the correction of the variance due to volume averaging in the output parameters of the LiDAR model.
It increased from 0.019% to 0.085% for Uref and from 0.310% to 0.605% in α. Even with this large
increase in uncertainty and with a standard deviation larger than the mean error, the correction method
is still noticeably better than when no correction is applied. This gives a good idea of how effective this
method is in correcting LiDAR measurements for floating offshore wind turbines.

5.2. Recommendations
In this section, recommendations for future work will be given.

First of all, more detail can be included in the methodology used here to make the analysis more
complete and closer to reality. For example, instead of using a power law, a turbulent windmodel can be
used as input to the LiDAR model. This will induce larger errors and uncertainties in the reconstructed
wind field. The volume averaging uncertainty will increase, because a higher variance of the wind speed
inside the measurement volume of the LiDAR will be present. The wind field could be complicated
further by introducing low-level jets, for example. Then the reconstruction of the wind field can no
longer be based on a power law and a different, more general description should be used. One option
would be to use Laguerre basis functions to describe the reconstructed wind field. This again introduces
new uncertainties that are likely to be higher, because now the equation describing the wind field is not
known beforehand and so it is uncertain how well the Laguerre basis functions can capture the wind
field. Moreover, a scaling factor is used for the Laguerre basis function which influences the uncertainty
of the reconstructed wind field. It is not immediately clear which scaling factor would produce the best
results, and this should thus be studied further.

The floating motions that are studied in this thesis are already quite detailed, but a similar approach can
be used to actual IMU measurements as a check for the 6DOF simulated results. One difference that is
present in these IMU-measured motions are large differences in yaw angle due to direction changes of
the wind field. These changes act almost as step changes and occur due to control of the wind turbine,
which is not modelled in the simulations.

The model of the LiDAR can also be improved. Firstly, knowing exactly the input parameters would im-
prove the accuracy of the weighting functions. In particular, knowing the pulse duration would decrease
the possible variance of the outputs. Moreover, the range gate weighting function used here is a con-
volution between a Gaussian pulse shape and a rectangular windowing function. However, it is known
that this does not exactly represent what the range gate weighting function for the Widncube Nacelle
Long-Range configuration looks like. The manufacturer could give the exact equation and parameters.

The uncertainty of the LiDAR parameters should be inserted in the model too, to have a complete
picture of the total uncertainty of the reconstructed wind field. The levelling accuracy also influences
the final error and uncertainty and is not studied in this thesis.

In addition, the uncertainty of the LiDAR modelling can be improved by incorporating other sources of
error and uncertainty, such as the Carrier-to-Noise ratio of the LiDAR.

Once all these improvements are applied to the model, the remaining error and uncertainties are quan-
tified and the model can be applied to real LiDAR measurements on the Tetraspar. No met mast is
available on the sight, so no verification is possible for these measurements, but this (improved) study
can function as a verification. If a floating offshore wind turbine demonstrator with a reference wind
field would be available, this would be a good validation opportunity of the correction method.

This study has focused on correcting individual LOSmeasurements, but focused on reconstruction with
a 10-minute average. However, for studies of the effect of turbulence this correction method can also
be used. The outputs should then be implemented in a different reconstruction algorithm, such as the
Kriging algorithm to quantify turbulence developed by Romain Tiphaigne in [46]. For this method the
mean wind speed should be subtracted, and thus the results from this research can be used for that.

The corrected wind data can then be used as an input to BHawC-Orcaflex to model the loads on the
Tetraspar demonstrator. Consequently, these loads can be compared to the loads measured on the
demonstrator. This can improve the modelling tool and in turn improve floating wind turbine design.
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Besides, using the correction method for load validation, it also has potential as a use for real-time
turbine control. If the wind field is known more precisely, a better control strategy can be implemented.

Another application that this correction of LiDAR data can be used for is power performance optimi-
sation. In [21] it is stated that an error of 1% in the reconstructed wind speed is already significant
for power performance measurements. If the real wind field is known, this can be compared with the
generated power and more precise power curve studies can be made. With the results of this the-
sis, a follow-up on [26], where it was suggested that motion compensations in LiDAR measurements
could reduce the standard deviation of a 10-minute average for power measurements up to 5.6% for
nacelle-based LiDAR measurements on a floating offshore wind turbine.

The method developed in this thesis can also be incorporated in the aero-hydro-elastic code BHawC-
Orcaflex to improve simulations.
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A
Derivation unbiased weighted variance

The following weighted variance defined in (A.1) has a bias. The expectation of the weighted sample
variance s2 should be adjusted to be equal to the unbiased weighted population variance σ2

w. The bias
can be found by calculating the expectation of the weighted sample variance as expressed in (A.2).
Here m is the total number of samples.

s2 =

m∑
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(A.2) is derived below in (A.3) based on the lecture notes of Dr. H. Nobach [34], realising that the mean
is in fact a weighted average and thus also contains weights.
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First expanding the part between brackets in (A.4).
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Substituting back into (A.3), to get (A.5).
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The second term in (A.5) k can easily be interchanged with i, resulting in (A.6).
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Now that the last two terms are proportional to the same parameters, the equation can be simplified to
(A.7).

s2 =

m∑
i=1

wix
2
i

m∑
i=1

wi

−

m∑
j=1

m∑
i=1

wjwixjxi m∑
j=1

wj

2 (A.7)

Taking the expectation of the sample variance as expressed in (A.7), results in (A.8).

E(s2) =

m∑
i=1

wiE(x2i )

m∑
i=1

wi

−

m∑
j=1

m∑
i=1

wjwiE(xjxi) m∑
j=1

wj

2 (A.8)

If the variables xi are considered independent, that is, no correlation is present between the samples.
For i ̸= j it thus holds that Ei ̸=j(xixj) = µ2. For i = j, it is generally known that E(x2i ) = Var(xi) +
E(xi)2 = σ2

w + µ2 holds.

E(s2) = σ2
w

1−

m∑
i=1

w2
i(

m∑
i=1

wi

)2

 (A.9)

Now, to obtain the unweighted variance, the expression for s2 in (A.1) should be divided by the factor
between brackets in (A.9). Finally, the unbiased weighted variance can then be computed as in (A.10).
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σ2
w =

m∑
i=1

wi(xi − µ)2

m∑
i=1

wi

1−

m∑
i=1

w2
i(

m∑
i=1

wi

)2



=

m∑
i=1

wi(xi − µ)2
m∑
i=1

wi −

m∑
i=1

w2
i(

m∑
i=1

wi

)


= N
m∑
i=1

wi(xi − µ)2 (A.10)

In this way, the normalisation factor N of (3.30) has been proven that ensures unbiased (co)variance
in section 3.3. The bias due to a decrease in degrees of freedom have been corrected for. It can also
be noted that in the limiting case where all weights are equal, the expression simplifies to the regular
Bessel’s correction in (A.11).

σ2 =
1

m− 1

m∑
i=1

(xi − µ)2 (A.11)
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