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1. Introduction

Current high dose rate brachytherapy (HDR-BT) is based on interactive (‘manual’) treatment planning, which 
has similar shortcomings as in external beam radiotherapy (EBRT) planning: time-consuming, high workload, 
lack of consistency due to inter- and intraplanner variability, plan quality dependency on allotted planning time, 
and limited reproducibility of plans.

A technical challenge in brachytherapy planning is the usual prescription on dose-volume metrics, turning 
treatment planning into solving a non-convex problem. Existing investigated optimisation approaches include 
evolutionary optimisation, such as simulated annealing (Lessard and Pouliot 2001, Deist and Gorissen 2016, 
Cui et al 2018a) or particle swarm optimisation (Van der Meer et al 2018, Maree et al 2018), mixed integer pro-
gramming (Gorissen et al 2013, Morén et al 2018), or approximation of the problem with convex cost-functions 
(Morén et al 2019). Evolutionary and mixed integer programming approaches are in general computationally 
intensive and lack (local) optimality measures, whereas convex approximations are not precise or do not fully 
explore the global search space.

Maree et al (2018) concluded that current clinical prostate HDR-BT treatment plans are not optimal as they 
are not on the Pareto frontier. Multi-criteria treatment planning can offer tools to improve HDR-BT treatment 
planning, e.g. by interactive navigation (Ruotsalainen et al 2010), fast Pareto-front generation for dwell times 
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Abstract
We developed a fast and fully-automated, multi-criteria treatment planning workflow for high 
dose rate brachytherapy (HDR-BT). In this workflow, the patient-CT with catheter reconstructions 
and dwell positions are imported from the clinical TPS into a novel system for automated dwell 
time optimisation. The optimised dwell times are then imported into the clinical TPS. The aims of 
automation were (1) planner-independent, enhanced plan quality, (2) short optimisation times.

Our in-house developed system for fully automated, multi-criteria external beam radiotherapy 
(EBRT) treatment planning (Erasmus-iCycle) was adapted for optimisation of HDR-BT dose 
distributions. The investigations were performed with planning CT scans with catheter reconstructions 
and delineations of twenty-five low- and intermediate-risk prostate cancer patients who were 
previously treated in our center with 4 × 9.5 Gy HDR-BT. Automatically generated plans (autoplans) 
were compared to the corresponding clinical plans. All evaluations were performed in the clinical TPS.

The requested 95% tumour coverage was obtained for all autoplans, while this was only 
observed in 23/25 clinical plans. All autoplans showed a consistent reduction of the D1% for the 
highest prioritised OAR, the urethra. The average and maximum reductions were 6.3%-point 
and 12.1%-point of the prescribed dose, respectively. In addition, conformality of the autoplans 
was higher. The autoplans had slightly smaller delivery times. Autoplanning took on average 4.6 s, 
including computation of the dose kernels.
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only (Maree et al 2018, Cui et al 2018a), or with catheter optimisation as well (Yoo et al 2007, Van der Meer et al 
2018).

In recent years we have developed Erasmus-iCycle for fully-automated, multi-criteria generation of EBRT 
treatment plans (Breedveld et al 2009, 2012). The system features so-called a priori multi-criteria optimisation 
(a priori MCO) (Breedveld et al 2019). As opposed to a posteriori MCO, with a priori MCO, a single high-quality 
plan is generated for each individual patient. In case of convex cost-functions, this plan is guaranteed Pareto-
optimal. Many studies have demonstrated superiority of Erasmus-iCycle EBRT automatically generated treat-
ment plans (i.e. autoplans) over manually generated clinical plans and the system is in routine use in our centre 
(Voet et al 2013, Heijmen et al 2018, Hussein et al 2018, Sharfo et al 2018).

In this paper we first adapted Erasmus-iCycle for dwell time optimisation in HDR-BT treatment planning. 
The system was then validated by comparing autoplans for prostate cancer patients with manually generated 
plans.

2. Methods and materials

2.1. Study design and autoplanning workflow
First, Erasmus-iCycle was adapted for brachytherapy autoplanning (details in section 2.3). Then, the system 
was configured for prostate cancer HDR-BT autoplanning with the same planning aims as used for the manual 
generation of clinical plans. Finally, for a group of patients, autoplans were generated and compared to the 
corresponding manually generated, clinically delivered plans. Plan comparisons were performed in the clinical 
TPS (Oncentra-Brachy TPS, version 4.5.1, Elekta AB, Stockholm, Sweden).

The workflow for generation of an autoplan and importing it into the clinical TPS is depicted in figure 1.

2.2. Patients and clinical planning
The investigations were based on post-implant CT-scans and corresponding clinical treatment plans of 25 low- 
and intermediate-risk prostate cancer patients that were previously treated in our center. HDR-BT was delivered 
as monotherapy in four fractions of 9.5 Gy in two consecutive days (Aluwini et al 2015). The target was defined 
as the prostate without margin expansions according to Aluwini et al (2012, 2015). In the remainder of this 
paper, doses such as D1%, and differences in these doses between the clinical and the autoplans are presented as 
percentages of the prescribed dose Dp .

Applied hard planning constraints for urethra, rectum and bladder, and planning objectives for the prostate 
and the urethra are summarised in table 1. The first priority objective was to achieve adequate target coverage 
within the imposed hard constraints, followed by minimisation of the near-maximum urethra dose (D1%) as the 

second priority.
The clinical plans were generated by expert planners using the clinical TPS, and reviewed by a radiation 

oncologist (SAL). Clinical planning was based on an IPSA (inverse planning by simulated annealing (Lessard and 
Pouliot 2001)) template, followed by manual fine tuning. On average 17 catheters were implanted (range 13–22) 
with 115 dwell positions (range 55–192).

2.3. Adaptation of Erasmus-iCycle for automated HDR-BT planning
To feature generation of HDR-BT plans, the software was adapted for optimisation of dwell times for a set of pre-
selected dwell positions, instead of weights of pre-selected pencil beams in EBRT. For BT dose calculations, we 
implemented the HDR 192Ir Flexisource dose kernel based on the TG-43 standard (Pérez-Calatayud et al 2012, 
Rivard et al 2004).

2.4. Erasmus-iCycle for prostate cancer HDR-BT
For automated treatment planning with Erasmus-iCycle, the clinical planning protocol is to be captured in a so-
called wish-list, defining the optimisation protocol and containing the hard constraints and planning objectives 

Figure 1. Flowchart of the steps used to enable optimisation of dwell times outside the clinical TPS. Blue boxes indicate steps in the 
clinical TPS environment, green boxes take place in Erasmus-iCycle.

Phys. Med. Biol. 64 (2019) 205002 (8pp)
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with assigned priorities and goal values (Breedveld et al 2009, 2012). While the planning constraints are never 
violated in plan generation, the goal values of the objective functions have to be met as well as possible, but will 
be attempted to supersede if feasible. Objective functions are sequentially optimised according to their priorities. 
After each objective function optimisation, a new constraint is added to the optimisation problem to ensure 
that the obtained function value is maintained while minimising lower priority objectives. The treatment site 
specific wish-lists are constructed in an iterative tuning process, using repetitive autoplanning for a small set 
of representative planning CT-scans (Heijmen et al 2018, Hussein et al 2018). Options for improving wish-lists 
in each iteration include adding or removing objective functions, changing priorities of objective functions, 
changing goal values, adding or removing constraints, etc. Although clinically delivered plans serve as an initial 
reference for wish-list generation, the final goal is always to supersede the clinical plan quality.

The wish-list for prostate HDR-BT is presented in table 2. The included constraints are in line with the clinical 
constraints (table 1), but for optimal steering in the autoplanning process, both for rectum and bladder a maxi-
mum dose constraint of 100% was added to avoid delivering excessively high doses to these OARs in very small 
volumes. In line with the clinical protocol, the first priority objective is obtaining 95% PTV coverage by the pre-
scribed dose, followed by maximally reducing the near-maximum dose for the urethra as second priority. Instead 
of minimising D1% directly, we use a different cost-function, which will be discussed in the next section. The two 
third-priority objectives then aim at reducing the high doses in rectum and bladder as much as possible, thereby 

also improving conformality.
To improve the optimisation performance, only points in the rectum and bladder up to 15 mm distance from 

the prostate were considered. Beyond this distance, the maximum expected dose was anyway much less than the 
constrained 80%. For the prostate, a resolution of 300 voxels cm−3 was used in the optimisations, while for the 
cropped rectum and bladder volumes 200 voxels cm−3 was used. For the urethra, all CT voxels were considered. 

Problem sizes are summarised in table 3.

2.5. Applied cost-functions and solver
Brachytherapy protocols are traditionally defined by dose-volume metrics. The Vdc  type of dose-volume metric 
(the volume that receives at least a certain dose dc) can be written as an analytical function:

Vexact
dc (d) =

1

m

m∑
i=1

Idi>dc(di), (1)

with m the number of voxels in the volume, di the dose in voxel i, and I the indicator function that equals 1 
if di > dc  and 0 otherwise. This function is not continuous, not differentiable, and not convex, rendering it 
unsuitable for gradient-based solvers which are in general computationally efficient in finding an optimal 
solution. The Erasmus-iCycle solver is a full-Newton primal-dual interior-point solver, requiring continuous 
and twice differentiable cost-functions (Breedveld et al 2017). Therefore, equation (1) was not directly used for 
plan generation.

To work with dose-volume metrics as defined in table 2, the indicator function in (1) was substituted by a 
sigmoid function, as described in Alber and Reemtsen (2007), Breedveld et al (2017):

Vapprox
dc (d) =

1

m

m∑
i=1

(
di
dc

) p

1 +
(

di
dc

) p , (2)

where p  determines the steepness of the sigmoid. This makes the function continuous and twice differentiable, 
but not convex. Extended functionality to encourage convergence to a suitable optimum for non-convex 
problems is part of the interior-point solver, see Benson et al (2002, 2004), Breedveld et al (2017). In this study p  

Table 1. Constraints and objectives in clinical planning in percentage of the prescribed dose Dp .

Constraints

Structure Type

Urethra Maximum D1% 120%

Rectum Maximum D1cc 80%

Bladder Maximum D1cc 80%

Objectives

Priority Structure Type Goal

1 Prostate (=PTV) maximise V100% 95%

2 Urethra minimise D1% 0

Phys. Med. Biol. 64 (2019) 205002 (8pp)
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was fixed at 100, while dc was iteratively adjusted during the interior-point iterations to minimise the difference 
between Vexact and Vapprox , aiming at an accuracy of 0.01%-point.

The Dx type of dose-volume metric (dose at a certain volume) cannot be written as an analytical function. For 
constraints, we can include those as the Vdc  version by using the equivalence:

Dx < dc ⇐⇒ Vdc < x. (3)

For Dx included as objective, no equivalent substitution exists. Therefore, for the urethra D1% we used a different 
cost-function which reaches the same aim, i.e. minimising the near-maximum dose as far as possible. We used 
a variation of the logarithmic tumor control probability function (LTCP) (Alber and Reemtsen 2007) as a 
substitute. The LTCP is defined by:

LTCP =
1

m

m∑
i=1

e−α(di−dc). (4)

As demonstrated by Rossi et al (2018), when using α < 0, this cost-function is very effective in driving voxel 
doses di below the critical dose dc.

2.6. Plan evaluations and comparisons
For the comparisons in the clinical TPS, we used the available highest precision dose-volume computation 
(200 000 sample points, 800 bins, and a high dose limit of 4 times the prescribed dose). Within these evaluation 
settings, both plans were rescaled to match either 95% target coverage or until one of the constraints was hit, 
followed by rounding dwell times to 0.1 s as requested by the TPS for clinical deliverability.

For the plan comparisons we used the clinical criteria as given in table 1. For comparing the delivery times, all 
times were rescaled to the same reference air kerma rate of the source.

In addition, conformality was evaluated using the COIN COnformality INdex (Baltas et al 1998), defined as:

COIN =
VPTV�D p

VPTV
· VPTV�D p

Vtotal�D p
·

NOAR∏
k=1

[
1 −

VOARk�dc,k

VOARk

]
· 100, (5)

with VPTV the PTV volume, VPTV � D p the PTV volume receiving at least the prescribed dose Dp , Vtotal � D p the 
total patient volume receiving at least Dp , NOAR  the number of OARs (3 in this case), VOARk

 the volume of OAR k, 
dc,k the critical dose for OAR k. For dc,k, values as listed in table 1 were used (120%, 80% and 80% for the urethra, 
rectum and bladder, respectively). The three coefficients essentially reflect the coverage, conformality of Dp  in 

Table 2. Applied wish-list for prostate HDR-BT. All dose levels are in percentage of Dp .

Constraints

Structure Type Limit

Urethra Maximum D1% 120%

Rectum cropped Maximum Dmax 100%

Bladder cropped Maximum Dmax 100%

Rectum cropped Maximum D1cc   80%

Bladder cropped Maximum D1cc   80%

Objectives

Priority Structure Type Goal Parameters

1 Prostate Maximise V100% 95% Sufficient if 95% achieved

2 Urethra Minimise LTCP 0 dc = 90%, α = −0.5

3 Rectum cropped Minimise V70% 0

3 Bladder cropped Minimise V70% 0

Table 3. Numbers of dose optimisation points considered in the plan optimisations for prostate HDR-BT.

Structure Mean Range

Prostate 18 074 7750–29 610

Urethra 3916 1379–6875

Rectum cropped 2975 1241–5686

Bladder cropped 5800 1524–9680

Total per patient 30 765 16 634–47 424

Phys. Med. Biol. 64 (2019) 205002 (8pp)
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total, and conformality based on the tolerances of the OARs. COIN values are reported between 0% and 100%, 
where higher values correspond to more conformal plans.

For the autoplans we assessed the computation times. Reported times included the computation of the dose 
kernels for the dwell positions and the optimisation of the dwell times. The optimisations were performed on an 
Intel Core i7-7700 with 4 cores running at 3.6 GHz.

3. Results

All 25 autoplans had sufficient target coverage, whereas in 2/25 clinical plans the PTV coverage was slightly 
lower than prescribed (94.7% and 94.4%) to keep the urethral dose within the set constraint. For each case, 
the autoplan showed a lower urethra D1% than the clinical plan with an average reduction of 6.3%-point. For 
the rectum and bladder D1cc, the autoplans showed on average higher doses than the clinical plans: 1.2%-point 
for the rectum and 5.4%-point for the bladder, although all were within the clinical hard constraints as listed 
in table 1. On average, autoplans were more conformal than the clinical plans with an average improvement 
in COIN of 2.1%-point. Autoplanning also resulted in a reduced delivery time 5.6 s. Except for the rectum, the 
differences were statistically significant (p   <  0.05, paired two-sided Wilcoxon signed rank test). Detailed plan 

parameters are presented in table 4 and figure 2.
Total computation times for autoplanning were on average 4.6 s (range 1.3–11.4). This included computa-

tion of the dose kernels (0.4 s, range 0.1–1.0). Manual planning times were not recorded for this study, but they 
were estimated to be  <5 min.

4. Discussion

For a group of 25 low- and intermediate-risk prostate cancer patients, HDR-BT treatment plans were generated 
with autoplanning and compared with the clinical plans. All autoplans showed adequate target coverage and a 
reduced near-maximum urethra dose, the two most important criteria. The doses to the bladder and rectum of 
the autoplans were on average higher, but all were within the clinical constraints. The autoplans also showed on 
average improved conformality.

This paper investigated the feasibility and potential of using automated multi-criteria treatment planning in 
HDR-BT. Introducing the applied workflow as depicted in figure 1 in clinical practice has several challenges: it 
would require a non-certified use of the clinical TPS which would then also increase the planning time with about 
5 min. Alternatively, manually entering the optimised dwell times is supported by our TPS, but time-consuming 
(15–20 min per patient) and error prone. We are currently exploring various options for clinical use, including 
formal integration of the system with the clinical TPS.

With an average of 4.6 s of total planning time, autoplanning turned out to be very fast. For most patients in 
this study, manual planning took less than 5 min by experienced planners. Maree et al (2018) investigated manual 
planning times for a more challenging prostate HDR-BT protocol and found a median planning time of 33 min 
(range 9–48). Despite such planning times, most plans could still be improved.

One option to even further reduce planning time would be to only focus on near-maximum dose reduction 
of the urethra, i.e. assuming that 95% coverage is always achievable. The constrained optimisation ensures com-
pliance with the constraints in the clinical protocol (table 1). Another option is to use advanced modelling of the 
prioritised multi-criteria problem by using the lexicographic reference point method (LRPM), as described in 
Van Haveren et al 2017a, 2017b. Short planning times also enable to further improve multi-fraction HDR-BT: 
in literature there is evidence for implant displacement (Kolkman-Deurloo et al 2011, Aluwini et al 2016), so 
instead of performing only pre-treatment verification (Tanderup et al 2018), a full replanning is possible.

Table 4. Comparison of dosimetric plan parameters between clinical plans and autoplans. Doses for the OARs are given in percentages of 
Dp .

Clinical plan Clinical—auto

Criterion Mean Range Mean Range p -value

Prostate V100% (>95%) 95.0% 94.4%–95.1% −0.1%   −0.6%–0.1% p   =  0.011

Urethra D1% (<120%) 112.8% 107.3%–120.0% 6.3%     1.0%–12.1% p   <  0.001

Rectum D1cc (<80%) 70.2% 57.1%–79.6% −1.2%   −6.9%–6.1% p   =  0.087

Bladder D1cc (<80%) 68.5% 49.2%–79.3% −5.4% −10.8%–3.9% p   <  0.001

COIN 72.1% 57.5%–81.0% −1.3%   −5.7%–4.3% p   =  0.020

Delivery time 376.8 s 226.5 s–502.4 s 5.6 s −18.9 s–22.2 s p   =  0.011

Phys. Med. Biol. 64 (2019) 205002 (8pp)
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In this paper, we have presented an autoplanning approach that generates a single clinically relevant solution 
within a few seconds, by directly including the dose-volume metrics as analytic function (equation (2)) in the 
optimisation problem. Another analytic approach to directly include dose-volume parameters is by formulating 
plan optimisation as a mixed integer programming problem (Gorissen et al 2013). Solving such problems exactly 
is NP-hard (non-deterministic polynomial-time hardness) due to the branch-and-bound characteristic of the 
solver, and not feasible within reasonable time. Also, the performance is highly dependent on the number of dose 
optimisation points. Deist and Gorissen (2016) compared several approaches. Despite the small number of dose 
optimisation points (2750, compared to 30 765 in this paper, see table 3), runtimes were in the order of minutes, 
and convergence asymptotic in time. Another analysis was done by Morén et al (2019), who compared a dose-
volume only model against one which also included a convex mean-tail-dose substitute to prevent coldspots in 
the tumour. While the mean-tail-dose model converged within 3 min for most cases, some other cases required 
15 min to 2 h to converge.

Instead of generating a single clinically relevant plan for each patient, as performed in this study, an alterna-
tive approach is to present a range of alternative solutions, allowing the user to manually select the desired trade-
off for the current patient. Cui et al 2018a, 2018b used a regression model to determine weights for a simulated 

Figure 2. For the 25 study patients, comparisons of plan parameters for automatically generated plans (horizontal) and the clinical 
plans (vertical). Constraint levels are indicated by the dashed lines. For the OARs, markers/patients above the unity line point at 
lower doses for the autoplan. For the conformality index (COIN), points below the unity line show higher conformality for the 
autoplan. For the delivery times, markers above the unity line point at lower delivery times for the autoplans.

Phys. Med. Biol. 64 (2019) 205002 (8pp)
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annealing implementation (Lessard and Pouliot 2001), and computed 14 plans to span an approximation3 of the 
Pareto-front. Bouter et al (2019) employed a multi-criteria evolutionary solver directly on the dose-volume met-
rics to simultaneously generate a range of plans that approximate the Pareto-front. While the computation times 
were reasonable for both approaches (<30 s) and they also allow automated selection of a single plan, it is always 
required to compute the full range of solutions. This limits the approaches in online or real-time applications. In 
contrast, the implementation used in this paper can also be used to generate an approximate Pareto-front.

The question which planning method provides the best balance between plan quality and planning time 
remains. While the autoplans presented in this paper were consistently favourable compared to the manually 
generated plans, this is not a proof for global optimality from a mathematical perspective. To stimulate and ena-
ble fair comparisons, we have released the 25 cases used in this paper as part of the radiotherapy optimisation 
test set (TROTS) open dataset (TROTS 2016, Breedveld and Heijmen 2017). The general aims of TROTS are to 
enable objective comparison of different treatment planning approaches in radiotherapy, and make such data 
available to groups without access to medical data to encourage development of more effective and efficient plan-
ning approaches. This dataset also includes the solution which was exported to the TPS as the autoplan. However 
due to differences in volume definition and evaluation point selection, evaluated plan parameters differ from 
those reported in table 4, which were obtained by evaluation in the clinical TPS.

5. Conclusion

We developed fully automated multi-criteria treatment planning for prostate HDR-BT, and compared resulting 
plans with manually generated, clinically delivered plans. Compared to manual planning, the automatically 
generated plans:

 •  all had adequate target coverage, whereas 2/25 clinical plans had not
 •  all had consistent reduction in near-maximum urethra dose
 •  showed somewhat higher doses to rectum and bladder, but well within clinical constraints
 •  showed on average improved conformality
 •  had on average reduced delivery times
 •  had short optimisation times of 4.6 s on average.

In addition, automated treatment planning resulted in consistent, planner-independent dose distributions.
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