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Efficient input data generation for reduced-order model applications to accurately predict
aerodynamic performance and stability characteristics over a large part of a fighter aircraft’s
flight envelope is a major challenge. In this paper, aerodynamic reduced-order models are
created from two pseudorandom binary sequence (PRBS) training maneuvers. During these
maneuvers, the angle of attack and pitch rate change in a periodic and deterministic manner
which is characterized by white-noise-like properties. Typical PRBS signals include sudden
input variations between two distinct values, such as minimum and maximum angles of attack.
However, the signals used in this paper were modified to have the step changes to depend on the
simulation time. In the first motion, the aircraft undergoes a signal at a constant Mach number
of 0.85. In the second motion, the Mach number varies in an optimized manner from 0.1 to
0.9. The test case is a generic triple-delta wing configuration. Simulations were run using the
DoD HPCMP CREATERM-AV/Kestrel simulation tools. A prescribed-body motion was used to
vary input parameters under given freestream conditions (Mach number and angle of attack).
Different reduced-order methods were applied, that comprise regression, feed-forward neural
network and auto-regressive surrogate modeling techniques to predict integrated force and
moment coefficients and a proper-orthogonal decomposition based neural network approach
for surface pressure prediction. Once models of integrated forces and moments were created,
they were used to predict static and stability derivatives at different angles of attack and Mach
numbers. Models were then used to predict aerodynamic responses to arbitrary motions
including pitch sinusoidal, chirp, Schroeder, and step. Model predictions were compared with
actual CFD data. Overall, a good agreement was found for all models. Models to predict surface
pressure data were also able to accurately predict the upper surface pressure data at different
spanwise and chordwise locations at different angles of attack for both static and dynamic runs.

I. Introduction

There is a growing interest of using computational aerodynamics in aircraft conceptual design. Computational
aerodynamics models range from potential flow solvers, such as vortex lattice methods, to Euler equations, and

extend up to Reynolds-Averaged Navier Stokes (RANS) equations. The accuracy and computational demands vary from
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model to model, with RANS models being the most expensive and accurate. According to Gu et al. [1] and Ciampa et
al. [2], there are four levels of aerodynamic modeling fidelity: Levels 0, 1, 2, and 3. Level 0 involves semi-empirical
methods or historical databases. Level 1 includes basic linear aerodynamic models. Level 2 uses computational
methods for designing aircraft components like wings and fuselage, incorporating more detailed physics and non-linear
phenomena. Level 3, the highest level, represents cutting-edge physics simulations. Computational expenses range from
under one second for Level 0, to minutes for Level 1, hours for Level 2, and days for Level 3.

At their highest practical application, Reynolds Averaged Navier Stokes(RANS) equations could accurately predict
the underlying flow physics and the unsteady and nonlinear aerodynamics of air vehicles under various flight conditions
and flow speeds. Many unexpected aerodynamic issues due to turbulence, flow separation, and shock waves, could
be identified and fixed early in the design stage to prevent adverse aircraft behavior. However, because of the high
computational cost of using RANS equations for all flow conditions of interest, they are typically used for aerodynamic
estimation at the design point rather than for generating an aerodynamic database, or performing stability and control
(S&C) analysis, or aircraft design optimization.

In the aircraft design cycle, wind tunnel and flight testing take place towards the end. Thus, addressing aerodynamic
or S&C issues discovered during flight testing may require repeating a significant portion of the design cycle; this
turn-around time can lead to costly delays in the design and production of the vehicles. Therefore, it is essential to
reduce risks during prototype testing by early detection of aerodynamic-related problems. The main limitation to use
“high-fidelity" or “physic-based" simulations in a multi-disciplinary design approach is the computational expense. For
example, performing S&C analysis over an aircraft’s flight envelope requires aerodynamic data for tens of thousands
different states to encompass all angles of attack, sideslip angles, aircraft speeds, control surface deflections, and
the time rates of Euler angle changes. This is unfeasible with a brute-force approach. If it were possible to create
Reduced-Order Models (ROMs) that maintain accuracy with only hundreds or even tens of simulations, this would
allow for the early-stage simulation of a real aircraft, including all multidisciplinary interactions across the entire flight
envelope, and deliver data with the accuracy necessary for development and certification [3]. Validated and precise
ROMs can assist in performing virtual testing before actual flight tests, which are costly and might pose risks. Virtual
flight testing helps identify unforeseen issues in aircraft handling, thereby minimizing the need for multiple physical
prototypes that are both expensive and time-consuming. Additionally, validated ROMs can accelerate design iterations
in a virtual environment, enabling quick testing and design improvements without incurring the costs of physical
changes. An additional benefit of having accurate numerical predictions during aircraft design is the ability to optimize
the design for improved aerodynamic performance. With the availability of aerodynamic data, control surface sizing,
performance prediction (e.g., range), and structural analysis can also be performed. It should be noted that this is not
intended to completely replace wind tunnel or flight testing with computational methods, but rather to provide accurate
predictions early in the design stage when experiments are not yet available. In summary, aircraft designs incorporating
advanced computational methods will diminish development costs and the number of necessary experiments and will
speed up the design cycle. This is particularly crucial for the design of highly maneuverable aircraft, unstable aircraft,
novel configurations like the Blended Wing Body (BWB), unconventional unmanned combat air vehicles (UCAV), and
next-generation fighter aircraft that lack historical aerodynamic data.

To facilitate an automated physics-based or Computational Fluid Dynamics (CFD)-based aircraft design, three key
procedures must be addressed: geometry definition/mesh generation, flow simulation, and utilization of engineering
data from the flow solver output for specific design objectives. These aspects have been discussed by Ghoreyshi et al. [4]
and Gu et al. [1]. Consequently, there is no requirement to explore automated geometry and mesh generation. However,
the use of ROMs or System Identification (SID) techniques is still necessary for S&C analysis of this configuration
using CFD.

ROMs offer a concise representation of unsteady flow dynamics using a limited number of spatial/temporal modes,
typically fewer than one hundred, in contrast to the extensive number of grid points present in full-order models, which
can range from 5 to 50 million or more [5]. This allows ROMs to swiftly predict responses to various inputs compared
to the time-consuming computations required by full CFD solutions. Various ROM techniques are available, including
indicial response methods [6], Proper Orthogonal Decomposition (POD) [7], Volterra theory [8], and Neural Network
(NN) [9] and Machine Learning (ML) approaches [10, 11]. System Identification falls within the realm of Reduced
Order Modeling, yet it is distinct in its dedicated focus on constructing precise models derived from observed data.
Some methods include regression methods [12], state space representations, transfer functions, the auto-regressive with
exogenous input (ARX) model [13, 14], surrogate-based recurrence framework (SBRF) [15, 16], Radial Basis Functions
(RBF) [17], and NN methods [18, 19].

In this paper, generic CFD-based maneuver simulations as well as ROMs are employed for the Future Fighter
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Demonstrator (FFD) use case of the NATO Science & Technology Organization research task group AVT-351 [20] to
predict aircraft performance and S&C characteristics at transonic flow conditions. Note that, transonic aerodynamics is
very challenging to predict due to shock waves and their movement. The reduced-order modeling or SID task includes
the definition and computation of a training or input signal [21], the selection of a mathematical model (such as the order
of regression parameters), and the choice of modeling techniques that yield the best fit to the observed data (e.g., number
of neurons and hidden layers) [22]. Input signals include two pseudorandom binary sequence (PRBS) motions. During
these maneuvers, the angle of attack and pitch rate change in a periodic and deterministic manner characterized by
white-noise-like properties. Typical PRBS signals include sudden input variations between two distinct values, such as
minimum and maximum angles of attack. However, the signals used in this paper were modified to have the step changes
depend on time. In the first motion, the aircraft undergoes a signal at a constant Mach number of 0.85. Upper surface
pressure data were recorded for six spanwise sections. In the second motion, the Mach number varies in an optimized
manner from 0.1 to 0.9. All simulations were run using the DoD HPCMP CREATERM-AV/Kestrel simulation tools.
A prescribed-body motion was used to vary input parameters under given freestream conditions (Mach number and
angle of attack). Using these input signals, different ROM techniques were investigated to approximate the full-order
aerodynamic model. USAFA used models based on regression and a feed-forward neural network approach, whereas
DLR employed a surrogate-based recurrence framework, both to predict integrated forces and moment coefficients. NLR
utilized Long Short-Term Memory (LSTM) neural network models in combination with enriched Proper Orthogonal
Decomposition (ePOD) to predict the sectional surface pressure data as a function of angle of attack and pitch rate.

This paper is structured as follows: First, we describe the reduced-order modeling methods. Then, we provide
details on the test case, computational grids, and the flow solver. Following that, we present results for the prediction of
forces and moments from various signals, including predictions of new signals. Subsequently, we introduce ROMs
for predicting surface pressure data. Finally, we draw conclusions of this joint effort within the NATO Science &
Technology Organization research task group 351.

II. Numerical flow solver
Kestrel is the fixed-wing product of the CREATETM-AV program funded by the DoD High Performance Computing

Modernization Program (HPCMP). The objective of the CREATETM program is to diminish expenses, time, and
risks associated with DoD acquisition programs. This was achieved through the creation and implementation of
cross-disciplinary, physics-centered software applications tailored for the design and assessment of military aircraft,
naval vessels, and radio frequency antenna systems. The initiative expanded its scope in 2012 to encompass ground
vehicles as well, serving DoD engineering entities [23].

According to Sears and Morton [23], Kestrel is an advanced, multi-dimensional analysis tool designed to handle a
diverse spectrum of linked physical processes, encompassing aerodynamics, thermochemistry, structural dynamics,
thermodynamics, propulsion, and flight controls. The code has a Python-based infrastructure that integrates Python, C,
C++, or Fortran-written components [24]. Kestrel version 12.8 is used in this work. The code has been extensively
tested and a variety of validation documents have been reported [25, 26].

Kestrel employs a Common Scalable Infrastructure (CSI) to adopt a modular approach in linking computational tools
necessary for conducting comprehensive assessments of fixed-wing aircraft across various disciplines. Kestrel CFD
solvers include KCFD [27], COFFE [28], and KCFD/SAMAir [29]; the KCFD flow solver is used in this study. KCFD
uses a second-order accurate cell-centered finite-volume discretization while SAMAir utilizes a fifth-order finite-volume
discretization on Cartesian meshes [30]. KCFD solves the unsteady, three-dimensional, compressible RANS equations
on hybrid unstructured grids [31] using the Method of Lines (MOL) to separate temporal and spatial integration schemes
from each other [27]. The spatial residual is computed via a Godunov type scheme and second-order spatial accuracy
is obtained through a least squares reconstruction. The numerical fluxes at each element face are computed using
various exact and approximate Riemann schemes with a default method based on HLLE++ scheme [32]. In addition,
the code uses a subiterative, point-implicit method (a typical Gauss-Seidel technique) to improve the temporal accuracy.
Kestrel provides the capability to utilize tetrahedral grids and mixed-element unstructured meshes, allowing for flexible
combinations of tetrahedra, prisms, and pyramids [33]. Some of the turbulence models available within Kestrel include
Spalart–Allmaras (SA), Spalart–Allmaras with rotational/curvature correction (SARC), Menter’s SST [34], and Delayed
Detached Eddy Simulation (DDES) with SARC. To generate the data for ROM developemnt, the Prescribed Body
Motion capability of Kestrel was used. The available motion types in Kestrel include: constant rate pitch/yaw/roll,
sinusoidal, pitch/yaw/roll motion with time varying amplitude and frequency, ramp, and step motions. Arbitrary motion
can be prescrived using external motion definition files that contain time instants, Euler angles, and mesh reference
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point coordinates at each time instant. In addition to CSI, this study uses other elements of the Kestrel software, such as
the KUI (Kestrel User Interface), JobView, and Carpenter, a grid manipulation program. KUI is a GUI for setting up
the input deck. JobView allows to visualize the set up case, orientation, reference points (cg, moment, mesh), wind
direction vector, tap points, Cartesian extent, and even a preflight of prescibed-body motions. Carpenter functions as a
grid manipulation tool, enabling the conversion of multiple grid formats into Kestrel’s preferred .avm format, along with
providing several other beneficial functionalities such as translation/rotation, mirroring and subsetting the grid [33].

III. Reduced Order Aerodynamic Models
For a linear system, the system output is found as:

𝑦(𝑡) =
∫ 𝑡

0
𝑔0 (𝜏)𝑢(𝑡 − 𝜏)𝑑𝜏 (1)

where 𝑦 is the output, 𝑢 is the input, and 𝑔0 is the system impulse. In multi-input systems, superposition is applied.
However, estimating impulse functions is a very challenging task, whether through computational or experimental
methods. This model is only applicable to linear systems or systems with small amplitude responses. Full-order models,
such as statistical analysis (white-box modeling) or look-up tables (brute-force approach) based on system observations,
can serve as alternatives. However, gathering or simulating all these observations can be very time-consuming.
Reduced-order aerodynamic models aim to accurately represent a system with significantly less data compared to
full-order models.

In this paper, a system identification method is used at USAFA for estimation of aerodynamic coefficients and
surface pressure estimation. DLR has applied a SBRF architecture employing Gaussian Process Regression (GPR)
surrogate models to estimate aerodynamic coefficients. NLR has developed a modal decomposition method used for the
dimensional reduction of high-fidelity data combined with Neural Networks to predict aerodynamic coefficients and
surface pressure data.

A. System identification
SID is dedicated to creating mathematical models that can accurately describe system behavior. According to

Galrinho [35], the SID process comprises four steps: 1) system excitation for data collection, 2) selection of model
structures, 3) training the models and selecting the best one from the candidates, and 4) model validation. SID models
are classified into three types: grey-box models, which are built on partial system knowledge; white-box models, which
are based on statistical analysis of observations; and black-box models, which are created solely from data. This paper
describes a gray-box identification approach based on linear, static regression to model the FFD aerodynamics at
different flight conditions. The model is called grey box because we assume a regression model or relationship between
the aerodynamic coefficients and input parameters. This model is static since the output depends only on the present
inputs, without considering past inputs. A least-square error will then be used to estimate the model unknowns.

In more detail, a functional relationship (e.g., a polynomial) is assumed between forces and moments and the input
parameters. A forced motion (i.e., a training maneuver) is then used to estimate the model unknowns. The model
accuracy depends on the type of forced motion and input parameter excitation. Forced motion can be used to vary Mach
number, angle of attack, acceleration terms, and angular rates in a single computation. A forced motion can be thought
of as a computational flight test without kinematic restrictions (e.g., G-force) of the aircraft or pilot.

In this study, a third order polynomial model in angle of attack was chosen for the aerodynamic coefficients at
constant Mach number:

𝐶 𝑗 = 𝐶 𝑗0 + 𝛽1𝛼 + 𝛽2𝛼
2 + 𝛽3𝛼

3 + 𝛽4𝑞 + 𝛽5𝛼.𝑞 + 𝛽6𝛼
2.𝑞 + 𝛽7𝛼

3 (2)

Note that for the motions of this study 𝑞 = ¤𝛼. For the motion with varying Mach number, the new model is assumed
as:

𝐶 𝑗 = 𝐶 𝑗0+𝛽1𝛼+𝛽2𝛼
2+𝛽3𝛼

3+𝛽4𝑞+𝛽5𝛼.𝑞+𝛽6𝛼
2.𝑞+𝛽7𝛼

3+𝛽8𝑀+𝛽9𝑀.𝛼+𝛽10𝑀.𝑞+𝛽11𝑀
2+𝛽12𝑀

2.𝛼+𝛽13𝑀
2.𝑞 (3)

where 𝐶 𝑗 = [𝐶𝐿 , 𝐶𝐷 , 𝐶𝑚] correspond to lift, drag, and pitch moment coefficient. 𝛼 is angle of attack. 𝑞 is normalized
pitch defined as 𝑄.𝑐/(2𝑉∞ where 𝑄 is pitch rate in rad/s, 𝑐 is the mean aerodynamic chord, and 𝑉∞ denotes freestream
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velocity. 𝑀 is Mach number as well. The unknowns ®𝛽 are found by a least-square method using the input and output
data of the training maneuver. In more detail, Equations 2- 3 could be written as:

𝑌 = 𝛽.𝑋 + 𝑒 (4)

where 𝑌 is the output vector, containing all 𝐶 𝑗 data at each time step of training signal simulation. 𝛽 is a vector of
model parameters and 𝑋 is a matrix of input vector at each time step of training signal simulation. 𝑒 is the error vector
between actual output and assumed model. The best set of 𝛽 parameters that minimize the error are found as:

𝛽 =

(
𝑋𝑇 .𝑋

)−1
.𝑋𝑇 .𝑌 (5)

B. Artificial Neural Network

Fig. 1 FFNN used for training PRBS
signal at constant Mach.

A feed-forward neural network (FFNN) was evaluated at USAFA to model
the surface pressure data and aerodynamic coefficients of lift, drag, and
pitch moments based on input signals. A FFNN, is one of the simplest and
most-used types of artificial neural networks. FFNN’s are simple and easy to
implement. ANN was developed to mimic the human brain. ANN contains
interconnected neurons arranged in different layers of 1) an input layer, 2) one
or more hidden layers, 3) and an output layer. The information moves forward
from input to hidden layers, and to the output layer. Each neuron or node,
calculates a weighted sum of its inputs and processes the result through an
activation function. The input parameters are fed into the input layer, which
is the network’s first layer. While multiple inputs can be used, it is preferable
that the input data are not correlated.

Hidden layers are situated between the input and output layers. These
layers contain neurons that perform a linear transformation on the input
followed by a non-linear activation function. There can be one or more hidden
layers, each with a varying number of neurons. Common activation functions
include ReLU (Rectified Linear Unit), sigmoid, and tanh. The final layer, the
output layer, generates the network’s output. The architecture of the FFNN
used in this study is illustrated in Figure 1 for constant-Mach PRBS signal.

The network has three inputs (𝛼 in radian, 𝑞 normalized pitch rate in 1/rad,
and 𝛼.𝑞). For the PRBS signal with varying Mach number, additional input
for Mach was added.

In more detail, FFNN consists of a single hidden layer with 10 neurons.
The Levenberg–Marquardt algorithm was employed for training. Inputs are
transmitted from the input layer to the neurons in the hidden layer. The signals
are weighted by coefficients 𝜔, combined with a bias term 𝑏𝑘 , and then passed
through a nonlinear activation function. The transformed signals are then
forwarded to the output layer.

In this study, three different FFNN were trained corresponding to three different outputs for lift, drag, and pitch
moment coefficients. For surface pressure data, a single FFNN was trained for each spanwise position with output
consisting of pressure coefficient data at different chordwise positions.

C. Surrogate-Based Recurrent Framework
An auto-regressive modeling approach to account for unsteady aerodynamic effects in predicting time-series of the

aerodynamic force and moment coefficients is employed. In order to implement a nonlinear mapping function which
approximates computational expensive simulations into the SBRF modeling approach, we rely on a GPR model (see
Rasmussen and Williams [36]). A software package developed by DLR, the Surrogate Modeling for AeRo-Data Toolbox
in python (SMARTy) [37], is used to integrate and apply the SBRF modeling approach. SMARTy provides various
building blocks, such as regression and dimensionality reduction techniques, in a single software package. A detailed
description on the development and application of the SBRF modeling approach can be found in [38]. In the following,
we briefly introduce the model architecture and its application specifics for this work.
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Considering nonlinear and unsteady aerodynamics as a discrete-time dynamical system [39]

x𝑡+Δ𝑡 = 𝑓 (x𝑡 , u𝑡 )
𝑦𝑡 = ℎ(x𝑡 )

(6)

with x, u, 𝑦, and ℎ(x) denoting the state variables, external inputs, output quantity, and a mapping function of the system
states to the output, we are able to derive an equivalent input/output relationship. This means, the output quantity of
interest at any time instance 𝑡𝑘 depends on both, the instantaneous input at time 𝑡𝑘 and the input time history. Let
the time 𝑡𝑘+1 at one-step-ahead be defined as 𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡 with 𝑘 denoting the current discrete time step and Δ𝑡 the
constant time step size. According to [14], the input/output relationship accounting for time-delay history is written as

𝑦(𝑡) = Φ(𝑦𝑘−1, . . . , 𝑦𝑘−𝑛, 𝑢𝑘 , 𝑢𝑘−1, . . . , 𝑢𝑘−𝑚) + 𝜀(x) (7)

with a nonlinear mapping function Φ as a function of external inputs at the current and previous time steps, so-called
delayed input and output quantities. As nonlinear mapping function a GPR model is fitted to the training data to relate
integrated coefficients for lift, drag and pitching moment (𝐶𝐿 (𝑡), 𝐶𝐷 (𝑡), and, 𝐶𝑚 (𝑡)) to the model inputs. Note that, a
quasi-steady GPR model is fitted to initialize delayed states of the input vector for time-series prediction. Thus, the
quasi-steady GPR is inherently built and allows a comparison of a quasi-steady GPR model (QS-GPR) with the unsteady
SBRF modeling approach. The SBRF model provides recursive one-step ahead predictions to obtain time-series data.
For static predictions, a Cauchy convergence controlled time-series prediction at fixed input state is employed. Stability
derivative estimates are calculated based on a least-squares approach from predicted time-series of sinusoidal reference
motions.

D. ePOD-LSTM
When pressure distributions are highly detailed, the training of neural networks (NN) for their representation

becomes computationally inefficient, even when including Auto-Encoder/Decoders (see Fresca and Manzoni [40]).
Therefore an alternative is often used, in which a reduced basis is first established using a truncated POD or a similar
order-reduction technique, followed by the modeling of the resulting time-variant mode amplitudes using a Neural
Network (NN). For the latter, Recurrent Neural Networks (RNN) are often used. This approach is well described
by Mohan and Gaitonde [41], as well as by Catalani [42] and Bourier [43], who consider the representation of
subsonic pressure distributions using truncated POD basis combined with Long Short-Term Memory (LSTM) RNN. An
additional benefit to this approach is that prediction errors can be distinguished into projection errors, i.e. a limitation
from the selected truncated POD basis, and network errors resulting from e.g. inadequate training input or network
design. Moreover, the POD basis provides a boundary condition on the predicted pressure distribution.

The representation of transonic flows however, is more challenging due to the presence of discontinuities. The
accurate representation of discontinuities using a truncated POD, for example, requires including a large number of
relatively low-energy modes. Consequently, POD-LSTM Reduced Order Models (ROMs) must learn to describe a
large number of mode amplitudes across all training datasets. This requirement escalates the training complexity of the
NN, not least because as observed by [43], an accurate prediction of temporal behaviour over a range of frequencies
becomes more challenging as the number of POD modes increases.

To address this problem, an alternative approach employing an enriched Proper Orthogonal Decomposition (ePOD)
is introduced here. In the ePOD, discontinuous enrichment modes are added to the reduced-order basis to represent the
discontinuous parts of the pressure distribution. This allows the remainder of the data to be represented using a standard
truncated POD. This dramatically lowers the number of modes needed to accurately represent pressure distributions in
transonic flows. As in [42] and [43], the time variant parameters of the resulting basis are modelled using an LSTM.
The two main phases of this ePOD-LSTM approach are described below.

1. Model construction and training
Enriched Proper Orthogonal Decomposition The representation of a pressure distribution using a combination of
POD and enrichment modes is written as:

𝐶𝑃 =

𝑟∑︁
𝑘=1

𝑎𝑘 (𝑡)𝜙𝑘 (𝑥)𝑇 + 𝜙𝑒 (𝑥, 𝑝(𝑡)) + 𝐶𝑃 (8)
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Where 𝜙𝑘 (𝑥) are the spatial modes with corresponding amplitudes 𝑎𝑘 (𝑡), and 𝜙𝑒 (𝑥, 𝑝(𝑡)) are the enrichment modes,
with time-variant parameters 𝑝(𝑡). 𝐶𝑃 is the time-averaged pressure distribution, which is defined separately to allow
the model to focus on the prediction of fluctuations.

The first step in defining the enrichment functions is to obtain a map of the discontinuities. Here physics-based
sensors are employed. Specifically, the gradient of the pressure fluctuations is monitored and flagged if it exceeds a
specified limit (default: 𝜕𝐶∗

𝑃

𝜕𝑥
>= 1). It is important to note that the raw data is first passed through a low-pass filter to

smooth out high-frequency noise in the data set, to prevent it affecting the efficiency of the shock sensor [44]. Once
all the locations flagged by the sensor are obtained, the shock centers are defined as the points of maximum pressure
gradient, as discussed in [45].

The next step is to define the enrichment domains, i.e. the local regions in space and time within the data set where
the enrichment function will be used. This is done with a user-defined constant which defines how many CFD mesh
points before and after the shock location will be included in the enrichment domain. The enrichment functions are then
fit to the pressure fluctuation data within the enrichment domains, as illustrated in Figure 2.

Fig. 2 Enrichment function fitting.

First, a target function is defined which smoothly interpolates the 𝐶∗
𝑃

values at the start and end of the domain (here a linear function is used).
The enrichment function of the form described in 9 is then fitted to the test
function, which represents the difference between the 𝐶∗

𝑃
data and the target

function. The parameters 𝑝(𝑡) of this enrichment function are the amplitudes
and locations of two interior control points: {𝑎1 (𝑡), 𝑎2 (𝑡), 𝑥1 (𝑡), 𝑥2 (𝑡)}:

𝜙𝑒 (𝑥, 𝑝(𝑡)) =


𝑎1𝑥
𝑥1

, for 𝑥 < 𝑥1
(𝑎2−𝑎1 )𝑥
𝑥2−𝑥1

+ 𝑎1𝑥2−𝑎2𝑥1
𝑥2−𝑥1

, for 𝑥1 < 𝑥 < 𝑥2
−𝑎2𝑥
1−𝑥2

+ 𝑎2
1−𝑥2

, for 𝑥 > 𝑥2

(9)

Here, the fit is determined using a non-linear least-squares algorithm. For
the case considered below, a fixed number of two enrichment domains is used
to represent the two shocks present in the data.

Once the reduced basis is obtained, values of 𝑎𝑘 (𝑡) and 𝑝(𝑡) are determined
using the 𝐶∗

𝑃
(𝑡) data. These must be matched to suitable input vector values.

For the case under consideration, the input signal in the angle of attack-pitch rate sample space suggests that the
derivatives of these parameters might significantly influence the instantaneous pressure distribution. Thus, a time-variant
input vector is defined to include the angle of attack (AoA), the first and second time derivatives of AoA, the pitch rate
𝑞, and the first time derivative of 𝑞. This input vector and the 𝑎𝑘 (𝑡) and 𝑝(𝑡) values form the data set used for the LSTM
training.

Table 1 LSTM Neural Networks Hy-
perparameters.

Hyperparameters Values
Number of LSTM layers 2
Number of LSTM units 64
Number of dense layers 1
Number of dense units 128
Number of time-steps 10

Batch size 32
Drop-out rate 0.2

Model optimization method ADAM
Model loss function Custom

LSTM Neural Network Recurrent Neural Networks (RNNs) [46] improve
on feed-forward neural networks by incorporating the output of adjacent
time steps, introducing a temporal dimension to the model [47]. The
network’s edges that connect neighboring time steps are named recurrent
edges. RNNs operate on sequences of data (e.g., time-series, time coefficients),
and their weights are determined through backpropagation through time [48].
Long Short-Term Memory (LSTM) network was introduced by Hochreiter
and Schmidhuber [49] to address the issues of vanishing or exploding
derivatives and short transmission of information in standard RNNs. The
LSTM architecture replaces the hidden layer of a standard RNN with a
memory ‘cell.’ Each memory cell contains a node with a self-connected
recurrent edge of fixed weight, creating paths through time where gradients
can flow without vanishing or exploding [47, 50]. A significant improvement
is to make the weight on this self-loop depend on the context instead of being
fixed, as proposed by Gers et al [51]. Previous studies conducted at NLR
by Catalani [42] and Bourier [43] have demonstrated that LSTM Neural
Networks outperform other ANN or regression models in terms of accuracy for the direct prediction of POD time
coefficients. Furthermore, Bourier [43] conducted a sensitivity analysis to determine the optimal hyperparameters for
the baseline model. The outcomes of this analysis, combined with the findings from Catalani’s study [42], were used to
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define the optimal hyperparameters for LSTM training in predicting the pressure distribution over different sections of
the DLR-F22 model. For more details on how and why these values were derived, please refer to the respective thesis
reports. The main hyperparameter values for the LSTM surrogate model are presented in Table 1.

The main difference between the previous neural network parameters and the current ones lies in the loss function.
The custom loss function is a modification of the function proposed by Giovanni in [42], integrated with the enrichment
function. Specifically, the loss function used in training the LSTM neural network is the Mean Square Error (MSE)
between the projected and predicted pressure distributions. The predicted time coefficients {�̂�𝑘}𝑟𝑛=1 are multiplied
by the POD modes, and the predicted parameters 𝑝 are introduced to the enrichment function 9. Consequently, the
predicted pressure distribution is constructed according to 8. It is then compared to the ePOD expansion of the true
targets {�̂�𝑘}𝑟𝑛=1 and 𝑝, as shown in Equation 10:

ℒ =
1
𝑁𝑥

𝑁𝑥∑︁
𝑖=1

| |
𝑟∑︁

𝑘=1
𝑎𝑘 (𝑡)𝜙𝑘 (𝑥)𝑇 + 𝜙𝑒 (𝑥, 𝑝(𝑡)) −

𝑟∑︁
𝑘=1

�̂�𝑘 (𝑡)𝜙𝑘 (𝑥)𝑇 − 𝜙𝑒 (𝑥, 𝑝(𝑡)) | |2 (10)

After defining the architecture of the LSTM and constructing the neural network, the final step of this stage is
training the network. Considering the dataset structure and the limited overlap between the available maneuvers, we
implemented the following training strategy: The Schroeder maneuver, selected for training (for details, see IV), is
partitioned into three datasets: training, validation, and testing. Specifically, the first 700 points are used for training,
the next 250 points for validation, and the final 50 points for testing.

2. Testing stage
In this stage of the ePOD-LSTM model, the trained LSTM neural network is employed to predict the time-variant

parameters of the reduced basis for new, unseen datasets. Specifically, the model forecasts the normalized time
coefficients for the ePOD modes identified during the construction of the reduced basis, as well as the parameters for
the enrichment function. Using the reduced-order basis defined in the construction stage (refer to 8), the pressure
distribution can be reconstructed with the de-normalized coefficients and parameters. A visual representation of the
ePOD-LSTM model workflow represented in Figure 3.

Fig. 3 The architecture of the ePOD-LSTM Reduced Order Model.

IV. Training Signal Design
As mentioned earlier, the first step toward system identification is system excitation for data collection. A MATLAB

code was developed at USAFA to create different signals. These signal need mean, frequency, duration and amplitudes
of inputs such as angle of attack. Pitch angles could be varied independent of angle of attack. In addition, Mach number
could be constant or changing during signal time. Minimum and Maximum Mach number values are input and the Mach
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could change in form of linear, quadratic, probablic, or optimal sinusoidal (Schroeder). Plots of input signals, input
space coverage, and power spectral density are provided. For quasi-steady signals, the reduced frequency 𝜅 = 𝜔.𝑐/(2𝑉)
where 𝜔 = 2𝜋 𝑓 , 𝑐 is reference length and 𝑉 is freestream velocity. The MATLAB code then writes input motion data
for use in Kestrel software.

Fig. 4 PRBS signal characteris-
tics [52].

Motion types include: Chirp ( a signal with linearly increasing frequency
in time), Schroeder (optimal frequency sinusoidal), Sinusoidal, Random,
PRBS and Step signals. Some of these signals could have either a constant
or a varying mean.

In this paper, two PRBS signals are used. PRBS is a periodic signal in
which, the angle of attack and pitch rate change in a periodic and deterministic
manner characterized by white-noise-like properties. Typical PRBS signals
include sudden input variations between two distinct values, such as minimum
and maximum angles of attack. However, the signals used in this paper were
modified to have the step changes depend on time.

A PRBS signal example is shown in Figure 4. The maximum possible period for a maximum length sequence 𝑁 is:

𝑁 = 2𝑚 − 1 (11)

where 𝑚 is the order of the PRBS. In Fig. 4 of Ref. [52], 𝜆 is the shifting time or the duration of shortest impulse, and 𝑎

is the PRBS amplitude. 𝜆 and 𝑚 should be carefully selected; one criterion here is to have reduced frequency less than
0.01 for a quasi-steady state assumption. The power spectral density of the PRBS signal shows that all frequencies up to
𝜔𝑚𝑎𝑥𝜆/2 = 𝜋/4 are excited. 𝜔𝑚𝑎𝑥 is related to the shorter time constant 𝑇𝑚𝑖𝑛 by:

𝜔𝑚𝑎𝑥 =
3

𝑇𝑚𝑖𝑛

(12)

therefore 𝜆 = 𝜋/6𝑇𝑚𝑖𝑛. In this study, a PRBS signal was designed for 4 seconds with mean angle of attack of 10◦ at
constant freestream Mach number of 0.85. The amplitude 𝑎 increases linearly from 0 to 10◦ for the first half of motion
and then linearly falls to 0 for the second half of the signal. Number of shifts was set to 40. The designed PRBS signal,
named PRBS1 in this paper, and its input parameters are shown in Figures 5(a),(c),(e). PRBS1 signal was designed for
the FFD test case at Mach 0.85. Figure 5(a) shows the angle of attack variations with time. Note that the vehicle is set at
a wind vector with 10◦ angle of attack. Pitch angle is zero and it varies as 𝛼(𝑡) − 10 where 𝛼(𝑡) values are given in
Figure 5(a). In this way, the pitch rate and the time-rate of changes in angle of attack are the same. Figure 5(c) shows
angle of attack in degrees versus pitch rate in deg/s (𝑄). Note that the signal maximum frequency and hence the pitch
rate was limited to have a maximum reduced frequency of 0.01 for quasi-steady aerodynamic behavior. Figure 5(c)
shows that the PRBS signal has an excellent coverage of 𝛼 − 𝑞 input space. Figure 5(e) shows the 𝛼 − ¥𝛼 space coverage
of the PRBS1 signal. ¥𝛼 data are given in ◦/𝑠2 units.

Figure 5(e) shows a large range of changes in ¥𝛼, though the most points are located at the center of plot.
Figure 6, shows the PSD analysis of the signal and its periodogram. As anticipated, the PRBS signal excites all

frequencies equally. In addition, Figure 6 shows reduced frequency values for the signal. Maximum reduced frequency
values does not exceed 0.01 to ensure quasi-steady aerodynamic assumption.

Following this, a new PRBS signal of similar design was generated. Unlike the previous signal, the Mach number
in this one is not steady at Mach 0.85 but changes between 0.1 and 0.9. For Mach variations, a Schroeder signal was
designed. This signal was generated from optimization of amplitude and frequency spectra of multisines. The frequency
range was selected to have a reduced frequency range of 0.002 to 0.01.

According to Morelli [53], a Schroeder signal has excellent frequency content and a low peak factor, a measure of
the ratio of maximum input amplitude to input energy. In comparison to a Chirp signal, Schroeder provides better input
for frequency domain dynamic model identification. The new PRBS signal is named PRBS2 in this paper and is shown
in Figs. 5(b),(d),(f). Another difference with PRBS1 is the that PRBS2 signal duration was extended to six seconds as
shown in Fig. 5(b). Because of a longer duration, the pitch rate values are smaller compared with the PRBS1. This is
shown in Fig. 5(d). The Mach number follows a Schroeder signal which has a series of multisines to cover the Mach
range of 0.1 to 0.9. Mach number variations are shown in Fig. 5(f).

Distribution A: Approved for Public release; distribution is unlimited. 9

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Fe
br

ua
ry

 4
, 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
41

58
 



V. Test Case Description
The test case in this study is the FFD model, which is a generic triple delta wing configuration. Its planform is based

on the baseline DLR-F22 wind tunnel model [54] as part of DLR studies on the technology assessment and a design
approach of a Future Fighter Demonstrator [55]. A revision of the wing design of the DLR-F22 model by ONERA
within AVT-351 [20] led to ONERA_DLR_M421 wind tunnel model which serves as FFD use case in this study [56].
In comparison with the baseline DLR-F22 model a moderate thickness, positive camber, and twist distribution was
added. This model design was utilized to investigate flight dynamic characteristics in multiple static and dynamic wind
tunnel experiments at ONERA. Aircraft with multiple swept leading edges exhibit rapid vortical flow topology evolution
and intense flow unsteadiness throughout their flight regime. Sweep angles of the triple-delta wing are 75, 45 and 75
degrees. Some associated phenomena are vortex-interactions, vortex-shock interactions and vortex breakdown that
influence stability and controllability [57, 58].

Table 2 Flow conditions for the FFD wind tunnel model.

case 𝛼 [deg] M∞ [-] 𝑝 [Pa] 𝑇 [K] Re∞ [-] 𝑙ref [m] 𝐴ref [m2] x𝑟 [m]
PRBS1

[0-20◦]
0.85

49881 266.5 ≈ 3 × 106 0.272592 0.0807265 0.212833/0/0
PRBS2 [0.1 - 0.9]

Table 2 shows the flow conditions for the two PRBS signals. Flow simulations of PRBS1 signal are performed at
transonic conditions, 𝑀 = 0.85, and an ambient pressure of 49 881 Pa, a temperature of 266.5 K, resulting in a Reynolds
number of about three million.

Figure 7(a) displays the hybrid computational grid on the half model, consisting of about forty million nodes and
about 150 000 elements. The boundary layer is resolved with quadrilaterals, while tetrahedra extend from boundary
layer edge to the farfield. To better capture vortices, a refined region was specified above the model as shown in the
figure. The first off-body grid-nodes all satisfy 𝑦+ < 1.0 in sublayer scale. The farfield distance is set to one hundred
times the chord length.

In addition, tap points were defined for six spanwise locations over the upper surface of the FFD. These tap points
are shown in Fig. 7(b) . Note that three locations were chosen to be near the wing kink locations. The 𝑦 positions of
these tap points are [0.05, 0.09, 0.136, 0.18, 0.22, 0.28] m. These points move with the mesh. Output data include
tap coordinates and pressure coefficient data at every 200 time step. Note that not all points are exactly located on the
surface. The Kestrel option of "Closest Solution Value" was used. However, Kestrel reports a "Found" parameter with
values of 0 or 1; 0 means no solution found (e.g., the point is perhaps outside the mesh domain and located inside the
plane). Considering the points with a Found value of 1, there are 237, 293, 189, 161, 123, and 89 points for slices 1 to 6,
where slice 6 is the one near the wingtip.

Experimental data at subsonic speeds and conducted at ONERA test facilities are available for validation of numerical
simulations and to guide reduced order modeling activities. Farcy et al. [56] detailed the experimental data. The wind
tunnel model has a span of 0.6m. Two set of experiments were conducted: static and dynamic. Static runs had a
freestream Mach number of 0.1733. Mach number of dynamic tests was set to 0.1 Total temperature was 305K with a
total pressure of 100,000 Pa. Static runs cover -20/+60 angle of attack range at zero and nonzero sideslip angles. Pitch
oscillation tests were conducted at mean angles of 0 to 30◦ with a 5-degree amplitude and frequencies of 1,2, and 3 Hz.
The pitch rotation point is 0.447 from the model’s nose. The wind tunnel model has a rear-mounted sting and was
placed on an internal six-component load balance.

VI. Results and Discussions
All simulations were run using the Kestrel flow solver. Second-order spatial and temporal accuracy was used.

The grids are half geometries with far-field, symmetry, and no-slip wall boundary conditions for the airplane. All
solutions begin at a 10◦ angle of attack, corresponding to the mean aerodynamic angle of PRBS signals. For PRBS1,
the free-stream Mach number was set to 0.85 with a total temperature of 305 K and a total pressure of 305 Pa. For the
PRBS2 signal, the freestream Mach number was set to 0.4. The Mach number was then varied using a prescribed-body
motion in Kestrel. In this approach, if the grid moves opposite to the incoming velocity, the relative velocity between the
freestream and vehicle will increase, and hence the Mach number. If the grid moves in the direction of the freestream
velocity, the Mach number will decrease. The relative velocity is set so the Mach number matches the profile shown in
Fig. 5 (f).
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All motions were run with a time step of 0.0002 seconds and eight Newton subiterations. The motions begin after
2,000 startup iterations and continue for an additional 20,000 iterations for a signal duration of four seconds. Advective
temporal damping was set to 0.01. The Spalart–Allmaras turbulence model with rotational/curvature correction (SARC)
was used. The cost of running these signals is approximately 120,000 CPU hours using 2,880 processors. Simulations
were run on the U.S. DoD HPCMP Carpenter machine, which is an HPE Cray EX4000 system located at the ERDC
DSRC in Mississippi. It has 1,440 standard compute nodes, 4 large-memory nodes, and 8 GPU nodes (a total of 278,272
compute cores). It has 518 TB of memory and is rated at 15.75 peak PFLOPS.

A. SID Modeling at Constant Mach 0.85
First results show the SID (Regression), FFNN, and SBRF predictions using the PRBS1 signal (the signal at constant

Mach 0.85). This signal was run in Kestrel with predicted 𝐶𝐿 , 𝐶𝐷 , 𝐶𝑚 values are shown in Fig. 8. For referencing,
Fig. 8(a) shows the input data (angle-of-attack time history) as well. Note that SID, FFNN, and SBRF modeling
predictions depends on the chosen time step, or more specifically, by the non-dimensional time step, 𝑡∗ = 𝑡.𝑉∞/𝑐, where
𝑡 is time step in second. Ideally, we would like to keep 𝑡∗ about 0.01, however, this makes simulations very expensive to
run. A time step of 0.0002 seconds was chosen for the FFD simulations at Mach 0.85. Figure. 8 shows a nonlinear
aerodynamic behavior with respect to the angle of attack and pitch rate.

The predicted coefficients shown in Fig. 8 are then rearranged according to Eq. 2 and then Eq. 5 was used to estimate
the model parameters, i.e. 𝛽 𝑗 , 𝑗 = [0− 7]. The parameter estimation took about one or less than one second. In addition,
three different FF neural networks were trained corresponding to 𝐶𝐿 , 𝐶𝐷 , 𝐶𝑚 data of the PRBS1. Networks have one
hidden layer containing 10 neurons. Levenberg-Marquardt algorithm was used. Network training time was less than one
minute. For the SBRF model, a reduced training set was used to reduce computational cost and overfitting of the GPR
model due to spatially highly correlated sample locations. The sample points were randomly split into a smaller training
set consisting of about 10 % of the initial size of the PRBS signal. Time-delay quantities were still computed based
on the full time-series data accounting for the original time step size. Here, no time-delayed input was considered for
the two exogenous input variables 𝛼 and 𝑞, but time-delayed output information is used instead to augment the input
matrix with output quantities obtained at 𝑡𝑘 − Δ𝑡 with Δ𝑡 = 0.002 sec. This corresponds to a time step at 𝑡𝑘−10 with
𝑘 denoting the current time step. For model prediction, then 𝐶 𝑗 ,𝑡𝑘−10 , for 𝑗 = 𝐿, 𝐷, or 𝑚, is recursively fed back as
model input from a single time step at 𝑘 − 10 with 𝑘 denoting the current time step. In addition, the quasi-steady GPR
(QS-GPR) model which is inherently built when using the SBRF modeling approach is compared to the other models.
Computational cost to generate the SBRF model (including the QS-GPR model) on the reduced sample set was less than
a minute on a desktop computer.

Regression, FFNN, SBRF models were then used to reconstruct the PRBS1 signal. These model predictions of the
PRBS1 signal are shown against CFD (actual) data in Figure 9. Overall, a very good agreement was found by all three
models at all simulation times. In more detail, the mean squared error (MSE) values of the models are given in Table 3.
MSE values are small with best predictions provided by quasi-steady and unsteady GPR models. These models usually
provide highly accurate training data reconstruction, since only a small value as regularization term is added to the
models. Nevertheless, the choice of only using a subset of sample points as training set, did not lead to an increase
of model training errors. Besides these two, the FFNN model provides best predictions for 𝐶𝐷 . In the following, we
use the QS-GPR model for comparison of model predictions at static and quasi-steady conditions (such as static and
quasi-steady damping stability derivative estimates), and the SBRF model for generic, prescribed maneuver predictions
similar to the PRBS signal.

Table 3 PRSB1 prediction mean squared error using regression, FFNN, QS-GPR, and SBRF.

MSE Model 𝐶𝐿 𝐶𝐷 𝐶𝑚

Regression 0.01658 0.00419 0.005722
FFNN 0.01458 0.003608 0.004487
QS-GPR 0.00025 0.00001 0.00003
SBRF 0.00029 0.00001 0.00003

Up next, we will look at how the regression and FFNN models perform at different angles of attack. These angles
were picked to cover the full range of the signal, from the lowest to the highest values. (i.e. 0 to 20◦) with an increment
of 0.5◦. The way regression model is used for these predictions is by setting up the pitch rate to zero in models, i.e.
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𝐶 𝑗𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑟𝑒𝑔 𝑗 (𝛼, 𝑞 = 0). Likewise, in FFNN, the input columns corresponding to the pitch rate and its products (e.g.
𝛼.𝑞) are set to zero values. Static predictions of the FFD model at Mach 0.85 for the regression, FFNN and QS-GPR
models are given in Fig. 10. In addition, static data from Widhlam et al. [59] are used for cross-plot purposes. Figure 10
shows that both, regression and FFNN, predict very similar lift and drag coefficient values and the predictions match
well with those shown by Widhalm et al. for the FFD and Mach 0.85. Likewise, regression and FFNN predictions are
similar for the pitch moment coefficients with small discrepancies at some angles of attack. The predictions show the
same trend as Widhalm et al. presented in Ref. [59]. However, model predictions overestimate the pitch moment data at
small angles of attack and did not predict the dip seen around 20 angle of attack in previous studies. In summary, the
models do their best at the average angle of attack of the training signal, but their accuracy fades a bit near the max and
min values, i.e. [0◦-5◦] and [15◦-20◦] range.

QS-GPR predictions shown in Figure 10 are able capture the general trend, but show minor (𝐶𝐿 and 𝐶𝐷) and large
oscillations (𝐶𝑚) around the mean. The SBRF model performed similarly to the QS-GPR model. Root mean squared
error (RMSE) evaluated using the static reference data from Widhlam et al. [59] for the QS-GPR model gives values of
0.04140, 0.01112, and 0.01073 for 𝐶𝐿 , 𝐶𝐷 , and 𝐶𝑚 respectively (RMSE using SBRF model gives values of 0.03091,
0.00898, and 0.01201 for 𝐶𝐿 , 𝐶𝐷 , and 𝐶𝑚 respectively). These oscillations indicate an overfitting issue during model
fit on the one hand, and that probably the type of training signal is not very suitable in combination with GPR-based
models. In particular for the latter, a reason can be found in the large step changes between two distinct angles of attack
which are characteristic for the PRBS signal. Though a large range of the angular rate 𝑞 is covered by the signal, the
PRBS signal captures only a small low-frequency or quasi-steady content. For instance, very large values are obtained
during the (smoothed) step changes from one angle of attack to another, but only constant values of 5 ◦/s and −5 ◦/s,
respectively, are obtained for the portions between the step changes. This seems to cause problems primarily for the
GPR-based models.

For predicting the curve slope with the regression and FFNN models, we applied the same method as used for
the static case; first static data of 𝐶 𝑗𝑠𝑡𝑎𝑡𝑖𝑐1 are estimated for 𝛼 angles. Then 𝐶 𝑗𝑠𝑡𝑎𝑡𝑖𝑐2 are found for 𝛼 + 0.5◦ angles.
The slope is then the difference of these values divided by 0.5◦ increment. The lift, drag, and pitch moment curve
slopes predicted by regression and FFNN models are shown in Fig. 11 and again compared with those reported by
Widhalm et al. [59]. Static stability estimates from the QS-GPR were calculated based on a least-squares approach
using a time-series prediction of a sinusoidal motion at a frequency of 𝑓 = 1 Hz and an amplitude of 5◦. Note, at mean
angles of attack equal to 0◦ 20◦, the sinusoidal time-series prediction includes an extrapolation. Those predictions of
𝐶 𝑗 ,𝛼 for 𝑗 = 𝐿, 𝐷, or 𝑚 are added to Fig. 11.

Overall, the trends are similar but FFNN shows more nonlinearity in the plots than regression models. For drag, all
models show the same slope and similar data to Ref. 59. For lift coefficient, the slopes predicted in the range of [5-15]◦
have a better match with previous data. Note that the input space is mostly covered around the mean angle of attack of
10. For the pitch moment, the FFNN provides a better match with earlier data than the regression model. The regression
model exhibits a linear slope with the angle of attack and slightly overestimates in comparison to both the FFNN and
previous data. The QS-GPR model also overestimates for angles from 5◦ to 10◦ and predicts a rather constant slope.

Next predictions correspond to dynamic derivatives of 𝐶𝐿𝑞 + 𝐶𝐿 ¤𝛼, 𝐶𝐷𝑞 + 𝐶𝐷 ¤𝛼, and 𝐶𝑚𝑞 + 𝐶𝑚 ¤𝛼. Note that
PRBS signals used in this study have combined effects of changes in pitch rate and angle of attack because 𝑞 = ¤𝛼. For
isolated terms, pitch angles should be varied independent of the angle of attack. For the convenience we drop ¤𝛼 terms,
and name these dynamic derivatives 𝐶𝐿𝑞 , 𝐶𝐷𝑞 , and 𝐶𝑚𝑞 .

For prediction of these dynamics terms, models were fed with input of angle of attack and pitch rate of zero
𝐶 𝑗𝑞0 = 𝐶 𝑗 (𝛼, 𝑞 = 0) and at 𝑞 = 11/𝑟𝑎𝑑, i.e 𝐶 𝑗𝑞0 = 𝐶 𝑗 (𝛼, 𝑞 = 1). Dynamic derivatives are the difference of these
estimated terms. Note that 𝑞 is non-dimensional pitch rate defined as 𝑞 = 𝑄.𝑐/(2𝑉∞) where 𝑄 is pitch rate in rad/s.
Regressions and FFNN model predictions of these dynamic derivatives are shown in Figure 12 and compared with
estimations using the sinusoidal time-series predictions from the QS-GPR model and those given in Ref. [59]. Overall,
good agreement was found with earlier studies of the FFD at Mach 0.85. Dynamic derivatives appear to be relatively
unaffected by changes in the angle of attack up to 20◦. Note that estimation of these dynamic derivatives could still be a
challenging task from CFD and time consuming using traditional pitch oscillation motions.

In addition to static and stability derivative predictions, the created model could be used for prediction of new
time-accurate signals with the input space within the training signal used for model creation. One example, is pitch
oscillations. Different motions with combinations of the mean, amplitude, and frequency could be defined and then
predicted by models. Figure 13 shows regression, FFNN, and QS-GPR model predictions of a pitch oscillation with 10◦
mean angle, 5◦ amplitude, and frequency of 1Hz. Lift, drag, and pitch moment predictions are plotted against CFD data.
The lift and drag show small thin loops but a nonlinear type. CFD and model predictions match very well. For pitch
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moments, the hysteresis loop is more visible and is characterized by large nonlinearities at 𝛼 = 10◦ and an eight-shape
curve around the maximum angle of attack. FFNN, regression, and QS-GPR models show discrepancies in predicting
those nonlinearities. Predictions do not match with CFD data at all angles, but are able to reproduce the general trend of
the time history for 𝐶𝑚, that was computed with CFD. The regression and FFNN model are generally more smooth
compared with the QS-GPR model which is characterized by oscillations for some angles of attack. A reason of this
discrepancy might be running CFD case at a different set up (time step, sub-iterations) than the training data, in addition
to the previously mentioned poor input signal coverage of the low frequency content.

In addition, FFNN was used to predict different signals such as Chirp motions with constant or varying mean,
Schroeder, and a step signal. For the latter two, also predictions of the SBRF model were available. Model predictions
are compared with CFD data in Figures 14- 17. Figure 14 shows a chirp signal with mean 10 and amplitude 10 and
four-second duration. The initial frequency is 2Hz and linearly increases with time. FFNN predictions match very well
with CFD ones. Lift, drag, and pitch moment coefficients show MSE values of 0.026 0.0077, and 0.0087, respectively.

Figure 15 shows another Chirp motion with a varying mean angle of attack. The mean angle follows a sinusoidal
curve with 1Hz frequency. The chirp has an initial 4Hz frequency, again linearly increasing with time. FFNN predictions
again match very well with CFD data of this signal. MSE values are 0.022, 0.0056, and 0.0075 for lift, drag, and
pitch moment coefficients, respectively. The largest discrepancies are seen at pitch moment at large angles and large
frequencies.

A Schroeder signal was designed in which the mean angle of attack again follows a sinusoidal motion with 1Hz
frequency. This motion was run in CFD with the same set up as PRBS1. Figure 16 compares FFNN and SBRF
predictions of the Schroeder signal with time-accurate data. MSE values calculated from the FFNN model predictions
are 0.024, 0.0058, and 0.0079 for lift, drag, and pitch moment coefficients, respectively. For the SBRF model, MSE
values of 0.00082, 0.00003, and 0.00009 were obtained for lift, drag, and pitch moment coefficients, respectively. A
good match between CFD reference and both models is observed for 𝐶𝐷 and 𝐶𝐿 , whereas the magnitude of 𝐶𝑚 during
the first two-thirds is not well predicted. This is improved when a better coverage between training data and predicted
motion exists, as can be seen for the last third of the time-series at angles of attack below 15◦.

Finally, Figure 17 shows a step motion in which the signal begins at 10-deg angle of attack. The aircraft is held at
this angle about 0.2 seconds and then suddenly undergo a negative unit step, and angle of attack drops one degree. The
aircraft is then at zero angle of attack at two seconds. Then, it will go undergo the same motion but with a positive unit
step until it reach 10 after 4 seconds. All shown forces and moments have a jump in coefficients at the steps. FFNN
model predicts the static and jumps in the coefficients with reasonable accuracy with 0.0089, 0.0013, 0.0019 MSE values
for lift, drag and pitching moment coefficient. The main discrepancies correspond to the step locations. The SBRF
model shows a similar performance in terms of error metrics as for the Schroeder signal (MSE values for lift, drag and
pitching moment coefficient are 0.00013, 0.000002, and 0.00009, respectively). However, best accuracy using the SBRF
model is obtained for 𝐶𝐷 , whereas for 𝐶𝐿 and 𝐶𝑚 at some steps a high frequency oscillation around a constant mean
with larger deviations of the predicted mean around the minimum angle of attack are visible. Note that these oscillations
are not present when evaluating the QS-GPR model, which achieves an overall similar prediction accuracy of the step
motion (MSE values for lift, drag and pitching moment coefficient are 0.00009, 0.000004, and 0.00002, respectively).

B. SID Modeling with Mach Variation
This section focuses on extending aerodynamic models to account for Mach number effects. To achieve this, a new

PRBS signal was designed to cover angles of attack ranging from 0 to 20 degrees over six seconds. In this new motion,
the Mach number varies between 0.1 and 0.9 following a Schroeder motion, with the initial Mach number set at 0.4. Two
regression models were developed: 1) one model similar to the one used for PRBS1 using Eq. 2 with inputs of 𝛼 and 𝑞.
The second model is based on Eq. 3 which includes Mach number as an additional input. The predictions of these two
models are compared with actual CFD data from running PRBS2 in Kestrel, as shown in Fig. 18. Using Eq. 2 models
show root mean squared errors of 0.039, 0.013, and 0.024 for 𝐶𝐿 , 𝐶𝐷 , and 𝐶𝑚, respectively, with large discrepancies in
pitch moment and coefficients at large angles of attack. However, the second model with Mach number as an additional
input has MSE values of 0.02 for lift, 0.0067 for drag, and 0.017 for pitch moment coefficient. Additionally, a FFNN
model was created to predict lift, drag, and force moments, using seven inputs (𝛼, 𝑞, 𝑀 , 𝛼.𝑞, 𝛼.𝑀 , 𝑞.𝑀 , 𝛼.𝑞.𝑀).

Regression models were then used to predict static and stability derivatives of the FFD at different Mach numbers
and angle of attacks. Figure 19 shows static and slope data at Mach 0.1 and 0.85. Previous CFD data at Mach 0.85 were
obtained from Widhalm et al. [59]. For Mach 0.1, the ONERA wind tunnel data are plotted. Figure 19 shows that static
and slope data match well with wind tunnel data at Mach 0.1 for the ranges of shown angles (this range corresponds to
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the signal input range). Lift and its slope curve underestimate Ref. 59 data at Mach 0.85. The same applies to drag and
pitch moment coefficient at Mach 0.85. More interestingly, model predictions at Mach 0.9 (not shown in this paper)
match better with previous CFD data at Mach 0.85. A few suggestion to improve model prediction accuracy is to refine
signal with a longer duration and including more training data at transonic speeds than subsonic regime.

From the PRBS2 signal, dynamic derivatives of 𝐶𝐿𝑞 , 𝐶𝐷𝑞 , and 𝐶𝑚𝑞 were estimated at Mach numbers of 0.1 and
0.85. These predictions are compared against data from Ref. [59] and wind tunnel data [56] in Fig. 20. In addition, the
models created from the PRBS2 signal were used to predict a sinusoidal pitch motion at Mach 0.1, with mean angle of
10◦, amplitude of 5◦ and the motion frequency of 1Hz. The model predictions are also compared with wind tunnel data
(this corresponds to test run 149 in wind tunnel documents) in Fig. 20. The predictions shows that dynamic derivatives
are insensitive to the angle of attack variations up to 20◦ for both shown Mach numbers. However, dynamic derivative
depend on Mach number. e.g. 𝐶𝑝𝑚𝑞 becomes more negative with increasing Mach number. Figure 20 shows that
model predictions fall in the range of previous and measured data. The model predictions at Mach 0.85 show largest
discrepancies. The sinusoidal predictions at Mach 0.1 match very well with wind tunnel data, though ROM performance
should be compared with CFD rather than measured data.

Likewise models created for the PRBS1 signal, the new models could be used to predict the responses to new
motions even including Mach number variations. As an example, a Chirp motion with linearly increasing frequency
with time was defined. This motion runs for four seconds. It has a mean angle of 10◦, amplitude of 5◦ and initial
frequency of 2Hz. The Mach number is not fixed and varies between 0.5 to 0.9 following a Schroeder motion. This
motion is shown in Figure 21. The 𝛼 −𝑄 space coverage is also shown in the Figure as well. Model predictions of this
motion are compared with time-accurate simulations data in Figure 21 as well. Overall, the predictions match well
with CFD especially for lift and drag coefficients. Discrepancies in amplitude and phase are due to slight differences
in dynamic derivative predictions. Additionally, three motions were defined at Mach 0.1: Sinusoidal, Random, and
Schroeder. These motions are shown in Fig. 22 and have a duration of four seconds, except for the Sinusoidal that has
3.7 seconds. Sinusoidal is a combination of five signals of constant frequency; as time progresses, the signal frequency
and amplitude increases in time. Random was generated with different amplitude and frequency combinations. Finally,
a Schroeder motion was defined in which the mean angle of attack follows a sinusoidal motion with a frequency of
0.5Hz. The motion data were fed into models and the predictions are compared against time-accurate data in Fig. 22.
Again, the overall trends were predicted well with small discrepancies at the peak values.

C. Modeling Surface Pressure Data

1. FFNN
The PRBS1 signal was run again in Kestrel, however, this time with pressure tap points of Figure 7 (b). This

includes about 1,092 data points. Note that each slices has different number of points; those near the wing tip has
less points than those near root. The tap points only correspond to the upper surface sections. Tap data are defined
using coordinates of x,y,z. At every 20 time step, pressure coefficient data at these locations are recorded. Note that
angle of attack and pitch rate vary according to the PRBS1 signal shown in Fig. 4. Data were then rearranged to have
input data of [𝛼, 𝑞, 𝛼.𝑞] and corresponding 𝐶𝑝 data for each slice. Then FFNN were used to train the models based
on these data for each sections. The model predictions of two slices are shown here, slice 1 and 3. These slices are
shown in Figures 23 and 24, respectively. In these figures, the PRBS1 signal, the pressure section, and the initial time
𝐶𝑝 data are shown. FFNN models took about one hour to be trained due to amount of data. These models were then
saved to be used for prediction of pressure data of new signals. Model training data for slice1 and slice3 are shown in
Figure 25at different time instants. In this figure, the input signal, section data from CFD and model predictions are
shown. Depending on the angle of attack, pitch rate, and slice locations, shock waves formed over the upper surface
at different chordwise locations. Figure 25 shows that models were trained to capture the shock waves and pressure
coefficient values with the best accuracy. Note that Slice 3 has less negative pressure data at the upper surface than
slice1 for high angles of attack. The shock positions are visible with sudden change in Cp values especially for angles of
10 and higher. The shock becomes stronger and moves aftwards with increasing angle of attack.

The NN models were then used to predict the pressure data of a step motion shown in Figure 17(a). Note that tap
data were predicted at the center of each segment; it was assumed that these data correspond to static data as the pitch
rate is zero during each step segment. Model predictions at different angles of attack at slice sections of 1 and 3 are
shown in Figure 26. 𝐶𝑝 predictions match very well with data calculated from time-accurate simulations.
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2. ePOD-LSTM
Projection and training error As previously discussed, the initial stage involves constructing a reduced-order basis
using the proposed enriched Proper Orthogonal Decomposition (ePOD) technique. To demonstrate the advantage of this
approach over the standard method in modeling transonic flow regimes, we assess the Mean Squared Error (MSE).
Specifically, we compute the projection error of the ePOD technique and compare it to the corresponding error of the
standard POD method using an equal number of POD modes, as well as to the total of POD modes and enrichment
parameters. For instance, in the case of ePOD utilizing 10 modes and 8 enrichment function parameters (4 parameters
per shock), it is compared to the standard mode using 10 modes, and to the standard method using 18 POD modes.

As observed in Figure 27, the Mean Squared Error (MSE) for the ePOD method is consistently lower than that of
the standard POD with an equivalent number of parameters across all time steps in the PRBS1 dataset. Specifically, the
average MSE for the projection error of the ePOD method is 2.25 · 10−4, whereas for the standard POD with the same
number of parameters, it is 2.42 · 10−4 and for the same number of modes, it increases to 5.74 · 10−4.

Furthermore, in the case of the Schroeder maneuver, the MSE of the ePOD method generally outperforms that
of the standard POD. On average, the MSE is 2.78 · 10−4 for ePOD, 3.38 · 10−4 for POD with the same number of
parameters, and significantly higher at 8.62 · 10−4 for standard POD with the same number of modes. This pattern
holds true except for three specific instances in time. Further investigation into these time steps reveals that the fitting
error was significant in these cases, caused by high oscillations following the shock discontinuity, which resulted in
underfitting of the previously described fitting methodology, as observed in Figure 28. Moreover, the MSE is obtained
by averaging the error for the pressure distribution at each time instance. Consequently, small pressure fluctuations
within the dataset contribute to this error. The proposed method is specifically designed to handle shock discontinuities,
whereas the standard POD method with more modes may better address these small pressure fluctuations in regions of
the dataset where no pressure discontinuity occurs. In addition, the pressure distribution for selected time instances for
the PRBS1 signal and Schroeder maneuver are illustrated in figures 30 and 31 respectively. It becoming apparent that
the proposed method it is performing remarkably well in the discontinuity region outperforming the standard methods
and facilitating the application of the model for the prediction of the pressure distribution in the transonic flow regime.

The following results concern the training stage of the neural network. Figure 29(a) presents the weighted training
and validation loss for the Schroeder maneuver. In Figure 29(a) 95% of the weighted version, is the contribution of loss
function 10 and 5% from the mean square distance between the predicted and true time coefficients and parameters. The
validation loss reaches a plateau of approximately 4 · 10−3 after the first 400 epochs, while the training loss continues to
decrease, eventually reaching a minimum of about 4 · 10−4. Furthermore, the normalized time coefficients and the
parameters of the enrichment function are depicted in 32. The normalized first and last time coefficients, along with the
parameters of the second shock (the strongest and most significant one) predicted by the neural network, are compared
with the actual validation data. A particularly interesting observation relates to the frequency and periodicity of these
data. By comparing the first and last time coefficients, it can be derived that as the number of POD modes increases, the
frequency of the corresponding time coefficients also increases. Consequently, it becomes more challenging for the
neural network to predict these highly oscillating coefficients. Thus, by utilizing the ePOD reduced-order basis, the total
number of predicted parameters decreases, and the convergence of the neural network improves.

Testing error In this paragraph, the results from the testing stage of the ePOD-LSTM Reduced Order Model are
presented. The predicted pressure distribution is compared with both the projected and true pressure distributions. The
Mean Squared Error (MSE) between the projected-predicted, true-projected, and true-predicted pressure distributions
for the last 30 time steps of the testing dataset is illustrated in Figure 29(b). The error between the true and projected
values represents the maximum level of accuracy that the neural network can achieve. Essentially, an optimally designed
and perfectly trained neural network would achieve a similar level of error as seen in the projection. Moreover, the MSE
of the projected-predicted and true-predicted values shows comparable trends. A maximum error of 6 · 10−3 occurs at
time step 12, while the average error for both comparisons remains below 3 · 10−3. Furthermore, Figure 33 displays
the predicted, projected, and true values of the pressure distribution for section 1 at selected time steps. These plots
demonstrate that, despite using a limited training dataset, the ePOD-LSTM model accurately predicts the true pressure
distribution, even in challenging discontinuity locations.

VII. Conclusions
Using CFD for aerodynamic system identification of air vehicles is an active area of research. This study investigates

the use of different SID techniques to estimate the integrated forces and moments and surface pressure data of a generic
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fighter configuration at transonic speeds. Aerodynamic reduced-order models were created from two pseudorandom
binary sequence (PRBS) training maneuvers. During these maneuvers, the angle of attack and pitch rate change in a
periodic and deterministic manner which is characterized by white-noise-like properties. Typical PRBS signals include
sudden step variations between two distinct values, such as minimum and maximum angles of attack. However, the
signals used in this paper were modified to have the step changes to depend on the simulation time. In the first motion,
the aircraft undergoes a signal at a constant Mach number of 0.85. In the second motion, the Mach number varies
in an optimized manner from 0.1 to 0.9. Different reduced-order methods were applied, that comprise regression,
feed-forward neural network and auto-regressive surrogate modeling techniques to predict integrated force and moment
coefficients and a proper-orthogonal decomposition based neural network approach for surface pressure prediction.
Once models of integrated forces and moments were created, they were used to predict static and stability derivatives at
different angles of attack and Mach numbers. Models were then used to predict aerodynamic responses to arbitrary
motions including pitch sinusoidal, chirp, Schroeder, and step. Model predictions were compared with actual CFD
data. Overall, a good agreement was found for all models. Models to predict surface pressure data were also able to
accurately predict the upper surface pressure data at different spanwise and chordwise locations at different angles of
attack for both static and dynamic runs.

The results indicate the need for a careful and model-specific selection of training signals and require a more detailed
analysis in particular with respect to the GPR-based models, i.e. the quasi-steady GPR and unsteady SBRF models that
both suffer from overfitting. Even though the design of generic training signals in combination with a SBRF model for
the same test case has been successfully demonstrated at subsonic conditions in [38]; for this transonic scenario only
limited applicability could be shown. However, the new PRBS signal with sudden step-like changes, as used in this
work, differs to those multi-sine and frequency sweep signals of previous work. Future work will focus on an extended
research on and assessment of input signal design in conjunction with an application of unsteady modeling techniques at
transonic, but also varying Mach numbers.

A machine learning-based surrogate model was constructed to predict the surface pressure distribution in the
transonic flow regime. This model combines enriched Proper Orthogonal Decomposition (POD) and a Long Short-Term
Memory (LSTM) neural network. The enriched POD basis is proposed to better capture discontinuities in the pressure
distribution which arise due to the presence of shocks and are not captured by a standard truncated POD basis. The
enriched POD method outperforms the standard method using an equal number of POD modes, as well as a number of
standard POD modes that equals the total of POD modes and enrichment parameters.

After deriving the reduced-order basis, the construction of the LSTM neural network follows. The network’s
parameters are based on previous studies conducted at NLR [42, 43], with some modifications to integrate the enriched
basis. The Schroeder maneuver is divided into subsets used for training, validation, and testing datasets. The training
loss of the LSTM reaches a minimum of about 4 ·10−4, while the validation loss is approximately 4 ·10−3. An interesting
observation is that as the number of POD modes increases, the frequency of the time coefficients also increases, making
it more difficult for the neural network to predict these highly oscillating fluctuations. Hence, the enriched basis not
only reduces the total number of parameters that need to be predicted but also improves the convergence of the neural
network.

The ePOD-LSTM model accurately predicts the time coefficients and enrichment parameters of the ePOD reduced-
order basis for the test dataset. The average prediction error is less than 3 · 10−3, with a maximum error of 6 · 10−3.
These results demonstrate that the proposed enriched Proper Orthogonal Decomposition (ePOD) method efficiently
represents discontinuities in the pressure distribution, thereby facilitating the implementation of the surrogate model in
the transonic flow regime. By employing the ePOD-LSTM surrogate model, the number of predicted parameters is
reduced, which results in improved model convergence and a more accurate prediction of the pressure distribution.

The future work will extend these results to include new signals based on the optimization of the Fisher information
matrix (FIM) which involve creating signals that maximize the amount of information that can be extracted from a
system or process. New signals with different Mach variations will be tested. The effects of neural network training
algorithms will be investigated. Finally, techniques based on POD will be examined to model the flowfield around the
FFD configuration.
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(a) PRBS1 (b) PRBS2

(c) PRBS1 (d) PRBS2

(e) PRBS1 (f) PRBS2

Fig. 5 PRBS1 and PRBS2 signals
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Fig. 6 Power spectral density of the PRBS signal at constant Mach 0.85.

(a) Computational grid (b) Tap Points

Fig. 7 (a) Near field of the computational grid of the generic triple delta fighter aircraft, and (b) Tap points at
six difference spanwise slices.

Distribution A: Approved for Public release; distribution is unlimited. 22

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Fe
br

ua
ry

 4
, 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
41

58
 



(a) Input (b) Lift coeff

(c) Drag coeff (d) Pitch-moment coeff

Fig. 8 PRBS1 (constant Mach 0.85) input and output data.
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(a) Regression-CL (b) NN-CL

(c) Regression-CD (d) NN-CD

(e) Regression-Cm (f) NN-Cm

Fig. 9 Prediction of PRBS1 signal using regression and FFNN models.
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(a) CL/CD (b) Cm

Fig. 10 Prediction of static data using PRBS1 signal and regression/FFNN models.

(a) CL/CD (b) Cm

Fig. 11 Prediction of slope data using PRBS1 signal and regression/FFNN models.
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(a) CLq/CDq (b) Cm

Fig. 12 Prediction of dynamic derivative data using PRBS1 signal and regression/FFNN models.

(a) Regression (b) FFNN

(c) QS-GPR

Fig. 13 Prediction of pitch oscillation using PRBS1 signal and regression/FFNN/SBRF models. Black lines show
model predictions.
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(a) AoA (b) CL

(c) CD (d) Cm

Fig. 14 Prediction of Chirp with constant mean using PRBS1 signal and FFNN models.
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(a) AoA (b) CL

(c) CD (d) Cm

Fig. 15 Prediction of Chirp with varying mean using PRBS1 signal and FFNN models.
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(a) AoA (b) CL

(c) CD (d) Cm

Fig. 16 Prediction of Schroeder with varying mean using PRBS1 signal and FFNN models.
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(a) AoA (b) CL

(c) CD (d) Cm

Fig. 17 Prediction of a step signal; using PRBS1 signal and FFNN/SBRF models.

Distribution A: Approved for Public release; distribution is unlimited. 30

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Fe
br

ua
ry

 4
, 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
41

58
 



(a) CL-Eq. 2 (b) CL-Eq. 3

(c) CD-Eq. 2 (d) CD-Eq. 3

(e) Cm-Eq. 2 (f) Cm-Eq. 3

Fig. 18 Regression prediction of the PRBS2 signal using equations 2 and 3.
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(a) CL (b) CLa

(c) CD (d) CDa

(e) Cm (f) Cma

Fig. 19 Regression prediction of static and slope data at Mach 0.1 and Mach 0.85 using the PRBS2 signal.
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(a) CLq+CLadot (b) CL Sinusoidal, M0.1, f1Hz

(c) CDq+CDadot (d) CD Sinusoidal, M0.1, f1Hz

(e) Cmq+Cmadot (f) Cm Sinusoidal, M0.1, f1Hz

Fig. 20 Regression prediction of dynamic derivatives at Mach 0.1 and Mach 0.85 and a pitch sinousoial at Mach
0.1 with f1Hz using the PRBS2 signal.
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(a) AoA (b) CL

(c) Mach (d) CD

(e) AoA-Q (f) Cm

Fig. 21 Regression prediction of a Chirp motion with varying Mach number using the PRBS2 signal.
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(a) Sinusoidal AoA, M0.85 (b) CL

(c) Random AoA, M0.1 (d) CD

(e) Schroeder AoA, M0.1 (f) Cm

Fig. 22 Evaluating the regression model for prediction of different signals using the PRBS2 signal.
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Fig. 23 Section 1 highlighted by the red color.

Fig. 24 Section 3 highlighted by the red color.

Distribution A: Approved for Public release; distribution is unlimited. 36
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(a) PRBS1 Signal (b) T=0s AoA=10

(c) T=0.8s AoA=14 (d) T=1.6s AoA=18

(e) T=2.4s AoA=2.3 (f) T=3.2s AoA=6

Fig. 25 Modeling pressure data at sections 1 and 3 using FFNN. Siganal is PRBS1 at Mach0.85.

Distribution A: Approved for Public release; distribution is unlimited. 37
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(a) AoA=0 (b) AoA=2

(c) AoA=4 (d) AoA=6

(e) AoA=8 (f) AoA=10

Fig. 26 Modeling pressure data at sections 1 and 3 of FFD at static angles and Mach 0.85. The model was
created from the PRBS1 signal.

Distribution A: Approved for Public release; distribution is unlimited. 38
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(a) PRBS1 Signal (b) Schroeder maneuver

Fig. 27 Mean Squared Error for the maneuvers under consideration.

Fig. 28 Comparison between enriched and standard POD, for t=0.428 [s].

(a) Training and validation loss (b) Performance

Fig. 29 (a) Training and validation loss. (b) Mean Squared Error, between predicted, projected and true
pressure distribution.

Distribution A: Approved for Public release; distribution is unlimited. 39
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(a) t=3.04 s, AoA=5.21◦ (b) t=1.36 s, AoA=17.03◦

(c) t=3.68 s, AoA=8.46◦ (d) t=1.92 s, AoA=0.79◦

Fig. 30 Pressure coefficient reconstruction of section 1 with POD and ePOD methods, for PRBS1 signal.

(a) t=3.04 s, AoA=4.41◦ (b) t=1.36 s, AoA=3.64◦

(c) t=3.96 s, AoA=4.39◦ (d) t=1.32 s, AoA=4.77◦

Fig. 31 Pressure coefficient reconstruction of section 1 with POD and ePOD methods, for Schroeder maneuver.

Distribution A: Approved for Public release; distribution is unlimited. 40
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(a) First time coefficient (b) Last time coefficient

(c) Amplitude of first control point of second shock (d) Location of first control point of second shock

(e) Amplitude of second control point of second shock (f) Location of second control point of second shock

Fig. 32 Normalized validation data.
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(a) t=3.04 s, AoA=5.21◦ (b) t=3.04 s, AoA=5.21◦

(c) t=3.04 s, AoA=5.21◦ (d) t=3.04 s, AoA=5.21◦

(e) t=3.04 s, AoA=5.21◦ (f) t=3.04 s, AoA=5.21◦

Fig. 33 Predicted pressure distribution of section 1 with the ePOD-LSTM ROM.

Distribution A: Approved for Public release; distribution is unlimited. 42
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